NASA Astrophysics Data System (ADS)
Zhang, Liaolin; Xia, Yu; Shen, Xiao; Yang, Runlan; Wei, Wei
2018-01-01
In this work, we systematically studied the spectroscopic characteristics of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses. The emission peak beyond 976 nm showed irregular shift from 1001 nm to 1023 nm when Yb3+ in different glass matrices. It was associated with the Stark splitting of 2F7/2 and the emission intensities ratio between the transition from the lowest Stark splitting energy level of 2F5/2 to the Stark splitting energy levels of 2F7/2, e to b and that of e to d. Larger Stark splitting of 2F7/2 results in the red-shift of the near infrared emission band at room temperature and larger ratio results in the blue-shift of emission band. The fluorescence lifetimes of Yb3+ doped germanate, phosphate, silicate, and tellurite glasses were measured to be 0.94, 0.82, 1.51, and 0.66 ms, respectively. The fluorescence lifetime was associated with the reabsorption of Yb3+, which larger absorption cross section at the emission band results in larger reabsorption, then leads to the shorter near infrared fluorescence lifetime.
Berman, S.M.; Richardson R.W.
1983-12-29
The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.
Magnetic fluorescent lamp having reduced ultraviolet self-absorption
Berman, Samuel M.; Richardson, Robert W.
1985-01-01
The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.
"DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.
Walter, Heidi-Kristin; Bauer, Jens; Steinmeyer, Jeannine; Kuzuya, Akinori; Niemeyer, Christof M; Wagenknecht, Hans-Achim
2017-04-12
A split aptamer for adenosine triphosphate (ATP) was embedded as a recognition unit into two levers of a nanomechanical DNA origami construct by extension and modification of selected staple strands. An additional optical module in the stem of the split aptamer comprised two different cyanine-styryl dyes that underwent an energy transfer from green (donor) to red (acceptor) emission if two ATP molecules were bound as target molecule to the recognition module and thereby brought the dyes in close proximity. As a result, the ATP as a target triggered the DNA origami shape transition and yielded a fluorescence color change from green to red as readout. Conventional atomic force microscopy (AFM) images confirmed the topology change from the open form of the DNA origami in the absence of ATP into the closed form in the presence of the target molecule. The obtained closed/open ratios in the absence and presence of target molecules tracked well with the fluorescence color ratios and thereby validated the bicolor fluorescence readout. The correct positioning of the split aptamer as the functional unit farthest away from the fulcrum of the DNA origami was crucial for the aptasensing by fluorescence readout. The fluorescence color change allowed additionally to follow the topology change of the DNA origami aptasensor in real time in solution. The concepts of fluorescence energy transfer for bicolor readout in a split aptamer in solution, and AFM on surfaces, were successfully combined in a single DNA origami construct to obtain a bimodal readout. These results are important for future custom DNA devices for chemical-biological and bioanalytical purposes because they are not only working as simple aptamers but are also visible by AFM on the single-molecule level.
Sakaguchi, Reiko; Endoh, Takashi; Yamamoto, Seigo; Tainaka, Kazuki; Sugimoto, Kenji; Fujieda, Nobutaka; Kiyonaka, Shigeki; Mori, Yasuo; Morii, Takashi
2009-10-15
A fluorescent sensor for the detection of inositol-1,3,4,5-tetrakisphosphate, Ins(1,3,4,5)P(4), was constructed from a split PH domain and a single circularly permuted GFP. A structure-based design was conducted to transduce a ligand-induced subtle structural perturbation of the split PH domain to an alteration in the population of the protonated and the deprotonated states of the GFP chromophore. Excitation of each distinct absorption band corresponding to the protonated or the deprotonated state of GFP resulted an increase and a decrease, respectively, in the intensity of emission spectra upon addition of Ins(1,3,4,5)P(4) to the split PH domain-based sensor. The Ins(1,3,4,5)P(4) sensor retained the ligand affinity and the selectivity of the parent PH domain, and realized the ratiometric fluorescence detection of Ins(1,3,4,5)P(4).
Improving multiphoton STED nanoscopy with separation of photons by LIfetime Tuning (SPLIT)
NASA Astrophysics Data System (ADS)
Coto Hernández, Iván.; Lanzano, Luca; Castello, Marco; Jowett, Nate; Tortarolo, Giorgio; Diaspro, Alberto; Vicidomini, Giuseppe
2018-02-01
Stimulated emission depletion (STED) microscopy is a powerful bio-imaging technique since it provides molecular spatial resolution whilst preserving the most important assets of fluorescence microscopy. When combined with twophoton excitation (2PE) microscopy (2PE-STED), the sub-diffraction imaging ability of STED microscopy can be achieved also on thick biological samples. The most straightforward implementation of 2PE-STED microscopy is obtained by introducing a STED beam operating in continuous wave (CW) into a conventional Ti:Sapphire based 2PE microscope (2PE-CW-STED). In this implementation, an effective resolution enhancement is mainly obtained implementing a time-gated detection scheme, which however can drastically reduce the signal-to-noise/background ratio of the final image. Herein, we combine the lifetime tuning (SPLIT) approach with 2PE-CW-STED to overcome this limitation. The SPLIT approach is employed to discard fluorescence photons lacking super-resolution information, by means of a pixel-by-pixel phasor approach. Combining the SPLIT approach with image deconvolution further optimizes the signal-to-noise/background ratio.
Anazawa, Takashi; Yamazaki, Motohiro
2017-12-05
Although multi-point, multi-color fluorescence-detection systems are widely used in various sciences, they would find wider applications if they are miniaturized. Accordingly, an ultra-small, four-emission-point and four-color fluorescence-detection system was developed. Its size (space between emission points and a detection plane) is 15 × 10 × 12 mm, which is three-orders-of-magnitude smaller than that of a conventional system. Fluorescence from four emission points with an interval of 1 mm on the same plane was respectively collimated by four lenses and split into four color fluxes by four dichroic mirrors. Then, a total of sixteen parallel color fluxes were directly input into an image sensor and simultaneously detected. The emission-point plane and the detection plane (the image-sensor surface) were parallel and separated by a distance of only 12 mm. The developed system was applied to four-capillary array electrophoresis and successfully achieved Sanger DNA sequencing. Moreover, compared with a conventional system, the developed system had equivalent high fluorescence-detection sensitivity (lower detection limit of 17 pM dROX) and 1.6-orders-of-magnitude higher dynamic range (4.3 orders of magnitude).
Multiplexed capillary electrophoresis system
Yeung, Edward S.; Li, Qingbo; Lu, Xiandan
1998-04-21
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.
Multiplexed capillary electrophoresis system
Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan
1996-12-10
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.
Multiplexed capillary electrophoresis system
Yeung, E.S.; Li, Q.; Lu, X.
1998-04-21
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.
Multiplexed capillary electrophoresis system
Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.
1996-12-10
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.
Capillaries for use in a multiplexed capillary electrophoresis system
Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.
1997-12-09
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.
Capillaries for use in a multiplexed capillary electrophoresis system
Yeung, E.S.; Chang, H.T.; Fung, E.N.
1997-12-09
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.
NASA Astrophysics Data System (ADS)
Gao, Ying; Pan, Qing-Qing; Zhao, Liang; Geng, Yun; Su, Tan; Gao, Ting; Su, Zhong-Min
2018-06-01
To seek effective thermally activated delayed fluorescence (TADF) molecules, we have designed compounds 1-4 by introducing substituents on the para-position of boron atom of blue TADF molecule (DABNA-1). The results indicate that 1-4 not only retain the blue emission from 454 to 466 nm, but also possess larger oscillator strength. Besides, the fluorescence radiative rates (kr) of 1-4 are higher than that of DABNA-1. The singlet-triplet energy splitting (ΔΕST) values of designed compounds are smaller than that of DABNA-1. Taking both ΔΕST and kr into account, designed compounds show better TADF performances, indicating their potential as TADF materials.
Quantum confined Stark effect in organic fluorophores.
NASA Astrophysics Data System (ADS)
Peng, Xihong; Anderson, John; Tepper, Gary; Bandyopadhyay, Supriyo; Nayak, Saroj
2008-03-01
Fluorescent molecules have widely been used to detect and visualize structure and processes in biological samples due to its extraordinary sensitivity. However, the emission spectra of flurophores are usually broad and the accurate identification is difficult. Recently, experiments show that energy shifts by Stark effect can be used to aid the identification of organic molecules [1]. Stark effect originates from the shifting/splitting of energy levels when a molecule is under an external electric field, which shows a shift/splitting of a peak in absorption/emission spectra. The size of the shift depends on the magnitude of the external field and the molecular structure. In this talk we will show our theoretical study of the peak shifts on emission spectra for a series of organic fluorophores such as tyrosine, tryptophan, rhodamine123 and coumarin314 using density functional theory. We find that a particular peak shift is determined by the local dipole moments of molecular orbitals rather than the global dipole moment of the molecule. These molecular-specific shifts in emission spectra may enable to improve molecular identification in biosensors. Our results will be compared with experimental data. [1]Unpublished, S. Sarkar, B. Kanchibotla, S. Bandyopadhyay, G. Tepper, J. Edwards, J. Anderson, and R. Kessick.
NASA Astrophysics Data System (ADS)
Talite, M. J. A.; Lin, H. T.; Jiang, Z. C.; Lin, T. N.; Huang, H. Y.; Heredia, E.; Flores, A.; Chao, Y. C.; Shen, J. L.; Lin, C. A. J.; Yuan, C. T.
2016-08-01
Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.
Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications
NASA Astrophysics Data System (ADS)
Bossert, Nelli; de Bruin, Donny; Götz, Maria; Bouwmeester, Dirk; Heinrich, Doris
2016-11-01
DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.
High temperature thermometric phosphors
Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.
1999-03-23
A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.
High temperature thermometric phosphors
Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.
1999-03-23
A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.
High temperature thermometric phosphors for use in a temperature sensor
Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.
1998-03-24
A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.
Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.
Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V
2017-05-26
Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Technical Reports Server (NTRS)
Scheuerlein, R.; Wayne, R.; Roux, S. J.
1988-01-01
A method is described to determine germination by blue-light excited red fluorescence in the positively photoblastic spores of Dryopteris paleacea Sw. This fluorescence is due to chlorophyll as evidenced from 1) a fluorescence-emission spectrum in vivo, where a bright fluorescence around 675 nm is obtained only in red light (R)-irradiated spores and 2) in vitro measurements with acetone extracts prepared from homogenized spores. Significant amounts of chlorophyll can be found only in R-treated spores; this chlorophyll exhibits an emission band around 668 nm, when irradiated with 430 nm light at 21 degrees C. Compared to other criteria for germination, such as swelling of the cell, coat splitting, greening, and rhizoid formation, which require longer periods after induction for their expression, chlorophyll fluorescence can be used to quantify germination after two days. This result is confirmed by fluence-response curves for R-induced spore germination; the same relationship between applied R and germination is obtained by the evaluation with the epifluorescence method 2 days after the light treatment as compared with the evaluation with bright-field microscopy 5 days after the inducing R. Using this technique we show for the first time that Ca2+ contributes to the signal-transduction chain in phytochrome-mediated chlorophyll synthesis in spores of Dryopteris paleacea.
Sun, Yinghua; Sun, Yang; Stephens, Douglas; Xie, Hongtao; Phipps, Jennifer; Saroufeem, Ramez; Southard, Jeffrey; Elson, Daniel S.; Marcu, Laura
2011-01-01
Simultaneous time- and wavelength-resolved fluorescence spectroscopy (STWRFS) was developed and tested for the dynamic characterization of atherosclerotic tissue ex vivo and arterial vessels in vivo. Autofluorescence, induced by a 337 nm, 700 ps pulsed laser, was split to three wavelength sub-bands using dichroic filters, with each sub-band coupled into a different length of optical fiber for temporal separation. STWRFS allows for fast recording/analysis (few microseconds) of time-resolved fluorescence emission in these sub-bands and rapid scanning. Distinct compositions of excised human atherosclerotic aorta were clearly discriminated over scanning lengths of several centimeters based on fluorescence lifetime and the intensity ratio between 390 and 452 nm. Operation of STWRFS blood flow was further validated in pig femoral arteries in vivo using a single-fiber probe integrated with an ultrasound imaging catheter. Current results demonstrate the potential of STWRFS as a tool for real-time optical characterization of arterial tissue composition and for atherosclerosis research and diagnosis. PMID:21369214
Zhang, Ping; Li, Ling; Zhao, Yun; Tian, Zeyun; Qin, Yumei; Lu, Jun
2016-09-06
The fluorescent dye 8-anilino-1-naphthalenesulfonate (ANS) is a widely used fluorescent probe molecule for biochemistry analysis. This paper reported the fabrication of ANS/layered double hydroxide nanosheets (ANS/LDH)n ultrathin films (UTFs) via the layer-by-layer small anion assembly technique based on electrostatic interaction and two possible weak interactions: hydrogen-bond and induced electrostatic interactions between ANS and positive-charged LDH nanosheets. The obtained UTFs show a long-range-ordered periodic layered stacking structure and weak fluorescence in dry air or water, but it split into three narrow strong peaks in a weak polarity environment induced by the two-dimensional (2D) confinement effect of the LDH laminate; the fluorescence intensity increases with decreasing the solvent polarity, concomitant with the blue shift of the emission peaks, which show good sensoring reversibility. Meanwhile, the UTFs exhibit selective fluorescence enhancement to the bovine serum albumin (BSA)-like protein biomolecules, and the rate of fluorescence enhancement with the protein concentration is significantly different with the different protein aggregate states. The (ANS/LDH)n UTF has the potential to be a novel type of biological flourescence sensor material.
Protein subcellular localization assays using split fluorescent proteins
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2009-09-08
The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).
High temperature thermometric phosphors for use in a temperature sensor
Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.
1998-01-01
A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.
Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skytt, P.; Glans, P.; Gunnelin, K.
1997-04-01
The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons couldmore » not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.« less
Schinabeck, Alexander; Leitl, Markus J; Yersin, Hartmut
2018-05-11
The three-fold bridged di-nuclear Cu(I) complex Cu 2 (µ-I) 2 (1N-n-butyl-5-diphenyl-phosphino-1,2,4-triazole) 3 , Cu 2 I 2 (P^N) 3 , shows bright thermally activated delayed fluorescence (TADF) as well as phosphorescence at ambient temperature with a total quantum yield of 85 % at an emission decay time of 7 μs. The singlet(S 1 )-triplet(T 1 ) energy gap is as small as only 430 cm -1 (54 meV). Spin-orbit-coupling induces a short-lived phosphorescence with a decay time of 52 μs (T = 77 K) and a distinct zero-field splitting (ZFS) of T 1 into substates by ≈ 2.5 cm -1 (0.3 meV). Below T ≈ 10 K, effects of spin-lattice relaxation (SLR) are observed and agree with the size of ZFS. According to the combined phosphorescence and TADF, the overall emission decay time is reduced by ≈ 13 % as compared to the TADF-only process. The compound may potentially be applied in solution-processed OLEDs exploiting both the singlet and triplet harvesting mechanisms.
NASA Astrophysics Data System (ADS)
Davis, Barry M.; Gervais, Benoit; McCaffrey, John G.
2018-03-01
A detailed characterisation of the luminescence recorded for the 6p 1P1-6s 1S0 transition of atomic barium isolated in annealed solid xenon has been undertaken using two-dimensional excitation-emission (2D-EE) spectroscopy. In the excitation spectra extracted from the 2D-EE scans, two dominant thermally stable sites were identified, consisting of a classic, three-fold split Jahn-Teller band, labeled the blue site, and an unusual asymmetric 2 + 1 split band, the violet site. A much weaker band has also been identified, whose emission is strongly overlapped by the violet site. The temperature dependence of the luminescence for these sites was monitored revealing that the blue site has a non-radiative channel competing effectively with the fluorescence even at 9.8 K. By contrast, the fluorescence decay time of the violet site was recorded to be 4.3 ns and independent of temperature up to 24 K. The nature of the dominant thermally stable trapping sites was investigated theoretically with Diatomics-in-Molecule (DIM) molecular dynamics simulations. The DIM model was parameterized with ab initio multi-reference configuration interaction calculations for the lowest energy excited states of the BaṡXe pair. The simulated absorption spectra are compared with the experimental results obtained from site-resolved excitation spectroscopy. The simulations allow us to assign the experimental blue feature spectrum to a tetra-vacancy trapping site in the bulk xenon fcc crystal—a site often observed when trapping other metal atoms in rare gas matrices. By contrast, the violet site is assigned to a specific 5-atom vacancy trapping site located at a grain boundary.
Clouthier, Dennis J; Kalume, Aimable
2016-01-21
Laser-induced fluorescence and wavelength resolved emission spectra of the B (4)Σ(-)-X (4)Σ(-) band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming bβS magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λ' is of the order of ≈ 0.025-0.030 cm(-1).
A Comparison Between Magnetic Field Effects in Excitonic and Exciplex Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Sahin Tiras, Kevser; Wang, Yifei; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatte, Michael E.
In flat-panel displays and lighting applications, organic light emitting diodes (OLEDs) have been widely used because of their efficient light emission, low-cost manufacturing and flexibility. The electrons and holes injected from the anode and cathode, respectively, form a tightly bound exciton as they meet at a molecule in organic layer. Excitons occur as spin singlets or triplets and the ratio between singlet and triplet excitons formed is 1:3 based on spin degeneracy. The internal quantum efficiency (IQE) of fluorescent-based OLEDs is limited 25% because only singlet excitons contribute the light emission. To overcome this limitation, thermally activated delayed fluorescent (TADF) materials have been introduced in the field of OLEDs. The exchange splitting between the singlet and triplet states of two-component exciplex systems is comparable to the thermal energy in TADF materials, whereas it is usually much larger in excitons. Reverse intersystem crossing occurs from triplet to singlet exciplex state, and this improves the IQE. An applied small magnetic field can change the spin dynamics of recombination in TADF blends. In this study, magnetic field effects on both excitonic and exciplex OLEDs will be presented and comparison similarities and differences will be made.
Bui, Thanh-Tuân; Goubard, Fabrice; Ibrahim-Ouali, Malika; Gigmes, Didier
2018-01-01
The design of highly emissive and stable blue emitters for organic light emitting diodes (OLEDs) is still a challenge, justifying the intense research activity of the scientific community in this field. Recently, a great deal of interest has been devoted to the elaboration of emitters exhibiting a thermally activated delayed fluorescence (TADF). By a specific molecular design consisting into a minimal overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) due to a spatial separation of the electron-donating and the electron-releasing parts, luminescent materials exhibiting small S1–T1 energy splitting could be obtained, enabling to thermally upconvert the electrons from the triplet to the singlet excited states by reverse intersystem crossing (RISC). By harvesting both singlet and triplet excitons for light emission, OLEDs competing and sometimes overcoming the performance of phosphorescence-based OLEDs could be fabricated, justifying the interest for this new family of materials massively popularized by Chihaya Adachi since 2012. In this review, we proposed to focus on the recent advances in the molecular design of blue TADF emitters for OLEDs during the last few years. PMID:29507635
Split green fluorescent protein as a modular binding partner for protein crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hau B.; Hung, Li-Wei; Yeates, Todd O.
2013-12-01
A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was testedmore » by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization.« less
[A new class of exciplex-formed probe detect of specific sequence DNA].
Li, Qing-Yong; Zu, Yuan-Gang; Lü, Hong-Yan; Wang, Li-Min
2009-07-01
The present research was to develop the exciplex-based fluorescence detection of DNA. A SNP-containing region of cytochrome P450 2C9 DNA systems was evaluated to define some of the structural and associated requirement of this new class of exciplex-formed probe, and a 24-base target was selected which contains single-nucleotide polymorphisms (SNP) in genes coding for cytochrome P450. The two probes were all 12-base to give coverage of a 24-base target region to ensure specificity within the human genome. Exciplex partners used in this study were prepared using analogous phosphoramide attachment to the 3'- or 5'-phosphate group of the appropriate oligonucleotide probes. The target effectively assembled its own detector by hybridization from components which were non-fluorescent at the detection wavelength, leading to the huge improvement in terms of decreased background. This research provides details of the effects of different partner, position of partners and different excitation wavelengths for the split-oligonucleotide probe system for exciplex-based fluorescence detection of DNA. This study demonstrates that the emission intensity of the excimer formed by new pyrene derivative is the highest in these excimer and exciplex, and the excimer is easy to be formed and not sensitive to the position of partners. However the exciplex formed by the new pyrene derivative and naphthalene emitted strongly at -505 nm with large Stokes shifts (120-130 nm), and the monomer emission at 390 and 410 nm is nearly zero. Excitation wavelength of 400 nm is the best for I(e505)/I(m410) (exciplex emission at 505 nm/monomer emission at 410 nm) of the exciplex. This method features lower background and high sensitivity. Moreover the exciplex is sensitive to the steric factor, different position of partners and microenvironment, so this exciplex system is promising and could be tried to identify the SNP genes.
NASA Astrophysics Data System (ADS)
Kang, Yvonne Q.; François, Alexandre; Riesen, Nicolas; Monro, Tanya M.
2018-02-01
Whispering Gallery Mode (WGM) biosensors have been widely exploited over the past decade, owing to their unprecedented detection limits and label free capability. WGM based sensing mechanisms, such as resonance frequency shift, linewidth broadening, and splitting of the two counter-propagating WGMs, have been extensively researched and applied for bio-chemical sensing. However, the mode-splitting of the originally degenerate WGMs from different equatorial planes on a fluorescent microsphere has not been fully investigated. In this work, we break the symmetry of the surrounding environment outside the microsphere by partially embedding the sphere into a high-refractive-index medium (i.e. glue), to lift the degeneracy of the modes from different WGM planes. The split-modes from multiple planes of the fluorescent microsphere are indiscriminately collected. It is found that the effective quality factor Q of the WGMs increases non-conventionally as the Refractive Index (RI) of the probing liquid increases up to the point where it is equal to that of the glue. This presents a new methodology for quantifying changes in the probing environment based on the Q spoiling of the resonances as determined by the RI difference between the environment and that of the reference glue. Furthermore, we find that this sensing platform opens the door to simple self-referenced sensing techniques based on the analysis of the spectral positions of subsets of the split modes.
Laser induced fluorescence of BaS: Sm phosphor and energy level splitting of Sm 3+ ion
NASA Astrophysics Data System (ADS)
Thomas, Reethamma; Nampoori, V. P. N.
1990-03-01
Fluorescence of BaS: Sm phosphor has been studied using a pulsed Nitrogen laser (337.1 nm) as the excitation source. The spectrum consists of a broad band in the region 540-660nm superposed by the characteristic Sm 3+ lines. Energy level splitting pattern of Sm 3+ due to crystal field effects has been calculated and relevent field parameters are evaluated. Analysis shows that Sm 3+ takes up Ba 2+ substitutional sites.
Nigussie, Abebe; Bruun, Sander; Kuyper, Thomas W; de Neergaard, Andreas
2017-01-01
Municipal waste is usually composted with an N-rich substrate, such as manure, to increase the N content of the product. This means that a significant amount of nitrogen can be lost during composting. The objectives of this study were (i) to investigate the effect of split addition of a nitrogen-rich substrate (poultry manure) on nitrogen losses and greenhouse gas emissions during composting and to link this effect to different bulking agents (coffee husks and sawdust), and (ii) to assess the effect of split addition of a nitrogen-rich substrate on compost stability and sanitisation. The results showed that split addition of the nitrogen-rich substrate reduced nitrogen losses by 9% when sawdust was used and 20% when coffee husks were used as the bulking agent. Depending on the bulking agent used, split addition increased cumulative N 2 O emissions by 400-600% compared to single addition. In contrast, single addition increased methane emissions by up to 50% compared to split addition of the substrate. Hence, the timing of the addition of the N-rich substrate had only a marginal effect on total non-CO 2 greenhouse gas emissions. Split addition of the N-rich substrate resulted in compost that was just as stable and effective at completely eradicating weed seeds as single addition. These findings therefore show that split addition of a nitrogen-rich substrate could be an option for increasing the fertilising value of municipal waste compost without having a significant effect on total greenhouse gas emissions or compost stability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shao, Shiyang; Hu, Jun; Wang, Xingdong; Wang, Lixiang; Jing, Xiabin; Wang, Fosong
2017-12-13
We demonstrate novel molecular design for thermally activated delayed fluorescence (TADF) polymers based on a nonconjugated polyethylene backbone with through-space charge transfer effect between pendant electron donor (D) and acceptor (A) units. Different from conventional conjugated D-A polymers with through-bond charge transfer effect, the nonconjugated architecture avoids direct conjugation between D and A units, enabling blue emission. Meanwhile, spatial π-π interaction between the physically separated D and A units results in both small singlet-triplet energy splitting (0.019 eV) and high photoluminescence quantum yield (up to 60% in film state). The resulting polymer with 5 mol % acceptor unit gives efficient blue electroluminescence with Commission Internationale de l'Eclairage coordinates of (0.176, 0.269), together with a high external quantum efficiency of 12.1% and low efficiency roll-off of 4.9% (at 1000 cd m -2 ), which represents the first example of blue TADF nonconjugated polymer.
The motional stark effect with laser-induced fluorescence diagnostic
NASA Astrophysics Data System (ADS)
Foley, E. L.; Levinton, F. M.
2010-05-01
The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (<1 T) experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.
Kaihara, Asami; Umezawa, Yoshio; Furukawa, Tetsushi
2008-01-01
Genetically encoded bioluminescent indicators for intracellular Ca2+ are described here with CaM-M13 interaction-induced complementation of split Renilla luciferase. The Ca2+-induced interaction between CaM and M13 leads to complementation of the N- and C-terminal halves of split Renilla luciferase in living cells. This intramolecular interaction results in the spontaneous and simultaneous emission of bioluminescence split Renilla luciferase. This is how intracellular Ca2+ is illuminated with the intramolecular complementation of split Renilla luciferase. The Ca2+-dependent spontaneous and simultaneous emission of bioluminescence promises to reveal Ca2+ dynamics in living cells, and also in vivo using the present indicators.
Masaka, Johnson; Nyamangara, Justice; Wuta, Menas
2016-01-01
An understanding of the contribution of manure applications to global atmospheric N2O loading is needed to evaluate agriculture's contribution to the global warming process. Two field experiments were carried out at Dufuya wetland (19°17'S; 29°21'E, 1260 m above sea level) to determine the effects of single and split manure applications on emissions of N2O from soil during the growing seasons of two rape and two tomato crops. Two field experiments were established. In the first experiment the manure was applied in three levels of 0, 15, and 30 Mg ha(-1) as a single application just before planting of the first tomato crop. In the second experiment the 15 and 30 Mg ha(-1) manure application rates were divided into four split applications of 3.75 and 7.5 Mg ha(-1) respectively, for each of the four cropping events. Single applications of 15 and 30 Mg ha(-1) manure once in four cropping events had higher emissions of N2O than those recorded on plots that received split applications of 3.75 and 7.5 Mg ha(-1) manure at least up to the second test crop. Thereafter N2O emissions on plots subjected to split applications of manure were higher or equal to those recorded in plots that received single basal applications of 30 Mg ha(-1) applied a week before planting the first crop. Seasonal split applications of manure to wetland vegetable crops can reduce emissions of N2O at least up to the second seasonal split application.
USDA-ARS?s Scientific Manuscript database
A multi-spectral fluorescence imaging technique was used to detect defect cherry tomatoes. The fluorescence excitation and emission matrix was used to measure for defects, sound surface, and stem areas to determine the optimal fluorescence excitation and emission wavelengths for discrimination. Two-...
Life cycle analysis of greenhouse gas emissions for fluorescent lamps in mainland China.
Chen, Sha; Zhang, Jiaxing; Kim, Junbeum
2017-01-01
China is the world's largest emitter of carbon dioxide, and it is also one of the largest fluorescent lamp consuming and producing country in the world. However, there are few studies evaluating greenhouse gas (GHG) emissions of fluorescent lamps in China. This analysis compared GHG emissions of compact fluorescent lamps with linear fluorescent lamps using life cycle assessment method in China's national conditions. The GHG emissions of fluorescent lamps from their manufacture to the final disposal phase on the national level of China were also quantified. The results indicate that the use phase dominates the GHG emissions for both lamps. Linear fluorescent lamp is a better source of light compared to compact fluorescent lamp with respect to GHG emissions. The analysis found that in 2011, China generated around 710.90milliontons CO 2 -eq associated with fluorescent lamps. The raw material production and use phases accounted for major GHG emissions. More than half of GHG emissions during the domestic production were embodied in the exported lamps in recent years. This urges the government to take necessary measures that lead to more environmental friendly production, consumption and trade patterns. Copyright © 2016 Elsevier B.V. All rights reserved.
The osmotic stress response of split influenza vaccine particles in an acidic environment.
Choi, Hyo-Jick; Kim, Min-Chul; Kang, Sang-Moo; Montemagno, Carlo D
2014-12-01
Oral influenza vaccine provides an efficient means of preventing seasonal and pandemic disease. In this work, the stability of envelope-type split influenza vaccine particles in acidic environments has been investigated. Owing to the fact that hyper-osmotic stress can significantly affect lipid assembly of vaccine, osmotic stress-induced morphological change of split vaccine particles, in conjunction with structural change of antigenic proteins, was investigated by the use of stopped-flow light scattering (SFLS), intrinsic fluorescence, transmission electron microscopy (TEM), and hemagglutination assay. Split vaccine particles were found to exhibit a step-wise morphological change in response to osmotic stress due to double-layered wall structure. The presence of hyper-osmotic stress in acidic medium (0.3 osmolarity, pH 2.0) induced a significant level of membrane perturbation as measured by SFLS and TEM, imposing more damage to antigenic proteins on vaccine envelope than can be caused by pH-induced conformational change at acidic iso-osmotic condition. Further supports were provided by the intrinsic fluorescence and hemagglutinin activity measurements. Thus, hyper-osmotic stress becomes an important factor for determining stability of split vaccine particles in acidic medium. These results are useful in better understanding the destabilizing mechanism of split influenza vaccine particles in gastric environment and in designing oral influenza vaccine formulations.
Tuning Fluorescence Direction with Plasmonic Metal–Dielectric– Metal Substrates
Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Nowaczyk, Kazimierz; Ray, Krishanu; Lakowicz, Joseph R.
2013-01-01
Controlling the emission properties of fluorophores is essential for improving the performance of fluorescence-based techniques in modern biochemical research, medical diagnosis, and sensing. Fluorescence emission is isotropic in nature, which makes it difficult to capture more than a small fraction of the total emission. Metal– dielectric–metal (MDM) substrates, discussed in this Letter, convert isotropic fluorescence into beaming emission normal to the substrate. This improves fluorescence collection efficiency and also opens up new avenues for a wide range of fluorescence-based applications. We suggest that MDM substrates can be readily adapted for multiple uses, such as in microarray formats, for directional fluorescence studies of multiple probes or for molecule-specific sensing with a high degree of spatial control over the fluorescence emission. SECTION: Physical Processes in Nanomaterials and Nanostructures PMID:24013521
A Split-GFP Gateway Cloning System for Topology Analyses of Membrane Proteins in Plants.
Xie, Wenjun; Nielsen, Mads Eggert; Pedersen, Carsten; Thordal-Christensen, Hans
2017-01-01
To understand the function of membrane proteins, it is imperative to know their topology. For such studies, a split green fluorescent protein (GFP) method is useful. GFP is barrel-shaped, consisting of 11 β-sheets. When the first ten β-sheets (GFP1-10) and the 11th β-sheet (GFP11) are expressed from separate genes they will self-assembly and reconstitute a fluorescent GFP protein. However, this will only occur when the two domains co-localize in the same cellular compartment. We have developed an easy-to-use Gateway vector set for determining on which side of the membrane the N- and C-termini are located. Two vectors were designed for making N- and C-terminal fusions between the membrane proteins-of-interest and GFP11, while another three plasmids were designed to express GFP1-10 in either the cytosol, the endoplasmic reticulum (ER) lumen or the apoplast. We tested functionality of the system by applying the vector set for the transmembrane domain, CNXTM, of the ER membrane protein, calnexin, after transient expression in Nicotiana benthamiana leaves. We observed GFP signal from the ER when we reciprocally co-expressed GFP11-CNXTM with GFP1-10-HDEL and CNXTM-GFP with cytosolic GFP1-10. The opposite combinations did not result in GFP signal emission. This test using the calnexin ER-membrane domain demonstrated its C-terminus to be in the cytosol and its N-terminus in the ER lumen. This result confirmed the known topology of calnexin, and we therefore consider this split-GFP system highly useful for ER membrane topology studies. Furthermore, the vector set provided is useful for detecting the topology of proteins on other membranes in the cell, which we confirmed for a plasma membrane syntaxin. The set of five Ti-plasmids are easily and efficiently used for Gateway cloning and transient transformation of N. benthamiana leaves.
Split gradient coils for simultaneous PET-MRI
Poole, Michael; Bowtell, Richard; Green, Dan; Pittard, Simon; Lucas, Alun; Hawkes, Rob; Carpenter, Adrian
2015-01-01
Combining positron emission tomography (PET) and MRI necessarily involves an engineering tradeoff as the equipment needed for the two modalities vies for the space closest to the region where the signals originate. In one recently described scanner configuration for simultaneous positron emission tomography–MRI, the positron emission tomography detection scintillating crystals reside in an 80-mm gap between the 2 halves of a 1-T split-magnet cryostat. A novel set of gradient and shim coils has been specially designed for this split MRI scanner to include an 110-mm gap from which wires are excluded so as not to interfere with positron detection. An inverse boundary element method was necessarily employed to design the three orthogonal, shielded gradient coils and shielded Z0 shim coil. The coils have been constructed and tested in the hybrid positron emission tomography-MRI system and successfully used in simultaneous positron emission tomography-MRI experiments. PMID:19780167
Dendritic copper phthalocyanine with aggregation induced blue emission and solid-state fluorescence
NASA Astrophysics Data System (ADS)
Wang, Jiayi; Pan, Lin; Zhou, Xuefei; Jia, Kun; Liu, Xiaobo
2016-09-01
In this work, dendritic copper phthalocyanine (CuPc) showing obvious aggregation induced emission (AIE) and strong solid-state fluorescence was synthesized. It was found that synthesized CuPc can be easily solubilized in polar aprotic solvent, where no fluorescence signal was detected. Interestingly, both the CuPc aggregates in solution and solid-state powder exhibited strong fluorescence emission around 480 nm, which should be attributed to the restriction of intramolecular rotation as rationalized in aggregation induced emission framework. Meanwhile the obvious crystalline enhanced solid-state fluorescent emission is observed for CuPc powder.
Coherent fluorescence emission by using hybrid photonic–plasmonic crystals
Shi, Lei; Yuan, Xiaowen; Zhang, Yafeng; Hakala, Tommi; Yin, Shaoyu; Han, Dezhuan; Zhu, Xiaolong; Zhang, Bo; Liu, Xiaohan; Törmä, Päivi; Lu, Wei; Zi, Jian
2014-01-01
The spatial and temporal coherence of the fluorescence emission controlled by a quasi-two-dimensional hybrid photonic–plasmonic crystal structure covered with a thin fluorescent-molecular-doped dielectric film is investigated experimentally. A simple theoretical model to describe how a confined quasi-two-dimensional optical mode may induce coherent fluorescence emission is also presented. Concerning the spatial coherence, it is experimentally observed that the coherence area in the plane of the light source is in excess of 49 μm2, which results in enhanced directional fluorescence emission. Concerning temporal coherence, the obtained coherence time is 4 times longer than that of the normal fluorescence emission in vacuum. Moreover, a Young's double-slit interference experiment is performed to directly confirm the spatially coherent emission. This smoking gun proof of spatial coherence is reported here for the first time for the optical-mode-modified emission. PMID:25793015
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S.; Cabantous, Stephanie
2014-04-01
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2011-06-07
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S.; Cabantous, Stephanie
2015-07-14
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
Excited-state absorption in Er: BaY2F8 and Cs3Er2Br9 and comparison with Er: LiYF4
NASA Astrophysics Data System (ADS)
Pollnau, M.; Lüthy, W.; Weber, H. P.; Krämer, K.; Güdel, H. U.; McFarlane, R. A.
1996-04-01
The influence of Excited-State Absorption (ESA) on the green laser transition and the overlap of Ground-State Absorption (GSA) and ESA for 970 nm upconversion pumping in erbium is investigated in Er3+ : BaY2F8 and Cs3Er2Br9. Results are compared to Er3+ : LiYF4. In Er3+: BaY2F8, a good overlap between GSA and ESA is found at 969 nm in one polarization direction. The emission cross section at 550 nm is a factor of two smaller than in LiYF4. In Cs3Er2Br9, the smaller Stark splitting of the levels shifts the wavelengths of the green emission and ESA from4 I 1 3/2 off resonance. It enhances, however, ground-state reabsorption. The emission cross section at 550 nm is comparable to LiYF4. Upconversion leads to significant green fluorescence from2 H 9/2. A significant population of the4 I 11/2 level and ESA at 970 nm are not present under 800 nm pumping.
NASA Astrophysics Data System (ADS)
You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng
2016-05-01
Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting. Electronic supplementary information (ESI) available: Calculating details of UCNP content per 3D QR code and decoding process of the 3D QR code. See DOI: 10.1039/c6nr01353h
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias
The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.
Theoretical study of the potential energy surfaces and dynamics of CaNC/CaCN
NASA Astrophysics Data System (ADS)
Nanbu, Shinkoh; Minamino, Satoshi; Aoyagi, Mutsumi
1997-05-01
Potential energy surfaces for the ground and two low-lying electronically excited states of CaNC/CaCN, are calculated using the ab initio molecular orbital (MO) configuration interaction (CI) method. The absorption and emission spectra of the system are computed by performing time-dependent quantum dynamical calculations on these surfaces. The most stable geometries for the two lowest lying 12Σ+ and 12Π electronic states correspond to the calcium isocyanide (CaNC) structure. These two states are characterized by ionic bonding and the potential energy curves along the bending coordinate are relatively isotropic. The result of our wave packet dynamics shows that the characteristics of the experimental spectra observed by the laser-induced fluorescence spectroscopy can be explained by the Renner-Teller splitting.
Analysis of Septin Reorganization at Cytokinesis Using Polarized Fluorescence Microscopy
McQuilken, Molly; Jentzsch, Maximilian S.; Verma, Amitabh; Mehta, Shalin B.; Oldenbourg, Rudolf; Gladfelter, Amy S.
2017-01-01
Septins are conserved filament-forming proteins that act in diverse cellular processes. They closely associate with membranes and, in some systems, components of the cytoskeleton. It is not well understood how filaments assemble into higher-order structures in vivo or how they are remodeled throughout the cell cycle. In the budding yeast S. cerevisiae, septins are found through most of the cell cycle in an hourglass organization at the mother-bud neck until cytokinesis when the collar splits into two rings that disassemble prior to the next cell cycle. Experiments using polarized fluorescence microscopy have suggested that septins are arranged in ordered, paired filaments in the hourglass and undergo a coordinated 90° reorientation during splitting at cytokinesis. This apparent reorganization could be due to two orthogonal populations of filaments disassembling and reassembling or being preferentially retained at cytokinesis. In support of this idea, we report a decrease in septin concentration at the mother-bud neck during cytokinesis consistent with other reports and the timing of the decrease depends on known septin regulators including the Gin4 kinase. We took a candidate-based approach to examine what factors control reorientation during splitting and used polarized fluorescence microscopy to screen mutant yeast strains deficient in septin interacting proteins. Using this method, we have linked known septin regulators to different aspects of the assembly, stability, and reorganization of septin assemblies. The data support that ring splitting requires Gin4 activity and an anillin-like protein Bud4, and normal accumulation of septins at the ring requires phosphorylation of Shs1. We found distinct regulatory requirements for septin organization in the hourglass compared to split rings. We propose that septin subpopulations can vary in their localization and assembly/disassembly behavior in a cell-cycle dependent manner at cytokinesis. PMID:28516085
Quantum-splitting oxide-based phosphors and method of producing the same
Setlur, Anant Achyut; Srivastava, Alok Mani
2003-09-02
Strontium, calcium, strontium calcium, strontium calcium magnesium, calcium magnesium aluminates, and strontium borates activated with Pr.sup.3+ exhibit characteristics of quantum-splitting phosphors under VUV excitation. A large emission peak at about 405 nm under VUV excitation is used conveniently to identify quantum-splitting phosphors. Improvements may be achieved with addition of fluorides or boric acid as a flux during the preparation of the phosphors. It is also possible to predict improvement in quantum efficiency by observing the ratio of emission intensities at about 480 nm and about 610 nm.
Spectral Neugebauer-based color halftone prediction model accounting for paper fluorescence.
Hersch, Roger David
2014-08-20
We present a spectral model for predicting the fluorescent emission and the total reflectance of color halftones printed on optically brightened paper. By relying on extended Neugebauer models, the proposed model accounts for the attenuation by the ink halftones of both the incident exciting light in the UV wavelength range and the emerging fluorescent emission in the visible wavelength range. The total reflectance is predicted by adding the predicted fluorescent emission relative to the incident light and the pure reflectance predicted with an ink-spreading enhanced Yule-Nielsen modified Neugebauer reflectance prediction model. The predicted fluorescent emission spectrum as a function of the amounts of cyan, magenta, and yellow inks is very accurate. It can be useful to paper and ink manufacturers who would like to study in detail the contribution of the fluorescent brighteners and the attenuation of the fluorescent emission by ink halftones.
Yu, Haixiang; Canoura, Juan; Guntupalli, Bhargav; Lou, Xinhui
2017-01-01
Sensors employing split aptamers that reassemble in the presence of a target can achieve excellent specificity, but the accompanying reduction of target affinity mitigates any overall gains in sensitivity. We for the first time have developed a split aptamer that achieves enhanced target-binding affinity through cooperative binding. We have generated a split cocaine-binding aptamer that incorporates two binding domains, such that target binding at one domain greatly increases the affinity of the second domain. We experimentally demonstrate that the resulting cooperative-binding split aptamer (CBSA) exhibits higher target binding affinity and is far more responsive in terms of target-induced aptamer assembly compared to the single-domain parent split aptamer (PSA) from which it was derived. We further confirm that the target-binding affinity of our CBSA can be affected by the cooperativity of its binding domains and the intrinsic affinity of its PSA. To the best of our knowledge, CBSA-5335 has the highest cocaine affinity of any split aptamer described to date. The CBSA-based assay also demonstrates excellent performance in target detection in complex samples. Using this CBSA, we achieved specific, ultra-sensitive, one-step fluorescence detection of cocaine within fifteen minutes at concentrations as low as 50 nM in 10% saliva without signal amplification. This limit of detection meets the standards recommended by the European Union's Driving under the Influence of Drugs, Alcohol and Medicines program. Our assay also demonstrates excellent reproducibility of results, confirming that this CBSA-platform represents a robust and sensitive means for cocaine detection in actual clinical samples. PMID:28451157
Yu, Haixiang; Canoura, Juan; Guntupalli, Bhargav; Lou, Xinhui; Xiao, Yi
2017-01-01
Sensors employing split aptamers that reassemble in the presence of a target can achieve excellent specificity, but the accompanying reduction of target affinity mitigates any overall gains in sensitivity. We for the first time have developed a split aptamer that achieves enhanced target-binding affinity through cooperative binding. We have generated a split cocaine-binding aptamer that incorporates two binding domains, such that target binding at one domain greatly increases the affinity of the second domain. We experimentally demonstrate that the resulting cooperative-binding split aptamer (CBSA) exhibits higher target binding affinity and is far more responsive in terms of target-induced aptamer assembly compared to the single-domain parent split aptamer (PSA) from which it was derived. We further confirm that the target-binding affinity of our CBSA can be affected by the cooperativity of its binding domains and the intrinsic affinity of its PSA. To the best of our knowledge, CBSA-5335 has the highest cocaine affinity of any split aptamer described to date. The CBSA-based assay also demonstrates excellent performance in target detection in complex samples. Using this CBSA, we achieved specific, ultra-sensitive, one-step fluorescence detection of cocaine within fifteen minutes at concentrations as low as 50 nM in 10% saliva without signal amplification. This limit of detection meets the standards recommended by the European Union's Driving under the Influence of Drugs, Alcohol and Medicines program. Our assay also demonstrates excellent reproducibility of results, confirming that this CBSA-platform represents a robust and sensitive means for cocaine detection in actual clinical samples.
Liu, Tzu-Yin; Chou, Wen-Chun; Chen, Wei-Yuan; Chu, Ching-Yi; Dai, Chen-Yi; Wu, Pei-Yu
2018-05-01
Despite the great interest in identifying protein-protein interactions (PPIs) in biological systems, only a few attempts have been made at large-scale PPI screening in planta. Unlike biochemical assays, bimolecular fluorescence complementation allows visualization of transient and weak PPIs in vivo at subcellular resolution. However, when the non-fluorescent fragments are highly expressed, spontaneous and irreversible self-assembly of the split halves can easily generate false positives. The recently developed tripartite split-GFP system was shown to be a reliable PPI reporter in mammalian and yeast cells. In this study, we adapted this methodology, in combination with the β-estradiol-inducible expression cassette, for the detection of membrane PPIs in planta. Using a transient expression assay by agroinfiltration of Nicotiana benthamiana leaves, we demonstrate the utility of the tripartite split-GFP association in plant cells and affirm that the tripartite split-GFP system yields no spurious background signal even with abundant fusion proteins readily accessible to the compartments of interaction. By validating a few of the Arabidopsis PPIs, including the membrane PPIs implicated in phosphate homeostasis, we proved the fidelity of this assay for detection of PPIs in various cellular compartments in planta. Moreover, the technique combining the tripartite split-GFP association and dual-intein-mediated cleavage of polyprotein precursor is feasible in stably transformed Arabidopsis plants. Our results provide a proof-of-concept implementation of the tripartite split-GFP system as a potential tool for membrane PPI screens in planta. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Gaoming; Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007; Gao, Fei
Multiple stimulated emission fluorescence photoacoustic (MSEF-PA) phenomenon is demonstrated in this letter. Under simultaneous illumination of pumping light and stimulated emission light, the fluorescence emission process is speeded up by the stimulated emission effect. This leads to nonlinear enhancement of photoacoustic signal while the quantity of absorbed photons is more than that of fluorescent molecules illuminated by pumping light. The electronic states' specificity of fluorescent molecular can also be labelled by the MSEF-PA signals, which can potentially be used to obtain fluorescence excitation spectrum in deep scattering tissue with nonlinearly enhanced photoacoustic detection. In this preliminary study, the fluorescence excitationmore » spectrum is reconstructed by MSEF-PA signals through sweeping the wavelength of exciting light, which confirms the theoretical derivation well.« less
NASA Astrophysics Data System (ADS)
Chai, L.; Hernandez Ramirez, G.; Dyck, M. F.; Pauly, D.; Kryzanowski, L.; Middleton, A.; Powers, L. A.; Lohstraeter, G.; Werk, D.
2016-12-01
Nitrous oxide (N2O) emissions from agricultural soils contribute significantly to the amount of greenhouse gases released to the atmosphere every year. Farming practices, such as fertigation in which nitrogen fertilizer is added to crops through irrigation water, could increase the risk for N2O losses. To assess the effect of N fertigation rates on N2O production, field chambers were used to collect weekly gas samples throughout the 2015 growing season in wheat (Triticum aestivum) and canola (Brassica Napus) plots in southern Alberta, Canada. Synthetic fertilizer was either added at seeding or both added at seeding and through irrigation water at one early crop growth stage. The 6 fertilizer treatments were: 60, 90 and 120 kg N ha-1 added at seeding in early May, and 30, 60 and 90 kg N ha-1 at seeding plus another 30 kg N ha-1 added through fertigation in mid-June. Controls with no fertilizer were also evaluated, and each treatment was replicated 4 times. In the wheat plots at a fertilization rate of 120 kg N ha-1, irrespective of single or split application, a larger N2O flux was produced compared to the control (P = 0.024). Similarly, in canola, a total N addition of 90 kg N ha-1 also led to larger N2O fluxes than the control (P = 0.035). The use of fertigation to split the N application had no effect on the N2O emissions in canola; however, in wheat, there was a statistical difference between emissions from 90 kg N ha-1 added all at seeding versus 90 kg N ha-1 split between seeding (60) and fertigation (30); splitting the fertilizer resulted in a 62% decrease in the overall N2O emissions (324 g vs. 524 g N2O-N ha-1; P = 0.039). No other N rates resulted in statistically different N2O emissions when N application was split. These results suggest that fertigation can reduce N2O emissions, but only at moderate N rates (90 kg ha-1 yr-1); conversely, when lower (60) or higher (120) rates are split, emissions remain unaffected.
Kaczmarek, Anna M.; Vukusic, Peter; Deparis, Olivier; Van Hooijdonk, Eloise
2016-01-01
The scales covering the elytra of the male Hoplia coerulea beetle contain fluorophores embedded within a porous photonic structure. The photonic structure controls both insect colour (reflected light) and fluorescence emission. Herein, the effects of water-induced changes on the fluorescence emission from the beetle were investigated. The fluorescence emission peak wavelength was observed to blue-shift on water immersion of the elytra whereas its reflectance peak wavelength was observed to red-shift. Time-resolved fluorescence measurements, together with optical simulations, confirmed that the radiative emission is controlled by a naturally engineered photonic bandgap while the elytra are in the dry state, whereas non-radiative relaxation pathways dominate the emission response of wet elytra. PMID:28003460
2017-01-01
Pathogenic gram-negative bacteria cause serious diseases in animals and plants. These bacterial pathogens use the type III secretion system (T3SS) to deliver effector proteins into host cells; these effectors then localize to different subcellular compartments to attenuate immune responses by altering biological processes of the host cells. The fluorescent protein (FP)-based approach to monitor effectors secreted from bacteria into the host cells is not possible because the folded FP prevents effector delivery through the T3SS. Therefore, we optimized an improved variant of self-assembling split super-folder green fluorescent protein (sfGFPOPT) system to investigate the spatiotemporal dynamics of effectors delivered through bacterial T3SS into plant cells. In this system, effectors are fused to 11th β-strand of super-folder GFP (sfGFP11), and when delivered into plant cells expressing sfGFP1-10 β-strand (sfGFP1-10OPT), the two proteins reconstitute GFP fluorescence. We generated a number of Arabidopsis thaliana transgenic lines expressing sfGFP1-10OPT targeted to various subcellular compartments to facilitate localization of sfGFP11-tagged effectors delivered from bacteria. We demonstrate the efficacy of this system using Pseudomonas syringae effectors AvrB and AvrRps4 in Nicotiana benthamiana and transgenic Arabidopsis plants. The versatile split sfGFPOPT system described here will facilitate a better understanding of bacterial invasion strategies used to evade plant immune responses. PMID:28619883
Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles
Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D.; Chang, Huan-Cheng; Ye, Jing Yong
2012-01-01
Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs). PMID:22808436
Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles.
Zhang, Bailin; Fang, Chia-Yi; Chang, Cheng-Chun; Peterson, Ralph; Maswadi, Saher; Glickman, Randolph D; Chang, Huan-Cheng; Ye, Jing Yong
2012-07-01
Fluorescent nanodiamonds (FNDs) have drawn much attention in recent years for biomedical imaging applications due to their desired physical properties including excellent photostability, high biocompatibility, extended far-red fluorescence emission, and ease of surface functionalization. Here we explore a new feature of FNDs, i.e. their photoacoustic emission capability, which may lead to potential applications of using FNDs as a dual imaging contrast agent for combined fluorescence and photoacoustic imaging modalities. We observed significant enhancement of photoacoustic emission from FNDs when they were conjugated with gold nanoparticles (GNPs).
NASA Technical Reports Server (NTRS)
Palma, P. C.; Houwing, A. F. P.; Sandeman, R. J.
1993-01-01
Absolute intensity measurements of impurity emissions in a shock tunnel nozzle flow are presented. The impurity emission intensities were measured with a photomultiplier and optical multichannel analyzer and calibrated against an intensity standard. The various metallic contaminants were identified and their intensities measured in the spectral regions 290 to 330 nm and 375 to 385 nm. A comparison with calculated fluorescence intensities for predissociated laser-induced fluorescence signals is made. It is found that the emission background is negligible for most fluorescence experiments.
Spectroscopic identification of individual fluorophores using photoluminescence excitation spectra.
Czerski, J; Colomb, W; Cannataro, F; Sarkar, S K
2018-01-25
The identity of a fluorophore can be ambiguous if other fluorophores or nonspecific fluorescent impurities have overlapping emission spectra. The presence of overlapping spectra makes it difficult to differentiate fluorescent species using discrete detection channels and unmixing of spectra. The unique absorption and emission signatures of fluorophores provide an opportunity for spectroscopic identification. However, absorption spectroscopy may be affected by scattering, whereas fluorescence emission spectroscopy suffers from signal loss by gratings or other dispersive optics. Photoluminescence excitation spectra, where excitation is varied and emission is detected at a fixed wavelength, allows hyperspectral imaging with a single emission filter for high signal-to-background ratio without any moving optics on the emission side. We report a high throughput method for measuring the photoluminescence excitation spectra of individual fluorophores using a tunable supercontinuum laser and prism-type total internal reflection fluorescence microscope. We used the system to measure and sort the photoluminescence excitation spectra of individual Alexa dyes, fluorescent nanodiamonds (FNDs), and fluorescent polystyrene beads. We used a Gaussian mixture model with maximum likelihood estimation to objectively separate the spectra. Finally, we spectroscopically identified different species of fluorescent nanodiamonds with overlapping spectra and characterized the heterogeneity of fluorescent nanodiamonds of varying size. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Spaans, Marco
1996-01-01
We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.
Gbaj, A; Bichenkova, Ev; Walsh, L; Savage, He; Sardarian, Ar; Etchells, Ll; Gulati, A; Hawisa, S; Douglas, Kt
2009-12-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5'-bispyrene and 3'-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5'-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5'-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing.
You, Minli; Lin, Min; Wang, Shurui; Wang, Xuemin; Zhang, Ge; Hong, Yuan; Dong, Yuqing; Jin, Guorui; Xu, Feng
2016-05-21
Medicine counterfeiting is a serious issue worldwide, involving potentially devastating health repercussions. Advanced anti-counterfeit technology for drugs has therefore aroused intensive interest. However, existing anti-counterfeit technologies are associated with drawbacks such as the high cost, complex fabrication process, sophisticated operation and incapability in authenticating drug ingredients. In this contribution, we developed a smart phone recognition based upconversion fluorescent three-dimensional (3D) quick response (QR) code for tracking and anti-counterfeiting of drugs. We firstly formulated three colored inks incorporating upconversion nanoparticles with RGB (i.e., red, green and blue) emission colors. Using a modified inkjet printer, we printed a series of colors by precisely regulating the overlap of these three inks. Meanwhile, we developed a multilayer printing and splitting technology, which significantly increases the information storage capacity per unit area. As an example, we directly printed the upconversion fluorescent 3D QR code on the surface of drug capsules. The 3D QR code consisted of three different color layers with each layer encoded by information of different aspects of the drug. A smart phone APP was designed to decode the multicolor 3D QR code, providing the authenticity and related information of drugs. The developed technology possesses merits in terms of low cost, ease of operation, high throughput and high information capacity, thus holds great potential for drug anti-counterfeiting.
NASA Astrophysics Data System (ADS)
Zhang, Wenzhi; Jin, Jiangjiang; Huang, Zhi; Zhuang, Shaoqing; Wang, Lei
2016-07-01
Thermally activated delayed fluorescence (TADF) mechanism is a significant method that enables the harvesting of both triplet and singlet excitons for emission. However, up to now most efforts have been devoted to dealing with the relation between singlet-triplet splitting (ΔEST) and fluorescence efficiency, while the significance of spin-orbit coupling (SOC) is usually ignored. In this contribution, a new method is developed to realize high-efficiency TADF-based devices through simple device-structure optimizations. By inserting an ultrathin external heavy-atom (EHA) perturber layer in a desired manner, it provides useful means of accelerating the T1 → S1 reverse intersystem crossing (RISC) in TADF molecules without affecting the corresponding S1 → T1 process heavily. Furthermore, this strategy also promotes the utilization of host triplets through Förster mechanism during host → guest energy transfer (ET) processes, which helps to get rid of the solely dependence upon Dexter mechanism. Based on this strategy, we have successfully raised the external quantum efficiency (EQE) in 4CzPN-based devices by nearly 38% in comparison to control devices. These findings provide keen insights into the role of EHA played in TADF-based devices, offering valuable guidelines for utilizing certain TADF dyes which possess high radiative transition rate but relatively inefficient RISC.
NASA Astrophysics Data System (ADS)
Waterhouse, Dale J.; Joseph, James; Neves, Andre A.; di Pietro, Massimiliano; Brindle, Kevin M.; Fitzgerald, Rebecca C.; Bohndiek, Sarah E.
2016-03-01
Barrett's esophagus is a condition that predisposes patients to esophageal cancer. Early detection of cancer in these patients can be curative, but is confounded by a lack of contrast in white light endoscopy (WLE). Application of fluorescently-labeled lectins to the esophagus during endoscopy can more accurately delineate dysplasia emerging within Barrett's than WLE1, but strong tissue autofluorescence has limited sensitivity and dynamic range of this approach. To overcome this challenge, we synthesized a near-infrared (NIR) fluorescent lectin and have constructed a clinically translatable endoscope for simultaneous WLE and NIR imaging. An imaging fiber bundle, shielded from patient contact using a disposable catheter, relays collected light into an optical path that splits the WL reflectance and NIR emission onto two cameras for simultaneous video-rate recording. The captured images are co-registered and the honeycomb artifact arising from the fiber bundle is removed using interpolation between image points derived from individual fibers. A minimum detectable concentration of 110 nM was determined using a dilution series of IRDye800CW-lectin in black well plates. We have demonstrated the ability to use our endoscope to distinguish between different tissue types in ex vivo mouse stomachs. Future work using human ex vivo tissue specimens will determine safe illumination limits and sensitivity for dysplasia and adenocarcinoma in Barrett's esophagus, prior to commencing clinical trials.
Cao, Baosheng; Wu, Jinlei; Wang, Xuehan; He, Yangyang; Feng, Zhiqing; Dong, Bin
2015-12-10
Upconversion luminescence properties from the emissions of Stark sublevels of Er(3+) were investigated in Er(3+)-Yb(3+)-Mo(6+)-codoped TiO₂ phosphors in this study. According to the energy levels split from Er(3+), green and red emissions from the transitions of four coupled energy levels, ²H11/2(I)/²H11/2(II), ⁴S3/2(I)/⁴S3/2(II), ⁴F9/2(I)/⁴F9/2(II), and ²H11/2(I) + ²H11/2(II)/⁴S3/2(I) + ⁴S3/2(II), were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR) technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er(3+)-Yb(3+)-Mo(6+)-codoped TiO₂ phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system.
Optical instrument for measurement of vaginal coating thickness by drug delivery formulations
NASA Astrophysics Data System (ADS)
Henderson, Marcus H.; Peters, Jennifer J.; Walmer, David K.; Couchman, Grace M.; Katz, David F.
2005-03-01
An optical device has been developed for imaging the human vaginal epithelial surfaces, and quantitatively measuring distributions of coating thickness of drug delivery formulations—such as gels—applied for prophylaxis, contraception or therapy. The device consists of a rigid endoscope contained within a 27-mm-diam hollow, polished-transparent polycarbonate tube (150mm long) with a hemispherical cap. Illumination is from a xenon arc. The device is inserted into, and remains stationary within the vagina. A custom gearing mechanism moves the endoscope relative to the tube, so that it views epithelial surfaces immediately apposing its outer surface (i.e., 150mm long by 360° azimuthal angle). Thus, with the tube fixed relative to the vagina, the endoscope sites local regions at distinct and measurable locations that span the vaginal epithelium. The returning light path is split between a video camera and photomultiplier. Excitation and emission filters in the light path enable measurement of fluorescence of the sited region. Thus, the instrument captures video images simultaneously with photometric measurement of fluorescence of each video field [˜10mm diameter; formulations are labeled with 0.1%w/w United States Pharmacoepia (USP) injectable sodium fluorescein]. Position, time and fluorescence measurements are continuously displayed (on video) and recorded (to a computer database). The photomultiplier output is digitized to quantify fluorescence of the endoscope field of view. Quantification of the thickness of formulation coating of a surface sited by the device is achieved due to the linear relationship between thickness and fluorescence intensity for biologically relevant thin layers (of the order of 0.5mm). Summary measures of coating have been developed, focusing upon extent, location and uniformity. The device has begun to be applied in human studies of model formulations for prophylaxis against infection with HIV and other sexually transmitted pathogens.
Guo, Ting; Cui, Lei; Shen, Jiaoning; Wang, Rui; Zhu, Weiping; Xu, Yufang; Qian, Xuhong
2013-03-04
A novel dual-emission fluorescence probe has been developed for specific and sensitive detection of hypochlorite (ClO(-)). Upon addition of ClO(-), significant changes in fluorescence emission intensity at two discrete wavelengths were observed. Meanwhile OONO(-) led to only a single-channel fluorescence enhancement. This feature makes it a clear advantage in distinguishing ClO(-), RNS from other ROS.
Tang, Wen-Jian; Song, Qin-Hua; Wang, Hong-Bo; Yu, Jing-Yu; Guo, Qing-Xiang
2006-07-07
Two modified beta-cyclodextrins (beta-CDs) with a thymine dimer and a thymine oxetane adduct respectively, TD-CD and Ox-CD, have been prepared, and utilized to bind an electron-rich chromophore, indole or N,N-dimethylaniline (DMA), to form a supramolecular complex. We have examined the photosensitized splitting of the dimer/oxetane unit in TD-CD/Ox-CD by indole or DMA via an electron-transfer pathway, and observed high splitting efficiencies of the dimer/oxetane unit. On the basis of measurements of fluorescence spectra and splitting quantum yields, it is suggested that the splitting reaction occurs in a supramolecular complex by an inclusion interaction between the modified beta-CDs and DMA or indole. The back electron transfer, which leads low splitting efficiencies for the covalently-linked chromophore-dimer/oxetane compounds, is suppressed in the non-covalently-bound complex, and the mechanism has been discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia
2013-05-10
Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM)more » spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.« less
Sorption Behavior of Eu(III) into CSH Gel in Imitated Saline Groundwater - 12145
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funabashi, Taihei; Niibori, Yuichi; Mimura, Hitoshi
2012-07-01
The sorption behavior of Eu(III) (europium (III)) into CSH (Calcium Silicate Hydrate) gel without dried processes was examined in imitated saline groundwater by using the spectro-fluorometer, Raman spectrophotometer and ICP-AES (Inductively Coupled Plasma- Atomic Emission Spectrometry). Ca/Si ratio was set to 0.4, 0.8, 1.2 and 1.6, and NaCl concentration was also set to 0.6, 0.06 and 0.006. The synthesis of each sample was conducted in a glove box saturated with nitrogen gas. The sealed sample tubes were gently shaken with 120 strokes/min. The time-period to contact Eu(III) with the CSH gel was set to 60 days. The fluorescence emission spectramore » suggested the incorporation of Eu{sup 3+} into CSH gel in the high Ca/Si ratio samples. On the other hand, from the decay behavior of fluorescence emission spectra, even in the low Ca/Si ratio samples, sorption behavior of Eu{sup 3+} into CSH gel was confirmed. Besides, the Raman spectra showed that the degree of polymerization of Si-O in CSH gel was raised with increasing Na ions concentration. These results suggest that the CSH gel, formed as secondary mineral, would retard the migration of radionuclides even in saline groundwater. Considering the inflow of saline groundwater into repository, this study examined the interaction between CSH gel (without dry processes) and Eu{sup 3+} by using the fluorescence emission spectra, the decay behavior of fluorescence and the Raman spectra. As a result, the fluorescence emission spectra of the sample of more than 0.8 Ca/Si ratio confirmed the intensity split into two peaks around 618 nm (5D0→7F2 transition). Furthermore, even in relatively low Ca/Si ratio samples, the fluorescence lifetimes both of the surface sorption sample and the co-precipitated samples exceeded that of the filtrate sample. These suggested that Eu{sup 3+} is not only hydrolyzed to form Eu(OH){sub 3} colloid, but is also stably incorporated into CSH gel (in Ca/Si ratio>1.2) or is forming complex on the surface of solid phase (in Ca/Si<0.8) in the co-presence of Na ions. On the other hand, the concentrations of Na, Ca and Si after 60 days in the solution filtrated through 0.2 μm membrane filter showed the ion exchange of Ca and Eu apparently in the samples of low Ca/Si ratio. Besides, in the samples with high Ca/Si ratio, Ca and Si concentrations in the solution were raised with increment of initial Na concentration. While Na ions may slightly increase the solubility of CSH gel, the CSH samples were stable, mostly maintaining the initial Ca/Si ratio synthesized. Moreover, the Raman spectra showed that the degree of polymerization of silicate chain in CSH samples increased with increasing Na concentration. Such an immobilized Na into the structure of CSH gel did not obstruct the incorporation of Eu{sup 3+} into CSH gel. The results mentioned above suggested that CSH gel (formed as a secondary mineral around the repository) also can retard the migration of radionuclides even if the repository and its surrounding are saturated by saline groundwater. (authors)« less
On the uncertainty in single molecule fluorescent lifetime and energy emission measurements
NASA Technical Reports Server (NTRS)
Brown, Emery N.; Zhang, Zhenhua; Mccollom, Alex D.
1995-01-01
Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least square methods agree and are optimal when the number of detected photons is large however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67% of those can be noise and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous poisson processes, we derive the exact joint arrival time probably density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. the ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background nose and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.
On the Uncertainty in Single Molecule Fluorescent Lifetime and Energy Emission Measurements
NASA Technical Reports Server (NTRS)
Brown, Emery N.; Zhang, Zhenhua; McCollom, Alex D.
1996-01-01
Time-correlated single photon counting has recently been combined with mode-locked picosecond pulsed excitation to measure the fluorescent lifetimes and energy emissions of single molecules in a flow stream. Maximum likelihood (ML) and least squares methods agree and are optimal when the number of detected photons is large, however, in single molecule fluorescence experiments the number of detected photons can be less than 20, 67 percent of those can be noise, and the detection time is restricted to 10 nanoseconds. Under the assumption that the photon signal and background noise are two independent inhomogeneous Poisson processes, we derive the exact joint arrival time probability density of the photons collected in a single counting experiment performed in the presence of background noise. The model obviates the need to bin experimental data for analysis, and makes it possible to analyze formally the effect of background noise on the photon detection experiment using both ML or Bayesian methods. For both methods we derive the joint and marginal probability densities of the fluorescent lifetime and fluorescent emission. The ML and Bayesian methods are compared in an analysis of simulated single molecule fluorescence experiments of Rhodamine 110 using different combinations of expected background noise and expected fluorescence emission. While both the ML or Bayesian procedures perform well for analyzing fluorescence emissions, the Bayesian methods provide more realistic measures of uncertainty in the fluorescent lifetimes. The Bayesian methods would be especially useful for measuring uncertainty in fluorescent lifetime estimates in current single molecule flow stream experiments where the expected fluorescence emission is low. Both the ML and Bayesian algorithms can be automated for applications in molecular biology.
Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings
NASA Astrophysics Data System (ADS)
Baird, Benjamin
This study is the investigation of the effect of elliptical nozzle burner geometry and partial premixing, both 'passive control' methods, on a hydrogen/hydrocarbon flame. Both laminar and turbulent flames for circular, 3:1, and 4:1 aspect ratio (AR) elliptical burners are considered. The amount of air mixed with the fuel is varied from fuel-lean premixed flames to fuel-rich partially premixed flames. The work includes measurements of flame stability, global pollutant emissions, flame radiation, and flame structure for the differing burner types and fuel conditions. Special emphasis is placed on the near-burner region. Experimentally, both conventional (IR absorption, chemiluminecent, and polarographic emission analysis,) and advanced (laser induced fluorescence, planar laser induced fluorescence, Laser Doppler Velocimetry (LDV), Rayleigh scattering) diagnostic techniques are used. Numerically, simulations of 3-dimensional laminar and turbulent reacting flow are conducted. These simulations are run with reduced chemical kinetics and with a Reynolds Stress Model (RSM) for the turbulence modeling. It was found that the laminar flames were similar in appearance and overall flame length for the 3:1 AR elliptical and the circular burner. The laminar 4:1 AR elliptical burner flame split into two sub-flames along the burner major axis. This splitting had the effect of greatly shortening the 4:1 AR elliptical burner flame to have an overall flame length about half of that of the circular and 3:1 AR elliptical burner flames. The length of all three burners flames increased with increasing burner exit equivalence ratio. The blowout velocity for the three burners increased with increase in hydrogen mass fraction of the hydrogen/propane fuel mixture. For the rich premixed flames, the circular burner was the most stable, the 3:1 AR elliptical burner, was the least stable, and the 4:1 AR elliptical burner was intermediate to the two other burners. This order of stability was due to two reasons. The elliptical burners have enhanced turbulence generation that lowers their stability when compared to the circular burner. The 4:1 AR elliptical burner had greater stability due to a greater velocity decay rate and wider OH reaction zones particularly in the region between the two jets. The 3:1 AR elliptical and circular burners produced similar carbon monoxide and nitric oxide emission indexes over the range of equivalence ratios of 0.55 to 4.0, for laminar flames. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.
2016-01-01
This paper presents results from tests in a flame tube facility, where a bio-derived alternate fuel was compared with JP-8 for emissions and general combustion performance. A research version of General Electric Aviation (GE) TAPS injector was used for the tests. Results include combustion efficiency from gaseous emission measurements, 2D planar laser-based imaging as well as basic flow visualization of the flame. Four inlet test conditions were selected that simulate various engine power conditions relevant to NASA Fundamental Aeronautics Supersonics Project and Environmentally Responsible Aviation Program. One inlet condition was a pilot-only test point. The other three inlet conditions incorporated fuel staging via a split between the pilot and main circuits of either 10%/90% or 20%/80%. For each engine power condition, three fuel mixes were used: 100% JP-8; 100% alternative; and a blend of the two, containing 75% alternative. Results for the inlet cases that have fuel split between pilot and main, indicate that fuel from the pilot appears to be evaporated by the time it reaches the dome exit. Main circuit liquid evaporates within a downstream distance equal to annulus height, no matter the fuel. Some fuel fluorescence images for a 10%/90% fuel staging case show a distinct difference between JP-8 and bio-derived fuel. OH PLIF results indicate that OH forms in a region more centrally-located for the JP-8 case downstream of the pilot, in its central recirculation region (CRZ). For the bio-derived Hydrotreated Renewable Jet (HRJ) fuel, however, we do not see much OH in the CRZ. The OH image structure near the dome exit is similar for the two fuels, but farther downstream the OH in the CRZ is much more apparent for the JP-8 than for the alternate fuel. For all conditions, there was no discernable difference between fuel types in combustion efficiency or emissions.
Ratiometric Fluorescence Azide-Alkyne Cycloaddition for Live Mammalian Cell Imaging.
Fu, Hongxia; Li, Yanru; Sun, Lingbo; He, Pan; Duan, Xinrui
2015-11-17
Click chemistry with metabolic labeling has been widely used for selectively imaging biomacromolecules in cells. The first example of azide-alkyne cycloaddition for ratiometric fluorescent imaging of live cells is reported. The precursor of the azido fluorophore (cresyl violet) has a fluorescence emission peak at 620 nm. The electron-rich nitrogen of the azido group blue-shifts the emission peak to 566 nm. When the click reaction occurs, an emission peak appears at 620 nm due to the lower electronic density of the newly formed triazole ring, which allows us to ratiometrically record fluorescence signals. This emission shift was applied to ratiometric imaging of propargylcholine- and dibenzocyclooctyne-labeled human breast cancer cells MCF-7 under laser confocal microscopy. Two typical triazole compounds were isolated for photophysical parameter measurements. The emission spectra presented a fluorescence emission peak around 620 nm for both click products. The results further confirmed the emission wavelength change was the result of azide-alkyne cycloaddition reaction. Since nearly all biomolecules can be metabolically labeled by reported alkyne-functionalized derivatives of native metabolites, our method can be readily applied to image these biomacromolecules.
Fluorescence emission induced by the femtosecond filament transmitting through the butane/air flame
NASA Astrophysics Data System (ADS)
Li, Suyu; Li, Yanhua; Shi, Zhe; Sui, Laizhi; Li, He; Li, Qingyi; Chen, Anmin; Jiang, Yuanfei; Jin, Mingxing
2018-01-01
We measure the backward fluorescence spectra generated by the femtosecond filament transmitting through the butane/air flame, and study the fluorescence emission from combustion intermediates (CN, CH and C2 radicals), air (mainly N2 and N2+). It is found that the fluorescence emission from combustion intermediates, N2 and N2+ shows difference when the femtosecond filament transmits through different parts of the butane/air flame, and we attempt to analyze it in this paper. This study demonstrates that the filament-induced fluorescence technique can be utilized to sense the combustion intermediates.
Swatland, H J
1988-09-01
The fluorescence of bovine tissues was measured post mortem by microscopy of frozen sections and by using optical fibres to excite fluorescence and to measure fluorescence emission spectra. Mechanical disruption of the tissue (by comminution or sectioning) did not appreciably change tissue fluorescence spectra. Ligamentum nuchae had the strongest fluorescence and lung tissue had the weakest. In samples measured with a minimum prior exposure to ultraviolet light, the peak fluorescence emission was at 410 or 420 nm (with excitation at 365 nm). Exposure to ultraviolet light for about 1 minute shifted the fluorescence peak to 450 to 470 nm. Further exposure (about 30 minutes) caused a loss of the 450 to 470 nm fluorescence peak, while emissions above 530 nm were maintained or strengthened. Microscopy showed that the fluorescence that was measured by fibre optics from intact connective tissues originated mostly from collagen and elastin fibres.
Split green fluorescent protein as a modular binding partner for protein crystallization.
Nguyen, Hau B; Hung, Li-Wei; Yeates, Todd O; Terwilliger, Thomas C; Waldo, Geoffrey S
2013-12-01
A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10-11) hairpin in complex with GFP(1-9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10-11) hairpin with a variety of GFP(1-9) mutants engineered for favorable crystallization.
Ratiometric fluorescent nanosensor based on carbon dots for the detection of mercury ion
NASA Astrophysics Data System (ADS)
Ma, Yusha; Mei, Jing; Bai, Jianliang; Chen, Xu; Ren, Lili
2018-05-01
A novel ratiometric fluorescent nanosensor based on carbon dots has been synthesized via bonding rhodamine B hydrazide to the carbon dots surface by an amide reaction. The ratiometric fluorescent nanosensor showed only a single blue fluorescence emission around 450 nm. While, as mercury ion was added, due to the open-ring of rhodamine moiety bonded on the CDs surface, the orange emission of the open-ring rhodamine would increase obviously according to the concentration of mercury ion, resulting in the distinguishable dual emissions at 450 nm and 575 nm under a single 360 excitation wavelength. Meanwhile, the ratiometric fluorescent nanosensor based on carbon dots we prepared is more sensitive to qualitative and semi-quantitative detection of mercury ion in the range of 0–100 μM, because fluorescence changes gradually from blue to orange emission under 365 nm lamp with the increasing of mercury ion in the tested solution.
Lee, Yeonju; Hanif, Sadaf; Theato, Patrick; Zentel, Rudolf; Lim, Jeewoo; Char, Kookheon
2015-06-01
Emission wavelength control in fluorescent nanoparticles (NPs) is crucial for their applications. In the case of inorganic quantum dots or dye-impregnated silica NPs, such a control is readily achieved by changing the size of the particles or choosing appropriate fluorescent dyes, respectively. A similar modular approach for controlling the emission wavelength of fluo-rescent polymer NPs, however, is difficult. This article reports on fluorescent polymer NPs, the synthesis of which provides a platform for a modular approach towards the preparation of fluorescent NPs of desired emission wavelength. Atom-transfer radical polymerization (ATRP) is employed to synthesize reactive ester polymers, which are then easily modified with a commercially available dye and subsequently subjected to nanoprecipitation. The resulting NPs, with low size polydispersity, show an enhanced emission quantum yield when compared with the same dye molecules in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots
NASA Astrophysics Data System (ADS)
Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri
2015-11-01
Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06248a
Demonstrating Fluorescence with Neon Paper and Plastic
ERIC Educational Resources Information Center
Birriel, Jennifer J.; Roe, Clarissa
2015-01-01
Several papers in this journal have dealt with the fluorescence in orange neon plastic, olive oil, and soda. In each case, the fluorescent emission was excited by either green or violet-blue laser light. In this paper, we examine the fluorescent emission spectra of so-called neon colored papers and plastic clipboards available in department and…
NASA Astrophysics Data System (ADS)
Rosenbloom, Alyssa Blair
In this thesis, we accomplish two goals: 1) we develop a novel two color photoactivatable light microscopy (PALM) method for imaging in mammalian cells and 2) we explore our original biological question and discern the structural properties of the Drp1 helical ring during fission. We established that mitochondrial membranes can be distinguished with the available photoactivatable fluorescent protein mEos2. However, we were not able to use any of the published photoactivatable and photoswitchable green fluorescent proteins, predominantly because of an inability to identify individual fluorescent events due to rapidity of the photoswitiching. Based on published crystal structures, we created novel Dronpa variants with increasing steric hindrance around the chromophore, likely partially inhibiting the isomerization. We replaced Val157 with isoleucine, leucine, or phenyalanine. DronpaV157F showed no fluorescence and was discarded. DronpaV157I and DronpaV157L showed photoswitchable green fluorescence, with individual fluorescent events that were more easily discerned. DronpaV157L in particular had bright fluorescent events that were well separated when imaged in mammalian cells at 20 Hz. We named this new variant rsKame. Using PALM we successfully imaged rsKame expressed and localized to the mammalian mitochondrial inner membrane. With the novel photoswitchable fluorescent protein, rsKame, available, we returned to the development of a novel two color PALM method. We chose PAmCherry1 as the partner for rsKame since PAmCherry1 has distinct and well separated excitation/emission spectra from rsKame and is not activated by low 405 nm laser power density. We first imaged rsKame with 405 nm activation at (0.61 mW/mm2) and 488 nm activation/excitation (5.87 W/mm 2) to completion. We then imaged PAmCherry1 with increasing 405 nm activation (0.6-6.0 W/mm2) and 561 nm excitation (22 W/mm 2). With the novel PALM imaging method, we labeled the inner and outer mitochondrial membranes with large populations of membrane bound rsKame and PAmCherry1 in HeLa and EpH4 cells. We were able to observe and clearly differentiate the two mitochondrial membrane structures and their various morphologies in situ. With the functional two-color PALM method, we returned to our original investigation of the Drp1 fission ring in situ. In fixed HeLa cells, we continued to label the outer membrane with PAmCherry1 and fused rsKame to the N-terminus of Drp1, separated by a linker. The resultant PALM images allowed for the observation of two previously observed and one hitherto unseen distinct Drp1 morphologies: Constrict, Terminal, and Split. The Constrict morphology was defined as the Drp1 structures that clearly encircle the mitochondrial tubule at various stages of membrane constriction. The Terminal morphology was defined as the Drp1 structures found at the termini of mitochondria, presumably post membrane scission. The Split morphology is a novel morphology and was defined as two Drp1 foci flanking the mitochondrial tubule but not completely encircling it. Quantification of the diameter and length of the Drp1 helical ring structures showed that the mean length of the Drp1 helical rings was consistent between all three morphologies, though a slight decrease was observed for the Terminal morphology, likely due to degradation. We observed a decrease of approximately 40 nm between the Constrict and Terminal mean diameters, consistent with a dynamic change in the Drp1 ring size due to membrane constriction towards membrane scission during mitochondrial fission. The Split morphology had a wide distribution of diameters and warrants further study. (Abstract shortened by UMI.)
Method and apparatus for assaying wood pulp fibers
Gustafson, Richard [Bellevue, WA; Callis, James B [Seattle, WA; Mathews, Jeffrey D [Neenah, WI; Robinson, John [Issaquah, WA; Bruckner, Carsten A [San Mateo, CA; Suvamakich, Kuntinee [Seattle, WA
2009-05-26
Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.
Fluorescence spectroscopy of trapped molecular ions
NASA Astrophysics Data System (ADS)
Wright, Kenneth Charles
This thesis describes the development of a unique instrument capable of detecting fluorescence emission from large gas phase molecular ions trapped in a three-dimensional quadrupole ion trap. The hypothesis that has formed the basis of this work is the belief that fluorescence spectroscopy can be combined with ion trap mass spectrometry to probe the structure of gas phase molecular ions. The ion trap provides a rarefied environment where fluorescence experiments can be conducted without interference from solvent molecules or impurities. Although fluorescence was not detected during preliminary experiments, two significant experimental challenges associated with detecting the gas phase fluorescence of ions were discovered. First, gas phase ions were vulnerable to photodissociation and low laser powers were necessary to avoid photodissociation. Since fluorescence emission is directly proportional to laser intensity, a lower laser power limits the fluorescence signal. Second, the fluorescence emission was not significantly Stokes shifted from the excitation. The lack of Stokes shift meant the small fluorescence signal must be detected in the presence of a large amount of background scatter generated by the excitation. Initially, this background was seven orders of magnitude higher than the analytical signal ultimately detected. A specially designed fiber optic probe was inserted between the electrodes of the ion trap to stop light scattered off the outside surfaces of the trap from reaching the detector. The inside surfaces of the ion trap were coated black to further reduce the amount of scattered light collected. These innovations helped reduced the background by six orders of magnitude and fluorescence emission from rhodamine-6G was detected. Pulse counting experiments were used to optimize fluorescence detection. The effects of trapping level, laser power, and irradiation time were investigated and optimized. The instrument developed in this work not only allows for the detection of fluorescent photons, but the sensitivity is high enough for the light to be dispersed and an emission spectrum recorded. The emission spectra of rhodamine-6G and 5-carboxyrhodamine-6G ions reported in this thesis represent the first spectra recorded from large molecular ions confined in a quadrupole ion trap. Finally, anti-Stokes fluorescence from rhodamine-6G was also detected.
[Laser Induced Fluorescence Spectroscopic Analysis of Aromatics from One Ring to Four Rings].
Zhang, Peng; Liu, Hai-feng; Yue, Zong-yu; Chen, Bei-ling; Yao, Ming-fa
2015-06-01
In order to distinguish small aromatics preferably, a Nd : YAG Laser was used to supply an excitation laser, which was adjusted to 0.085 J x cm(-2) at 266 nm. Benzene, toluene, naphthalene, phenanthrene, anthracene, pyrene and chrysene were used as the representative of different rings aromatics. The fluorescence emission spectra were researched for each aromatic hydrocarbon and mixtures by Laser induced fluorescence (LIF). Results showed that the rings number determined the fluorescence emission spectra, and the structure with same rings number did not affect the emission fluorescence spectrum ranges. This was due to the fact that the absorption efficiency difference at 266 nm resulted in that the fluorescence intensities of each aromatic hydrocarbon with same rings number were different and the fluorescence intensities difference were more apparently with aromatic ring number increasing. When the absorption efficiency was similar at 266 nm and the concentrations of each aromatic hydrocarbon were same, the fluorescence intensities were increased with aromatic ring number increasing. With aromatic ring number increasing, the fluorescence spectrum and emission peak wavelength were all red-shifted from ultraviolet to visible and the fluorescence spectrum range was also wider as the absorption efficiency was similar. The fluorescence emission spectra from one to four rings could be discriminated in the following wavelengths, 275 to 320 nm, 320 to 375 nm, 375 to 425 nm, 425 to 556 nm, respectively. It can be used for distinguish the type of the polycyclic aromatic hydrocarbons (PAHs) as it exists in single type. As PAHs are usually exist in a variety of different rings number at the same time, the results for each aromatic hydrocarbon may not apply to the aromatic hydrocarbon mixtures. For the aromatic hydrocarbon mixtures, results showed that the one- or two-ring PAHs in mixtures could not be detected by fluorescence as three- or four-ring PAHs existed in mixture. This was caused by radiation energy transfer mechanism, in which the ultraviolet light was lost in mixtures but the fluorescence intensities were increased with the one- or two-ring PAHs adding. When the mixture only contained three- and four-ring PAHs, the fluorescence emission spectrum showed the both characteristics of three- and four-ring PAHs fluorescence. When three- and four-ring PAHs existed in mixtures at the same time, the fluorescence emission spectra were related to each concentration, so the rings number could be discriminated to a certain extent.
Organic Dots Based on AIEgens for Two-Photon Fluorescence Bioimaging.
Lou, Xiaoding; Zhao, Zujin; Tang, Ben Zhong
2016-12-01
Two-photon fluorescence imaging technique is a powerful bioanalytical approach in terms of high photostability, low photodamage, high spatiotemporal resolution. Recently, fluorescent organic dots comprised of organic emissive cores and a polymeric matrix are emerging as promising contrast reagents for two-photon fluorescence imaging, owing to their numerous merits of high and tunable fluorescence, good biocompatibility, strong photobleaching resistance, and multiple surface functionality. The emissive core is crucial for organic dots to get high brightness but many conventional chromophores often encounter a severe problem of fluorescence quenching when they form aggregates. To solve this problem, fluorogens featuring aggregation-induced emission (AIE) can fluoresce strongly in aggregates, and thus become ideal candidates for fluorescent organic dots. In addition, two-photon absorption property of the dots can be readily improved by just increase loading contents of AIE fluorogen (AIEgen). Hence, organic dots based on AIEgens have exhibited excellent performances in two-photon fluorescence in vitro cellular imaging, and in vivo vascular architecture visualization of mouse skin, muscle, brain and skull bone. In view of the rapid advances in this important research field, here, we highlight representative fluorescent organic dots with an emissive core of AIEgen aggregate, and discuss their great potential in bioimaging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Geng, Junlong; Zhu, Zhenshu; Qin, Wei; Ma, Lin; Hu, Yong; Gurzadyan, Gagik G.; Tang, Ben Zhong; Liu, Bin
2013-12-01
Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. The good spectral overlap between the emission of TPETPAFN and the absorption of NIR775 leads to efficient energy transfer, resulting in a 47-fold enhancement of the NIR775 emission intensity upon excitation of TPETPAFN at 510 nm as compared to that upon direct excitation of NIR775 at 760 nm. The obtained fluorescent NPs show sharp NIR emission with a band width of 20 nm, a large Stokes shift of 275 nm, good photostability and low cytotoxicity. In vivo imaging study reveals that the synthesized NPs are able to provide high fluorescence contrast in live animals. The Förster resonance energy transfer strategy overcomes the intrinsic limitation of broad emission spectra for AIE NPs, which opens new opportunities to synthesize organic NPs with high brightness and narrow emission for potential applications in multiplex sensing and imaging.Near-infrared (NIR) fluorescence signals are highly desirable to achieve high resolution in biological imaging. To obtain NIR emission with high brightness, fluorescent nanoparticles (NPs) are synthesized by co-encapsulation of 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)phenylamino)phenyl)fumaronitrile (TPETPAFN), a luminogen with aggregation-induced emission (AIE) characteristics, and a NIR fluorogen of silicon 2,3-naphthalocyanine bis(trihexylsilyloxide) (NIR775) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. The good spectral overlap between the emission of TPETPAFN and the absorption of NIR775 leads to efficient energy transfer, resulting in a 47-fold enhancement of the NIR775 emission intensity upon excitation of TPETPAFN at 510 nm as compared to that upon direct excitation of NIR775 at 760 nm. The obtained fluorescent NPs show sharp NIR emission with a band width of 20 nm, a large Stokes shift of 275 nm, good photostability and low cytotoxicity. In vivo imaging study reveals that the synthesized NPs are able to provide high fluorescence contrast in live animals. The Förster resonance energy transfer strategy overcomes the intrinsic limitation of broad emission spectra for AIE NPs, which opens new opportunities to synthesize organic NPs with high brightness and narrow emission for potential applications in multiplex sensing and imaging. Electronic supplementary information (ESI) available: Characterization of AIE properties of TPETPAFN, UV-vis spectra of NPs, PL spectra comparison upon excitation at the donor and receptor absorbance maxima, ex vivo fluorescence imaging of mice organs. See DOI: 10.1039/c3nr04243j
NASA Astrophysics Data System (ADS)
Achary, B. Shivaprasad; Ramya, A. R.; Trivedi, Rajiv; Bangal, P. R.; Giribabu, L.
We report here the design and synthesis of corrole-metallocene dyads consisting of a metallocene (either ferrocene (Dyad 1) or mixed sandwich η5-[C5H4(COOH)]Co(η4-C4Ph4) (Dyad 2)) connected via an ester linkage at meso phenyl position. Both the dyads were characterized by 1H NMR, MALDI-TOF, UV-visible, fluorescence spectroscopies (steady-state, picosecond time-resolved), femtosecond transient absorption spectroscopy (fs-TA) and electrochemical methods. The absorption spectra of these dyads showed slight broadening and splitting of the Soret band that indicates a weak ground state interaction between the corrole macrocycle and metallocene part of the present donor-acceptor (D-A) system. However, in both the dyad systems, fluorescence emission of the corrole was quenched in polar solvents as compared to its parent compound 10-(4-hydroxyphenyl)-5,15-bis-(pentafluorophenyl ) corrole (Ph-Corr). The quenching was more pronounced in ferrocene derivatives than in cobaltocenyl derivatives. Transient absorption studies confirm the absence of photoinduced electron transfer from metallocene to correl for these dyad systems and the quenching of singlet state of corrole is found to enhance intersystem crossing due to heavy atom effect. Corrole-ferrocene and corrole-mixed sandwich η5-[C5H4(COOH)]Co(η4-C4Ph4) dyads have been designed, synthesized and characterized by various spectroscopic techniques. Emission intensitiy of both dyads were quenched in polar solvents whereas transient absorption studies indicates that the quenching coule be due to the heavy atom effect.
Experimental assessment of fluorescence microscopy signal enhancement by stimulated emission
NASA Astrophysics Data System (ADS)
Dake, Fumihiro; Yazawa, Hiroki
2017-10-01
The quantity of photons generated during fluorescence microscopy is principally determined by the quantum yield of the fluorescence dyes and the optical power of the excitation beam. However, even though low quantum yields can produce poor images, it is challenging to tune this parameter, while increasing the power of the excitation beam often results in photodamage. Here, we propose the use of stimulated emission (SE) as a means of enhancing both the signal intensity and signal-to-noise ratio during confocal fluorescence microscopy. This work experimentally confirmed that both these factors can be enhanced by SE radiation, through generating a greater number of photons than are associated with the standard fluorescence signal. We also propose the concept of stimulated emission enhancing fluorescence (SEEF) microscopy, which employs both the SE and fluorescence signals, and demonstrate that the intensity of an SEEF signal is greater than those of the individual SE and fluorescence signals.
Fluorescence detection of organic molecules in the Jovian atmosphere
NASA Technical Reports Server (NTRS)
Levine, J. S.; Rogowski, R. S.
1975-01-01
A search for fluorescent emission due to the presence of possible organic molecules in the Jovian atmosphere is described. We first consider natural Jovian fluorescent emission excited by precipitating auroral particles. Due to our lack of knowledge of the Jovian precipitating particle energies and fluxes we next consider fluorescent emission excited by a laser system aboard a Jupiter spacecraft. Laser-induced fluorescence is routinely used to monitor trace constituents and pollutants in the terrestrial atmosphere. Several spacecraft laser systems are currently under development. Our calculations indicate that laser-induced fluorescent detection is approximately two orders of magnitude more sensitive than rocket ultraviolet measurements of possible Jovian absorption features at 2600 A that have been attributed to the presence of adenine or benzene.
Liu, Shi Gang; Li, Na; Ling, Yu; Kang, Bei Hua; Geng, Shuo; Li, Nian Bing; Luo, Hong Qun
2016-02-23
We report that fluorescence properties and morphology of hyperbranched polyethylenimine (hPEI) cross-linked with formaldehyde are highly dependent on the pH values of the cross-linking reaction. Under acidic and neutral conditions, water-soluble fluorescent copolymer particles (CPs) were produced. However, under basic conditions, white gels with weak fluorescence emission would be obtained. The water-soluble hPEI-formaldehyde (hPEI-F) CPs show strong intrinsic fluorescence without the conjugation to any classical fluorescent agents. By the combination of spectroscopy and microscopy techniques, the mechanism of fluorescence emission was discussed. We propose that the intrinsic fluorescence originates from the formation of a Schiff base in the cross-linking process between hPEI and formaldehyde. Schiff base bonds are the fluorescence-emitting moieties, and the compact structure of hPEI-F CPs plays an important role in their strong fluorescence emission. The exploration on fluorescence mechanism may provide a new strategy to prepare fluorescent polymer particles. In addition, the investigation shows that the hPEI-F CPs hold potential as a fluorescent probe for the detection of copper ions in aqueous media.
Hammer, Martin; Königsdörffer, Ekkehart; Liebermann, Christiane; Framme, Carsten; Schuch, Günter; Schweitzer, Dietrich; Strobel, Jürgen
2008-01-01
Post-translational protein modification by lipid peroxidation products or glycation is a feature of aging as well as pathologic processes in postmitotic cells at the ocular fundus exposed to an oxidative environment. The accumulation of modified proteins such as those found in lipofuscin and advanced glycation end products (AGEs) contribute greatly to the fundus auto-fluorescence. The distinct fluorescence spectra of lipofuscin and AGE enable their differentiation in multispectral fundus fluorescence imaging. A dual-centre consecutive case series of 78 pseudo-phacic patients is reported. Digital colour fundus photographs as well as auto-fluorescence images were taken from 33 patients with age related macular degeneration (AMD), 13 patients with diabetic retinopathy (RD), or from 32 cases without pathologic findings (controls). Fluorescence was excited at 475-515 nm or 476-604 nm and recorded in the emission bands 530-675 nm or 675-715 nm, respectively. Fluorescence images excited at 475-515 nm were taken by a colour CCD-camera (colour-fluorescence imaging) enabling the separate recording of green and red fluorescence. The ratio of green versus red fluorescence was calculated within a representative region of each image. The 530-675 nm auto-fluorescence in AMD patients was dominated by the red emission (green vs. red ratio, g/r = 0.861). In comparison, the fluorescence of the diabetics was green-shifted (g/r = 0.946; controls: g/r = 0.869). Atrophic areas (geographic atrophy, laser scars) showed massive hypo-fluorescence in both emission bands. Hyper-fluorescent drusen and exudates, unobtrusive in the colour fundus images as well as in the fluorescence images with emission >667 nm, showed an impressive green-shift in the colour-fluorescence image. Lipofuscin is the dominant fluorophore at long wavelengths (>675 nm or red channel of the colour fluorescence image). In the green spectral region, we found an additional emission of collagen and elastin (optic disc, sclera) as well as deposits in drusen and exudates. The green shift of the auto-fluorescence in RD may be a hint of increased AGE concentrations.
Zhou, J; Fang, W; Cao, Q; Yang, L; Chang, V W-C; Nazaroff, W W
2017-05-01
Utilizing the ultraviolet light-induced fluorescence (UV-LIF) measurement technique as embodied in the Waveband Integrated Bioaerosol Sensor (WIBS-4A), we evaluated the fluorescent particle emissions associated with human shedding while walking in a chamber. The mean emission rates of supermicron (1-10 μm) fluorescent particles were in the range 6.8-7.5 million particles per person-h (~0.3 mg per person-h) across three participants, for conditions when the relative humidity was 60%-70% and no moisturizer was applied after showering. The fluorescent particles displayed a lognormal distribution with the geometric mean diameter in the range 2.5-4 μm and exhibited asymmetry factors that increased with particle size. Use of moisturizer was associated with changes in number and mass emission rates, size distribution, and particle shape. Emission rates were lower when the relative humidity was reduced, but these differences were not statistically significant. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
In vivo protein stabilization based on fragment complementation and a split GFP system.
Lindman, Stina; Hernandez-Garcia, Armando; Szczepankiewicz, Olga; Frohm, Birgitta; Linse, Sara
2010-11-16
Protein stabilization was achieved through in vivo screening based on the thermodynamic linkage between protein folding and fragment complementation. The split GFP system was found suitable to derive protein variants with enhanced stability due to the correlation between effects of mutations on the stability of the intact chain and the effects of the same mutations on the affinity between fragments of the chain. PGB1 mutants with higher affinity between fragments 1 to 40 and 41 to 56 were obtained by in vivo screening of a library of the 1 to 40 fragments against wild-type 41 to 56 fragments. Colonies were ranked based on the intensity of green fluorescence emerging from assembly and folding of the fused GFP fragments. The DNA from the brightest fluorescent colonies was sequenced, and intact mutant PGB1s corresponding to the top three sequences were expressed, purified, and analyzed for stability toward thermal denaturation. The protein sequence derived from the top fluorescent colony was found to yield a 12 °C increase in the thermal denaturation midpoint and a free energy of stabilization of -8.7 kJ/mol at 25 °C. The stability rank order of the three mutant proteins follows the fluorescence rank order in the split GFP system. The variants are stabilized through increased hydrophobic effect, which raises the free energy of the unfolded more than the folded state; as well as substitutions, which lower the free energy of the folded more than the unfolded state; optimized van der Waals interactions; helix stabilization; improved hydrogen bonding network; and reduced electrostatic repulsion in the folded state.
Organic light-emitting device with a phosphor-sensitized fluorescent emission layer
Forrest, Stephen [Ann Arbor, MI; Kanno, Hiroshi [Osaka, JP
2009-08-25
The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).
NASA Astrophysics Data System (ADS)
Salas-García, Irene; Fanjul-Vélez, Félix; Arce-Diego, José Luis
2012-03-01
The development of Photodynamic Therapy (PDT) predictive models has become a valuable tool for an optimal treatment planning, monitoring and dosimetry adjustment. A few attempts have achieved a quite complete characterization of the complex photochemical and photophysical processes involved, even taking into account superficial fluorescence in the target tissue. The present work is devoted to the application of a predictive PDT model to obtain fluorescence tomography information during PDT when applied to a skin disease. The model takes into account the optical radiation distribution, a non-homogeneous topical photosensitizer distribution, the time dependent photochemical interaction and the photosensitizer fluorescence emission. The results show the spatial evolution of the photosensitizer fluorescence emission and the amount of singlet oxygen produced during PDT. The depth dependent photosensitizer fluorescence emission obtained is essential to estimate the spatial photosensitizer concentration and its degradation due to photobleaching. As a consequence the proposed approach could be used to predict the photosensitizer fluorescence tomographic measurements during PDT. The singlet oxygen prediction could also be employed as a valuable tool to predict the short term treatment outcome.
Gbaj, A; Bichenkova, EV; Walsh, L; Savage, HE; Sardarian, AR; Etchells, LL; Gulati, A; Hawisa, S; Douglas, KT
2009-01-01
The detection of single base mismatches in DNA is important for diagnostics, treatment of genetic diseases, and identification of single nucleotide polymorphisms. Highly sensitive, specific assays are needed to investigate genetic samples from patients. The use of a simple fluorescent nucleoside analogue in detection of DNA sequence and point mutations by hybridisation in solution is described in this study. The 5′-bispyrene and 3′-naphthalene oligonucleotide probes form an exciplex on hybridisation to target in water and the 5′-bispyrene oligonucleotide alone is an adequate probe to determine concentration of target present. It was also indicated that this system has a potential to identify mismatches and insertions. The aim of this work was to investigate experimental structures and conditions that permit strong exciplex emission for nucleic acid detectors, and show how such exciplexes can register the presence of mismatches as required in SNP analysis. This study revealed that the hybridisation of 5′-bispyrenyl fluorophore to a DNA target results in formation of a fluorescent probe with high signal intensity change and specificity for detecting a complementary target in a homogeneous system. Detection of SNP mutations using this split-probe system is a highly specific, simple, and accessible method to meet the rigorous requirements of pharmacogenomic studies. Thus, it is possible for the system to act as SNP detectors and it shows promise for future applications in genetic testing. PMID:21483539
Pathological changes in Alzheimer"s brain evaluated with fluorescence emission analysis (FEA)
NASA Astrophysics Data System (ADS)
Christov, Alexander; Ottman, Todd; Grammas, Paula
2004-07-01
Development of AD is associated with cerebrovascular deposition of amyloid beta (Aβ) as well as a progressive increase in vasular collagen content. Both AΒ and collagen are naturally fluorescent compounds when exposed to UV light. We analyzed autofluorescence emitted from brain tissue samples and isolated brain resistance vessels harvested postmortem from patients with Alzheimer's disease (AD) and age-matched controls. Fluorescence emission, excited at 355 nm with an Nd:YAG laser, was measured using a fiber-optic based fluorescence spectroscopic system for tissue analysis. Significantly higher values of fluorescence emission intensity (P<0.001) in the spectral region from 465 to 490 nm were detected in brain resistance vessel samples from AD patients compared to the normal individuals. Results from western blot analysis showed elevated levels of type I and type III collagen, and reduced levels of type IV collagen in resistance vessels from AD patients, compared to control samples. In addition, using direct scanning of the cortical suface for fluoresxcence emission by the laser-induced fluorescence spectroscopy system we detected a significantly (P<0.05) higher level of apoptosis in AD brain tissue compared to age-matched controls. Fluorescence emission analysis (FEA) appears to be a sensitive technique for detecting structural changes in AD brain tissue.
Malvezzi-Campeggi, F; Jahnz, M; Heinze, K G; Dittrich, P; Schwille, P
2001-01-01
Green fluorescent protein (GFP) from jellyfish Aequorea victoria, the powerful genetically encoded tag presently available in a variety of mutants featuring blue to yellow emission, has found a red-emitting counterpart. The recently cloned red fluorescent protein DsRed, isolated from Discosoma corals (), with its emission maximum at 583 nm, appears to be the long awaited tool for multi-color applications in fluorescence-based biological research. Studying the emission dynamics of DsRed by fluorescence correlation spectroscopy (FCS), it can be verified that this protein exhibits strong light-dependent flickering similar to what is observed in several yellow-shifted mutants of GFP. FCS data recorded at different intensities and excitation wavelengths suggest that DsRed appears under equilibrated conditions in at minimum three interconvertible states, apparently fluorescent with different excitation and emission properties. Light absorption induces transitions and/or cycling between these states on time scales of several tens to several hundreds of microseconds, dependent on excitation intensity. With increasing intensity, the emission maximum of the static fluorescence continuously shifts to the red, implying that at least one state emitting at longer wavelength is preferably populated at higher light levels. In close resemblance to GFP, this light-induced dynamic behavior implies that the chromophore is subject to conformational rearrangements upon population of the excited state. PMID:11509387
Ultrabright fluorescent OLEDS using triplet sinks
Zhang, Yifan; Forrest, Stephen R; Thompson, Mark
2013-06-04
A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.
NASA Astrophysics Data System (ADS)
Hope, Christopher K.; Higham, Susan M.
2016-08-01
A number of anaerobic oral bacteria, notably Prevotellaceae, exhibit red fluorescence when excited by short-wavelength visible light due to their accumulation of porphyrins, particularly protoporphyrin IX. pH affects the fluorescence of abiotic preparations of porphyrins due to transformations in speciation between monomers, higher aggregates, and dimers. To elucidate whether the porphyrin speciation phenomenon could be manifested within a microbiological system, suspensions of Prevotella intermedia and Prevotella nigrescens were examined by fluorescence spectrophotometry while being titrated against NaOH. The initial pH of the samples was <6, which was then raised toward the maximum found within a diseased periodontal pocket, being ˜pH 8.7. The intensity of the fluorescence emissions increased between 600 and 650 nm with increasing pH. Peak fluorescence emissions occurred at 635±1 nm with a second emission peak developing with increasing pH at 622 nm. A linear relationship was demonstrated between pH and the log10 ratio of 635:622 nm excitation fluorescence intensities. These findings suggest that the pH range found within the oral cavity could affect the fluorescence of oral bacteria in vivo, which may in turn have connotations for any clinical diagnoses that may be inferred from dental plaque fluorescence.
Absorption-emission optrode and methods of use thereof
Hirschfeld, T.B.
1990-05-29
A method and apparatus are described for monitoring the physical and chemical properties of a sample fluid by measuring an optical signal generated by a fluorescent substance and modulated by an absorber substance. The emission band of the fluorescent substance overlaps the absorption band of the absorber substance, and the degree of overlap is dependent on the physical and chemical properties of the sample fluid. The fluorescent substance and absorber substance are immobilized on a substrate so that an effective number of molecules thereof are sufficiently close for resonant energy transfer to occur, thereby providing highly efficient modulation of the fluorescent emissions of the fluorescent substance by the absorber substance. 4 figs.
NASA Astrophysics Data System (ADS)
Quatela, Alessia; Gilmore, Adam M.; Steege Gall, Karen E.; Sandros, Marinella; Csatorday, Karoly; Siemiarczuk, Alex; (Ben Yang, Boqian; Camenen, Loïc
2018-04-01
We investigate the new simultaneous absorbance-transmission and fluorescence excitation-emission matrix method for rapid and effective characterization of the varying components from a mixture. The absorbance-transmission and fluorescence excitation-emission matrix method uniquely facilitates correction of fluorescence inner-filter effects to yield quantitative fluorescence spectral information that is largely independent of component concentration. This is significant because it allows one to effectively monitor quantitative component changes using multivariate methods and to generate and evaluate spectral libraries. We present the use of this novel instrument in different fields: i.e. tracking changes in complex mixtures including natural water, wine as well as monitoring stability and aggregation of hormones for biotherapeutics.
NASA Astrophysics Data System (ADS)
Keatley, Paul Steven; Redjai Sani, Sohrab; Hrkac, Gino; Majid Mohseni, Seyed; Dürrenfeld, Philipp; Åkerman, Johan; Hicken, Robert James
2017-04-01
Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of multiple STVOs that share common magnetic layers. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series' 50th anniversary celebrations in 2017. Paul Keatley was selected by the Editorial Board of J. Phys. D as an Emerging Leader.
Giant spin splitting in optically active ZnMnTe/ZnMgTe core/shell nanowires.
Wojnar, Piotr; Janik, Elżbieta; Baczewski, Lech T; Kret, Sławomir; Dynowska, Elżbieta; Wojciechowski, Tomasz; Suffczyński, Jan; Papierska, Joanna; Kossacki, Piotr; Karczewski, Grzegorz; Kossut, Jacek; Wojtowicz, Tomasz
2012-07-11
An enhancement of the Zeeman splitting as a result of the incorporation of paramagnetic Mn ions in ZnMnTe/ZnMgTe core/shell nanowires is reported. The studied structures are grown by gold-catalyst assisted molecular beam epitaxy. The near band edge emission of these structures, conspicuously absent in the case of uncoated ZnMnTe nanowires, is activated by the presence of ZnMgTe coating. Giant Zeeman splitting of this emission is studied in ensembles of nanowires with various average Mn concentrations of the order of a few percent, as well as in individual nanowires. Thus, we show convincingly that a strong spin sp-d coupling is indeed present in these structures.
Lee, Hyun Ji Julie; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A
2013-06-04
Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines, and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of water-soluble SOA generated from two monoterpenes, limonene and α-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ∼100 ppb ammonia in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (∼0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for λexcitation = 420 ± 50 nm and λemission = 475 ± 38 nm. The window of the strongest fluorescence shifted to λexcitation = 320 ± 25 nm and λemission = 425 ± 38 nm for the α-pinene-derived SOA. Both regions overlap with the EEM spectra of some of the fluorophores found in primary biological aerosols. Despite the low quantum yield, the aged SOA particles may have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.
Mitigating fluorescence spectral overlap in wide-field endoscopic imaging
Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.
2013-01-01
Abstract. The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated. PMID:23966226
Mazumdar, Prativa; Maity, Samir; Shyamal, Milan; Das, Debasish; Sahoo, Gobinda Prasad; Misra, Ajay
2016-03-14
A heteroatom containing organic fluorophore 6,7-dimethyl-2,3-bis-(2-pyridyl)-quinoxaline (BPQ) is weakly emissive in solution but its emission properties are highly enhanced in the aggregated state due to the restriction of intramolecular rotation (RIR) and large amplitude vibrational modes, demonstrating the phenomenon, aggregation induced emission enhancement (AIEE). It has strong proton capture capability, allowing reversible fluorescence switching in basic and acidic medium and the emission color changes from blue to green in the aggregated state through protonation. It has been explained as a competition between intramolecular charge transfers (ICTs) and the AIEE phenomena at a lower pH range (pH ∼1-4). Such behavior enables it as a fluorescent pH sensor for detection in acidic and basic medium. Morphologies of the particles are characterized using optical and field emission scanning electron microscopic (FESEM) studies. The turn off fluorescence properties of aggregated BPQ have been utilized for the selective detection of picric acid and the fluorescence quenching is explained due to ground state complexation with a strong quenching constant, 7.81 × 10(4) M(-1).
NASA Astrophysics Data System (ADS)
Udovich, Joshua Anthony
Ovarian cancer is the fifth leading cause of cancer related deaths among women. Early detection improves the chances of survival following diagnosis, and new imaging modalities have the potential to reduce deaths due to this disease. The confocal microendoscope (CME) is a non-destructive in-vivo imaging device for visualization of the ovaries that operates in real-time. Two components of the CME system are evaluated in this paper, and initial results from an ongoing clinical trial are presented. Fiber-optic imaging bundles are used in the CME imaging catheter to relay images over distances of up to 20 feet. When detecting fluorescent signals from investigated tissue, any fluorescence in the system can potentially reduce contrast in images. The emission and transmission properties of three commercially available fiber optic imaging bundles were evaluated. Emission maps of fluorescence from bundles were generated at multiple excitation wavelengths to determine the profile and amount of fluorescence present in bundles manufactured by Sumitomo, Fujikura, and Schott. Results are also presented that show the variation of transmittance as a function of illumination angle in these bundles. Users of high-resolution fiber-optic imaging bundles should be aware of these properties and take them into account during system design. Contrast is improved in images obtained with the CME through the application of topical dyes. Acridine orange (AO) and SYTO 16 are two fluorescent stains that are used to show the size, shape, and distribution of cell nuclei. Unfortunately, little is known about the effects of these dyes on living tissues. This study was undertaken to evaluate the effects of dye treatment on peritoneal tissues in mice. Seventy-five Balb/c mice were split into five groups of fifteen and given peritoneal injections of dye or saline. The proportions of negative outcomes for the control and test groups were compared using confidence intervals and the Fisher's exact test. No significant difference was determined between the groups. These data provide preliminary results on determining the effect of these dyes on living tissues. Preliminary results of a clinical trial are presented showing in-vivo use of the CME for imaging of the ovaries. This is the first portion of a two part study to demonstrate the clinical diagnosis potential of the CME system. A mobile version of the bench-top CME was modified to be used in the clinic. Fluorescein sodium is used as an initial contrast agent in these studies to demonstrate fluorescence imaging. Twenty patients were successfully imaged, and results of this study have allowed progression to a clinical validation study showing the diagnostic capabilities of the CME.
Lu, Hongzhi; Xu, Shoufang
2017-06-15
Construction of ratiometric fluorescent probe often involved in tedious multistep preparation or complicated coupling or chemical modification process. The emergence of dual emission fluorescent nanoparticles would simplify the construction process and avoids the tedious chemical coupling. Herein, we reported a facile strategy to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles (d-NPs) which comprised of carbon dots and gold nanoclusters for detection of Bisphenol A (BPA). D-NPs emission at 460nm and 580nm were first prepared by seed growth co-microwave method using gold nanoparticles as seeds and glucose as precursor for carbon dots. When they were applied to propose ratiometric fluorescence molecularly imprinted sensor, the preparation process was simplified, and the sensitivity of sensor was improved with detection limit of 29nM, and visualizing BPA was feasible based on the distinguish fluorescence color change. The feasibility of the developed method in real samples was successfully evaluated through the analysis of BPA in water samples with satisfactory recoveries of 95.9-98.9% and recoveries ranging from 92.6% to 98.6% in canned food samples. When detection BPA in positive feeding bottles, the results agree well with those obtained by accredited method. The developed method proposed in this work to prepare ratiometric fluorescence molecularly imprinted sensor based on dual emission nanoparticles proved to be a convenient, reliable and practical way to prepared high sensitive and selective fluorescence sensors. Copyright © 2017 Elsevier B.V. All rights reserved.
Lara-Severino, Reyna del Carmen; Camacho-López, Miguel Ángel; García-Macedo, Jessica Marlene; Gómez-Oliván, Leobardo M.; Sandoval-Trujillo, Ángel H.; Isaac-Olive, Keila; Ramírez-Durán, Ninfa
2016-01-01
Polycyclic aromatic hydrocarbons (PAHs) are compounds that can be quantified by fluorescence due to their high quantum yield. Haloalkalitolerant bacteria tolerate wide concentration ranges of NaCl and pH. They are potentially useful in the PAHs bioremediation of saline environments. However, it is known that salinity of the sample affects fluorescence signal regardless of the method. The objective of this work was to carry out a comparative study based on the sensitivity, linearity, and detection limits of the excitation, emission, and synchronous fluorescence methods, during the quantification of the residual anthracene concentration from the following haloalkalitolerant actinomycetes cultures Kocuria rosea, Kocuria palustris, Microbacterium testaceum, and 4 strains of Nocardia farcinica, in order to establish the proper fluorescence method to study the PAHs biodegrading capacity of haloalkalitolerant actinobacteria. The study demonstrated statistical differences among the strains and among the fluorescence methods regarding the anthracene residual concentration. The results showed that excitation and emission fluorescence methods performed very similarly but sensitivity in excitation fluorescence is slightly higher. Synchronous fluorescence using Δλ = 150 nm is not the most convenient method. Therefore we propose the excitation fluorescence as the fluorescence method to be used in the study of the PAHs biodegrading capacity of haloalkalitolerant actinomycetes. PMID:26925294
Development of Thermally Stable and Highly Fluorescent IR Dyes
NASA Technical Reports Server (NTRS)
Bu, Xiu R.
2004-01-01
Fluorophores are the core component in various optical applications such as sensors and probes. Fluorphores with low-energy or long wavelength emission, in particular, in NIR region, possess advantages of low interference and high sensitivity. In this study, we has explored several classes of imidazole-based compounds for NIR fluorescent properties and concluded: (1) thiazole-based imidazole compounds are fluorescent; (2) emission energy is tunable by additional donor groups; (3) they also possess impressive two- photon absorption properties; and (4) fluorescence emission can be induced by two- photon input. This report summarizes (1) synthesis of new series of fluorophore; (2) impact of electron-withdrawing groups on fluorescent property; (3) unique property of two-photon absorption; and (4) on-going development.
Detector Having A Transmission Grating Beam Splitter For Multi-Wavelength Sample Analysis.
Liu, Changsheng; Li, Qingbo
2000-09-12
A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.
Detector Having A Transmission Grating Beam Splitter For Multi-Wavelength.
Liu, Changsheng; Li, Qingbo (State College, PA
1999-12-07
A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.
de Paula Campos, Carolina; de Paula D'Almeida, Camila; Nogueira, Marcelo Saito; Moriyama, Lilian Tan; Pratavieira, Sebastião; Kurachi, Cristina
2017-12-01
Ultraviolet (UV) radiation may induce skin alterations as observed in photoaging. Some recognized modifications are epidermal hyperplasia, amorphous deposition of degraded elastic fibers and reduction in the number of collagen fibers. They alter the tissue biochemical properties that can be interrogated by steady state fluorescence spectroscopy (SSFS). In this study, we monitored the changes in endogenous fluorescence emission from hairless mice skin during a protocol of photoaging using UVB irradiation. To perform the fluorescence spectroscopy, it was used a violet laser (408nm) to induce the native fluorescence that is emitted in the visible range. Under 408nm excitation, the emission spectrum showed bands with peaks centered around 510, 633 and 668nm for irradiated and control groups. A relative increase of the fluorescence at 633nm emission on the flank was observed with time when compared to the ventral skin at the same animal and the non-irradiated control group. We correlated the emission at 633nm with protoporphyrin IX (PpIX), and our hypothesis is that the PpIX metabolism in the photoaged and aged skin are different. PpIX fluorescence intensity in the photoaged skin is higher and more heterogeneous than in the aged skin. Notwithstanding, more spectroscopic and biochemistry studies investigating the 510 and 633nm emission are needed to confirm this hypothesis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Sheng, Chuan-Xiang; McGill, Stephen; Semenov, Dmitry; Vardeny, Zeev Valy
2018-04-01
The organic-inorganic hybrid perovskites show excellent optical and electrical properties for photovoltaic and a myriad of other optoelectronics applications. Using high-field magneto-optical measurements up to 17.5 T at cryogenic temperatures, we have studied the spin-dependent optical transitions in the prototype C H3N H3Pb I3 , which are manifested in the field-induced circularly polarized photoluminescence emission. The energy splitting between left and right circularly polarized emission bands is measured to be ˜1.5 meV at 17.5 T, from which we obtained an exciton effective g factor of ˜1.32. Also from the photoluminescence diamagnetic shift we estimate the exciton binding energy to be ˜17 meV at low temperature. Surprisingly, the corresponding field-induced circular polarization is "anomalous" in that the photoluminescence emission of the higher split energy band is stronger than that of the lower split band. This "reversed" intensity ratio originates from the combination of long electron spin relaxation time and hole negative g factor in C H3N H3Pb I3 , which are in agreement with a model based on the k.p effective-mass approximation.
Li, Qianjin; Kamra, Tripta; Ye, Lei
2016-03-04
Addition of crosslinked polymer nanoparticles into a solution of a 3-nitrophenylboronic acid-alizarin complex leads to significant enhancement of fluorescence emission. Using the nanoparticle-enhanced boronic acid-alizarin system has improved greatly the sensitivity and extended the dynamic range of separation-free fluorescence assays for carbohydrates.
Upconverting fluorescent nanoparticles for biodetection and photoactivation
NASA Astrophysics Data System (ADS)
Huang, Kai; Li, WenKai; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong
2013-03-01
Fluorophores including fluorescent dyes/proteins and quantum dots (QDs) are used for fluorescence-based imaging and detection. These are based on `downconversion fluorescence' and have several drawbacks: photobleaching, autofluorescence, short tissue penetration depth and tissue photo-damage. Upconversion fluorescent nanoparticles (UCNs) emit detectable photons of higher energy in the short wavelength range upon irradiation with near-infrared (NIR) light based on a process termed `upconversion'. UCNs show absolute photostability, negligible autofluorescence, high penetration depth and minimum photodamage to biological tissues. Lanthanide doped nanocrystals with nearinfrared NIR-to-NIR and/or NIR-to-VIS and/or NIR-to-UV upconversion fluorescence emission have been synthesized. The nanocrystals with small size and tunable multi-color emission have been developed. The emission can be tuned by doping different upconverting lanthanide ions into the nanocrystals. The nanocrystals with core-shell structure have also been prepared to tune the emission color. The surfaces of these nanocrystals have been modified to render them water dispersible and biocompatible. They can be used for ultrasensitive interference-free biodetection because most biomolecules do not have upconversion properties. UCNs are also useful for light based therapy with enhanced efficiency, for example, photoactivation.
Method for determining surface coverage by materials exhibiting different fluorescent properties
NASA Technical Reports Server (NTRS)
Chappelle, Emmett W. (Inventor); Daughtry, Craig S. T. (Inventor); Mcmurtrey, James E., III (Inventor)
1995-01-01
An improved method for detecting, measuring, and distinguishing crop residue, live vegetation, and mineral soil is presented. By measuring fluorescence in multiple bands, live and dead vegetation are distinguished. The surface of the ground is illuminated with ultraviolet radiation, inducing fluorescence in certain molecules. The emitted fluorescent emission induced by the ultraviolet radiation is measured by means of a fluorescence detector, consisting of a photodetector or video camera and filters. The spectral content of the emitted fluorescent emission is characterized at each point sampled, and the proportion of the sampled area covered by residue or vegetation is calculated.
Metal-enhanced fluorescence exciplex emission.
Zhang, Yongxia; Mali, Buddha L; Geddes, Chris D
2012-01-01
In this letter, we report the first observation of metal-enhanced exciplex fluorescence, observed from anthracene in the presence of diethylaniline. Anthracene in the presence of diethylaniline in close proximity to Silver Island Films (SIFs) shows enhanced monomer and exciplex emission as compared to a non-silvered control sample containing no silver nanoparticles. Our findings suggest two complementary methods for the enhancement: (i) surface plasmons can radiate coupled monomer and exciplex fluorescence efficiently, and (ii) enhanced absorption (enhanced electric near-field) further facilitates enhanced emission. Our exciplex studies help us to further understand the complex photophysics of the metal-enhanced fluorescence technology. Copyright © 2011 Elsevier B.V. All rights reserved.
IUE observations of the Jovian dayglow emission
NASA Technical Reports Server (NTRS)
Mcgrath, M. A.; Feldman, P. D.; Ballester, G. E.; Moos, H. W.
1989-01-01
IUE spectra of Jupiter are examined in light of recent models put forward to explain the anomalously bright ultraviolet emissions seen from the upper atmospheres of the outer planets. Chi-squared fits of the IUE spectra with model spectra produced by two proposed excitation mechanisms, electron impact and fluorescence of solar radiation, result in consistently higher chi-squared values for the solar fluorescence model. No conclusive evidence is found in the IUE data for the dominance of solar fluorescence over electron excitation in producing the Jovian dayglow emission.
Wu, Fei; Shao, Yong; Ma, Kun; Cui, Qinghua; Liu, Guiying; Xu, Shujuan
2012-04-28
Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe. This journal is © The Royal Society of Chemistry 2012
Optical instrument for measurement of vaginal coating thickness by drug delivery formulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Marcus H.; Peters, Jennifer J.; Walmer, David K.
2005-03-01
An optical device has been developed for imaging the human vaginal epithelial surfaces, and quantitatively measuring distributions of coating thickness of drug delivery formulations - such as gels - applied for prophylaxis, contraception or therapy. The device consists of a rigid endoscope contained within a 27-mm-diam hollow, polished-transparent polycarbonate tube (150 mm long) with a hemispherical cap. Illumination is from a xenon arc. The device is inserted into, and remains stationary within the vagina. A custom gearing mechanism moves the endoscope relative to the tube, so that it views epithelial surfaces immediately apposing its outer surface (i.e., 150 mm longmore » by 360 deg. azimuthal angle). Thus, with the tube fixed relative to the vagina, the endoscope sites local regions at distinct and measurable locations that span the vaginal epithelium. The returning light path is split between a video camera and photomultiplier. Excitation and emission filters in the light path enable measurement of fluorescence of the sited region. Thus, the instrument captures video images simultaneously with photometric measurement of fluorescence of each video field [{approx}10 mm diameter; formulations are labeled with 0.1% w/w United States Pharmacoepia (USP) injectable sodium fluorescein]. Position, time and fluorescence measurements are continuously displayed (on video) and recorded (to a computer database). The photomultiplier output is digitized to quantify fluorescence of the endoscope field of view. Quantification of the thickness of formulation coating of a surface sited by the device is achieved due to the linear relationship between thickness and fluorescence intensity for biologically relevant thin layers (of the order of 0.5 mm). Summary measures of coating have been developed, focusing upon extent, location and uniformity. The device has begun to be applied in human studies of model formulations for prophylaxis against infection with HIV and other sexually transmitted pathogens.« less
NASA Astrophysics Data System (ADS)
Nevin, A.; Anglos, D.; Cather, S.; Burnstock, A.
2008-07-01
Spectrofluorimetric analysis of proteinaceous binding media is particularly promising because proteins employed in paintings are often fluorescent and media from different sources have significantly different fluorescence spectral profiles. Protein-based binding media derived from eggs, milk and animal tissue have been used for painting and for conservation, but their analysis using non-destructive techniques is complicated by interferences with pigments, their degradation and their low concentration. Changes in the fluorescence excitation emission spectra of films of binding media following artificial ageing to an equivalent of 50 and 100 years of museum lighting include the reduction of bands ascribed to tyrosine, tryptophan and Maillard reaction products and an increase in fluorescent photodegradation. Fluorescence of naturally aged paint is dependent on the nature of the pigment present and, with egg-based media, in comparison with un-pigmented films, emissions ascribed to amino acids are more pronounced.
Donor-acceptor-pair emission in fluorescent 4H-SiC grown by PVT method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xi, E-mail: liuxi@mail.sic.ac.cn; Zhuo, Shi-Yi; Gao, Pan
Fluorescent SiC, which contains donor and acceptor impurities with optimum concentrations, can work as a phosphor for visible light emission by donor-acceptor-pair (DAP) recombination. In this work, 3 inch N-B-Al co-doped fluorescent 4H-SiC crystals are prepared by PVT method. The p-type fluorescent 4H-SiC with low aluminum doping concentration can show intensive yellow-green fluorescence at room temperature. N-B DAP peak wavelength shifts from 578nm to 525nm and weak N-Al DAP emission occurred 403/420 nm quenches, when the temperature increases from 4K to 298K. The aluminum doping induces higher defect concentration in the fluorescent crystal and decreases optical transmissivity of the crystalmore » in the visible light range. It triggers more non-radiative recombination and light absorption losses in the crystal.« less
Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents
NASA Astrophysics Data System (ADS)
Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.
2009-03-01
Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).
Fluorescence observations of LDEF exposed materials as an indicator of induced material reactions
NASA Technical Reports Server (NTRS)
Linton, Roger C.; Whitaker, Ann F.; Kamenetzky, Rachel R.
1993-01-01
Observations and measurements of induced changes in the fluorescent emission of materials exposed to the space environment on the Long Duration Exposure Facility (LDEF) have revealed systematic patterns of material-dependent behavior. These results have been supplemented by inspection of similar materials exposed on previous Space Shuttle Missions and in laboratory testing. The space environmental factors affecting the fluorescence of exposed materials have been found to include (but are not necessarily limited to) solar ultraviolet (UV) radiation, atomic oxygen (AO), thermal vacuum exposure, and synergistic combinations of these factors. Observed changes in material fluorescent behavior include stimulation, quenching, and spectral band shifts of emission. For example, the intrinsic yellow fluorescence of zinc oxide pigmented thermal control coatings undergoes quenching as a result of exposure, while coloration is stimulated in the fluorescent emission of several polyurethane coating materials. The changes in fluorescent behavior of these materials are shown to be a revealing indicator of induced material reactions as a result of space environmental exposure.
Carbon "Quantum" Dots for Fluorescence Labeling of Cells.
Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping
2015-09-02
The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.
Lu, Linlin; Feng, Chongchong; Xu, Jie; Wang, Fengyang; Yu, Haijun; Xu, Zhiai; Zhang, Wen
2017-06-15
Copper is closely related to liver damage, therefore, it is essential to develop a simple and sensitive strategy to detect copper ions (Cu 2+ ) in liver cells. A hydrophobic carbon dots (HCDs)-based dual-emission fluorescent probe for Cu 2+ was prepared by encapsulating HCDs in micelles formed by self-assembly of amphiphilic polymer DSPE-PEG and tetrakis (4-carboxyphenyl) porphyrin (TCPP)-modified DSPE-PEG. The obtained probe showed characteristic fluorescence emissions of HCDs and TCPP with large emission shift of 170nm with single-wavelength excitation. In the presence of Cu 2+ , the fluorescence of TCPP was quenched and that of HCDs remained unchanged, displaying ratiometric fluorescence response to Cu 2+ . The developed probe exhibited high sensitivity (detection limit down to 36nM) and selectivity to Cu 2+ over other substances, and the probe was used to image the changes of Cu 2+ level in liver cells successfully. Copyright © 2017 Elsevier B.V. All rights reserved.
Simultaneous two-dimensional laser-induced-fluorescence measurements of argon ions.
Hansen, A K; Galante, Matthew; McCarren, Dustin; Sears, Stephanie; Scime, E E
2010-10-01
Recent laser upgrades on the Hot Helicon Experiment at West Virginia University have enabled multiplexed simultaneous measurements of the ion velocity distribution function at a single location, expanding our capabilities in laser-induced fluorescence diagnostics. The laser output is split into two beams, each modulated with an optical chopper and injected perpendicular and parallel to the magnetic field. Light from the crossing point of the beams is transported to a narrow-band photomultiplier tube filtered at the fluorescence wavelength and monitored by two lock-in amplifiers, each referenced to one of the two chopper frequencies.
NASA Astrophysics Data System (ADS)
Ren, Yingkun; Wang, Yongbo; Yang, Min; Liu, Enzhou; Hu, Xiaoyun; Zhang, Xu; Fan, Jun
2018-07-01
In this paper, L-cysteine (L-cys) and mercaptopropionic acid (MPA) co-capped ZnS quantum dots (QDs) with dual emissions have been successfully synthesized by a one-pot aqueous-phase synthesis method. The intensities of the dual emissions could be controlled by regulating the molar ratio of L-cys to MPA, and the fluorescence color also turned from blue to yellow accordingly. The relationship between the ligands and fluorescence was investigated and the results indicated that L-cys could cause two emissions and MPA improved the emission intensity. In addition, the L-cys-MPA co-capped ZnS QDs showed high photostability under UV irradiation. Therefore, the L-cys-MPA co-capped ZnS QDs, which show the dual emissions and tunable emission intensities, have great potentials for use in ratiometric fluorescence sensors and multicolor bioimaging.
Lauer, Milena H; Gehlen, Marcelo H; de Jesus, Karen; Berlinck, Roberto G S
2014-05-01
The emission spectra, quantum yields and fluorescence lifetimes of citrinin in organic solvents and hydrogel films have been determined. Citrinin shows complex fluorescence decays due to the presence of two tautomers in solution and interconversion from excited-state double proton transfer (ESDPT) process. The fluorescence decay times associated with the two tautomers have values near 1 and 5 ns depending on the medium. In hydrogel films of agarose and alginate, fluorescence imaging showed that citrinin is not homogeneously dispersed and highly emissive micrometer spots may be formed. Fluorescence spectrum and decay analysis are used to recognize the presence of citrinin in hydrogel films using confocal fluorescence microscopy and spectroscopy.
Chromosome characterization using single fluorescent dye
Crissman, Harry A.; Hirons, Gregory T.
1995-01-01
Chromosomes are characterized by fluorescent emissions from a single fluorescent dye that is excited over two different wavelengths. A mixture containing chromosomes is stained with a single dye selected from the group consisting of TOTO and YOYO and the stained chromosomes are placed in a flow cytometer. The fluorescent dye is excited sequentially by a first light having a wavelength in the ultraviolet range to excite the TOTO or YOYO to fluoresce at a first intensity and by a second light having a wavelength effective to excite the TOTO or YOYO dye to fluoresce at a second intensity. Specific chromosomes may be identified and sorted by intensity relationships between the first and second fluorescence emissions.
Xiang, Guoqiang; Wang, Yule; Zhang, Heng; Fan, Huanhuan; Fan, Lu; He, Lijun; Jiang, Xiuming; Zhao, Wenjie
2018-09-15
In this work, a simple and effective strategy for designing a ratiometric fluorescent nanosensor was described. A carbon dots (CDs) based dual-emission nanosensor for nitrite was prepared by coating the CDs on to dye-doped silica nanoparticles. Dual-emission silica nanoparticles fluorescence was quenched in sulfuric acid using potassium bromate (KBrO 3 ). The nitrite present catalyzed the KBrO 3 oxidation, resulting in ratiometric fluorescence response of the dual-emission silica nanoparticles. Several important parameters affecting the performance of the nanosensor were investigated. Under optimized conditions, the limit of detection was 1.0 ng mL -1 and the linear range 10-160 ng mL -1 . Furthermore, the sensor was suitable for nitrite determination in different food samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiang, Guo-Qiang; Ren, Yue; Xia, Yin; Mao, Wenjie; Fan, Chao; Guo, Si-Yu; Wang, Pan-Pan; Yang, Deng-Hui; He, Lijun; Jiang, Xiuming
2017-04-01
A simple and effective strategy for designing a ratiometric fluorescent nanosensor is described in this work. A carbon dots (CDs) based dual-emission nanosensor for Bisphenol A (BPA) was prepared by coating CDs on the surface of dye-doped silica nanoparticles. The fluorescence of dual-emission silica nanoparticles was quenched in hydrochloric acid by potassium bromate (KBrO3) oxidation; BPA inhibited KBrO3 oxidation, resulting in the ratiometric fluorescence response of dual-emission silica nanoparticles. Several important parameters affecting the performance of the nanosensor were investigated and optimized. The detection limit of this nanosensor was 0.80 ng mL- 1 with a linear range from 10 to 500 ng mL- 1. This was applied successfully to determine BPA in the leached solution of different plastic products with satisfactory results.
Wang, Shaodan; Fei, Xiaoliang; Guo, Jing; Yang, Qingbiao; Li, Yaoxian; Song, Yan
2016-01-01
A hybrid carbazole-hemicyanine dye (Cac) has been developed as a novel colorimetric and ratiometric fluorescent sensor for cyanide detection. Upon treatment with cyanide, Cac displayed a remarkable fluorescence ratiometric response, with the emission wavelength displaying a very large emission shift (214 nm). The detection of cyanide was performed via the nucleophilic addition of cyanide anion to the indolium group of the sensor, which resulted in the blocking of the intramolecular charge transfer (ICT) process in the sensor, inducing a ratiometric fluorescence change and simultaneously an obvious color change. Furthermore, competitive anions did not showed any significant changes both in color and emission intensity ratio (I381/I595), indicating the high selectivity of the sensor to CN(-). Copyright © 2015 Elsevier B.V. All rights reserved.
Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma
NASA Astrophysics Data System (ADS)
Liu, Jingle; Zhang, X.-C.
2009-12-01
We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.
Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.
Tan, Quanyin; Li, Jinhui
2016-01-01
The use of fluorescent lamps has expanded rapidly all over the world in recent years, because of their energy-saving capability. Consequently, however, mercury emissions from production, breakage, and discard of the lamps are drawing increasing concern from the public. This article focuses on evaluating the amount of mercury used for fluorescent lamp production, as well as the potential mercury emissions during production and breakage, in mainland China. It is expected to provide a comprehensive understanding about the risks present in the mercury from fluorescent lamps, and to know about the impacts of the policies on fluorescent lamps after their implementation. It is estimated that, in 2020, mercury consumption will be about 11.30-15.69 tonnes, a significant reduction of 34.9%-37.4% from that used in 2013, owing to improvement in mercury dosing dosage technology and tighter limitations on mercury content in fluorescent lamps. With these improvements, the amount of mercury remaining in fluorescent lamps and released during production is estimated to be 10.71-14.86 and 0.59-0.83 tonnes, respectively; the mercury released from waste fluorescent lamps is estimated to be about 5.37-7.59 tonnes. Also, a significant reduction to the mercury emission can be expected when a collection and treatment system is well established and conducted in the future. © The Author(s) 2015.
Nitrogen fluorescence in air for observing extensive air showers
NASA Astrophysics Data System (ADS)
Keilhauer, B.; Bohacova, M.; Fraga, M.; Matthews, J.; Sakaki, N.; Tameda, Y.; Tsunesada, Y.; Ulrich, A.
2013-06-01
Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of Air Fluorescence Workshops commenced in 2002. At the 8th Air Fluorescence Workshop 2011, it was suggested to develop a common way of describing the nitrogen fluorescence for application to air shower observations. Here, first analyses for a common treatment of the major dependences of the emission procedure are presented. Aspects like the contributions at different wavelengths, the dependence on pressure as it is decreasing with increasing altitude in the atmosphere, the temperature dependence, in particular that of the collisional cross sections between molecules involved, and the collisional de-excitation by water vapor are discussed.
Effects of alcohols on fluorescence intensity and color of a discharged-obelin-based biomarker.
Alieva, Roza R; Belogurova, Nadezhda V; Petrova, Alena S; Kudryasheva, Nadezhda S
2014-05-01
Photoproteins are responsible for bioluminescence of marine coelenterates; bioluminescent and fluorescent biomarkers based on photoproteins are useful for monitoring of calcium-dependent processes in medical investigations. Here, we present the analysis of intensity and color of light-induced fluorescence of Ca(2+)-discharged photoprotein obelin in the presence of alcohols (ethanol and glycerol). Complex obelin spectra obtained at different concentrations of the alcohols at 350- and 280-nm excitation (corresponding to polypeptide-bound coelenteramide and tryptophan absorption regions) were deconvoluted into Gaussian components; fluorescent intensity and contributions of the components to experimental spectra were analyzed. Five Gaussian components were found in different spectral regions-ultraviolet (tryptophan emission), blue-green (coelenteramide emission), and red (hypothetical indole-coelenteramide exciplex emission). Inhibition coefficients and contributions of the components to experimental fluorescent spectra showed that presence of alcohols increased contributions of ultraviolet, violet, and red components, but decreased contributions of components in the blue-green region. The effects were related to (1) changes of proton transfer efficiency in fluorescent S*1 state of coelenteramide in the obelin active center and (2) formation of indole-coelenteramide exciplex at 280-nm photoexcitation. The data show that variation of fluorescence color and intensity in the presence of alcohols and dependence of emission spectra on excitation wavelength should be considered while applying the discharged obelin as a fluorescence biomarker.
Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina
2015-11-15
Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion. Copyright © 2015 Elsevier Inc. All rights reserved.
Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina
2015-01-01
Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion. PMID:26022509
NASA Astrophysics Data System (ADS)
Chen, Yingzhi; Li, Aoxiang; Yue, Xiaoqi; Wang, Lu-Ning; Huang, Zheng-Hong; Kang, Feiyu; Volinsky, Alex A.
2016-07-01
Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi) layer were fabricated for photoelectrochemical water splitting. In this arrayed architecture, a PDi layer with a tunable thickness was coated on anodic TiO2 nanotube arrays by physical vapor deposition, which is advantageous for the formation of a uniform layer and an adequate interface contact between PDi and TiO2. The obtained PDi/TiO2 junction exhibited broadened visible light absorption, and an effective interface for enhanced photogenerated electron-hole separation, which is supported by the reduced charge transfer resistance and prolonged excitation lifetime via impedance spectroscopy analysis and fluorescence emission decay investigations. Consequently, such a heterojunction photoanode was photoresponsive to a wide visible light region of 400-600 nm, and thus demonstrated a highly enhanced photocurrent density at 1.23 V vs. a reversible hydrogen electrode. Additionally, the durability of such a photoanode can be guaranteed after long-time illumination because of the geometrical restraint imposed by the PDi aggregates. These results pave the way to discover new organic/inorganic assemblies for high-performance photoelectric applications and device integration.Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi) layer were fabricated for photoelectrochemical water splitting. In this arrayed architecture, a PDi layer with a tunable thickness was coated on anodic TiO2 nanotube arrays by physical vapor deposition, which is advantageous for the formation of a uniform layer and an adequate interface contact between PDi and TiO2. The obtained PDi/TiO2 junction exhibited broadened visible light absorption, and an effective interface for enhanced photogenerated electron-hole separation, which is supported by the reduced charge transfer resistance and prolonged excitation lifetime via impedance spectroscopy analysis and fluorescence emission decay investigations. Consequently, such a heterojunction photoanode was photoresponsive to a wide visible light region of 400-600 nm, and thus demonstrated a highly enhanced photocurrent density at 1.23 V vs. a reversible hydrogen electrode. Additionally, the durability of such a photoanode can be guaranteed after long-time illumination because of the geometrical restraint imposed by the PDi aggregates. These results pave the way to discover new organic/inorganic assemblies for high-performance photoelectric applications and device integration. Electronic supplementary information (ESI) available: Additional structural characterization. See DOI: 10.1039/c5nr07893h
Monitoring biological aerosols using UV fluorescence
NASA Astrophysics Data System (ADS)
Eversole, Jay D.; Roselle, Dominick; Seaver, Mark E.
1999-01-01
An apparatus has been designed and constructed to continuously monitor the number density, size, and fluorescent emission of ambient aerosol particles. The application of fluorescence to biological particles suspended in the atmosphere requires laser excitation in the UV spectral region. In this study, a Nd:YAG laser is quadrupled to provide a 266 nm wavelength to excite emission from single micrometer-sized particles in air. Fluorescent emission is used to continuously identify aerosol particles of biological origin. For calibration, biological samples of Bacillus subtilis spores and vegetative cells, Esherichia coli, Bacillus thuringiensis and Erwinia herbicola vegetative cells were prepared as suspensions in water and nebulized to produce aerosols. Detection of single aerosol particles, provides elastic scattering response as well as fluorescent emission in two spectral bands simultaneously. Our efforts have focuses on empirical characterization of the emission and scattering characteristics of various bacterial samples to determine the feasibility of optical discrimination between different cell types. Preliminary spectroscopic evidence suggest that different samples can be distinguished as separate bio-aerosol groups. In addition to controlled sample results, we will also discuss the most recent result on the effectiveness of detection outdoor releases and variations in environmental backgrounds.
Impact of oxygen chemistry on the emission and fluorescence spectroscopy of laser ablation plumes
NASA Astrophysics Data System (ADS)
Hartig, K. C.; Brumfield, B. E.; Phillips, M. C.; Harilal, S. S.
2017-09-01
Oxygen present in the ambient gas medium may affect both laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) emission through a reduction of emission intensity and persistence. In this study, an evaluation is made on the role of oxygen in the ambient environment under atmospheric pressure conditions in LIBS and laser ablation (LA)-LIF emission. To generate plasmas, 1064 nm, 10 ns pulses were focused on an aluminum alloy sample. LIF was performed by frequency scanning a CW laser over the 396.15 nm (3s24s 2S1/2 → 3s23p 2P°3/2) Al I transition. Time-resolved emission and fluorescence signals were recorded to evaluate the variation in emission intensity caused by the presence of oxygen. The oxygen partial pressure (po) in the atmospheric pressure environment using N2 as the makeup gas was varied from 0 to 400 Torr O2. 2D-fluorescence spectroscopy images were obtained for various oxygen concentrations for simultaneous evaluation of the emission and excitation spectral features. Results showed that the presence of oxygen in the ambient environment reduces the persistence of the LIBS and LIF emission through an oxidation process that depletes the density of atomic species within the resulting laser-produced plasma (LPP) plume.
High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion
Forrest, Stephen; Zhang, Yifan
2015-02-10
A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.
Khosroshahi, Mohamad E; Rahmani, Mahya
2012-01-01
The aim of this research is to study the normalized fluorescence spectra (intensity variations and area under the fluorescence signal), relative quantum yield, extinction coefficient and intracellular properties of normal and malignant human bone cells. Using Laser-Induced Fluorescence Spectroscopy (LIFS) upon excitation of 405 nm, the comparison of emission spectra of bone cells revealed that fluorescence intensity and the area under the spectra of malignant bone cells was less than that of normal. In addition, the area ratio and shape factor were changed. We obtained two emission bands in spectra of normal cells centered at about 486 and 575 nm and for malignant cells about 482 and 586 nm respectively, which are most likely attributed to NADH and riboflavins. Using fluorescein sodium emission spectrum, the relative quantum yield of bone cells is numerically determined.
NASA Astrophysics Data System (ADS)
Song, Xuezhen; Dong, Baoli; Kong, Xiuqi; Wang, Chao; Zhang, Nan; Lin, Weiying
2018-01-01
Hypochlorite is one of the important reactive oxygen species (ROS) and plays critical roles in many biologically vital processes. Herein, we present a unique ratiometric fluorescent probe (CBP) with an extremely large emission shift for detecting hypochlorite in living cells. Utilizing positively charged α,β-unsaturated carbonyl group as the reaction site, the probe CBP itself exhibited near-infrared (NIR) fluorescence at 662 nm, and can display strong blue fluorescence at 456 nm when responded to hypochlorite. Notably, the extremely large emission shift of 206 nm could enable the precise measurement of the fluorescence peak intensities and ratios. CBP showed high sensitivity, excellent selectivity, desirable performance at physiological pH, and low cytotoxicity. The bioimaging experiments demonstrate the biological application of CBP for the ratiometric imaging of hypochlorite in living cells.
Godde, F; Toulmé, J J; Moreau, S
2000-08-01
We developed a new fluorescent analog of cytosine, the 4-amino-1H-benzo[g]quinazoline-2-one, which constitute a probe sensitive to pH. The 2'-O-Me ribonucleoside derivative of this heterocycle was synthesized and exhibited a fluorescence emission centered at 456 nm, characterized by four major excitation maxima (250, 300, 320 and 370 nm) and a fluorescence quantum yield of Phi = 0.62 at pH 7.1. The fluorescence emission maximum shifted from 456 to 492 nm when pH was decreased from 7.1 to 2.1. The pK(a) (4) was close to that of cytosine (4.17). When introduced in triplex forming oligonucleotides this new nucleoside can be used to reveal the protonation state of triplets in triple-stranded structures. Complex formation was detected by a significant quenching of fluorescence emission (approximately 88%) and the N-3 protonation of the quinazoline ring by a shift of the emission maximum from 485 to 465 nm. Using this probe we unambiguously showed that triplex formation of the pyrimidine motif does not require the protonation of all 4-amino-2-one pyrimidine rings.
Polarized micro-cavity organic light-emitting devices.
Park, Byoungchoo; Kim, Mina; Park, Chan Hyuk
2009-04-27
We present the results of a study of light emissions from a polarized micro-cavity Organic Light-Emitting Device (OLED), which consisted of a flexible, anisotropic one-dimensional (1-D) photonic crystal (PC) film substrate. It is shown that luminous Electroluminescent (EL) emissions from the polarized micro-cavity OLED were produced at relatively low operating voltages. It was also found that the peak wavelengths of the emitted EL light corresponded to the two split eigen modes of the high-energy band edges of the anisotropic PC film, with a strong dependence on the polarization state of the emitting light. For polarization along the ordinary axis of the anisotropic PC film, the optical split micro-cavity modes occurred at the longer high-energy photonic band gap (PBG) edge, while for polarization along the extraordinary axis, the split micro-cavity modes occurred at the shorter high-energy PBG edge, with narrow bandwidths. We demonstrated that the polarization and emission mode of the micro-cavity OLED may be selected by choosing the appropriate optical axis of the anisotropic 1-D PC film.
Jet-Cooled Laser-Induced Fluorescence Spectroscopy of T-Butoxy
NASA Astrophysics Data System (ADS)
Reilly, Neil J.; Cheng, Lan; Stanton, John F.; Miller, Terry A.; Liu, Jinjun
2015-06-01
The vibrational structures of the tilde A ^2A_1 and tilde X ^2E states of t-butoxy were obtained in jet-cooled laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectroscopic measurements. The observed transitions are assigned based on vibrational frequencies calculated using Complete Active Space Self-Consistent Field (CASSCF) method and the predicted Franck-Condon factors. The spin-orbit (SO) splitting was measured to be 35(5) cm-1 for the lowest vibrational level of the ground (tilde X ^2E) state and increases with increasing vibrational quantum number of the CO stretch mode. Vibronic analysis of the DF spectra suggests that Jahn-Teller (JT)-active modes of the ground-state t-butoxy radical are similar to those of methoxy and would be the same if methyl groups were replaced by hydrogen atoms. Coupled-cluster calculations show that electron delocalization, introduced by the substitution of hydrogens with methyl groups, reduces the electronic contribution of the SO splittings by only around ten percent, and a calculation on the vibronic levels based on quasidiabatic model Hamiltonian clearly attributes the relatively small SO splitting of the tilde X ^2E state of t-butoxy mainly to stronger reduction of orbital angular momentum by the JT-active modes when compared to methoxy. The rotational and fine structure of the LIF transition to the first CO stretch overtone level of the tilde A^2A_1 state has been simulated using a spectroscopic model first proposed for methoxy, yielding an accurate determination of the rotational constants of both tilde A and tilde X states.
Time-resolved delayed luminescence image microscopy using an europium ion chelate complex.
Marriott, G.; Heidecker, M.; Diamandis, E. P.; Yan-Marriott, Y.
1994-01-01
Improvements and extended applications of time-resolved delayed luminescence imaging microscopy (TR-DLIM) in cell biology are described. The emission properties of europium ion complexed to a fluorescent chelating group capable of labeling proteins are exploited to provide high contrast images of biotin labeled ligands through detection of the delayed emission. The streptavidin-based macromolecular complex (SBMC) employs streptavidin cross-linked to thyroglobulin multiply labeled with the europium-fluorescent chelate. The fluorescent chelate is efficiently excited with 340-nm light, after which it sensitizes europium ion emission at 612 nm hundreds of microseconds later. The SBMC complex has a high quantum yield orders of magnitude higher than that of eosin, a commonly used delayed luminescent probe, and can be readily seen by the naked eye, even in specimens double-labeled with prompt fluorescent probes. Unlike triplet-state phosphorescent probes, sensitized europium ion emission is insensitive to photobleaching and quenching by molecular oxygen; these properties have been exploited to obtain delayed luminescence images of living cells in aerated medium thus complementing imaging studies using prompt fluorescent probes. Since TR-DLIM has the unique property of rejecting enormous signals that originate from scattered light, autofluorescence, and prompt fluorescence it has been possible to resolve double emission images of living amoeba cells containing an intensely stained lucifer yellow in pinocytosed vesicles and membrane surface-bound SBMC-labeled biotinylated concanavalin A. Images of fixed cells represented in terms of the time decay of the sensitized emission show the lifetime of the europium ion emission is sensitive to the environment in which it is found. Through the coupling of SBMC to streptavidin,a plethora of biotin-based tracer molecules are available for immunocytochemical studies. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:7811952
Photophysical parameters and fluorescence quenching of 7-diethylaminocoumarin (DEAC) laser dye
NASA Astrophysics Data System (ADS)
El-Mossalamy, E. H.; Obaid, A. Y.; El-Daly, S. A.
2011-10-01
The optical properties including electronic absorption spectrum, emission spectrum, fluorescence quantum yield, and dipole moment of electronic transition of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. Both electronic absorption and fluorescence spectra are red shifted as the polarity of the medium increases, indicating that the dipole moment of molecule increases on excitation. The fluorescence quantum yield of DEAC decreases as the polarity of solvent increases, a result of the role of solvent polarity in stabilization of the twisting of the intramolecular charge transfer (TICT) in excited state, which is a non-emissive state, as well as hydrogen bonding with the hetero-atom of dye. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles, the intensity increases as the concentration of surfactant increases, and an abrupt change in emission intensity is observed at critical micelle concentration (CMC) of surfactant. 2×10 -3 mol dm -3 of DEAC gives laser emission in the blue region on pumping with nitrogen laser ( λex=337.1 nm). The laser parameters such as tuning range, gain coefficient ( α), emission cross section ( σe), and half-life energy have been calculated in different solvents, namely acetone, dioxane , ethanol, and dimethyforamide (DMF). The photoreactivity of DEAC has been studied in CCl 4 at a wavelength of 366 nm. The values of photochemical yield ( ϕc) and rate constant ( k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE), and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC is also studied using fluorescence measurements in acetonitrile (CH 3CN); from fluorescence quenching study we assume the possible electron transfer from excited donor DEAC to organic acceptor forming non-emissive exciplex.
NASA Astrophysics Data System (ADS)
Einstein, Gnanatheepam; Udayakumar, Kanniyappan; Aruna, Prakasarao; Ganesan, Singaravelu
2017-03-01
Fluorescence of Protein has been widely used in diagnostic oncology for characterizing cellular metabolism. However, the intensity of fluorescence emission is affected due to the absorbers and scatterers in tissue, which may lead to error in estimating exact protein content in tissue. Extraction of intrinsic fluorescence from measured fluorescence has been achieved by different methods. Among them, Monte Carlo based method yields the highest accuracy for extracting intrinsic fluorescence. In this work, we have attempted to generate a lookup table for Monte Carlo simulation of fluorescence emission by protein. Furthermore, we fitted the generated lookup table using an empirical relation. The empirical relation between measured and intrinsic fluorescence is validated using tissue phantom experiments. The proposed relation can be used for estimating intrinsic fluorescence of protein for real-time diagnostic applications and thereby improving the clinical interpretation of fluorescence spectroscopic data.
A case study on the myth of emission from aliphatic amides
NASA Astrophysics Data System (ADS)
Singh, Avinash Kumar; Das, Sreyashi; Datta, Anindya
2016-12-01
For several decades, aliphatic amidic compounds have been believed to be emissive. We report that this contention is incorrect and that the anomalous emission from amides originates in fluorescent impurities generated during their synthesis. In order to make this point, we have synthesized fluorescent compounds and have compared the absorption spectra with excitation spectra.
NASA Astrophysics Data System (ADS)
Zhao, Baoying; Yang, Binsheng; Hu, Xiangquan; Liu, Bin
2018-06-01
Aggregation-induced emission (AIE) active fluorescent probes have attracted great potential in biological sensors. In this paper two cyanostilbene based fluorescence chemoprobe Cya-NO2 (1) and Cya-N3 (2) were developed and evaluated for the selective and sensitive detection of hydrogen sulfide (H2S). Both of these probes behave aggression-induced emission (AIE) activity which fluoresces in the red region with a large Stokes shift. They exhibit rapid response to H2S with enormous colorimetric and ratiometric fluorescent changes. They are readily employed for assessing intracellular H2S levels.
NASA Astrophysics Data System (ADS)
He, Lijun; Zhang, Heng; Fan, Huanhuan; Jiang, Xiuming; Zhao, Wenjie; Xiang, Guo Qiang
2018-01-01
Herein, we propose a simple and effective strategy for designing a ratiometric fluorescent nanosensor. We designed and developed a carbon dots (CDs) based dual-emission nanosensor for vanadium(V) by coating the surface of dye-doped silica nanoparticles with CDs. The fluorescence of dual-emission silica nanoparticles was quenched in acetic acid through potassium bromate (KBrO3) oxidation. V(V) could catalyze KBrO3 oxidation reaction process, resulting in the ratiometric fluorescence quenching of dual-emission silica nanoparticles. We investigated several important parameters affecting the performance of the nanosensor. Under the optimized conditions, the detection limit of this nanosensor reached 1.1 ng mL- 1 and the linear range from 10 to 800 ng mL- 1. Furthermore, we found that the sensor was suitable for determination of V(V) in different mineral water samples with satisfactory results.
Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jian, E-mail: jian@cfs.bioment.umaryland.edu; Fu, Yi; Li, Ge
2012-08-31
Highlights: Black-Right-Pointing-Pointer Metal nanoparticle for fluorescence cell imaging. Black-Right-Pointing-Pointer Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. Black-Right-Pointing-Pointer Near-field interaction of flavin adenine dinucleotide with silver substrate. Black-Right-Pointing-Pointer Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent,more » but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.« less
Takagi, Koji; Ito, Kaede; Yamada, Yoshihiro; Nakashima, Takuya; Fukuda, Ryoichi; Ehara, Masahiro; Masu, Hyuma
2017-12-01
Two excited-state intramolecular proton transfer (ESIPT) active benzimidazole derivatives (1 and 2) were synthesized by acid-catalyzed intramolecular cyclization. The steady-state fluorescence spectrum in THF revealed that ring-fused derivative 1 exhibits a dual emission, namely, the major emission was from the K* (keto) form (ESIPT emission) at 515 nm with a large Stokes shift of 11 100 cm -1 and the minor emission was from the E* (enol) form at below 400 nm. In contrast, the normal emission from the E* form was dominant and the fluorescence quantum yield was very low (Φ ∼ 0.002) for nonfused derivative 2. The time-resolved fluorescence spectroscopy of 1 suggested that ESIPT effectively occurs due to the restricted conformational transition to the S 1 -T ICT state, and the averaged radiative and nonradiative decay rate constants were estimated as ⟨k f ⟩ = 0.15 ns -1 and ⟨k nr ⟩ = 0.60 ns -1 , respectively. The fluorescence emission of 1 was influenced by the measurement conditions, such as solvent polarity and basicity, as well as the presence of Lewis base. The ESIPT process and solvatochromic behavior were nicely reproduced by the DFT/TDDFT calculation using the PCM model. In the single-crystal fluorescent spectra, the ESIPT emissions were exclusively observed for both fused and nonfused compounds as a result of hydrogen-bonding interactions.
NASA Astrophysics Data System (ADS)
Genova, Ts; Borisova, E.; Penkov, N.; Vladimirov, B.; Zhelyazkova, A.; Avramov, L.
2016-06-01
We report the development of an improved fluorescence technique for cancer diagnostics in the gastrointestinal tract. We investigate the fluorescence of ex vivo colorectal (cancerous and healthy) tissue samples using excitation-emission matrix (EEM) and synchronous fluorescence spectroscopy (SFS) steady-state approaches. The obtained results are processed for revealing characteristic fluorescence spectral features with a valuable diagnostic meaning. The main tissue fluorophores, contributing to the observed fluorescence, are tyrosine, tryptophan, NADH, FAD, collagen and elastin. Based on the results of the Mann-Whitney test as useful parameters for differentiation of gastrointestinal cancer from normal mucosa, we suggest using excitation wavelengths in the range 300 - 360 nm for fluorescence spectroscopy and wavelengths intervals of 60 nm and 90 nm for SFS.
Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions
Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav
2011-01-01
Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532
Schumacher, Stefan; Förstner, Jens; Zrenner, Artur; Florian, Matthias; Gies, Christopher; Gartner, Paul; Jahnke, Frank
2012-02-27
We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.
Violet and blue light-induced green fluorescence emissions from dental caries.
Shakibaie, F; Walsh, L J
2016-12-01
The objective of this laboratory study was to compare violet and visible blue LED light-elicited green fluorescence emissions from enamel and dentine in healthy or carious states. Microscopic digital photography was undertaken using violet and blue LED illumination (405 nm and 455 nm wavelengths) of tooth surfaces, which were photographed through a custom-made stack of green compensating filters which removed the excitation light and allowed green fluorescence emissions to pass. Green channel pixel data were analysed. Dry sound enamel and sound root surfaces showed strong green fluorescence when excited by violet or blue lights. Regions of cavitated dental caries gave lower green fluorescence, and this was similar whether the dentine in the lesions was the same colour as normal dentine or was darkly coloured. The presence of saliva on the surface did not significantly change the green fluorescence, while the presence of blood diluted in saliva depressed green fluorescence. Using violet or blue illumination in combination with green compensating filters could potentially aid in the assessment of areas of mineral loss. © 2016 Australian Dental Association.
NASA Astrophysics Data System (ADS)
Wang, Cheng; Li, Yang; Xu, Qiujin; Luo, Liang
2017-10-01
Combining plasmonic nanostructures with two-photon fluorescence materials is a promising way to significantly enhance two-photon fluorescence. Ag@1,4-bis(2-cyano-2-phenylethenyl) benzene (BCPEB) core/shell nanostructures were fabricated by simply incubating the isolated Ag nanoparticles with BCPEB microrods in ethanol. BCPEB was chosen as the fluorescent organic molecule owing to the aggregation-induced-emission (AIE) nature which would reduce the emission loss as being practically applied in solid phase. By utilizing the match of the extinction spectrum of Ag nanoparticles and BCPEB's absorption band, the target Ag@BCPEB core/shell nanostructures showed an enhanced one-photon (12×) fluorescence, integrating with SERS signal as well. Moreover, the resultant second harmonic generation of Ag nanoparticles under two-photon excitation also well matched with the absorption band of BCPEB, and significant enhanced two-photon (17×) fluorescence was obtained. The confocal images of NIH-3T3 cells with these nanostructures under one- and two-photon excitation showed good contrast and brightness for bio-imaging.
Enhanced Fluorescence Emission of Me-ADOTA+ by Self-Assembled Silver Nanoparticles on a Gold Film
Sørensen, Thomas J.; Laursen, Bo W.; Luchowski, Rafal; Shtoyko, Tanya; Akopova, Irina; Gryczynski, Zygmunt; Gryczynski, Ignacy
2009-01-01
We report a multi-fold enhancement of the fluorescence of methyl-azadioxatriangulenium chloride (Me-ADOTA•Cl) in PVA deposited on a 50 nm thick gold mirror carrying an evaporation induced self-assembly of colloidal silver nanoparticles (Ag-SACs). The average measured increase in fluorescence emission of about 50-fold is accompanied by hot spots with a local enhancement in brigthness close to 200. The long lifetime of the dye allows for the first direct determination of the correlation between the enhancement of emission intensity and the decrease in fluorescence lifetime. The Ag-SACs surface preparation and observed enhancements are highly reproducible. We believe that these robust plasmonic surfaces will find use in sensing platforms for ultrasensitive detection. PMID:20161182
Kuchlyan, Jagannath; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Sarkar, Nilmoni
2014-12-04
In this article we have investigated intermolecular excited-state proton transfer (ESPT) of firefly's chromophore D-luciferin in DMSO-water binary mixtures using steady-state and time-resolved fluorescence spectroscopy. The unusual behavior of DMSO-water binary mixture as reported by Bagchi et al. (J. Phys. Chem. B 2010, 114, 12875-12882) was also found using D-luciferin as intermolecular ESPT probe. The binary mixture has given evidence of its anomalous nature at low mole fractions of DMSO (below XD = 0.4) in our systematic investigation. Upon excitation of neutral D-luciferin molecule, dual fluorescence emissions (protonated and deprotonated form) are observed in DMSO-water binary mixture. A clear isoemissive point in the time-resolved area normalized emission spectra further indicates two emissive species in the excited state of D-luciferin in DMSO-water binary mixture. DMSO-water binary mixtures of different compositions are fascinating hydrogen bonding systems. Therefore, we have observed unusual changes in the fluorescence emission intensity, fluorescence quantum yield, and fluorescence lifetime of more hydrogen bonding sensitive anionic form of D-luciferin in low DMSO content of DMSO-water binary mixture.
Diao, Haipeng; Li, Tingting; Zhang, Rong; Kang, Yu; Liu, Wen; Cui, Yanhua; Wei, Shuangyan; Wang, Ning; Li, Lihong; Wang, Haojiang; Niu, Weifen; Sun, Tijian
2018-07-05
Most carbon dots (CDs) conventional fabrication approaches produce single colored fluorescent materials, different methods are required to synthesize distinct carbon dots for specific optical applications. Herein, using one-pot hydrothermal treatment of Syringa obtata Lindl, a facile, low-cost and green assay is achieved in the controllable synthesis of blue and green fluorescent carbon dots. The fluorescent emission of CDs can be well-tuned by adding sodium hydroxide in the precursor solution. Blue fluorescent CDs are applied to Fe 3+ sensing with a low detection limit of 0.11 μM of linear range from 0.5 to 80 μM, and then further extended to analysis river water samples. Green fluorescent CDs can be applied to pH detection, which show a remarkable linear enhancement in the green fluorescence emission region when the pH is increased from 1.98 to 8.95. Eventually, the detection of Fe 3+ and pH are applied for the living cells fluorescent images in MCF-7 cells are achieved successfully, indicating as-synthesized CDs potential toward diverse application as promising candidate. Copyright © 2018 Elsevier B.V. All rights reserved.
Second Harmonic Generation Imaging Analysis of Collagen Arrangement in Human Cornea.
Park, Choul Yong; Lee, Jimmy K; Chuck, Roy S
2015-08-01
To describe the horizontal arrangement of human corneal collagen bundles by using second harmonic generation (SHG) imaging. Human corneas were imaged with an inverted two photon excitation fluorescence microscope. The excitation laser (Ti:Sapphire) was tuned to 850 nm. Backscatter signals of SHG were collected through a 425/30-nm bandpass emission filter. Multiple, consecutive, and overlapping image stacks (z-stacks) were acquired to generate three dimensional data sets. ImageJ software was used to analyze the arrangement pattern (irregularity) of collagen bundles at each image plane. Collagen bundles in the corneal lamellae demonstrated a complex layout merging and splitting within a single lamellar plane. The patterns were significantly different in the superficial and limbal cornea when compared with deep and central regions. Collagen bundles were smaller in the superficial layer and larger in deep lamellae. By using SHG imaging, the horizontal arrangement of corneal collagen bundles was elucidated at different depths and focal regions of the human cornea.
Conjugation of TbPO4·H2O-Based Nanowires with Immunoglobulin G for Bioimaging
NASA Astrophysics Data System (ADS)
Huong, Nguyen Thanh; Lien, Pham Thi; Hung, Nguyen Manh; Van, Nguyen Duc; Thuy, Tran Thi; Binh, Nguyen Thanh; Minh, Le Quoc
2016-05-01
The surface modification, functionalization, and conjugation of undoped and 11 at.% Eu3+-doped TbPO4 ·H2O nanowires by using silica, a thyocyanate functional group, and immunoglobulin G, respectively, are described in this paper. For the core layer of obtained conjugated nanowires, the undoped TbPO4 ·H2O exhibited characteristic photoluminescent green emission corresponding to 5 D 4 → 7 F J transitions ( J = 6, 5, 4, 3) while the incorporation of Eu3+ into TbPO4 ·H2O lattice was evidenced by Starks splitting transitions at 590, 615, 693 nm of Eu3+ ions for the case of 11 at.% Eu3+-doped TbPO4 ·H2O. The results also indicated that both immunoglobulin G-conjugated undoped and Eu3+-doped TbPO4 ·H2O nanowires can be used in the fluorescent immune analysis as a biomedical label maker to identify measles viruses in vaccine testing.
Determination of sunset yellow in soft drinks based on fluorescence quenching of carbon dots
NASA Astrophysics Data System (ADS)
Yuan, Yusheng; Zhao, Xin; Qiao, Man; Zhu, Jinghui; Liu, Shaopu; Yang, Jidong; Hu, Xiaoli
2016-10-01
Fluorescent carbon dots was prepared by heating N-(2-hydroxyethyl)ethylene diaminetriacetic acid in air. The carbon dots were not only highly soluble in water but also uniform in size, and possessed strong blue fluorescence and excitation wavelength-dependent emission properties with the maximum excitation and emission wavelength at 366 nm and 423 nm, respectively. Food colorant sunset yellow whose excitation and emission wavelength at 303 nm and 430 nm could selectively quench the fluorescence of carbon dots, efficient fluorescent resonance energy transfer between the carbon dots and sunset yellow is achieved. This was exploited to design a method for the determination of sunset yellow in the concentration range from 0.3 to 8.0 μmol L- 1, with a limit of detection (3 σ/k) of 79.6 nmol L- 1. Furthermore the fluorimetric detection method was established and validated for sunset yellow in soft drinks samples with satisfactory results.
Tang, Lijun; Huang, Zhenlong; Zheng, Zhuxuan; Zhong, Keli; Bian, Yanjiang
2016-09-01
Selective fluorescence turn on Zn(2+) sensor with long-wavelength emission and a large Stokes shift is highly desirable in Zn(2+) sensing area. We reported herein the synthesis and Zn(2+) recognition properties of a new thiosemicarbazone-based fluorescent sensor L. L displays high selectivity and sensitivity toward Zn(2+) over other metal ions in DMSO-H2O (1:1, v/v, HEPES 10 mM, pH = 7.4) solution with a long-wavelength emission at 572 nm and a large Stokes shift of 222 nm. Confocal fluorescence microscopy experiments demonstrate that L is cell-permeable and capable of monitoring intracellular Zn(2+). Graphical Abstract We report a new thiosemicarbazone-based fluorescent sensor (L) for selective recognition of Zn(2+) with a long wavelength emission and a large Stokes shift.
DNA nanostructure-based fluorescence thermometer with silver nanoclusters
NASA Astrophysics Data System (ADS)
Bu, Congcong; Mu, Lixuan; Cao, Xingxing; Chen, Min; She, Guangwei; Shi, Wensheng
2018-07-01
DNA nanostructure-based fluorescence thermometers were fabricated by linking fluorescent silver nanoclusters (AgNCs) and guanine-rich(G-rich)DNA chains via a thermally sensitive DNA stem-loop at terminals 5‧ and 3‧. Variations of temperature alter the distance between the AgNCs and G-rich DNA chain, affecting the interaction between them. As a result, the intensity of fluorescence emission from the AgNCs at 636 nm can be sensitively modulated. It was found that the intensity of such red emission is more temperature sensitive than the equivalent green emission at 543 nm; sensitivity of ‑3.6%/°C was achieved. Through variation of the melting temperature of the DNA stem-loop, the response temperature range of the thermometers could be readily adjusted. Novel DNA nanostructure-based fluorescence thermometers as described in this work are anticipated to be able to measure the temperature of biological systems at small scales—even a single cell.
UV induced visual cues in grasses
Baby, Sabulal; Johnson, Anil John; Govindan, Balaji; Lukose, Sujith; Gopakumar, Bhaskaran; Koshy, Konnath Chacko
2013-01-01
Grasses are traditionally considered as wind pollinated, however, field observations confirmed frequent insect visits to grass flowers, suggesting insect pollination. Fruit and seed predators inflict heavy losses to cereals and millets during their growth, maturation and storage. The actual factors guiding insects and predators to grass flowers, fruits and seeds are not clear. Here, we report attractive blue fluorescence emissions on grass floral parts such as glumes, lemma, palea, lodicules, staminal filaments, pollens and fruits in ultraviolet (UV) 366 nm, whereas the stigmatic portions were not blue, but red fluorescent. We characterized the blue fluorescent constituent in grass reproductive structures as ferulic acid (FA). Fluorescence spectra of blue-emitting grass floral, seed extracts and isolated FA on excitation at 366 nm showed their emissions at 420–460 nm. We propose these FA-based blue fluorescence emissions in grass reproductive structures as visual cues that attract pollinators, predators and even pests towards them. PMID:24061408
DNA nanostructure-based fluorescence thermometer with silver nanoclusters.
Bu, Congcong; Mu, Lixuan; Cao, XIngxing; Chen, Min; She, Guangwei; Shi, Wensheng
2018-04-27
Linking the fluorescent silver nanoclusters (AgNCs) and guanine-rich(G-rich)DNA chains by the thermal sensitive DNA stem-loop at teminal 5' and 3', DNA nanostructure-based fluorescence thermometers were fabricated. The variations of the temperature alter the distance between AgNCs and G-rich DNA chain, which could affect the interaction between them. As a result, the intensity of fluorescence emission from AgNCs at 636 nm can be sensitively modulated. It was found that such red emission is more sensitive to the temperature comparing with its intrinsic green emission at 543 nm, and sensitivity of -3.6%/℃ was achieved. Varying the melting temperature of the DNA stem-loop could readily adjust the response temperature range of thermometers. Novel DNA nanostructure-based fluorescence thermometers in this work could be anticipated to measure the temperature of biological system, even a single cell. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Böhling, R.; Becker, A. C.; Minaev, B. F.; Seranski, K.; Schurath, U.
1990-04-01
O 2a 1Δ g, b 1Σ g+ → X 3Σ g- and I 2P 1/2→ 2P 3/4 fluorescence occurs in I 2/O 2-doped rare gas matrices when I 2 is excited with visible laser light. O 2(a 1Δ g) and I( 2P 1/2) are populated independently by near-resonant energy transfer from the metastable triplet states of I 2. The doublet splitting of the O 2a→X band, which peaks at 7879 and 7863 cm -1 in argon, is interpreted as sensitized emission from O 2 trapped in distinct nearest neighbour positions of the donor 3I 2. Annealing reverses the intensity of the doublet, showing that the sites can be interconverted. It is suggested that the a→X emission rate is enhanced by the sensitizer, causing a lifetime reduction of the a 1Δ g state from 79 s in pure argon to 21 and 3±1 s next to I 2. The long-lived O 2(a 1Δ g) state is the precursor of I 2-sensitized emission from O 2(b 1Σ g+). The lifetime of O 2(b 1Σ g+) is reduced from 24.5 ms in pure argon to 17±1 ms in the presence of I 2.
Dewez, David; Ali, Nadia Ait; Perreault, François; Popovic, Radovan
2007-05-01
Rapid chlorophyll fluorescence transient induced by saturating flash (3000 micromol of photons m-2 s-1) was investigated when Lemna gibba had been exposed to light (100 micromol of photons m-2 s-1) causing the Kautsky effect or in low light intensity unable to trigger PSII photochemistry. Measurements were made by using, simultaneously, a pulse amplitude modulated fluorometer and plant efficiency analyzer system, either on non-treated L. gibba leaf or those treated with different concentrations of hydroxylamine (1-50 mM) causing gradual inhibition of the water splitting system. When any leaf was exposed to continuous light during the Kautsky effect, a rapid fluorescence transient may reflect current activity of photosystem II within the photosystem II complex. Under those conditions, a variation of transition steps appearing over time was related to a drastic change to the photosystem II functional properties. This value indicated that the energy dissipation through non-photochemical pathways was undergoing extreme change. The change of rapid fluorescence transient, induced under continuous light, when compared to those obtained under very low light intensity, confirmed the ability of photosystem II to be capable to undergo rapid adaptation lasting about two minutes. When the water splitting system was inhibited and electron donation partially substituted by hydroxylamine, the adaptation ability of photosystem II to different light conditions was lost. In this study, the change of rapid fluorescence kinetic and transient appearing over time was shown to be a good indication for the change of the functional properties of photosystem II induced either by light or by hydroxylamine.
Galievsky, Victor A; Stasheuski, Alexander S; Krylov, Sergey N
2017-10-17
The limit-of-detection (LOD) in analytical instruments with fluorescence detection can be improved by reducing noise of optical background. Efficiently reducing optical background noise in systems with spectrally nonuniform background requires complex optimization of an emission filter-the main element of spectral filtration. Here, we introduce a filter-optimization method, which utilizes an expression for the signal-to-noise ratio (SNR) as a function of (i) all noise components (dark, shot, and flicker), (ii) emission spectrum of the analyte, (iii) emission spectrum of the optical background, and (iv) transmittance spectrum of the emission filter. In essence, the noise components and the emission spectra are determined experimentally and substituted into the expression. This leaves a single variable-the transmittance spectrum of the filter-which is optimized numerically by maximizing SNR. Maximizing SNR provides an accurate way of filter optimization, while a previously used approach based on maximizing a signal-to-background ratio (SBR) is the approximation that can lead to much poorer LOD specifically in detection of fluorescently labeled biomolecules. The proposed filter-optimization method will be an indispensable tool for developing new and improving existing fluorescence-detection systems aiming at ultimately low LOD.
NASA Astrophysics Data System (ADS)
Mohajerani, Pouyan; Adibi, Ali; Kempner, Joshua; Yared, Wael
2009-05-01
We present a method for reduction of image artifacts induced by the optical heterogeneities of tissue in fluorescence molecular tomography (FMT) through identification and compensation of image regions that evidence propagation of emission light through thin or low-absorption tunnels in tissue. The light tunneled as such contributes to the emission image as spurious components that might substantially overwhelm the desirable fluorescence emanating from the targeted lesions. The proposed method makes use of the strong spatial correlation between the emission and excitation images to estimate the tunneled components and yield a residual image that mainly consists of the signal due to the desirable fluorescence. This residual image is further refined using a coincidence mask constructed for each excitation-emission image pair. The coincidence mask is essentially a map of the ``hot spots'' that occur in both excitation and emission images, as such areas are often associated with tunneled emission. In vivo studies are performed on a human colon adenocarcinoma xenograft tumor model with subcutaneous tumors and a murine breast adenocarcinoma model with aggressive tumor cell metastasis and growth in the lungs. Results demonstrate significant improvements in the reconstructions achieved by the proposed method.
Extended Fluorescent Resonant Energy Transfer in DNA Constructs
NASA Astrophysics Data System (ADS)
Oh, Taeseok
This study investigates the use of surfactants and metal cations for the enhancement of long range fluorescent resonant energy transfer (FRET) and the antenna effect in DNA structures with multiple fluorescent dyes. Double-stranded (ds) DNA structures were formed by hybridization of 21mer DNA oligonucleotides with different arrangements of three fluorescent TAMRA donor dyes with two different complementary 21mer oligonucleotides with one fluorescent TexasRed acceptor dye. In such DNA structures, hydrophobic interactions between the fluorescent dyes in close proximity produces dimerization which along with other quenching mechanisms leads to significant reduction of fluorescent emission properties. Addition of the surfactants Triton X-100, cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) along with sodium cations (Na+) and divalent magnesium cations (Mg 2+) were tested for their ability to reduce quenching of the fluorescent dyes and improve overall fluorescent emission, the long range FRET and the antenna effect properties. When the neutral (uncharged) surfactant Triton X-100 was added to the FRET ds-DNA hybrid structures with three TAMRA donors and one TexasRed acceptor, dye dimerization and emission quenching remained unaffected. However, for the positively charged CTAB surfactant at concentrations of 100 uM or higher, the neutralization of the negatively charged ds-DNA backbone by the cationic surfactant micelles was found to reduce TAMRA dye dimerization and emission quenching and improve TexasRed quantum yield, resulting in much higher FRET efficiencies and an enhanced antenna effect. This improvement is likely due to the CTAB molecules covering or sheathing the fluorescent donor and acceptor dyes which breaks up the dimerized dye complexes and prevents further quenching from interactions with water molecules and guanine bases in the DNA structure. While the negatively charged SDS surfactant alone was not able to reduce dimerization and emission quenching due to repulsive forces between DNA and SDS micelles, the addition of cations such as sodium ions (Na+) and divalent magnesium ions (Mg2+) did lead to a significant reduction in the dimerization and emission quenching resulting in much higher FRET efficiency and an enhanced antenna effect. It appears that when the repulsive electrostatic forces are screened by the cations (Mg2+ in particular), the SDS micelles can approach the FRET ds-DNA structures thereby sheathing or insulating the TAMRA and TexasRed dyes. Overall, the study provides a viable strategy for using combinations of surfactants and cations to reduce adverse fluorescent dye and other quenching mechanisms and improve the overall long distance FRET efficiency and the antenna effect in DNA structures with multi-donor and single acceptor fluorescent dye groups.
NASA Astrophysics Data System (ADS)
Arsov, Zoran; Urbančič, Iztok; Štrancar, Janez
2018-02-01
Generating activatable probes that report about molecular vicinity through contact-based mechanisms such as aggregation can be very convenient. Specifically, such probes change a particular spectral property only at the intended biologically relevant target. Xanthene derivatives, for example rhodamines, are able to form aggregates. It is typical to examine aggregation by absorption spectroscopy but for microscopy applications utilizing fluorescent probes it is very important to perform characterization by measuring fluorescence spectra. First we show that excitation spectra of aqueous solutions of rhodamine 6G can be very informative about the aggregation features. Next we establish the dependence of the fluorescence emission spectral maximum shift on the dimer concentration. The obtained information helped us confirm the possibility of aggregation of a recently designed and synthesized rhodamine 6G-based pH-activatable fluorescent probe and to study its pH and concentration dependence. The size of the aggregation-induced emission spectral shift at specific position on the sample can be measured by fluorescence microspectroscopy, which at particular pH allows estimation of the local concentration of the observed probe at microscopic level. Therefore, we show that besides aggregation-caused quenching and aggregation-induced emission also aggregation-induced emission spectral shift can be a useful photophysical phenomenon.
Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission.
Piatkevich, Kiryl D; Verkhusha, Vladislav V
2010-02-01
Monomeric fluorescent proteins of different colors are widely used to study behavior and targeting of proteins in living cells. Fluorescent proteins that irreversibly change their spectral properties in response to light irradiation of a specific wavelength, or photoactivate, have become increasingly popular to image intracellular dynamics and superresolution protein localization. Until recently, however, no optimized monomeric red fluorescent proteins and red photoactivatable proteins have been available. Furthermore, monomeric fluorescent proteins, which change emission from blue to red simply with time, so-called fluorescent timers, were developed to study protein age and turnover. Understanding of chemical mechanisms of the chromophore maturation or photoactivation into a red form will further advance engineering of fluorescent timers and photoactivatable proteins with enhanced and novel properties. 2009 Elsevier Ltd. All rights reserved.
Vilmart, G; Dorval, N; Orain, M; Lambert, D; Devillers, R; Fabignon, Y; Attal-Tretout, B; Bresson, A
2018-05-10
Planar laser-induced fluorescence on atomic iron is investigated in this paper, and a measurement strategy is proposed to monitor the fluorescence of iron atoms with good sensitivity. A model is proposed to fit the experimental fluorescence spectra, and good agreement is found between simulated and experimental spectra. Emission and laser-induced fluorescence measurements are performed in the flames of ammonium perchlorate composite propellants containing iron-based catalysts. A fluorescence signal from iron atoms after excitation at 248 nm is observed for the first time in propellant flames. Images of the spatial distribution of iron atoms are recorded in the flame in which turbulent structures are generated. Iron fluorescence is detected up to 1.0 MPa, which opens the way to application in propellant combustion.
Time-resolved fluorescence spectroscopy of human brain tumors
NASA Astrophysics Data System (ADS)
Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.
2002-05-01
Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.
Fluorescent nanoparticles based on AIE fluorogens for bioimaging.
Yan, Lulin; Zhang, Yan; Xu, Bin; Tian, Wenjing
2016-02-07
Fluorescent nanoparticles (FNPs) have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance in imaging. Compared with conventional molecular probes including small organic dyes and fluorescent proteins, FNPs based on aggregation-induced emission (AIE) fluorogens have shown significant advantages in tunable emission and brightness, good biocompatibility, superb photo- and physical stability, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of fluorescent nanoparticles based on AIE fluorogens including polymer nanoparticles and silica nanoparticles over the past few years, and the various biomedical applications based on these fluorescent nanoparticles are also elaborated.
Safranine fluorescent staining of wood cell walls.
Bond, J; Donaldson, L; Hill, S; Hitchcock, K
2008-06-01
Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy.
NASA Astrophysics Data System (ADS)
Li, Runze; Goswami, Umang; Walck, Matthew; Khan, Kasfia; Chen, Jie; Cesario, Thomas C.; Rentzepis, Peter M.
2017-11-01
The design, construction, and operation of a hand-held synchronously scanned, excitation-emission, double monochromator spectrometer is described. Data show that it is possible to record and display within minutes the fluorescence spectra and ratio of live/dead bacteria in situ. Excitation emission matrix contour plots display clearly bacteria fluorescence spectra before and after UV inactivation, respectively. The separation of the fluorescence band maxima of molecular components, such as tryptophan, tyrosine, and DNA, may be distinguished in the diffused fluorescence spectra of bacteria and mixtures.
Li, Runze; Goswami, Umang; Walck, Matthew; Khan, Kasfia; Chen, Jie; Cesario, Thomas C; Rentzepis, Peter M
2017-11-01
The design, construction, and operation of a hand-held synchronously scanned, excitation-emission, double monochromator spectrometer is described. Data show that it is possible to record and display within minutes the fluorescence spectra and ratio of live/dead bacteria in situ. Excitation emission matrix contour plots display clearly bacteria fluorescence spectra before and after UV inactivation, respectively. The separation of the fluorescence band maxima of molecular components, such as tryptophan, tyrosine, and DNA, may be distinguished in the diffused fluorescence spectra of bacteria and mixtures.
Chemical biology-based approaches on fluorescent labeling of proteins in live cells.
Jung, Deokho; Min, Kyoungmi; Jung, Juyeon; Jang, Wonhee; Kwon, Youngeun
2013-05-01
Recently, significant advances have been made in live cell imaging owing to the rapid development of selective labeling of proteins in vivo. Green fluorescent protein (GFP) was the first example of fluorescent reporters genetically introduced to protein of interest (POI). While GFP and various types of engineered fluorescent proteins (FPs) have been actively used for live cell imaging for many years, the size and the limited windows of fluorescent spectra of GFP and its variants set limits on possible applications. In order to complement FP-based labeling methods, alternative approaches that allow incorporation of synthetic fluorescent probes to target POIs were developed. Synthetic fluorescent probes are smaller than fluorescent proteins, often have improved photochemical properties, and offer a larger variety of colors. These synthetic probes can be introduced to POIs selectively by numerous approaches that can be largely categorized into chemical recognition-based labeling, which utilizes metal-chelating peptide tags and fluorophore-carrying metal complexes, and biological recognition-based labeling, such as (1) specific non-covalent binding between an enzyme tag and its fluorophore-carrying substrate, (2) self-modification of protein tags using substrate variants conjugated to fluorophores, (3) enzymatic reaction to generate a covalent binding between a small molecule substrate and a peptide tag, and (4) split-intein-based C-terminal labeling of target proteins. The chemical recognition-based labeling reaction often suffers from compromised selectivity of metal-ligand interaction in the cytosolic environment, consequently producing high background signals. Use of protein-substrate interactions or enzyme-mediated reactions generally shows improved specificity but each method has its limitations. Some examples are the presence of large linker protein, restriction on the choice of introducible probes due to the substrate specificity of enzymes, and competitive reaction mediated by an endogenous analogue of the introduced protein tag. These limitations have been addressed, in part, by the split-intein-based labeling approach, which introduces fluorescent probes with a minimal size (~4 amino acids) peptide tag. In this review, the advantages and the limitations of each labeling method are discussed.
Polarizability tensor retrieval for magnetic and plasmonic antenna design
NASA Astrophysics Data System (ADS)
Bernal Arango, Felipe; Femius Koenderink, A.
2013-07-01
A key quantity in the design of plasmonic antennas and metasurfaces, as well as metamaterials, is the electrodynamic polarizability of a single scattering building block. In particular, in the current merging of plasmonics and metamaterials, subwavelength scatterers are judged by their ability to present a large, generally anisotropic electric and magnetic polarizability, as well as a bi-anisotropic magnetoelectric polarizability. This bi-anisotropic response, whereby a magnetic dipole is induced through electric driving, and vice versa, is strongly linked to the optical activity and chiral response of plasmonic metamolecules. We present two distinct methods to retrieve the polarizibility tensor from electrodynamic simulations. As a basis for both, we use the surface integral equation (SIE) method to solve for the scattering response of arbitrary objects exactly. In the first retrieval method, we project scattered fields onto vector spherical harmonics with the aid of an exact discrete spherical harmonic Fourier transform on the unit sphere. In the second, we take the effective current distributions generated by SIE as a basis to calculate dipole moments. We verify that the first approach holds for scatterers of any size, while the second is only approximately correct for small scatterers. We present benchmark calculations, revisiting the zero-forward scattering paradox of Kerker et al (1983 J. Opt. Soc. Am. 73 765-7) and Alù and Engheta (2010 J. Nanophoton. 4 041590), relevant in dielectric scattering cancelation and sensor cloaking designs. Finally, we report the polarizability tensor of split rings, and show that split rings will strongly influence the emission of dipolar single emitters. In the context of plasmon-enhanced emission, split rings can imbue their large magnetic dipole moment on the emission of simple electric dipole emitters. We present a split ring antenna array design that is capable of converting the emission of a single linear dipole emitter in forward and backward beams of directional emission of opposite handedness. This design can, for instance, find application in the spin angular momentum encoding of quantum information.
Vibrio azureus emits blue-shifted light via an accessory blue fluorescent protein.
Yoshizawa, Susumu; Karatani, Hajime; Wada, Minoru; Kogure, Kazuhiro
2012-04-01
Luminous marine bacteria usually emit bluish-green light with a peak emission wavelength (λ(max) ) at about 490 nm. Some species belonging to the genus Photobacterium are exceptions, producing an accessory blue fluorescent protein (lumazine protein: LumP) that causes a blue shift, from λ(max) ≈ 490 to λ(max) ≈ 476 nm. However, the incidence of blue-shifted light emission or the presence of accessory fluorescent proteins in bacteria of the genus Vibrio has never been reported. From our spectral analysis of light emitted by 16 luminous strains of the genus Vibrio, it was revealed that most strains of Vibrio azureus emit a blue-shifted light with a peak at approximately 472 nm, whereas other Vibrio strains emit light with a peak at around 482 nm. Therefore, we investigated the mechanism underlying this blue shift in V. azureus NBRC 104587(T) . Here, we describe the blue-shifted light emission spectra and the isolation of a blue fluorescent protein. Intracellular protein analyses showed that this strain had a blue fluorescent protein (that we termed VA-BFP), the fluorescent spectrum of which was almost identical to that of the in vivo light emission spectrum of the strain. This result strongly suggested that VA-BFP was responsible for the blue-shifted light emission of V. azureus. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
2010-11-15
fluorescence emission of vegetation for mapping vegetation stress as chlorophyll content and/or carotenoid content changes. 1. REPORT DATE (DD-MM-YYYY...that estimate fluorescence emission of vegetation for mapping vegetation stress as chlorophyll content and/or carotenoid content changes...not related to changes in chlorophyll content or the carotenoids /chlorophyll ratio. PRI is an indicator of chronic salinity stress and may be used as
Parametric models to compute tryptophan fluorescence wavelengths from classical protein simulations.
Lopez, Alvaro J; Martínez, Leandro
2018-02-26
Fluorescence spectroscopy is an important method to study protein conformational dynamics and solvation structures. Tryptophan (Trp) residues are the most important and practical intrinsic probes for protein fluorescence due to the variability of their fluorescence wavelengths: Trp residues emit in wavelengths ranging from 308 to 360 nm depending on the local molecular environment. Fluorescence involves electronic transitions, thus its computational modeling is a challenging task. We show that it is possible to predict the wavelength of emission of a Trp residue from classical molecular dynamics simulations by computing the solvent-accessible surface area or the electrostatic interaction between the indole group and the rest of the system. Linear parametric models are obtained to predict the maximum emission wavelengths with standard errors of the order 5 nm. In a set of 19 proteins with emission wavelengths ranging from 308 to 352 nm, the best model predicts the maximum wavelength of emission with a standard error of 4.89 nm and a quadratic Pearson correlation coefficient of 0.81. These models can be used for the interpretation of fluorescence spectra of proteins with multiple Trp residues, or for which local Trp environmental variability exists and can be probed by classical molecular dynamics simulations. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhou, Kenneth J.; Chen, Jun
2016-03-01
The current growing of food industry for low production costs and high efficiency needs for maintenance of high-quality standards and assurance of food safety while avoiding liability issues. Quality and safety of food depend on physical (texture, color, tenderness etc.), chemical (fat content, moisture, protein content, pH, etc.), and biological (total bacterial count etc.) features. There is a need for a rapid (less than a few minutes) and accurate detection system in order to optimize quality and assure safety of food. However, the fluorescence ranges for known fluorophores are limited to ultraviolet emission bands, which are not in the tissue near infrared (NIR) "optical window". Biological tissues excited by far-red or NIR light would exhibit strong emission in spectral range of 650-1,100 nm although no characteristic peaks show the emission from which known fluorophores. The characteristics of the auto-fluorescence emission of different types of tissues were found to be different between different tissue components such as fat, high quality muscle food. In this paper, NIR auto-fluorescence emission from different types of muscle food and fat was measured. The differences of fluorescence intensities of the different types of muscle food and fat emissions were observed. These can be explained by the change of the microscopic structure of physical, chemical, and biological features in meat. The difference of emission intensities of fat and lean meat tissues was applied to monitor food quality and safety using spectral polarized imaging, which can be detect deep depth fat under the muscle food up to several centimeter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.
We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrummore » is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.« less
NASA Astrophysics Data System (ADS)
Tian, Giselle; Zeng, Haishan; Zhao, Jianhua; Wu, Zhenguo; Al Jasser, Mohammed; Lui, Harvey; Mclean, David I.
2016-02-01
Porphyrins produced by Propionibacterium acnes represent the principal fluorophore associated with acne, and appear as orange-red luminescence under the Wood's lamp. Assessment of acne based on Wood's lamp (UV) or visible light illumination is limited by photon penetration depth and has limited sensitivity for earlier stage lesions. Inducing fluorescence with near infrared (NIR) excitation may provide an alternative way to assess porphyrin-related skin disorders. We discovered that under 785 nm CW laser excitation PpIX powder exhibits fluorescence emission in the shorter wavelength range of 600-715 nm with an intensity that is linearly dependent on the excitation power. We attribute this shorter wavelength emission to anti-Stokes fluorescence. Similar anti-Stokes fluorescence was also detected focally in all skin-derived samples containing porphyrins. Regular (Stokes) fluorescence was present under UV and visible light excitation on ex vivo nasal skin and sebum from uninflamed acne, but not on nose surface smears or sebum from inflamed acne. Co-registered CW laser-excited anti-Stokes fluorescence and fs laser-excited multi-photon fluorescence images of PpIX powder showed similar features. In the skin samples because of the anti-Stokes effect, the NIR-induced fluorescence was presumably specific for porphyrins since there appeared to be no anti-Stokes emission signals from other typical skin fluorophores such as lipids, keratins and collagen. Anti-Stokes fluorescence under NIR CW excitation is more sensitive and specific for porphyrin detection than UV- or visible light-excited regular fluorescence and fs laser-excited multi-photon fluorescence. This approach also has higher image contrast compared to NIR fs laser-based multi-photon fluorescence imaging. The anti-Stokes fluorescence of porphyrins within sebum could potentially be applied to detecting and targeting acne lesions for treatment via fluorescence image guidance.
Ai, Hui-wang; Olenych, Scott G; Wong, Peter; Davidson, Michael W; Campbell, Robert E
2008-01-01
Background In the 15 years that have passed since the cloning of Aequorea victoria green fluorescent protein (avGFP), the expanding set of fluorescent protein (FP) variants has become entrenched as an indispensable toolkit for cell biology research. One of the latest additions to the toolkit is monomeric teal FP (mTFP1), a bright and photostable FP derived from Clavularia cyan FP. To gain insight into the molecular basis for the blue-shifted fluorescence emission we undertook a mutagenesis-based study of residues in the immediate environment of the chromophore. We also employed site-directed and random mutagenesis in combination with library screening to create new hues of mTFP1-derived variants with wavelength-shifted excitation and emission spectra. Results Our results demonstrate that the protein-chromophore interactions responsible for blue-shifting the absorbance and emission maxima of mTFP1 operate independently of the chromophore structure. This conclusion is supported by the observation that the Tyr67Trp and Tyr67His mutants of mTFP1 retain a blue-shifted fluorescence emission relative to their avGFP counterparts (that is, Tyr66Trp and Tyr66His). Based on previous work with close homologs, His197 and His163 are likely to be the residues with the greatest contribution towards blue-shifting the fluorescence emission. Indeed we have identified the substitutions His163Met and Thr73Ala that abolish or disrupt the interactions of these residues with the chromophore. The mTFP1-Thr73Ala/His163Met double mutant has an emission peak that is 23 nm red-shifted from that of mTFP1 itself. Directed evolution of this double mutant resulted in the development of mWasabi, a new green fluorescing protein that offers certain advantages over enhanced avGFP (EGFP). To assess the usefulness of mTFP1 and mWasabi in live cell imaging applications, we constructed and imaged more than 20 different fusion proteins. Conclusion Based on the results of our mutagenesis study, we conclude that the two histidine residues in close proximity to the chromophore are approximately equal determinants of the blue-shifted fluorescence emission of mTFP1. With respect to live cell imaging applications, the mTFP1-derived mWasabi should be particularly useful in two-color imaging in conjunction with a Sapphire-type variant or as a fluorescence resonance energy transfer acceptor with a blue FP donor. In all fusions attempted, both mTFP1 and mWasabi give patterns of fluorescent localization indistinguishable from that of well-established avGFP variants. PMID:18325109
Resonance fluorescence spectrum of a p-doped quantum dot coupled to a metallic nanoparticle
NASA Astrophysics Data System (ADS)
Carreño, F.; Antón, M. A.; Arrieta-Yáñez, Francisco
2013-11-01
The resonance fluorescence spectrum (RFS) of a hybrid system consisting of a p-doped semiconductor quantum dot (QD) coupled to a metallic nanoparticle (MNP) is analyzed. The quantum dot is described as a four-level atomlike system using the density matrix formalism. The lower levels are Zeeman-split hole spin states and the upper levels correspond to positively charged excitons containing a spin-up, spin-down hole pair and a spin electron. A linearly polarized laser field drives two of the optical transitions of the QD and produces localized surface plasmons in the nanoparticle, which act back upon the QD. The frequencies of these localized plasmons are very different along the two principal axes of the nanoparticle, thus producing an anisotropic modification of the spontaneous emission rates of the allowed optical transitions, which is accompanied by very minor local field corrections. This manifests into dramatic modifications in the RFS of the hybrid system in contrast to the one obtained for the isolated QD. The RFS is analyzed as a function of the nanoparticle's aspect ratio, the external magnetic field applied in the Voigt geometry, and the Rabi frequency of the driving field. It is shown that the spin of the QD is imprinted onto certain sidebands of the RFS, and that the signal at these sidebands can be optimized by engineering the shape of the MNP.
NASA Astrophysics Data System (ADS)
Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu
2010-09-01
Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.
Burruss, R.C.; Ging, T.G.; Eppinger, R.G.; Samson, a.M.
1992-01-01
Fluorescence emission spectra of three samples of fluorite containing 226-867 ppm total rare earth elements (REE) were excited by visible and ultraviolet wavelength lines of an argon ion laser and recorded with a Raman microprobe spectrometer system. Narrow emission lines ( 0.9 for Eu2+ and 0.99 for Er3+. Detection limits for three micrometer spots are about 0.01 ppm Eu2+ and 0.07 ppm Er3+. These limits are less than chondrite abundance for Eu and Er, demonstrating the potential microprobe analytical applications of laser-excited fluorescence of REE in fluorite. However, application of this technique to common rock-forming minerals may be hampered by competition between fluorescence emission and radiationless energy transfer processes involving lattice phonons. ?? 1992.
Chen, Wenrui; Qing, Guangyan; Sun, Taolei
2016-12-22
In this study, a novel aggregation-induced emission (AIE) enhancement triggered by the self-assembly of chiral gelator is described. Tuning of molecular chirality in situ triggers different assemblies of superstructures exhibiting fluorescence. This novel AIE material can constitute an emerging library of chiral supramolecules for turn-on fluorescent sensors. It will also help in better understanding the effects of chiral factors on the photophysical process.
Sato, Kyosuke; Nishina, Yasuzo; Shiga, Kiyoshi; Tanaka, Fumio
2008-02-27
Electron-transferring flavoprotein (Holo-ETF) from Megasphaera elsdenii contains two FAD's, one of which easily dissociates to form Iso-ETF (contains one FAD). Time-resolved fluorescence of FAD in Iso-ETF, and Holo-ETF were measured at 5 degrees C and 25 degrees C. Wavelength-dependent fluorescence decays of the both ETF at 5 degrees C and 25 degrees C were analyzed to resolve them into two independent spectra. It was found that Iso-ETF displayed two spectra with lifetime of 0.605 ns (emission peak, 508 nm) and with lifetime of 1.70 ns (emission peak, 540 nm) at 5 degrees C, and with lifetime of 0.693 ns (emission peak, 508 nm) and with lifetime of 2.75 ns (emission peak, 540 nm) at 25 degrees C. Holo-ETF displayed two spectra with lifetime of 0.739 ns (emission peak, 508 nm) and with lifetime of 2.06 ns (emission peak, 545 nm) at 5 degrees C, and with lifetime of 0.711 ns (emission peak, 527 nm) and with lifetime of 3.08 ns (emission peak, 540 nm) at 25 degrees C. Thus fluorescence lifetimes of every spectrum increased upon elevating temperature. Emission peaks Iso-ETF did not change much upon elevating temperature. Activation enthalpy changes, activation entropy changes and activation Gibbs energy changes of quenching rates all displayed negative. Two emission species in the both ETF may be hydrogen-bonding isomers, because isoalloxazine ring of FAD contains four hydrogen acceptors and one donor.
NASA Astrophysics Data System (ADS)
Hammer, M.; Schweitzer, D.; Schenke, S.; Becker, W.; Bergmann, A.
2006-10-01
Ocular fundus autofluorescence imaging has been introduced into clinical diagnostics recently. It is in use for the observation of the age pigment lipofuscin, a precursor of age - related macular degeneration (AMD). But other fluorophores may be of interest too: The redox pair FAD - FADH II provides information on the retinal energy metabolism, advanced glycation end products (AGE) indicate protein glycation associated with pathologic processes in diabetes as well as AMD, and alterations in the fluorescence of collagen and elastin in connective tissue give us the opportunity to observe fibrosis by fluorescence imaging. This, however, needs techniques able to differentiate particular fluorophores despite limited permissible ocular exposure as well as excitation wavelength (limited by the transmission of the human ocular lens to >400 nm). We present an ophthalmic laser scanning system (SLO), equipped with picosecond laser diodes (FWHM 100 ps, 446 nm or 468 nm respectively) and time correlated single photon counting (TCSPC) in two emission bands (500 - 560 nm and 560 - 700 nm). The decays were fitted by a bi-exponential model. Fluorescence spectra were measured by a fluorescence spectrometer fluorolog. Upon excitation at 446 nm, the fluorescence of AGE, FAD, and lipofuscin were found to peak at 503 nm, 525 nm, and 600 nm respectively. Accordingly, the statistical distribution of the fluorescence decay times was found to depend on the different excitation wavelengths and emission bands used. The use of multiple excitation and emission wavelengths in conjunction with fluorescence lifetime imaging allows us to discriminate between intrinsic fluorophores of the ocular fundus. Taken together with our knowledge on the anatomical structure of the fundus, these findings suggest an association of the short, middle and long fluorescence decay time to the retinal pigment epithelium, the retina, and connective tissue respectively.
Zhang, Jinfeng; Chen, Wencheng; Kalytchuk, Sergii; Li, King Fai; Chen, Rui; Adachi, Chihaya; Chen, Zhan; Rogach, Andrey L; Zhu, Guangyu; Yu, Peter K N; Zhang, Wenjun; Cheah, Kok Wai; Zhang, Xiaohong; Lee, Chun-Sing
2016-05-11
In this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties. The fluorescent organic nanoprobes exhibit good water dispersibility, low cytotoxicity, superior resistance against photodegradation and photobleaching. Both one- and two-photon fluorescent imaging were shown in the A549 cell line. Two-photon fluorescence imaging with the fluorescent probes was demonstrated to be more effective in visualizing and distinguishing cellular details compared to conventional one-photon fluorescence imaging.
Snitsarev, Vladislav; Young, Michael N; Miller, Ross M S; Rotella, David P
2013-01-01
(-)-Epigallocatechin 3-O-gallate (EGCG) a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90), a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB) at pH=7.0, acetonitrile (AN) (a polar aprotic solvent), dimethylsulfoxide (DMSO) (a polar aprotic solvent), and ethanol (EtOH) (a polar protic solvent). We demonstrate that EGCG is a highly fluorescent molecule when excited at approximately 275 nm with emission maxima between 350 and 400 nm depending on solvent. Another smaller excitation peak was found when EGCG is excited at approximately 235 nm with maximum emission between 340 and 400 nm. We found that the fluorescence intensity (FI) of EGCG in AB at pH=7.0 is significantly quenched, and that it is about 85 times higher in an aprotic solvent DMSO. The Stokes shifts of EGCG fluorescence were determined by solvent polarity. In addition, while the emission maxima of EGCG fluorescence in AB, DMSO, and EtOH follow the Lippert-Mataga equation, its fluorescence in AN points to non-specific solvent effects on EGCG fluorescence. We conclude that significant solvent-dependent changes in both fluorescence intensity and fluorescence emission shifts can be effectively used to distinguish EGCG in aqueous solutions from EGCG in environments of different polarity, and, thus, can be used to study specific EGCG binding to protein binding sites where the environment is often different from aqueous in terms of polarity.
Design and implementation of a dual-wavelength intrinsic fluorescence camera system
NASA Astrophysics Data System (ADS)
Ortega-Martinez, Antonio; Musacchia, Joseph J.; Gutierrez-Herrera, Enoch; Wang, Ying; Franco, Walfre
2017-03-01
Intrinsic UV fluorescence imaging is a technique that permits the observation of spatial differences in emitted fluorescence. It relies on the fluorescence produced by the innate fluorophores in the sample, and thus can be used for marker-less in-vivo assessment of tissue. It has been studied as a tool for the study of the skin, specifically for the classification of lesions, the delimitation of lesion borders and the study of wound healing, among others. In its most basic setup, a sample is excited with a narrow-band UV light source and the resulting fluorescence is imaged with a UV sensitive camera filtered to the emission wavelength of interest. By carefully selecting the excitation/emission pair, we can observe changes in fluorescence associated with physiological processes. One of the main drawbacks of this simple setup is the inability to observe more than a single excitation/emission pair at the same time, as some phenomena are better studied when two or more different pairs are studied simultaneously. In this work, we describe the design and the hardware and software implementation of a dual wavelength portable UV fluorescence imaging system. Its main components are an UV camera, a dual wavelength UV LED illuminator (295 and 345 nm) and two different emission filters (345 and 390 nm) that can be swapped by a mechanical filter wheel. The system is operated using a laptop computer and custom software that performs basic pre-processing to improve the image. The system was designed to allow us to image fluorescent peaks of tryptophan and collagen cross links in order to study wound healing progression.
Mechanism of laser induced fluorescence signal generation in InCl3-ethanol mixture flames
NASA Astrophysics Data System (ADS)
Fang, Bolang; Hu, Zhiyun; Zhang, Zhenrong; Li, Guohua; Shao, Jun; Feng, Guobin
2017-05-01
Nonlinear regime Two-line Atomic Fluorescence (NTLAF) is a promising technique for two-dimensional thermometry. A key challenge is seeding of indium atoms into flame. This work aims at investigating the mechanism of Indium LIF signal generation in a fuel-rich InCl3-ethanol premixed flame. Several types of images including natural emission of the flame itself, natural emission of CH, natural emission of OH, natural emission at 410 nm/451 nm of indium atom, and laser induced fluorescence at 410 nm/451 nm were obtained. The indium atom was generated in the flame front, and could survive in the post-flame zone for a while which is benefit for making NTLAF measurements. Further detail mechanism of fluorescence signals generation in InCl3-ethanol solution burning was investigated. The conclusion which probable to be drew is that to gain high NTLAF signals, the size of liquid droplets should be well controlled, neither to be too large nor to be gasified.
NASA Astrophysics Data System (ADS)
Mahajan, Prasad G.; Dige, Nilam C.; Desai, Netaji K.; Patil, Shivajirao R.; Kondalkar, Vijay V.; Hong, Seong-Karp; Lee, Ki Hwan
2018-06-01
Nowadays scientist over the world are engaging to put forth improved methods to detect metal ion in an aqueous medium based on fluorescence studies. A simple, selective and sensitive method was proposed for detection of Co2+ ion using fluorescent organic nanoparticles. We synthesized a fluorescent small molecule viz. 4,4‧-{benzene-1,4-diylbis-[(Z)methylylidenenitrilo]}dibenzoic acid (BMBA) to explore its suitability as sensor for Co2+ ion and biocompatibility in form of nanoparticles. Fluorescence nanoparticles (BMBANPs) prepared by simple reprecipitation method. Aggregation induced enhanced emission of BMBANPs exhibits the narrower particle size of 68 nm and sphere shape morphology. The selective fluorescence quenching was observed by addition of Co2+ and does not affected by presence of other coexisting ion solutions. The photo-physical properties, viz. UV-absorption, fluorescence emission, and lifetime measurements are in support of ligand-metal interaction followed by static fluorescence quenching phenomenon in emission of BMBANPs. Finally, we develop a simple analytical method for selective and sensitive determination of Co2+ ion in environmental samples. The cell culture E. coli, Bacillus sps., and M. tuberculosis H37RV strain in the vicinity of BMBANPs indicates virtuous anti-bacterial and anti-tuberculosis activity which is of additional novel application shown by prepared nanoparticles.
Sun, Ning; Wang, Qi; Zhao, Yongbiao; Chen, Yonghua; Yang, Dezhi; Zhao, Fangchao; Chen, Jiangshan; Ma, Dongge
2014-03-12
By using mixed hosts with bipolar transport properties for blue emissive layers, a novel phosphorescence/fluorescence hybrid white OLED without using an interlayer between the fluorescent and phosphorescent regions is demonstrated. The peak EQE of the device is 19.0% and remains as high as 17.0% at the practical brightness of 1000 cd m(-2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Light emission from compound eye with conformal fluorescent coating
NASA Astrophysics Data System (ADS)
Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh
2015-03-01
Compound eyes of insects are attractive biological systems for engineered biomimicry as artificial sources of light, given their characteristic wide angular field of view. A blowfly eye was coated with a thin conformal fluorescent film, with the aim of achieving wide field-of-view emission. Experimental results showed that the coated eye emitted visible light and that the intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.
Dy3+ doped tellurite glasses containing silver nanoparticles for lighting devices
NASA Astrophysics Data System (ADS)
Hua, Chenxiao; Shen, Lifan; Pun, Edwin Yue Bun; Li, Desheng; Lin, Hai
2018-04-01
Efficient warm yellowish-white fluorescence emissions of Dy3+ were observed in heavy metal germanium tellurite (HGT) glasses under the excitation of 454 nm. Further, the luminescence intensity of Dy3+ is increased by ∼29% accompanying the introduction of Ag NPs with diameter ∼7 nm when compared with that of the silver-free case, which is caused by the existence of localized surface plasmon resonance (LSPR). The larger net emission power, the more net emission photon number and the higher quantum yield in Dy2O3 doped HGT glasses containing Ag NPs (HGT-Ag) confirm the availability of utilizing laser. Presupposed fluorescence color trace reveals that white luminescence can be achieved when the intensity ratio between residual laser and Dy3+ emission reaches the appropriate range. The productive transition emissions and the tunable white fluorescence illustrate tellurite glasses embodying noble-metal NPs are a potential candidate for high-quality lighting devices.
Development of fluorescence based handheld imaging devices for food safety inspection
NASA Astrophysics Data System (ADS)
Lee, Hoyoung; Kim, Moon S.; Chao, Kuanglin; Lefcourt, Alan M.; Chan, Diane E.
2013-05-01
For sanitation inspection in food processing environment, fluorescence imaging can be a very useful method because many organic materials reveal unique fluorescence emissions when excited by UV or violet radiation. Although some fluorescence-based automated inspection instrumentation has been developed for food products, there remains a need for devices that can assist on-site inspectors performing visual sanitation inspection of the surfaces of food processing/handling equipment. This paper reports the development of an inexpensive handheld imaging device designed to visualize fluorescence emissions and intended to help detect the presence of fecal contaminants, organic residues, and bacterial biofilms at multispectral fluorescence emission bands. The device consists of a miniature camera, multispectral (interference) filters, and high power LED illumination. With WiFi communication, live inspection images from the device can be displayed on smartphone or tablet devices. This imaging device could be a useful tool for assessing the effectiveness of sanitation procedures and for helping processors to minimize food safety risks or determine potential problem areas. This paper presents the design and development including evaluation and optimization of the hardware components of the imaging devices.
NASA Astrophysics Data System (ADS)
Carstea, E.; Baker, A.; Johnson, R.; Reynolds, D. M.
2009-12-01
In-line fluorescence EEM monitoring has been performed over an eleven-day period for Bournbrook River, Birmingham, UK. River water was diverted to a portable laboratory via a continuous flow pump and filter system. Fluorescence excitation-emission matrices data was recorded every 3 minutes using a flow cell (1cm pathlength) coupled to a fiber optic probe. This real-time fluorescence EEM data (Excitation, 225-400 nm at 5 nm steps, emission, 280-500 nm at 2 nm steps) was collected 'in-line'and directly compared with the spectrophotometric properties and physical and chemical parameters of river water samples collected off-line at known time intervals. Over the monitoring period, minor pollution pulses from cross connections were detected and identified hourly along with a random diesel pollution event. This work addresses the practicalities of measuring and detecting fluorescence EEM in the field and discusses the potential of this technological approach for further understanding important hydrological and biogeochemical processes. Problems associated with fouling and system failure are also reported. Example of the data generated from the continuous fluorescence EEM monitoring.
Synchronous fluorescence spectroscopy for analysis of wine and wine distillates
NASA Astrophysics Data System (ADS)
Andreeva, Ya.; Borisova, E.; Genova, Ts.; Zhelyazkova, Al.; Avramov, L.
2015-01-01
Wine and brandies are multicomponent systems and conventional fluorescence techniques, relying on recording of single emission or excitation spectra, are often insufficient. In such cases synchronous fluorescence spectra can be used for revealing the potential of the fluorescence techniques. The technique is based on simultaneously scanning of the excitation and emission wavelength with constant difference (Δλ) maintained between them. In this study the measurements were made using FluoroLog3 spectrofluorimeter (HORIBA Jobin Yvon, France) and collected for excitation and emission in the wavelength region 220 - 700 nm using wavelength interval Δλ from 10 to 100 nm in 10 nm steps. This research includes the results obtained for brandy and red wine samples. Fluorescence analysis takes advantage in the presence of natural fluorophores in wines and brandies, such as gallic, vanillic, p-coumaric, syringic, ferulic acid, umbelliferone, scopoletin and etc. Applying of synchronous fluorescence spectroscopy for analysis of these types of alcohols allows us to estimate the quality of wines and also to detect adulteration of brandies like adding of a caramel to wine distillates for imitating the quality of the original product aged in oak casks.
On Sagnac frequency splitting in a solid-state ring Raman laser.
Liang, Wei; Savchenkov, Anatoliy; Ilchenko, Vladimir; Griffith, Robert; De Cuir, Edwin; Kim, Steven; Matsko, Andrey; Maleki, Lute
2017-11-15
We report on an accurate measurement of the frequency splitting of an optical rotating ring microcavity made out of calcium fluoride. By measuring the frequencies of the clockwise and counter-clockwise coherent Raman emissions confined in the cavity modes, we show that the frequency splitting is inversely proportional to the refractive index of the cavity host material. The measurement has an accuracy of 1% and unambiguously confirms the classical theoretical prediction based on special theory of relativity. This Letter also demonstrates the usefulness of the ring Raman microlaser for rotation measurements.
The difficulty of ultraviolet emssion from supernovae
NASA Technical Reports Server (NTRS)
Colgate, S. A.
1971-01-01
There are certain conceptual difficulties in the theory of the generation of ultraviolet radiation which is presumed for the creation of the optical fluorescence mechanism of supernova light emission and ionization of a nebula as large as the Gum nebula. Requirements concerning the energy distribution of the ultraviolet photons are: 1) The energy of the greater part of the photons must be sufficient to cause both helium fluorescence and hydrogen ionization. 2) If the photons are emitted in an approximate black body spectrum, the fraction of energy emitted in the optical must be no more than what is already observed. Ultraviolet black body emission depends primarily on the energy source. The probability that the wide mixture of elements present in the interstellar medium and supernova ejecta results in an emission localized in a limited region with less than 0.001 emission in the visible, for either ionization or fluorescence ultraviolet, is remote. Therefore transparent emission must be excluded as unlikely, and black body or at least quasi-black-body emission is more probable.
NASA Astrophysics Data System (ADS)
Ganesan, Singaravelu; Ebenezar, Jeyasingh; Hemamalini, Srinivasan; Aruna, Prakasa R.
2002-05-01
Steady state fluorescence spectroscopic characterization of endogenous porphyrin emission from DMBA treated skin carcinogenesis in Swiss albino mice was carried out. The emission of endogenous porphyrin from normal and abnormal skin tissues was studied both in the presence and absence of exogenous ALA to compare the resultant porphyrin emission characterictics. The mice skin is excited at 405nm and emission spectra are scanned from 430 to 700nm. The average fluorescence emission spectra of mice skin at normal and various tissues transformation conditions were found to be different. Two peaks around 460nm and 636nm were observed and they may be attributed to NADH, Elastin and collagen combination and endogenous porphyrin emission. The intensity at 636nm increases as the stage of the cancer increases. Although exogenous ALA enhances the PPIX level in tumor, the synthesis of PPIX was also found in normal surrounding skin, in fact, with higher concentration than that of tumor tissues.
NASA Astrophysics Data System (ADS)
Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey
2016-02-01
Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.
Bowel perforation detection using metabolic fluorescent chlorophylls
NASA Astrophysics Data System (ADS)
Han, Jung Hyun; Jo, Young Goun; Kim, Jung Chul; Choi, Sujeong; Kang, Hoonsoo; Kim, Yong-Chul; Hwang, In-Wook
2016-03-01
Thus far, there have been tries of detection of disease using fluorescent materials. We introduce the chlorophyll derivatives from food plants, which have longer-wavelength emissions (at >650 nm) than those of fluorescence of tissues and organs, for detection of bowel perforation. To figure out the possibility of fluorescence spectroscopy as a monitoring sensor of bowel perforation, fluorescence from organs of rodent models, intestinal and peritoneal fluids of rodent models and human were analyzed. In IVIS fluorescence image of rodent abdominal organ, visualization of perforated area only was possible when threshold of image is extremely finely controlled. Generally, both perforated area of bowel and normal bowel which filled with large amount of chlorophyll derivatives were visualized with fluorescence. The fluorescence from chlorophyll derivatives penetrated through the normal bowel wall makes difficult to distinguish perforation area from normal bowel with direct visualization of fluorescence. However, intestinal fluids containing chlorophyll derivatives from food contents can leak from perforation sites in situation of bowel perforation. It may show brighter and longer-wavelength regime emissions of chlorophyll derivatives than those of pure peritoneal fluid or bioorgans. Peritoneal fluid mixed with intestinal fluids show much brighter emissions in longer wavelength (at>650 nm) than those of pure peritoneal fluid. In addition, irrigation fluid, which is used for the cleansing of organ and peritoneal cavity, made of mixed intestinal and peritoneal fluid diluted with physiologic saline also can be monitored bowel perforation during surgery.
Variations in the endogenous fluorescence of rabbit corneas after mechanical property alterations
NASA Astrophysics Data System (ADS)
Ortega-Martinez, Antonio; Touchette, Genna; Zhu, Hong; Kochevar, Irene E.; Franco, Walfre
2017-09-01
Keratoconus is an eye disease in which the cornea progressively deforms due to loss of cornea mechanical rigidity, and thus causes deterioration of visual acuity. Techniques to characterize the mechanical characteristics of the cornea are important to better monitor changes and response to treatments. To investigate the feasibility of using the endogenous fluorescence of cornea for monitoring alterations of its mechanical rigidity, linear tensiometry was used to quantitate stiffness and Young's modulus (YM) after treatments that increase cornea stiffness (collagen photocross-linking) or decrease stiffness (enzymatic digestion). The endogenous ultraviolet fluorescence of cornea was also measured before and after these treatments. The fluorescence excitation/emission spectral ranges were 280 to 430/390 to 520 nm, respectively. A correlation analysis was carried out to identify fluorescence excitation/emission pairs whose intensity changes correlated with the stiffness. A positive correlation was found between variations in fluorescence intensity of the 415-/485-nm excitation/emission pair and YM of photocross-linked corneas. After treatment of corneas with pepsin, the YM decreased as the fluorescence intensity at 290-/390-nm wavelengths decreased. For weakening of corneas with collagenase, only qualitative changes in the fluorescence spectrum were observed. Changes in the concentration of native or newly created fluorescent molecular species contain information that may be directly or indirectly related to the mechanical structure of the cornea.
Why do aged fluorescent tubes flicker?
NASA Astrophysics Data System (ADS)
Plihon, Nicolas; Ferrand, Jérémy; Guyomar, Tristan; Museur, Flavien; Taberlet, Nicolas
2017-11-01
Our everyday experience of aged and defective fluorescent tubes or bulbs informs us that they may flicker and emit a clicking sound while struggling to light up. In this article, the physical mechanisms controlling the initial illumination of a functioning fluorescent tube are investigated using a simple and affordable experimental setup. Thermionic emission from the electrodes of the tube controls the startup of fluorescent tubes. The origin of the faulty startup of aged fluorescent tubes is discussed and flickering regimes using functional tubes are artificially produced using a dedicated setup that decreases electron emission by the thermionic effect in a controlled manner. The physical parameters controlling the occurrence of flickering light are discussed, and their temporal statistics are reported.
Optimal optical filters of fluorescence excitation and emission for poultry fecal detection
USDA-ARS?s Scientific Manuscript database
Purpose: An analytic method to design excitation and emission filters of a multispectral fluorescence imaging system is proposed and was demonstrated in an application to poultry fecal inspection. Methods: A mathematical model of a multispectral imaging system is proposed and its system parameters, ...
USDA-ARS?s Scientific Manuscript database
To better understand the functional and physicochemical properties of cottonseed protein, we investigated the intrinsic fluorescence excitation-emission matrix (EEM) spectral features of cottonseed protein isolate (CSPI) and sequentially extracted water (CSPw) and alkali (CSPa) protein fractions, an...
Hu, Qing-song; Zhu, Cheng-jing; Xia, Yue-yi; Wang, Li-li; Liu, Wen-han; Pan, Zai-fa
2016-02-01
Eu³⁺ doped BaSrMg (PO₄)₂ were prepared by a hydrothermal method. The crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were characterized by X-ray powder diffraction (XRD) and field emission scanning electron microscopy (FESEM). The effects of different pH values (5, 6, 7 and 8) and different reaction temperatures (120, 140, 160, 180 and 200 °C) on the crystal structure and morphology of BaSrMg(PO₄)₂:Eu³⁺ phosphor were studied in this paper. The results of XRD indicate that diffraction peaks are sharp and strong only when pH value is 6, meanwhile the FESEM shows the morphology is regular-shaped. The XRD patterns show amorphous halos superimposed with several weak sharp peaks for the samples preparing under the pH values of 5, 7 and 8. It indicates that these three samples are solid solution or mixed phases, which are in accord with the results of FESEM. From the fluorescence spectra, the peaks in the excitation spectra were assigned to the transition from ⁷F₀ to ⁵D₄, ⁵L₈, ⁵L₆ and ⁵D₂, while the peaks of emission spectra corresponding to the transition of ⁵D₁ --> ⁷F₁ and ⁵D₀-->⁷Fj (J = 0, 1, 2, 3 and 4). The strongest emission peak of the optimized phosphor located at 613 nm (⁵D0--> ⁷F₂), excited by the main excitation peak with wavelength of 394 nm. The splitting of the emission peaks changes depends on pH values and temperatures, which indicating that luminescence properties is closely related to the crystal structure and morphology of particles.
Köker, Tuğba; Tang, Nathalie; Tian, Chao; Zhang, Wei; Wang, Xueding; Martel, Richard; Pinaud, Fabien
2018-02-09
The in cellulo assembly of plasmonic nanomaterials into photo-responsive probes is of great interest for many bioimaging and nanophotonic applications but remains challenging with traditional nucleic acid scaffolds-based bottom-up methods. Here, we address this quandary using split-fluorescent protein (FP) fragments as molecular glue and switchable Raman reporters to assemble gold or silver plasmonic nanoparticles (NPs) into photonic clusters directly in live cells. When targeted to diffusing surface biomarkers in cancer cells, the NPs self-assemble into surface-enhanced Raman-scattering (SERS) nanoclusters having hot spots homogenously seeded by the reconstruction of full-length FPs. Within plasmonic hot spots, autocatalytic activation of the FP chromophore and near-field amplification of its Raman fingerprints enable selective and sensitive SERS imaging of targeted cells. This FP-driven assembly of metal colloids also yields enhanced photoacoustic signals, allowing the hybrid FP/NP nanoclusters to serve as contrast agents for multimodal SERS and photoacoustic microscopy with single-cell sensitivity.
Cieri, Domenico; Vicario, Mattia; Giacomello, Marta; Vallese, Francesca; Filadi, Riccardo; Wagner, Tina; Pozzan, Tullio; Pizzo, Paola; Scorrano, Luca; Brini, Marisa; Calì, Tito
2018-06-01
Contact sites are discrete areas of organelle proximity that coordinate essential physiological processes across membranes, including Ca 2+ signaling, lipid biosynthesis, apoptosis, and autophagy. However, tools to easily image inter-organelle proximity over a range of distances in living cells and in vivo are lacking. Here we report a split-GFP-based contact site sensor (SPLICS) engineered to fluoresce when organelles are in proximity. Two SPLICS versions efficiently measured narrow (8-10 nm) and wide (40-50 nm) juxtapositions between endoplasmic reticulum and mitochondria, documenting the existence of at least two types of contact sites in human cells. Narrow and wide ER-mitochondria contact sites responded differently to starvation, ER stress, mitochondrial shape modifications, and changes in the levels of modulators of ER-mitochondria juxtaposition. SPLICS detected contact sites in soma and axons of D. rerio Rohon Beard (RB) sensory neurons in vivo, extending its use to analyses of organelle juxtaposition in the whole animal.
Sreenath, Kesavapillai; Clark, Ronald J; Zhu, Lei
2012-09-21
The internal charge transfer (ICT) type fluoroionophore arylvinyl-bipy (bipy = 2,2'-bipyridyl) is covalently tethered to the spirolactam form of rhodamine to afford fluorescent heteroditopic ligand 4. Compound 4 can be excited in the visible region, the emission of which undergoes sequential bathochromic shifts over an increasing concentration gradient of Zn(ClO(4))(2) in acetonitrile. Coordination of Zn(2+) stabilizes the ICT excited state of the arylvinyl-bipy component of 4, leading to the first emission color shift from blue to green. At sufficiently high concentrations of Zn(ClO(4))(2), the nonfluorescent spirolactam component of 4 is transformed to the fluorescent rhodamine, which turns the emission color from green to orange via intramolecular fluorescence resonance energy transfer (FRET) from the Zn(2+)-bound arylvinyl-bipy fluorophore to rhodamine. While this work offers a new design of ratiometric chemosensors, in which sequential analyte-induced emission band shifts result in the sampling of multiple colors at different concentration ranges (i.e., from blue to green to orange as [Zn(2+)] increases in the current case), it also reveals the nuances of rhodamine spirolactam chemistry that have not been sufficiently addressed in the published literature. These issues include the ability of rhodamine spirolactam as a fluorescence quencher via electron transfer, and the slow kinetics of spirolactam ring-opening effected by Zn(2+) coordination under pH neutral aqueous conditions.
Dou, Chuandong; Chen, Dong; Iqbal, Javed; Yuan, Yang; Zhang, Hongyu; Wang, Yue
2011-05-17
A trifluoromethyl-substituted benzothiadiazole-cored phenylene vinylene fluorophore (1) was synthesized and displayed piezo- and vapochromism and thermo-induced fluorescence variation in solid phase. Grinding could disrupt the crystalline compound 1 with orange emission into amorphous compound 1 with green emission, and heating treatment could change the amorphous compound 1 into crystalline compound 1. Ultraviolet-visible (UV-vis) absorption spectra, (13)C nuclear magnetic resonance (NMR), and powder X-ray diffraction (PXRD) characterizations demonstrated that crystalline and amorphous compound 1 possess different molecular packing. A differential scanning calorimetry (DSC) measurement revealed that the emission switching was due to the exchange between the thermodynamic-stable crystalline and metastable amorphous states. The ground sample exhibited vapochromic fluorescence property. Furthermore, compound 1 showed interesting supramolecular assembly characteristics in solution. Slowly cooling the hot N,N-dimethylformamide (DMF) solution of compound 1 resulted in the formation of orange fluorescent fibers, whereas sonication treatment of the cooling solution led to the generation of organic molecular gel. The field emission scanning electronic microscope (FESEM) and fluorescent microscopy images revealed smooth nano- or microfiber and network morphology properties. The PXRD spectra confirmed that these nano- or microstructures had a similar molecular-packing model with the crystalline state of compound 1. Slow evaporation of the toluene solution of compound 1 could produce green emissive microrods, which exhibited interesting thermo-induced fluorescence variation.
Laser excited confocal microscope fluorescence scanner and method
Mathies, Richard A.; Peck, Konan
1992-01-01
A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.
NASA Astrophysics Data System (ADS)
Ke, Zhigang; Ma, Shanshan; Li, Lamei; Huang, Qing
2016-07-01
Horseradish peroxidase (HRP) is a classical heme-containing protein which has been applied in many fields. The prosthetic group heme in HRP, especially in unfolded state, can react with hydrogen peroxide (H2O2) to produce a fluorescent product with the maximum emission wavelength at 450 nm. Utilizing this emission band as a fluorescence probe, the unfolding process of HRP in urea can be assessed quantitatively, and the calculated thermodynamic parameters are consistent with those determined by circular dichroism (CD) at 222 nm and steady-state tryptophan (Trp) fluorescence methods.
Lu, Hongzhi; Quan, Shuai; Xu, Shoufang
2017-11-08
In this work, we developed a simple and sensitive ratiometric fluorescent assay for sensing trinitrotoluene (TNT) based on the inner filter effect (IFE) between gold nanoparticles (AuNPs) and ratiometric fluorescent nanoparticles (RFNs), which was designed by hybridizing green emissive carbon dots (CDs) and red emissive quantum dots (QDs) into a silica sphere as a fluorophore pair. AuNPs in their dispersion state can be a powerful absorber to quench CDs, while the aggregated AuNPs can quench QDs in the IFE-based fluorescent assays as a result of complementary overlap between the absorption spectrum of AuNPs and emission spectrum of RFNs. As a result of the fact that TNT can induce the aggregation of AuNPs, with the addition of TNT, the fluorescent of QDs can be quenched, while the fluorescent of CDs would be recovered. Then, ratiometric fluorescent detection of TNT is feasible. The present IFE-based ratiometric fluorescent sensor can detect TNT ranging from 0.1 to 270 nM, with a detection limit of 0.029 nM. In addition, the developed method was successfully applied to investigate TNT in water and soil samples with satisfactory recoveries ranging from 95 to 103%, with precision below 4.5%. The simple sensing approach proposed here could improve the sensitivity of colorimetric analysis by changing the ultraviolet analysis to ratiometric fluorescent analysis and promote the development of a dual-mode detection system.
Hyperspectral small animal fluorescence imaging: spectral selection imaging
NASA Astrophysics Data System (ADS)
Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul
2008-02-01
Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.
NASA Astrophysics Data System (ADS)
Qian, Hai; Cousins, Morgan E.; Horak, Erik H.; Wakefield, Audrey; Liptak, Matthew D.; Aprahamian, Ivan
2017-01-01
Although there are some proposed explanations for aggregation-induced emission, a phenomenon with applications that range from biosensors to organic light-emitting diodes, current understanding of the quantum-mechanical origin of this photophysical behaviour is limited. To address this issue, we assessed the emission properties of a series of BF2-hydrazone-based dyes as a function of solvent viscosity. These molecules turned out to be highly efficient fluorescent molecular rotors. This property, in addition to them being aggregation-induced emission luminogens, enabled us to probe deeper into their emission mechanism. Time-dependent density functional theory calculations and experimental results showed that the emission is not from the S1 state, as predicted from Kasha's rule, but from a higher energy (>S1) state. Furthermore, we found that suppression of internal conversion to the dark S1 state by restricting the rotor rotation enhances fluorescence, which leads to the proposal that suppression of Kasha's rule is the photophysical mechanism responsible for emission in both viscous solution and the solid state.
Hybridization-based biosensor containing hairpin probes and use thereof
Miller, Benjamin L.; Strohsahl, Christopher M.
2010-10-12
A sensor chip that includes: a fluorescence quenching surface; a nucleic acid probe that contains first and second ends with the first end bound to the fluorescence quenching surface, and is characterized by being able to self-anneal into a hairpin conformation; and a first fluorophore bound to the second end of the first nucleic acid molecule. When the first nucleic acid molecule is in the hairpin conformation, the fluorescence quenching surface substantially quenches fluorescent emissions by the first fluorophore; and when the first nucleic acid molecule is in a non-hairpin conformation, fluorescent emissions by the fluorophore are substantially free of quenching by the fluorescence quenching surface. Various nucleic acid probes, methods of making the sensor chip, biological sensor devices that contain the sensor chip, and their methods of use are also disclosed.
Wang, Junfeng; Chu, Qinghui; Liu, Xiumin; Wesdemiotis, Chrys
2013-01-01
The formation of a bis(HBO) anion is known to turn-on the fluorescence to give red emission, via controlling the excited-state intramolecular proton transfer (ESIPT). The poor stability of the formed anion, however, hampered its application. The anion stability is found to be greatly improved by attaching the anion to Zn2+ cation (i.e. forming zinc complex), whose emission is at λem ≈ 550 and 760 nm. Interestingly, addition of methanol to the zinc complex induces a remarkable red fluorescence (λem ≈ 630 nm, ϕfl ≈ 0.8). With the aid of spectroscopic studies (1H NMR, UV-vis, fluorescence, and mass spectra), the structures of the zinc complexes are characterized. The emission species is identified as a dimer-like structure. The study thus reveals an effective fluorescence switching mechanism that could further advance the application of ESIPT-based sensors. PMID:23514312
NASA Astrophysics Data System (ADS)
Wang, Niansheng; Wang, Renjie; Tu, Yayi; Pu, Shouzhi; Liu, Gang
2018-05-01
A novel photochromic diarylethene with a triazole-containing 2-(2‧-phenoxymethyl)-benzothiazole group has been synthesized via "click" reaction. The diarylethene exhibited good photochromism and photoswitchable fluorescence. Its fluorescence emission intensity was enhanced 7-fold by acids, accompanied by the red-shift of emission peak from 526 nm to 566 nm and the concomitant color change from dark to bright flavogreen. The diarylethene selectively formed a 1:1 metal complex with Al3+, resulting in a "turn-on" fluorescence signal. The complexation - reaction between Al3+ and the diarylethene is reversible with the binding constant of 2.73 × 103 L mol-1. The limit of detection (LOD) of Al3+ was determined to be 5.94 × 10-8 mol L-1. Based on this unimolecular platform, a logic circuit was fabricated using the fluorescence emission intensity at 572 nm as the output and the combined stimuli of Al3+/EDTA and UV/Vis as the inputs.
NASA Astrophysics Data System (ADS)
Lewis, William; Williams, Maura; Franco, Walfre
2017-02-01
The aim of our study was to identify fluorescence excitation-emission pairs correlated with atherosclerotic pathology in ex-vivo human aorta. Wide-field images of atherosclerotic human aorta were captured using UV and visible excitation and emission wavelength pairs of several known fluorophores to investigate correspondence with gross pathologic features. Fluorescence spectroscopy and histology were performed on 21 aortic samples. A matrix of Pearson correlation coefficients were determined for the relationship between relevant histologic features and the intensity of emission for 427 wavelength pairs. A multiple linear regression analysis indicated that elastin (370/460 nm) and tryptophan (290/340 nm) fluorescence predicted 58% of the variance in intima thickness (R-squared = 0.588, F(2,18) = 12.8, p=.0003), and 48% of the variance in media thickness (R-squared = 0.483, F(2,18) = 8.42, p=.002), suggesting that endogenous fluorescence intensity at these wavelengths can be utilized for improved pathologic characterization of atherosclerotic plaques.
Methods for Broadband Spectral Analysis: Intrinsic Fluorescence Temperature Sensing as an Example.
Zhang, Weiwei; Wang, Guoyao; Baxter, Greg W; Collins, Stephen F
2017-06-01
A systematic study was performed on the temperature-dependent fluorescence of (Ba,Sr) 2 SiO 4 :Eu 2+ . The barycenter and extended intensity ratio techniques were proposed to characterize the broadband fluorescence spectra. These techniques and other known methods (listed below) were employed and compared in the fluorescent temperature sensing experiment. Multiple sensing functions were obtained using the behaviors of: (1) the barycenter location of the emission band; (2) the emission bandwidth; and (3) the ratio of intensities at different wavelengths in the emission band, respectively. The barycenter technique was not limited by the spectrometer resolution and worked well while the peak location method failed. All the sensing functions were based on the intrinsic characteristics of the fluorescence of the phosphor and demonstrated nearly linear relationships with temperature in the measuring range. The multifunctional temperature-sensing abilities of the phosphor can be applied in a point thermometer or thermal mapping. The new techniques were validated successfully for characterizing various spectra.
Zhai, Hong; Feng, Ting; Dong, Lingyu; Wang, Liyun; Wang, Xiangfeng; Liu, Hailing; Liu, Yuan; Chen, Luan; Xie, MengXia
2016-08-01
A novel dual emission ratiometric fluorescence probe for determination of glucose has been developed. The reference dye fluorescence isothiocyanate (FITC) has been encapsulated in the silica nanoparticles and then the red emission CdTe QDs were grafted on the surface of the silica particles to obtain the fluorescence probe. With glucose and dopamine as substrates, the glucose level was proportional to the fluorescence ratio change of above probe caused by dopamine oxidation, which was produced via bienzyme catalysis (glucose oxidase and horseradish peroxidase). The established approach was sensitive and selective, and has been applied to determine the glucose in beverage, urine and serum samples. The average recoveries of the glucose at various spiking levels ranged from 95.5% to 108.9% with relative standard deviations from 1.5% to 4.3%. The results provided a clue to develop sensors for rapid determination of the target analytes from complex matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kannaujiya, Vinod K; Sinha, Rajeshwar P
2017-03-01
The chemistry of thiol-chromophore linkage plays a central role in the nature of fluorescence of phycoerythrin (PE). Interaction of thiol and chromophore is crucial for the energy transfer, redox signal and inhibition of oxidative damage. In the present investigation the effects of ultraviolet-B radiation on an emission fluorescence intensity and wavelength shift in PE due to interaction between thiol and chromophore by remarkable strategy of detection technique was studied. Purification of PE was done by using a gel permeation and ion exchange chromatography that yielded a quite high purity index (6.40) in a monomeric (αβ) form. UV-B radiation accelerated the quenching efficiency (24.9 ± 1.52%) by reducing fluorescence emission intensity of thiol linked chromophore after 240 min of UV-B exposure. However, after blocking of transiently released free thiol by N-ethylmaleimide, quenching efficiency was increased (36.8 ± 2.80%) with marked emission wavelength shift towards shorter wavelengths up to 562 nm as compared to 575 nm in control. Emission fluorescence of free thiol was at maximum after 240 min that was detected specifically by monobromobimane (mBrB) molecular probe. The association/dissociation of bilin chromophore was analyzed by SDS- and Native-PAGE that also indicated a complete reduction in emission fluorescence. Our work clearly shows an early detection of free thiols and relative interaction with chromophore after UV-B radiation which might play a significant role in structural and functional integrity of terminal PE.
Fluorescent single walled nanotube/silica composite materials
Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.
2013-03-12
Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.
NASA Astrophysics Data System (ADS)
El-Daly, Samy A.; Ebeid, E. M.
2014-04-01
The UV-visible electronic absorption spectra, molar absorptivity, fluorescence spectra, fluorescence quantum yield and excited state lifetime of 1,4-bis [2-(2-pyridyl) vinyl] benzene P2VB were measured in different solvents. The fluorescence quenching of P2VB by molecular oxygen was also studied using lifetime measurements. A 2 × 10-4 mol dm-3 solution of P2VB in dimethyl formamide (DMF) gave amplified spontaneous emission (ASE) in blue spectral region with emission maximum at 420 nm upon pumping by 337.1 nitrogen laser pulse. The photochemical quantum yields (ϕc) of trans-cis photoisomerization of P2VB were calculated in different organic solvents. The photoreactivity of P2VB are also studied PMMA matrix.
NASA Astrophysics Data System (ADS)
Sun, Xiangcheng; Brückner, Christian; Lei, Yu
2015-10-01
Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications.Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications. Electronic supplementary information (ESI) available: Detailed experimental section, XRD, FTIR, explosive sensing and the applications results. See DOI: 10.1039/c5nr05549k
NASA Technical Reports Server (NTRS)
Burton, Michael G.; Moorhouse, Alan; Brand, P. W. J. L.; Roche, Patrick F.; Geballe, T. R.
1989-01-01
Images were obtained of the (fluorescent) molecular hydrogen 1-0 S(1) line, and of the 3.3 micron emission feature, in Orion's Bar and three reflection nebulae. The emission from these species appears to come from the same spatial locations in all sources observed. This suggests that the 3.3 micron feature is excited by the same energetic UV-photons which cause the molecular hydrogen to fluoresce.
Miljevic, B; Heringa, M F; Keller, A; Meyer, N K; Good, J; Lauber, A; Decarlo, P F; Fairfull-Smith, K E; Nussbaumer, T; Burtscher, H; Prevot, A S H; Baltensperger, U; Bottle, S E; Ristovski, Z D
2010-09-01
This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases: at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start), and poor burning conditions. For particles produced by the logwood stove under cold-start conditions, significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250 degrees C resulted in an 80-100% reduction of the fluorescence signal of the BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.
Yu, Huan; Zheng, Jing; Yang, Sheng; Asiri, Abdullah M; Alamry, Khalid A; Sun, Mingtai; Zhang, Kui; Wang, Suhua; Yang, Ronghua
2018-02-01
We demonstrated that a small molecule induced interchain Staudinger reaction can be employed for highly selective detection of adenosine triphosphate (ATP), an important energy-storage biomolecule. A designed ATP split aptamer (A1) was first functionalized with a weakly fluorescent coumarin derivative due to an azide group (azido-coumarin). The second DNA strand (A2) was covalently linked with triphenylphosphine, which could selectively and efficiently reduce azido to amino group through the Staudinger reaction. The A2 was then hybridized with a half of another designed longer DNA strand (T1). The second half of T1 was a split aptamer and selectively recognized ATP with A1 to form a sandwich structure. The specific interaction between ATP and the aptamers drew the two functionalized DNA strands (A1 and A2) together to initiate the interchain Staudinger reduction at fmol-nmol concentration level, hence produced fluorescent 7-aminocoumarin which could be used as an indicator for the presence of trace ATP. The reaction process had a concentration dependent manner with ATP in a large concentration range. Such a strategy of interchain Staudinger reaction can be extended to construct biosensors for other small functional molecules on the basis of judiciously designed aptamers. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dormidonov, A. E.; Kandidov, V. P.; Kompanets, V. O.; Chekalin, Sergei V.
2009-07-01
Supercontinuum emission observed upon filamentation of transform-limited collimated femtosecond laser pulses in a transparent condensed medium (fused KU-1 quartz) is studied experimentally and numerically. The splitting of diverging conical supercontinuum emission into discrete rings was observed with increasing the pulse energy.
Chib, Rahul; Mummert, Mark; Bora, Ilkay; Laursen, Bo W; Shah, Sunil; Pendry, Robert; Gryczynski, Ignacy; Borejdo, Julian; Gryczynski, Zygmunt; Fudala, Rafal
2016-05-01
In this report, we have designed a rapid and sensitive, intensity-based ratiometric sensing as well as lifetime-based sensing probe for the detection of hyaluronidase activity. Hyaluronidase expression is known to be upregulated in various pathological conditions. We have developed a fluorescent probe by heavy labeling of hyaluronic acid with a new orange/red-emitting organic azadioxatriangulenium (ADOTA) fluorophore, which exhibits a long fluorescence lifetime (∼20 ns). The ADOTA fluorophore in water has a peak fluorescence lifetime of ∼20 ns and emission spectra centered at 560 nm. The heavily ADOTA-labeled hyaluronic acid (HA-ADOTA) shows a red shift in the peak emission wavelength (605 nm), a weak fluorescence signal, and a shorter fluorescence lifetime (∼4 ns) due to efficient self-quenching and formation of aggregates. In the presence of hyaluronidase, the brightness and fluorescence lifetime of the sample increase with a blue shift in the peak emission to its original wavelength at 560 nm. The ratio of the fluorescence intensity of the HA-ADOTA probe at 560 and 605 nm can be used as the sensing method for the detection of hyaluronidase. The cleavage of the hyaluronic acid macromolecule reduces the energy migration between ADOTA molecules, as well as the degree of self-quenching and aggregation. This probe can be efficiently used for both intensity-based ratiometric sensing as well as fluorescence lifetime-based sensing of hyaluronidase. The proposed method makes it a rapid and sensitive assay, useful for analyzing levels of hyaluronidase in relevant clinical samples like urine or plasma. Graphical Abstract Scheme showing cleavage of HA-ADOTA probe by hyaluronidase and the change in the emission spectrum of HA-ADOTA probe before and after cleavage by hyaluronidase.
Laser excited confocal microscope fluorescence scanner and method
Mathies, R.A.; Peck, K.
1992-02-25
A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.
NASA Astrophysics Data System (ADS)
Faisal, Mahtab
Much research efforts have been devoted in developing new synthetic approaches for fluorescent silica nanoparticles (FSNPs) due to their potential high-technological applications. However, light emissions from most of the FSNPs prepared so far have been rather weak. This is due to the emission quenching caused by the aggregation of fluorophores in the solid state. We have observed a novel phenomenon of aggregation-induced emission (AIE): a series of propeller-shaped molecules such as tetraphenylethene (TPE) and silole are induced to emit efficiently by aggregate formation. Thus, they are ideal fluorophors for the construction of FSNPs and my thesis work focuses on the synthesis of silica nanoparticles containing these luminogens and magnetic nanostructures. Highly emissive FSNPs with core-shell structures are fabricated by surfactant-free sol-gel reactions of tetraphenylethene- (TPE) and silole-functionalized siloxanes followed by the reactions with tetraethoxysilane. The FSNPs are uniformly sized, surface-charged and colloidally stable. The diameters of the FSNPs are tunable in the range of 45--295 nm by changing the reaction conditions. Whereas their TPE and silole precursors are non-emissive, the FSNPs emit strong visible lights, thanks to the novel aggregation-induced emission characteristics of the TPE and silole aggregates in the hybrid nanoparticles. The FSNPs pose no toxicity to living cells and can be utilized to selectively image cytoplasm of HeLa cells. Applying the same tool in the presence of citrate-coated magnetite nanoparticles, uniform magnetic fluorescent silica nanoparticles (MFSNPs) with smooth surfaces are fabricated. These particles exhibit appreciable surface charges and hence good colloidal stability. They are superparamagnetic, exhibiting no hysteresis at room temperature. UV irradiation of a suspension of MFSNPs in ethanol gives strong blue and green emissions. The MFSNPs can selectively stain the cytoplasmic regions of the living cells. Sol-gel reaction in the presence of (3-aminopropyl)triethoxysilane has generated MFSNP-NH2 with numerous amino functionalities decorated on the surfaces, enabling them to immobilize bovine serum albumin efficiently. FSNPs with strong light emissions are facilely fabricated by thio-click chemistry, Cu(I)-catalyzed 1,3-dipolar cycloaddition, and sol-gel reaction. The FSNPs are characterized by SEM, TEM, IR, PL, and zeta potential analyses. They are uniformly sized with smooth surfaces. Upon photoexcitation, the FSNPs emit strong visible lights with fluorescence quantum yields up to 25.5%. Sugar-functionalized fluorescent silica nanoparticles are facilely fabricated by click reaction of azide-modified FSNPs with sugar- containing phenylacetylene catalyzed by Cu(PPh3)3Br in THF. The nanoparticles are uniformly sized and emit efficient light upon photoexcitation. They can function as fluorescent visualizers for intracellular imaging and can target specific cancer cells. Folic acid-functionalized fluorescent silica nanoparticles are facilely fabricated by surface functionalization of FSNPs with folic acid. The nanoparticles are spherical in shape. They possess high zeta potentials and hence exhibit excellent colloidal stability. UV irradiation of suspensions of the nanoparticles in ethanol gives strong blue and green emissions at 465 and 490 nm with absolute fluorescence quantum yields up to 47%. Carboxylic acid and thiol-functionalized fluorescent silica nanoparticles (FSNP-COOH and FSNP-SH) with uniform particle sizes, narrow size distributions, and smooth surface morphologies are fabricated. The nanoparticles possess high surface charges and exhibit strong light emissions upon photoexcitation. They can adsorb lysozyme strongly on their surfaces and for 5 mg of FSNP-COOH and FSNP-SH, they can take 209 and 86 mug of lysozyme. Thus, they are potential carriers for protein and fluorescent probes or biosensors for an array of biological applications.
Zhao, Ming; Li, Yu; Peng, Leilei
2014-05-05
We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.
Fluorescence properties of human teeth and dental calculus for clinical applications
NASA Astrophysics Data System (ADS)
Lee, Yong-Keun
2015-04-01
Fluorescent emission of human teeth and dental calculus is important for the esthetic rehabilitation of teeth, diagnosis of dental caries, and detection of dental calculus. The purposes of this review were to summarize the fluorescence and phosphorescence of human teeth by ambient ultraviolet (UV) light, to investigate the clinically relevant fluorescence measurement methods in dentistry, and to review the fluorescence of teeth and dental calculus by specific wavelength light. Dentine was three times more phosphorescent than enamel. When exposed to light sources containing UV components, the fluorescence of human teeth gives them the quality of vitality, and fluorescent emission with a peak of 440 nm is observed. Esthetic restorative materials should have fluorescence properties similar to those of natural teeth. Based on the fluorescence of teeth and restorative materials as determined with a spectrophotometer, a fluorescence parameter was defined. As to the fluorescence spectra by a specific wavelength, varied wavelengths were investigated for clinical applications, and several methods for the diagnosis of dental caries and the detection of dental calculus were developed. Since fluorescent properties of dental hard tissues have been used and would be expanded in diverse fields of clinical practice, these properties should be investigated further, embracing newly developed optical techniques.
Fluorescence properties of human teeth and dental calculus for clinical applications.
Lee, Yong-Keun
2015-04-01
Fluorescent emission of human teeth and dental calculus is important for the esthetic rehabilitation of teeth, diagnosis of dental caries, and detection of dental calculus. The purposes of this review were to summarize the fluorescence and phosphorescence of human teeth by ambient ultraviolet (UV) light, to investigate the clinically relevant fluorescence measurement methods in dentistry, and to review the fluorescence of teeth and dental calculus by specific wavelength light. Dentine was three times more phosphorescent than enamel. When exposed to light sources containing UV components, the fluorescence of human teeth gives them the quality of vitality, and fluorescent emission with a peak of 440 nm is observed. Esthetic restorative materials should have fluorescence properties similar to those of natural teeth. Based on the fluorescence of teeth and restorative materials as determined with a spectrophotometer, a fluorescence parameter was defined. As to the fluorescence spectra by a specific wavelength, varied wavelengths were investigated for clinical applications, and several methods for the diagnosis of dental caries and the detection of dental calculus were developed. Since fluorescent properties of dental hard tissues have been used and would be expanded in diverse fields of clinical practice, these properties should be investigated further, embracing newly developed optical techniques.
Fluorescence enhancement of photoswitchable metal ion sensors
NASA Astrophysics Data System (ADS)
Sylvia, Georgina; Heng, Sabrina; Abell, Andrew D.
2016-12-01
Spiropyran-based fluorescence sensors are an ideal target for intracellular metal ion sensing, due to their biocompatibility, red emission frequency and photo-controlled reversible analyte binding for continuous signal monitoring. However, increasing the brightness of spiropyran-based sensors would extend their sensing capability for live-cell imaging. In this work we look to enhance the fluorescence of spiropyran-based sensors, by incorporating an additional fluorophore into the sensor design. We report a 5-membered monoazacrown bearing spiropyran with metal ion specificity, modified to incorporate the pyrene fluorophore. The effect of N-indole pyrene modification on the behavior of the spiropyran molecule is explored, with absorbance and fluorescence emission characterization. This first generation sensor provides an insight into fluorescence-enhancement of spiropyran molecules.
Multispectral laser-induced fluorescence imaging system for large biological samples
NASA Astrophysics Data System (ADS)
Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren
2003-07-01
A laser-induced fluorescence imaging system developed to capture multispectral fluorescence emission images simultaneously from a relatively large target object is described. With an expanded, 355-nm Nd:YAG laser as the excitation source, the system captures fluorescence emission images in the blue, green, red, and far-red regions of the spectrum centered at 450, 550, 678, and 730 nm, respectively, from a 30-cm-diameter target area in ambient light. Images of apples and of pork meat artificially contaminated with diluted animal feces have demonstrated the versatility of fluorescence imaging techniques for potential applications in food safety inspection. Regions of contamination, including sites that were not readily visible to the human eye, could easily be identified from the images.
Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing
2016-01-26
Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.
LucY: A Versatile New Fluorescent Reporter Protein
Auldridge, Michele E.; Franz, Laura P.; Bingman, Craig A.; Yennamalli, Ragothaman M.; Phillips, George N.; Mead, David; Steinmetz, Eric J.
2015-01-01
We report on the discovery, isolation, and use of a novel yellow fluorescent protein. Lucigen Yellow (LucY) binds one FAD molecule within its core, thus shielding it from water and maintaining its structure so that fluorescence is 10-fold higher than freely soluble FAD. LucY displays excitation and emission spectra characteristic of FAD, with 3 excitation peaks at 276nm, 377nm, and 460nm and a single emission peak at 530nm. These excitation and emission maxima provide the large Stokes shift beneficial to fluorescence experimentation. LucY belongs to the MurB family of UDP-N-acetylenolpyruvylglucosamine reductases. The high resolution crystal structure shows that in contrast to other structurally resolved MurB enzymes, LucY does not contain a potentially quenching aromatic residue near the FAD isoalloxazine ring, which may explain its increased fluorescence over related proteins. Using E. coli as a system in which to develop LucY as a reporter, we show that it is amenable to circular permutation and use as a reporter of protein-protein interaction. Fragmentation between its distinct domains renders LucY non-fluorescent, but fluorescence can be partially restored by fusion of the fragments to interacting protein domains. Thus, LucY may find application in Protein-fragment Complementation Assays for evaluating protein-protein interactions. PMID:25906065
LucY: A Versatile New Fluorescent Reporter Protein.
Auldridge, Michele E; Cao, Hongnan; Sen, Saurabh; Franz, Laura P; Bingman, Craig A; Yennamalli, Ragothaman M; Phillips, George N; Mead, David; Steinmetz, Eric J
2015-01-01
We report on the discovery, isolation, and use of a novel yellow fluorescent protein. Lucigen Yellow (LucY) binds one FAD molecule within its core, thus shielding it from water and maintaining its structure so that fluorescence is 10-fold higher than freely soluble FAD. LucY displays excitation and emission spectra characteristic of FAD, with 3 excitation peaks at 276 nm, 377 nm, and 460 nm and a single emission peak at 530 nm. These excitation and emission maxima provide the large Stokes shift beneficial to fluorescence experimentation. LucY belongs to the MurB family of UDP-N-acetylenolpyruvylglucosamine reductases. The high resolution crystal structure shows that in contrast to other structurally resolved MurB enzymes, LucY does not contain a potentially quenching aromatic residue near the FAD isoalloxazine ring, which may explain its increased fluorescence over related proteins. Using E. coli as a system in which to develop LucY as a reporter, we show that it is amenable to circular permutation and use as a reporter of protein-protein interaction. Fragmentation between its distinct domains renders LucY non-fluorescent, but fluorescence can be partially restored by fusion of the fragments to interacting protein domains. Thus, LucY may find application in Protein-fragment Complementation Assays for evaluating protein-protein interactions.
Calimag-Williams, Korina; Knobel, Gaston; Goicoechea, H C; Campiglia, A D
2014-02-06
An attractive approach to handle matrix interference in samples of unknown composition is to generate second- or higher-order data formats and process them with appropriate chemometric algorithms. Several strategies exist to generate high-order data in fluorescence spectroscopy, including wavelength time matrices, excitation-emission matrices and time-resolved excitation-emission matrices. This article tackles a different aspect of generating high-order fluorescence data as it focuses on total synchronous fluorescence spectroscopy. This approach refers to recording synchronous fluorescence spectra at various wavelength offsets. Analogous to the concept of an excitation-emission data format, total synchronous data arrays fit into the category of second-order data. The main difference between them is the non-bilinear behavior of synchronous fluorescence data. Synchronous spectral profiles change with the wavelength offset used for sample excitation. The work presented here reports the first application of total synchronous fluorescence spectroscopy to the analysis of monohydroxy-polycyclic aromatic hydrocarbons in urine samples of unknown composition. Matrix interference is appropriately handled by processing the data either with unfolded-partial least squares and multi-way partial least squares, both followed by residual bi-linearization. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of solvents on the fluorescence spectra of bacterial luciferase
NASA Astrophysics Data System (ADS)
Sukovataya, Irina E.; Tyulkova, Natalya A.; Kaykova, Elisaveta V.
2006-08-01
Bacteria luciferases catalyze the oxidation reaction of the long-chain aliphatic aldehyde and reduced flavinmononucleotide involving molecular oxygen to a respective fatty acid emitting light quanta in the visible spectrum. Fluorescence emission of luciferases from Photobacterium leiognathi dissolved in organic solvent-water mixtures was investigated. Methanol, acetone, dimethyl sulfoxide and formamide were used as organic solvents. As the methanol and acetone concentration is increased the emission maximum peak is decrease. In contrast, with dimethyl sulfoxide and formamide addition induced a increasing of the emission maximum intensity. The values of wavelength maximum (λ max) at the addition of this solvent can shows the spectra shifted to the red by about 12 nm. These increasing in the fluorescence intensity and in the λ max may be due to luciferase denaturation, resulting from the more intensive contact of chromospheres of luciferase with the solvent. At all used concentrations of methanol, acetone and formamide the shape of the fluorescence spectra was not changed. These studies demonstrate that the luciferase tryptophan fluorescence is sensitive to changes of physical-chemical property of enzyme environment. A comparison of activation/inactivation and fluorescence spectra of luciferase in methanol or acetone solutions shows that the extent of inactivation is larger than the extent of fluorescence changes at the same methanol or acetone concentration.
LucY: A versatile new fluorescent reporter protein
Auldridge, Michele E.; Cao, Hongnan; Sen, Saurabh; ...
2015-04-23
We report on the discovery, isolation, and use of a novel yellow fluorescent protein. Lucigen Yellow (LucY) binds one FAD molecule within its core, thus shielding it from water and maintaining its structure so that fluorescence is 10-fold higher than freely soluble FAD. LucY displays excitation and emission spectra characteristic of FAD, with 3 excitation peaks at 276nm, 377nm, and 460nm and a single emission peak at 530nm. These excitation and emission maxima provide the large Stokes shift beneficial to fluorescence experimentation. LucY belongs to the MurB family of UDP-N-acetylenolpyruvylglucosamine reductases. The high resolution crystal structure shows that in contrastmore » to other structurally resolved MurB enzymes, LucY does not contain a potentially quenching aromatic residue near the FAD isoalloxazine ring, which may explain its increased fluorescence over related proteins. Using E. coli as a system in which to develop LucY as a reporter, we show that it is amenable to circular permutation and use as a reporter of protein-protein interaction. Fragmentation between its distinct domains renders LucY non-fluorescent, but fluorescence can be partially restored by fusion of the fragments to interacting protein domains. Thus, LucY may find application in Protein-fragment Complementation Assays for evaluating protein-protein interactions.« less
Fluorescence lifetime imaging and Fourier transform infrared spectroscopy of Michelangelo's David.
Comelli, Daniela; Valentini, Gianluca; Cubeddu, Rinaldo; Toniolo, Lucia
2005-09-01
We developed a combined procedure for the analysis of works of art based on a portable system for fluorescence imaging integrated with analytical measurements on microsamples. The method allows us to localize and identify organic and inorganic compounds present on the surface of artworks. The fluorescence apparatus measures the temporal and spectral features of the fluorescence emission, excited by ultraviolet (UV) laser pulses. The kinetic of the emission is studied through a fluorescence lifetime imaging system, while an optical multichannel analyzer measures the fluorescence spectra of selected points. The chemical characterization of the compounds present on the artistic surfaces is then performed by means of analytical measurements on microsamples collected with the assistance of the fluorescence maps. The previous concepts have been successfully applied to study the contaminants on the surface of Michelangelo's David. The fluorescence analysis combined with Fourier transform infrared (FT-IR) measurements revealed the presence of beeswax, which permeates most of the statue surface, and calcium oxalate deposits mainly arranged in vertical patterns and related to rain washing.
Seismic detection of increased degassing before Kīlauea's 2008 summit explosion.
Johnson, Jessica H; Poland, Michael P
2013-01-01
The 2008 explosion that started a new eruption at the summit of Kīlauea Volcano, Hawai'i, was not preceded by a dramatic increase in earthquakes nor inflation, but was associated with increases in SO2 emissions and seismic tremor. Here we perform shear wave splitting analysis on local earthquakes spanning the onset of the eruption. Shear wave splitting measures seismic anisotropy and is traditionally used to infer changes in crustal stress over time. We show that shear wave splitting may also vary due to changes in volcanic degassing. The orientation of fast shear waves at Kīlauea is usually controlled by structure, but in 2008 showed changes with increased SO2 emissions preceding the start of the summit eruption. This interpretation for changing anisotropy is supported by corresponding decreases in Vp/Vs ratio. Our result demonstrates a novel method for detecting changes in gas flux using seismic observations and provides a new tool for monitoring under-instrumented volcanoes.
Seismic detection of increased degassing before Kīlauea's 2008 summit explosion
Johnson, Jessica H.; Poland, Michael P.
2013-01-01
The 2008 explosion that started a new eruption at the summit of Kīlauea Volcano, Hawai‘i, was not preceded by a dramatic increase in earthquakes nor inflation, but was associated with increases in SO2 emissions and seismic tremor. Here we perform shear wave splitting analysis on local earthquakes spanning the onset of the eruption. Shear wave splitting measures seismic anisotropy and is traditionally used to infer changes in crustal stress over time. We show that shear wave splitting may also vary due to changes in volcanic degassing. The orientation of fast shear waves at Kīlauea is usually controlled by structure, but in 2008 showed changes with increased SO2 emissions preceding the start of the summit eruption. This interpretation for changing anisotropy is supported by corresponding decreases in Vp/Vs ratio. Our result demonstrates a novel method for detecting changes in gas flux using seismic observations and provides a new tool for monitoring under-instrumented volcanoes.
Saturated virtual fluorescence emission difference microscopy based on detector array
NASA Astrophysics Data System (ADS)
Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu
2017-07-01
Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.
Viscosity and medium effects on the fluorescence and photochemical behaviour of some aryl chalcones
NASA Astrophysics Data System (ADS)
Ebeid, El-Zeiny M.; Abdel-Kader, Mahmood H.; Issa, Raafat M.; El-Daly, Samy A.
1988-05-01
The emission, excitation and absorption spectra toghether with the fluorescence and photochemical quantum yields of some chalcone derivatives have been studied in organic solvents and micellar and microemulsion media. Both 4-[2-(2-pyridyl)ethenyl] ( I) and 4-[2-(4-pyridyl)ethenyl ( II) chalcones show large positive solvatochromic effects. The fluorescence quantum yields increase substantially as the medium viscosity increases with a subsequent decrease in the photochemical quatum yield. Compounds I and II undergo excited-state molecular aggregation in concentrated solutions giving excimer-like emission that coincides with emission from crystalline samples. The enthalpies of photoassociation have been estimated. The chalcone derivative I acts as an efficient quencher of the fluorescence of the laser dye 1,4-bis (β-pyridyl-2-vinyl)benzene via a long-range mechanism. The excited-state lifetimes of both I and II are short and at 20°C their τ values are less than 800 ps.
NASA Astrophysics Data System (ADS)
Li, Kai; Qin, Wei; Ding, Dan; Tomczak, Nikodem; Geng, Junlong; Liu, Rongrong; Liu, Jianzhao; Zhang, Xinhai; Liu, Hongwei; Liu, Bin; Tang, Ben Zhong
2013-01-01
Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis.
Mani, Tomoyasu; Vinogradov, Sergei A
2013-08-06
Photon upconversion based on sensitized triplet-triplet annihilation (TTA) presents interest for such areas as photovoltaics and imaging. Usually energy upconversion is observed as p -type delayed fluorescence from molecules whose triplet states are populated via energy transfer from a suitable triplet donor, followed by TTA. Magnetic field effects (MFE) on delayed fluorescence in molecular crystals are well known; however, there exist only a few examples of MFE on TTA in solutions, and all of them are limited to UV-emitting materials. Here we present MFE on TTA-mediated visible and near infrared (NIR) emission, sensitized by far-red absorbing metalloporphyrins in solutions at room temperature. In addition to visible delayed fluorescence from annihilator, we also observed NIR emission from the sensitizer, occurring as a result of triplet-triplet energy transfer back from annihilator, termed "delayed phosphorescence". This emission also exhibits MFE, but opposite in sign to the annihilator fluorescence.
Saha, Manik Lal; Yan, Xuzhou; Stang, Peter J
2016-11-15
Over the past couple of decades, coordination-driven self-assembly has evolved as a broad multidisciplinary domain that not only covers the syntheses of aesthetically pleasing supramolecular architectures but also emerges as a method to form new optical materials, chemical sensors, theranostic agents, and compounds with light-harvesting and emissive properties. The majority of these applications depend upon investigations that reveal the photophysical nature and electronic structure of supramolecular coordination complexes (SCCs), including two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages. As such, well-defined absorption and emission spectra are important for a given SCC to be used for sensing, bioimaging, and other applications with molecular fluorescence being an important component. In this Account, we summarize the photophysical properties of some bis(phosphine)organoplatinum(II) compounds and their discrete SCCs. The platinum(II) based organometallic precursors typically display spectral red-shifts and have low fluorescence quantum yields and short fluorescence lifetimes compared to their organic counterparts because the introduction of metal centers enhances both intersystem crossing (ISC) and intramolecular charge transfer (ICT) processes, which can compete with the fluorescence emissions. Likewise ligands with conjugation can also increase the ICT process; hence the corresponding organoplatinum(II) compounds undergo a further decrease in fluorescence lifetimes. The use of endohedral amine functionalized 120°-bispyridyl ligands can dramatically enhance the emission properties of the resultant organoplatinum(II) based SCCs. As such these SCCs display emissions in the visible region (ca. 400-500 nm) and are significantly red-shifted (ca. 80-100 nm) compared to the ligands. This key feature makes them suitable as supramolecular theranostic agents wherein these unique emission properties provide diagnostic spectroscopic handles and the organoplatinum(II) centers act as potential anticancer agents. Using steady state and time-resolved-spectroscopic techniques and quantum computations in concert, we have determined that the emissive properties stem from the ligand-centered transitions involving π-type molecular orbitals with modest contributions from the metal-based orbitals. The self-assembly and the photophysics of organoplatinum(II) ← 3-substituted pyridyl based SCCs are highly diverse. Subtle changes in the ligands' structures can form molecular congener systems with distinct conformational and photophysical properties. Furthermore, the heterometallic SCCs described herein possess rich photophysical properties and can be used for sensing based applications. Tetraphenylethylene (TPE) based SCCs display emissions in the aggregated state as well as in dilute solutions. This is a unique phenomenon that bridges the aggregation caused quenching (ACQ) and aggregation induced emission (AIE) effects. Moreover, a TPE based metallacage exhibits solvatoluminescence, including white light emission in THF solvent, and can act as a fluorescence-sensor for structurally similar ester compounds.
Native fluorescence characterization of human liver abnormalities
NASA Astrophysics Data System (ADS)
Ganesan, Singaravelu; Madhuri, S.; Aruna, Prakasa R.; Suchitra, S.; Srinivasan, T. G.
1999-05-01
Fluorescence spectroscopy of intrinsic biomolecules has been extensively used in biology and medicine for the past several decades. In the present study, we report the native fluorescence characteristics of blood plasma from normal human subjects and patients with different liver abnormalities such as hepatitis, leptospirosis, jaundice, cirrhosis and liver cell failure. Native fluorescence spectra of blood plasma -- acetone extract were measured at 405 nm excitation. The average spectrum of normal blood plasma has a prominent emission peak around 464 nm whereas in the case of liver diseased subjects, the primary peak is red shifted with respect to normal. In addition, liver diseased cases show distinct secondary emission peak around 615 nm, which may be attributed to the presence of endogenous porphyrins. The red shift of the prominent emission peak with respect to normal is found to be maximum for hepatitis and minimum for cirrhosis whereas the secondary emission peak around 615 nm was found to be more prominent in the case of cirrhosis than the rest. The ratio parameter I465/I615 is found to be statistically significant (p less than 0.001) in discriminating liver abnormalities from normal.
NASA Astrophysics Data System (ADS)
Zhang, Shujuan; Ding, Liping; Lü, Fengting; Liu, Taihong; Fang, Yu
2012-11-01
The detection of nitroaromatics in aqueous solutions by a novel pyrene-functionalized film has been investigated in the present study. The pyrene moieties were attached on the glass surface via a long flexible spacer based on self-assembled monolayer technique. Steady-state fluorescence measurements revealed that these surface-attached pyrene moieties exhibited both monomer and excimer emission. Nitroaromatics such as 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,4,6-trinitrophenol (picric acid) were found to efficiently quench the fluorescence emission of this film. The quenching results demonstrated that the excimer emission of these surface-confined pyrene moieties is more sensitive to the presence of nitroaromatics than the monomer emission. The quenching mechanism was examined through fluorescence lifetime measurement and it revealed that the quenching is static in nature and may be caused by electron transfer from the polycyclic aromatics to the nitroaromatics. Furthermore, the response of the film to nitroaromatics is fast and reversible, and the obtained film shows promising potentials in detecting explosives in aqueous environment.
Palmer, Caroline V; Roth, Melissa S; Gates, Ruth D
2009-02-01
Reports of coral disease have increased dramatically over the last decade; however, the biological mechanisms that corals utilize to limit infection and resist disease remain poorly understood. Compromised coral tissues often display non-normal pigmentation that potentially represents an inflammation-like response, although these pigments remain uncharacterized. Using spectral emission analysis and cryo-histological and electrophoretic techniques, we investigated the pink pigmentation associated with trematodiasis, infection with Podocotyloides stenometre larval trematode, in Porites compressa. Spectral emission analysis reveals that macroscopic areas of pink pigmentation fluoresce under blue light excitation (450 nm) and produce a broad emission peak at 590 nm (+/-6) with a 60-nm full width at half maximum. Electrophoretic protein separation of pigmented tissue extract confirms the red fluorescence to be a protein rather than a low-molecular-weight compound. Histological sections demonstrate green fluorescence in healthy coral tissue and red fluorescence in the trematodiasis-compromised tissue. The red fluorescent protein (FP) is limited to the epidermis, is not associated with cells or granules, and appears unstructured. These data collectively suggest that the red FP is produced and localized in tissue infected by larval trematodes and plays a role in the immune response in corals.
NASA Astrophysics Data System (ADS)
Zhang, Guomei; Qiao, Yunyun; Xu, Ting; Zhang, Caihong; Zhang, Yan; Shi, Lihong; Shuang, Shaomin; Dong, Chuan
2015-07-01
We report a novel and environmentally friendly fluorescent probe for detecting the cyanide ion (CN-) using l-amino acid oxidase (LAAOx)-protected Au nanoclusters (LAAOx@AuNCs) with red emission. The fluorescence-based sensing behaviour of LAAOx@AuNCs towards anions was investigated in buffered aqueous media. Among the anions studied, CN- was found to effectively quench the fluorescence emission of AuNCs based on CN- induced Au core decomposition. Excellent sensitivity and selectivity toward the detection of CN- in aqueous solution were observed. The CN- detection limit was determined to be approximately 180 nM, which is 15 times lower than the maximum level (2700 nM) of CN- in drinking water permitted by the World Health Organization (WHO). A linear relationship between the fluorescence intensity and CN- concentration was observed in two ranges of CN- concentration, including 3.2 × 10-6 to 3.4 × 10-5 mol L-1 and 3.81 × 10-5 to 1.04 × 10-4 mol L-1. The high sensitivity and selectivity to CN- among the 17 types of anions make the AuNCs good candidates for use in fluorescent nanoprobes of CN-.
Multicolor fluorescence of a styrylquinoline dye tuned by metal cations.
Shiraishi, Yasuhiro; Ichimura, Chizuru; Sumiya, Shigehiro; Hirai, Takayuki
2011-07-18
A styrylquinoline dye with a dipicolylamine (DPA) moiety (1) has been synthesized. The dye 1 in acetonitrile demonstrates multicolor fluorescence upon addition of different metal cations. Compound 1 shows a green fluorescence without cations. Coordination of 1 with Cd(2+) shows a blue emission, while with Hg(2+) and Pb(2+) exhibits yellow and orange emissions, respectively. The different fluorescence spectra are due to the change in intramolecular charge transfer (ICT) properties of 1 upon coordination with different cations. The DPA and quinoline moieties of 1 behave as the electron donor and acceptor units, respectively, and both units act as the coordination site for metal cations. Cd(2+) coordinates with the DPA unit. This reduces the donor ability of the unit and decreases the energy level of HOMO. This results in an increase in HOMO-LUMO gap and blue shifts the emission. Hg(2+) or Pb(2+) coordinate with both DPA and quinoline units. The coordination with the quinoline unit decreases the energy level of LUMO. This results in a decrease in HOMO-LUMO gap and red shifts the emission. Addition of two different metal cations successfully creates intermediate colors; in particular, the addition of Cd(2+) and Pb(2+) at once creates a bright white fluorescence. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment.
Hasan, Md Tanvir; Senger, Brian J; Ryan, Conor; Culp, Marais; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery L; Naumov, Anton V
2017-07-25
Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties. Concomitantly it leads to an initial increase in GO fluorescence intensity and significant (100 nm) blue shifts in emission maxima. Based on the model of GO fluorescence originating from sp 2 graphitic islands confined by oxygenated addends, we propose that ozone-induced functionalization decreases the size of graphitic islands affecting the GO band gap and emission energies. TEM analyses of GO flakes confirm the size decrease of ordered sp 2 domains with ozone treatment, whereas semi-empirical PM3 calculations on model addend-confined graphitic clusters predict the inverse dependence of the band gap energies on sp 2 cluster size. This model explains ozone-induced increase in emission energies yielding fluorescence blue shifts and helps develop an understanding of the origins of GO fluorescence emission. Furthermore, ozone treatment provides a versatile approach to controllably alter GO band gap for optoelectronics and bio-sensing applications.
Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G.; Duan, Xue
2015-01-01
In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm2 at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting. PMID:26174201
Carr, Jessica A; Franke, Daniel; Caram, Justin R; Perkinson, Collin F; Saif, Mari; Askoxylakis, Vasileios; Datta, Meenal; Fukumura, Dai; Jain, Rakesh K; Bawendi, Moungi G; Bruns, Oliver T
2018-04-24
Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.
Interpretation of the fluorescence signatures from vegetation
NASA Astrophysics Data System (ADS)
Buschmann, C.
Vegetation emits fluorescence as part of the energy taken up by absorption %of solar radiation from UV to the visible. This fluorescence consists of light with low intensity (only few percents of the reflected light) emitted from the leaves. The fluorescence emission of a green leaf is characterized by four bands with maxima in the blue (440 nm), green (520 nm), red (690 nm) and far red (740 nm) spectral region. The intensity of fluorescence in the maxima of the emission spectrum varies depending on the following six basic parameters which must be taken into account for the interpretation of fluorescence signatures from vegetation: (a) content of the fluorophores (ferulic acid, chlorophyll a), (b) temperature of the leaf, (c) penetration of excitation light into the leaf, (d) emission of fluorescence from the leaf (re-absorption inside the leaf tissue), (e) photosynthetic activity of the leaf, (f) non-radiative decay (heat production) parallel to the fluorescence The ratios between the intensities of the maxima (F440/F690, F440/F520, F690/F740) are used as characteristic fluorescence parameter. The wide range of changes of these ratios caused by differences in the leaf tissue (aerial interspaces, variegated/homogeneous green leaves), various types of stress (UV, photoinhibition, sun exposure, heat, water deficiency, N-deficiency) and chemicals (inhibitors, fertilizers) can be explained by changes of the six basic parameters. It will be shown that the interpretation of the fluorescence signatures, in most cases, must be based on a complex consideration of more than one of the basic parameters.
Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme
Zhang, Junshe; Haribal, Vasudev; Li, Fanxing
2017-01-01
We report iron-containing mixed-oxide nanocomposites as highly effective redox materials for thermochemical CO2 splitting and methane partial oxidation in a cyclic redox scheme, where methane was introduced as an oxygen “sink” to promote the reduction of the redox materials followed by reoxidation through CO2 splitting. Up to 96% syngas selectivity in the methane partial oxidation step and close to complete conversion of CO2 to CO in the CO2-splitting step were achieved at 900° to 980°C with good redox stability. The productivity and production rate of CO in the CO2-splitting step were about seven times higher than those in state-of-the-art solar-thermal CO2-splitting processes, which are carried out at significantly higher temperatures. The proposed approach can potentially be applied for acetic acid synthesis with up to 84% reduction in CO2 emission when compared to state-of-the-art processes. PMID:28875171
Excitation-emission matrices measurements of human cutaneous lesions: tool for fluorescence origin
NASA Astrophysics Data System (ADS)
Zhelyazkova, A.; Borisova, E.; Angelova, L.; Pavlova, E.; Keremedchiev, M.
2013-11-01
The light induced fluorescence (LIF) technique has the potential of providing real-time diagnosis of malignant and premalignant skin tissue; however, human skin is a multilayered and inhomogeneous organ with different optical properties that complicate the analysis of cutaneous fluorescence spectra. In spite of the difficulties related to the detection and analysis of fluorescent data from skin lesions, this technique is among the most widely applied techniques in laboratorial and pre-clinical investigations for early skin neoplasia diagnosis. The important point is to evaluate all sources of intrinsic fluorescence and find any significant alterations distinguishing the normal skin from a cancerous state of the tissue; this would make the autofluorescence signal obtained useful for the development of a non-invasive diagnostic tool for the dermatological practice. Our investigations presented here were based on ex vivo point-by-point measurements of excitation-emission matrices (EEM) from excised tumor lesions and the surrounding skin taken during the daily clinical practice of Queen Jiovanna- ISUL University Hospital, Sofia, the local Ethical Committee's approval having already been obtained. The fluorescence emission was measured between 300 nm and 800 nm using excitation in the 280-440 nm spectral range. In the process of excitation-emission matrices (EEM) measurements we could establish the origin of the autofluorescence and the compounds related by assigning the excitation and emission maxima obtained during the experiments. The EEM were compared for normal human skin, basal cell carcinoma, squamous cell carcinoma, benign nevi and malignant melanoma lesions to obtain information for the most common skin malignancies and their precursors. The main spectral features and the applicability of the technique of autofluorescent spectroscopy of human skin in general as an initial diagnostic tool are discussed as well.
Multi-stimuli responsive luminescent azepane-substituted β-diketones and difluoroboron complexes.
Wang, Fang; DeRosa, Christopher A; Daly, Margaret L; Song, Daniel; Fraser, Cassandra L
2017-09-01
Difluoroboron β-diketonate (BF 2 bdk) compounds show environment-sensitive optical properties in solution, aggregation-induced emission (AIE) and multi-stimuli responsive fluorescence switching in the solid state. Here, a series of 4-azepane-substituted β-diketone (bdk) ligands ( L-H , L-OMe , L-Br ) and their corresponding difluoroboron dyes ( D-H , D-OMe , D-Br ) were synthesized, and various responsive fluorescence properties of the compounds were studied, including solvatochromism, viscochromism, AIE, mechanochromic luminescence (ML) and halochromism. Compared to the β-diketones, the boron complexes exhibited higher extinction coefficients but lower quantum yields, and red-shifted absorption and emission in CH 2 Cl 2 . Computational studies showed that intramolecular charge transfer (ICT) dominated rather than π-π* transitions in all the compounds regardless of boron coordination. In solution, all the bdk ligands and boron dyes showed red-shifted emission in more polar solvents and increased fluorescence intensity in more viscous media. Upon aggregation, the emission of the β-diketones was quenched, however, the boronated dyes showed increased emission, indicative of AIE. Solid-state emission properties, ML and halochromism, were investigated on spin cast films. For ML, smearing caused a bathochromic emission shift for L-Br , and powder X-ray diffraction (XRD) patterns showed that the "as spun" and thermally annealed states were more crystalline and the smeared state was amorphous. No obvious ML emission shift was observed for L-H or L-OMe , and the boronated dyes were not mechano-active. Trifluoroacetic acid (TFA) and triethylamine (TEA) vapors were used to study halochromism. Large hypsochromic emission shifts were observed for all the compounds after TFA vapor was applied, and reversible fluorescence switching was achieved using the acid/base pair.
Fixed wavelength fluorescence (FF) was compared to high-performance liquid chromatography with fluorescence detection (HPLC-F) as an estimation of polycyclic aromatic hydrocarbon (PAH) exposure to fish. Two excitation/emission wavelength pairs were used to measure naphthalene- an...
Lúcio, Aline D; Vequi-Suplicy, Cíntia C; Fernandez, Roberto M; Lamy, M Teresa
2010-03-01
The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.
Two-photon excited fluorescence emission from hemoglobin
NASA Astrophysics Data System (ADS)
Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.
2015-03-01
Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.
"Yin and Yang" tuned fluorescence sensing behavior of branched 1,4-bis(phenylethynyl)benzene.
Sun, Xiaohuan; Qi, Yanyu; Liu, Huijing; Peng, Junxia; Liu, Kaiqiang; Fang, Yu
2014-11-26
Achieving high sensing performance and good photostability of fluorescent films based on adlayer construction represents a significant challenge in the area of functional fluorescent film research. A solution may be offered by "Yin and Yang", a balance idea from Chinese philosophy, for the design of a fluorophore and the relevant assembly. Accordingly, a 1,4-bis(phenylethynyl)benzene (BPEB) derivative (C2) with two cholesteryl residues in the side chains and two glucono units in the head and tail positions was designed and synthesized. As a control, compound C1 was also prepared. The only difference between C1 and C2 is that the hydroxyl groups in the glucono residues of C1 are fully acetylated. Studies of the fluorescence behaviors of the two compounds in solution revealed that both the profile and the intensity of the fluorescence emission of the compounds, in particular C2, are dependent on their concentration and on the nature of solvents employed. Presence of HCl also alters the emission of the compounds in solution. On the basis of the studies, three fluorescent films were prepared, and their sensing performances to HCl in vapor state were studied. Specifically, Film 1 and Film 3 were fabricated via physical coating, separately, of C2 and C1 on glass plate surfaces. As another comparison, Film 2 was also fabricated with C2 as a fluorophore but at a much lower concentration if compared to that for the preparation of Film 1. As revealed by SEM and fluorescent microscopy studies, Film 1 and Film 2 exhibit well-defined microstructures, which are spherical particles and spherical pores, respectively, while Film 3 is characterized by irregular aggregates of C1. Fluorescence measurements demonstrated that Film 1 and Film 3 both display an aggregation emission, of which the emission from Film 1 is supersensitive to the presence of HCl vapor (detection limit: 0.4 ppb, a lowest value reported in the literatures). For Film 3, however, its emission is insensitive to the presence of the vapor. Similarly, the emission from the nonaggregated state of C2, a characteristic emission of Film 2, is also insensitive to the presence of the vapor. Furthermore, the sensing process of Film 1 to the vapor is highly selective and fully reversible, which lays foundation for its real-life uses. As for C2, the results from solution studies and those from film studies demonstrate clearly that introduction of auxiliary structures with opposite properties onto a typical fluorophore is a good strategy to develop fluorescent supramolecular motifs with rich assembly properties and great potential of applications.
Spectroscopic studies on di-pophyrin rotor as micro-viscosity sensor
NASA Astrophysics Data System (ADS)
Doan, H.; Raut, S.; Kimbal, J.; Gryczynski, Z.; Dzyuba, S.; Balaz, M.
2015-03-01
In typical biological systems the fluid compartment makes up more than 70% percent of the system weight. A variety of mass and signal transportation as well as intermolecular interactions are often governed by viscosity. It is important to be able to measure/estimate viscosity and detect the changes in viscosity upon various stimulations. Understanding the influence of changes in viscosity is crucial and development of the molecular systems that sensitive to micro-viscosity is a goal of many researches. Molecular rotors have been considered the potential target since they present enhanced sensitivity to local viscosity that can strongly restrict molecular rotation. To understand the mechanics of rotor interaction with the environment we have been studied conjugated pophyrin-dimer rotor (DP) that emit in the near IR. Our goal is to investigate the photo physical properties such as absorption, transition moment orientation, emission and excitation, polarization anisotropy and fluorescence lifetime in various mediums of different viscosities from ethanol to poly vinyl alcohol (PVA) matrices. The results imply the influences of the medium's viscosity on the two distinct confirmations: planar and twisted conformations of DP. Linear dichroism from polarized absorption in PVA matrices shows various orientations of transition moments. Excitation anisotropy shows similar transition splitting between two conformations. Time resolved intensity decay at two different observations confirms the two different emission states and furthermore the communication between the two states in the form of energy transfer upon excitation.
NASA Technical Reports Server (NTRS)
Malak, H.; Mahtani, H.; Herman, P.; Vecer, J.; Lu, X.; Chang, T. Y.; Richmond, Robert C.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
A high-performance hyperspectral imaging module with high throughput of light suitable for low-intensity fluorescence microscopic imaging and subsequent analysis, including single-pixel-defined emission spectroscopy, was tested on Sf21 insect cells expressing green fluorescence associated with recombinant green fluorescent protein linked or not with the membrane protein acyl-CoA:cholesterol acyltransferase. The imager utilized the phenomenon of optical activity as a new technique providing information over a spectral range of 220-1400 nm, and was inserted between the microscope and an 8-bit CCD video-rate camera. The resulting fluorescence image did not introduce observable image aberrations. The images provided parallel acquisition of well resolved concurrent spatial and spectral information such that fluorescence associated with green fluorescent protein alone was demonstrated to be diffuse within the Sf21 insect cell, and that green fluorescence associated with the membrane protein was shown to be specifically concentrated within regions of the cell cytoplasm. Emission spectra analyzed from different regions of the fluorescence image showed blue shift specific for the regions of concentration associated with the membrane protein.
Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling
2014-01-01
This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d'Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq3-Au samples clearly varied with the Alq3 thickness (90, 130, and 156 nm).
2014-01-01
This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d’Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq3-Au samples clearly varied with the Alq3 thickness (90, 130, and 156 nm). PMID:25328506
Zhou, Xue; Li, Mingzhu; Wang, Kang; Li, Huizeng; Li, Yanan; Li, Chang; Yan, Yongli; Zhao, Yongsheng; Song, Yanlin
2018-03-25
Stimulated emission in perovskite-embedded polymer opal structures is investigated. A polymer opal structure is filled with a perovskite, and perovskite photonic crystals are prepared. The spontaneous emission of the perovskite embedded in the polymer opal structures exhibits clear signatures of amplified spontaneous emission (ASE) via gain modulation. The difference in refractive-index contrast between the perovskite and the polymer opal is large enough for retaining photonic-crystals properties. The photonic band gap has a strong effect on the fluorescence emission intensity and lifetime. The stimulated emission spectrum exhibits a narrow ASE rather than a wide fluorescence peak in the thin film. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dual-emissive quantum dots for multispectral intraoperative fluorescence imaging.
Chin, Patrick T K; Buckle, Tessa; Aguirre de Miguel, Arantxa; Meskers, Stefan C J; Janssen, René A J; van Leeuwen, Fijs W B
2010-09-01
Fluorescence molecular imaging is rapidly increasing its popularity in image guided surgery applications. To help develop its full surgical potential it remains a challenge to generate dual-emissive imaging agents that allow for combined visible assessment and sensitive camera based imaging. To this end, we now describe multispectral InP/ZnS quantum dots (QDs) that exhibit a bright visible green/yellow exciton emission combined with a long-lived far red defect emission. The intensity of the latter emission was enhanced by X-ray irradiation and allows for: 1) inverted QD density dependent defect emission intensity, showing improved efficacies at lower QD densities, and 2) detection without direct illumination and interference from autofluorescence. Copyright 2010 Elsevier Ltd. All rights reserved.
Method and apparatus for optical temperature measurements
Angel, S.M.; Hirschfeld, T.B.
1986-04-22
A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illiminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature. 3 figs.
Method and apparatus for optical temperature measurements
Angel, S. Michael; Hirschfeld, Tomas B.
1988-01-01
A method and apparatus are provided for remotely monitoring temperature. Both method and apparatus employ a temperature probe material having an excitation-dependent emission line whose fluorescence intensity varies directly with temperature whenever excited by light having a first wavelength and whose fluorescence intensity varies inversely with temperature whenever excited by light having a second wavelength. Temperature is measured by alternatively illuminating the temperature probe material with light having the first wavelength and light having the second wavelength, monitoring the intensity of the successive emissions of the excitation-dependent emission line, and relating the intensity ratio of successive emissions to temperature.
Ma, Yunxia; Chen, Yonglei; Liu, Juanjuan; Han, Yangxia; Ma, Sudai; Chen, Xingguo
2018-08-01
As we know, hexavalent chromium (Cr(VI)) was usually used as an additive to improve the color fastness during the printing and dyeing process, and thus posing tremendous threat to our health and living quality. In this work, the dual emissive carbon dots (DECDs) were synthesized through hydrothermal treatment of m-aminophenol and oxalic acid. The obtained DECDs not only exhibited dual emission fluorescence peaks (430 nm, 510 nm) under the single excitation wavelength of 380 nm, but also possessed good water solubility and excellent fluorescence stability. A ratiometric fluorescent method for the determination of Cr(VI) was developed using the DECDs as a probe. Under the optimal conditions, a linear range was obtained from 2 to 300 μM with a limit of detection of 0.4 μM. Furthermore, the proposed ratiometric fluorescent method was applied to the analysis of Cr(VI) in textile, steel, industrial wastewater and chromium residue samples with satisfactory recoveries (88.4-106.8%). Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Samari, Fayezeh; Yousefinejad, Saeed
2017-11-01
Emission fluorescence spectroscopy has an extremely restricted scope of application to analyze of complex mixtures since its selectivity is reduced by the extensive spectral overlap. Synchronous fluorescence spectroscopy (SFS) is a technique enables us to analyze complex mixtures with overlapped emission and/or excitation spectra. The difference of excitation and emission wavelength of compounds (interval wavelength or Δλ) is an important characteristic in SFS. Thus a multi-parameter model was constructed to predict Δλ in 63 fluorescent compounds and the regression coefficient in training set, cross validation and test set were 0.88, 0.85 and 0.91 respectively. Furthermore, the applicability and validity of model were evaluated using different statistical methods such as y-scrambling and applicability domain. It was concluded that increasing average valence connectivity, number of Al2-NH functional group and Geary autocorrelation (lag 4) with electronegative weights can lead to increasing Δλ in the fluorescent compounds. The current study obtained an insight into the structural properties of compounds effective on their Δλ as an important parameter in SFS.
Wang, Niansheng; Wang, Renjie; Tu, Yayi; Pu, Shouzhi; Liu, Gang
2018-05-05
A novel photochromic diarylethene with a triazole-containing 2-(2'-phenoxymethyl)-benzothiazole group has been synthesized via "click" reaction. The diarylethene exhibited good photochromism and photoswitchable fluorescence. Its fluorescence emission intensity was enhanced 7-fold by acids, accompanied by the red-shift of emission peak from 526nm to 566nm and the concomitant color change from dark to bright flavogreen. The diarylethene selectively formed a 1:1 metal complex with Al 3+ , resulting in a "turn-on" fluorescence signal. The complexation - reaction between Al 3+ and the diarylethene is reversible with the binding constant of 2.73×10 3 Lmol -1 . The limit of detection (LOD) of Al 3+ was determined to be 5.94×10 -8 molL -1 . Based on this unimolecular platform, a logic circuit was fabricated using the fluorescence emission intensity at 572nm as the output and the combined stimuli of Al 3+ /EDTA and UV/Vis as the inputs. Copyright © 2018 Elsevier B.V. All rights reserved.
The First Mutant of the Aequorea victoria Green Fluorescent Protein That Forms a Red Chromophore†
Mishin, Alexander S.; Subach, Fedor V.; Yampolsky, Ilia V.; King, William; Lukyanov, Konstantin A.; Verkhusha, Vladislav V.
2010-01-01
Green fluorescent protein (GFP) from a jellyfish, Aequorea victoria, and its mutants are widely used in biomedical studies as fluorescent markers. In spite of the enormous efforts of academia and industry toward generating its red fluorescent mutants, no GFP variants with emission maximum at more than 529 nm have been developed during the 15 years since its cloning. Here, we used a new strategy of molecular evolution aimed at generating a red-emitting mutant of GFP. As a result, we have succeeded in producing the first GFP mutant that substantially matures to the red-emitting state with excitation and emission maxima at 555 and 585 nm, respectively. A novel, nonoxidative mechanism for formation of the red chromophore in this mutant that includes a dehydration of the Ser65 side chain has been proposed. Model experiments showed that the novel dual-color GFP mutant with green and red emission is suitable for multicolor flow cytometry as an additional color since it is clearly separable from both green and red fluorescent tags. PMID:18366185
Cheng, Weiren; Wang, Guan; Pan, Xiaoyong; Zhang, Yong; Tang, Ben Zhong; Liu, Ye
2014-08-01
The redox environment between intracellular compartments and extracellular matrix is significantly different, and the cellular redox homeostasis determines many physiological functions. Here, redox-responsive nanoparticles with aggregation-induced emission (AIE) characteristic for fluorescence imaging are developed by encapsulation of fluorophore with redox "turn-on" AIE characteristic, TPE-MI, into the micelles of poly(ethylene glycol) (PEG)- and cholesterol (CE)-conjugated disulfide containing poly(amido amine)s. The redox-responsive fluorescence profiles of the nanoparticles are investigated after reaction with glutathione (GSH). The encapsulation of TPE-MI in micelles leads to a higher efficiency and red shift in emission, and the fluorescence intensity of the nanoparticles increases with the concentration of GSH. Confocal microscopy imaging shows that the nanoparticles can provide obvious contrast between the intracellular compartments and the extracellular matrix in MCF-7 and HepG2 cells. So the nanoparticles with PEG shells and low cytotoxicity are promising to provide fluorescence bioimaging with a high contrast and for differentiation of cellular redox environment. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pu, Yang; Sordillo, Laura A.; Alfano, Robert R.
2015-03-01
Native fluorescence spectroscopy offers an important role in cancer discrimination. It is widely acknowledged that the emission spectrum of tissue is a superposition of spectra of various salient fluorophores. In this study, the native fluorescence spectra of human cancerous and normal breast tissues excited by selected wavelength of 300 nm are used to investigate the key building block fluorophores: tryptophan and reduced nicotinamide adenine dinucleotide (NADH). The basis spectra of these key fluorophores' contribution to the tissue emission spectra are obtained by nonnegative constraint analysis. The emission spectra of human cancerous and normal tissue samples are projected onto the fluorophore spectral subspace. Since previous studies indicate that tryptophan and NADH are key fluorophores related with tumor evolution, it is essential to obtain their information from tissue fluorescence but discard the redundancy. To evaluate the efficacy of for cancer detection, linear discriminant analysis (LDA) classifier is used to evaluate the sensitivity, and specificity. This research demonstrates that the native fluorescence spectroscopy measurements are effective to detect changes of fluorophores' compositions in tissues due to the development of cancer.
Su, Fengyu; Agarwal, Shubhangi; Pan, Tingting; Qiao, Yuan; Zhang, Liqiang; Shi, Zhengwei; Kong, Xiangxing; Day, Kevin; Chen, Meiwan; Meldrum, Deirdre; Kodibagkar, Vikram D; Tian, Yanqing
2018-01-17
In this paper, we report synthesis and characterization of a novel multimodality (MRI/fluorescence) probe for pH sensing and imaging. A multifunctional polymer was derived from poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and integrated with a naphthalimide-based-ratiometric fluorescence probe and a gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex (Gd-DOTA complex). The polymer was characterized using UV-vis absorption spectrophotometry, fluorescence spectrofluorophotometry, magnetic resonance imaging (MRI), and confocal microscopy for optical and MRI-based pH sensing and cellular imaging. In vitro labeling of macrophage J774 and esophageal CP-A cell lines shows the polymer's ability to be internalized in the cells. The transverse relaxation time (T 2 ) of the polymer was observed to be pH-dependent, whereas the spin-lattice relaxation time (T 1 ) was not. The pH probe in the polymer shows a strong fluorescence-based ratiometric pH response with emission window changes, exhibiting blue emission under acidic conditions and green emission under basic conditions, respectively. This study provides new materials with multimodalities for pH sensing and imaging.
Laser-induced fluorescence of phosphors for remote cryogenic thermometry
NASA Technical Reports Server (NTRS)
Beshears, D. L.; Capps, G. J.; Cates, M. R.; Simmons, C. M.; Schwenterly, S. W.
1990-01-01
Remote cryogenic temperature measurements can be made by inducing fluorescence in phosphors with temperature-dependent emissions and measuring the emission lifetimes. The thermographic phosphor technique can be used for making precision, noncontact, cryogenic-temperature measurements in electrically hostile environments, such as high dc electric or magnetic fields. The National Aeronautics and Space Administration is interested in using these thermographic phosphors for mapping hot spots on cryogenic tank walls. Europium-doped lanthanum oxysulfide (La2O2S:Eu) and magnesium fluorogermanate doped with manganese (Mg4FGeO6:Mn) are suitable for low-temperature surface thermometry. Several emission lines, excited by a 337-nm ultraviolet laser, provide fluorescence lifetimes having logarithmic dependence with temperature from 4 to above 125 K. A calibration curve for both La2O2S:Eu and Mg4FGeO6:Mn is presented, as well as emission spectra taken at room temperature and 11 K.
Noise limitations of multiplier phototubes in the radiation environment of space
NASA Technical Reports Server (NTRS)
Viehmann, W.; Eubanks, A. G.
1976-01-01
The contributions of Cerenkov emission, luminescence, secondary electron emission, and bremsstrahlung to radiation-induced data current and noise of multiplier phototubes were analyzed quantitatively. Fluorescence and Cerenkov emission in the tube window are the major contributors and can quantitatively account for dark count levels observed in orbit. Radiation-induced noise can be minimized by shielding, tube selection, and mode of operation. Optical decoupling of windows and cathode (side-window tubes) leads to further reduction of radiation-induced dark counts, as does reducing the window thickness and effective cathode area, and selection of window/cathode combinations of low fluorescence efficiency. In trapped radiation-free regions of near-earth orbits and in free space, Cerenkov emission by relativistic particles contributes predominantly to the photoelectron yield per event. Operating multiplier phototubes in the photon (pulse) counting mode will discriminate against these large pulses and substantially reduce the dark count and noise to levels determined by fluorescence.
Atomic Oxygen Tailored Graphene Oxide Nanosheets Emissions for Multicolor Cellular Imaging.
Mei, Qingsong; Chen, Jian; Zhao, Jun; Yang, Liang; Liu, Bianhua; Liu, Renyong; Zhang, Zhongping
2016-03-23
Graphene oxide (GO) has been widely used as a fluorescence quencher, but its luminescent properties, especially tailor-made controlling emission colors, have been seldom reported due to its heterogeneous structures. Herein, we demonstrated a novel chemical oxidative strategy to tune GO emissions from brown to cyan without changing excitation wavelength. The precise tuning is simply achieved by varying reaction times of GO nanosheets in piranha solution, but there is no need for complex chromatography separation procedures. With increasing reaction times, oxygen content on the lattice of GO nanosheets increased, accompanied by the diminution of their sizes and sp(2) conjugation system, resulting in an increase of emissive carbon cluster-like states. Thereby, the luminescent colors of GO were tuned from brown to yellow, green, and cyan, and its fluorescent quantum yields were enhanced. The obtained multicolored fluorescent GO nanosheets would open plenty of novel applications in cellular imaging and multiplex encoding analysis.
Maeda, Chihiro; Nagahata, Keiji; Ema, Tadashi
2017-09-26
Carbazole-based BODIPYs 1-6 with several different substituents at the boron atom site were synthesized. These dyes fluoresced in the solid state, and 3a with phenylethynyl groups exhibited a red-shifted and broad fluorescence spectrum, which suggested an excimer emission. Its derivatives 3b-n were synthesized, and the relationship between the solid-state emission and crystal packing was investigated. The X-ray crystal structures revealed cofacial dimers that might form excimers. From the structural optimization results, we found that the introduction of mesityl groups hindered intermolecular access and led to reduced interactions between the dimers. In addition, the red-shifted excimer fluorescence suppressed self-absorption, and dyes with ethynyl groups showed solid-state fluorescence in the vis/NIR region.
Peng, Lu; Wei, Ruirui; Li, Kai; Zhou, Zhaojuan; Song, Panshu; Tong, Aijun
2013-04-07
A novel fluorescent probe 1 is reported here with ratiometric response to hydrophobic proteins (casein) or proteins with hydrophobic pockets (BSA, HSA) through hydrophobic interaction. Probe 1 underwent deprotonation in aqueous solution at pH 7.4 and emitted blue fluorescence at 436 nm. Upon the addition of BSA, HSA or casein, the aggregation-induced emission fluorescence of 1 at 518 nm was turned on. The fluorescence intensity ratio, I518/I436 was linearly related to the concentrations of these proteins. The detection limits for BSA, HSA and casein based on IUPAC (CDL = 3Sb m(-1)) were 16.2 μg mL(-1), 10.5 μg mL(-1) and 5.7 μg mL(-1), respectively.
Photophysics of Laser Dye-Doped Polymer Membranes for Laser-Induced Fluorescence Photogrammetry
NASA Technical Reports Server (NTRS)
Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.
2004-01-01
Laser-induced fluorescence target generation in dye-doped polymer films has recently been introduced as a promising alternative to more traditional photogrammetric targeting techniques for surface profiling of highly transparent or reflective membrane structures. We investigate the photophysics of these dye-doped polymers to help determine their long-term durability and suitability for laser-induced fluorescence photogrammetric targeting. These investigations included experimental analysis of the fluorescence emission pattern, spectral content, temporal lifetime, linearity, and half-life. Results are presented that reveal an emission pattern wider than normal Lambertian diffuse surface scatter, a fluorescence time constant of 6.6 ns, a pump saturation level of approximately 20 micro J/mm(exp 2), and a useful lifetime of more than 300,000 measurements. Furthermore, two demonstrations of photogrammetric measurements by laser-induced fluorescence targeting are presented, showing agreement between photogrammetric and physically measured dimensions within the measurement scatter of 100 micron.
Optical properties of flexible fluorescent films prepared by screen printing technology
NASA Astrophysics Data System (ADS)
Chen, Yan; Ke, Taiyan; Chen, Shuijin; He, Xin; Zhang, Mei; Li, Dong; Deng, Jinfeng; Zeng, Qingguang
2018-05-01
In this work, we prepared a fluorescent film comprised phosphors and silicone on flexible polyethylene terephthalate (PET) substrate using a screen printing technology. The effects of mesh number and weight ratio of phosphors to silicone on the optical properties of the flexible films were investigated. The results indicate that the emission intensity of the film increase as the mesh decreased from 400 to 200, but the film surface gradually becomes uneven. The fluorescent film with high emission intensity and smooth surface can be obtained when the weight ratio of phosphor to gel is 2:1, and mesh number is 300. The luminous efficiency of the fabricated LEDs combined the fluorescent films with 460 nm Ga(In)N chip module can reach 75 lm/W. The investigation indicates that the approach can be applied in the remote fluorescent film conversion and decreases the requirements of the particle size and the dispersion state of fluorescent materials.
Lee, Il Joon; Kim, Byeang Hyean
2012-02-18
Pairs of pyrene-modified deoxyadenosine ((Py)A) units induce a stable interstrand i-motif structure, which can be characterized by a change in the fluorescence λ(max), with an exciplex emission that is not observable in its single-strand structure. This journal is © The Royal Society of Chemistry 2012
ERIC Educational Resources Information Center
Ma, Xiaofeng; Sun, Rui; Cheng, Jinghui; Liu, Jiaoyan; Gou, Fei; Xiang, Haifeng; Zhou, Xiangge
2016-01-01
A laboratory experiment visually exploring two opposite basic principles of fluorescence of aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) is demonstrated. The students would prepared two salicylaldehyde-based Schiff bases through a simple one-pot condensation reaction of one equiv of 1,2-diamine with 2 equiv of…
Zhao, Ming; Li, Yu; Peng, Leilei
2014-01-01
We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725
Direct and Indirect Electron Emission from the Green Fluorescent Protein Chromophore
NASA Astrophysics Data System (ADS)
Toker, Y.; Rahbek, D. B.; Klærke, B.; Bochenkova, A. V.; Andersen, L. H.
2012-09-01
Photoelectron spectra of the deprotonated green fluorescent protein chromophore have been measured in the gas phase at several wavelengths within and beyond the S0-S1 photoabsorption band of the molecule. The vertical detachment energy (VDE) was determined to be 2.68±0.1eV. The data show that the first electronically excited state is bound in the Franck-Condon region, and that electron emission proceeds through an indirect (resonant) electron-emission channel within the corresponding absorption band.
NASA Astrophysics Data System (ADS)
Deng, Qi; Hui, Dafeng; Wang, Junming; Yu, Chih-Li; Li, Changsheng; Reddy, K. Chandra; Dennis, Sam
2016-02-01
Quantification and prediction of N2O emissions from croplands under different agricultural management practices are vital for sustainable agriculture and climate change mitigation. We simulated N2O emissions under tillage and no-tillage,and different nitrogen (N) fertilizer types and application methods (i.e., nitrification inhibitor, chicken manure, and split applications) in a cornfield using the DeNitrification-DeComposition (DNDC) model. The model was parameterized with field experimental data collected in Nashville, Tennessee, under various agricultural management treatments and run for a short term (3 years) and a long term (100 years). Results showed that the DNDC model could adequately simulate N2O emissions as well as soil properties under different agricultural management practices. The modeled emissions of N2O significantly increased by 35% with tillage, and decreased by 24% with the use of nitrification inhibitor, compared with no-tillage and normal N fertilization. Chicken manure amendment and split applications of N fertilizer had minor impact on N2O emission in a short term, but over a long term (100 years) the treatments significantly altered N2O emission (+35%, -10%, respectively). Sensitivity analysis showed that N2O emission was sensitive to mean annual precipitation, mean annual temperature, soil organic carbon, and the amount of total N fertilizer application. Our model results provide valuable information for determining agricultural best management practice to maintain highly productive corn yield while reducing greenhouse gas emissions.
Pearn, Sophie M; Bennett, Andrew T D; Cuthill, Innes C
2003-01-01
Fluorescence has so far been found in 52 parrot species when illuminated with ultraviolet-A (UVA) 'black' lamps, and two attempts have been made to determine whether such fluorescence plays any role in sexual signalling. However, the contribution of the reflectance versus fluorescence to the total radiance from feathers, even in the most studied species to date (budgerigars), is unclear. Nor has the plumage of this study species been systematically assessed to determine the distribution of fluorescent patches. We therefore used spectrofluorometry to determine which areas of budgerigars fluoresce and the excitation and emission spectra involved; this is the first time that such a technique has been applied to avian plumage. We found that both the yellow crown and (normally hidden) white downy chest feathers exhibit strong UVA-induced fluorescence, with peak emissions at 527 nm and 436 nm, respectively. Conversely, the bright-green chest and dark-blue tail feathers do not fluoresce. When comparing reflectance spectra (400-700 nm) from the yellow crown using illuminants with a proportion of UVA comparable to daylight, and illuminants with all UVA removed, no measurable difference resulting from fluorescence was found. This suggests that under normal daylight the contribution of fluorescence to radiance is probably trivial. Furthermore, these spectra revealed that males had fluorescent crowns with substantially higher reflectance than those of females, in both the UV waveband and at longer wavelengths. Reflectance spectrophotometry was also performed on a number of live wild-type male budgerigars to investigate the chromatic contrast between the different plumage areas. This showed that many plumage regions are highly UV-reflective. Overall our results suggest that rapid surveys using UVA black lamps may overestimate the contribution of fluorescence to plumage coloration, and that any signalling role of fluorescence emissions, at least from the yellow crown of budgerigars, may not be as important as previously thought. PMID:12737665
Solvatochromic fluorescence characteristics of cinnamoyl pyrone derivatives
NASA Astrophysics Data System (ADS)
Benosmane, Nadjib; Boutemeur, Baya; Hamdi, Safouane M.; Hamdi, Maamar; Silva, Artur S. M.
2017-12-01
The solvatochromic fluorescence behavior of cinnamoyl pyrone derivatives has been studied in several polar and non-polar solvents. The fluorescence spectra of these compounds exhibit red shift from its absorption spectra and present an excellent correlation with solvent polarity. Cinnamoyl pyrones show a significant spectral shift in fluorescence emission as a function of water composition in binary aqueous solutions mixture. This change is due to the specific intermolecular hydrogen bonding of cinnamoyl pyrones with a molecules of water, due to the deactivation of the lowest excited singlet state of these compounds. The relative quantum yields are calculated. It is found that the quantum yields of the cinnamoyl pyrones vary with the change in the solvent polarity indicating the dependency of fluorescence properties on the solvent nature. It has been observed that the addition of water and pH medium can affect the fluorescence properties of cinnamoyl pyrones in ethanol. This study exhibited that due to the solvent sensitive emission, cinnamoyl pyrone derivatives are a good compound to be used as fluorescence probes.
Red-emitting fluorescent probe for detecting hypochlorite acid in vitro and in vivo.
Chen, Hong; Sun, Tao; Qiao, Xiao-Guang; Tang, Qian-Oian; Zhao, Shan-Chao; Zhou, Zhan
2018-06-12
Due to the importance of hypochlorous acid (HClO) in biological and industrial, development of fluorescent probes for HClO has been an active research area. Here, a new red-emitting ratiometric fluorescent probe (P) was synthesized and well defined characterization via NMR, HR-MS, and fluorescence spectrum, which serves as a selective and sensitive probe for ClO - group. The probe showed a ratiometric fluorescent response to hypochlorite at the emission intensities ratio (I 480 /I 612 ) increasing from 0.28 to 27.46. The emission intensities ratio (I 480 /I 612 ) was linearly enhanced (I 480 /I 612 = 0.064 X + 0.096) with the ClO - concentration range from 1 to 30 μM. The detection limitation for ClO - in aqueous solution is 0.47 μM. Moreover, this biocompatible red-emitting ratiometric fluorescent probe was utilized to the fluorescence imaging of ClO - in living cells and Zebrafish. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Padilla-Martinez, J. P.; Ortega-Martinez, A.; Franco, W.
2016-03-01
The stiffness or rigidity of the extracellular matrix (ECM) regulates cell response. Established mechanical tests to measure stiffness, such as indentation and tensile tests, are invasive and destructive to the sample. Endogenous or native molecules to cells and ECM components, like tryptophan and cross-links of collagen, display fluorescence upon irradiation with ultraviolet light. Most likely, the concentration of these endogenous fluorophores changes as the stiffness of the ECM changes. In this work we investigate the endogenous fluorescence of collagen gels containing fibroblasts as a non-invasive non-destructive method to measure stiffness of the ECM. Human fibroblast cells were cultured in three-dimensional gels of type I collagen (50,000 cells/ml). This construct is a simple model of tissue contraction. During contraction, changes in the excitation-emission matrix (a fluorescence map in the 240-520/290-530 nm range) of constructs were measured with a spectrofluoremeter, and changes in stiffness were measured with a standard indentation test over 16 days. Results show that a progressive increase in fluorescence of the 290/340 nm excitation-emission pair correlates with a progressive increase in stiffness (r=0.9, α=0.5). The fluorescence of this excitation-emission pair is ascribed to tryptophan and variations in the fluorescence of this pair correlate with cellular proliferation. In this tissue model, the endogenous functional fluorescence of proliferating fibroblast cells is a biomechanical marker of stiffness of the ECM.
Eisenberg, Azaria Solomon; Juszczak, Laura J
2013-07-05
Molecular dynamics (MD), coupled with fluorescence data for charged dipeptides of tryptophanyl glutamic acid (Trp-Glu), reveal a detailed picture of how specific conformation affects fluorescence. Fluorescence emission spectra and time-resolved emission measurements have been collected for all four charged species. MD simulations 20 to 30 ns in length have also been carried out for the Trp-Glu species, as simulation provides aqueous phase conformational data that can be correlated with the fluorescence data. The calculations show that each dipeptide species is characterized by a similar set of six, discrete Chi 1, Chi 2 dihedral angle pairs. The preferred Chi 1 angles--60°, 180°, and 300°--play the significant role in positioning the terminal amine relative to the indole ring. A Chi 1 angle of 60° results in the arching of the backbone over the indole ring and no interaction of the ring with the terminal amine. Chi 1 values of 180° and 300° result in an extension of the backbone away from the indole ring and a NH3 cation-π interaction with indole. This interaction is believed responsible for charge transfer quenching. Two fluorescence lifetimes and their corresponding amplitudes correlate with the Chi 1 angle probability distribution for all four charged Trp-Glu dipeptides. Fluorescence emission band maxima are also consistent with the proposed pattern of terminal amine cation quenching of fluorescence. Copyright © 2013 Wiley Periodicals, Inc.
Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review
Fernandez-Jaramillo, Arturo A.; Duarte-Galvan, Carlos; Contreras-Medina, Luis M.; Torres-Pacheco, Irineo; de J. Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon G.; Millan-Almaraz, Jesus R.
2012-01-01
Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images. PMID:23112686
Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru
2017-01-01
A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots. PMID:28714873
Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru
2017-07-15
A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots.
Guide to red fluorescent proteins and biosensors for flow cytometry.
Piatkevich, Kiryl D; Verkhusha, Vladislav V
2011-01-01
Since the discovery of the first red fluorescent protein (RFP), named DsRed, 12 years ago, a wide pallet of red-shifted fluorescent proteins has been cloned and biotechnologically developed into monomeric fluorescent probes for optical microscopy. Several new types of monomeric RFPs that change the emission wavelength either with time, called fluorescent timers, or after a brief irradiation with violet light, known as photoactivatable proteins, have been also engineered. Moreover, RFPs with a large Stokes shift of fluorescence emission have been recently designed. Because of their distinctive excitation and fluorescence detection conditions developed specifically for microscopy, these fluorescent probes can be suboptimal for flow cytometry. Here, we have selected and summarized the advanced orange, red, and far-red fluorescent proteins with the properties specifically required for the flow cytometry applications. Their effective brightness was calculated for the laser sources available for the commercial flow cytometers and sorters. Compatibility of the fluorescent proteins of different colors in a multiparameter flow cytometry was determined. Novel FRET pairs, utilizing RFPs, RFP-based intracellular biosensors, and their application to a high-throughput screening, are also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Automatic cytometric device using multiple wavelength excitations
NASA Astrophysics Data System (ADS)
Rongeat, Nelly; Ledroit, Sylvain; Chauvet, Laurence; Cremien, Didier; Urankar, Alexandra; Couderc, Vincent; Nérin, Philippe
2011-05-01
Precise identification of eosinophils, basophils, and specific subpopulations of blood cells (B lymphocytes) in an unconventional automatic hematology analyzer is demonstrated. Our specific apparatus mixes two excitation radiations by means of an acousto-optics tunable filter to properly control fluorescence emission of phycoerythrin cyanin 5 (PC5) conjugated to antibodies (anti-CD20 or anti-CRTH2) and Thiazole Orange. This way our analyzer combining techniques of hematology analysis and flow cytometry based on multiple fluorescence detection, drastically improves the signal to noise ratio and decreases the spectral overlaps impact coming from multiple fluorescence emissions.
NASA Technical Reports Server (NTRS)
Houston, W. R.; Stephenson, D. G.; Measures, R. M.
1975-01-01
A laboratory investigation has been conducted to evaluate the detection and identification capabilities of laser induced fluorescence as a remote sensing technique for the marine environment. The relative merits of fluorescence parameters including emission and excitation profiles, intensity and lifetime measurements are discussed in relation to the identification of specific targets of the marine environment including crude oils, refined petroleum products, fish oils and algae. Temporal profiles displaying the variation of lifetime with emission wavelength have proven to add a new dimension of specificity and simplicity to the technique.
3C 159 - a double emission-line radio galaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tytler, D.; Browne, I.
1985-09-01
An optical identification for 3C 159 is reported with a 19-mag emission-line radio galaxy at z = 0.482. Photometric measurements show it to be unusually bright and blue. The emission lines are of exceptionally high luminosity, and are split into two components separated by 598 + or - 13 km/s and 3 kpc along the spectrograph slit. A VLA may show that one of the radio lobes has two hot spots with tails of emission leading to both. 21 references.
NASA Astrophysics Data System (ADS)
Palmer, Johannes; Reddemann, Manuel A.; Kirsch, Valeri; Kneer, Reinhold
2016-12-01
In this work, a new measurement system is presented for studying temperature of micro-droplets by pulsed 2-color laser-induced fluorescence. Pulsed fluorescence excitation allows motion blur suppression and thus simultaneous measurements of droplet size, velocity and temperature. However, high excitation intensities of pulsed lasers lead to morphology-dependent resonances inside micro-droplets, which are accompanied by disruptive stimulated emission. Investigations showed that stimulated emission can be avoided by enhanced energy transfer via an additional dye. The suitability and accuracy of the new pulsed method are verified on the basis of a spectroscopic analysis and comparison to continuously excited 2-color laser-induced fluorescence.
NASA Astrophysics Data System (ADS)
Wang, Peng; Ebeling, Carl G.; Gerton, Jordan; Menon, Rajesh
In this paper, we demonstrate hyper-spectral imaging of fluorescent microspheres in a scanning-confocal-fluorescence microscope by spatially dispersing the spectra using a novel broadband diffractive optic, and applying a nonlinear optimization technique to extract the full-incident spectra. This broadband diffractive optic has a designed optical efficiency of over 90% across the entire visible spectrum. We used this technique to create two-color images of two fluorophores and also extracted their emission spectra with good fidelity. This method can be extended to image both spatially and spectrally overlapping fluorescent samples. Full control in the number of emission spectra and the feasibility of enhanced imaging speed are demonstrated as well.
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.; Yungel, J. K.
1983-01-01
The present investigation provides a demonstration of the feasibility of the airborne detection of the laser-induced fluorescence spectral emissions from living terrestrial grasses, shrubs, and trees using existing levels of lidar technology. Airborne studies were performed to ascertain system requirements necessary to detect laser-induced fluorescence from living terrestrial plants, to assess the practical acquisition of useful single-shot laser-induced fluorescence (LIF) waveforms over vegetative canopies, and to determine the comparative suitability of laser system, airborne platform, and terrestrial environmental parameters. The field experiment was conducted on May 3, 1982, over the northern portion of Wallops Island, VA. Attention is given to airborne lidar results and the description of laboratory investigations.
Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications
NASA Astrophysics Data System (ADS)
Singh, Mahi R.; Guo, Jiaohan; J. Cid, José M.; De Hoyos Martinez, Jesús E.
2017-03-01
We study the light emission from a quantum emitter and double metallic nanoshell hybrid systems. Quantum emitters act as local sources which transmit their light efficiently due to a double nanoshell near field. The double nanoshell consists of a dielectric core and two outer nanoshells. The first nanoshell is made of a metal, and the second spacer nanoshell is made of a dielectric material or human serum albumin. We have calculated the fluorescence emission for a quantum emitter-double nanoshell hybrid when it is injected in an animal or a human body. Surface plasmon polariton resonances in the double nanoshell are calculated using Maxwell's equations in the quasi-static approximation, and the fluorescence emission is evaluated using the density matrix method in the presence of dipole-dipole interactions. We have compared our theory with two fluorescence experiments in hybrid systems in which the quantum emitter is Indocyanine Green or infrared fluorescent molecules. The outer spacer nanoshell of double metallic nanoshells consists of silica and human serum albumin with variable thicknesses. Our theory explains the enhancement of fluorescence spectra in both experiments. We find that the thickness of the spacer nanoshell layer increases the enhancement when the fluorescence decreases. The enhancement of the fluorescence depends on the type of quantum emitter, spacer layer, and double nanoshell. We also found that the peak of the fluorescence spectrum can be shifted by changing the shape and the size of the nanoshell. The fluorescence spectra can be switched from one peak to two peaks by removing the degeneracy of excitonic states in the quantum emitter. Hence, using these properties, one can use these hybrids as sensing and switching devices for applications in medicine.
Detection of intaoral lesions using a fluorescence camera
NASA Astrophysics Data System (ADS)
Thoms, Michael
2006-02-01
Optical methods for the detection of carious lesions, calculus and plaque have the advantage of being minimally invasive. The use of endogeneous fluorescence markers like porphyrins could simplify the application of fluorescence techniques in the dental practice. It is known that porphyrins are produced by some of the bacterial species that are present in the oral cavity. Since porphyrins have an excitation band at about 400nm they have the potential to be used as fluorescent markers of locations in the oral cavity where the production of bacteria is out of the limits of healthy regions. Further, modern and efficient GaN-based semiconductor diodes emit light in this spectral range and thus make the implementation of fluorescence sensors with excitation at this wavelength easy. Carious lesions, calculus and plaque have been measured using a self build fluorescence camera using GaN-diodes for illumination at 405nm. Further, emission spectra under this excitation were recorded. For the latter purpose freshly extracted teeth were used. It has been found that already in the case of an initial carious lesion red porphyrin-fluorescence is emitted whereas it is absent in healthy enamel. In already brown coloured carious lesions the emission bands of porphyrin are present but the observed overall fluorescence intensity is lower, probably due to the absorption of the fluorescence by the carious defect itself. In dental calculus, dental plaque and subgingival concrements porphyrin originated luminescence was found as well. Since in these cases the emission spectra differ slightly it can be concluded that they originate from different types of porphyrins and thus also from different bacteria. These results show that this fluorescence technique can be a promising method to diagnose carious lesions, calculus and plaque.
Hasan, Md Tanvir; Senger, Brian J; Mulford, Price; Ryan, Conor; Doan, Hung; Gryczynski, Zygmunt; Naumov, Anton V
2017-02-10
Graphene possesses a number of advantageous properties, however, does not exhibit optical emission, which limits its use in optoelectronics. Unlike graphene, its functional derivative, graphene oxide (GO) exhibits fluorescence emission throughout the visible. Here, we focus on controlled methods for tuning the optical properties of GO. We introduce ozone treatment of reduced graphene oxide (RGO) in order to controllably transform it from non-emissive graphene-like material into GO with a specific fluorescence emission response. Solution-based treatment of RGO for 5-45 min with ∼1.2 g l -1 ozone/oxygen gas mixture yields a drastic color change, bleaching of the absorption in the visible and the stepwise increase in fluorescence intensity and lifetime. This is attributed to the introduction of oxygen-containing functional groups to RGO graphitic platform as detected by the infrared spectroscopy. A reverse process: controllable quenching of this fluorescence is achieved by the thermal treatment of GO in aqueous suspension up to 90 °C. This methodology allows for the wide range alteration of GO optical properties starting from the dark-colored non-emissive RGO material up to nearly transparent highly ozone-oxidized GO showing substantial fluorescence emission. The size of the GO flakes is concomitantly altered by oxidation-induced scission. Semi-empirical PM3 theoretical calculations on HyperChem models are utilized to explore the origins of optical response from GO. Two models are considered, attributing the induced emission either to the localized states produced by oxygen-containing addends or the islands of graphitic carbon enclosed by such addends. Band gap values calculated from the models are in the agreement with experimentally observed transition peak maxima. The controllable variation of GO optical properties in aqueous suspension by ozone and thermal treatments shown in this work provides a route to tune its optical response for particular optoelectronics or biomedical applications.
NASA Astrophysics Data System (ADS)
Tanvir Hasan, Md; Senger, Brian J.; Mulford, Price; Ryan, Conor; Doan, Hung; Gryczynski, Zygmunt; Naumov, Anton V.
2017-02-01
Graphene possesses a number of advantageous properties, however, does not exhibit optical emission, which limits its use in optoelectronics. Unlike graphene, its functional derivative, graphene oxide (GO) exhibits fluorescence emission throughout the visible. Here, we focus on controlled methods for tuning the optical properties of GO. We introduce ozone treatment of reduced graphene oxide (RGO) in order to controllably transform it from non-emissive graphene-like material into GO with a specific fluorescence emission response. Solution-based treatment of RGO for 5-45 min with ˜1.2 g l-1 ozone/oxygen gas mixture yields a drastic color change, bleaching of the absorption in the visible and the stepwise increase in fluorescence intensity and lifetime. This is attributed to the introduction of oxygen-containing functional groups to RGO graphitic platform as detected by the infrared spectroscopy. A reverse process: controllable quenching of this fluorescence is achieved by the thermal treatment of GO in aqueous suspension up to 90 °C. This methodology allows for the wide range alteration of GO optical properties starting from the dark-colored non-emissive RGO material up to nearly transparent highly ozone-oxidized GO showing substantial fluorescence emission. The size of the GO flakes is concomitantly altered by oxidation-induced scission. Semi-empirical PM3 theoretical calculations on HyperChem models are utilized to explore the origins of optical response from GO. Two models are considered, attributing the induced emission either to the localized states produced by oxygen-containing addends or the islands of graphitic carbon enclosed by such addends. Band gap values calculated from the models are in the agreement with experimentally observed transition peak maxima. The controllable variation of GO optical properties in aqueous suspension by ozone and thermal treatments shown in this work provides a route to tune its optical response for particular optoelectronics or biomedical applications.
Composite fluorescent nanoparticles for biomedical imaging.
Pansare, Vikram J; Bruzek, Matthew J; Adamson, Douglas H; Anthony, John; Prud'homme, Robert K
2014-04-01
In the rapidly expanding field of biomedical imaging, there is a need for nontoxic, photostable, and nonquenching fluorophores for fluorescent imaging. We have successfully encapsulated a new, extremely hydrophobic, pentacene-based fluorescent dye within polymeric nanoparticles (NPs) or nanocarriers (NCs) via the Flash NanoPrecipitation (FNP) process. Nanoparticles and dye-loaded micelles were formulated by FNP and characterized by dynamic light scattering, fluorescence spectroscopy, UV-VIS absorbance spectroscopy, and confocal microscopy. These fluorescent particles were loaded from less than 1% to 78% by weight core loading and the fluorescence maximum was found to be at 2.3 wt.%. The particles were also stably formed at 2.3% core loading from 20 up to 250 nm in diameter with per-particle fluorescence scaling linearly with the NC core volume. The major absorption peaks are at 458, 575, and 625 nm, and the major emission peaks at 635 and 695 nm. In solution, the Et-TP5 dye displays a strong concentration-dependent ratio of the emission intensities of the first two emission peaks, whereas in the nanoparticle core the spectrum is independent of concentration over the entire concentration range. A model of the fluorescence quenching was consistent with Förster resonant energy transfer as the cause of the quenching observed for Et-TP5. The Förster radius calculated from the absorption and emission spectra of Et-TP5 is 4.1 nm, whereas the average dye spacing in the particles at the maximum fluorescence is 3.9 nm. We have successfully encapsulated Et-TP5, a pentacene derivative dye previously only used in light-emitting diode applications, within NCs via the FNP process. The extreme hydrophobicity of the dye keeps it encapsulated in the NC core, its extended pentacene structure gives it relatively long wavelength emission at 695 nm, and the pentacene structure, without oxygen or nitrogen atoms in its core, makes it highly resistant to photobleaching. Its bulky side groups minimize self-quenching and localization within the nanoparticle core prevents interaction of the dye with biological surfaces, or molecules in diagnostic assays. Loading of dye in the NP core allows 25 times more dye to be delivered than if it were conjugated onto the nanocarrier surface. The utility of the dye for quantifying nanoparticle binding is demonstrated. Studies to extend the wavelength range of these pentacene dyes into the near infra-red are underway.
Corn nitrogen management influences nitrous oxide emissions in drained and undrained soils
USDA-ARS?s Scientific Manuscript database
Tile-drainage and nitrogen (N) fertilization are important for corn (Zea mays L.) production. To date, no studies have evaluated nitrous oxide (N2O) emissions of single vs. split-N fertilizer application under different soil drainage conditions. The objective of this study was to quantify season-lon...
Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Huaming; Yang, Bo; Mao, Xianglei
We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less
Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel
Hou, Huaming; Yang, Bo; Mao, Xianglei; ...
2018-05-10
We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less
Photocatalytic Water-Splitting Enhancement by Sub-Bandgap Photon Harvesting.
Monguzzi, Angelo; Oertel, Amadeus; Braga, Daniele; Riedinger, Andreas; Kim, David K; Knüsel, Philippe N; Bianchi, Alberto; Mauri, Michele; Simonutti, Roberto; Norris, David J; Meinardi, Francesco
2017-11-22
Upconversion is a photon-management process especially suited to water-splitting cells that exploit wide-bandgap photocatalysts. Currently, such catalysts cannot utilize 95% of the available solar photons. We demonstrate here that the energy-conversion yield for a standard photocatalytic water-splitting device can be enhanced under solar irradiance by using a low-power upconversion system that recovers part of the unutilized incident sub-bandgap photons. The upconverter is based on a sensitized triplet-triplet annihilation mechanism (sTTA-UC) obtained in a dye-doped elastomer and boosted by a fluorescent nanocrystal/polymer composite that allows for broadband light harvesting. The complementary and tailored optical properties of these materials enable efficient upconversion at subsolar irradiance, allowing the realization of the first prototype water-splitting cell assisted by solid-state upconversion. In our proof-of concept device the increase of the performance is 3.5%, which grows to 6.3% if concentrated sunlight (10 sun) is used. Our experiments show how the sTTA-UC materials can be successfully implemented in technologically relevant devices while matching the strict requirements of clean-energy production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Dan; Dou, Xiuming; Wu, Xuefei
2016-04-15
Exciton and biexciton emission energies as well as excitonic fine-structure splitting (FSS) in single InAs/GaAs quantum dots (QDs) have been continuously tuned in situ in an optical cryostat using a developed uniaxial stress device. With increasing tensile stress, the red shift of excitonic emission is up to 5 nm; FSS decreases firstly and then increases monotonically, reaching a minimum value of approximately 10 μeV; biexciton binding energy decreases from 460 to 106 μeV. This technique provides a simple and convenient means to tune QD structural symmetry, exciton energy and biexciton binding energy and can be used for generating entangled andmore » indistinguishable photons.« less
ERIC Educational Resources Information Center
LaFratta, Christopher N.; Huh, Sun Phill; Mallillin, Allistair C.; Riviello, Peter J.; Walt, David R.
2010-01-01
We describe an inexpensive hand-held fluorescence imager (low-magnification microscope), constructed from poly(vinyl chloride) pipe and other inexpensive components for use as a teaching tool to understand the principles of fluorescence detection. Optical filters are used to select the excitation and emission wavelengths and can be easily…
Measurement of the fluorescence of crop residues: A tool for controlling soil erosion
NASA Technical Reports Server (NTRS)
Daughtry, C. S. T.; Mcmurtrey, J. E., III; Chappelle, E. W.; Hunter, W. J.
1994-01-01
Management of crop residues, the portion of a crop left in the field after harvest, is an important conservation practice for minimizing soil erosion and for improving water quality. Quantification of crop residue cover is required to evaluate the effectiveness of conservation tillage practices. Methods are needed to quantify residue cover that are rapid, accurate, and objective. The fluorescence of crop residue was found to be a broadband phenomenon with emission maxima at 420 to 495 nm for excitations of 350 to 420 nm. Soils had low intensity broadband emissions over the 400 to 690 nm region for excitations of 300 to 600 nm. The range of relative fluorescence intensities for the crop residues was much greater than the fluorescence observed of the soils. As the crop residues decompose their blue fluorescence values approach the fluorescence of the soil. Fluorescence techniques are concluded to be less ambiguous and better suited for discriminating crop residues and soils than reflectance methods. If properly implemented, fluorescence techniques can be used to quantify, not only crop residue cover, but also photosynthetic efficiency in the field.
Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie
2015-02-01
As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radka, Christopher D.; DeLucas, Lawrence J.; Wilson, Landon S.
2017-06-30
Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. InYersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection. To better understand the role of YfeA in infection, crystal structures were determined under several environmental conditions with respect to transition-metal levels. Energy-dispersive X-ray spectroscopy and anomalous X-ray scattering data show that YfeA ismore » polyspecific and can alter its substrate specificity. In minimal-media experiments, YfeA crystals grown after iron supplementation showed a threefold increase in iron fluorescence emission over the iron fluorescence emission from YfeA crystals grown from nutrient-rich conditions, and YfeA crystals grown after manganese supplementation during overexpression showed a fivefold increase in manganese fluorescence emission over the manganese fluorescence emission from YfeA crystals grown from nutrient-rich conditions. In all experiments, the YfeA crystals produced the strongest fluorescence emission from zinc and could not be manipulated otherwise. Additionally, this report documents the discovery of a novel surface metal-binding site that prefers to chelate zinc but can also bind manganese. Flexibility across YfeA crystal forms in three loops and a helix near the buried metal-binding site suggest that a structural rearrangement is required for metal loading and unloading.« less
A new protein-protein interaction sensor based on tripartite split-GFP association.
Cabantous, Stéphanie; Nguyen, Hau B; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A; Favre, Gilles; Terwilliger, Thomas C; Waldo, Geoffrey S
2013-10-04
Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence.
A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association
Cabantous, Stéphanie; Nguyen, Hau B.; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A.; Favre, Gilles; Terwilliger, Thomas C.; Waldo, Geoffrey S.
2013-01-01
Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence. PMID:24092409
Campos, Bruno B; Algarra, Manuel; Esteves da Silva, Joaquim C G
2010-01-01
A fluorescent hybrid cadmium sulphide quantum dots (QDs) dendrimer nanocomposite (DAB-CdS) synthesised in water and stable in aqueous solution is described. The dendrimer, DAB-G5 dendrimer (polypropylenimine tetrahexacontaamine) generation 5, a diaminobutene core with 64 amine terminal primary groups. The maximum of the excitation and emission spectra, Stokes' shift and the emission full width of half maximum of this nanocomposite are, respectively: 351, 535, 204 and 212 nm. The fluorescence time decay was complex and a four component decay time model originated a good fit (chi = 1.20) with the following lifetimes: tau (1) = 657 ps; tau (2) = 10.0 ns; tau (3) = 59.42 ns; and tau (4) = 265 ns. The fluorescence intensity of the nanocomposite is markedly quenched by the presence of nitromethane with a dynamic Stern-Volmer constant of 25 M(-1). The quenching profiles show that about 81% of the CdS QDs are located in the external layer of the dendrimer accessible to the quencher. PARAFAC analysis of the excitation emission matrices (EEM) acquired as function of the nitromethane concentration showed a trilinear data structure with only one linearly independent component describing the quenching which allows robust estimation of the excitation and emission spectra and of the quenching profiles. This water soluble and fluorescent nanocomposite shows a set of favourable properties to its use in sensor applications.
Pottier, Fabien; Michelin, Anne; Andraud, Christine; Goubard, Fabrice; Lavédrine, Bertrand
2018-04-01
Ultraviolet visible (UV-Vis) fluorescence spectroscopy is widely used to study polychrome objects and can help to identify the nature of certain materials when they present specific fluorescent properties. However, given the complexity of the stratified and heterogeneous materials under study, the characterization of an intrinsic fluorescence related to a given constituent (a pigment or a binder composing a paint layer for example) is not straightforward, and the recorded raw data need to be corrected for a number of effects that can influence the detected spectral distribution. The application of standard correction procedures to experimental fluorescence data gathered on the polychromatic surface of the Codex Borbonicus, a 16th-century Aztec manuscript, is described. The results are confronted to an alternate new methodology that is based on the hypothesis of transparent non-scattering paint layers. This second approach allows to establish more clearly the material origin of the detected emission and to discriminate apparent fluorescence (emitted by the substrate and transmitted through the paint layers) from actual intrinsic emission generated by the coloring materials under study. The results show that most of the various emission profiles detected in the paint layers of the manuscript actually originate from a unique fluorophore (composing the substrate) and should not be used to characterize the coloring materials.
Ultrasound Induced Fluorescence of Nanoscale Liposome Contrast Agents
Zhang, Qimei; Morgan, Stephen P.; O’Shea, Paul; Mather, Melissa L.
2016-01-01
A new imaging contrast agent is reported that provides an increased fluorescent signal upon application of ultrasound (US). Liposomes containing lipids labelled with pyrene were optically excited and the excimer fluorescence emission intensity was detected in the absence and presence of an ultrasound field using an acousto-fluorescence setup. The acousto-fluorescence dynamics of liposomes containing lipids with pyrene labelled on the fatty acid tail group (PyPC) and the head group (PyPE) were compared. An increase in excimer emission intensity following exposure to US was observed for both cases studied. The increased intensity and time constants were found to be different for the PyPC and PyPE systems, and dependent on the applied US pressure and exposure time. The greatest change in fluorescence intensity (130%) and smallest rise time constant (0.33 s) are achieved through the use of PyPC labelled liposomes. The mechanism underlying the observed increase of the excimer emission intensity in PyPC labelled liposomes is proposed to arise from the “wagging” of acyl chains which involves fast response and requires lower US pressure. This is accompanied by increased lipid lateral diffusivity at higher ultrasound pressures, a mechanism that is also active in the PyPE labelled liposomes. PMID:27467748
Bag, Subhendu Sekhar; Talukdar, Sangita; Kundu, Rajen; Saito, Isao; Jana, Subhashis
2014-01-25
Dual door entry to exciplex formation was established in a chimeric DNA duplex wherein a fluorescent non-nucleosidic base surrogate () is paired against a fluorescent nucleosidic base surrogate (). Packing of the nucleobases via intercalative stacking interactions led to an exciplex emission either via FRET from the donor or direct excitation of the FRET acceptor .
Sarkar, Samir Kumar; Thilagar, Pakkirisamy
2013-10-04
The structure and photophysical properties of a new triad (borane–bithiophene–BODIPY) 1 have been investigated. Triad 1 exhibits unprecedented tricolour emission when excited at the borane centred high energy absorption band and also acts as a selective fluorescent and colorimetric sensor for fluoride ions with ratiometric response. The experimental results are supported by computational studies.
Image scanning fluorescence emission difference microscopy based on a detector array.
Li, Y; Liu, S; Liu, D; Sun, S; Kuang, C; Ding, Z; Liu, X
2017-06-01
We propose a novel imaging method that enables the enhancement of three-dimensional resolution of confocal microscopy significantly and achieve experimentally a new fluorescence emission difference method for the first time, based on the parallel detection with a detector array. Following the principles of photon reassignment in image scanning microscopy, images captured by the detector array were arranged. And by selecting appropriate reassign patterns, the imaging result with enhanced resolution can be achieved with the method of fluorescence emission difference. Two specific methods are proposed in this paper, showing that the difference between an image scanning microscopy image and a confocal image will achieve an improvement of transverse resolution by approximately 43% compared with that in confocal microscopy, and the axial resolution can also be enhanced by at least 22% experimentally and 35% theoretically. Moreover, the methods presented in this paper can improve the lateral resolution by around 10% than fluorescence emission difference and 15% than Airyscan. The mechanism of our methods is verified by numerical simulations and experimental results, and it has significant potential in biomedical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Kityk, A V
2014-07-15
A long-range-corrected time-dependent density functional theory (LC-TDDFT) in combination with polarizable continuum model (PCM) have been applied to study charge transfer (CT) optical absorption and fluorescence emission energies basing on parameterized LC-BLYP xc-potential. The molecule of 4-(9-acridyl)julolidine selected for this study represents typical CT donor-acceptor dye with strongly solvent dependent optical absorption and fluorescence emission spectra. The result of calculations are compared with experimental spectra reported in the literature to derive an optimal value of the model screening parameter ω. The first absorption band appears to be quite well predictable within DFT/TDDFT/PCM with the screening parameter ω to be solvent independent (ω ≈ 0.245 Bohr(-1)) whereas the fluorescence emission exhibits a strong dependence on the range separation with ω-value varying on a rising solvent polarity from about 0.225 to 0.151 Bohr(-1). Dipolar properties of the initial state participating in the electronic transition have crucial impact on the effective screening. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Okada, Tomoko; Minoura, Norihiko
2011-03-01
We develop a fluorescent ruthenium metalloglycocluster for use as a powerful molecular probe in evaluating the binding between carbohydrates and lectins by fluorescence emission (FE) and fluorescence polarization (FP) analyses. Changes in the FE and FP of these metalloglycoclusters are measured following the addition of lectin [peanut agglutinin (PNA), Ricinus communis agglutinin 120, Concanavalin A (ConA), or wheat germ agglutinin] or tetanus toxin c-fragment (TCF). After the addition of PNA, the FE spectrum of [Ru(bpy-2Gal)3] shows a new emission peak and the FP value of [Ru(bpy-2Gal)3] increases. Similarly, the FE spectrum of [Ru(bpy-2Glc)3] shows a new emission peak and the FP value increases on addition of ConA. Because other combinations of metalloglycoclusters and lectins show little change, specific binding of galactose to PNA and that of glucose to ConA are confirmed by the FE and FP measurements. Resulting dissociation constants (Kd) prove that the metalloglycoclusters with highly clustered carbohydrates show higher affinity for the respective lectins than those with less clustered carbohydrates. Furthermore, specific binding of [Ru(bpy-2Gal)3] to TCF was confirmed by the FP measurement.
A dual-selective fluorescent probe for GSH and Cys detection: Emission and pH dependent selectivity.
Tang, Yunqiang; Jin, Longyi; Yin, Bingzhu
2017-11-15
A novel fluorescent probe 1 based on acridine orange was developed for the selective detection and bioimaging of biothiols. The probe exhibits higher selectivity and turn-on fluorescence response to cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) than to other amino acids. Importantly, the probe responds to GSH and Cys/Hcy with distinct fluorescence emissions in PBS buffer at pH of 7.4. The Cys/Hcy-triggered tandem S N Ar-rearrangement reaction and GSH-induced S N Ar reaction with the probe led to the corresponding amino-acridinium and thio-acridinium dyes, respectively, which can discriminate GSH from Cys/Hcy through different emission channels. Interestingly, Cys finishes the tandem reaction with the probe and subsequently forms amino-acridinium and Hcy/GSH induces S N Ar reaction with the probe to form thio-acridiniums at weakly acidic conditions (pH 6.0), enabling Cys to be discriminated from Hcy/GSH at different emissions. Finally, we demonstrated that probe 1 can selectively probe GSH over Cys and Hcy or Cys over GSH and Hcy in HeLa cells through multicolor imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Bhat, Riyaz A; Lahaye, Thomas; Panstruga, Ralph
2006-01-01
Non-invasive fluorophore-based protein interaction assays like fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC, also referred to as "split YFP") have been proven invaluable tools to study protein-protein interactions in living cells. Both methods are now frequently used in the plant sciences and are likely to develop into standard techniques for the identification, verification and in-depth analysis of polypeptide interactions. In this review, we address the individual strengths and weaknesses of both approaches and provide an outlook about new directions and possible future developments for both techniques. PMID:16800872
Wen, Feng; Ali, Imran; Hasan, Abdulkhaleq; Li, Changbiao; Tang, Haijun; Zhang, Yufei; Zhang, Yanpeng
2015-10-15
We study the realization of an optical transistor (switch and amplifier) and router in multi-order fluorescence (FL) and spontaneous parametric four-wave mixing (SP-FWM). We estimate that the switching speed is about 15 ns. The router action results from the Autler-Townes splitting in spectral or time domain. The switch and amplifier are realized by dressing suppression and enhancement in FL and SP-FWM. The optical transistor and router can be controlled by multi-parameters (i.e., power, detuning, or polarization).
Ultratrace analysis of transuranic actinides by laser-induced fluorescence
Miller, S.M.
1983-10-31
Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.
Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K.
2003-01-01
Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the >10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation-emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation-emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (??i,n). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet-visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 hydrophobic or hydrophilic acid, neutral, and base DOM fractions plus nonfractionated DOM from wastewater effluents and rivers in the southwestern United States. DOM fractions fluoresced in one or more EEM regions. The highest cumulative EEM volume (??T,n = ????i,n) was observed for hydrophobic neutral DOM fractions, followed by lower ??T,n values for hydrophobic acid, base, and hydrophilic acid DOM fractions, respectively. An extracted wastewater biomass DOM sample contained aromatic protein- and humic-like material and was characteristic of bacterial-soluble microbial products. Aromatic carbon and the presence of specific aromatic compounds (as indicated by solid-state 13C NMR and FTIR data) resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM.
NASA Astrophysics Data System (ADS)
Kozankiewicz, B.; Prochorow, J.
1989-08-01
Fluorescence, phosphorescence and delayed fluorescence emission characteristics of tetracyanobenzene-hexamethylbenzene (TCNB-HMB) charge-transfer crystal have been studied in the 1.7-340 K temperature range. Delayed fluorescence, originating from heterogeneous triplet-triplet annihilation indicates the presence of mobile charge-transfer triplet excitons at a temperature as low as 1.7 K. However, the behaviour of triplet excitons in TCNB-HMB crystal is strongly controlled by a very efficient trapping process in the whole temperature range investigated. It was found that thermally activated delayed fluorescence, which is a dominating emission of the crystal at elevated temperatures (>60 K), has a different origin (a different initial state) at different temperatures. These observations were analysed and interpreted in terms of a photokinetic model, which is considered to be typical for charge-transfer crystals with high charge-transfer character of triplet excitons.
Demonstration of FRET in solutions
NASA Astrophysics Data System (ADS)
Shah, Sunil; Gryczynski, Zygmunt; Chib, Rahul; Fudala, Rafal; Baxi, Aatmun; Borejdo, Julian; Synak, Anna; Gryczynski, Ignacy
2016-03-01
We measured the Förster resonance energy transfer (FRET) from Uranin (U) donor to Rhodamine 101 (R101) acceptor in propylene glycol. Steady-state fluorescence measurements show a significant difference between mixed and unmixed fluorophore solutions. In the solution with mixed fluorophores, fluorescence intensity of the U donor decreases and intensity of R101 fluorescence increases. This is visualized as a color change from green to orange. Fluorescence anisotropy of the mixture solution increases in the donor emission wavelength region and decreases in the acceptor emission wavelengths; which is consistent with FRET occurrence. Time-resolved (lifetime) measurements show a decrease of the U lifetime in the presence of R101 acceptor. In the intensity decay of R101 acceptor appears a negative component indicating excited state process. All these measurements prove the presence of FRET in U/R101 mixture fluorescence.
NASA Astrophysics Data System (ADS)
Liu, Fukun; Cui, Minxin; Ma, Jiajun; Zou, Gang; Zhang, Qijin
2017-07-01
In this work, we report a novel optical fiber taper fluorescent probe for detection of nitro-explosives. The probe was fabricated by an in-situ photo-plating through evanescent wave and transmitted light initiated thiol-ene ;click; reaction, from which a cross-linked fluorescence porous polymer film was covalently bonded on the surface of the fiber taper. The film exhibits well-organized porous structure due to the presence of polyhedral oligomeric vinylsilsesquioxane moieties, and simultaneously displays strong fluorescence from tetraphenylethylene with aggregation-induced emission property. These two characters make the probe show a remarkable sensitivity, anti-photo-bleaching and a repeatability in detection of TNT and DNT vapors by fluorescence quenching. In addition, the detection is not interfered in the presence of other volatile organic gases.
NASA Astrophysics Data System (ADS)
Raju, Gajula; Ram Reddy, A.
2016-02-01
Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.
Bellasio, Chandra; Olejníčková, Julie; Tesař, Radek; Šebela, David; Nedbal, Ladislav
2012-01-01
Plant leaves grow and change their orientation as well their emission of chlorophyll fluorescence in time. All these dynamic plant properties can be semi-automatically monitored by a 3D imaging system that generates plant models by the method of coded light illumination, fluorescence imaging and computer 3D reconstruction. Here, we describe the essentials of the method, as well as the system hardware. We show that the technique can reconstruct, with a high fidelity, the leaf size, the leaf angle and the plant height. The method fails with wilted plants when leaves overlap obscuring their true area. This effect, naturally, also interferes when the method is applied to measure plant growth under water stress. The method is, however, very potent in capturing the plant dynamics under mild stress and without stress. The 3D reconstruction is also highly effective in correcting geometrical factors that distort measurements of chlorophyll fluorescence emission of naturally positioned plant leaves. PMID:22368511
Lin, Liangbin; Lin, Xiaoru; Guo, Hongyu; Yang, Fafu
2017-07-19
This study focuses on the construction of novel diphenylacrylonitrile-connected BODIPY dyes with high fluorescence in both solution and an aggregated state by combining DRET and FRET processes in a single donor-acceptor system. The first BODIPY derivatives with one, two, or three AIE-active diphenylacrylonitrile groups were designed and synthesized in moderate yields. Strong fluorescence emissions were observed in the THF solution under excitation at the absorption wavelength of non-emissive diphenylacrylonitrile chromophores, implying the existence of the DRET process between the dark diphenylacrylonitrile donor and the emissive BODIPY acceptor. In the THF/H 2 O solution, the fluorescence intensity of the novel BODIPY derivatives gradually increased under excitation at the absorption wavelength of diphenylacrylonitrile chromophores, suggesting a FRET process between diphenylacrylonitrile and BODIPY moieties. A greater number of diphenylacrylonitrile units led to higher energy-transfer efficiencies. The pseudo-Stokes shift for both DRET and FRET processes was as large as 190 nm.
One-pot synthesis of fluorescent polysaccharides: adenine grafted agarose and carrageenan.
Oza, Mihir D; Prasad, Kamalesh; Siddhanta, A K
2012-08-01
New fluorescent polysaccharides were synthesized by grafting the nucleobase adenine on to the backbones of agarose and κ-carrageenan, which were characterized by FT-IR, (13)C NMR, TGA, XRD, UV, and fluorescence properties. The synthesis involved a rapid water based potassium persulfate (KPS) initiated method under microwave irradiation. The emission spectra of adenine grafted agarose and κ-carrageenan were recorded in aqueous (5×10(-5) M) solution, exhibiting λ(em,max) 347 nm by excitation at 261 nm, affording ca. 30% and 40% enhanced emission intensities, respectively compared to that of pure adenine solution in the same concentration. Similar emission intensity was recorded in the pure adenine solution at its molar equivalent concentrations present in the 5×10(-5) M solution of the agarose and carrageenan grafted products, that is, 3.28×10(-5) M and 4.5×10(-5) M respectively. These fluorescent adenine grafted products may have potential utility in various sensor applications. Copyright © 2012. Published by Elsevier Ltd.
Koo, Byungjin; Swager, Timothy M
2017-09-01
Commercial dyes are extensively utilized to stain specific phases for the visualization applications in emulsions and bioimaging. In general, dyes emit only one specific fluorescence signal and thus, in order to stain various phases and/or interfaces, one needs to incorporate multiple dyes and carefully consider their compatibility to avoid undesirable interactions with each other and with the components in the system. Herein, surfactant-type, perylene-endcapped fluorescent conjugated polymers that exhibit two different emissions are reported, which are cyan in water and red at oil-water interfaces. The interfacially distinct red emission results from enhanced exciton migration from the higher-bandgap polymer backbone to the lower-bandgap perylene endgroup. The confocal microscopy images exhibit the localized red emission exclusively from the circumference of oil droplets. This exciton migration and dual fluorescence of the polymers in different physical environments can provide a new concept of visualization methods in many amphiphilic colloidal systems and bioimaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoswitchable red fluorescent protein with a large Stokes shift
Piatkevich, Kiryl D.; English, Brian P.; Malashkevich, Vladimir N.; Xiao, Hui; Almo, Steven C.; Singer, Robert H.; Verkhusha, Vladislav V.
2014-01-01
SUMMARY Subclass of fluorescent proteins, large Stokes shift fluorescent proteins, is characterized by their increased spread between the excitation and emission maxima. Here we report a photoswitchable variant of a red fluorescent protein with a large Stokes shift, PSLSSmKate, which initially exhibits excitation/emission at 445/622 nm, but irradiation with violet light photoswitches PSLSSmKate into a common red form with excitation/emission at 573/621 nm. We characterize spectral, photophysical and biochemical properties of PSLSSmKate in vitro and in mammalian cells, and determine its crystal structure in the large Stokes shift form. Mass-spectrometry, mutagenesis and spectroscopic analysis of PSLSSmKate allow us to propose molecular mechanisms for the large Stokes shift, pH dependence and light-induced chromophore transformation. We demonstrate applicability of PSLSSmKate to superresolution PALM microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects. PMID:25242289
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rout, Dipak; Vijaya, R.; Centre for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur 208016
Well-ordered opaline photonic crystals are grown by inward growing self-assembly method from Rhodamine B dye-doped polystyrene colloids. Subsequent to self-assembly, the crystals are infiltrated with gold nanoparticles of 40 nm diameter. Measurements of the stopband features and photoluminescence intensity from these crystals are supplemented by fluorescence decay time analysis. The fluorescence decay times from the dye-doped photonic crystals before and after the infiltration are dramatically different from each other. A lowered fluorescence decay time was observed for the case of gold infiltrated crystal along with an enhanced emission intensity. Double-exponential decay nature of the fluorescence from the dye-doped crystal gets convertedmore » into single-exponential decay upon the infiltration of gold nanoparticles due to the resonant radiative process resulting from the overlap of the surface plasmon resonance with the emission spectrum. The influence of localized surface plasmon due to gold nanoparticles on the increase in emission intensity and decrease in decay time of the emitters is established.« less
Bellasio, Chandra; Olejníčková, Julie; Tesař, Radek; Sebela, David; Nedbal, Ladislav
2012-01-01
Plant leaves grow and change their orientation as well their emission of chlorophyll fluorescence in time. All these dynamic plant properties can be semi-automatically monitored by a 3D imaging system that generates plant models by the method of coded light illumination, fluorescence imaging and computer 3D reconstruction. Here, we describe the essentials of the method, as well as the system hardware. We show that the technique can reconstruct, with a high fidelity, the leaf size, the leaf angle and the plant height. The method fails with wilted plants when leaves overlap obscuring their true area. This effect, naturally, also interferes when the method is applied to measure plant growth under water stress. The method is, however, very potent in capturing the plant dynamics under mild stress and without stress. The 3D reconstruction is also highly effective in correcting geometrical factors that distort measurements of chlorophyll fluorescence emission of naturally positioned plant leaves.
NASA Astrophysics Data System (ADS)
Alves, Julio Cesar L.; Poppi, Ronei J.
2013-02-01
This paper reports the application of piecewise direct standardization (PDS) for matrix correction in front face fluorescence spectroscopy of solids when different excipients are used in a pharmaceutical preparation based on a mixture of acetylsalicylic acid (ASA), paracetamol (acetaminophen) and caffeine. As verified in earlier studies, the use of different excipients and their ratio can cause a displacement, change in fluorescence intensity or band profile. To overcome this important drawback, a standardization strategy was adopted to convert all the excitation-emission fluorescence spectra into those used for model development. An excitation-emission matrix (EEM) for which excitation and emission wavelengths ranging from 265 to 405 nm and 300 to 480 nm, respectively, was used. Excellent results were obtained using unfolded partial least squares (U-PLS), with RMSEP values of 8.2 mg/g, 10.9 mg/g and 2.7 mg/g for ASA, paracetamol and caffeine, respectively, and with relative errors lesser than 5% for the three analytes.
Magney, Troy S; Frankenberg, Christian; Fisher, Joshua B; Sun, Ying; North, Gretchen B; Davis, Thomas S; Kornfeld, Ari; Siebke, Katharina
2017-09-01
Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view - allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (F λ , 670-850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, F t ) and saturation pulses (maximal fluorescence yields, F m ). Our results suggest that this method can accurately reproduce the full Chl emission spectra - capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Photoabsorption and photodissociation of molecules important in the interstellar medium
NASA Technical Reports Server (NTRS)
Lee, Long C.; Suto, Masako
1991-01-01
The photoabsorption, photodissociation, and fluorescence cross sections of interstellar molecules are measured at 90 to 250 nm. These quantitative optical data are needed for the understanding of the formation and destruction processes of molecules under the intense interstellar UV radiation field. Research covering the following topics is presented: (1) fluorescences from photoexcitation of CH4, CH3OH, and CH3SH; (2) NO gamma emission from photoexcitation of NO; (3) photoexcitation cross sections of aromatic molecules; (4) IR emission from UV excitation of HONO2; (5) IR emission from UV excitation of benzene and methyl-derivitives; and (6) IR emission from UV excitation of polycyclic aromatic hydrocarbon molecules.
BiFCROS: A Low-Background Fluorescence Repressor Operator System for Labeling of Genomic Loci.
Milbredt, Sarah; Waldminghaus, Torsten
2017-06-07
Fluorescence-based methods are widely used to analyze elementary cell processes such as DNA replication or chromosomal folding and segregation. Labeling DNA with a fluorescent protein allows the visualization of its temporal and spatial organization. One popular approach is FROS (fluorescence repressor operator system). This method specifically labels DNA in vivo through binding of a fusion of a fluorescent protein and a repressor protein to an operator array, which contains numerous copies of the repressor binding site integrated into the genomic site of interest. Bound fluorescent proteins are then visible as foci in microscopic analyses and can be distinguished from the background fluorescence caused by unbound fusion proteins. Even though this method is widely used, no attempt has been made so far to decrease the background fluorescence to facilitate analysis of the actual signal of interest. Here, we present a new method that greatly reduces the background signal of FROS. BiFCROS (Bimolecular Fluorescence Complementation and Repressor Operator System) is based on fusions of repressor proteins to halves of a split fluorescent protein. Binding to a hybrid FROS array results in fluorescence signals due to bimolecular fluorescence complementation. Only proteins bound to the hybrid FROS array fluoresce, greatly improving the signal to noise ratio compared to conventional FROS. We present the development of BiFCROS and discuss its potential to be used as a fast and single-cell readout for copy numbers of genetic loci. Copyright © 2017 Milbredt and Waldminghaus.
BiFCROS: A Low-Background Fluorescence Repressor Operator System for Labeling of Genomic Loci
Milbredt, Sarah; Waldminghaus, Torsten
2017-01-01
Fluorescence-based methods are widely used to analyze elementary cell processes such as DNA replication or chromosomal folding and segregation. Labeling DNA with a fluorescent protein allows the visualization of its temporal and spatial organization. One popular approach is FROS (fluorescence repressor operator system). This method specifically labels DNA in vivo through binding of a fusion of a fluorescent protein and a repressor protein to an operator array, which contains numerous copies of the repressor binding site integrated into the genomic site of interest. Bound fluorescent proteins are then visible as foci in microscopic analyses and can be distinguished from the background fluorescence caused by unbound fusion proteins. Even though this method is widely used, no attempt has been made so far to decrease the background fluorescence to facilitate analysis of the actual signal of interest. Here, we present a new method that greatly reduces the background signal of FROS. BiFCROS (Bimolecular Fluorescence Complementation and Repressor Operator System) is based on fusions of repressor proteins to halves of a split fluorescent protein. Binding to a hybrid FROS array results in fluorescence signals due to bimolecular fluorescence complementation. Only proteins bound to the hybrid FROS array fluoresce, greatly improving the signal to noise ratio compared to conventional FROS. We present the development of BiFCROS and discuss its potential to be used as a fast and single-cell readout for copy numbers of genetic loci. PMID:28450375
Triple collinear emissions in parton showers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höche, Stefan; Prestel, Stefan
2017-10-01
A framework to include triple collinear splitting functions into parton showers is presented, and the implementation of flavor-changing NLO splitting kernels is discussed as a first application. The correspondence between the Monte-Carlo integration and the analytic computation of NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution. Numerical simulation results are obtained with two independent implementations of the new algorithm, using the two independent event generation frameworks Pythia and Sherpa.
NASA Astrophysics Data System (ADS)
Paul, Bijan Kumar; Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil
2011-06-01
A structurally simple Schiff base N-benzyl-(3-hydroxy-2-naphthalene) (NBHN32) has been synthesized and characterized by 1H NMR, 13C NMR, and DEPT spectroscopy. The photophysical behaviour of NBHN32 in response to the presence of various transition metal cations has been explored by means of steady-state absorption, emission and time-resolved emission spectroscopy techniques. Efficient through space intramolecular photoinduced electron transfer (PET) between the naphthalene fluorophore and the imine group has been argued for extremely low fluorescence yield of NBHN32 compared to the parent molecule 3-hydroxy-2-naphthaldehyde (HN32) containing the same fluorophore but lacking the receptor moiety. Transition metal ion-induced emission enhancement is thus addressed on the lexicon of perturbation of the PET by the metal ions. Apart from fluorescence enhancement, transition metal ion imparts remarkable shift of the emission maxima of NBHN32, which is another unique aspect on the proposed ability of NBHN32 to function as a fluorescence chemosensor.
Liu, Limei; Sanchez-Lopez, Hector; Poole, Michael; Liu, Feng; Crozier, Stuart
2012-09-01
Splitting a magnetic resonance imaging (MRI) magnet into two halves can provide a central region to accommodate other modalities, such as positron emission tomography (PET). This approach, however, produces challenges in the design of the gradient coils in terms of gradient performance and fabrication. In this paper, the impact of a central gap in a split MRI system was theoretically studied by analysing the performance of split, actively-shielded transverse gradient coils. In addition, the effects of the eddy currents induced in the cryostat on power loss, mechanical vibration and magnetic field harmonics were also investigated. It was found, as expected, that the gradient performance tended to decrease as the central gap increased. Furthermore, the effects of the eddy currents were heightened as a consequence of splitting the gradient assembly into two halves. An optimal central gap size was found, such that the split gradient coils designed with this central gap size could produce an engineering solution with an acceptable trade-off between gradient performance and eddy current effects. These investigations provide useful information on the inherent trade-offs in hybrid MRI imaging systems. Copyright © 2012 Elsevier Inc. All rights reserved.
Rachofsky, E L; Osman, R; Ross, J B
2001-01-30
2-Aminopurine (2AP) is an analogue of adenine that has been utilized widely as a fluorescence probe of protein-induced local conformational changes in DNA. Within a DNA strand, this fluorophore demonstrates characteristic decreases in quantum yield and emission decay lifetime that vary sensitively with base sequence, temperature, and helix conformation but that are accompanied by only small changes in emission wavelength. However, the molecular interactions that give rise to these spectroscopic changes have not been established. To develop a molecular model for interpreting the fluorescence measurements, we have investigated the effects of environmental polarity, hydrogen bonding, and the purine and pyrimidine bases of DNA on the emission energy, quantum yield, and intensity decay kinetics of 2AP in simple model systems. The effects of environmental polarity were examined in a series of solvents of varying dielectric constant, and hydrogen bonding was investigated in binary mixtures of water with 1,4-dioxane or N,N-dimethylformamide (DMF). The effects of the purine and pyrimidine bases were studied by titrating 2AP deoxyriboside (d2AP) with the nucleosides adenosine (rA), cytidine (rC), guanosine (rG), and deoxythymidine (dT), and the nucleoside triphosphates ATP and GTP in neutral aqueous solution. The nucleosides and NTPs each quench the fluorescence of d2AP by a combination of static (affecting only the quantum yield) and dynamic (affecting both the quantum yield and the lifetime, proportionately) mechanisms. The peak wavelength and shape of the emission spectrum are not altered by either of these effects. The static quenching is saturable and has half-maximal effect at approximately 20 mM nucleoside or NTP, consistent with an aromatic stacking interaction. The rate constant for dynamic quenching is near the diffusion limit for collisional interaction (k(q) approximately 2 x 10(9) M(-1) s(-1)). Neither of these effects varies significantly between the various nucleosides and NTPs studied. In contrast, hydrogen bonding with water was observed to have a negligible effect on the emission wavelength, fluorescence quantum yield, or lifetime of 2AP in either dioxane or DMF. In nonpolar solvents, the fluorescence lifetime and quantum yield decrease dramatically, accompanied by significant shifts in the emission spectrum to shorter wavelengths. However, these effects of polarity do not coincide with the observed emission wavelength-independent quenching of 2AP fluorescence in DNA. Therefore, we conclude that the fluorescence quenching of 2AP in DNA arises from base stacking and collisions with neighboring bases only but is insensitive to base-pairing or other hydrogen bonding interactions. These results implicate both structural and dynamic properties of DNA in quenching of 2AP and constitute a simple model within which the fluorescence changes induced by protein-DNA binding or other perturbations may be interpreted.
NASA Astrophysics Data System (ADS)
Teklu, Abraham; Orlov, D. M.; Moyer, R. A.; Bykov, I.; Evans, T. E.; Wu, W.; Trevisan, G. L.; Lyons, B. C.; Abrams, T.; Makowski, M. A.; Lasnier, C. S.; Fenstermacher, M. E.
2017-10-01
Resonant magnetic perturbations (RMPs) from 3D coils have been varied to modify the splitting of the divertor strike points in DIII-D. This splitting is imaged in filtered visible and infrared emission from the divertor to determine the particle and heat flux patterns on the target plates. The observed splitting is compared to vacuum and plasma response modeling in discharges where a subset of the RMP coils were ramped to shift the divertor footprints from dominantly n = 3 to n = 2 pattern. These results will be used to determine if the plasma response model can be validated with the measured splitting. We will also study the sensitivity of the modeled splitting to details of the 2D equilibrium. This RMP ramp technique could be used in ITER to spread out the heat flux while avoiding excessive forces on the RMP coils. Work supported by U.S. DOE under the Science Undergraduate Laboratory Internship (SULI) program and DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-05ER54809 and DE-AC52-07NA27344.
van der Schaar, H M; Melia, C E; van Bruggen, J A C; Strating, J R P M; van Geenen, M E D; Koster, A J; Bárcena, M; van Kuppeveld, F J M
2016-01-01
Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banasek, J. T., E-mail: jtb254@cornell.edu; Engelbrecht, J. T.; Pikuz, S. A.
2016-11-15
We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with amore » return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.« less
ERIC Educational Resources Information Center
Flores, Rosa V.; Sola, Hilda M.; Torres, Juan C.; Torres, Rafael E.; Guzman, Ernick E.
2013-01-01
A fluorescence spectroscopy experiment is described where students integrated biochemistry and instrumental analysis, while characterizing the green fluorescent protein excitation and emission spectra in terms of its phenolic and phenolate chromophores. Students studied the combined effect of pH and temperature on the protein's fluorescence,…
[Fluorescence spectra analysis of the scrophularia soup].
Yan, Li-hua; Song, Feng; Han, Juan; Su, Jing; Qu, Fei-fei; Song, Yi-zhan; Hu, Bo-lin; Tian, Jian-guo
2008-08-01
The cold-water and boiled-water soaked scrophularia soups have been prepared. The emission and excitation spectra of each scrophularia soup under different conditions have been measured at room temperature. The pH values of the different scrophularia soups have been also detected. There are obvious differences between the cold-water soaked scrophularia soup and the boiled-water soaked scrophularia. For both soups the emission wavelength increases with the wavelength of the excitation, but the peaks of the emission spectra for cold-water and boiled-water soaked scrophularia soup are different, which are 441 and 532 nm, respectively. Excitation spectrum has double peaks in the cold-water soaked scrophularia soup while only one peak with longer wavelength in the boiled-water soaked one. The pH value changes from 5.5 to 4.1. According to the organic admixture fluorescence mechanism we analyzed the reasons of the experimental results. Through heating, the interaction in different fluorescence molecular and the energy transfer process in the same fluorescence molecular become more active, and the conjugate structures and the generation of hydrogen bonds, increase. The fluorescence measurement is of value for the scrophularia pharmacology analysis and provides an analytical method for the quality identification of scrophularia soup.
Multiplex detection of protein-protein interactions using a next generation luciferase reporter.
Verhoef, Lisette G G C; Mattioli, Michela; Ricci, Fernanda; Li, Yao-Cheng; Wade, Mark
2016-02-01
Cell-based assays of protein-protein interactions (PPIs) using split reporter proteins can be used to identify PPI agonists and antagonists. Generally, such assays measure one PPI at a time, and thus counterscreens for on-target activity must be run in parallel or at a subsequent stage; this increases both the cost and time during screening. Split luciferase systems offer advantages over those that use split fluorescent proteins (FPs). This is since split luciferase offers a greater signal:noise ratio and, unlike split FPs, the PPI can be reversed upon small molecule treatment. While multiplexed PPI assays using luciferase have been reported, they suffer from low signal:noise and require fairly complex spectral deconvolution during analysis. Furthermore, the luciferase enzymes used are large, which limits the range of PPIs that can be interrogated due to steric hindrance from the split luciferase fragments. Here, we report a multiplexed PPI assay based on split luciferases from Photinus pyralis (firefly luciferase, FLUC) and the deep-sea shrimp, Oplophorus gracilirostris (NanoLuc, NLUC). Specifically, we show that the binding of the p53 tumor suppressor to its two major negative regulators, MDM2 and MDM4, can be simultaneously measured within the same sample, without the requirement for complex filters or deconvolution. We provide chemical and genetic validation of this system using MDM2-targeted small molecules and mutagenesis, respectively. Combined with the superior signal:noise and smaller size of split NanoLuc, this multiplexed PPI assay format can be exploited to study the induction or disruption of pairwise interactions that are prominent in many cell signaling pathways. Copyright © 2015 Elsevier B.V. All rights reserved.
Liang, Fang-Cheng; Kuo, Chi-Ching; Chen, Bo-Yu; Cho, Chia-Jung; Hung, Chih-Chien; Chen, Wen-Chang; Borsali, Redouane
2017-05-17
Novel red-green-blue (RGB) switchable probes based on fluorescent porous electrospun (ES) nanofibers exhibiting high sensitivity to pH and mercury ions (Hg 2+ ) were prepared with one type of copolymer (poly(methyl methacrylatete-co-1,8-naphthalimide derivatives-co-rhodamine derivative); poly(MMA-co-BNPTU-co-RhBAM)) by using a single-capillary spinneret. The MMA, BNPTU, and RhBAM moieties were designed to (i) permit formation of porous fibers, (ii) fluoresce for Hg 2+ detection, and (iii) fluoresce for pH, respectively. The fluorescence emission of BNPTU (fluorescence resonance energy transfer (FRET) donor) changed from green to blue as it detected Hg 2+ . The fluorescence emission of RhBAM (FRET acceptor) was highly selective for pH, changing from nonfluorescent (pH 7) to exhibiting strong red fluorescence (pH 2). The full-color emission of the ES nanofibers included green, red, blue, purple, and white depending on the particular pH and Hg 2+ -concentration combination of the solution. The porous ES nanofibers with 30 nm pores were fabricated using hydrophobic MMA, low-boiling-point solvent, and at a high relative humidity (80%). These porous ES nanofibers had a higher surface-to-volume ratio than did the corresponding thin films, which enhanced their performance. The present study demonstrated that the FRET-based full-color-fluorescence porous nanofibrous membranes, which exhibit on-off switching and can be used as naked eye probes, have potential for application in water purification sensing filters.
Complete fluorescent fingerprints of extremophilic and photosynthetic microbes
NASA Astrophysics Data System (ADS)
Dartnell, Lewis R.; Storrie-Lombardi, Michael C.; Ward, John M.
2010-10-01
The work reported here represents a study into the total fluorescence exhibited by a broad selection of model, extremophilic and photosynthetic bacterial strains, over a great range of excitation and emission wavelengths from ultraviolet (UV) through visible to near infrared. The aim is to identify distinctive fluorescent features that may serve as detectable biosignatures of remnant microbial life on the Martian surface. A lab-bench fluorescence spectrometer was used to generate an excitation-emission matrix (EEM) for the unpigmented Escherichia coli, radiation-resistant Deinococcus radiodurans, Antarctic Dry Valley isolates Brevundimonas sp. MV.7 and Rhodococcus sp. MV.10, and the cyanobacterium Synechocystis sp. PCC 6803. Detailed EEMs, representing the fluorescence signature of each organism, are presented, and the most significant features suitable for biosignature surveys are identified, including small-molecule cellular metabolites, light-harvesting photosynthetic pigments and extracellular UV-screening compounds. E. coli exhibits the most intense emission from tryptophan, presumably due to the absence of UV-screening pigments that would shield the organism from short-wavelength light-exciting intracellular fluorescence. The efficacy of commonly available laser diodes for exciting cellular fluorescence is treated, along with the most appropriate filter wavelengths for imaging systems. The best combination of available laser diodes and PanCam filters aboard the ExoMars probe is proposed. The possibility of detecting fluorescence excited by solar UV radiation in freshly exposed surface samples by imaging when both sunlit and shadowed, perhaps by the body of the rover itself, is discussed. We also study how these biological fluorophore molecules may be degraded, and thus the potential biosignatures erased, by the high flux of far-ultraviolet light on Mars.
NASA Astrophysics Data System (ADS)
Birdwell, Justin E.; Valsaraj, Kalliat T.
Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores.
Birdwell, J.E.; Valsaraj, K.T.
2010-01-01
Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.
Land surface temperature measurements from EOS MODIS data
NASA Technical Reports Server (NTRS)
Wan, Zhengming
1994-01-01
A generalized split-window method for retrieving land-surface temperature (LST) from AVHRR and MODIS data has been developed. Accurate radiative transfer simulations show that the coefficients in the split-window algorithm for LST must depend on the viewing angle, if we are to achieve a LST accuracy of about 1 K for the whole scan swath range (+/-55.4 deg and +/-55 deg from nadir for AVHRR and MODIS, respectively) and for the ranges of surface temperature and atmospheric conditions over land, which are much wider than those over oceans. We obtain these coefficients from regression analysis of radiative transfer simulations, and we analyze sensitivity and error by using results from systematic radiative transfer simulations over wide ranges of surface temperatures and emissivities, and atmospheric water vapor abundance and temperatures. Simulations indicated that as atmospheric column water vapor increases and viewing angle is larger than 45 deg it is necessary to optimize the split-window method by separating the ranges of the atmospheric column water vapor and lower boundary temperature, and the surface temperature into tractable sub-ranges. The atmospheric lower boundary temperature and (vertical) column water vapor values retrieved from HIRS/2 or MODIS atmospheric sounding channels can be used to determine the range where the optimum coefficients of the split-window method are given. This new LST algorithm not only retrieves LST more accurately but also is less sensitive than viewing-angle independent LST algorithms to the uncertainty in the band emissivities of the land-surface in the split-window and to the instrument noise.
Wang, Zhiwei; Wu, Zhichao; Tang, Shujuan
2009-04-01
Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy was employed to characterize dissolved organic matter (DOM) in a submerged membrane bioreactor (MBR). Three fluorescence peaks could be identified from the EEM fluorescence spectra of the DOM samples in the MBR. Two peaks were associated with the protein-like fluorophores, and the third was related to the visible humic acid-like fluorophores. Only two main peaks were observed in the EEM fluorescence spectra of the extracellular polymeric substance (EPS) samples, which were due to the fluorescence of protein-like and humic acid-like matters, respectively. However, the EEM fluorescence spectra of membrane foulants were observed to have three peaks. It was also found that the dominant fluorescence substances in membrane foulants were protein-like substances, which might be due to the retention of proteins in the DOM and/or EPS in the MBR by the fine pores of the membrane. Quantitative analysis of the fluorescence spectra including peak locations, fluorescence intensity, and different peak intensity ratios and the fluorescence regional integration (FRI) analysis were also carried out in order to better understand the similarities and differences among the EEM spectra of the DOM, EPS, and membrane foulant samples and to further provide an insight into membrane fouling caused by the fluorescence substances in the DOM in submerged MBRs.
NASA Astrophysics Data System (ADS)
Ruan, Shaobo; Qian, Jun; Shen, Shun; Zhu, Jianhua; Jiang, Xinguo; He, Qin; Gao, Huile
2014-08-01
Fluorescent carbon dots (CD) possess impressive potential in bioimaging because of their low photobleaching, absence of optical blinking and good biocompatibility. However, their relatively short excitation/emission wavelengths restrict their application in in vivo imaging. In the present study, a kind of CD was prepared by a simple heat treatment method using glycine as the only precursor. The diameter of CD was lower than 5 nm, and the highest emission wavelength was 500 nm. However, at 600 nm, there was still a relatively strong fluorescent emission, suggesting CD could be used for in vivo imaging. Additionally, several experiments demonstrated that CD possessed good serum stability and low cytotoxicity. In vitro, CD could be taken up into C6 glioma cells in a time- and concentration-dependent manner, with both endosomes and mitochondria involved. In vivo, CD could be used for non-invasive glioma imaging because of its high accumulation in the glioma site of the brain, which was demonstrated by both in vivo imaging and ex vivo tissue imaging. Furthermore, the fluorescent distribution in tissue slices also showed CD distributed in glioma with high intensity, while with a low intensity in normal brain tissue. In conclusion, CD were prepared using a simple method with relatively long excitation and emission wavelengths and could be used for non-invasive glioma imaging.Fluorescent carbon dots (CD) possess impressive potential in bioimaging because of their low photobleaching, absence of optical blinking and good biocompatibility. However, their relatively short excitation/emission wavelengths restrict their application in in vivo imaging. In the present study, a kind of CD was prepared by a simple heat treatment method using glycine as the only precursor. The diameter of CD was lower than 5 nm, and the highest emission wavelength was 500 nm. However, at 600 nm, there was still a relatively strong fluorescent emission, suggesting CD could be used for in vivo imaging. Additionally, several experiments demonstrated that CD possessed good serum stability and low cytotoxicity. In vitro, CD could be taken up into C6 glioma cells in a time- and concentration-dependent manner, with both endosomes and mitochondria involved. In vivo, CD could be used for non-invasive glioma imaging because of its high accumulation in the glioma site of the brain, which was demonstrated by both in vivo imaging and ex vivo tissue imaging. Furthermore, the fluorescent distribution in tissue slices also showed CD distributed in glioma with high intensity, while with a low intensity in normal brain tissue. In conclusion, CD were prepared using a simple method with relatively long excitation and emission wavelengths and could be used for non-invasive glioma imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02657h
Tanaka, Makiko; Oguma, Kazuhiro; Saito, Yoshio; Saito, Isao
2012-06-15
5-(1-Naphthalenylethynyl)-2'-deoxyuridine ((N)U) and 5-[(4-cyano-1-naphthalenyl)ethynyl]-2'-deoxyuridine ((CN)U) were synthesized and incorporated into oligodeoxynucleotides. Fluorescence emissions of modified duplexes containing double (N)U were efficiently quenched depending upon the sequence pattern of the naphthalenes in DNA major groove, as compared to the duplex possessing single (N)U. When one of the naphthalene moieties has a cyano substituent, the exciplex emission from the chromophores in DNA major groove was observed at longer wavelength. Copyright © 2012 Elsevier Ltd. All rights reserved.
Optical spectroscopy of the bladder washout fluid to optimize fluorescence cystoscopy with Hexvix®.
Martoccia, Carla; Zellweger, Matthieu; Lovisa, Blaise; Jichlinski, Patrice; van den Bergh, Hubert; Wagnières, Georges
2014-09-01
Fluorescence cystoscopy enhances detection of early bladder cancer. Water used to inflate thebladder during the procedure rapidly contains urine, which may contain fluorochromes. This frequently degradesfluorescence images. Samples of bladder washout fluid (BWF) or urine were collected (15 subjects). We studiedtheir fluorescence properties and assessed changes induced by pH (4 to 9) and temperature (15°C to 41°C).A typical fluorescence spectrum of BWF features a main peak (excitation/emission: 320∕420 nm, FWHM =50∕100 nm) and a weaker (5% to 20% of main peak intensity), secondary peak (excitation/emission: 455∕525 nm, FWHM = 80∕50 nm). Interpatient fluctuations of fluorescence intensity are observed. Fluorescence intensity decreases when temperature increases (max 30%) or pH values vary (max 25%). Neither approach is compatible with clinical settings. Fluorescence lifetime measurements suggest that 4-pyridoxic acid/riboflavin is the most likely molecule responsible for urine’s main/secondary fluorescence peak. Our measurements give an insight into the spectroscopy of the detrimental background fluorescence. This should be included in the optical design of fluorescence cystoscopes. We estimate that restricting the excitation range from 370–430 nm to 395–415 nm would reduce the BWF background by a factor 2.
In vitro energy transfer in Renilla bioluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, W.W.; Cormier, M.J.
1976-09-23
A quantitative study of in vitro energy transfer in a natural biological system is reported. The in vitro bioluminescent oxidation of Renilla (sea pansy) luciferin by luciferase produces a broad, structureless emission, peaking in the blue at 490 nm. In contrast, the live animal produces a structured emission peaking in the green at 509 nm. This difference in emission characteristics is due to the presence, in Renilla, of a green fluorescent protein (GFP). Addition of GFP in vitro sensitizes the oxyluciferin product excited state, resulting in the narrow, structured green emission characteristic of GFP fluorescence (lambda/sub max/ 509 nm). Undermore » conditions of efficient in vitro energy transfer (2.7 x 10/sup -6/ M GFP) the radiative quantum yield (with respect to luciferin) increases 5.7-fold from 5.3% (blue pathway) to 30% (green pathway). The fluorescence quantum yield of the Renilla GFP has been measured as 30%; thus, within the precision of our measurements (15% coefficient of variation) the in vitro energy transfer efficiency is a surprising 100%.« less
Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS).
Guo, Shuxia; Chernavskaia, Olga; Popp, Jürgen; Bocklitz, Thomas
2018-08-15
Fluorescence emission is one of the major obstacles to apply Raman spectroscopy in biological investigations. It is usually several orders more intense than Raman scattering and hampers further analysis. In cases where the fluorescence emission is too intense to be efficiently removed via routine mathematical baseline correction algorithms, an alternative approach is needed. One alternative approach is shifted-excitation Raman difference spectroscopy (SERDS), where two Raman spectra are recorded with two slightly different excitation wavelengths. Ideally, the fluorescence emission at the two excitations does not change while the Raman spectrum shifts according to the excitation wavelength. Hence the fluorescence is removed in the difference of the two recorded Raman spectra. For better interpretability a spectral reconstruction procedure is necessary to recover the fluorescence-free Raman spectrum. This is challenging due to the intensity variations between the two recorded Raman spectra caused by unavoidable experimental changes as well as the presence of noise. Existent approaches suffer from drawbacks like spectral resolution loss, fluorescence residual, and artefacts. In this contribution, we proposed a reconstruction method based on non-negative least squares (NNLS), where the intensity variations between the two measurements are utilized in the reconstruction model. The method achieved fluorescence-free reconstruction on three real-world SERDS datasets without significant information loss. Thereafter, we quantified the performance of the reconstruction based on artificial datasets from four aspects: reconstructed spectral resolution, precision of reconstruction, signal-to-noise-ratio (SNR), and fluorescence residual. The artificial datasets were constructed with varied Raman to fluorescence intensity ratio (RFIR), SNR, full-width at half-maximum (FWHM), excitation wavelength shift, and fluorescence variation between the two spectra. It was demonstrated that the NNLS approach provides a faithful reconstruction without significantly changing the spectral resolution. Meanwhile, the reconstruction is almost robust to fluorescence variations between the two spectra. Last but not the least the SNR was improved after reconstruction for extremely noisy SERDS datasets. Copyright © 2018 Elsevier B.V. All rights reserved.
Balcioglu, Mustafa; Rana, Muhit; Robertson, Neil; Yigit, Mehmet V
2014-08-13
We controlled the fluorescence emission of a fluorescently labeled iron oxide nanoparticle using three different nanomaterials with ultraefficient quenching capabilities. The control over the fluorescence emission was investigated via spacing introduced by the surface-functionalized single-stranded DNA molecules. DNA molecules were conjugated on different templates, either on the surface of the fluorescently labeled iron oxide nanoparticles or gold and nanographene oxide. The efficiency of the quenching was determined and compared with various fluorescently labeled iron oxide nanoparticle and nanoquencher combinations using DNA molecules with three different lengths. We have found that the template for DNA conjugation plays significant role on quenching the fluorescence emission of the fluorescently labeled iron oxide nanoparticles. We have observed that the size of the DNA controls the quenching efficiency when conjugated only on the fluorescently labeled iron oxide nanoparticles by setting a spacer between the surfaces and resulting change in the hydrodynamic size. The quenching efficiency with 12mer, 23mer and 36mer oligonucleotides decreased to 56%, 54% and 53% with gold nanoparticles, 58%, 38% and 32% with nanographene oxide, 46%, 38% and 35% with MoS2, respectively. On the other hand, the presence, not the size, of the DNA molecules on the other surfaces quenched the fluorescence significantly with different degrees. To understand the effect of the mobility of the DNA molecules on the nanoparticle surface, DNA molecules were attached to the surface with two different approaches. Covalently immobilized oligonucleotides decreased the quenching efficiency of nanographene oxide and gold nanoparticles to ∼22% and ∼21%, respectively, whereas noncovalently adsorbed oligonucleotides decreased it to ∼25% and ∼55%, respectively. As a result, we have found that each nanoquencher has a powerful quenching capability against a fluorescent nanoparticle, which can be tuned with surface functionalized DNA molecules.
Red Fluorescent Carbon Nanoparticle-Based Cell Imaging Probe.
Ali, Haydar; Bhunia, Susanta Kumar; Dalal, Chumki; Jana, Nikhil R
2016-04-13
Fluorescent carbon nanoparticle-based probes with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. However, synthesis of red fluorescent carbon nanoparticles and their transformation into functional nanoparticles are very challenging. Here we report red fluorescent carbon nanoparticle-based nanobioconjugates of <25 nm hydrodynamic size and their application as fluorescent cell labels. Hydrophobic carbon nanoparticles are synthesized via high temperature colloid-chemical approach and transformed into water-soluble functional nanoparticles via coating with amphiphilic polymer followed by covalent linking with desired biomolecules. Following this approach, carbon nanoparticles are functionalized with polyethylene glycol, primary amine, glucose, arginine, histidine, biotin and folic acid. These functional nanoparticles can be excited with blue/green light (i.e., 400-550 nm) to capture their emission spanning from 550 to 750 nm. Arginine and folic acid functionalized nanoparticles have been demonstrated as fluorescent cell labels where blue and green excitation has been used for imaging of labeled cells. The presented method can be extended for the development of carbon nanoparticle-based other bioimaging probes.
Fluorescence based explosive detection: from mechanisms to sensory materials.
Sun, Xiangcheng; Wang, Ying; Lei, Yu
2015-11-21
The detection of explosives is one of the current pressing concerns in global security. In the past few decades, a large number of emissive sensing materials have been developed for the detection of explosives in vapor, solution, and solid states through fluorescence methods. In recent years, great efforts have been devoted to develop new fluorescent materials with various sensing mechanisms for detecting explosives in order to achieve super-sensitivity, ultra-selectivity, as well as fast response time. This review article starts with a brief introduction on various sensing mechanisms for fluorescence based explosive detection, and then summarizes in an exhaustive and systematic way the state-of-the-art of fluorescent materials for explosive detection with a focus on the research in the recent 5 years. A wide range of fluorescent materials, such as conjugated polymers, small fluorophores, supramolecular systems, bio-inspired materials and aggregation induced emission-active materials, and their sensing performance and sensing mechanism are the centerpiece of this review. Finally, conclusions and future outlook are presented and discussed.
NASA Astrophysics Data System (ADS)
Hoge, Frank E.; Wright, C. Wayne; Kana, Todd M.; Swift, Robert N.; Yungel, James K.
1998-07-01
We report spatial variability of oceanic phycoerythrin spectral types detected by means of a blue spectral shift in airborne laser-induced fluorescence emission. The blue shift of the phycoerythrobilin fluorescence is known from laboratory studies to be induced by phycourobilin chromophore substitution at phycoerythrobilin chromophore sites in some strains of phycoerythrin-containing marine cyanobacteria. The airborne 532-nm laser-induced phycoerythrin fluorescence of the upper oceanic volume showed distinct segregation of cyanobacterial chromophore types in a flight transect from coastal water to the Sargasso Sea in the western North Atlantic. High phycourobilin levels were restricted to the oceanic (oligotrophic) end of the flight transect, in agreement with historical ship findings. These remotely observed phycoerythrin spectral fluorescence shifts have the potential to permit rapid, wide-area studies of the spatial variability of spectrally distinct cyanobacteria, especially across interfacial regions of coastal and oceanic water masses. Airborne laser-induced phytoplankton spectral fluorescence observations also further the development of satellite algorithms for passive detection of phytoplankton pigments. Optical modifications to the NASA Airborne Oceanographic Lidar are briefly described that permitted observation of the fluorescence spectral shifts.
Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites
NASA Astrophysics Data System (ADS)
Thomas, Joseph; Ambroise, Arounaguiry; Birchfield, Kara; Cai, Wensheng; Sandmann, Christian; Singh, Sarabjit; Weidemaier, Kristin; Pitner, J. Bruce
2006-02-01
The early stage development studies of novel implantable continuous metabolite sensor systems for glucose, lactate and fatty acids are discussed. These sensors utilize non-enzymatic "reagentless" sensor systems based on NIR fluorophore-labeled binding proteins. For in vivo applications, NIR fluorescence based systems (beyond 600 nm) have the added benefit of reduced interference from background scattering, tissue and serum absorption and cell auto-fluorescence. The long wavelength emission facilitates implanted sensor disks to transmit fluorescence to an external reader through wireless connections and the resulting fluorescence signals can be correlated to metabolite concentrations. We have developed a prototype optical system that uses a bifurcated optical fiber to transmit excitation and read emission at the surface of the skin. With this system, fluorescence signals were read over time through animal skin. The changes in glucose concentration were studied using immobilized sensor proteins and were compared to non-immobilized sensors in solution. For sensors in solution, no response delay was observed. For immobilized systems, the fluorescence response showed a delay corresponding to the diffusion time for the metabolite to equilibrate within the sensor.
NASA Astrophysics Data System (ADS)
Xing, Dongye; Hou, Yanjun; Niu, Haijun
2018-03-01
A series of difluoroboron β-diketonate complexes, containing the indon-β-diketonate ligand carrying methyl or methoxyl substituents was synthesized. The crystal structures of the complexes were confirmed by single crystal X-ray diffraction studies. The fluorescence properties of compounds were studied in solution state, solid state and on PMMA polymer matrix. The photophysical data of compounds 2a-2d exhibited strong fluorescence and photostability under the ultraviolet light (Hg lamp). The complex 2b showed higher fluorescence intensity in solution state as compared to other complexes of the series. The complexes 2c and 2d showed higher fluorescence intensity in the solid state, which are ascribed to the stronger π-π interactions between ligands in the solid state. The introduction of methoxyl or methyl groups on the benzene rings enhanced the absorption intensity, emission intensity, quantum yields and fluorescence lifetimes due to their electron-donating nature. Furthermore, the complex 2b was doped into the PMMA to produce hybrid materials, where the PMMA matrix acted as sensitizer for the central boron ion to enhance the fluorescence emission intensity and quantum yields.
Mechanism of wavelength conversion in polystyrene doped with benzoxanthene: emergence of a complex.
Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Sato, Nobuhiro; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro
2013-01-01
Fluorescent guest molecules doped in polymers have been used to convert ultraviolet light into visible light for applications ranging from optical fibres to filters for the cultivation of plants. The wavelength conversion process involves the absorption of light at short wavelengths followed by fluorescence emission at a longer wavelength. However, a precise understanding of the light conversion remains unclear. Here we show light responses for a purified polystyrene base substrates doped with fluorescent benzoxanthene in concentrations varied over four orders of magnitude. The shape of the excitation spectrum for fluorescence emission changes significantly with the concentration of the benzoxanthene, indicating formation of a base substrate/fluorescent molecule complex. Furthermore, the wavelength conversion light yield increases in three stages depending on the nature of the complex. These findings identify a mechanism that will have many applications in wavelength conversion materials.
Mechanism of wavelength conversion in polystyrene doped with benzoxanthene: emergence of a complex
Nakamura, Hidehito; Shirakawa, Yoshiyuki; Kitamura, Hisashi; Sato, Nobuhiro; Shinji, Osamu; Saito, Katashi; Takahashi, Sentaro
2013-01-01
Fluorescent guest molecules doped in polymers have been used to convert ultraviolet light into visible light for applications ranging from optical fibres to filters for the cultivation of plants. The wavelength conversion process involves the absorption of light at short wavelengths followed by fluorescence emission at a longer wavelength. However, a precise understanding of the light conversion remains unclear. Here we show light responses for a purified polystyrene base substrates doped with fluorescent benzoxanthene in concentrations varied over four orders of magnitude. The shape of the excitation spectrum for fluorescence emission changes significantly with the concentration of the benzoxanthene, indicating formation of a base substrate/fluorescent molecule complex. Furthermore, the wavelength conversion light yield increases in three stages depending on the nature of the complex. These findings identify a mechanism that will have many applications in wavelength conversion materials. PMID:23974205
Fluorescence Spectra of Highlighter Inks
NASA Astrophysics Data System (ADS)
Birriel, Jennifer J.; King, Damon
2018-01-01
Fluorescence spectra excited by laser pointers have been the subject of several papers in TPT. These papers all describe a fluorescence phenomenon in which the reflected laser light undergoes a change in color: this color change results from the combination of some partially reflected laser light and additional colors generated by fluorescent emission. Here we examine the fluorescence spectra of highlighter inks using green and violet laser pointers. We use an RSpec Explorer spectrometer to obtain spectra and compare the emission spectra of blue, green, yellow, orange, pink, and purple highlighters. The website Compound Interest details the chemical composition of highlighter inks; in addition, the site discusses how some base dye colors can be combined to produce the variety commercially available colors. Spectra obtained in this study were qualitatively consistent with the Compound Interest site. We discuss similarities and differences between various highlighter colors and conclude with the relevance of such studies to physics students.
Temperature dependence of laser-induced fluorescence of Tb3+Tb3+ in molten LiCl-KCl eutectic
NASA Astrophysics Data System (ADS)
C., E.; -E., Jung | S.; | W., Bae; Cha | I., A.; Bae | Y., J.; | K., Park; Song
2011-01-01
Fluorescence spectra and lifetimes originated from both 5D3 →7FJ and 5D4 →7FJ transitions of Tb3+ were measured using time-resolved laser fluorescence spectroscopy in order to investigate the excited state relaxation in a molten salt medium. A cross-relaxation energy transfer of 5D3 →5D4 resulted in rise and decay behaviors in fluorescence signal waveforms of 5D4 →7FJ transitions. The fluorescence intensity ratios of 5D4 →7F5 to 5D3 →7F4 decreased drastically when the temperature of molten salt increased. This result suggests that the cross-relaxation effect becomes weakened with increasing temperature. In addition, a strong increase of the 5D4 emission over the 5D3 emission was observed at high Tb3+ concentration.
Plasmonic platforms of self-assembled silver nanostructures in application to fluorescence
Luchowski, Rafal; Calander, Nils; Shtoyko, Tanya; Apicella, Elisa; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy
2011-01-01
Fluorescence intensity changes were investigated theoretically and experimentally using self-assembled colloidal structures on silver semitransparent mirrors. Using a simplified quasi-static model and finite element method, we demonstrate that near-field interactions of metallic nanostructures with a continuous metallic surface create conditions that produce enormously enhanced surface plasmon resonances. The results were used to explain the observed enhancements and determine the optimal conditions for the experiment. The theoretical parts of the studies are supported with reports on detailed emission intensity changes which provided multiple fluorescence hot spots with 2–3 orders of enhancements. We study two kinds of the fluorophores: dye molecules and fluorescent nanospheres characterized with similar spectral emission regions. Using a lifetime-resolved fluorescence/reflection confocal microscopy technique, we find that the largest rate for enhancement (~1000-fold) comes from localized areas of silver nanostructures. PMID:21403765
An insight into non-emissive excited states in conjugated polymers
NASA Astrophysics Data System (ADS)
Hu, Zhongjian; Willard, Adam P.; Ono, Robert J.; Bielawski, Christopher W.; Rossky, Peter J.; vanden Bout, David A.
2015-09-01
Conjugated polymers in the solid state usually exhibit low fluorescence quantum yields, which limit their applications in many areas such as light-emitting diodes. Despite considerable research efforts, the underlying mechanism still remains controversial and elusive. Here, the nature and properties of excited states in the archetypal polythiophene are investigated via aggregates suspended in solvents with different dielectric constants (ε). In relatively polar solvents (ε>~ 3), the aggregates exhibit a low fluorescence quantum yield (QY) of 2-5%, similar to bulk films, however, in relatively nonpolar solvents (ε<~ 3) they demonstrate much higher fluorescence QY up to 20-30%. A series of mixed quantum-classical atomistic simulations illustrate that dielectric induced stabilization of nonradiative charge-transfer (CT) type states can lead to similar drastic reduction in fluorescence QY as seen experimentally. Fluorescence lifetime measurement reveals that the CT-type states exist as a competitive channel of the formation of emissive exciton-type states.
NASA Astrophysics Data System (ADS)
Pan, Yong-Le; Houck, Joshua D. T.; Clark, Pamela A.; Pinnick, Ronald G.
2013-08-01
A single-particle fluorescence spectrometer (SPFS) and an aerodynamic particle sizer were used to measure the fluorescence spectra and particle size distribution from the particulate emissions of 12 different burning materials in a tube furnace to simulate open-air burning of garbage. Although the particulate emissions are likely dominated by particles <1 μm diameter, only the spectra of supermicron particles were measured here. The overall fluorescence spectral profiles exhibit either one or two broad bands peaked around 300-450 nm within the 280-650 nm spectral range, when the particles are illuminated with a 263-nm laser. Different burning materials have different profiles, some of them (cigarette, hair, uniform, paper, and plastics) show small changes during the burning process, and while others (beef, bread, carrot, Styrofoam, and wood) show big variations, which initially exhibit a single UV peak (around 310-340 nm) and a long shoulder in visible, and then gradually evolve into a bimodal spectrum with another visible peak (around 430-450 nm) having increasing intensity during the burning process. These spectral profiles could mainly derive from polycyclic aromatic hydrocarbons with the combinations of tyrosine-like, tryptophan-like, and other humic-like substances. About 68 % of these single-particle fluorescence spectra can be grouped into 10 clustered spectral templates that are derived from the spectra of millions of atmospheric aerosol particles observed in three locations; while the others, particularly these bimodal spectra, do not fall into any of the 10 templates. Therefore, the spectra from particulate emissions of burning materials can be easily discriminated from that of common atmospheric aerosol particles. The SFFS technology could be a good tool for monitoring burning pit emissions and possibly for distinguishing them from atmospheric aerosol particles.
NASA Astrophysics Data System (ADS)
Gao, Baojiao; Zhang, Dandan; Li, Yanbin
2018-03-01
Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.
Atom beams split by gentle persuasion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pool, R.
1994-02-25
Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state.
NASA Astrophysics Data System (ADS)
Okada, Tomoko; Minoura, Norihiko
2010-02-01
We have developed a fluorescent ruthenium metalloglycocluster as a powerful molecular probe for evaluating a binding event between carbohydrates and lectins by fluorescence emission (FE) and fluorescence polarization (FP) analysis. The fluorescent ruthenium metalloglycoclusters, [Ru(bpy-2Gal)3] and [Ru(bpy-2Glc)3], possess clustered galactose and glucose surrounding the ruthenium center. Changes in FE and FP of these metalloglycoclusters were measured by adding each lectin (Peanut agglutinin (PNA), Ricinus communis agglutinin 120 (RCA), Concanavalin A (ConA), or Wheat germ agglutinin (WGA)) or tetanus toxin c-fragment (TCF). Following the addition of PNA, the FE spectrum of [Ru(bpy- 2Gal)3] showed new emission peak and the FP value of [Ru(bpy-2Gal)3] increased. Similarly, the FE spectrum of [Ru(bpy-2Glc)3] showed new emission peak and the FP value increased following the addition of ConA. Since other combinations of the metalloglycoclusters and lectin caused little change, specific bindings of galactose to PNA and glucose to ConA were proved by the FE and FP measurement. From nonlinear least-squares fitting, dissociation constants (Kd) of [Ru(bpy-2Gal)3] to PNA was 6.1 μM, while the Kd values of [Ru(bpy)2(bpy-2Gal)] to PNA was ca. 10-4 M. Therefore, the clustered carbohydrates were proved to increase affinity to lectins. Furthermore, the FP measurements proved specific binding of [Ru(bpy-2Gal)3] to TCF.
NASA Astrophysics Data System (ADS)
Sengupta, Bidisha; Mukherjee, Chirantan Sen; Chakraborty, Sandipan; Muhammad, Maria Jones; Gladney, William; Armstrong, George
2017-12-01
Aniline, heterocyclic aromatic amines, and arylamines are known carcinogens. Recently aniline mustard has come into prominence as a novel anticancer agent. In this project, microwave irradiation has been used to synthesize an optically active alkylated aniline namely 2,6-dimethyl-4-(1-(p-tolyl)ethyl)aniline (abbreviated DMPA). The presence of quartet and doublet peaks in NMR and a single chromatogram in HPLC verified that the final product DMPA, prepared from the synthesis reactions, had no major impurities. By using a Lux chiral column in HPLC, two peaks have been detected in the chromatogram, which correspond to two enantiomers of the chiral aniline derivative. Fluorescence spectroscopic measurements on DMPA indicated conspicuous dependence of its emission behavior on the polarity (in terms of the empirical polarity parameter ET(30)) of the homogeneous solvents used, a property important for an optical sensor. The nature of the emission profiles, along with the relevant parameter namely wavelength at emission maximum (λemmax) is used to infer the distribution, binding and microenvironment of the DMPA molecules in human serum albumin protein (HSA). DMPA is weakly fluorescent in aqueous buffer medium, with a dramatic enhancement in the fluorescence emission in the presence of HSA. Molecular modeling studies have been carried out on the two enantiomers (R and S) of DMPA with HSA. The implications of these findings are examined in relation to the potentialities of DMPA as a novel fluorescence sensor for biological systems.
Sengupta, Bidisha; Mukherjee, Chirantan Sen; Chakraborty, Sandipan; Muhammad, Maria Jones; Gladney, William; Armstrong, George
2017-12-05
Aniline, heterocyclic aromatic amines, and arylamines are known carcinogens. Recently aniline mustard has come into prominence as a novel anticancer agent. In this project, microwave irradiation has been used to synthesize an optically active alkylated aniline namely 2,6-dimethyl-4-(1-(p-tolyl)ethyl)aniline (abbreviated DMPA). The presence of quartet and doublet peaks in NMR and a single chromatogram in HPLC verified that the final product DMPA, prepared from the synthesis reactions, had no major impurities. By using a Lux chiral column in HPLC, two peaks have been detected in the chromatogram, which correspond to two enantiomers of the chiral aniline derivative. Fluorescence spectroscopic measurements on DMPA indicated conspicuous dependence of its emission behavior on the polarity (in terms of the empirical polarity parameter E T (30)) of the homogeneous solvents used, a property important for an optical sensor. The nature of the emission profiles, along with the relevant parameter namely wavelength at emission maximum (λ em max ) is used to infer the distribution, binding and microenvironment of the DMPA molecules in human serum albumin protein (HSA). DMPA is weakly fluorescent in aqueous buffer medium, with a dramatic enhancement in the fluorescence emission in the presence of HSA. Molecular modeling studies have been carried out on the two enantiomers (R and S) of DMPA with HSA. The implications of these findings are examined in relation to the potentialities of DMPA as a novel fluorescence sensor for biological systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Review on peculiar issues of field emission in vacuum nanoelectronic devices
NASA Astrophysics Data System (ADS)
Filip, Valeriu; Filip, Lucian Dragoş; Wong, Hei
2017-12-01
Some of the modern aspects of field emission based electron sources have been collated in a short and comprehensive review. The usually overlooked peculiar aspects in this research field have been particularly emphasized in order to increase the interest in further fundamental studies and technological applications. The vast material was roughly split in two main branches which occasionally overlap: the electron emission devices based on chemically homogeneous nanostructured surfaces and the more complex nanocomposite emitting surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaogang; Cole, Jacqueline M.; Xu, Zhaochao
Coumarins are deployed in numerous bioimaging and biosensing applications. Among various coumarin derivatives, 6-aminocoumarins attract increasing attention for their red-shifted emissions, mega Stokes shifts, and significant solvatochromism. These spectral characteristics together with weak emission intensities have historically been ascribed to the formation of the twisted intramolecular charge transfer (TICT) state in 6-aminocoumarins. In this work, we demonstrate that it is actually substantial intramolecular charge transfer (ICT) that is responsible for these fluorescent properties. Based on this new understanding, we reanalyzed the sensing mechanism of a 6-aminocouarmin based fluorescent probe and obtained close agreement with experimental data. Lastly, our results leadmore » to a deeper understanding of the photophysics of 6-aminocoumarins and will inspire the rational development of novel fluorescent probes.« less
NASA Astrophysics Data System (ADS)
Clemente, C. S.; Ribeiro, V. G. P.; Sousa, J. E. A.; Maia, F. J. N.; Barreto, A. C. H.; Andrade, N. F.; Denardin, J. C.; Mele, G.; Carbone, L.; Mazzetto, S. E.; Fechine, P. B. A.
2013-06-01
Magnetic Fe3O4 nanoparticles with average size approximately 11 nm were first oleic acid coated to interact with the meso-porphyrin derivative from CNSL. This procedure produced a novel superparamagnetic fluorescent nanosystem (SFN) linked by van der Waals interactions. This system was characterized by transmission electron microscope, infrared spectroscopy, thermogravimetric analysis, magnetic measurements, UV-Vis absorption, and fluorescence emission measurements. These results showed that SFN has good thermal stability, excellent magnetization, and nanosized dimensions ( 13 nm). It exhibited emission peaks at 668 and 725 nm with a maximum emission at 467 nm of excitation wavelength. The type of interaction between porphyrin and magnetic nanoparticles allowed to obtain a material with interesting optical properties which might be used as an imaging agent for contrast in cells as well as heterogeneous photocatalysis.
Liu, Xiaogang; Cole, Jacqueline M.; Xu, Zhaochao
2017-06-01
Coumarins are deployed in numerous bioimaging and biosensing applications. Among various coumarin derivatives, 6-aminocoumarins attract increasing attention for their red-shifted emissions, mega Stokes shifts, and significant solvatochromism. These spectral characteristics together with weak emission intensities have historically been ascribed to the formation of the twisted intramolecular charge transfer (TICT) state in 6-aminocoumarins. In this work, we demonstrate that it is actually substantial intramolecular charge transfer (ICT) that is responsible for these fluorescent properties. Based on this new understanding, we reanalyzed the sensing mechanism of a 6-aminocouarmin based fluorescent probe and obtained close agreement with experimental data. Lastly, our results leadmore » to a deeper understanding of the photophysics of 6-aminocoumarins and will inspire the rational development of novel fluorescent probes.« less
NASA Astrophysics Data System (ADS)
Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish
2017-10-01
We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.
Ultraviolet continuum and H2 fluorescent emission in Herbig-Haro objects 43 and 47
NASA Technical Reports Server (NTRS)
Schwartz, R. D.
1983-01-01
IUE short wavelength spectra are presented for the low excitation Herbig-Haro objects HH 43 and HH 47. In the former, several emission lines in the Lyman band of H2 from an excited state are observed which are due to fluorescence from the H Ly-alpha line pumping a lower state (that is in turn excited by a low-velocity shock wave). No evidence of highly ionized gas emission is found in the UV spectra, and both objects exhibit a UV continuum which peaks in the vicinity of 1500 A and is probably caused by H two-photon emission enhanced by low velocity shock collisional excitation.
The Ultraviolet Spectrum of the Jovian Dayglow
NASA Technical Reports Server (NTRS)
Liu, Weihong; Dalgarno, A.
1995-01-01
The ultraviolet spectra of molecular hydrogen H2 and HD due to solar fluorescence and photoelectron excitation are calculated and compared with the Jovian equatorial dayglow spectrum measured at 3 A resolution at solar maximum. The dayglow emission is accounted for in both brightness and spectral shape by the solar fluorescence and photoelectron excitation and requires no additional energy source. The emission is characterized by an atmospheric temperature of 530 K and an H2 column density of 10(exp 20) cm(exp -2). The dayglow spectrum contains a cascade contribution to the Lyman band emission from high-lying E and F states. Its relative weakness at short wavelengths is due to both self-absorption by H2 and absorption by CH4. Strong wavelength coincidences of solar emission lines and absorption lines of H2 and HD produce unique line spectra which can be identified in the dayglow spectrum. The strongest fluorescence is due to absorption of the solar Lyman-beta line at 1025.72 A by the P(1) line of the (6, 0) Lyman band of H2 at 1025.93 A. The fluorescence lines due to absorption of the solar O 6 line at 1031.91 A by vibrationally excited H2 via the Q(3) line of the (1, 1) Werner band at 1031.86 A are identified. The fluorescence lines provide a sensitive measure of the atmospheric temperature. There occurs an exact coincidence of the solar O 6 line at 1031.91 A and the R(0) line of the (6, 0) Lyman band of HD at 1031-91 A, but HD on Jupiter is difficult to detect due to the dominance of the H2 emission where the HD emission is particularly strong. Higher spectral resolution and higher sensitivity may make possible such a detection. The high resolution (0.3 A) spectra of H2 and HD are presented to stimulate search for the HD on Jupiter with the Hubble Space Telescope.
DNA complexes with dyes designed for energy transfer as fluorescent markers
Glazer, Alexander M.; Benson, Scott C.
1999-01-01
Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.
DNA complexes with dyes designed for energy transfer as fluorescent markers
Glazer, Alexander M.; Benson, Scott C.
1998-01-01
Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.
DNA complexes with dyes designed for energy transfer as fluorescent markers
Glazer, Alexander N.; Benson, Scott C.
1995-01-01
Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.
DNA complexes with dyes designed for energy transfer as fluorescent markers
Glazer, Alexander N.; Benson, Scott C.
1997-01-01
Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.
Schlodder, Eberhard; Hussels, Martin; Cetin, Marianne; Karapetyan, Navassard V; Brecht, Marc
2011-11-01
Photosystem I of cyanobacteria contains different spectral pools of chlorophylls called red or long-wavelength chlorophylls that absorb at longer wavelengths than the primary electron donor P700. We measured the fluorescence spectra at the ensemble and the single-molecule level at low temperatures in the presence of oxidized and reduced P700. In accordance with the literature, it was observed that the fluorescence is quenched by P700(+). However, the efficiency of the fluorescence quenching by oxidized P700(+) was found to be extremely different for the various red states in PS I from different cyanobacteria. The emission of the longest-wavelength absorbing antenna state in PS I trimers from Thermosynechococcus elongatus (absorption maximum at 5K: ≈ 719nm; emission maximum at 5K: ≈ 740nm) was found to be strongly quenched by P700(+) similar to the reddest state in PS I trimers from Arthrospira platensis emitting at 760nm at 5K. The fluorescence of these red states is diminished by more than a factor of 10 in the presence of oxidized P700. For the first time, the emission of the reddest states in A. platensis and T. elongatus has been monitored using single-molecule fluorescence techniques. 2011 Elsevier B.V. All rights reserved.
Ke, Ching-Bin; Lu, Te-Ling; Chen, Jian-Lian
2018-05-26
Oxygen and nitrogen capacitively coupled plasma (CCP) was used to irradiate mixtures of aliphatic acids in high boiling point solvents to synthesize fluorescent carbon dots (C-dots). With a high fluorescence intensity, the C-dots obtained from the O₂/CCP radiation of a 1-ethyl-3-methylimidazolium dicyanamide ionic liquid solution of citric acid were characterized with an average diameter of 8.6 nm (σ = 1.1 nm), nitrogen and oxygen bonding functionalities, excitation-independent emissions, and upconversion fluorescence. Through dialysis of the CCP-treated C-dots, two emissive surface states corresponding to their respective functionalities and emissions were identified. The fluorescence spectrum of the CCP-treated C-dots was different from that of the microwave irradiation and possessed higher intensity than that of hydrothermal pyrolysis. By evaluation of the fluorescence quenching effect on flavonoids and metal ions, the CCP-treated C-dots showed a high selectivity for quercetin and sensitivity to Hg 2+ . Based on the Perrin model, a calibration curve ( R ² = 0.9992) was established for quercetin ranging from 2.4 μM to 119 μM with an LOD (limit of detection) = 0.5 μM. The quercetin in the ethanol extract of the sun-dried peel of Citrus reticulata cv. Chachiensis was determined by a standard addition method to be 4.20 ± 0.15 mg/g with a matrix effect of 8.16%.
A Preliminary Study of the Effects of pH upon Fluorescence in Suspensions of Prevotella intermedia.
Hope, Christopher K; Billingsley, Karen; de Josselin de Jong, Elbert; Higham, Susan M
2016-01-01
The quantification of fluorescence in dental plaque is currently being developed as a diagnostic tool to help inform and improve oral health. The oral anaerobe Prevotella intermedia exhibits red fluorescence due to the accumulation of porphyrins. pH affects the fluorescence of abiotic preparations of porphyrins caused by changes in speciation between monomers, higher aggregates and dimers, but this phenomenon has not been demonstrated in bacteria. Fluorescence spectra were obtained from suspensions of P. intermedia that were adjusted to pHs commensurate with the range found within dental plaque. Two fluorescent motifs were identified; 410 nm excitation / 634 nm emission (peak A) and 398 nm excitation / 622 nm emission (peak B). A transition in the fluorescence spectra was observed from peak A to peak B with increasing pH which was also evident as culture age increased from 24 hours to 96 hours. In addition to these 'blue-shifts', the intensity of peak A increased with pH whilst decreasing with culture age from 24 to 96 hours. A bacterium's relationship with the local physiochemical environment at the time of image capture may therefore affect the quantification of dental plaque fluorescence.
Origin of chlorophyll fluorescence in plants at 55-75 degrees C.
Ilík, Petr; Kouril, Roman; Kruk, Jerzy; Myśliwa-Kurdziel, Beata; Popelková, Hana; Strzałka, Kazimierz; Naus, Jan
2003-01-01
The origin of heat-induced chlorophyll fluorescence rise that appears at about 55-60 degrees C during linear heating of leaves, chloroplasts or thylakoids (especially with a reduced content of grana thylakoids) was studied. This fluorescence rise was earlier attributed to photosystem I (PSI) emission. Our data show that the fluorescence rise originates from chlorophyll a (Chl a) molecules released from chlorophyll-containing protein complexes denaturing at 55-60 degrees C. This conclusion results mainly from Chl a fluorescence lifetime measurements with barley leaves of different Chl a content and absorption and emission spectra measurements with barley leaves preheated to selected temperatures. These data, supported by measurements of liposomes with different Chl a/lipid ratios, suggest that the released Chl a is dissolved in lipids of thylakoid membranes and that with increasing Chl a content in the lipid phase, the released Chl a tends to form low-fluorescing aggregates. This is probably the reason for the suppressed fluorescence rise at 55-60 degrees C and the decreasing fluorescence course at 60-75 degrees C, which are observable during linear heating of plant material with a high Chl a/lipid ratio (e.g. green leaves, grana thylakoids, isolated PSII particles).
Arias Espinoza, Juan Diego; Sazhnikov, Viacheslav; Smits, Edsger C P; Ionov, Dmirity; Kononevich, Yuriy; Yakimets, Iryna; Alfimov, Mikael; Schoo, Herman F M
2014-11-01
The fluorescent spectra in combination with gas response behavior of acrylic polymers doped with dibenzoyl(methanato)boron difluoride (DBMBF2) were studied by fluorescence spectroscopy and time-resolved fluorescence lifetime. The role of acrylic matrix polarity upon the fluorescence spectra and fluorescence lifetime was analyzed. Changes in emission of the dye doped polymers under exposure to toluene, n-hexane and ethanol were monitored. The fluorescence lifetimes were measured for the singlet excited state as well as the exciplex formed between DBMBF2 and toluene. A reduction of the transition energy to the first singlet-excited state in the four polymers was observed, compared to solution. Reversible exciplex formation, viz. a red shifted fluorescence emission was perceived when exposing the polymers to toluene, while for hexane and ethanol only reversible reduction of the fluorescence occurred. Longer singlet and shorter exciplex lifetimes were observed for non-polar matrixes. The latter mechanism is explained in function of the lower charge transfer character of the exciplex in non-polar matrixes. Additionally, the quantum yield of the dye in the polymer matrix increased almost seventh-fold compared to values for solution.
H2 Fluorescence in M Dwarf Systems: A Stellar Origin
NASA Astrophysics Data System (ADS)
Kruczek, Nicholas; France, Kevin; Evonosky, William; Loyd, R. O. Parke; Youngblood, Allison; Roberge, Aki; Wittenmyer, Robert A.; Stocke, John T.; Fleming, Brian; Hoadley, Keri
2017-08-01
Observations of molecular hydrogen (H2) fluorescence are a potentially useful tool for measuring the H2 abundance in exoplanet atmospheres. This emission was previously observed in {{M}} dwarfs with planetary systems. However, low signal-to-noise prevented a conclusive determination of its origin. Possible sources include exoplanetary atmospheres, circumstellar gas disks, and the stellar surface. We use observations from the “Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet Host Stars” Treasury Survey to study H2 fluorescence in {{M}} dwarfs. We detect fluorescence in Hubble Space Telescope spectra of 8/9 planet-hosting and 5/6 non-planet-hosting {{M}} dwarfs. The detection statistics, velocity centroids, and line widths of the emission suggest a stellar origin. We calculate H2-to-stellar-ion flux ratios to compare flux levels between stars. For stars with planets, we find an average ratio of 1.7+/- 0.9, using the fluxes of the brightest H2 feature and two stellar C IV lines. This is compared to 0.9+/- 0.4 for stars without planets, showing that the planet-hosting {{M}} dwarfs do not have significant excess H2 emission. This claim is supported by the direct FUV imaging of GJ 832, where no fluorescence is observed at the expected star-planet separation. Additionally, the 3σ upper limit of 4.9 × 10-17 erg cm-2 s-1 from these observations is two orders of magnitude below the spectroscopically observed H2 flux. We constrain the location of the fluorescing H2 using 1D radiative transfer models, and find that it could reside in starspots or a ˜2500-3000 {{K}} region in the lower chromosphere. The presence of this emission could complicate efforts to quantify the atmospheric abundance of H2 in exoplanets orbiting {{M}} dwarfs.
NASA Astrophysics Data System (ADS)
Mounier, S.; Nicolodelli, G.; Redon, R.; Milori, D. M. B. P.
2017-04-01
The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.
Yuan, Yufeng; Huang, Kehan; Chang, Mengfang; Qin, Cuifang; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Xu, Jianhua
2016-02-01
Fluorescent silver nanoclusters (Ag NCs) displaying dual-excitation and dual-emission properties have been developed for the specific detection of NAD(+) (nicotinamide adenine dinucleotide, oxidized form). With the increase of NAD(+) concentrations, the longer wavelength emission (with the peak at 550 nm) was gradually quenched due to the strong interactions between the NAD(+) and Ag NCs, whereas the shorter wavelength emission (peaking at 395 nm) was linearly enhanced. More important, the dual-emission intensity ratio (I395/I550), fitting by a single-exponential decay function, can efficiently detect various NAD(+) levels from 100 to 4000 μM, as well as label NAD(+)/NADH (reduced form of NAD) ratios in the range of 1-50. Copyright © 2015 Elsevier Inc. All rights reserved.
Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions
NASA Astrophysics Data System (ADS)
Vanessa, Hinterberger; Wenshuo, Wang; Cornelia, Damm; Simon, Wawra; Martin, Thoma; Wolfgang, Peukert
2018-06-01
In this contribution, we demonstrate that an aqueous solution with adjustable fluorescent color, including white light emission, can be achieved by a rapid one-step microwave synthesis method resulting in a mixture of blue-emitting carbon dots (CDs) and the yellow-emitting 2,3-diaminophenazine (DAP). Aqueous mixtures of o-phenylene-diamine (oPD) and citric acid (CA) are used as precursors. The resulting product structures are analyzed by FT-IR and NMR spectroscopy and the size of the resulting CDs is determined by atomic force microscopy to be 1.1 ± 0.3 nm. The synthesized solution exhibits two fluorescence emission peaks at 430 and 560 nm, which were found to originate from the CDs and DAP, respectively. The intensity ratio of both fluorescence peaks depends on pH, which is driven by the protonation state of DAP. In consequence, the fluorescence emission color of the CD solution can be tuned precisely and reproducibly from blue to white to yellow by careful control of the pH. Finally, at a pH level of 5.4, at which there is equal blue and yellow emission intensity, a white light emitting solution can be successfully produced in a very fast and simple synthesis procedure.
Nematov, Sherzod; Casazza, Anna Paola; Remelli, William; Khuvondikov, Vakhobjon; Santabarbara, Stefano
2017-07-01
The spectral dependence of the irreversible non-photochemical fluorescence quenching associated with photoinhibition in vitro has been comparatively investigated in thylakoid membranes, PSII enriched particles and PSII core complexes isolated from spinach. The analysis of the fluorescence emission spectra of dark-adapted and quenched samples as a function of the detection temperature in the 280-80K interval, indicates that Chlorophyll spectral forms having maximal emission in the 700-702nm and 705-710nm ranges gain relative intensity in concomitance with the establishment of irreversible light-induced quenching, acting thereby as spectroscopic markers. The relative enhancement of the 700-702nm and 705-710nm forms emission could be due either to an increase of their stoichiometric abundance or to their intrinsically low fluorescence quantum yields. These two factors, that can also coexist, need to be promoted by light-induced alterations in chromophore-protein as well as chromophore-chromophore interactions. The bands centred at about 701 and 706nm are also observed in the PSII core complex, suggesting their, at least partial, localisation in proximity to the reaction centre, and the occurrence of light-induced conformational changes in the core subunits. Copyright © 2017 Elsevier B.V. All rights reserved.
Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E
2017-01-01
Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus . Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus , were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points.
Hruska, Zuzana; Yao, Haibo; Kincaid, Russell; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2017-01-01
Non-invasive, easy to use and cost-effective technology offers a valuable alternative for rapid detection of carcinogenic fungal metabolites, namely aflatoxins, in commodities. One relatively recent development in this area is the use of spectral technology. Fluorescence hyperspectral imaging, in particular, offers a potential rapid and non-invasive method for detecting the presence of aflatoxins in maize infected with the toxigenic fungus Aspergillus flavus. Earlier studies have shown that whole maize kernels contaminated with aflatoxins exhibit different spectral signatures from uncontaminated kernels based on the external fluorescence emission of the whole kernels. Here, the effect of time on the internal fluorescence spectral emissions from cross-sections of kernels infected with toxigenic and atoxigenic A. flavus, were examined in order to elucidate the interaction between the fluorescence signals emitted by some aflatoxin contaminated maize kernels and the fungal invasion resulting in the production of aflatoxins. First, the difference in internal fluorescence emissions between cross-sections of kernels incubated in toxigenic and atoxigenic inoculum was assessed. Kernels were inoculated with each strain for 5, 7, and 9 days before cross-sectioning and imaging. There were 270 kernels (540 halves) imaged, including controls. Second, in a different set of kernels (15 kernels/group; 135 total), the germ of each kernel was separated from the endosperm to determine the major areas of aflatoxin accumulation and progression over nine growth days. Kernels were inoculated with toxigenic and atoxigenic fungal strains for 5, 7, and 9 days before the endosperm and germ were separated, followed by fluorescence hyperspectral imaging and chemical aflatoxin determination. A marked difference in fluorescence intensity was shown between the toxigenic and atoxigenic strains on day nine post-inoculation, which may be a useful indicator of the location of aflatoxin contamination. This finding suggests that both, the fluorescence peak shift and intensity as well as timing, may be essential in distinguishing toxigenic and atoxigenic fungi based on spectral features. Results also reveal a possible preferential difference in the internal colonization of maize kernels between the toxigenic and atoxigenic strains of A. flavus suggesting a potential window for differentiating the strains based on fluorescence spectra at specific time points. PMID:28966606
Fluorescent labeling of proteins with amine-specific 1,3,2-(2H)-dioxaborine polymethine dye.
Gerasov, Andriy; Shandura, Mykola; Kovtun, Yuriy; Losytskyy, Mykhaylo; Negrutska, Valentyna; Dubey, Igor
2012-01-15
A novel water-soluble amine-reactive dioxaborine trimethine dye was synthesized in a good yield and characterized. The potential of the dye as a specific reagent for protein labeling was demonstrated with bovine serum albumin and lysozyme. Its interaction with proteins was studied by fluorescence spectroscopy and gel electrophoresis. The covalent binding of this almost nonfluorescent dye to proteins results in a 75- to 78-fold increase of its emission intensity accompanied by a red shift of the fluorescence emission maximum by 27 to 45 nm, with fluorescence wavelengths of labeled biomolecules being more than 600 nm. The dye does not require activation for the labeling reaction and can be used in a variety of bioassay applications. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Padmakumari, R.; Ravindrachary, V.; Mahantesha, B. K.; Sagar, Rohan N.; Sahanakumari, R.; Bhajantri, R. F.
2018-05-01
Pure and Rhodamine B doped Poly (vinyl alcohol)/Chitosan composite films are prepared using solution casting method. Fourier transforms infrared spectra (FTIR), Ultraviolet-Visible (UV-Vis), fluorescence studies were used to characterize the prepared polymer films. The FT-IR results show that the appearance of new peaks along with shift in peak positions indicates the interaction of Rhodamine B with PVA-CS blend. Optical absorption edge, band gap and activation energy were determined from UV-Visible studies. The optical absorption edge increases, band gap decreases and activation energy increases with dopant concentration respectively. The corresponding emission spectra were studied using fluorescence spectroscopy. From the fluorescence study the quenching phenomena are observed in emission wavelength range of 607nm-613nm upon excitation with absorption maxima 443nm.
Kowalska, Dorota; Szalkowski, Marcin; Ashraf, Khuram; Grzelak, Justyna; Lokstein, Heiko; Niedziolka-Jonsson, Joanna; Cogdell, Richard; Mackowski, Sebastian
2018-03-01
A polyhistidine tag (His-tag) present on Chlorobaculum tepidum reaction centers (RCs) was used to immobilize photosynthetic complexes on a silver nanowire (AgNW) modified with nickel-chelating nitrilo-triacetic acid (Ni-NTA). The optical properties of conjugated nanostructures were studied using wide-field and confocal fluorescence microscopy. Plasmonic enhancement of RCs conjugated to AgNWs was observed as their fluorescence intensity dependence on the excitation wavelength does not follow the excitation spectrum of RC complexes in solution. The strongest effect of plasmonic interactions on the emission intensity of RCs coincides with the absorption spectrum of AgNWs and is observed for excitation into the carotenoid absorption. From the absence of fluorescence decay shortening, we attribute the emission enhancement to increase of absorption in RC complexes.
NASA Astrophysics Data System (ADS)
Liu, Shuangquan; Zhang, Bin; Wang, Xin; Li, Lin; Chen, Yan; Liu, Xin; Liu, Fei; Shan, Baoci; Bai, Jing
2011-02-01
A dual-modality imaging system for simultaneous fluorescence molecular tomography (FMT) and positron emission tomography (PET) of small animals has been developed. The system consists of a noncontact 360°-projection FMT module and a flat panel detector pair based PET module, which are mounted orthogonally for the sake of eliminating cross interference. The FMT images and PET data are simultaneously acquired by employing dynamic sampling mode. Phantom experiments, in which the localization and range of radioactive and fluorescence probes are exactly indicated, have been carried out to verify the feasibility of the system. An experimental tumor-bearing mouse is also scanned using the dual-modality simultaneous imaging system, the preliminary fluorescence tomographic images and PET images demonstrate the in vivo performance of the presented dual-modality system.
Excitation-scanning hyperspectral imaging microscope
Favreau, Peter F.; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F.; Rich, Thomas C.; Prabhat, Prashant; Leavesley, Silas J.
2014-01-01
Abstract. Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300 ms/wavelength band with excitation scanning versus 3 s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications. PMID:24727909
Excitation-scanning hyperspectral imaging microscope.
Favreau, Peter F; Hernandez, Clarissa; Heaster, Tiffany; Alvarez, Diego F; Rich, Thomas C; Prabhat, Prashant; Leavesley, Silas J
2014-04-01
Hyperspectral imaging is a versatile tool that has recently been applied to a variety of biomedical applications, notably live-cell and whole-tissue signaling. Traditional hyperspectral imaging approaches filter the fluorescence emission over a broad wavelength range while exciting at a single band. However, these emission-scanning approaches have shown reduced sensitivity due to light attenuation from spectral filtering. Consequently, emission scanning has limited applicability for time-sensitive studies and photosensitive applications. In this work, we have developed an excitation-scanning hyperspectral imaging microscope that overcomes these limitations by providing high transmission with short acquisition times. This is achieved by filtering the fluorescence excitation rather than the emission. We tested the efficacy of the excitation-scanning microscope in a side-by-side comparison with emission scanning for detection of green fluorescent protein (GFP)-expressing endothelial cells in highly autofluorescent lung tissue. Excitation scanning provided higher signal-to-noise characteristics, as well as shorter acquisition times (300 ms/wavelength band with excitation scanning versus 3 s/wavelength band with emission scanning). Excitation scanning also provided higher delineation of nuclear and cell borders, and increased identification of GFP regions in highly autofluorescent tissue. These results demonstrate excitation scanning has utility in a wide range of time-dependent and photosensitive applications.
NASA Astrophysics Data System (ADS)
Cho, Jaedu
The aim of this work is to develop novel breast-specific molecular imaging techniques for management of breast cancer. In this dissertation, we describe two novel molecular imaging approaches for breast cancer management. In Part I, we introduce our multimodal molecular imaging approach for breast cancer therapy monitoring using magnetic resonance imaging and positron emission mammography (MR/PEM). We have focused on the therapy monitoring technique for aggressive cancer molecular subtypes, which is challenging due to time constraint. Breast cancer therapy planning relies on a fast and accurate monitoring of functional and anatomical change. We demonstrate a proof-of-concept of sequential dual-modal magnetic resonance and positron emission mammography (MR/PEM) for the cancer therapy monitoring. We have developed dedicated breast coils with breast compression mechanism equipped with MR-compatible PEM detector heads. We have designed a fiducial marker that allows straightforward image registration of data obtained from MRI and PEM. We propose an optimal multimodal imaging procedure for MR/PEM. In Part II, we have focused on the development of a novel intraoperative near-infrared fluorescence imaging system (NIRF) for image-guided breast cancer surgery. Conventional spectrally-resolved NIRF systems are unable to resolve various NIR fluorescence dyes for the following reasons. First, the fluorescence spectra of viable NIR fluorescence dyes are heavily overlapping. Second, conventional emission-resolved NIRF suffers from a trade-off between the fluence rate and the spectral resolution. Third, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We develop a wavelength-swept laser-based NIRF system that can resolve the excitation shift of various NIR fluorescence dyes without substantial loss of the fluence rate. A linear ratiometric model is employed to measure the relative shift of the excitation spectrum of a fluorescence dye.
High quantum-yield phosphors via quantum splitting and upconversion
NASA Astrophysics Data System (ADS)
Jeong, Joayoung
The Gd3+ ion has been used to induce quantum splitting in luminescent materials by using cross-relaxation energy transfer (CRET). In Nd:LiGdF4, quantum splitting results from a two-step CRET between Gd3+ and Nd3+, first involving a transition 6G→6I on Gd3+ and an excitation within the 4f3 configuration of Nd3+ followed by a second CRET that brings Gd3+ to 6P7/2. The excited Nd3+ ion rapidly relaxes nonradiatively to the emitting 4F3/2. The excited Gd3+ ion then transfers its energy back to Nd3+, which gives rise to the second photon. The result is a quantum yield of 1.05 +/- 0.35 with emission in the NIR following excitation at 175 nm. GdF3:Pr3+, Eu 3+ also exhibits quantum splitting, but only at very low concentration of Pr3+ (0.3%) and Eu3+ (0.2%), resulting in a quantum yield of approximately 20% under 160-nm excitation. Host intrinsic emission via a self-trapped exciton (STE) was also examined as a means to sensitize Gd3+ emission. The material ScPO4:Gd 3+ exhibits a high absolute quantum yield of 0.9 +/- 0.2 under 170-nm excitation, demonstrating a potentially new and efficient pathway for exciting quantum splitting phosphors. Single crystals of the material GdZrF7 were grown, and its structure was established via single-crystal X-ray diffraction methods. Doped samples of GdZrF7:Yb3+, Er3+ exhibit bright up-conversion luminescence with light output that is up to twice that of a commercial material based on the host Gd2O2S. When doped with Eu3+, the fluoride also emits a nearly white color under vacuum ultraviolet excitation with an absolute quantum yield near 0.9. The new compound Gd4.67(SiO4)3S was synthesized and studied. The structure was established via single-crystal X-ray methods, and the luminescence of Tb3+ samples was investigated.
Liu, Shi Gang; Luo, Dan; Li, Na; Zhang, Wei; Lei, Jing Lei; Li, Nian Bing; Luo, Hong Qun
2016-08-24
Water-soluble nonconjugated polymer nanoparticles (PNPs) with strong fluorescence emission were prepared from hyperbranched poly(ethylenimine) (PEI) and d-glucose via Schiff base reaction and self-assembly in aqueous phase. Preparation of the PEI-d-glucose (PEI-G) PNPs was facile (one-pot reaction) and environmentally friendly under mild conditions. Also, PEI-G PNPs showed a high fluorescence quantum yield in aqueous solution, and the fluorescence properties (such as concentration- and solvent-dependent fluorescence) and origin of intrinsic fluorescence were investigated and discussed. PEI-G PNPs were then used to develop a fluorescent probe for fast, selective, and sensitive detection of nitro-explosive picric acid (PA) in aqueous medium, because the fluorescence can be easily quenched by PA whereas other nitro-explosives and structurally similar compounds only caused negligible quenching. A wide linear range (0.05-70 μM) and a low detection limit (26 nM) were obtained. The fluorescence quenching mechanism was carefully explored, and it was due to a combined effect of electron transfer, resonance energy transfer, and inner filter effect between PA and PEI-G PNPs, which resulted in good selectivity and sensitivity for PA. Finally, the developed sensor was successfully applied to detection of PA in environmental water samples.
Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation and utilization
Srivatsan, Seergazhi G.
2008-01-01
Fluorescent nucleobase analogs that respond to changes in their microenvironment are valuable for studying RNA structure, dynamics and recognition. The most commonly used fluorescent ribonucleoside is 2-aminopurine, a highly responsive purine analog. Responsive isosteric fluorescent pyrimidine analogs are, however, rare. Appending 5-membered aromatic heterocycles at the 5-position on a pyrimidine core has recently been found to provide a family of responsive fluorescent nucleoside analogs with emission in the visible range. To explore the potential utility of this chromophore for studying RNA–ligand interactions, an efficient incorporation method is necessary. Here we describe the synthesis of the furan-containing ribonucleoside and its triphosphate, as well as their basic photophysical characteristics. We demonstrate that T7 RNA polymerase accepts this fluorescent ribonucleoside triphosphate as a substrate in in vitro transcription reactions and very efficiently incorporates it into RNA oligonucleotides, generating fluorescent constructs. Furthermore, we utilize this triphosphate for the enzymatic preparation of a fluorescent bacterial A-site, an RNA construct of potential therapeutic utility. We show that the binding of this RNA target to aminoglycoside antibiotics, its cognate ligands, can be effectively monitored by fluorescence spectroscopy. These observations are significant since isosteric emissive U derivatives are scarce and the trivial synthesis and effective enzymatic incorporation of the furan-containing U triphosphate make it accessible to the biophysical community. PMID:17256858
Fluorescence calibration method for single-particle aerosol fluorescence instruments
NASA Astrophysics Data System (ADS)
Shipley Robinson, Ellis; Gao, Ru-Shan; Schwarz, Joshua P.; Fahey, David W.; Perring, Anne E.
2017-05-01
Real-time, single-particle fluorescence instruments used to detect atmospheric bioaerosol particles are increasingly common, yet no standard fluorescence calibration method exists for this technique. This gap limits the utility of these instruments as quantitative tools and complicates comparisons between different measurement campaigns. To address this need, we have developed a method to produce size-selected particles with a known mass of fluorophore, which we use to calibrate the fluorescence detection of a Wideband Integrated Bioaerosol Sensor (WIBS-4A). We use mixed tryptophan-ammonium sulfate particles to calibrate one detector (FL1; excitation = 280 nm, emission = 310-400 nm) and pure quinine particles to calibrate the other (FL2; excitation = 280 nm, emission = 420-650 nm). The relationship between fluorescence and mass for the mixed tryptophan-ammonium sulfate particles is linear, while that for the pure quinine particles is nonlinear, likely indicating that not all of the quinine mass contributes to the observed fluorescence. Nonetheless, both materials produce a repeatable response between observed fluorescence and particle mass. This procedure allows users to set the detector gains to achieve a known absolute response, calculate the limits of detection for a given instrument, improve the repeatability of the instrumental setup, and facilitate intercomparisons between different instruments. We recommend calibration of single-particle fluorescence instruments using these methods.
Solvent induced fluorescence enhancement of graphene oxide studied by ultrafast spectroscopy
NASA Astrophysics Data System (ADS)
Zhao, Litao; Chen, Jinquan; He, Xiaoxiao; Yu, Xiantong; Yan, Shujun; Zhang, Sanjun; Pan, Haifeng; Xu, Jianhua
2018-05-01
Femtosecond transient absorption (TA) spectroscopy combined with picosecond time resolved fluorescence (TRF) were used to reveal the fluorescence kinetics of graphene oxide (GO) in water, ethanol and water-ethanol mixtures. Size-independent fluorescence of GO were observed in water, and pH-dependent fluorescence spectra could be fitted well by a triple emission relaxation with peaks around 440 nm, 500 nm, and 590 nm respectively. The results indicate that polycyclic aromatic hydrocarbons (PAHs) linked by oxygen-containing functional groups dominate GO's fluorescence emission. GO's fluorescence quantum yield was measured to be 2.8% in ethanol but 1.2% in water. The three decay components fluorescence decay, as well as the transient absorption dynamics with an offset, confirmed this solvent induced fluorescence enhancement. GO's Raman spectral signals showed that GO in ethanol has a smaller average size of PAHs than that of GO in water. Therefore, besides other enhancement effects reported in literatures, we proposed that solvents could also change the size of PAHs, resulting in a photoluminescence enhancement. Our experimental data demonstrates that GO's quantum yield could be up to 2.8% in water and 8.4% in ethanol and this observation may help ones to improve GO's photoluminescence efficiency as well as its applications in solution.
NASA Astrophysics Data System (ADS)
Secor, Jeff; Narinesingh, Veeshan; Seredych, Mykola; Giannakoudakis, Dimitrios A.; Bandosz, Teresa; Alfano, Robert R.
2015-01-01
Ultrafast energy decay kinetics of a zinc (hydr)oxide-graphite oxide (GO) composite is studied via time-resolved fluorescence spectroscopy. The time-resolved emission is spectrally decomposed into emission regions originating from the zinc (hydr)oxide optical gap, surface, and defect states of the composite material. The radiative lifetime of deep red emission becomes an order of magnitude longer than that of GO alone while the radiative lifetime of the zinc optical gap is shortened in the composite. An energy transfer scheme from the zinc (hydr)oxide to GO is considered.
Yang, Xiaofeng; Wu, Wei; Wang, Guoan
2015-04-01
This paper presents a surgical optical navigation system with non-invasive, real-time, and positioning characteristics for open surgical procedure. The design was based on the principle of near-infrared fluorescence molecular imaging. The in vivo fluorescence excitation technology, multi-channel spectral camera technology and image fusion software technology were used. Visible and near-infrared light ring LED excitation source, multi-channel band pass filters, spectral camera 2 CCD optical sensor technology and computer systems were integrated, and, as a result, a new surgical optical navigation system was successfully developed. When the near-infrared fluorescence was injected, the system could display anatomical images of the tissue surface and near-infrared fluorescent functional images of surgical field simultaneously. The system can identify the lymphatic vessels, lymph node, tumor edge which doctor cannot find out with naked eye intra-operatively. Our research will guide effectively the surgeon to remove the tumor tissue to improve significantly the success rate of surgery. The technologies have obtained a national patent, with patent No. ZI. 2011 1 0292374. 1.
Barnard, Emma; McFerran, Neil V; Trudgett, Alan; Nelson, John; Timson, David J
2008-05-01
An alternative method for monitoring protein-protein interactions in Saccharomyces cerevisiae has been developed. It relies on the ability of two fragments of enhanced green fluorescent protein (EGFP) to reassemble and fluoresce when fused to interacting proteins. Since this fluorescence can be detected in living cells, simultaneous detection and localisation of interacting pairs is possible. DNA sequences encoding N- and C-terminal EGFP fragments flanked by sequences from the genes of interest were transformed into S. cerevisiae JPY5 cells and homologous recombination into the genome verified by PCR. The system was evaluated by testing known interacting proteins: labelling of the phosphofructokinase subunits, Pfk1p and Pfk2p, with N- and C-terminal EGFP fragments, respectively, resulted in green fluorescence in the cytoplasm. The system works in other cellular compartments: labelling of Idh1p and Idh2p (mitochondrial matrix), Sdh3p and Sdh4p (mitochondrial membrane) and Pap2p and Mtr4p (nucleus) all resulted in fluorescence in the appropriate cellular compartment.
Studies on cytostatics used as photosensitizing material in photodynamic therapy
NASA Astrophysics Data System (ADS)
Pascu, Mihail-Lucian; Danaila, Leon; Carstocea, Benone D.; Staicu, Angela; Truica, Sorina; Gazdaru, Doina M.
2002-10-01
Introduction of the photosensitizer properties of cytostatics drus was made, pointing out that the fact that besides the biochemical action of the cytostatics their effects could be enhanced by the exposure to light at different doses. A spectroscopical characterisation of methotrexate and fluorouracil, cytostatic drugs used frequently in cancer therpy was performed. The absorption, emission and excitation spectra were measured for methotrexate solutions in natural saline and sodium hydroxide at concentration in the range 10-5 -10-6M and pH 8.4. The absorption, emission and excitation spectra were measured for fluorouracil solutions in natural saline at concentration in the range 10-4 -10-5M. The absorption spectrum exhibits spectral bands in the range 250nm -450nm for both drugs. The fluorescence excitatioan for methotrexate was made at 340nm and 370nm, the fluorescence emission was detected in the spectral range 400nm - 500nm with a maximum at 470nm. The fluorescence excitation was measured in teh range 200nm-500nm with the emission centred on 530nm, for Xe lamp irradiation, and 300nm for Hg lamp and laser irradiation. The fluorescence emission spectra was monitored in the spectral range 400nm - 600nm. The effects of irradiation on spectroscopic characteristics of methrotrexate and fluorouracil were investigated. The irraditaion was made using a UV classic lamp with Xe, for the first experimental part and for the second one it was used both a class Hg lamp and a nytorgen pulsed laser.
Tryptophan autofluorescence imaging of neoplasms of the human colon
NASA Astrophysics Data System (ADS)
Banerjee, Bhaskar; Renkoski, Timothy; Graves, Logan R.; Rial, Nathaniel S.; Tsikitis, Vassiliki Liana; Nfonsom, Valentine; Pugh, Judith; Tiwari, Piyush; Gavini, Hemanth; Utzinger, Urs
2012-01-01
Detection of flat neoplasia is a major challenge in colorectal cancer screening, as missed lesions can lead to the development of an unexpected `incident' cancer prior to the subsequent endoscopy. The use of a tryptophan-related autofluorescence has been reported to be increased in murine intestinal dysplasia. The emission spectra of cells isolated from human adenocarcinoma and normal mucosa of the colon were studied and showed markedly greater emission intensity from cancerous cells compared to cells obtained from the surrounding normal mucosa. A proto-type multispectral imaging system optimized for ultraviolet macroscopic imaging of tissue was used to obtain autofluorescence images of surgical specimens of colonic neoplasms and normal mucosa after resection. Fluorescence images did not display the expected greater emission from the tumor as compared to the normal mucosa, most probably due to increased optical absorption and scattering in the tumors. Increased fluorescence intensity in neoplasms was observed however, once fluorescence images were corrected using reflectance images. Tryptophan fluorescence alone may be useful in differentiating normal and cancerous cells, while in tissues its autofluorescence image divided by green reflectance may be useful in displaying neoplasms.
Raju, Gajula; Ram Reddy, A
2016-02-05
Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state. Copyright © 2015. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Ruyten, Wilhelmus M.; Burtner, D.; Keefer, Dennis
1993-01-01
Spectroscopic and laser-induced fluorescence measurements were performed on the exhaust plume from a 1 kW NASA Lewis arcjet, operated on simulated ammonia. In particular, emissions were analyzed from the Balmer lines of atomic hydrogen and from one of the rotational bands of the NH radical. The laser-induced fluorescence measurements were performed on the Balmer-alpha line of atomic hydrogen. We find that exit plane temperatures are in the range 1500 to 3500 K and that the electron density upstream of the exit plane is on the order of 1.5 x 10(exp 14)/cu cm as determined by the Stark width of the Balmer-alpha line. Both emission spectroscopy and laser-induced fluorescence were used to measure the plume velocities of atomic hydrogen. Using either technique, velocities on the order of 4 km/sec were found at the exit plane and significant acceleration of the flow was observed in the first 2 mm beyond the exit plane. This result indicates that the design of the arcjet nozzle may not be optimum.
NASA Astrophysics Data System (ADS)
Gąsiorski, P.; Matusiewicz, M.; Gondek, E.; Uchacz, T.; Wojtasik, K.; Danel, A.; Shchur, Ya.; Kityk, A. V.
2018-01-01
Paper reports the synthesis and spectroscopic studies of two novel 1-Methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoxaline (PQX) derivatives with 6-substituted methyl (MeMPPQX) or methoxy (MeOMPPQX) side groups. The optical absorption and fluorescence emission spectra are recorded in solvents of different polarity. Steady state and time-resolved spectroscopy provide photophysical characterization of MeMPPQX and MeOMPPQX dyes as materials for potential luminescence or electroluminescence applications. Measured optical absorption and fluorescence emission spectra are compared with quantum-chemical DFT/TDDFT calculations using long-range corrected xc-functionals, LRC-BLYP and CAM-B3LYP in combination with self-consistent reaction field model based on linear response (LR), state specific (SS) or corrected linear response (CLR) solvations. Performances of relevant theoretical models and approaches are compared. The reparameterized LRC-BLYP functional (ω = 0.231 Bohr-1) in combination with CLR solvation provides most accurate prediction of both excitation and emission energies. The MeMPPQX and MeOMPPQX dyes represent efficient fluorescence emitters in blue-green region of the visible spectra.
Shen, Xiang; Liang, Fuxin; Zhang, Guanxin; Zhang, Deqing
2012-05-07
Emissive core-shell silica particles with tetraphenylethylene moieties were prepared and characterized. Fluorescence quenching was observed for the silica particles upon addition of compound 2 (Dabcyl-ACh). This was attributed to the electrostatic interaction between the silica particles and 2 and the resulting photoinduced energy transfer between them. After incubation with AChE, the fluorescence intensity started to increase. The fluorescence enhancement became more significant when the concentration of AChE was higher. The reaction kinetic parameters for AChE were successfully estimated with the silica particles and 2. These results reveal that the ensemble of the silica particles and 2 can be utilized for AChE assay. Moreover, the fluorescence spectra of the ensemble of the silica particles and 2 containing AChE were also measured after further addition of either neostigmine or tacrine which are typical inhibitors of AChE. The results manifest that the ensemble of the emissive silica particles and 2 is also useful for screening the inhibitors of AChE.
Wagner, Darcy E; Eisenmann, Kathryn M; Nestor-Kalinoski, Andrea L; Bhaduri, Sarit B
2013-09-01
Biocompatible nanoparticles possessing fluorescent properties offer attractive possibilities for multifunctional bioimaging and/or drug and gene delivery applications. Many of the limitations with current imaging systems center on the properties of the optical probes in relation to equipment technical capabilities. Here we introduce a novel high aspect ratio and highly crystalline europium-doped calcium phosphate nanowhisker produced using a simple microwave-assisted solution combustion synthesis method for use as a multifunctional bioimaging probe. X-ray diffraction confirmed the material phase as europium-doped hydroxyapatite. Fluorescence emission and excitation spectra and their corresponding peaks were identified using spectrofluorimetry and validated with fluorescence, confocal and multiphoton microscopy. The nanowhiskers were found to exhibit red and far red wavelength fluorescence under ultraviolet excitation with an optimal peak emission of 696 nm achieved with a 350 nm excitation. Relatively narrow emission bands were observed, which may permit their use in multicolor imaging applications. Confocal and multiphoton microscopy confirmed that the nanoparticles provide sufficient intensity to be utilized in imaging applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Optical properties of cytostatic drugs used in cancer treatment
NASA Astrophysics Data System (ADS)
Pascu, Mihail-Lucian; Mogos, Ioan; Enescu, Mironel; Staicu, Angela; Truica, Sorina; Voicu, Letitia; Gazdaru, Doina M.; Pascu, Mihaela O.; Radu, Alina
2001-10-01
A spectroscopical characterization of methotrexate, cytostatic drug used frequently in cancer therapy, was performed. The absorption, emission and excitation spectra were measured for methotrexate solutions in natural saline and sodium hydroxide at concentration in the range 10-5 M -10-6 M and pH 8.4. The absorption bands are noticed in the spectral range 250 nm - 450 nm. The fluorescence excitation was made at 340 nm and 370 nm; the fluorescence emission was detected in the spectral range 400 nm - 500 nm with a maximum at 450 nm. The behavior of absorption and fluorescence spectra of methotrexate solution exposed to uv-visible light was investigated. The irradiation was made using an Xe lamp (emission between 325 nm and 420 nm and power density of 11 mW/cm2). The exposure time was between 15 min. and 3 h. Major modifications on absorption bands for irradiation times longer than 1 hour were observed. Furthermore, the methotrexate solutions become strongly fluorescent after irradiation. The observed changes are not linear with the exposure time indicating complex photochemical processes which implies, at least, one intermediate product.
Zhuang, Qianfen; Cao, Wei; Ni, Yongnian; Wang, Yong
2018-08-01
Most of the conventional multidimensional differential sensors currently need at least two-step fabrication, namely synthesis of probe(s) and identification of multiple analytes by mixing of analytes with probe(s), and were conducted using multiple sensing elements or several devices. In the study, we chose five different nucleobases (adenine, cytosine, guanine, thymine, and uracil) as model analytes, and found that under hydrothermal conditions, sodium citrate could react directly with various nucleobases to yield different nitrogen-doped carbon nanodots (CDs). The CDs synthesized from different nucleobases exhibited different fluorescent properties, leading to their respective characteristic fluorescence spectra. Hence, we combined the fluorescence spectra of the CDs with advanced chemometrics like principle component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN) and soft independent modeling of class analogy (SIMCA), to present a conceptually novel "synthesis-identification integration" strategy to construct a multidimensional differential sensor for nucleobase discrimination. Single-wavelength excitation fluorescence spectral data, single-wavelength emission fluorescence spectral data, and fluorescence Excitation-Emission Matrices (EEMs) of the CDs were respectively used as input data of the differential sensor. The results showed that the discrimination ability of the multidimensional differential sensor with EEM data set as input data was superior to those with single-wavelength excitation/emission fluorescence data set, suggesting that increasing the number of the data input could improve the discrimination power. Two supervised pattern recognition methods, namely KNN and SIMCA, correctly identified the five nucleobases with a classification accuracy of 100%. The proposed "synthesis-identification integration" strategy together with a multidimensional array of experimental data holds great promise in the construction of differential sensors. Copyright © 2018 Elsevier B.V. All rights reserved.
Paul, Bijan Kumar; Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil
2011-06-01
A structurally simple Schiff base N-benzyl-(3-hydroxy-2-naphthalene) (NBHN32) has been synthesized and characterized by (1)H NMR, (13)C NMR, and DEPT spectroscopy. The photophysical behaviour of NBHN32 in response to the presence of various transition metal cations has been explored by means of steady-state absorption, emission and time-resolved emission spectroscopy techniques. Efficient through space intramolecular photoinduced electron transfer (PET) between the naphthalene fluorophore and the imine group has been argued for extremely low fluorescence yield of NBHN32 compared to the parent molecule 3-hydroxy-2-naphthaldehyde (HN32) containing the same fluorophore but lacking the receptor moiety. Transition metal ion-induced emission enhancement is thus addressed on the lexicon of perturbation of the PET by the metal ions. Apart from fluorescence enhancement, transition metal ion imparts remarkable shift of the emission maxima of NBHN32, which is another unique aspect on the proposed ability of NBHN32 to function as a fluorescence chemosensor. Copyright © 2011 Elsevier B.V. All rights reserved.
Numerical Modeling of Fluorescence Emission Energy Dispersion in Luminescent Solar Concentrator
NASA Astrophysics Data System (ADS)
Li, Lanfang; Sheng, Xing; Rogers, John; Nuzzo, Ralph
2013-03-01
We present a numerical modeling method and the corresponding experimental results, to address fluorescence emission dispersion for applications such as luminescent solar concentrator and light emitting diode color correction. Previously established modeling methods utilized a statistic-thermodynamic theory (Kenard-Stepnov etc.) that required a thorough understanding of the free energy landscape of the fluorophores. Some more recent work used an empirical approximation of the measured emission energy dispersion profile without considering anti-Stokes shifting during absorption and emission. In this work we present a technique for modeling fluorescence absorption and emission that utilizes the experimentally measured spectrum and approximates the observable Frank-Condon vibronic states as a continuum and takes into account thermodynamic energy relaxation by allowing thermal fluctuations. This new approximation method relaxes the requirement for knowledge of the fluorophore system and reduces demand on computing resources while still capturing the essence of physical process. We present simulation results of the energy distribution of emitted photons and compare them with experimental results with good agreement in terms of peak red-shift and intensity attenuation in a luminescent solar concentrator. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293.
NASA Astrophysics Data System (ADS)
Yoshida, Yuki; Kitamoto, Shunji; Hoshino, Akio
2017-11-01
The X-ray line diagnostic method is a powerful tool for an investigation of plasma around accretion-powered X-ray pulsars. We point out an apparent intensity modulation of emission lines, with their rotation period of neutron stars, due to the finite speed of light (we call this effect the “finite light speed effect”) if the line emission mechanism is a kind of reprocessing, such as fluorescence or recombination after ionization by X-ray irradiation from pulsars. The modulation amplitude is determined by the size of the emission region, which is in competition with the smearing effect by the light crossing time in the emission region. This is efficient if the size of the emission region is roughly comparable to that of the rotation period multiplied by the speed of light. We apply this effect to a symbiotic X-ray pulsar, GX 1+4, where a spin modulation of the intense iron line of which has been reported. The finite light speed effect can explain the observed intensity modulation if its fluorescent region is the size of ˜ {10}12 cm.
Huang, Cheng-Yen; Hsieh, Ming-Ching; Zhou, Qinwei
2017-04-01
Monoclonal antibodies have become the fastest growing protein therapeutics in recent years. The stability and heterogeneity pertaining to its physical and chemical structures remain a big challenge. Tryptophan fluorescence has been proven to be a versatile tool to monitor protein tertiary structure. By modeling the tryptophan fluorescence emission envelope with log-normal distribution curves, the quantitative measure can be exercised for the routine characterization of monoclonal antibody overall tertiary structure. Furthermore, the log-normal deconvolution results can be presented as a two-dimensional plot with tryptophan emission bandwidth vs. emission maximum to enhance the resolution when comparing samples or as a function of applied perturbations. We demonstrate this by studying four different monoclonal antibodies, which show the distinction on emission bandwidth-maximum plot despite their similarity in overall amino acid sequences and tertiary structures. This strategy is also used to demonstrate the tertiary structure comparability between different lots manufactured for one of the monoclonal antibodies (mAb2). In addition, in the unfolding transition studies of mAb2 as a function of guanidine hydrochloride concentration, the evolution of the tertiary structure can be clearly traced in the emission bandwidth-maximum plot.
Fluorescence spectra of Cr3+ dimers in LiNbO3
NASA Astrophysics Data System (ADS)
Jia, Weiyi; Liu, Huimin; Knutson, R.; Yen, W. M.
1990-06-01
Fine spectral structure has been observed in both fluorescence and excitation spectra of Cr3+:LiNbO3 on the high-energy side of the broadband emission from 4T2 at 10 K. The lifetimes of the structures are found to be much longer than the lifetime of the broadband 4T2 fluorescence. These sharp lines are assigned to the 2E-->4A2 emissions (R lines) from two types of Cr3+ sites arising from charge compensation; Cr3+ ions are found to substitute both for Li+ and for Nb5+ sites and to form dimerlike pairs.
NASA Astrophysics Data System (ADS)
Mashin, N. I.; Razuvaev, A. G.; Cherniaeva, E. A.; Gafarova, L. M.; Ershov, A. V.
2018-03-01
We propose a new method for determining the thickness of layers in x-ray fluorescence analysis of two-layer Ti/V systems, using easily fabricated standardized film layers obtained by sputter deposition of titanium on a polymer film substrate. We have calculated correction factors taking into account the level of attenuation for the intensity of the primary emission from the x-ray tube and the analytical line for the element of the bottom layer in the top layer, and the enhancement of the fluorescence intensity for the top layer by the emission of atoms in the bottom layer.
NASA Astrophysics Data System (ADS)
Delgado-Camón, Arantzazu; Garriga, Rosa; Mateos, Elena; Cebolla, Vicente L.; Galbán, Javier; Membrado, Luis; Marcos, Susana de; Gálvez, Eva M.
2011-01-01
Berberine and coralyne experience either fluorescence enhancement or quenching when long hydrocarbon chain compounds (e.g., n-alkanes or alcohols) are added to their solutions, depending on solvent polarity. In polar solvents, as methanol or acetonitrile, the added compounds provide an apolar microenvironment that hinders alternative relaxation mechanisms, favouring fluorescence emission. However, alkane additions produce quenching in dichloromethane, which has been explained taking into account ion pairing between cationic fluorophore and counterion. The strong quenching measured after alcohol additions in dichloromethane suggests reversed micelle formation. Procedures and results described here may find practical applications in the development of analytical methods.
Xia, Yangkun; Fu, Zhuo; Tsai, Sang-Bing; Wang, Jiangtao
2018-05-10
In order to promote the development of low-carbon logistics and economize logistics distribution costs, the vehicle routing problem with split deliveries by backpack is studied. With the help of the model of classical capacitated vehicle routing problem, in this study, a form of discrete split deliveries was designed in which the customer demand can be split only by backpack. A double-objective mathematical model and the corresponding adaptive tabu search (TS) algorithm were constructed for solving this problem. By embedding the adaptive penalty mechanism, and adopting the random neighborhood selection strategy and reinitialization principle, the global optimization ability of the new algorithm was enhanced. Comparisons with the results in the literature show the effectiveness of the proposed algorithm. The proposed method can save the costs of low-carbon logistics and reduce carbon emissions, which is conducive to the sustainable development of low-carbon logistics.
NASA Astrophysics Data System (ADS)
Płachta, Jakub; Grodzicka, Emma; Kaleta, Anna; Kret, Sławomir; Baczewski, Lech T.; Pietruczik, Aleksiej; Wiater, Maciej; Goryca, Mateusz; Kazimierczuk, Tomasz; Kossacki, Piotr; Karczewski, Grzegorz; Wojtowicz, Tomasz; Wojnar, Piotr
2018-05-01
A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.
Płachta, Jakub; Grodzicka, Emma; Kaleta, Anna; Kret, Sławomir; Baczewski, Lech T; Pietruczik, Aleksiej; Wiater, Maciej; Goryca, Mateusz; Kazimierczuk, Tomasz; Kossacki, Piotr; Karczewski, Grzegorz; Wojtowicz, Tomasz; Wojnar, Piotr
2018-05-18
A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.
DNA complexes with dyes designed for energy transfer as fluorescent markers
Glazer, A.N.; Benson, S.C.
1997-07-08
Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figs.
DNA complexes with dyes designed for energy transfer as fluorescent markers
Glazer, A.M.; Benson, S.C.
1998-06-16
Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figs.
Ghosh, Anup; Chatterjee, Tanmay; Mandal, Prasun K
2012-06-25
An excitation and emission wavelength dependent non-exponential fluorescence decay behaviour of room temperature ionic liquids (RTILs) has been noted. Average fluorescence lifetimes have been found to vary by a factor of three or more. Red emitting dyes dissolved in RTILs are found to follow hitherto unobserved single exponential fluorescence decay behaviour.
DNA complexes with dyes designed for energy transfer as fluorescent markers
Glazer, A.N.; Benson, S.C.
1995-03-28
Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figures.
Single-molecule interfacial electron transfer dynamics in solar energy conversion
NASA Astrophysics Data System (ADS)
Dhital, Bharat
This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of molecule on ITO surface. Finally, the electric field effect on the interface properties has been probed by using surface-enhanced Raman spectroscopy and supported by density functional theory calculations in alizarin-TiO2 system. The perturbation, created by the external potential, has been observed to cause a shift and/or splitting interfacial bond vibrational mode, typical indicator of the coupling energy changes between alizarin and TiO2. Such splitting provides evidence for electric field-dependent electronic coupling changes that have a significant impact on the interfacial electron transfer dynamics.
Improving confocal microscopy with solid-state semiconductor excitation sources
NASA Astrophysics Data System (ADS)
Sivers, Nelson L.
To efficiently excite the fluorescent dyes used in imaging biological samples with a confocal microscope, the wavelengths of the exciting laser must be near the fluorochrome absorption peak. However, this causes imaging problems when the fluorochrome absorption and emission spectra overlap significantly, i.e. have small Stokes shifts, which is the case for most fluorochromes that emit in the red to infrared. As a result, the reflected laser excitation cannot be distinguished from the information-containing fluorescence signal. However, cryogenically cooling the exciting laser diode enabled the laser emission wavelengths to be tuned to shorter wavelengths, decreasing the interference between the laser and the fluorochrome's fluorescence. This reduced the amount of reflected laser light in the confocal image. However, the cooled laser diode's shorter wavelength signal resulted in slightly less efficient fluorochrome excitation. Spectrophotometric analysis showed that as the laser diodes were cooled, their output power increased, which more than compensated for the lower fluorochrome excitation and resulted in significantly more intense fluorescence. Thus, by tuning the laser diode emission wavelengths away from the fluorescence signal, less reflected laser light and more fluorescence information reached the detector, creating images with better signal to noise ratios. Additionally, new, high, luminous flux, light-emitting diodes (LEDs) are now powerful enough to create confocal fluorescence signals comparable to those produced by the traditional laser excitation sources in fluorescence confocal microscopes. The broader LED spectral response effectively excited the fluorochrome, yet was spectrally limited enough for standard filter sets to separate the LED excitation from the fluorochrome fluorescence signal. Spectrophotometric analysis of the excitation and fluorescence spectra of several fluorochromes showed that high-powered, LED-induced fluorescence contained the same spectral information and could be more intense than that produced by lasers. An alternative, LED-based, confocal microscope is proposed in this thesis that would be capable of exciting multiple fluorochromes in a single specimen, producing images of several distinct cellular components simultaneously. The inexpensive, LED-based, confocal microscope would require lower peak excitation intensities to produce fluorescence signals equal to those produced by laser excitation, reducing cellular damage and slowing fluorochrome photobleaching.
Triple collinear emissions in parton showers
Hoche, Stefan; Prestel, Stefan
2017-10-17
A framework to include triple collinear splitting functions into parton showers is presented, and the implementation of flavor-changing next-to-leading-order (NLO) splitting kernels is discussed as a first application. The correspondence between the Monte Carlo integration and the analytic computation of NLO DGLAP evolution kernels is made explicit for both timelike and spacelike parton evolution. Finally, numerical simulation results are obtained with two independent implementations of the new algorithm, using the two independent event generation frameworks PYTHIA and SHERPA.
Ultrastructural localisation of protein interactions using conditionally stable nanobodies.
Ariotti, Nicholas; Rae, James; Giles, Nichole; Martel, Nick; Sierecki, Emma; Gambin, Yann; Hall, Thomas E; Parton, Robert G
2018-04-01
We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation ('EM split-fluorescent protein'), for localisation of protein-protein interactions at the ultrastructural level.
Ultrastructural localisation of protein interactions using conditionally stable nanobodies
Ariotti, Nicholas; Rae, James; Giles, Nichole; Martel, Nick; Sierecki, Emma; Gambin, Yann; Parton, Robert G.
2018-01-01
We describe the development and application of a suite of modular tools for high-resolution detection of proteins and intracellular protein complexes by electron microscopy (EM). Conditionally stable GFP- and mCherry-binding nanobodies (termed csGBP and csChBP, respectively) are characterized using a cell-free expression and analysis system and subsequently fused to an ascorbate peroxidase (APEX) enzyme. Expression of these cassettes alongside fluorescently labelled proteins results in recruitment and stabilisation of APEX, whereas unbound APEX nanobodies are efficiently degraded by the proteasome. This greatly simplifies correlative analyses, enables detection of less-abundant proteins, and eliminates the need to balance expression levels between fluorescently labelled and APEX nanobody proteins. Furthermore, we demonstrate the application of this system to bimolecular complementation (‘EM split-fluorescent protein’), for localisation of protein–protein interactions at the ultrastructural level. PMID:29621251
NASA Astrophysics Data System (ADS)
Manikandan, Irulappan; Chang, Chien-Huei; Chen, Chia-Ling; Sathish, Veerasamy; Li, Wen-Shan; Malathi, Mahalingam
2017-07-01
Novel benzimidazoquinoline derivative (AVT) was synthesized through a substitution reaction and characterized by various spectral techniques. Analyzing the optical properties of AVT under absorption and emission spectral studies in different environments exclusively with respect to solvents and pH, intriguing characteristics viz. aggregation induced emission enhancement (AIEE) in the THF solvent and 'On-Off' pH sensing were found at neutral pH. Sensing nature of AVT with diverse metal ions and bovine serum albumin (BSA) was also studied. Among the metal ions, Fe3 + ion alone tunes the fluorescence intensity of AVT probe in aqueous medium from ;turn-on; to ;turn-off; through ligand (probe) to metal charge transfer (LMCT) mechanism. The probe AVT in aqueous medium interacts strongly with BSA due to Fluorescence Resonance Energy Transfer (FRET) and the conformational change in BSA was further analyzed using synchronous fluorescence techniques. Docking study of AVT with BSA reveals that the active site of binding is tryptophan residue which is also supported by the experimental results. Interestingly, fluorescent AVT probe in cells was examined through cellular imaging studies using BT-549 and MDA-MB-231 cells. Thus, the single molecule probe based detection of multiple species and stimuli were described.
NASA Astrophysics Data System (ADS)
Casamayou-Boucau, Yannick; Ryder, Alan G.
2017-09-01
Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42). Fluorescence anisotropy adds to the multidimensional fluorescence dataset information about the physical size of the fluorophores and/or the rigidity of the surrounding micro-environment. The first ARMES studies used standard thin film polarizers (TFP) that had negligible transmission between 250 and 290 nm, preventing accurate measurement of intrinsic protein fluorescence from tyrosine and tryptophan. Replacing TFP with pairs of broadband wire grid polarizers enabled standard fluorescence spectrometers to accurately measure anisotropies between 250 and 300 nm, which was validated with solutions of perylene in the UV and Erythrosin B and Phloxine B in the visible. In all cases, anisotropies were accurate to better than ±1% when compared to literature measurements made with Glan Thompson or TFP polarizers. Better dual wire grid polarizer UV transmittance and the use of excitation-emission matrix measurements for ARMES required complete Rayleigh scatter elimination. This was achieved by chemometric modelling rather than classical interpolation, which enabled the acquisition of pure anisotropy patterns over wider spectral ranges. In combination, these three improvements permit the accurate implementation of ARMES for studying intrinsic protein fluorescence.
Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunyang, E-mail: chunyangliu@126.com; Sui, Xin; Yang, Fang
2014-03-15
A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of themore » microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.« less
Emission shaping in fluorescent proteins: role of electrostatics and π-stacking.
Park, Jae Woo; Rhee, Young Min
2016-02-07
For many decades, simulating the excited state properties of complex systems has been an intriguing but daunting task due to its high computational cost. Here, we apply molecular dynamics based techniques with interpolated potential energy surfaces toward calculating fluorescence spectra of the green fluorescent protein (GFP) and its variants in a statistically meaningful manner. With the GFP, we show that the diverse electrostatic tuning can shape the emission features in many different ways. By computationally modulating the electrostatic interactions between the chromophore phenoxy oxygen and its nearby residues, we demonstrate that we indeed can shift the emission to the blue or to the red side in a predictable manner. We rationalize the shifting effects of individual residues in the GFP based on the responses of both the adiabatic and the diabatic electronic states of the chromophore. We next exhibit that the yellow emitting variant, the Thr203Tyr mutant, generates changes in the electrostatic interactions and an additional π-stacking interaction. These combined effects indeed induce a red shift to emit the fluorescence into the yellow region. With the series of demonstrations, we suggest that our approach can provide sound rationales and useful insights in understanding different responses of various fluorescent complexes, which may be helpful in designing new light emitting proteins and other related systems in future studies.
Conversion of isotropic fluorescence into a long-range non-diverging beam
NASA Astrophysics Data System (ADS)
Zhang, Douguo; Zhu, Liangfu; Chen, Junxue; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Rosenfeld, Mary; Zhan, Qiwen; Kuang, Cuifang; Liu, Xu; Lakowicz, Joseph R.
2018-04-01
Fluorescent samples typically emit isotropically in all directions. Large lenses and other optical components are needed to capture a significant fraction of the emission, and complex confocal microscopes are required for high resolution focal-plane imaging. It is known that Bessel beams have remarkable properties of being able to travel over long distances, over 1000 times the wavelength, without diverging, and hence are called non-diffracting beams. In previous reports the Bessel beams were formed by an incident light source, typically with plane-wave illumination on a circular aperture. It was not known if Bessel beams could form from fluorescent light sources. We demonstrate transformation of the emission from fluorescent polystyrene spheres (FPS) into non-diverging beams which propagate up to 130 mm (13 cm) along the optical axis with a constant diameter. This is accomplished using a planar metal film, with no nanoscale features in the X-Y plane, using surface plasmon-coupled emission. Using samples which contain many FPS in the field-of-view, we demonstrate that an independent Bessel beam can be generated from any location on the metal film. The extremely long non-diffracted propagation distances, and self-healing properties of Bessel beams, offer new opportunities in fluorescence sensing and imaging.
NASA Astrophysics Data System (ADS)
Lavonen, Elin; Kothawala, Dolly; Tranvik, Lars; Köhler, Stephan
2014-05-01
Fluorescence spectroscopy has been widely used to characterize fluorescent dissolved organic matter (FDOM) in various waters including during drinking water production. Commonly used techniques for data treatment include peak picking, indexes calculated from 2D emission spectra and modelling of fluorescence components using parallel factor analysis (PARAFAC). However, peak picking and indexes only use limited information from the fluorescence EEMs and PARAFAC requires a larger dataset and experience to perform. Because DOM is a major issue in drinking water production, and personnel at water treatment plants usually have limited time for advanced analysis we have developed a simple way of assessing the treatability of DOM in different waters using differential fluorescence. With this approach the removed fraction of FDOM is calculated from samples taken before and after a particular treatment process and the percentage of removed material assessed. Samples have been collected from four large water treatment plants in Sweden and analyzed for 3Dfluorescence, absorbance and DOC. The selective removal of DOM during e.g. flocculation and slow sand filtration as well as differences in experienced treatability between the treatment plants was described with differential fluorescence. Chemical flocculation is selective towards FDOM with red-shifted emission across the entire EEM. Red-shift has earlier been connected to condensation (i.e. decrease in H/C) and positively correlated to molecular size indicating that larger, humified molecules are being preferentially removed. During the biological process of slow sand filtration compounds with blue-shifted emission are targeted demonstrating selective removal of more freshly produced, microbial material. Disinfection with UV/NH2Cl and NaOCl was found to only target material with protein-like fluorescence suggesting that FDOM of this nature could be responsible for unwanted consumption of disinfection agent. Targeted removal of this fraction prior to disinfection should optimize the process. Furthermore, the main process at all studied WTPs is flocculation and their experienced treatability could easily be explained through the percentage of FDOM with emission above 450 nm (p<0.0001).
NASA Astrophysics Data System (ADS)
Salyuk, P. A.; Nagorny, I. G.
The paper presents the method for processing of excitation-emission matrix of sea water and the allocation of the spectral characteristics of different types of colored dissolved organic matter (CDOM) and phytoplankton cells in seawater. The method consists of identification of regularly observed fluorescence peaks of CDOM in marine waters of different type and definition of the spectral ranges, where the predominant influence of these peaks are observed.
Enantioselective binding of L, D-phenylalanine to ct DNA
NASA Astrophysics Data System (ADS)
Zhang, Lijin; Xu, Jianhua; Huang, Yan; Min, Shungeng
2009-10-01
The enantioselective binding of L, D-phenylalanine to calf thymus DNA was studied by absorption, circular dichroism, fluorescence quenching, viscosity, salt effect and emission experiments. The results obtained from absorption, circular dichroism, fluorescence quenching and viscosity experiments excluded the intercalative binding and salt effect experiments did not support electrostatic binding. So the binding of L, D-phenylalanine to ct DNA should be groove binding. Furthermore, the emission spectra revealed that the binding is enantioselective.
Enantioselective binding of L,D-phenylalanine to ct DNA.
Zhang, Lijin; Xu, Jianhua; Huang, Yan; Min, Shungeng
2009-10-15
The enantioselective binding of L,D-phenylalanine to calf thymus DNA was studied by absorption, circular dichroism, fluorescence quenching, viscosity, salt effect and emission experiments. The results obtained from absorption, circular dichroism, fluorescence quenching and viscosity experiments excluded the intercalative binding and salt effect experiments did not support electrostatic binding. So the binding of l,d-phenylalanine to ct DNA should be groove binding. Furthermore, the emission spectra revealed that the binding is enantioselective.
Optical radiation emissions from compact fluorescent lamps.
Khazova, M; O'Hagan, J B
2008-01-01
There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects.
Liao, Meng-xia; Deng, Tian-long
2006-01-01
It was observed that the atomic fluorescence emission due to As(V) could has a 10% to 40% of fluorescence emission signal during the determination of As(III) in the mixture of As(III) and As(V). Besides, interferes from heavy metals such as Pb(lIl), Cu(ll) can cause severe increase of the signals as compared to the insignificant effects caused by Cd(II), Zn(ll), Mn(II) and Fe(Ill). On the basis of further studies, the masking agent of 8-hydroxyquinoline was used as an efficient agent to eliminate interference of As(V) emission and the heavy metal of Cu2+ and Pb2+ in the measurements of arsenic species. After a series standard additions and CRM researches, a sensitive and interference-free analytical procedure was developed for the speciation of arsenic in samples of porewaters and sediments in Poyang Lake, China.
NASA Technical Reports Server (NTRS)
Middleton, E. M.; McMurtrey, J. E.; Campbell, P. K. Entcheva; Corp, L. A.; Butcher, L. M.; Chappelle, E. W.
2003-01-01
Vegetation productivity is driven by nitrogen (N) availability in soils. Both excessive and low soil N induce physiological changes in plant foliage. In 2001, we examined the use of spectral fluorescence and reflectance measurements to discriminate among plants provided different N fertilizer application rates: 20%, 50%, 100% and 150% of optimal N levels. A suite of optical, fluorescence, and biophysical measurements were collected on leaves from field grown corn (Zea mays L.) and soybean plants (Glycine max L.) grown in pots (greenhouse + ambient sunlight daily). Three types of steady state laser-induced fluorescence measurements were made on adaxial and abaxial surfaces: 1) fluorescence images in four 10 nm bands (blue, green, red, far-red) resulting from broad irradiance excitation; 2) emission spectra (5 nm resolution) produced by excitation at single wavelengths (280,380 or 360, and 532 nm); and 3) excitation spectra (2 nm resolution), with emission wavelengths fixed at wavelengths centered on selected solar Fraunhofer lines (532,607,677 and 745 nm). Two complementary sets of high resolution (less than 2 nm) optical spectra were acquired for both adaxial and abaxial leaf surfaces: 1) optical properties (350-2500 nm) for reflectance, transmittance, and absorptance; and 2) reflectance spectra (500-1000 nm) acquired with and without a short pass filter at 665 nm to determine the fluorescence contribution to apparent reflectance in the 650-750 spectrum, especially at the 685 and 740 nm chlorophyll fluorescence (ChIF) peaks. The strongest relationships between foliar chemistry and optical properties were demonstrated for C/N content and two optical parameters associated with the red edge inflection point. Select optical properties and ChIF parameters were highly correlated for both species. A significant contribution of ChIF to apparent reflectance was observed, averaging 10-25% at 685 nm and 2 - 6% at 740 nm over all N treatments. Discrimination of N treatment groups was possible with specific fluorescence band ratios (e.g., F740/F525 obtained with 380EX). From all measurements assessing fluorescence, higher ChIF and blue/green emissions were measured from the abaxial leaf surfaces; Abaxial surfaces also produced higher reflectances in the 400-800 nm spectrum. Fluorescence information collected in Fraunhofer regions located on the shoulders of ChIF features compared favorably with peak emissions. This supports the potential capability of a future space-born interferometer sensor to capture plant canopy fluorescence.