Veit, M J; Arras, R; Ramshaw, B J; Pentcheva, R; Suzuki, Y
2018-04-13
The manipulation of the spin degrees of freedom in a solid has been of fundamental and technological interest recently for developing high-speed, low-power computational devices. There has been much work focused on developing highly spin-polarized materials and understanding their behavior when incorporated into so-called spintronic devices. These devices usually require spin splitting with magnetic fields. However, there is another promising strategy to achieve spin splitting using spatial symmetry breaking without the use of a magnetic field, known as Rashba-type splitting. Here we report evidence for a giant Rashba-type splitting at the interface of LaTiO 3 and SrTiO 3 . Analysis of the magnetotransport reveals anisotropic magnetoresistance, weak anti-localization and quantum oscillation behavior consistent with a large Rashba-type splitting. It is surprising to find a large Rashba-type splitting in 3d transition metal oxide-based systems such as the LaTiO 3 /SrTiO 3 interface, but it is promising for the development of a new kind of oxide-based spintronics.
Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens
NASA Astrophysics Data System (ADS)
Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.
2018-04-01
Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.
Focusing of high intensity ultrasound through the rib cage using a therapeutic random phased array
Bobkova, Svetlana; Gavrilov, Leonid; Khokhlova, Vera; Shaw, Adam; Hand, Jeffrey; #, ||
2010-01-01
A method for focusing high intensity ultrasound through a rib cage that aims to minimize heating of the ribs whilst maintaining high intensities at the focus (or foci) is proposed and tested theoretically and experimentally. Two approaches, one based on geometric acoustics and the other accounting for diffraction effects associated with propagation through the rib cage, are investigated theoretically for idealized source conditions. It is shown that for an idealized radiator the diffraction approach provides a 23% gain in peak intensity and results in significantly less power losses on the ribs (1% versus 7.5% of the irradiated power) compared with the geometric one. A 2D 1-MHz phased array with 254 randomly distributed elements, tissue mimicking phantoms, and samples of porcine rib cages are used in experiments; the geometric approach is used to configure how the array is driven. Intensity distributions are measured in the plane of the ribs and in the focal plane using an infra-red camera. Theoretical and experimental results show that it is possible to provide adequate focusing through the ribs without overheating them for a single focus and several foci, including steering at ± 10–15 mm off and ± 20 mm along the array axis. Focus splitting due to the periodic spatial structure of ribs is demonstrated both in simulations and experiments; the parameters of splitting are quantified. The ability to produce thermal lesions with a split focal pattern in ex vivo porcine tissue placed beyond the rib phantom is also demonstrated. The results suggest that the method is potentially useful for clinical applications of HIFU for which the rib cage lies between the transducer(s) and the targeted tissue. PMID:20510186
Split-Session Focus Group Interviews in the Naturalistic Setting of Family Medicine Offices
Fetters, Michael D.; Guetterman, Timothy C.; Power, Debra; Nease, Donald E.
2016-01-01
PURPOSE When recruiting health care professionals to focus group interviews, investigators encounter challenges such as busy clinic schedules, recruitment, and a desire to get candid responses from diverse participants. We sought to overcome these challenges using an innovative, office-based, split-session focus group procedure in a project that elicited feedback from family medicine practices regarding a new preventive services model. This procedure entails allocating a portion of time to the entire group and the remaining time to individual subgroups. We discuss the methodologic procedure and the implications of using this approach for data collection. METHODS We conducted split-session focus groups with physicians and staff in 4 primary care practices. The procedure entailed 3 sessions, each lasting 30 minutes: the moderator interviewed physicians and staff together, physicians alone, and staff alone. As part of the focus group interview, we elicited and analyzed participant comments about the split-session format and collected observational field notes. RESULTS The split-session focus group interviews leveraged the naturalistic setting of the office for context-relevant discussion. We tested alternate formats that began in the morning and at lunchtime, to parallel each practice’s workflow. The split-session approach facilitated discussion of topics primarily relevant to staff among staff, topics primarily relevant to physicians among physicians, and topics common to all among all. Qualitative feedback on this approach was uniformly positive. CONCLUSION A split-session focus group interview provides an efficient, effective way to elicit candid qualitative information from all members of a primary care practice in the naturalistic setting where they work. PMID:26755786
Insight into NE Tibet expansion from SKS splitting: Missed mid-lower crustal flow in the frontier
NASA Astrophysics Data System (ADS)
Huang, Zhouchuan; Tilmann, Frederik; Xu, Mingjie; Wang, Liangshu; Ding, Zhifeng; Mi, Ning
2017-04-01
Two end member hypotheses for the expansion of the Tibetan plateau focus on either the deformation of the whole lithosphere or ductile flow in the mid-lower crust. Here, we analyse SKS shear-wave splitting at ChinArray stations in NE Tibet. Within the high plateau, the splitting measurements indicate two-layer anisotropy. The upper-layer anisotropy (with NE-SW fast axis) is caused by ductile-flow in the mid-lower crust while the lower-layer anisotropy (with NW-SE fast axis) reflects deformation in the upper mantle. In contrast, near the expansion frontier, the measurements indicate single layer splitting with a NW-SE fast axis that correlates with the strikes of most faults and the trend of the orogen. The results thus suggest different dynamics in the plateau and its NE margin. In the high plateau mid-lower crustal flow plays a dominant role while in the expansion frontier in the NE margin the initial tectonic uplift is induced by crustal thrust faulting.
Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting.
Tang, Yanqun; Fang, Xiaoyu; Zhang, Xin; Fernandes, Gina; Yan, Yong; Yan, Dongpeng; Xiang, Xu; He, Jing
2017-10-25
Hydrogen generation from water splitting could be an alternative way to meet increasing energy demands while also balancing the impact of energy being supplied by fossil-based fuels. The efficacy of water splitting strongly depends on the performance of electrocatalysts. Herein, we report a unique space-confined earth-abundant electrocatalyst having the bifunctionality of simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), leading to high-efficiency water splitting. Outperforming Pt/C or RuO 2 catalysts, this mesoscopic, space-confined, bifunctional configuration is constructed from a monolithic zeolitic imidazolate framework@layered double hydroxide (ZIF@LDH) precursor on Ni foam. Such a confinement leads to a high dispersion of ultrafine Co 3 O 4 nanoparticles within the N-doped carbon matrix by temperature-dependent calcination of the ZIF@LDH. We demonstrate that the OER has an overpotential of 318 mV at a current density of 10 mA cm -2 , while that of HER is -106 mV @ -10 mA cm -2 . The voltage applied to a two-electrode cell for overall water splitting is 1.59 V to achieve a stable current density of 10 mA cm -2 while using the monolithic catalyst as both the anode and the cathode. It is anticipated that our space-confined method, which focuses on earth-abundant elements with structural integrity, may provide a novel and economically sound strategy for practical energy conversion applications.
FOCUS SPLITTING ASSOCIATED WITH PROPAGATION OF FOCUSED ULTRASOUND THROUGH THE RIB CAGE
Khokhlova, V. A.; Bobkova, S. M.; Gavrilov, L. R.
2011-01-01
The effect of focus splitting after propagation of focused ultrasound through a rib cage is investigated theoretically. It is shown that the mechanism of this effect is caused by the interference of waves from two or more spatially separated sources, such as intercostal spaces. Analytical estimates of the parameters of splitting are obtained, i.e., the number of foci, their amplitudes, diameter, and the distance between them, depending on the transducer parameters, as well as the dimensions of the rib cage and position of ribs relative to the radiator. Various configurations of the relative positioning of ribs and radiator are considered; it is shown which of them are the most effective for real surgical operations. PMID:21607120
Principles and implementations of electrolysis systems for water splitting
Xiang, Chengxiang; Papadantonakis, Kimberly M.; Lewis, Nathan S.
2016-02-12
Efforts to develop renewable sources of carbon-neutral fuels have brought a renewed focus to research and development of sunlight-driven water-splitting systems. Electrolysis of water to produce H 2 and O 2 gases is the foundation of such systems, is conceptually and practically simple, and has been practiced both in the laboratory and industrially for many decades. In this Focus article, the fundamentals of water splitting and practices which distinguish commercial water-electrolysis systems from simple laboratory-scale demonstrations are described.
Using Computer Based Intervention
ERIC Educational Resources Information Center
Aliee, Zeinab Shams; Jomhari, Nazean; Rezaei, Reza; Alias, Norlidah
2013-01-01
One of the most common problems in autistic children is split attention. Split attention prevents autism children from being able to focus attention on their learning, and tasks. As a result, it is important to identify how to make autistic individuals focus attention on learning. Considering autistic individuals have higher visual abilities in…
Giant onsite electronic entropy enhances the performance of ceria for water splitting.
Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris
2017-08-18
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.
Giant onsite electronic entropy enhances the performance of ceria for water splitting
Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.; ...
2017-08-18
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less
Focusing the view on nature's water-splitting catalyst.
Zein, Samir; Kulik, Leonid V; Yano, Junko; Kern, Jan; Pushkar, Yulia; Zouni, Athina; Yachandra, Vittal K; Lubitz, Wolfgang; Neese, Frank; Messinger, Johannes
2008-03-27
Nature invented a catalyst about 3Gyr ago, which splits water with high efficiency into molecular oxygen and hydrogen equivalents (protons and electrons). This reaction is energetically driven by sunlight and the active centre contains relatively cheap and abundant metals: manganese and calcium. This biological system therefore forms the paradigm for all man-made attempts for direct solar fuel production, and several studies are underway to determine the electronic and geometric structures of this catalyst. In this report we briefly summarize the problems and the current status of these efforts and propose a density functional theory-based strategy for obtaining a reliable high-resolution structure of this unique catalyst that includes both the inorganic core and the first ligand sphere.
Focusing the view on nature's water-splitting catalyst
Zein, Samir; Kulik, Leonid V; Yano, Junko; Kern, Jan; Pushkar, Yulia; Zouni, Athina; Yachandra, Vittal K; Lubitz, Wolfgang; Neese, Frank; Messinger, Johannes
2007-01-01
Nature invented a catalyst about 3 Gyr ago, which splits water with high efficiency into molecular oxygen and hydrogen equivalents (protons and electrons). This reaction is energetically driven by sunlight and the active centre contains relatively cheap and abundant metals: manganese and calcium. This biological system therefore forms the paradigm for all man-made attempts for direct solar fuel production, and several studies are underway to determine the electronic and geometric structures of this catalyst. In this report we briefly summarize the problems and the current status of these efforts and propose a density functional theory-based strategy for obtaining a reliable high-resolution structure of this unique catalyst that includes both the inorganic core and the first ligand sphere. PMID:17989003
Thirteen Billion Years in Half AN Hour
NASA Astrophysics Data System (ADS)
Bassett, Bruce A.
2005-10-01
We take a high-speed tour of the approximately thirteen billion-year history of our universe focusing on unsolved mysteries and the key events that have sculpted and shaped it - from inflation in the first split second to the dark energy which is currently causing the expansion of the cosmos to accelerate.
On Spurious Numerics in Solving Reactive Equations
NASA Technical Reports Server (NTRS)
Kotov, D. V; Yee, H. C.; Wang, W.; Shu, C.-W.
2013-01-01
The objective of this study is to gain a deeper understanding of the behavior of high order shock-capturing schemes for problems with stiff source terms and discontinuities and on corresponding numerical prediction strategies. The studies by Yee et al. (2012) and Wang et al. (2012) focus only on solving the reactive system by the fractional step method using the Strang splitting (Strang 1968). It is a common practice by developers in computational physics and engineering simulations to include a cut off safeguard if densities are outside the permissible range. Here we compare the spurious behavior of the same schemes by solving the fully coupled reactive system without the Strang splitting vs. using the Strang splitting. Comparison between the two procedures and the effects of a cut off safeguard is the focus the present study. The comparison of the performance of these schemes is largely based on the degree to which each method captures the correct location of the reaction front for coarse grids. Here "coarse grids" means standard mesh density requirement for accurate simulation of typical non-reacting flows of similar problem setup. It is remarked that, in order to resolve the sharp reaction front, local refinement beyond standard mesh density is still needed.
Roll splitting for field processing of biomass
Dennis T. Curtin; Donald L. Sirois; John A. Sturos
1987-01-01
The concept of roll splitting wood originated in 1967 when the Tennessee Valley Authority (TVA) forest products specialists developed a wood fibrator. The objective of that work was to produce raw materials for reconstituted board products. More recently, TVA focused on roll splitting as a field process to accelerate drying of small trees (3-15 cm diameter), much...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubliner, Michael; Howard, Luke; Hales, David
The Woods is a Habitat for Humanity (HFH) community of ENERGY STAR Homes Northwest (ESHNW)-certified homes located in the marine climate of Tacoma/Pierce County, Washington. This research report builds on an earlier preliminary draft 2014 BA report, and includes significant billing analysis and cost effectiveness research from a collaborative, ongoing Ductless Heat Pump (DHP)research effort for Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and Octobermore » 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH. Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Lubliner; Howard, Luke; Hales, David
2016-02-23
This final Building America Partnership report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing.
Dye-sensitized photocatalyst for effective water splitting catalyst
NASA Astrophysics Data System (ADS)
Watanabe, Motonori
2017-12-01
Renewable hydrogen production is a sustainable method for the development of next-generation energy technologies. Utilising solar energy and photocatalysts to split water is an ideal method to produce hydrogen. In this review, the fundamental principles and recent progress of hydrogen production by artificial photosynthesis are reviewed, focusing on hydrogen production from photocatalytic water splitting using organic-inorganic composite-based photocatalysts.
Wang, Mingjun; Zhou, Yufeng
2016-08-01
HIFU becomes an effective and non-invasive modality of solid tumour/cancer ablation. Simulation of the non-linear acoustic wave propagation using a phased-array transducer in multiple layered media using different focusing strategies and the consequent lesion formation are essential in HIFU planning in order to enhance the efficacy and efficiency of treatment. An angular spectrum approach with marching fractional steps was applied in the wave propagation from phased-array HIFU transducer, and diffraction, attenuation, and non-linearity effects were accounted for by a second-order operator splitting scheme. The simulated distributions of the first three harmonics along and transverse to the transducer axis were compared to the hydrophone measurements. The bioheat equation was used to simulate the subsequent temperature elevation using the deposited acoustic energy, and lesion formation was determined by the thermal dose. Better agreement was found between the measured harmonics distribution and simulation using the proposed algorithm than the Khokhlov-Zabozotskaya-Kuznetsov equation. Variable focusing of the phased-array transducer (geometric focusing, transverse shifting and the generation of multiple foci) can be simulated successfully. The shifting and splitting of focus was found to result in significantly less temperature elevation at the focus and the subsequently, the smaller lesion size, but the larger grating lobe grating lobe in the pre-focal region. The proposed algorithm could simulate the non-linear wave propagation from the source with arbitrary shape and distribution of excitation through multiple tissue layers in high computation accuracy. The performance of phased-array HIFU can be optimised in the treatment planning.
Tantalum-based semiconductors for solar water splitting.
Zhang, Peng; Zhang, Jijie; Gong, Jinlong
2014-07-07
Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting are also discussed.
NASA Astrophysics Data System (ADS)
Zhao, Liang; Li, Mingzhe; Wang, Liyan; Qu, Erhu; Yi, Zhuo
2018-03-01
A novel high-pressure belt-type die with a split-type cylinder is investigated with respect to extending its lifetime and improving its pressure bearing capacity. Specifically, a tungsten carbide cylinder is split into several parts along the radial direction with a prism-type cavity. In this paper, the cylinders with different split numbers are chosen to study the stress distribution and compare them with the traditional belt-type die. The simulation results indicate that the split cylinder has much smaller stress than those in the belt-type cylinder, and the statistical analysis reveals that the split-pressure cylinder is able to bear higher pressure. Experimental tests also show that the high-pressure die with a split cylinder and prism cavity has a stronger pressure-bearing capacity than a belt-type die. The split cylinder has advantages of easy manufacturing, high pressure bearing capacity, and replaceable performance.
NASA Astrophysics Data System (ADS)
Chrysler, Benjamin D.; Wu, Yuechen; Yu, Zhengshan; Kostuk, Raymond K.
2017-08-01
In this paper a prototype spectrum-splitting photovoltaic system based on volume holographic lenses (VHL) is designed, fabricated and tested. In spectrum-splitting systems, incident sunlight is divided in spectral bands for optimal conversion by a set of single-junction PV cells that are laterally separated. The VHL spectrumsplitting system in this paper has a form factor similar to conventional silicon PV modules but with higher efficiencies (>30%). Unlike many other spectrum-splitting systems that have been proposed in the past, the system in this work converts both direct and diffuse sunlight while using inexpensive 1-axis tracking systems. The VHL system uses holographic lenses that focus light at a transition wavelength to the boundary between two PV cells. Longer wavelength light is dispersed to the narrow bandgap cell and shorter wavelength light to the wide bandgap cell. A prototype system is designed with silicon and GaAs PV cells. The holographic lenses are fabricated in Covestro Bayfol HX photopolymer by `stitching' together lens segments through sequential masked exposures. The PV cells and holographic lenses were characterized and the data was used in a raytrace simulation and predicts an improvement in total power output of 15.2% compared to a non-spectrum-splitting reference. A laboratory measurement yielded an improvement in power output of 8.5%.
Surface- and interface-engineered heterostructures for solar hydrogen generation
NASA Astrophysics Data System (ADS)
Chen, Xiangyan; Li, Yanrui; Shen, Shaohua
2018-04-01
Photoelectrochemical (PEC) water splitting based on semiconductor photoelectrodes provides a promising platform for reducing environmental pollution and solving the energy crisis by developing clean, sustainable and environmentally friendly hydrogen energy. In this context, metal oxides with their advantages including low cost, good chemical stability and environmental friendliness, have attracted extensive attention among the investigated candidates. However, the large bandgap, poor charge transfer ability and high charge recombination rate limit the PEC performance of metal oxides as photoelectrodes. To solve this limitation, many approaches toward enhanced PEC water splitting performance, which focus on surface and interface engineering, have been presented. In this topical review, we concentrate on the heterostructure design of some typical metal oxides with narrow bandgaps (e.g. Fe2O3, WO3, BiVO4 and Cu2O) as photoelectrodes. An overview of the surface- and interface-engineered heterostructures, including semiconductor heterojunctions, surface protection, surface passivation and cocatalyst decoration, will be given to introduce the recent advances in metal oxide heterostructures for PEC water splitting. This article aims to provide fundamental references and principles for designing metal oxide heterostructures with high activity and stability as photoelectrodes for PEC solar hydrogen generation.
Particulate photocatalysts for overall water splitting
NASA Astrophysics Data System (ADS)
Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari
2017-10-01
The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.
Policy options for the split incentive: Increasing energy efficiency for low-income renters.
Bird, Stephen; Hernández, Diana
2012-09-01
The split incentive problem concerns the lack of appropriate incentives to implement energy efficiency measures. In particular, low income tenants face a phenomenon of energy poverty in which they allocate significantly more of their household income to energy expenditures than other renters. This problem is substantial, affecting 1.89% of all United States' energy use. If effectively addressed, it would create a range of savings between 4 and 11 billion dollars per year for many of the nation's poorest residents. We argue that a carefully designed program of incentives for participants (including landlords) in conjunction with a unique type of utility-managed on-bill financing mechanism has significant potential to solve many of the complications. We focus on three kinds of split incentives, five concerns inherent to addressing split incentive problems (scale, endurance, incentives, savings, political disfavor), and provide a detailed policy proposal designed to surpass those problems, with a particular focus on low-income tenants in a U.S.
Policy options for the split incentive: Increasing energy efficiency for low-income renters
Bird, Stephen; Hernández, Diana
2016-01-01
The split incentive problem concerns the lack of appropriate incentives to implement energy efficiency measures. In particular, low income tenants face a phenomenon of energy poverty in which they allocate significantly more of their household income to energy expenditures than other renters. This problem is substantial, affecting 1.89% of all United States' energy use. If effectively addressed, it would create a range of savings between 4 and 11 billion dollars per year for many of the nation's poorest residents. We argue that a carefully designed program of incentives for participants (including landlords) in conjunction with a unique type of utility-managed on-bill financing mechanism has significant potential to solve many of the complications. We focus on three kinds of split incentives, five concerns inherent to addressing split incentive problems (scale, endurance, incentives, savings, political disfavor), and provide a detailed policy proposal designed to surpass those problems, with a particular focus on low-income tenants in a U.S. context. PMID:27053828
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine A.
Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Cemore » 4+/Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.« less
NASA Astrophysics Data System (ADS)
Yin, Wan-Jian; Tang, Houwen; Wei, Su-Huai; Al-Jassim, Mowafak M.; Turner, John; Yan, Yanfa
2010-07-01
Here, we propose general strategies for the rational design of semiconductors to simultaneously meet all of the requirements for a high-efficiency, solar-driven photoelectrochemical (PEC) water-splitting device. As a case study, we apply our strategies for engineering the popular semiconductor, anatase TiO2 . Previous attempts to modify known semiconductors such as TiO2 have often focused on a particular individual criterion such as band gap, neglecting the possible detrimental consequence to other important criteria. Density-functional theory calculations reveal that with appropriate donor-acceptor coincorporation alloys with anatase TiO2 hold great potential to satisfy all of the criteria for a viable PEC device. We predict that (Mo, 2N) and (W, 2N) are the best donor-acceptor combinations in the low-alloy concentration regime whereas (Nb, N) and (Ta, N) are the best choice of donor-acceptor pairs in the high-alloy concentration regime.
Healing the mind/body split: bringing the patient back into oncology.
Greer, Steven
2003-03-01
The effect on oncology of the doctrine of Cartesian dualism is examined. It is argued that (1) this doctrine continues to exert a baneful (though unacknowledged) influence on the practice of oncology, (2) Descartes's doctrine of a mind/body split is mistaken, and (3) mind and body (brain) are inextricably interwoven. A biopsychosocial model of disease is advocated. The role of psychooncology in healing the mind/body split by focusing research attention on the patient is outlined.
Wang, Wei; Xu, Xiaomin; Zhou, Wei
2017-01-01
The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal‐organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra‐large surface‐to‐volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF‐based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF‐based catalysts for water splitting are proposed. PMID:28435777
Interaction region design driven by energy deposition
NASA Astrophysics Data System (ADS)
Martin, Roman; Besana, Maria Ilaria; Cerutti, Francesco; Langner, Andy; Tomás, Rogelio; Cruz-Alaniz, Emilia; Dalena, Barbara
2017-08-01
The European Strategy Group for High Energy Physics recommends to study collider designs for the post-LHC era. Among the suggested projects there is the circular 100 TeV proton-proton collider FCC-hh. Starting from LHC and its proposed upgrade HL-LHC, this paper outlines the development of the interaction region design for FCC-hh. We identify energy deposition from debris of the collision events as a driving factor for the layout and draft the guiding principles to unify protection of the superconducting final focus magnets from radiation with a high luminosity performance. Furthermore, we offer a novel strategy to mitigate the lifetime limitation of the first final focus magnet due to radiation load, the Q1 split.
An Investigation of Sample Size Splitting on ATFIND and DIMTEST
ERIC Educational Resources Information Center
Socha, Alan; DeMars, Christine E.
2013-01-01
Modeling multidimensional test data with a unidimensional model can result in serious statistical errors, such as bias in item parameter estimates. Many methods exist for assessing the dimensionality of a test. The current study focused on DIMTEST. Using simulated data, the effects of sample size splitting for use with the ATFIND procedure for…
Finite frequency shear wave splitting tomography: a model space search approach
NASA Astrophysics Data System (ADS)
Mondal, P.; Long, M. D.
2017-12-01
Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.
Vorndran, Shelby D; Chrysler, Benjamin; Wheelwright, Brian; Angel, Roger; Holman, Zachary; Kostuk, Raymond
2016-09-20
This paper describes a high-efficiency, spectrum-splitting photovoltaic module that uses an off-axis volume holographic lens to focus and disperse incident solar illumination to a rectangular shaped high-bandgap indium gallium phosphide cell surrounded by strips of silicon cells. The holographic lens design allows efficient collection of both direct and diffuse illumination to maximize energy yield. We modeled the volume diffraction characteristics using rigorous coupled-wave analysis, and simulated system performance using nonsequential ray tracing and PV cell data from the literature. Under AM 1.5 illumination conditions the simulated module obtained a 30.6% conversion efficiency. This efficiency is a 19.7% relative improvement compared to the more efficient cell in the system (silicon). The module was also simulated under a typical meteorological year of direct and diffuse irradiance in Tucson, Arizona, and Seattle, Washington. Compared to a flat panel silicon module, the holographic spectrum splitting module obtained a relative improvement in energy yield of 17.1% in Tucson and 14.0% in Seattle. An experimental proof-of-concept volume holographic lens was also fabricated in dichromated gelatin to verify the main characteristics of the system. The lens obtained an average first-order diffraction efficiency of 85.4% across the aperture at 532 nm.
Noji, Tomoyasu; Kawakami, Keisuke; Shen, Jian-Ren; Dewa, Takehisa; Nango, Mamoru; Kamiya, Nobuo; Itoh, Shigeru; Jin, Tetsuro
2016-08-09
The development of artificial photosynthesis has focused on the efficient coupling of reaction at photoanode and cathode, wherein the production of hydrogen (or energy carriers) is coupled to the electrons derived from water-splitting reactions. The natural photosystem II (PSII) complex splits water efficiently using light energy. The PSII complex is a large pigment-protein complex (20 nm in diameter) containing a manganese cluster. A new photoanodic device was constructed incorporating stable PSII purified from a cyanobacterium Thermosynechococcus vulcanus through immobilization within 20 or 50 nm nanopores contained in porous glass plates (PGPs). PSII in the nanopores retained its native structure and high photoinduced water splitting activity. The photocatalytic rate (turnover frequency) of PSII in PGP was enhanced 11-fold compared to that in solution, yielding a rate of 50-300 mol e(-)/(mol PSII·s) with 2,6-dichloroindophenol (DCIP) as an electron acceptor. The PGP system realized high local concentrations of PSII and DCIP to enhance the collisional reactions in nanotubes with low disturbance of light penetration. The system allows direct visualization/determination of the reaction inside the nanotubes, which contributes to optimize the local reaction condition. The PSII/PGP device will substantively contribute to the construction of artificial photosynthesis using water as the ultimate electron source.
Performance Models for Split-execution Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; McCaskey, Alex; Schrock, Jonathan
Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardwaremore » limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.« less
Li, Haoyi; Chen, Shuangming; Zhang, Ying; Zhang, Qinghua; Jia, Xiaofan; Zhang, Qi; Gu, Lin; Sun, Xiaoming; Song, Li; Wang, Xun
2018-06-22
Great attention has been focused on the design of electrocatalysts to enable electrochemical water splitting-a technology that allows energy derived from renewable resources to be stored in readily accessible and non-polluting chemical fuels. Herein we report a bifunctional nanotube-array electrode for water splitting in alkaline electrolyte. The electrode requires the overpotentials of 58 mV and 184 mV for hydrogen and oxygen evolution reactions respectively, meanwhile maintaining remarkable long-term durability. The prominent performance is due to the systematic optimization of chemical composition and geometric structure principally-that is, abundant electrocatalytic active sites, excellent conductivity of metallic 1T' MoS 2 , synergistic effects among iron, cobalt, nickel ions, and the superaerophobicity of electrode surface for fast mass transfer. The electrode is also demonstrated to function as anode and cathode, simultaneously, delivering 10 mA cm -2 at a cell voltage of 1.429 V. Our results demonstrate substantial improvement in the design of high-efficiency electrodes for water electrolysis.
Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting
NASA Astrophysics Data System (ADS)
Gadiyar, Chethana; Loiudice, Anna; Buonsanti, Raffaella
2017-02-01
Colloidal nanocrystals (NCs) are among the most modular and versatile nanomaterial platforms for studying emerging phenomena in different fields thanks to their superb compositional and morphological tunability. A promising, yet challenging, application involves the use of colloidal NCs as light absorbers and electrocatalysts for water splitting. In this review we discuss how the tunability of these materials is ideal to understand the complex phenomena behind storing energy in chemical bonds and to optimize performance through structural and compositional modification. First, we describe the colloidal synthesis method as a means to achieve a high degree of control over single material NCs and NC heterostructures, including examples of the role of the ligands in modulating size and shape. Next, we focus on the use of NCs as light absorbers and catalysts to drive both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), together with some of the challenges related to the use of colloidal NCs as model systems and/or technological solution in water splitting. We conclude with a broader prospective on the use of colloidal chemistry for new material discovery.
Zhao, Wen-Peng; Chen, Jin-Yun; Chen, Wen-Zhi
2014-09-01
The aim of this study was to evaluate the effect of abdominal liposuction on sonographically guided high-intensity focused ultrasound (HIFU) ablation. A total of 10 women with uterine fibroids or adenomyosis who had received abdominal liposuction were analyzed after sonographically guided HIFU ablation. Of the 10 women, 6 had a diagnosis of uterine fibroids, and 4 had a diagnosis of uterine adenomyosis. All of them had a history of a horizontal-margin split-cesarean delivery. In addition, 26 women with a history of a single horizontal-margin split-cesarean delivery who had a diagnosis of uterine fibroids or adenomyosis but had not received liposuction were analyzed together as a control group. Of the 10 women, 1 woman with uterine fibroids developed local skin erythema after treatment; 1 women with uterine adenomyosis developed a skin burn after treatment; and the remaining women had obvious skin-burning pain during treatment. All women who had not received liposuction finished the treatment with no serious adverse events during or after treatment. The pain scores and incidence of skin-burning pain were significantly higher in the liposuction group than the control group (P= .021 and .038, respectively). Abdominal liposuction may increase the risk of skin burns during sonographically guided HIFU ablation. © 2014 by the American Institute of Ultrasound in Medicine.
Method of orthogonally splitting imaging pose measurement
NASA Astrophysics Data System (ADS)
Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong
2018-01-01
In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.
Zhang, Guigang; Lan, Zhi-An
2017-01-01
Graphitic carbon nitride based polymers, being metal-free, accessible, environmentally benign and sustainable, have been widely investigated for artificial photosynthesis in recent years for the photocatalytic splitting of water to produce hydrogen fuel. However, the photocatalytic stoichiometric splitting of pure water into H2 and O2 with a molecular ratio of 2 : 1 is far from easy, and is usually hindered by the huge activation energy barrier and sluggish surface redox reaction kinetics. Herein, we provide a concise overview of cocatalyst modified graphitic carbon nitride based photocatalysts, with our main focus on the modulation of the water splitting redox reaction kinetics. We believe that a timely and concise review on this promising but challenging research topic will certainly be beneficial for general readers and researchers in order to better understand the property–activity relationship towards overall water splitting, which could also trigger the development of new organic architectures for photocatalytic overall water splitting through the rational control of surface chemistry. PMID:28959425
NASA Astrophysics Data System (ADS)
Bartkowiak, M.; Hofmann, T.; Stüßer, N.
2017-02-01
Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the μs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.
NASA Astrophysics Data System (ADS)
Dai, Albert; Wu, Ching-Sen
2018-02-01
High-resolution simulations of unstable cylindrical gravity currents when wandering and splitting motions occur in a rotating system are reported. In this study, our attention is focused on the situation of unstable rotating cylindrical gravity currents when the ratio of Coriolis to inertia forces is larger, namely, 0.5 ≤ C ≤ 2.0, in comparison to the stable ones when C ≤ 0.3 as investigated previously by the authors. The simulations reproduce the major features of the unstable rotating cylindrical gravity currents observed in the laboratory, i.e., vortex-wandering or vortex-splitting following the contraction-relaxation motion, and good agreement is found when compared with the experimental results on the outrush radius of the advancing front and on the number of bulges. Furthermore, the simulations provide energy budget information which could not be attained in the laboratory. After the heavy fluid is released, the heavy fluid collapses and a contraction-relaxation motion is at work for approximately 2-3 revolutions of the system. During the contraction-relaxation motion of the heavy fluid, the unstable rotating cylindrical gravity currents behave similar to the stable ones. Towards the end of the contraction-relaxation motion, the dissipation rate in the system reaches a local minimum and a quasi-geostrophic equilibrium state is reached. After the quasi-geostrophic equilibrium state, vortex-wandering or vortex-splitting may occur depending on the ratio of Coriolis to inertia forces. The vortex-splitting process begins with non-axisymmetric bulges and, as the bulges grow, the kinetic energy increases at the expense of decreasing potential energy in the system. The completion of vortex-splitting is accompanied by a local maximum of dissipation rate and a local maximum of kinetic energy in the system. A striking feature of the unstable rotating cylindrical gravity currents is the persistent upwelling and downwelling motions, which are observed for both the vortex-wandering and vortex-splitting motions and were not previously documented for such flows. Depending on the Reynolds number, the bulges around the circumference of the unstable rotating cylindrical gravity currents may or may not develop into cutoff distinct circulations. The number of bulges is seen to be dependent on the ratio of Coriolis to inertia forces but independent of the Reynolds number for the range of Reynolds number considered in this study.
Small Payload Integration and Testing Project Development
NASA Technical Reports Server (NTRS)
Sorenson, Tait R.
2014-01-01
The National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC) has mainly focused on large payloads for space flight beginning with the Apollo program to the assembly and resupply of the International Space Station using the Space Shuttle. NASA KSC is currently working on contracting manned Low Earth Orbit (LEO) to commercial providers, developing Space Launch System, the Orion program, deep space manned programs which could reach Mars, and providing technical expertise for the Launch Services Program for science mission payloads/satellites. KSC has always supported secondary payloads and smaller satellites as the launch provider; however, they are beginning to take a more active role in integrating and testing secondary payloads into future flight opportunities. A new line of business, the Small Payload Integration and Testing Services (SPLITS), has been established to provide a one stop shop that can integrate and test payloads. SPLITS will assist high schools, universities, companies and consortiums interested in testing or launching small payloads. The goal of SPLITS is to simplify and facilitate access to KSC's expertise and capabilities for small payloads integration and testing and to help grow the space industry. An effort exists at Kennedy Space Center to improve the external KSC website. External services has partnered with SPLITS as a content test bed for attracting prospective customers. SPLITS is an emerging effort that coincides with the relaunch of the website and has a goal of attracting external partnerships. This website will be a "front door" access point for all potential partners as it will contain an overview of KSC's services, expertise and includes the pertinent contact information.
Improved Fast Centralized Retransmission Scheme for High-Layer Functional Split in 5G Network
NASA Astrophysics Data System (ADS)
Xu, Sen; Hou, Meng; Fu, Yu; Bian, Honglian; Gao, Cheng
2018-01-01
In order to satisfy the varied 5G critical requirements and the virtualization of the RAN hardware, a two-level architecture for 5G RAN has been studied in 3GPP 5G SI stage. The performance of the PDCP-RLC split option and intra-RLC split option, two mainly concerned options for high layer functional split, exist an ongoing debate. This paper firstly gives an overview of CU-DU split study work in 3GPP. By the comparison of implementation complexity, the standardization impact and system performance, our evaluation result shows the PDCP-RLC split Option outperforms the intra-RLC split option. Aiming to how to reduce the retransmission delay during the intra-CU inter-DU handover, the mainly drawback of PDCP-RLC split option, this paper proposes an improved fast centralized retransmission solution with a low implementation complexity. Finally, system level simulations show that the PDCP-RLC split option with the proposed scheme can significantly improve the UE’s experience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Qin, E-mail: Qin_Sheng@baylor.edu; Sun, Hai-wei, E-mail: hsun@umac.mo
This study concerns the asymptotic stability of an eikonal, or ray, transformation based Peaceman–Rachford splitting method for solving the paraxial Helmholtz equation with high wave numbers. Arbitrary nonuniform grids are considered in transverse and beam propagation directions. The differential equation targeted has been used for modeling propagations of high intensity laser pulses over a long distance without diffractions. Self-focusing of high intensity beams may be balanced with the de-focusing effect of created ionized plasma channel in the situation, and applications of grid adaptations are frequently essential. It is shown rigorously that the fully discretized oscillation-free decomposition method on arbitrary adaptivemore » grids is asymptotically stable with a stability index one. Simulation experiments are carried out to illustrate our concern and conclusions.« less
Haeussler, Peter J.; Saltus, Richard W.
2011-01-01
Subduction of the buoyant Yakutat microplate likely caused deformation to be focused preferentially in upper Cook Inlet. The upper Cook Inlet region has both the highest degree of shortening and the deepest part of the Neogene basin. This forearc region has a long-wavelength magnetic high, a large isostatic gravity low, high conductivity in the lower mantle, low p-wave velocity (Vp), and a high p-wave to shear-wave velocity ratio (Vp/Vs). These data suggest that fluids in the mantle wedge caused serpentinization of mafic rocks, which may, at least in part, contribute to the long-wavelength magnetic anomaly. This area lies adjacent to the subducting and buoyant Yakutat microplate slab. We suggest the buoyant Yakutat slab acts much like a squeegee to focus mantle-wedge fluid flow at the margins of the buoyant slab. Such lateral flow is consistent with observed shear-wave splitting directions. The additional fluid in the adjacent mantle wedge reduces the wedge viscosity and allows greater corner flow. This results in focused subsidence, deformation, and gravity anomalies in the forearc region.
Laser microprocessing and nanoengineering of large-area functional micro/nanostructures
NASA Astrophysics Data System (ADS)
Tang, M.; Xie, X. Z.; Yang, J.; Chen, Z. C.; Xu, L.; Choo, Y. S.; Hong, M. H.
2011-12-01
Laser microprocessing and nanoengineering are of great interest to both scientists and engineers, since the inspired properties of functional micro/nanostructures over large areas can lead to numerous unique applications. Currently laser processing systems combined with high speed automation ensure the focused laser beam to process various materials at a high throughput and a high accuracy over large working areas. UV lasers are widely used in both laser microprocessing and nanoengineering. However by improving the processing methods, green pulsed laser is capable of replacing UV lasers to make high aspect ratio micro-grooves on fragile and transparent sapphire substrates. Laser micro-texturing can also tune the wetting property of metal surfaces from hydrophilic to super-hydrophobic at a contact angle of 161° without chemical coating. Laser microlens array (MLA) can split a laser beam into multiple laser beams and reduce the laser spot size down to sub-microns. It can be applied to fabricate split ring resonator (SRR) meta-materials for THz sensing, surface plasmonic resonance (SPR) structures for NIR and molding tools for soft lithography. Furthermore, laser interference lithography combined with thermal annealing can obtain a large area of sub-50nm nano-dot clusters used for SPR applications.
Surgical Videos with Synchronised Vertical 2-Split Screens Recording the Surgeons' Hand Movement.
Kaneko, Hiroki; Ra, Eimei; Kawano, Kenichi; Yasukawa, Tsutomu; Takayama, Kei; Iwase, Takeshi; Terasaki, Hiroko
2015-01-01
To improve the state-of-the-art teaching system by creating surgical videos with synchronised vertical 2-split screens. An ultra-compact, wide-angle point-of-view camcorder (HX-A1, Panasonic) was mounted on the surgical microscope focusing mostly on the surgeons' hand movements. In combination with the regular surgical videos obtained from the CCD camera in the surgical microscope, synchronised vertical 2-split-screen surgical videos were generated with the video-editing software. Using synchronised vertical 2-split-screen videos, residents of the ophthalmology department could watch and learn how assistant surgeons controlled the eyeball, while the main surgeons performed scleral buckling surgery. In vitrectomy, the synchronised vertical 2-split-screen videos showed the surgeons' hands holding the instruments and moving roughly and boldly, in contrast to the very delicate movements of the vitrectomy instruments inside the eye. Synchronised vertical 2-split-screen surgical videos are beneficial for the education of young surgical trainees when learning surgical skills including the surgeons' hand movements. © 2015 S. Karger AG, Basel.
Numerical simulations of self-focusing of ultrafast laser pulses
NASA Astrophysics Data System (ADS)
Fibich, Gadi; Ren, Weiqing; Wang, Xiao-Ping
2003-05-01
Simulation of nonlinear propagation of intense ultrafast laser pulses is a hard problem, because of the steep spatial gradients and the temporal shocks that form during the propagation. In this study we adapt the iterative grid distribution method of Ren and Wang [J. Comput. Phys. 159, 246 (2000)] to solve the two-dimensional nonlinear Schrödinger equation with normal time dispersion, space-time focusing, and self-steepening. Our simulations show that, after the asymmetric temporal pulse splitting, the rear peak self-focuses faster than the front one. As a result, the collapse of the rear peak is arrested before that of the front peak. Unlike what has sometimes been conjectured, however, collapse of the two peaks is not arrested through multiple splittings, but rather through temporal dispersion.
ERIC Educational Resources Information Center
Daher, Douglas
1981-01-01
A sense of inferiority in adolescent males can result from a split senex-puer archetype, a Jungian construct focused on the individual's identification with and/or repression of psychic age and youth. Adolescents experience healing of the split senex-puer archetype to the degrees to which they involve themselves in the eros and power of their life…
Music, Nedzad; Reber, Adrian J; Kim, Min-Chul; York, Ian A; Kang, Sang-Moo
2016-01-20
Current influenza vaccines induce strain-specific immunity to the highly variable hemagglutinin (HA) protein. It is therefore a high priority to develop vaccines that induce broadly cross-protective immunity to different strains of influenza. Since influenza A M2 proteins are highly conserved among different strains, five tandem repeats of the extracellular peptide of M2 in a membrane-anchored form on virus-like particles (VLPs) have been suggested to be a promising candidate for universal influenza vaccine. In this study, ferrets were intramuscularly immunized with 2009 H1N1 split HA vaccine ("Split") alone, influenza split vaccine supplemented with M2e5x VLP ("Split+M2e5x"), M2e5x VLP alone ("M2e5x"), or mock immunized. Vaccine efficacy was measured serologically and by protection against a serologically distinct viral challenge. Ferrets immunized with Split+M2e5x induced HA strain specific and conserved M2e immunity. Supplementation of M2e5x VLP to split vaccination significantly increased the immunogenicity of split vaccine compared to split alone. The Split+M2e5x ferret group showed evidence of cross-reactive protection, including faster recovery from weight loss, and reduced inflammation, as inferred from changes in peripheral leukocyte subsets, compared to mock-immunized animals. In addition, ferrets immunized with Split+M2e5x shed lower viral nasal-wash titers than the other groups. Ferrets immunized with M2e5x alone also show some protective effects, while those immunized with split vaccine alone induced no protective effects compared to mock-immunized ferrets. These studies suggest that supplementation of split vaccine with M2e5x-VLP may provide broader and improved cross-protection than split vaccine alone. Published by Elsevier Ltd.
21 CFR 184.1065 - Linoleic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... various methods including hydrolysis and saponification, the Twitchell method, low pressure splitting with catalyst, continuous high pressure counter current splitting, and medium pressure autoclave splitting with...
Numerical simulation and experiment on split tungsten carbide cylinder of high pressure apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yunfei; Li, Mingzhe, E-mail: limz@jlu.edu.cn; Wang, Bolong
2015-12-15
A new high pressure device with a split cylinder was investigated on the basis of the belt-type apparatus. The belt-type die is subjected to excessive tangential tensile stress and the tungsten carbide cylinder is easily damaged in the running process. Taking into account the operating conditions and material properties of the tungsten carbide cylinder, it is divided into 6 blocks to eliminate the tangential tensile stress. We studied two forms of the split type: radial split and tangential split. Simulation results indicate that the split cylinder has more uniform stress distribution and smaller equivalent stress compared with the belt-type cylinder.more » The inner wall of the tangential split cylinder is in the situation that compressive stress is distributed in the axial, radial, and tangential directions. It is similar to the condition of hydrostatic pressure, and it is the best condition for tungsten carbide materials. The experimental results also verify that the tangential split die can bear the highest chamber pressure. Therefore, the tangential split structure can increase the pressure bearing capacity significantly.« less
Split-liver transplantation. The Paul Brousse policy.
Azoulay, D; Astarcioglu, I; Bismuth, H; Castaing, D; Majno, P; Adam, R; Johann, M
1996-01-01
OBJECTIVE: The authors objective is to report their recent experience with split-liver transplantation, focusing on the results and the impact on organ shortage. SUMMARY BACKGROUND DATA: There is an insufficient number of organs for liver transplantation. Split-liver transplantation is a method to increase the number of grafts, but the procedure is slow to gain wide acceptance because of its complexity and the poor results reported in previous series. METHODS: During the year 1995, the authors split 20 of 83 transplantable livers allocated to the authors' center, generating 40 grafts: 23 were transplanted locally and 17 were given to partner centers. During the same period, the authors accepted four split-liver grafts proposed to them by other centers. Overall, 27 split-liver transplantations were done in the authors' unit, accounting for 30% of the 90 transplants performed in 1995. RESULTS: One-year patient and graft survival rates for split-liver transplantation were 79.4% and 78.5%, respectively. Arterial and biliary complications rates were 15% and 22%, respectively, with none leading to graft loss. Primary nonfunction occurred in one case (4%). By splitting 24 of 87 transplantable livers (4 of which were in partner units), a total of 111 transplantations were performed, increasing graft availability by 28%. CONCLUSIONS: Split-liver transplantation is achieving graft and patient survival rates similar to that of whole liver transplantation despite a higher incidence of complications, which could become less frequent as experience is gained with this procedure. A wider acceptance of split-liver transplantation could markedly increase the supply of liver grafts. Images Figure 1. PMID:8968228
The rotating spectrometer: Biotechnology for cell separations
NASA Technical Reports Server (NTRS)
Noever, David A.
1991-01-01
An instrument for biochemical studies, called the rotating spectrometer, separates previously inseparable cell cultures. The rotating spectrometer is intended for use in pharmacological studies which require fractional splitting of heterogeneous cell cultures based on cell morphology and swimming behavior. As a method to separate and concentrate cells in free solution, the rotating method requires active organism participation and can effectively split the large class of organisms known to form spontaneous patterns. Examples include the biochemical star, an organism called Tetrahymena pyriformis. Following focusing in a rotating frame, the separation is accomplished using different radial dependencies of concentrated algal and protozoan species. The focusing itself appears as concentric rings and arises from the coupling between swimming direction and Coriolis forces. A dense cut is taken at varying radii, and extraction is replenished at an inlet. Unlike standard separation and concentrating techniques such as filtration or centrifugation, the instrument is able to separate motile from immotile fractions. For a single pass, typical split efficiencies can reach 200 to 300 percent compared to the inlet concentration.
The rotating spectrometer: New biotechnology for cell separations
NASA Technical Reports Server (NTRS)
Noever, David A.; Matsos, Helen C.
1990-01-01
An instrument for biochemical studies, called the rotating spectrometer, separates previously inseparable cell cultures. The rotating spectrometer is intended for use in pharmacological studies which require fractional splitting of heterogeneous cell cultures based on cell morphology and swimming behavior. As a method to separate and concentrate cells in free solution, the rotating method requires active organism participation and can effectively split the large class of organisms known to form spontaneous patterns. Examples include the biochemical star, an organism called Tetrahymena pyriformis. Following focusing in a rotated frame, the separation is accomplished using different radial dependencies of concentrated algal and protozoan species. The focusing itself appears as concentric rings and arises from the coupling between swimming direction and Coriolis forces. A dense cut is taken at varying radii and extraction is replenished at an inlet. Unlike standard separation and concentrating techniques such as filtration or centrifugation, the instrument is able to separate motile from immotile fractions. For a single pass, typical split efficiencies can reach 200 to 300 percent compared to the inlet concentration.
Split high-dose oral levothyroxine treatment as a successful therapy option in myxedema coma.
Charoensri, Suranut; Sriphrapradang, Chutintorn; Nimitphong, Hataikarn
2017-10-01
High-dose intravenous thyroxine (T4) is the preferable treatment for myxedema coma. We describe the clinical course of a 69-year-old man who presented with myxedema coma and received oral levothyroxine (LT4) therapy (1 mg) in a split dose. This suggests split high-dose oral LT4 as a therapeutic option in myxedema coma.
Paradigms and strategies for scientific computing on distributed memory concurrent computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, I.T.; Walker, D.W.
1994-06-01
In this work we examine recent advances in parallel languages and abstractions that have the potential for improving the programmability and maintainability of large-scale, parallel, scientific applications running on high performance architectures and networks. This paper focuses on Fortran M, a set of extensions to Fortran 77 that supports the modular design of message-passing programs. We describe the Fortran M implementation of a particle-in-cell (PIC) plasma simulation application, and discuss issues in the optimization of the code. The use of two other methodologies for parallelizing the PIC application are considered. The first is based on the shared object abstraction asmore » embodied in the Orca language. The second approach is the Split-C language. In Fortran M, Orca, and Split-C the ability of the programmer to control the granularity of communication is important is designing an efficient implementation.« less
Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam
NASA Astrophysics Data System (ADS)
Lin, Han; Gu, Min
2013-02-01
Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.
Split liver transplantation in adults.
Hashimoto, Koji; Fujiki, Masato; Quintini, Cristiano; Aucejo, Federico N; Uso, Teresa Diago; Kelly, Dympna M; Eghtesad, Bijan; Fung, John J; Miller, Charles M
2016-09-07
Split liver transplantation (SLT), while widely accepted in pediatrics, remains underutilized in adults. Advancements in surgical techniques and donor-recipient matching, however, have allowed expansion of SLT from utilization of the right trisegment graft to now include use of the hemiliver graft as well. Despite less favorable outcomes in the early experience, better outcomes have been reported by experienced centers and have further validated the feasibility of SLT. Importantly, more than two decades of experience have identified key requirements for successful SLT in adults. When these requirements are met, SLT can achieve outcomes equivalent to those achieved with other types of liver transplantation for adults. However, substantial challenges, such as surgical techniques, logistics, and ethics, persist as ongoing barriers to further expansion of this highly complex procedure. This review outlines the current state of SLT in adults, focusing on donor and recipient selection based on physiology, surgical techniques, surgical outcomes, and ethical issues.
Split-plot microarray experiments: issues of design, power and sample size.
Tsai, Pi-Wen; Lee, Mei-Ling Ting
2005-01-01
This article focuses on microarray experiments with two or more factors in which treatment combinations of the factors corresponding to the samples paired together onto arrays are not completely random. A main effect of one (or more) factor(s) is confounded with arrays (the experimental blocks). This is called a split-plot microarray experiment. We utilise an analysis of variance (ANOVA) model to assess differentially expressed genes for between-array and within-array comparisons that are generic under a split-plot microarray experiment. Instead of standard t- or F-test statistics that rely on mean square errors of the ANOVA model, we use a robust method, referred to as 'a pooled percentile estimator', to identify genes that are differentially expressed across different treatment conditions. We illustrate the design and analysis of split-plot microarray experiments based on a case application described by Jin et al. A brief discussion of power and sample size for split-plot microarray experiments is also presented.
NASA Astrophysics Data System (ADS)
Burba, Christopher M.; Chang, Hai-Chou
2018-03-01
Continued growth and development of ionic liquids requires a thorough understanding of how cation and anion molecular structure defines the liquid structure of the materials as well as the various properties that make them technologically useful. Infrared spectroscopy is frequently used to assess molecular-level interactions among the cations and anions of ionic liquids because the intramolecular vibrational modes of the ions are sensitive to the local potential energy environments in which they reside. Thus, different interaction modes among the ions may lead to different spectroscopic signatures in the vibrational spectra. Charge organization present in ionic liquids, such as 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4mim]CF3SO3), is frequently modeled in terms of a quasicrystalline structure. Highly structured quasilattices enable the dynamic coupling of vibrationally-induced dipole moments to produce optical dispersion and transverse optical-longitudinal optical (TO-LO) splitting of vibrational modes of the ionic liquid. According to dipolar coupling theory, the degree of TO-LO splitting is predicted to have a linear dependence on the number density of the ionic liquid. Both temperature and pressure will affect the number density of the ionic liquid and, therefore, the amount of TO-LO splitting for this mode. Therefore, we test these relationships through temperature- and pressure-dependent FT-IR spectroscopic studies of [C4mim]CF3SO3, focusing on the totally symmetric Ssbnd O stretching mode for the anion, νs(SO3). Increased temperature decreases the amount of TO-LO splitting for νs(SO3), whereas elevated pressure is found to increase the amount of band splitting. In both cases, the experimental observations follow the general predictions of dipolar coupling theory, thereby supporting the quasilattice model for this ionic liquid.
Music, Nedzad; Reber, Adrian J.; Kim, Min-Chul; York, Ian A.; Kang, Sang-Moo
2015-01-01
Current influenza vaccines induce strain-specific immunity to the highly variable hemagglutinin (HA) protein. It is therefore a high priority to develop vaccines that induce broadly cross-protective immunity to different strains of influenza. Since influenza A M2 proteins are highly conserved among different strains, five tandem repeats of the extracellular peptide of M2 in a membrane-anchored form on virus-like particles (VLPs) have been suggested to be a promising candidate for universal influenza vaccine. In this study, ferrets were intramuscularly immunized with 2009 H1N1 split HA vaccine (“Split”) alone, influenza split vaccine supplemented with M2e5x VLP (“Split+M2e5x”), M2e5x VLP alone (“M2e5x”), or mock immunized. Vaccine efficacy was measured serologically and by protection against a serologically distinct viral challenge. Ferrets immunized with Split+M2e5x induced HA strain specific and conserved M2e immunity. Supplementation of M2e5x VLP to split vaccination significantly increased the immunogenicity of split vaccine compared to split alone. The Split+M2e5x ferret group showed evidence of cross-reactive protection, including faster recovery from weight loss, and reduced inflammation, as inferred from changes in peripheral leukocyte subsets, compared to mock-immunized animals. In addition, ferrets immunized with Split+M2e5x shed lower viral nasal-wash titers than the other groups. Ferrets immunized with M2e5x alone also show some protective effects, while those immunized with split vaccine alone induced no protective effects compared to mock-immunized ferrets. These studies suggest that supplementation of split vaccine with M2e5x-VLP may provide broader and improved cross-protection than split vaccine alone. PMID:26709639
2011-01-01
that the PLA must be capable of winning “local wars under high-technology conditions” [高 技术条件下局部 战 争 ]. In China’s 2004 national defense white paper, 8...the Earth this description was reformulated to “informationalized local wars” [信息化局部 战 争 ].11 This focus on high-technology warfare particularly...force delivery [ 战 略兵力投送] • seizing information superiority and electromagnetic superiority [ 争 夺制信息权和制电磁权].22 Military texts repeatedly emphasize these
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mitchell, J. C.
1991-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Tsujimoto, Naoki; Saraya, Takeshi; Light, Richard W; Tsukahara, Yayoi; Koide, Takashi; Kurai, Daisuke; Ishii, Haruyuki; Kimura, Hirokazu; Goto, Hajime; Takizawa, Hajime
2015-01-01
Pleural separation, the "split pleura" sign, has been reported in patients with empyema. However, the diagnostic yield of the split pleura sign for complicated parapneumonic effusion (CPPE)/empyema and its utility for differentiating CPPE/empyema from parapneumonic effusion (PPE) remains unclear. This differentiation is important because CPPE/empyema patients need thoracic drainage. In this regard, the aim of this study was to develop a simple method to distinguish CPPE/empyema from PPE using computed tomography (CT) focusing on the split pleura sign, fluid attenuation values (HU: Hounsfield units), and amount of fluid collection measured on thoracic CT prior to diagnostic thoracentesis. A total of 83 consecutive patients who underwent chest CT and were diagnosed with CPPE (n=18)/empyema (n=18) or PPE (n=47) based on the diagnostic thoracentesis were retrospectively analyzed. On univariate analysis, the split pleura sign (odds ratio (OR), 12.1; p<0.001), total amount of pleural effusion (≥30 mm) (OR, 6.13; p<0.001), HU value≥10 (OR, 5.94; p=0.001), and the presence of septum (OR, 6.43; p=0.018), atelectasis (OR, 6.83; p=0.002), or air (OR, 9.90; p=0.002) in pleural fluid were significantly higher in the CPPE/empyema group than in the PPE group. On multivariate analysis, only the split pleura sign (hazard ratio (HR), 6.70; 95% confidence interval (CI), 1.91-23.5; p=0.003) and total amount of pleural effusion (≥30 mm) on thoracic CT (HR, 7.48; 95%CI, 1.76-31.8; p=0.006) were risk factors for empyema. Sensitivity, specificity, positive predictive value, and negative predictive value of the presence of both split pleura sign and total amount of pleural effusion (≥30 mm) on thoracic CT for CPPE/empyema were 79.4%, 80.9%, 75%, and 84.4%, respectively, with an area under the curve of 0.801 on receiver operating characteristic curve analysis. This study showed a high diagnostic yield of the split pleura sign and total amount of pleural fluid (≥30 mm) on thoracic CT that is useful and simple for discriminating between CPPE/empyema and PPE prior to diagnostic thoracentesis.
Tsujimoto, Naoki; Saraya, Takeshi; Light, Richard W.; Tsukahara, Yayoi; Koide, Takashi; Kurai, Daisuke; Ishii, Haruyuki; Kimura, Hirokazu; Goto, Hajime; Takizawa, Hajime
2015-01-01
Background Pleural separation, the “split pleura” sign, has been reported in patients with empyema. However, the diagnostic yield of the split pleura sign for complicated parapneumonic effusion (CPPE)/empyema and its utility for differentiating CPPE/empyema from parapneumonic effusion (PPE) remains unclear. This differentiation is important because CPPE/empyema patients need thoracic drainage. In this regard, the aim of this study was to develop a simple method to distinguish CPPE/empyema from PPE using computed tomography (CT) focusing on the split pleura sign, fluid attenuation values (HU: Hounsfield units), and amount of fluid collection measured on thoracic CT prior to diagnostic thoracentesis. Methods A total of 83 consecutive patients who underwent chest CT and were diagnosed with CPPE (n=18)/empyema (n=18) or PPE (n=47) based on the diagnostic thoracentesis were retrospectively analyzed. Results On univariate analysis, the split pleura sign (odds ratio (OR), 12.1; p<0.001), total amount of pleural effusion (≥30 mm) (OR, 6.13; p<0.001), HU value≥10 (OR, 5.94; p=0.001), and the presence of septum (OR, 6.43; p=0.018), atelectasis (OR, 6.83; p=0.002), or air (OR, 9.90; p=0.002) in pleural fluid were significantly higher in the CPPE/empyema group than in the PPE group. On multivariate analysis, only the split pleura sign (hazard ratio (HR), 6.70; 95% confidence interval (CI), 1.91-23.5; p=0.003) and total amount of pleural effusion (≥30 mm) on thoracic CT (HR, 7.48; 95%CI, 1.76-31.8; p=0.006) were risk factors for empyema. Sensitivity, specificity, positive predictive value, and negative predictive value of the presence of both split pleura sign and total amount of pleural effusion (≥30 mm) on thoracic CT for CPPE/empyema were 79.4%, 80.9%, 75%, and 84.4%, respectively, with an area under the curve of 0.801 on receiver operating characteristic curve analysis. Conclusion This study showed a high diagnostic yield of the split pleura sign and total amount of pleural fluid (≥30 mm) on thoracic CT that is useful and simple for discriminating between CPPE/empyema and PPE prior to diagnostic thoracentesis. PMID:26076488
Landsmann, Steve; Maegli, Alexandra E; Trottmann, Matthias; Battaglia, Corsin; Weidenkaff, Anke; Pokrant, Simone
2015-10-26
Semiconductor powders are perfectly suited for the scalable fabrication of particle-based photoelectrodes, which can be used to split water using the sun as a renewable energy source. This systematic study is focused on variation of the electrode design using LaTiO2 N as a model system. We present the influence of particle morphology on charge separation and transport properties combined with post-treatment procedures, such as necking and size-dependent co-catalyst loading. Five rules are proposed to guide the design of high-performance particle-based photoanodes by adding or varying several process steps. We also specify how much efficiency improvement can be achieved using each of the steps. For example, implementation of a connectivity network and surface area enhancement leads to thirty times improvement in efficiency and co-catalyst loading achieves an improvement in efficiency by a factor of seven. Some of these guidelines can be adapted to non-particle-based photoelectrodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bobek, Michael M.; Stehle, Richard C.; Hahn, David W.
2012-01-01
A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.
Functional split brain in a driving/listening paradigm
Boly, Melanie; Mensen, Armand; Tononi, Giulio
2016-01-01
We often engage in two concurrent but unrelated activities, such as driving on a quiet road while listening to the radio. When we do so, does our brain split into functionally distinct entities? To address this question, we imaged brain activity with fMRI in experienced drivers engaged in a driving simulator while listening either to global positioning system instructions (integrated task) or to a radio show (split task). We found that, compared with the integrated task, the split task was characterized by reduced multivariate functional connectivity between the driving and listening networks. Furthermore, the integrated information content of the two networks, predicting their joint dynamics above and beyond their independent dynamics, was high in the integrated task and zero in the split task. Finally, individual subjects’ ability to switch between high and low information integration predicted their driving performance across integrated and split tasks. This study raises the possibility that under certain conditions of daily life, a single brain may support two independent functional streams, a “functional split brain” similar to what is observed in patients with an anatomical split. PMID:27911805
Functional split brain in a driving/listening paradigm.
Sasai, Shuntaro; Boly, Melanie; Mensen, Armand; Tononi, Giulio
2016-12-13
We often engage in two concurrent but unrelated activities, such as driving on a quiet road while listening to the radio. When we do so, does our brain split into functionally distinct entities? To address this question, we imaged brain activity with fMRI in experienced drivers engaged in a driving simulator while listening either to global positioning system instructions (integrated task) or to a radio show (split task). We found that, compared with the integrated task, the split task was characterized by reduced multivariate functional connectivity between the driving and listening networks. Furthermore, the integrated information content of the two networks, predicting their joint dynamics above and beyond their independent dynamics, was high in the integrated task and zero in the split task. Finally, individual subjects' ability to switch between high and low information integration predicted their driving performance across integrated and split tasks. This study raises the possibility that under certain conditions of daily life, a single brain may support two independent functional streams, a "functional split brain" similar to what is observed in patients with an anatomical split.
Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing
Chen, Xiaoshu; Lindquist, Nathan C.; Klemme, Daniel J.; ...
2016-11-22
Here, we present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomicmore » layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ 3/10 6. Experimentally, Raman enhancement factors exceeding 10 7 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.« less
Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing
2016-01-01
We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ3/106. Experimentally, Raman enhancement factors exceeding 107 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications. PMID:27960527
Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program
NASA Technical Reports Server (NTRS)
Kish, Jules G.
1993-01-01
The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.
A New Paradigm to Address Bid Protests
2010-08-02
A two- player game model is being developed by members of the NPS Protest Project team that allows for shared awards (split buys). Split-buy remedies...11 - k^s^i=mlpqdo^ar^qb=p`elli= = The literature generally focuses on two players : a disappointed bidder20 and the government. In fact, the...government can be broken into several distinct players , each of which might expect a challenge from a disappointed bidder: procurement officials (POs) and
Information Structure, Grammar and Strategy in Discourse
ERIC Educational Resources Information Center
Stevens, Jon
2013-01-01
This dissertation examines two information-structural phenomena, Givenness and Focus, from the perspective of both syntax and pragmatics. Evidence from English, German and other languages suggests a "split" analysis of information structure--the notions of Focus and Givenness, often thought to be closely related, exist independently at…
2014-02-11
of refraction in the region of the “lens”, successfully focusing surface plasmon polaritons (SPP). SUPERABSORBERS: The team used the Rigorous Coupled...PLASMONIC FOCUSING: The team constructed a device capable of splitting and focusing surface plasmon polaritons into different locations depending on the...surface plasmon polaritons , plasmonics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18, NUMBER OF PAGES 19 19a. NAME
Evaluation of Euler fluxes by a high-order CFD scheme: shock instability
NASA Astrophysics Data System (ADS)
Tu, Guohua; Zhao, Xiaohui; Mao, Meiliang; Chen, Jianqiang; Deng, Xiaogang; Liu, Huayong
2014-05-01
The construction of Euler fluxes is an important step in shock-capturing/upwind schemes. It is well known that unsuitable fluxes are responsible for many shock anomalies, such as the carbuncle phenomenon. Three kinds of flux vector splittings (FVSs) as well as three kinds of flux difference splittings (FDSs) are evaluated for the shock instability by a fifth-order weighted compact nonlinear scheme. The three FVSs are Steger-Warming splitting, van Leer splitting and kinetic flux vector splitting (KFVS). The three FDSs are Roe's splitting, advection upstream splitting method (AUSM) type splitting and Harten-Lax-van Leer (HLL) type splitting. Numerical results indicate that FVSs and high dissipative FDSs undergo a relative lower risk on the shock instability than that of low dissipative FDSs. However, none of the fluxes evaluated in the present study can entirely avoid the shock instability. Generally, the shock instability may be caused by any of the following factors: low dissipation, high Mach number, unsuitable grid distribution, large grid aspect ratio, and the relative shock-internal flow state (or position) between upstream and downstream shock waves. It comes out that the most important factor is the relative shock-internal state. If the shock-internal state is closer to the downstream state, the computation is at higher susceptibility to the shock instability. Wall-normal grid distribution has a greater influence on the shock instability than wall-azimuthal grid distribution because wall-normal grids directly impact on the shock-internal position. High shock intensity poses a high risk on the shock instability, but its influence is not as much as the shock-internal state. Large grid aspect ratio is also a source of the shock instability. Some results of a second-order scheme and a first-order scheme are also given. The comparison between the high-order scheme and the two low-order schemes indicates that high-order schemes are at a higher risk of the shock instability. Adding an entropy fix is very helpful in suppressing the shock instability for the two low-order schemes. When the high-order scheme is used, the entropy fix still works well for Roe's flux, but its effect on the Steger-Warming flux is trivial and not much clear.
2018-01-01
Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called “Z-scheme” systems, which are inspired by the photosystem II–photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field. PMID:29676566
Wang, Yiou; Suzuki, Hajime; Xie, Jijia; Tomita, Osamu; Martin, David James; Higashi, Masanobu; Kong, Dan; Abe, Ryu; Tang, Junwang
2018-05-23
Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called "Z-scheme" systems, which are inspired by the photosystem II-photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field.
Variability of the western Pacific warm pool structure associated with El Niño
NASA Astrophysics Data System (ADS)
Hu, Shijian; Hu, Dunxin; Guan, Cong; Xing, Nan; Li, Jianping; Feng, Junqiao
2017-10-01
Sea surface temperature (SST) structure inside the western Pacific warm pool (WPWP) is usually overlooked because of its distinct homogeneity, but in fact it possesses a clear meridional high-low-high pattern. Here we show that the SST low in the WPWP is significantly intensified in July-October of El Niño years (especially extreme El Niño years) and splits the 28.5 °C-isotherm-defined WPWP (WPWP split for simplification). Composite analysis and heat budget analysis indicate that the enhanced upwelling due to positive wind stress curl anomaly and western propagating upwelling Rossby waves account for the WPWP split. Zonal advection at the eastern edge of split region plays a secondary role in the formation of the WPWP split. Composite analysis and results from a Matsuno-Gill model with an asymmetric cooling forcing imply that the WPWP split seems to give rise to significant anomalous westerly winds and intensify the following El Niño event. Lead-lag correlation shows that the WPWP split slightly leads the Niño 3.4 index.
Pragmatic mode-sum regularization method for semiclassical black-hole spacetimes
NASA Astrophysics Data System (ADS)
Levi, Adam; Ori, Amos
2015-05-01
Computation of the renormalized stress-energy tensor is the most serious obstacle in studying the dynamical, self-consistent, semiclassical evaporation of a black hole in 4D. The difficulty arises from the delicate regularization procedure for the stress-energy tensor, combined with the fact that in practice the modes of the field need to be computed numerically. We have developed a new method for numerical implementation of the point-splitting regularization in 4D, applicable to the renormalized stress-energy tensor as well as to ⟨ϕ2⟩ren , namely the renormalized ⟨ϕ2⟩. So far we have formulated two variants of this method: t -splitting (aimed for stationary backgrounds) and angular splitting (for spherically symmetric backgrounds). In this paper we introduce our basic approach, and then focus on the t -splitting variant, which is the simplest of the two (deferring the angular-splitting variant to a forthcoming paper). We then use this variant, as a first stage, to calculate ⟨ϕ2⟩ren in Schwarzschild spacetime, for a massless scalar field in the Boulware state. We compare our results to previous ones, obtained by a different method, and find full agreement. We discuss how this approach can be applied (using the angular-splitting variant) to analyze the dynamical self-consistent evaporation of black holes.
Effects on Text Simplification: Evaluation of Splitting up Noun Phrases
Leroy, Gondy; Kauchak, David; Hogue, Alan
2016-01-01
To help increase health literacy, we are developing a text simplification tool that creates more accessible patient education materials. Tool development is guided by data-driven feature analysis comparing simple and difficult text. In the present study, we focus on the common advice to split long noun phrases. Our previous corpus analysis showed that easier texts contained shorter noun phrases. Subsequently, we conduct a user study to measure the difficulty of sentences containing noun phrases of different lengths (2-gram, 3-gram and 4-gram), conditions (split or not) and, to simulate unknown terms, use of pseudowords (present or not). We gathered 35 evaluations for 30 sentences in each condition (3×2×2 conditions) on Amazon’s Mechanical Turk (N=12,600). We conducted a three-way ANOVA for perceived and actual difficulty. Splitting noun phrases had a positive effect on perceived difficulty but a negative effect on actual difficulty. The presence of pseudowords increased perceived and actual difficulty. Without pseudowords, longer noun phrase led to increased perceived and actual difficulty. A follow-up study using the phrases (N = 1,350) showed that measuring awkwardness may indicate when to split noun phrases. We conclude that splitting noun phrases benefits perceived difficulty, but hurts actual difficulty when the phrasing becomes less natural. PMID:27043754
Addae, Sarah A.; Pinard, Melissa A.; Caglayan, Humeyra; Cakmakyapan, Semih; Caliskan, Deniz; Ozbay, Ekmel; Aslan, Kadir
2010-01-01
We report a new approach to colorimetric Enzyme-Linked Immunosorbent Assay (ELISA) that reduces the total assay time to < 2 min and the lower-detection-limit by 100-fold based on absorbance readout. The new approach combines the use of silver nanoparticles, microwaves and split ring resonators (SRR). The SRR structure is comprised of a square frame of copper thin film (30 µm thick, 1 mm wide, overall length of ~9.4 mm on each side) with a single split on one side, which was deposited onto a circuit board (2×2 cm2). A single micro-cuvette (10 µl volume capacity) was placed in the split of the SRR structures. Theoretical simulations predict that electric fields are focused in and above the micro-cuvette without the accumulation of electrical charge that breaks down the copper film. Subsequently, the walls and the bottom of the micro-cuvette were coated with silver nanoparticles using a modified Tollen’s reaction scheme. The silver nanoparticles served as a mediator for the creation of thermal gradient between the bioassay medium and the silver surface, where the bioassay is constructed. Upon exposure to low power microwave heating, the bioassay medium in the micro-cuvette was rapidly and uniformly heated by the focused electric fields. In addition, the creation of thermal gradient resulted in the rapid assembly of the proteins on the surface of silver nanoparticles without denaturing the proteins. The proof-of-principle of the new approach to ELISA was demonstrated for the detection of a model protein (biotinylated-bovine serum albumin, b-BSA). In this regard, the detection of b-BSA with bulk concentrations (1 µM to 1 pM) was carried out on commercially available 96-well high throughput screening (HTS) plates and silver nanoparticle-deposited SRR structures at room temperature and with microwave heating, respectively. While the room temperature bioassay (without microwave heating) took 70 min to complete, the identical bioassay took < 2 min to complete using the SRR structures (with microwave heating). A lower detection limit of 0.01 nM for b-BSA (100-fold lower than room temperature ELISA) was observed using the SRR structures. PMID:20953346
Evolution of Advection Upstream Splitting Method Schemes
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2010-01-01
This paper focuses on the evolution of advection upstream splitting method(AUSM) schemes. The main ingredients that have led to the development of modern computational fluid dynamics (CFD) methods have been reviewed, thus the ideas behind AUSM. First and foremost is the concept of upwinding. Second, the use of Riemann problem in constructing the numerical flux in the finite-volume setting. Third, the necessity of including all physical processes, as characterised by the linear (convection) and nonlinear (acoustic) fields. Fourth, the realisation of separating the flux into convection and pressure fluxes. The rest of this review briefly outlines the technical evolution of AUSM and more details can be found in the cited references. Keywords: Computational fluid dynamics methods, hyperbolic systems, advection upstream splitting method, conservation laws, upwinding, CFD
Hentschinski, M; Kusina, A; Kutak, K; Serino, M
2018-01-01
We calculate the transverse momentum dependent gluon-to-gluon splitting function within [Formula: see text]-factorization, generalizing the framework employed in the calculation of the quark splitting functions in Hautmann et al. (Nucl Phys B 865:54-66, arXiv:1205.1759, 2012), Gituliar et al. (JHEP 01:181, arXiv:1511.08439, 2016), Hentschinski et al. (Phys Rev D 94(11):114013, arXiv:1607.01507, 2016) and demonstrate at the same time the consistency of the extended formalism with previous results. While existing versions of [Formula: see text] factorized evolution equations contain already a gluon-to-gluon splitting function i.e. the leading order Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel or the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) kernel, the obtained splitting function has the important property that it reduces both to the leading order BFKL kernel in the high energy limit, to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) gluon-to-gluon splitting function in the collinear limit as well as to the CCFM kernel in the soft limit. At the same time we demonstrate that this splitting kernel can be obtained from a direct calculation of the QCD Feynman diagrams, based on a combined implementation of the Curci-Furmanski-Petronzio formalism for the calculation of the collinear splitting functions and the framework of high energy factorization.
Review of high field superconducting magnet development at Oxford Instruments
NASA Astrophysics Data System (ADS)
Brown, F. J.; Kerley, N. W.; Knox, R. B.; Timms, K. W.
1996-02-01
Present commercial development activity for high field superconducting magnets is focused clearly in three directions. The development of solenoid magnets with flux densities in excess of 20 T, the production of highly homogeneous fields at 20 T, and development of large split pair magnets in excess of 12 T. Recent developments in split pair technology allows us to build magnets with useful access, transverse to the field, up to 15 T. Compact solenoid magnets to 20 T have been available commercially for over 3 yr now with a progressive increment in bore size, providing associated engineering challenges. A 20 T solenoid with a clear bore of 52 mm and a homogeneity of 0.1% is now a standard production item. Improving the homogeneity to the 1 ppm level involves re-assessment of critical design parameters and choice of materials. Our development over the last twelve months has culminated in a 20 T solenoid with base homogeneity of 5 ppm over a 10 mm sphere. In order to realise persistent fields in excess of 20 T, requires the priority on development to be switched from engineering and manufacturing towards material development and enhancement. We present the findings and conclusions of our high field development program over the last 3 yr, together with an outline of our requirements and activities in materials and engineering leading to the next step in high field magnet manufacture, using conventional low Tc conductors.
Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.
Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi
2017-01-17
Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO 2 , SrTiO 3 , (Ga 1-x Zn x )(N 1-x O x ), CdS, and g-C 3 N 4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N 2 . This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1992-01-01
The present treatment of elliptic regions via hyperbolic flux-splitting and high order methods proposes a flux splitting in which the corresponding Jacobians have real and positive/negative eigenvalues. While resembling the flux splitting used in hyperbolic systems, the present generalization of such splitting to elliptic regions allows the handling of mixed-type systems in a unified and heuristically stable fashion. The van der Waals fluid-dynamics equation is used. Convergence with good resolution to weak solutions for various Riemann problems are observed.
NASA Astrophysics Data System (ADS)
Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.
2016-03-01
The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.
Spin-Rotation Hyperfine Splittings at Moderate to High J Values in Methanol
NASA Astrophysics Data System (ADS)
Xu, Li-Hong; Hougen, Jon T.; Belov, Sergey; Golubiatnikov, G. Yu; Lapinov, Alexander; Ilyushin, V.; Alekseev, E. A.; Mescheryakov, A. A.
2015-06-01
In this talk we present a possible explanation, based on torsionally mediated proton-spin-overall-rotation interaction operators, for the surprising observation in Nizhny Novgorod several years ago of doublets in some Lamb-dip sub-millimeter-wave transitions between torsion-rotation states of E symmetry in methanol. These observed doublet splittings, some as large as 70 kHz, were later confirmed by independent Lamb-dip measurements in Kharkov. In this talk we first show the observed J-dependence of the doublet splittings for two b-type Q branches (one from each laboratory), and then focus on our theoretical explanation. The latter involves three topics: (i) group theoretically allowed terms in the spin-rotation Hamiltonian, (ii) matrix elements of these terms between the degenerate components of torsion-rotation E states, calculated using wavefunctions from an earlier global fit of torsion-rotation transitions of methanol in the vt = 0, 1, and 2 states, and (iii) least-squares fits of coefficients of these terms to about 35 experimentally resolved doublet splittings in the quantum number ranges of K = -2 to +2, J = 13 to 34, and vt = 0. Rather pleasing residuals are obtained for these doublet splittings, and a number of narrow transitions, in which no doublet splitting could be detected, are also in agreement with predictions from the theory. Some remaining disagreements between experiment and the present theoretical explanation will be mentioned. G. Yu. Golubiatnikov, S. P. Belov, A. V. Lapinov, "CH_3OH Sub-Doppler Spectroscopy," (Paper MF04) and S.P. Belov, A.V. Burenin, G.Yu. Golubiatnikov, A.V. Lapinov, "What is the Nature of the Doublets in the E-Methanol Lamb-dip Spectra?" (Paper FB07), 68th International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2013. Li-Hong Xu, J. Fisher, R.M. Lees, H.Y. Shi, J.T. Hougen, J.C. Pearson, B.J. Drouin, G.A. Blake, R. Braakman, "Torsion-Rotation Global Analysis of the First Three Torsional States (vt = 0, 1, 2) and Terahertz Database for Methanol," J. Mol. Spectrosc., 251, 305-313, (2008).
High Q-factor metasurfaces based on miniaturized asymmetric single split resonators
NASA Astrophysics Data System (ADS)
Al-Naib, Ibraheem A. I.; Jansen, Christian; Koch, Martin
2009-04-01
We introduce asymmetric single split rectangular resonators as bandstop metasurfaces, which exhibit very high Q-factors in combination with low passband losses and a small electrical footprint. The effect of the degree of asymmetry on the frequency response is thoroughly studied. Furthermore, complementary structures, which feature a bandpass behavior, were derived by applying Babinet's principle and investigated with regards to their transmission characteristics. In future, asymmetric single split rectangular resonators could provide efficient unit cells for frequency selective surface devices, such as thin-film sensors or high performance filters.
NASA Astrophysics Data System (ADS)
Diamantopoulos, Theodore; Rowe, Kristopher; Diamessis, Peter
2017-11-01
The Collocation Penalty Method (CPM) solves a PDE on the interior of a domain, while weakly enforcing boundary conditions at domain edges via penalty terms, and naturally lends itself to high-order and multi-domain discretization. Such spectral multi-domain penalty methods (SMPM) have been used to solve the Navier-Stokes equations. Bounds for penalty coefficients are typically derived using the energy method to guarantee stability for time-dependent problems. The choice of collocation points and penalty parameter can greatly affect the conditioning and accuracy of a solution. Effort has been made in recent years to relate various high-order methods on multiple elements or domains under the umbrella of the Correction Procedure via Reconstruction (CPR). Most applications of CPR have focused on solving the compressible Navier-Stokes equations using explicit time-stepping procedures. A particularly important aspect which is still missing in the context of the SMPM is a study of the Helmholtz equation arising in many popular time-splitting schemes for the incompressible Navier-Stokes equations. Stability and convergence results for the SMPM for the Helmholtz equation will be presented. Emphasis will be placed on the efficiency and accuracy of high-order methods.
NASA Astrophysics Data System (ADS)
Cai, Xiaofeng; Guo, Wei; Qiu, Jing-Mei
2018-02-01
In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov-Poisson (VP) simulations without operator splitting. In particular, we combine two recently developed novel techniques: one is the high order non-splitting SLDG transport method (Cai et al. (2017) [4]), and the other is the high order characteristics tracing technique proposed in Qiu and Russo (2017) [29]. The proposed method with up to third order accuracy in both space and time is locally mass conservative, free of splitting error, positivity-preserving, stable and robust for large time stepping size. The SLDG VP solver is applied to classic benchmark test problems such as Landau damping and two-stream instabilities for VP simulations. Efficiency and effectiveness of the proposed scheme is extensively tested. Tremendous CPU savings are shown by comparisons between the proposed SL DG scheme and the classical Runge-Kutta DG method.
Numerical simulation and experiment on multilayer stagger-split die.
Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou
2013-05-01
A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.
Activation of different split functionalities upon re-association of RNA-DNA hybrids
Afonin, Kirill A.; Viard, Mathias; Martins, Angelica N.; Lockett, Stephen J.; Maciag, Anna E.; Freed, Eric O.; Heldman, Eliahu; Jaeger, Luc; Blumenthal, Robert; Shapiro, Bruce A.
2013-01-01
Split-protein systems, an approach that relies on fragmentation of proteins with their further conditional re-association to form functional complexes, are increasingly used for various biomedical applications. This approach offers tight control of the protein functions and improved detection sensitivity. Here we show a similar technique based on a pair of RNA-DNA hybrids that can be generally used for triggering different split functionalities. Individually, each hybrid is inactive but when two cognate hybrids re-associate, different functionalities are triggered inside mammalian cells. As a proof of concept this work is mainly focused on activation of RNA interference; however the release of other functionalities (resonance energy transfer and RNA aptamer) is also shown. Furthermore, in vivo studies demonstrate a significant uptake of the hybrids by tumors together with specific gene silencing. This split-functionality approach presents a new route in the development of “smart” nucleic acids based nanoparticles and switches for various biomedical applications. PMID:23542902
Ab Initio Vibrational Levels For HO2 and Vibrational Splittings for Hydrogen Atom Transfer
NASA Technical Reports Server (NTRS)
Barclay, V. J.; Dateo, Christopher E.; Hamilton, I. P.; Arnold, James O. (Technical Monitor)
1994-01-01
We calculate vibrational levels and wave functions for HO2 using the recently reported ab initio potential energy surface of Walch and Duchovic. There is intramolecular hydrogen atom transfer when the hydrogen atom tunnels through a T-shaped saddle point separating two equivalent equilibrium geometries, and correspondingly, the energy levels are split. We focus on vibrational levels and wave functions with significant splitting. The first three vibrational levels with splitting greater than 2/cm are (15 0), (0 7 1) and (0 8 0) where V(sub 2) is the O-O-H bend quantum number. We discuss the dynamics of hydrogen atom transfer; in particular, the O-O distances at which hydrogen atom transfer is most probable for these vibrational levels. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.
Planar Holographic Metasurfaces for Terahertz Focusing
Kuznetsov, Sergei A.; Astafev, Mikhail A.; Beruete, Miguel; Navarro-Cía, Miguel
2015-01-01
Scientists and laymen alike have always been fascinated by the ability of lenses and mirrors to control light. Now, with the advent of metamaterials and their two-dimensional counterpart metasurfaces, such components can be miniaturized and designed with additional functionalities, holding promise for system integration. To demonstrate this potential, here ultrathin reflection metasurfaces (also called metamirrors) designed for focusing terahertz radiation into a single spot and four spaced spots are proposed and experimentally investigated at the frequency of 0.35 THz. Each metasurface is designed using a computer-generated spatial distribution of the reflection phase. The phase variation within 360 deg is achieved via a topological morphing of the metasurface pattern from metallic patches to U-shaped and split-ring resonator elements, whose spectral response is derived from full-wave electromagnetic simulations. The proposed approach demonstrates a high-performance solution for creating low-cost and lightweight beam-shaping and beam-focusing devices for the terahertz band. PMID:25583565
NASA Technical Reports Server (NTRS)
Korzennik, Sylvain G.
1997-01-01
We have carried out the data reduction and analysis of Mt. Wilson 60' solar tower high spatial resolution observations. The reduction of the 100-day-long summer of 1990 observation campaign in terms of rotational splittings was completed leading to an excess of 600,000 splittings. The analysis of these splittings lead to a new inference of the solar internal rotation rate as a function of depth and latitude.
Current status and perspectives in split liver transplantation
Lauterio, Andrea; Di Sandro, Stefano; Concone, Giacomo; De Carlis, Riccardo; Giacomoni, Alessandro; De Carlis, Luciano
2015-01-01
Growing experience with the liver splitting technique and favorable results equivalent to those of whole liver transplant have led to wider application of split liver transplantation (SLT) for adult and pediatric recipients in the last decade. Conversely, SLT for two adult recipients remains a challenging surgical procedure and outcomes have yet to improve. Differences in organ shortages together with religious and ethical issues related to cadaveric organ donation have had an impact on the worldwide distribution of SLT. Despite technical refinements and a better understanding of the complex liver anatomy, SLT remains a technically and logistically demanding surgical procedure. This article reviews the surgical and clinical advances in this field of liver transplantation focusing on the role of SLT and the issues that may lead a further expansion of this complex surgical procedure. PMID:26494957
Rapid and continuous magnetic separation in droplet microfluidic devices.
Brouzes, Eric; Kruse, Travis; Kimmerling, Robert; Strey, Helmut H
2015-02-07
We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.
Rapid and continuous magnetic separation in droplet microfluidic devices
Brouzes, Eric; Kruse, Travis; Kimmerling, Robert; Strey, Helmut H.
2015-01-01
We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries. PMID:25501881
NASA Technical Reports Server (NTRS)
Grossman, B.; Garrett, J.; Cinnella, P.
1989-01-01
Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.
Support System for Solar Receivers
NASA Technical Reports Server (NTRS)
Kiceniuk, T.
1985-01-01
Hinged split-ring mounts insure safe support of heavy receivers. In addition to safer operation and damage-free mounting system provides more accurate focusing, and small incremental adjustments of ring more easily made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, C. W.
The focus of this work is to improve the quality of GaInNAs by advanced thin-film growth techniques, such as digital-alloy growth techniques and migration-enhanced epitaxy (MEE). The other focus is to further investigate the properties of such materials, which are potentially beneficial for high-efficiency, multijunction solar cells. 400-nm-thick strain-compensated Ga0.92In0.08As/GaN0.03As0.97 short-period superlattices (SPSLs) are grown lattice-matched to GaAs substrates. The photoluminescence (PL) intensity of digital alloys is 3 times higher than that of random alloys at room temperature, and the improvement is even greater at low temperature, by a factor of about 12. The room-temperature PL intensity of the GaInNAsmore » quantum well grown by the strained InAs/GaN0.023As SPSL growth mode is higher by a factor 5 as compare to the continuous growth mode. The SPSL growth method allows for independent adjustment of the In-to-Ga ratio without group III competition. MEE reduces the low-energy tail of PL, and PL peaks become more intense and sharper. The twin peaks photoluminescence of GaNAs grown on GaAs was observed at room temperature. The peaks splitting increase with increase in nitrogen alloy content. The strain-induced splitting of light-hole and heavy-hole bands of tensile-strained GaNAs is proposed as an explanation of such behavior.« less
NASA Astrophysics Data System (ADS)
Aboutalebi, Mohammad; Bijarchi, Mohamad Ali; Shafii, Mohammad Behshad; Kazemzadeh Hannani, Siamak
2018-02-01
The studies surrounding the concept of microdroplets have seen a dramatic increase in recent years. Microdroplets have applications in different fields such as chemical synthesis, biology, separation processes and micro-pumps. This study numerically investigates the effect of different parameters such as Capillary number, Length of droplets, and Magnetic Bond number on the splitting process of ferrofluid microdroplets in symmetric T-junctions using an asymmetric magnetic field. The use of said field that is applied asymmetrically to the T-junction center helps us control the splitting of ferrofluid microdroplets. During the process of numerical simulation, a magnetic field with various strengths from a dipole located at a constant distance from the center of the T-junction was applied. The main advantage of this design is its control over the splitting ratio of daughter droplets and reaching various microdroplet sizes in a T-junction by adjusting the magnetic field strength. The results showed that by increasing the strength of the magnetic field, the possibility of asymmetric splitting of microdroplets increases in a way that for high values of field strength, high splitting ratios can be reached. Also, by using the obtained results at various Magnetic Bond numbers and performing curve fitting, a correlation is derived that can be used to accurately predict the borderline between splitting and non-splitting zones of microdroplets flow in micro T-junctions.
NASA Astrophysics Data System (ADS)
Mall, Suneeta; Brennan, Patrick C.; Mello-Thoms, Claudia
2015-03-01
The rapid evolution in medical imaging has led to an increased number of recurrent trials, primarily to ensure that the efficacy of new imaging techniques is known. The cost associated with time and resources in conducting such trials is usually high. The recruitment of participants, in a medium to large reader study, is often very challenging as the demanding number of cases discourages involvement with the trial. We aim to evaluate the efficacy of Digital Breast Tomosynthesis (DBT) in a recall assessment clinic in Australia in a prospective multi-reader-multi-case (MRMC) trial. Conducting such a study with the more commonly used fully crossed MRMC study design would require more cases and more cases read per reader, which was not viable in our setting. With an aim to perform a cost effective yet statistically efficient clinical trial, we evaluated alternative study designs, particularly the alternative split-plot MRMC study design and compared and contrasted it with more commonly used fully crossed MRMC study design. Our results suggest that `split-plot', an alternative MRMC study design, could be very beneficial for medium to large clinical trials and the cost associated with conducting such trials can be greatly reduced without adversely effecting the variance of the study. We have also noted an inverse dependency between number of required readers and cases to achieve a target variance. This suggests that split-plot could also be very beneficial for studies that focus on cases that are hard to procure or readers that are hard to recruit. We believe that our results may be relevant to other researchers seeking to design a medium to large clinical trials.
Chemically Modified Metal Oxide Nanostructure for Photoelectrochemical Water Splitting
NASA Astrophysics Data System (ADS)
Wang, Gongming
Hydrogen gas is chemical fuel with high energy density, and represents a clean, renewable and carbon-free burning fuel, which has the potential to solve the more and more urgent energy crisis in today's society. Inspired by natural photosynthesis, artificial photosynthesis to generate hydrogen energy has attracted a lot of attentions in the field of chemistry, physics and material. Photoelectrochemical water splitting based on semiconductors represents a green and low cost method to generate hydrogen fuel. However, the current overall efficiency of solar to hydrogen is quite low, due to some intrinsic limitations such as bandgap, diffusion distance, carrier lifetime and photostability of semiconductors. Although nanostructured semiconductors can improve their photoelectrochemical water splitting performance to some extent, by increasing electrolyte accessible area and shortening minority carrier diffusion distance, nanostructure engineering cannot change their intrinsic electronic properties. Recent development in chemically modified nanostructures such as surface catalyst decoration, element doping, plasmonic modification and interfacial hetero-junction design have led to significant advancement in the photoelectrochemical water splitting, by improving surface reaction kinetics and charge separation, transportation and collection efficiency. In this thesis, I will give a detailed discussion on the chemically modified metal oxide nanostructures for photoelectrocemical hydrogen generation, with a focus on the element doping, hydrogen treatment and catalyst modification. I have demonstrated nitrogen doping on ZnO and Ti doping on hematite can improve their photoelectrochemical performance. In addition, we found hydrogen treatment is a general and effective method to improve the photocatalytic performance, by increasing their carrier desities. Hydrogen treatment has been demonstrated on TiO2, WO3 and BiVO4. In the end, we also used electrochemical catalyt to modify these metal oxide photoelectrode for waste water treatment and chemical fuel generation.
A new index for the wintertime southern hemispheric split jet
NASA Astrophysics Data System (ADS)
Babian, Stella; Grieger, Jens; Cubasch, Ulrich
2018-05-01
One of the most prominent asymmetric features of the southern hemispheric (SH) circulation is the split jet over Australia and New Zealand in austral winter. Previous studies have developed indices to detect the degree to which the upper-level midlatitude westerlies are split and investigated the relationship between split events and the low-frequency teleconnection patterns, viz. the Antarctic Oscillation (AAO) and the El Niño-Southern Oscillation (ENSO). As the results were inconsistent, the relationship between the wintertime SH split jet and the climate variability indices remains unresolved and is the focus of this study. Until now, all split indices' definitions were based on the specific region where the split jet is recognizable. We consider the split jet as hemispheric rather than a regional feature and propose a new, hemispherical index that is based on the principal components (PCs) of the zonal wind field for the SH winter. A linear combination of PC2 and PC3 of the anomalous monthly (JAS) zonal wind is used to identify split-jet conditions. In a subsequent correlation analysis, our newly defined PC-based split index (PSI) indicates a strong coherence with the AAO. However, this significant relationship is unstable over the analysis period; during the 1980s, the AAO amplitude was higher than the PSI, and vice versa in the 1990s. It is probable that the PSI, as well as the AAO, underlie low-frequency variability on the decadal to centennial timescales, but the analyzed period is too short to draw these conclusions. A regression analysis with the Multivariate ENSO Index points to a nonlinear relationship between PSI and ENSO; i.e., split jets occur during both strong positive and negative phases of ENSO but rarely under normal
conditions. The Pacific South American (PSA) patterns, defined as the second and third modes of the geopotential height variability at 500 hPa, correlate poorly with the PSI (rPSA - 1 ≈ 0.2 and rPSA - 2 = 0.06), but significantly with the individual components (PCs) of the PSI, revealing an indirect influence on the SH split-jet variability. Our study suggests that the wintertime SH split jet is strongly associated with the AAO, while ENSO is to a lesser extent connected to the PSI. We conclude that a positive AAO phase, as well as both flavors of ENSO and the PSA-1 pattern produce favorable conditions for a SH split event.
A simple integrated system for electrophysiologic recordings in animals
Slater, Bernard J.; Miller, Neil R.; Bernstein, Steven L.; Flower, Robert W.
2009-01-01
This technical note describes a modification to a fundus camera that permits simultaneous recording of pattern electroretinograms (pERGs) and pattern visual evoked potentials (pVEPs). The modification consists of placing an organic light-emitting diode (OLED) in the split-viewer pathway of a fundus camera, in a plane conjugate to the subject’s pupil. In this way, a focused image of the OLED can be delivered to a precisely known location on the retina. The advantage of using an OLED is that it can achieve high luminance while maintaining high contrast, and with minimal degradation over time. This system is particularly useful for animal studies, especially when precise retinal positioning is required. PMID:19137347
Formation of multiple focal spots using a high NA lens with a complex spiral phase mask
NASA Astrophysics Data System (ADS)
Lalithambigai, K.; Anbarasan, P. M.; Rajesh, K. B.
2014-07-01
The formation of a transversally polarized beam by transmitting a tightly focused double-ring-shaped azimuthally polarized beam through a complex spiral phase mask and high numerical aperture lens is presented based on vector diffraction theory. The generation of transversally polarized focal spot segment splitting and multiple focal spots is illustrated numerically. Moreover, we found that a properly designed complex spiral phase mask can move the focal spots along the optical axis in the z direction. Therefore, one can achieve a focal segment of two, three or multiple completely transversely polarized focal spots, which finds applications in optical trapping and in material processing technologies.
Behavior of fiber reinforced metal laminates at high strain rate
NASA Astrophysics Data System (ADS)
Newaz, Golam; Sasso, Marco; Amodio, Dario; Mancini, Edoardo
2018-05-01
Carbon Fiber Reinforced Aluminum Laminate (CARALL) is a good system for energy absorption through plastic deformation in aluminum and micro-cracking in the composite layers. Moreover, CARALL FMLs also provide excellent impact resistance due to the presence of aluminum layer. The focus of this research is to characterize the CARALL behavior under dynamic conditions. High strain rate tests on sheet laminate samples have been carried out by means of direct Split Hopkinson Tension Bar. The sample geometry and the clamping system were optimized by FEM simulations. The clamping system has been designed and optimized in order reduce impedance disturbance due to the fasteners and to avoid the excessive plastic strain outside the gauge region of the samples.
High-Order Polynomial Expansions (HOPE) for flux-vector splitting
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Steffen, Chris J., Jr.
1991-01-01
The Van Leer flux splitting is known to produce excessive numerical dissipation for Navier-Stokes calculations. Researchers attempt to remedy this deficiency by introducing a higher order polynomial expansion (HOPE) for the mass flux. In addition to Van Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M = 0. Several splittings for pressure are proposed and examined. The effectiveness of the HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic shock-wave boundary layer interactions.
Exposing the QCD Splitting Function with CMS Open Data.
Larkoski, Andrew; Marzani, Simone; Thaler, Jesse; Tripathee, Aashish; Xue, Wei
2017-09-29
The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data released by the CMS experiment to study the two-prong substructure of jets and test the 1→2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.
Inorganic perovskite photocatalysts for solar energy utilization.
Zhang, Guan; Liu, Gang; Wang, Lianzhou; Irvine, John T S
2016-10-24
The development and utilization of solar energy in environmental remediation and water splitting is being intensively studied worldwide. During the past few decades, tremendous efforts have been devoted to developing non-toxic, low-cost, efficient and stable photocatalysts for water splitting and environmental remediation. To date, several hundreds of photocatalysts mainly based on metal oxides, sulfides and (oxy)nitrides with different structures and compositions have been reported. Among them, perovskite oxides and their derivatives (layered perovskite oxides) comprise a large family of semiconductor photocatalysts because of their structural simplicity and flexibility. This review specifically focuses on the general background of perovskite and its related materials, summarizes the recent development of perovskite photocatalysts and their applications in water splitting and environmental remediation, discusses the theoretical modelling and calculation of perovskite photocatalysts and presents the key challenges and perspectives on the research of perovskite photocatalysts.
Optics for multimode lasers with elongated depth of field
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei
2017-02-01
Modern multimode high-power lasers are widely used in industrial applications and control of their radiation, especially by focusing, is of great importance. Because of relatively low optical quality, characterized by high values of specifications Beam Parameter Product (BPP) or M², the depth of field by focusing of multimode laser radiation is narrow. At the same time laser technologies like deep penetration welding, cutting of thick metal sheets get benefits from elongated depth of field in area of focal plane, therefore increasing of zone along optical axis with minimized spot size is important technical task. As a solution it is suggested to apply refractive optical systems splitting an initial laser beam into several beamlets, which are focused in different foci separated along optical axis with providing reliable control of energy portions in each separate focus, independently of beam size or mode structure. With the multi-focus optics, the length of zone of material processing along optical axis is defined rather by distances between separate foci, which are determined by optical design of the optics and can be chosen according to requirements of a particular laser technology. Due to stability of the distances between foci there is provided stability of a technology process. This paper describes some design features of refractive multi-focus optics, examples of real implementations and experimental results will be presented as well.
Advanced expander test bed engine
NASA Technical Reports Server (NTRS)
Mitchell, J. P.
1992-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, Lori; Gagnon, Pieter; Heeter, Jenny
The midscale market for solar photovoltaics (PV), defined as behind-the-meter systems between 100 kW and 2 MW, has grown more slowly than other PV market segments in recent years. A number of key barriers have impeded growth, including tenant and landlord split incentives, contracting challenges, the mismatch in building lease and PV financing terms, and high transaction costs relative to project sizes. This report explores prospects for expansion of the midscale solar market, with a focus on four building segments: offices, hotels, warehouses, and universities.
A TTC upgrade proposal using bidirectional 10G-PON FTTH technology
NASA Astrophysics Data System (ADS)
Kolotouros, D. M.; Baron, S.; Soos, C.; Vasey, F.
2015-04-01
A new generation FPGA-based Timing-Trigger and Control (TTC) system based on emerging Passive Optical Network (PON) technology is being proposed to replace the existing off-detector TTC system used by the LHC experiments. High split ratio, dynamic software partitioning, low and deterministic latency, as well as low jitter are required. Exploiting the latest available technologies allows delivering higher capacity together with bidirectionality, a feature absent from the legacy TTC system. This article focuses on the features and capabilities of the latest TTC-PON prototype based on 10G-PON FTTH components along with some metrics characterizing its performance.
The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source
Ferguson, Ken R.; Bucher, Maximilian; Bozek, John D.; ...
2015-05-01
The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.
Substituent effects on photosensitized splitting of thymine cyclobutane dimer by an attached indole.
Tang, Wenjian; Zhou, Hongmei; Wang, Jing; Pan, Chunxiao; Shi, Jingbo; Song, Qinhua
2012-12-21
In chromophore-containing cyclobutane pyrimidine dimer (CPD) model systems, solvent effects on the splitting efficiency may depend on the length of the linker, the molecular conformation, and the oxidation potential of the donor. To further explore the relationship between chromophore structure and splitting efficiency, we prepared a series of substituted indole-T< >T model compounds 2 a-2 g and measured their splitting quantum yields in various solvents. Two reverse solvent effects were observed: an increase in splitting efficiency in solvents of lower polarity for models 2 a-2 d with an electron-donating group (EDG), and vice versa for models 2 e-2 g with an electron-withdrawing group (EWG). According to the Hammett equation, the negative value of the slope of the Hammett plot indicates that the indole moiety during the T< >T-splitting reaction loses negative charge, and the larger negative value implies that the repair reaction is more sensitive to substituent effects in low-polarity solvents. The EDGs of the models 2 a-2 d can delocalize the charge-separated state, and low-polarity solvents make it more stable, which leads to higher splitting efficiency in low-polarity solvents. Conversely, the EWGs of models 2 e-2 g favor destabilization of the charge-separated state, and high-polarity solvents decrease the destabilization and hence lead to more efficient splitting in high-polarity solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Light distribution in diffractive multifocal optics and its optimization.
Portney, Valdemar
2011-11-01
To expand a geometrical model of diffraction efficiency and its interpretation to the multifocal optic and to introduce formulas for analysis of far and near light distribution and their application to multifocal intraocular lenses (IOLs) and to diffraction efficiency optimization. Medical device consulting firm, Newport Coast, California, USA. Experimental study. Application of a geometrical model to the kinoform (single focus diffractive optical element) was expanded to a multifocal optic to produce analytical definitions of light split between far and near images and light loss to other diffraction orders. The geometrical model gave a simple interpretation of light split in a diffractive multifocal IOL. An analytical definition of light split between far, near, and light loss was introduced as curve fitting formulas. Several examples of application to common multifocal diffractive IOLs were developed; for example, to light-split change with wavelength. The analytical definition of diffraction efficiency may assist in optimization of multifocal diffractive optics that minimize light loss. Formulas for analysis of light split between different foci of multifocal diffractive IOLs are useful in interpreting diffraction efficiency dependence on physical characteristics, such as blaze heights of the diffractive grooves and wavelength of light, as well as for optimizing multifocal diffractive optics. Disclosure is found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Steckler, Conor M; Hamlin, J Kiley; Miller, Michael B; King, Danielle; Kingstone, Alan
2017-07-01
Owing to the hemispheric isolation resulting from a severed corpus callosum, research on split-brain patients can help elucidate the brain regions necessary and sufficient for moral judgement. Notably, typically developing adults heavily weight the intentions underlying others' moral actions, placing greater importance on valenced intentions versus outcomes when assigning praise and blame. Prioritization of intent in moral judgements may depend on neural activity in the right hemisphere's temporoparietal junction, an area implicated in reasoning about mental states. To date, split-brain research has found that the right hemisphere is necessary for intent-based moral judgement. When testing the left hemisphere using linguistically based moral vignettes, split-brain patients evaluate actions based on outcomes, not intentions. Because the right hemisphere has limited language ability relative to the left, and morality paradigms to date have involved significant linguistic demands, it is currently unknown whether the right hemisphere alone generates intent-based judgements. Here we use nonlinguistic morality plays with split-brain patient J.W. to examine the moral judgements of the disconnected right hemisphere, demonstrating a clear focus on intent. This finding indicates that the right hemisphere is not only necessary but also sufficient for intent-based moral judgement, advancing research into the neural systems supporting the moral sense.
Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers
NASA Astrophysics Data System (ADS)
Veprik, A.; Zechtzer, S.; Pundak, N.
2010-04-01
Split linear cryocoolers find use in a variety of infrared equipment installed in airborne, heliborne, marine and vehicular platforms along with hand held and ground fixed applications. An upcoming generation of portable, high-definition night vision imagers will rely on the high-temperature infrared detectors, operating at elevated temperatures, ranging from 95K to 200K, while being able to show the performance indices comparable with these of their traditional 77K competitors. Recent technological advances in industrial development of such high-temperature detectors initialized attempts for developing compact split Stirling linear cryogenic coolers. Their known advantages, as compared to the rotary integral coolers, are superior flexibility in the system packaging, constant and relatively high driving frequency, lower wideband vibration export, unsurpassed reliability and aural stealth. Unfortunately, such off-the-shelf available linear cryogenic coolers still cannot compete with rotary integral rivals in terms of size, weight and power consumption. Ricor developed the smallest in the range, 1W@95K, linear split Stirling cryogenic cooler for demanding infrared applications, where power consumption, compactness, vibration, aural noise and ownership costs are of concern.
NASA Astrophysics Data System (ADS)
Tagesson, Kristoffer; Cole, David
2017-07-01
The steering system in most heavy trucks is such that it causes a destabilising steering wheel torque when braking on split friction, that is, different friction levels on the two sides of the vehicle. Moreover, advanced emergency braking systems are now mandatory in most heavy trucks, making vehicle-induced split friction braking possible. This imposes higher demands on understanding how the destabilising steering wheel torque affects the driver, which is the focus here. Firstly, an experiment has been carried out involving 24 subjects all driving a truck where automatic split friction braking was emulated. Secondly, an existing driver-vehicle model has been adapted and implemented to improve understanding of the observed outcome. A common conclusion drawn, after analysing results, is that the destabilising steering wheel torque only has a small effect on the motion of the vehicle. The underlying reason is a relatively slow ramp up of the disturbance in comparison to the observed cognitive delay amongst subjects; also the magnitude is low and initially suppressed by passive driver properties.
Rapid and continuous magnetic separation in droplet microfluidic devices
Brouzes, Eric; Kruse, Travis; Kimmerling, Robert; ...
2014-12-03
Here, we present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization.more » We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.« less
Delamination Fracture Related to Tempering in a High-Strength Low-Alloy Steel
NASA Astrophysics Data System (ADS)
Yan, Wei; Sha, Wei; Zhu, Lin; Wang, Wei; Shan, Yi-Yin; Yang, Ke
2010-01-01
The delamination or splitting of mechanical test specimens of rolled steel plate is a phenomenon that has been studied for many years. In the present study, splitting during fracture of tensile and Charpy V-notch (CVN) test specimens is examined in a high-strength low-alloy plate steel. It is shown that delamination did not occur in test specimens from plate in the as-rolled condition, but was severe in material tempered in the temperature range 500 °C to 650 °C. Minor splitting was seen after heating to 200 °C, 400 °C, and 700 °C. Samples that had been triple quenched and tempered to produce a fine equiaxed grain size also did not exhibit splitting. Microstructural and preferred orientation studies are presented and are discussed as they relate to the splitting phenomenon. It is concluded that the elongated as-rolled grains and grain boundary embrittlement resulting from precipitates (carbides and nitrides) formed during reheating were responsible for the delamination.
Herden, Uta; Fischer, Lutz; Koch, Martina; Li, Jun; Achilles, Eike-Gert; Nashan, Björn
2018-05-20
When a sufficiently high-quality liver is available, classic liver graft splitting is performed. In such cases, a small child receives the left-lateral split graft, with subsequent transplantation of the right-extended graft in an adult. We analysed 64 patients who received right-extended liver grafts from 2007-2015, and compared outcomes between cases of external versus in-house graft splitting. We found excellent donor data and comparable recipient characteristics. Cold ischemic time was significantly longer for external (14±2 h; n=38) versus internal (12±2 h; n=26) liver graft splitting. Compared to the internal splitting group, the external liver graft splitting group showed significantly reduced 1- and 5-year patient survival (100% versus 84%; P=.035) and higher rates of biliary (24% versus 12%) and vascular (8% versus 0%) complications. The outcomes following right-extended split LTX are disappointing given the excellent organ quality. External liver graft splitting was associated with worse outcome and surgical complication rates. This may be related to the prolonged cold ischemic time due to two-fold transportation, as well as the ignorance of the splitting procedure details and related pitfalls. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings
NASA Astrophysics Data System (ADS)
Cui, Jin-Ming; Zhou, Kun; Zhao, Ming-Shu; Ai, Ming-Zhong; Hu, Chang-Kang; Li, Qiang; Liu, Bi-Heng; Peng, Jin-Lan; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can
2018-04-01
We demonstrate a type of microcavity with large tunable splitting of polarization modes. This polarization nondegenerate cavity consists of two ellipsoidal concave mirrors with controllable eccentricity by CO2 laser machining on fiber end facets. The experiment shows that the cavities can combine the advantages of high finesse above 104 and large tunable polarization mode splitting to the GHz range. As the splitting of the cavity can be finely controlled to match atom hyperfine levels or optomechanics phonons, it will blaze a way in experiments on cavity quantum electrodynamics and cavity optomechanics.
Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions
NASA Astrophysics Data System (ADS)
Li, Bao-An; Chen, Lie-Wen
2015-04-01
The neutron-proton effective mass splitting in neutron-rich nucleonic matter reflects the spacetime nonlocality of the isovector nuclear interaction. It affects the neutron/proton ratio during the earlier evolution of the Universe, cooling of proto-neutron stars, structure of rare isotopes and dynamics of heavy-ion collisions. While there is still no consensus on whether the neutron-proton effective mass splitting is negative, zero or positive and how it depends on the density as well as the isospin-asymmetry of the medium, significant progress has been made in recent years in addressing these issues. There are different kinds of nucleon effective masses. In this mini-review, we focus on the total effective masses often used in the non-relativistic description of nuclear dynamics. We first recall the connections among the neutron-proton effective mass splitting, the momentum dependence of the isovector potential and the density dependence of the symmetry energy. We then make a few observations about the progress in calculating the neutron-proton effective mass splitting using various nuclear many-body theories and its effects on the isospin-dependence of in-medium nucleon-nucleon cross-sections. Perhaps, our most reliable knowledge so far about the neutron-proton effective mass splitting at saturation density of nuclear matter comes from optical model analyses of huge sets of nucleon-nucleus scattering data accumulated over the last five decades. The momentum dependence of the symmetry potential from these analyses provide a useful boundary condition at saturation density for calibrating nuclear many-body calculations. Several observables in heavy-ion collisions have been identified as sensitive probes of the neutron-proton effective mass splitting in dense neutron-rich matter based on transport model simulations. We review these observables and comment on the latest experimental findings.
NASA Astrophysics Data System (ADS)
Smith, L. W.; Al-Taie, H.; Sfigakis, F.; See, P.; Lesage, A. A. J.; Xu, B.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.
2014-07-01
The properties of conductance in one-dimensional (1D) quantum wires are statistically investigated using an array of 256 lithographically identical split gates, fabricated on a GaAs/AlGaAs heterostructure. All the split gates are measured during a single cooldown under the same conditions. Electron many-body effects give rise to an anomalous feature in the conductance of a one-dimensional quantum wire, known as the "0.7 structure" (or "0.7 anomaly"). To handle the large data set, a method of automatically estimating the conductance value of the 0.7 structure is developed. Large differences are observed in the strength and value of the 0.7 structure [from 0.63 to 0.84×(2e2/h)], despite the constant temperature and identical device design. Variations in the 1D potential profile are quantified by estimating the curvature of the barrier in the direction of electron transport, following a saddle-point model. The 0.7 structure appears to be highly sensitive to the specific confining potential within individual devices.
Morrow, B. M.; Lebensohn, R. A.; Trujillo, C. P.; ...
2016-03-28
Single crystal titanium samples were dynamically loaded using split-Hopkinson pressure bar (SHPB) and the resulting microstructures were examined. Characterization of the twins and dislocations present in the microstructure was conducted to understand the pathway for observed mechanical behavior. Electron backscatter diffraction (EBSD) was used to measure textures and quantify twinning. Microstructures were profusely twinned after loading, and twin variants and corresponding textures were different as a function of initial orientation. Focused ion beam (FIB) foils were created to analyze dislocation content using transmission electron microscopy (TEM). Large amounts of dislocations were present, indicating that plasticity was achieved through slip andmore » twinning together. Viscoplastic self-consistent (VPSC) modeling was used to confirm the complex order of operations during deformation. The activation of different mechanisms was highly dependent upon crystal orientation. For [0001] and View the MathML source[101¯1]-oriented crystals, compressive twinning was observed, followed by secondary tensile twinning. Furthermore, dislocations though prevalent in the microstructure, contributed to final texture far less than twinning.« less
NASA Astrophysics Data System (ADS)
Huschauer, A.; Blas, A.; Borburgh, J.; Damjanovic, S.; Gilardoni, S.; Giovannozzi, M.; Hourican, M.; Kahle, K.; Le Godec, G.; Michels, O.; Sterbini, G.; Hernalsteens, C.
2017-06-01
Following a successful commissioning period, the multiturn extraction (MTE) at the CERN Proton Synchrotron (PS) has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS) since September 2015. This exceptional extraction technique was proposed to replace the long-serving continuous transfer (CT) extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.
Dynamic spin injection into a quantum well coupled to a spin-split bound state
NASA Astrophysics Data System (ADS)
Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.
2018-05-01
We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.
NASA Astrophysics Data System (ADS)
Piatkowski, Marian; Müthing, Steffen; Bastian, Peter
2018-03-01
In this paper we consider discontinuous Galerkin (DG) methods for the incompressible Navier-Stokes equations in the framework of projection methods. In particular we employ symmetric interior penalty DG methods within the second-order rotational incremental pressure correction scheme. The major focus of the paper is threefold: i) We propose a modified upwind scheme based on the Vijayasundaram numerical flux that has favourable properties in the context of DG. ii) We present a novel postprocessing technique in the Helmholtz projection step based on H (div) reconstruction of the pressure correction that is computed locally, is a projection in the discrete setting and ensures that the projected velocity satisfies the discrete continuity equation exactly. As a consequence it also provides local mass conservation of the projected velocity. iii) Numerical results demonstrate the properties of the scheme for different polynomial degrees applied to two-dimensional problems with known solution as well as large-scale three-dimensional problems. In particular we address second-order convergence in time of the splitting scheme as well as its long-time stability.
NASA Technical Reports Server (NTRS)
Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain G.
1988-01-01
The initial frequency splitting results of solar p-mode oscillations obtained from the 1988 helioseismology program at the Mt. Wilson Observatory are presented. The frequency splittings correspond to the rotational splittings of sectoral harmonics which range in degree between 10 and 598. They were obtained from a cross-correlation analysis of the prograde and retrograde portions of a two-dimensional (t - v) power spectrum. This power spectrum was computed from an eight-hour sequence of full-disk Dopplergrams obtained on July 2, 1988, at the 60-foot tower telescope with a Na magneto-optical filter and a 1024x1024 pixel CCD camera. These frequency splittings have an inherently larger scatter than did the splittings obtained from earlier 16-day power spectra. These splittings are consistent with an internal solar rotational velocity which is independent of radius along the equatorial plane. The normalized frequency splittings averaged 449 + or - 3 nHz, a value which is very close to the observed equatorial rotation rate of the photospheric gas of 451.7 nHz.
Self-focusing and group-velocity dispersion of pulsed laser beams in the inhomogeneous atmosphere.
Zhang, Yuqiu; Ji, Xiaoling; Zhang, Hao; Li, Xiaoqing; Wang, Tao; Wang, Huan; Deng, Yu
2018-05-28
We study self-focusing and group-velocity dispersion (GVD) effects in the inhomogeneous atmosphere on pulsed-laser space debris removal facilitated by a ground-based laser. It is found that changes of the pulse duration and the beam spot size with the propagation distance are noticeable due to the interplay of the GVD effect and the self-focusing effect, which is quite different from the behavior in the linear case. It is shown that the temporal pulse splitting may appear on the space debris, and the spatial side lobe usually appears together with the temporal pulse splitting. As compared with the linear case, the beam width and the pulse width on the debris target increase. On the other hand, crucial formulae of the modified focal length and the M 2 -factor for laser debris removal are also derived. It is found that the beam quality on the debris target becomes better if our modified focal length is adopted, and the beam quality on the debris target will be good if the value of M 2 -factor is less than 1.6.
NASA Astrophysics Data System (ADS)
Chen, Y.; Guo, L.; Wu, J. J.; Chen, Q.; Song, S.
2014-12-01
In Differential Interferometric Synthetic Aperture Radar (D-InSAR) atmosphere effect including troposphere and ionosphere is one of the dominant sources of error in most interferograms, which greatly reduced the accuracy of deformation monitoring. In recent years tropospheric correction especially Zwd in InSAR data processing has ever got widely investigated and got efficiently suppressed. And thus we focused our study on ionospheric correction using two different methods, which are split-spectrum technique and Nequick model, one of the three dimensional electron density models. We processed Wenchuan ALOS PALSAR images, and compared InSAR surface deformation after ionospheric modification using the two approaches mentioned above with ground GPS subsidence observations to validate the effect of split-spectrum method and NeQuick model, further discussed the performance and feasibility of external data and InSAR itself during the study of the elimination of InSAR ionospheric effect.
NASA Astrophysics Data System (ADS)
Dmytruk, Olesia; Klinovaja, Jelena
2018-04-01
We study both analytically and numerically the role of orbital effects caused by a magnetic field applied along the axis of a semiconducting Rashba nanowire in the topological regime hosting Majorana fermions. We demonstrate that the orbital effects can be effectively taken into account in a one-dimensional model by shifting the chemical potential and thus modifying the topological criterion. We focus on the energy splitting between two Majorana fermions in a finite nanowire and find a striking interplay between orbital and Zeeman effects on this splitting. In the limit of strong spin-orbit interaction, we find regimes where the amplitude of the oscillating splitting stays constant or even decays with increasing the magnetic field, in stark contrast to the commonly studied case where orbital effects of the magnetic field are neglected. The period of these oscillations is found to be almost constant in many parameter regimes.
Sinn, Gerhard; Müller, Ulrich; Konnerth, Johannes; Rathke, Jörn
2012-01-01
This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF) were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.
Direct Coupling of Thermo- and Photocatalysis for Conversion of CO2 -H2 O into Fuels.
Zhang, Li; Kong, Guoguo; Meng, Yaping; Tian, Jinshu; Zhang, Lijie; Wan, Shaolong; Lin, Jingdong; Wang, Yong
2017-12-08
Photocatalytic CO 2 reduction into renewable hydrocarbon solar fuels is considered as a promising strategy to simultaneously address global energy and environmental issues. This study focused on the direct coupling of photocatalytic water splitting and thermocatalytic hydrogenation of CO 2 in the conversion of CO 2 -H 2 O into fuels. Specifically, it was found that direct coupling of thermo- and photocatalysis over Au-Ru/TiO 2 leads to activity 15 times higher (T=358 K; ca. 99 % CH 4 selectivity) in the conversion of CO 2 -H 2 O into fuels than that of photocatalytic water splitting. This is ascribed to the promoting effect of thermocatalytic hydrogenation of CO 2 by hydrogen atoms generated in situ by photocatalytic water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Symmetry-Based Variance Reduction Applied to 60Co Teletherapy Unit Monte Carlo Simulations
NASA Astrophysics Data System (ADS)
Sheikh-Bagheri, D.
A new variance reduction technique (VRT) is implemented in the BEAM code [1] to specifically improve the efficiency of calculating penumbral distributions of in-air fluence profiles calculated for isotopic sources. The simulations focus on 60Co teletherapy units. The VRT includes splitting of photons exiting the source capsule of a 60Co teletherapy source according to a splitting recipe and distributing the split photons randomly on the periphery of a circle, preserving the direction cosine along the beam axis, in addition to the energy of the photon. It is shown that the use of the VRT developed in this work can lead to a 6-9 fold improvement in the efficiency of the penumbral photon fluence of a 60Co beam compared to that calculated using the standard optimized BEAM code [1] (i.e., one with the proper selection of electron transport parameters).
Finite element analysis and experiment on high pressure apparatus with split cylinder
NASA Astrophysics Data System (ADS)
Zhao, Liang; Li, Mingzhe; Yang, Yunfei; Wang, Bolong; Li, Yi
2017-07-01
Ultra-high pressure belt-type die was designed with a large sample volume prism cavity and a split cylinder which was divided into eight segments to eliminate circumferential stress. The cylinder of this type die has no cambered surface on inner wall, and the inner hole is a hexagonal prism-type cavity. The divided bodies squeeze with each other, providing the massive support and lateral support effect of the cylinder. Simulation results indicate that the split cylinder with the prism cavity possesses much smaller stress and more uniform stress distribution. The split cylinder with the prism cavity has been shown to bear larger compressive stresses in radial, circumferential and axial directions due to its structure, and tungsten carbide is most effective in pure compression so this type cylinder could bear higher pressure. Experimental results prove that the high pressure apparatus with a prism-type cavity could bear higher pressure. The apparatus with a prism cavity could bear 52.2% more pressure than the belt-type die.
A flux splitting scheme with high-resolution and robustness for discontinuities
NASA Technical Reports Server (NTRS)
Wada, Yasuhiro; Liou, Meng-Sing
1994-01-01
A flux splitting scheme is proposed for the general nonequilibrium flow equations with an aim at removing numerical dissipation of Van-Leer-type flux-vector splittings on a contact discontinuity. The scheme obtained is also recognized as an improved Advection Upwind Splitting Method (AUSM) where a slight numerical overshoot immediately behind the shock is eliminated. The proposed scheme has favorable properties: high-resolution for contact discontinuities; conservation of enthalpy for steady flows; numerical efficiency; applicability to chemically reacting flows. In fact, for a single contact discontinuity, even if it is moving, this scheme gives the numerical flux of the exact solution of the Riemann problem. Various numerical experiments including that of a thermo-chemical nonequilibrium flow were performed, which indicate no oscillation and robustness of the scheme for shock/expansion waves. A cure for carbuncle phenomenon is discussed as well.
Comparison of holographic lens and filter systems for lateral spectrum splitting
NASA Astrophysics Data System (ADS)
Vorndran, Shelby; Chrysler, Benjamin; Kostuk, Raymond K.
2016-09-01
Spectrum splitting is an approach to increasing the conversion efficiency of a photovoltaic (PV) system. Several methods can be used to perform this function which requires efficient spatial separation of different spectral bands of the incident solar radiation. In this paper several of holographic methods for implementing spectrum splitting are reviewed along with the benefits and disadvantages associated with each approach. The review indicates that a volume holographic lens has many advantages for spectrum splitting in terms of both power conversion efficiency and energy yield. A specific design for a volume holographic spectrum splitting lens is discussed for use with high bandgap InGaP and low bandgap silicon PV cells. The holographic lenses are modeled using rigorous coupled wave analysis, and the optical efficiency is evaluated using non-sequential raytracing. A proof-of-concept off-axis holographic lens is also recorded in dichromated gelatin film and the spectral diffraction efficiency of the hologram is measured with multiple laser sources across the diffracted spectral band. The experimental volume holographic lens (VHL) characteristics are compared to an ideal spectrum splitting filter in terms of power conversion efficiency and energy yield in environments with high direct normal incidence (DNI) illumination and high levels of diffuse illumination. The results show that the experimental VHL can achieve 62.5% of the ideal filter power conversion efficiency, 64.8% of the ideal filter DNI environment energy yield, and 57.7% of the ideal diffuse environment energy yield performance.
NASA Astrophysics Data System (ADS)
Godfrey, Holly J.; Shelley, Adrian; Savage, Martha K.
2014-10-01
We investigate changes in shear wave splitting and VP/VS ratios of local earthquakes from the GeoNet catalogue during a 16 month period beginning a year before the first Te Maari eruption at Mount Tongariro on August 6, 2012, focusing on four permanent seismographs located in proximity to the volcano. We identify four time periods bounded by sharp transitions that comprise the study period, during which moving averages of the shear-wave splitting parameters, Φ (fast direction) and δt (delay time), are fairly constant. At all stations, VP/VS is steady throughout most of the study period at 1.75. Small variations occur during the earthquake swarm at the volcano, which started a month before the first eruption, and for some low magnitude events occurring after a change in earthquake location method. Analysis of data sets in which epicentre location, hypocentre depth and event magnitude are restricted illustrates that observed temporal changes in shear-wave splitting parameters are likely due to the spatial variation of paths. This in turn is governed by the spatial distribution of seismicity and measurement quality. We think the short term variation in VP/VS ratios is due to event origin time uncertainty of low magnitude earthquakes or incorrect S-phase arrival timing for events in the Tongariro swarm. These results suggest that any volcanic processes able to cause changes in shear-wave splitting or VP/VS associated with the two eruptions during our study period were too localised to Te Maari to be observed at the seismographs studied using our methods. Dominant Φ observed during the study period are oriented approximately tangential to the Tongariro/Ngauruhoe massif at all four stations. We suggest that this may result from gravitational loading of Tongariro and Ngauruhoe mountains inducing fracturing or dilatation of tangentially oriented microcracks. There may also be some effect from layered material causing horizontal propagating rays yielding faster speed SH waves than SV at station NGZ. Measurements from shallow earthquakes in immediate proximity to the seismographs indicate the potential presence of a shallow, highly anisotropic body in the volcano.
Femtosecond laser-induced subwavelength ripples formed by asymmetrical grating splitting
NASA Astrophysics Data System (ADS)
Feng, Pin; Jiang, Lan; Li, Xin; Zhang, Kaihu; Shi, Xuesong; Li, Bo; Lu, Yongfeng
2016-05-01
The formation process and mechanism of subwavelength ripples were studied upon irradiation of ZnO by a femtosecond laser (800 nm, 50 fs, 1 kHz). An abnormally asymmetrical grating-splitting phenomenon was discovered. At relatively high laser fluences (F = 0.51-0.63 J/cm2), near-wavelength ripples were split asymmetrically to create subwavelength laser-induced periodic surface structures (LIPSS) with dual gaps (˜230 nm and ˜430 nm) on the primary grooves. At relatively low laser fluences (F = 0.4-0.45 J/cm2), near-wavelength ripples were split symmetrically, leading to the formation of uniform subwavelength structures with a period of ˜340 nm. The splitting phenomena are related to the varying laser beam dose induced by the overlapping during line scanning. The two grating-splitting types further imply that the dominated mechanism for LIPSS formation may be changed under different processing conditions.
Tang, Wen-Jian; Song, Qin-Hua; Wang, Hong-Bo; Yu, Jing-Yu; Guo, Qing-Xiang
2006-07-07
Two modified beta-cyclodextrins (beta-CDs) with a thymine dimer and a thymine oxetane adduct respectively, TD-CD and Ox-CD, have been prepared, and utilized to bind an electron-rich chromophore, indole or N,N-dimethylaniline (DMA), to form a supramolecular complex. We have examined the photosensitized splitting of the dimer/oxetane unit in TD-CD/Ox-CD by indole or DMA via an electron-transfer pathway, and observed high splitting efficiencies of the dimer/oxetane unit. On the basis of measurements of fluorescence spectra and splitting quantum yields, it is suggested that the splitting reaction occurs in a supramolecular complex by an inclusion interaction between the modified beta-CDs and DMA or indole. The back electron transfer, which leads low splitting efficiencies for the covalently-linked chromophore-dimer/oxetane compounds, is suppressed in the non-covalently-bound complex, and the mechanism has been discussed.
Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation
NASA Technical Reports Server (NTRS)
Grossman, B.; Cinnella, P.
1990-01-01
The present consideration of numerical computation methods for gas flows with nonequilibrium chemistry thermodynamics gives attention to an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Flux-splitting procedures are developed for the fully-coupled inviscid equations encompassing fluid dynamics and both chemical and internal energy-relaxation processes. A fully coupled and implicit large-block structure is presented which embodies novel forms of flux-vector split and flux-difference split algorithms valid for nonequilibrium flow; illustrative high-temperature shock tube and nozzle flow examples are given.
High-Order Polynomial Expansions (HOPE) for flux-vector splitting
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Steffen, Chris J., Jr.
1991-01-01
The Van Leer flux splitting is known to produce excessive numerical dissipation for Navier-Stokes calculations. Researchers attempt to remedy this deficiency by introducing a higher order polynomial expansion (HOPE) for the mass flux. In addition to Van Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M equals 0. Several splittings for pressure are proposed and examined. The effectiveness of the HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic shock-wave boundary layer interactions. Also, the authors give the weakness of the scheme and suggest areas for further investigation.
Comparison of split double and triple twists in pair figure skating.
King, Deborah L; Smith, Sarah L; Brown, Michele R; McCrory, Jean L; Munkasy, Barry A; Scheirman, Gary I
2008-05-01
In this study, we compared the kinematic variables of the split triple twist with those of the split double twist to help coaches and scientists understand these landmark pair skating skills. High-speed video was taken during the pair short and free programmes at the 2002 Salt Lake City Winter Olympics and the 2003 International Skating Union Grand Prix Finals. Three-dimensional analyses of 14 split double twists and 15 split triple twists from eleven pairs were completed. In spite of considerable variability in the performance variables among the pairs, the main difference between the split double twists and split triple twists was an increase in rotational rate. While eight of the eleven pairs relied primarily on an increased rotational rate to complete the split triple twist, three pairs employed a combined strategy of increased rotational rate and increased flight time due predominantly to delayed or lower catches. These results were similar to observations of jumps in singles skating for which the extra rotation is typically due to an increase in rotational velocity; increases in flight time come primarily from delayed landings as opposed to additional height during flight. Combining an increase in flight time and rotational rate may be a good strategy for completing the split triple twist in pair skating.
Isoniazid, Pyrazinamide and Rifampicin Content Variation in Split Fixed-Dose Combination Tablets
Pouplin, Thomas; Phuong, Pham Nguyen; Toi, Pham Van; Nguyen Pouplin, Julie; Farrar, Jeremy
2014-01-01
Setting In most developing countries, paediatric tuberculosis is treated with split tablets leading to potential inaccuracy in the dose delivery and drug exposure. There is no data on the quality of first-line drugs content in split fixed-dose combination tablets. Objective To determine Isoniazid, Pyrazinamide and Rifampicin content uniformity in split FDC tablets used in the treatment of childhood tuberculosis. Design Drug contents of 15 whole tablets, 30 half tablets and 36 third tablets were analysed by high performance liquid chromatography. The content uniformity was assessed by comparing drug content measured in split portions with their expected amounts and the quality of split portions was assessed applying qualitative specifications for whole tablets. Results All whole tablets measurements fell into the USP proxy for the three drugs. But a significant number of half and third portions was found outside the tolerated variation range and the split formulation failed the requirements for content uniformity. To correct for the inaccuracy of splitting the tablets into equal portions, a weight-adjustment strategy was used but this did not improve the findings. Conclusion In split tablets the content of the three drugs is non-uniform and exceeded the USP recommendations. There is an absolute need to make child-friendly formulations available for the treatment of childhood tuberculosis. PMID:25004128
Isoniazid, pyrazinamide and rifampicin content variation in split fixed-dose combination tablets.
Pouplin, Thomas; Phuong, Pham Nguyen; Toi, Pham Van; Nguyen Pouplin, Julie; Farrar, Jeremy
2014-01-01
In most developing countries, paediatric tuberculosis is treated with split tablets leading to potential inaccuracy in the dose delivery and drug exposure. There is no data on the quality of first-line drugs content in split fixed-dose combination tablets. To determine Isoniazid, Pyrazinamide and Rifampicin content uniformity in split FDC tablets used in the treatment of childhood tuberculosis. Drug contents of 15 whole tablets, 30 half tablets and 36 third tablets were analysed by high performance liquid chromatography. The content uniformity was assessed by comparing drug content measured in split portions with their expected amounts and the quality of split portions was assessed applying qualitative specifications for whole tablets. All whole tablets measurements fell into the USP proxy for the three drugs. But a significant number of half and third portions was found outside the tolerated variation range and the split formulation failed the requirements for content uniformity. To correct for the inaccuracy of splitting the tablets into equal portions, a weight-adjustment strategy was used but this did not improve the findings. In split tablets the content of the three drugs is non-uniform and exceeded the USP recommendations. There is an absolute need to make child-friendly formulations available for the treatment of childhood tuberculosis.
Anitua, Eduardo; Begoña, Leire; Orive, Gorka
2013-04-01
The aim of this study was to evaluate the split-crest technique with ultrasonic bone surgery for implant placement in patients with narrow ridges, focusing on the status of soft and hard tissues and on implant success rate, at least 6 months after implant loading. During September 2007 and November 2008, 15 patients received 37 implants (BTI implants) with split-crest surgical procedure using ultrasonic bone surgery. Plasma rich in growth factors (PRGF®) was applied during split crest procedure to promote tissue regeneration. Implant surfaces were humidified with PRGF to accelerate osseointegration. Patients were recalled for a final clinical evaluation at least 6 months after implant loading. Clinical assessment included the status of soft and hard tissues around implants, and implants' success rate. Thirty-seven implants in 15 patients were evaluated between July 2009 and January 2010. The status of soft tissues was very good, showing adequate plaque index, bleeding index, and probing depth values. Success rate of implants at the end of follow-up (between 11 and 28 months after insertion) was 100%. Bone ridge was measured and compared at final examination showing a mean ridge expansion of 3.35 mm (SD: 0.34). Split-crest with ultrasonic bone surgery can be considered an effective and safe procedure for narrow ridge expansion. © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wu, Y. J.; Shen, C.; Tan, Q. H.; Shi, J.; Liu, X. F.; Wu, Z. H.; Zhang, J.; Tan, P. H.; Zheng, H. Z.
2018-04-01
The valley Zeeman splitting of monolayer two-dimensional (2D) materials in the magnetic field plays an important role in the valley and spin manipulations. In general, a high magnetic field (6-65 T) and low temperature (2-30 K) were two key measurement conditions to observe the resolvable valley Zeeman splitting of monolayer 2D materials in current reported experiments. In this study, we experimentally demonstrate an effective measurement scheme by employing magnetic circular dichroism (MCD) spectroscopy, which enables us to distinguish the valley Zeeman splitting under a relatively low magnetic field of 1 T at room temperature. MCD peaks related to both A and B excitonic transitions in monolayer MoS2 can be clearly observed. Based on the MCD spectra under different magnetic fields (-3 to 3 T), we obtained the valley Zeeman splitting energy and the g-factors of A and B excitons, respectively. Our results show that MCD spectroscopy is a high-sensitive magneto-optical technique to explore the valley and spin manipulation in 2D materials.
Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH
NASA Astrophysics Data System (ADS)
Liu, W. T.; Sun, P. N.; Ming, F. R.; Zhang, A. M.
2018-01-01
Smoothed particle hydrodynamics (SPH) method with numerical diffusive terms shows satisfactory stability and accuracy in some violent fluid-solid interaction problems. However, in most simulations, uniform particle distributions are used and the multi-resolution, which can obviously improve the local accuracy and the overall computational efficiency, has seldom been applied. In this paper, a dynamic particle splitting method is applied and it allows for the simulation of both hydrostatic and hydrodynamic problems. The splitting algorithm is that, when a coarse (mother) particle enters the splitting region, it will be split into four daughter particles, which inherit the physical parameters of the mother particle. In the particle splitting process, conservations of mass, momentum and energy are ensured. Based on the error analysis, the splitting technique is designed to allow the optimal accuracy at the interface between the coarse and refined particles and this is particularly important in the simulation of hydrostatic cases. Finally, the scheme is validated by five basic cases, which demonstrate that the present SPH model with a particle splitting technique is of high accuracy and efficiency and is capable for the simulation of a wide range of hydrodynamic problems.
NASA Astrophysics Data System (ADS)
Tang, Enling; Zhao, Liangliang; Han, Yafei; Zhang, Qingming; Wang, Ruizhi; He, Liping; Liu, Shuhua
2018-04-01
Due to the actual situation of spacecraft surface' charging, such as convex corners, weld line, whalebone and a multiple-interfaces with different materials, all these are main factors leading to uneven charging of spacecraft surface, even creating gradient potential. If the charging spacecraft surface is impacted by debris or micrometeor, discharge effect induced by impacting will pose a serious threat to spacecraft in orbit. So realizing spacecraft charging surface with different potential differences and grasping discharge characteristics are a decisive importance at the different experimental conditions in laboratory. To simulate the spacecraft surface with a gradient potential in laboratory, spacecraft surface is split into different parts, which different gaps reserved in 2 adjacent surface is added resistance to create different potential surfaces, and the high potential surface as a impact target in the split targets. Charging circuit system realizing different gradient potential and discharge test system are built by ourselves, combining with two-stage light gas gun loading system, six sets of experiments have been performed about hypervelocity impact on 2A12 aluminum split targets with gradient potentials. In the experiments, gaps of 2A12 aluminum target are the same among different parts in every experiments, the gaps of the split targets are 2mm, 3mm, 5mm, 7mm and 10mm in the experiments, respectively. And the applied voltage is 300V in all the experiments and high-potential 2A12 aluminum plate as the impact target. The experiments have been performed at the impact velocity of about 3km/s and the incidence angles of 60o and 90o (between projectile flying trajectory and target plane), respectively. Voltage probe and current probes are used for acquiring discharge voltages and currents during the process of the impact. The experimental results showed that the discharge induced by impact plasma were generated among high and low-potential target by forming a plasma discharge channel. With the increasing of the gaps among the high and low-potential targets, the peak values of the discharge current decreased first then increased. When the gaps of split targets reached a certain value, the peak values of the discharge current decreased again. Meanwhile, the gaps among high and low-potential targets was 5mm, the peak value of the discharge current was the smallest. With the increasing of the gaps among the split targets, a primary discharge duration also increased. However, when the gaps among the split targets were greater than 5mm, increasing trend of discharge duration would slow down. When the gaps among the split targets were greater than 7mm, there was a secondary discharge phenomenon, and the physical explanations were given about the influence of different gaps among the split targets on the discharge effects created by hypervelocity impact.
Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard
2015-01-01
In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6Sr0.4FeO3−δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe0 on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. PMID:25557533
Composition of legume soaking water and emulsifying properties in gluten-free bread.
Huang, San; Liu, Yuling; Zhang, Weihan; Dale, Kylie J; Liu, Silu; Zhu, Jingnan; Serventi, Luca
2018-04-01
Soaking of legumes results in the loss of macronutrients, micronutrients and phytochemicals. Fibre, protein and phytochemicals found in legumes exert emulsifying activity that may improve the structure and texture of gluten-free bread. The legume soaking water of haricot beans, garbanzo chickpeas, whole green lentils, split yellow peas and yellow soybeans were tested in this study for functional properties and use as food ingredients. Composition, physicochemical properties and effect on the quality of gluten-free bread were determined for each legume soaking water. Haricot beans and split yellow peas released the highest amount of solids in the legume soaking water: 1.89 and 2.38 g/100 g, respectively. Insoluble fibre was the main constituent of haricot beans legume soaking water, while water-soluble carbohydrates and protein were the major fraction of split yellow peas. High quantities of phenolics (∼400 µg/g) and saponins (∼3 mg/g) were found in the legume soaking water of haricot beans, whole green lentils and split yellow peas. High emulsifying activity (46 and 50%) was found for the legume soaking water of garbanzo chickpeas and split yellow peas, probably due to their protein content and high ratio of water-soluble carbohydrates to dry matter. Such activity resulted in softer texture of the gluten-free bread. A homogeneous structure of crumb pores was found for split yellow peas, opposing that of whole green lentils. A balance between the contents of yeast nutrients and antinutrients was the likely basis of the different appearances.
NASA Astrophysics Data System (ADS)
McKeown Walker, S.; Riccò, S.; Bruno, F. Y.; de la Torre, A.; Tamai, A.; Golias, E.; Varykhalov, A.; Marchenko, D.; Hoesch, M.; Bahramy, M. S.; King, P. D. C.; Sánchez-Barriga, J.; Baumberger, F.
2016-06-01
We reinvestigate the putative giant spin splitting at the surface of SrTiO3 reported by Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Our spin- and angle-resolved photoemission experiments on fractured (001) oriented surfaces supporting a two-dimensional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.
Comet nuclei and Trojan asteroids - A new link and a possible mechanism for comet splittings
NASA Technical Reports Server (NTRS)
Hartmann, William K.; Tholen, David J.
1990-01-01
Relatively elongated shapes, implied by recent evidence of a greater incidence of high amplitude lightcurves for comet nuclei and Trojan asteroids than for similarly scaled main belt asteroids, are suggested to have evolved among comet nuclei and Trojans due to volatile loss. It is further suggested that such an evolutionary course may account for observed comet splitting; rotational splitting may specifically occur as a result of evolution in the direction of an elongated shape through sublimation. Supporting these hypotheses, the few m/sec separation velocities projected for rotationally splitting elongated nuclei are precisely in the observed range.
Arkfeld, E K; Wilson, K B; Overholt, M F; Harsh, B N; Lowell, J E; Hogan, E K; Klehm, B J; Bohrer, B M; Kroscher, K A; Peterson, B C; Stites, C R; Mohrhauser, D A; King, D A; Wheeler, T L; Dilger, A C; Shackelford, S D; Boler, D D
2016-12-01
The objective was: 1) to characterize the effect of marketing group on fresh and cured ham quality, and 2) to determine which fresh ham traits correlated to cured ham quality traits. Pigs raised in 8 barns representing 2 seasons (hot and cold) and 2 production focuses (lean and quality) were used. Three groups were marketed from each barn. A total of 7,684 carcasses were used for data collection at the abattoir. Every tenth carcass was noted as a select carcass for in-depth ham quality analyses. Leg primal weight and instrumental color were measured on 100% of the population. On the select 10% of the population, hams were fabricated into sub-primal pieces, and 3-piece hams were manufactured to evaluate cured ham quality and processing yield. Data were analyzed as a split-plot design in the MIXED procedure of SAS with production focus as the whole-plot factor, and marketing group as the split-plot factor. Pearson correlation coefficients between fresh and cured ham traits were computed. There were no differences ( ≥ 0.15) in instrumental color or ultimate pH ( ≥ 0.14) among fresh ham muscles from any marketing group. The only exception was the semimembranosus of marketing group 2 was lighter than marketing group 1 ( = 0.03) and the dark portion of the semitendinosus muscle from group 1 was lighter than from group 3 ( = 0.01). There were no differences ( ≥ 0.33) in ultimate pH of fresh ham muscles between production focuses, but several muscles from quality focus pigs were lighter in color than ham muscles from lean focus pigs. The lack of differences in fresh ham quality lead to few differences in cured ham quality. Cured hams from the quality focus pigs had greater lipid content ( < 0.01) than hams from lean focus pigs. Cured lightness values of hams from marketing group 1 and 2 were 1.52 units lighter than hams from marketing group 3 ( 0.01). Overall, marketing group did not impact ham quality. Fresh ham quality was not strongly related to cured ham quality. Some correlations were present between fresh and cured ham traits, but those relationships were likely not strong enough to be used as a sorting tool for fresh hams to generate high quality cured hams.
Zhaodong Li; Chunhua Yao; Yanhao Yu; Zhiyong Cai; Xudong Wang
2014-01-01
Among current endeavors to explore renewable energy technologies, photoelectrochemical (PEC) water splitting holds great promise for conversion of solar energy to chemical energy. [ 1â4 ] Light absorption, charge separation, and appropriate interfacial redox reactions are three key aspects that lead to highly efficient solar energy conversion. [ 5â10 ] Therefore,...
Traumatic longitudinal splitting of the inferior rectus muscle
Laursen, Jessica; Demer, Joseph L.
2011-01-01
Orbital floor fractures and associated injuries can cause strabismus. We present the case of a 34-year-old man with incomitant strabismus following orbital reconstruction after a high-impact baseball injury. Multipositional, high-resolution magnetic resonance imaging (MRI) revealed extensive longitudinal splitting of the inferior rectus muscle by an orbital floor implant that separated its orbital and global layers. PMID:21463958
Schneider, Brooke C; Moritz, Steffen; Hottenrott, Birgit; Reimer, Jens; Andreou, Christina; Jelinek, Lena
2016-04-30
Association Splitting, a novel cognitive intervention, was tested in patients with alcohol dependence as an add-on intervention in an initial randomized controlled trial. Preliminary support for Association Splitting has been found in patients with obsessive-compulsive disorder, as well as in an online pilot study of patients with alcohol use disorders. The present variant sought to reduce craving by strengthening neutral associations with alcohol-related stimuli, thus, altering cognitive networks. Eighty-four inpatients with verified diagnoses of alcohol dependence, who were currently undergoing inpatient treatment, were randomly assigned to Association Splitting or Exercise Therapy. Craving was measured at baseline, 4-week follow-up, and six months later with the Obsessive-Compulsive Drinking Scale (primary outcome) and the Alcohol Craving Questionnaire. There was no advantage for Association Splitting after three treatment sessions relative to Exercise Therapy. Among Association Splitting participants, 51.9% endorsed a subjective decline in craving and 88.9% indicated that they would use Association Splitting in the future. Despite high acceptance, an additional benefit of Association Splitting beyond standard inpatient treatment was not found. Given that participants were concurrently undergoing inpatient treatment and Association Splitting has previously shown moderate effects, modification of the study design may improve the potential to detect significant effects in future trials. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Selective propagation and beam splitting of surface plasmons on metallic nanodisk chains.
Hu, Yuhui; Zhao, Di; Wang, Zhenghan; Chen, Fei; Xiong, Xiang; Peng, Ruwen; Wang, Mu
2017-05-01
Manipulating the propagation of surface plasmons (SPs) on a nanoscale is a fundamental issue of nanophotonics. By using focused electron beam, SPs can be excited with high spatial accuracy. Here we report on the propagation of SPs on a chain of gold nanodisks with cathodoluminescence (CL) spectroscopy. Experimental evidence for the propagation of SPs excited by the focused electron beam is demonstrated. The wavelength of the transmitted SPs depends on the geometrical parameters of the nanodisk chain. Furthermore, we design and fabricate a beam splitter, which selectively transmits SPs of certain wavelengths to a specific direction. By scanning the sample surface point by point and collecting the CL spectra, we obtain the spectral mapping and identify that the chain of the smaller nanodisks can efficiently transport SPs at shorter wavelengths. This Letter provides a unique approach to manipulate in-plane propagation of SPs.
Innovative Double Bypass Engine for Increased Performance
NASA Astrophysics Data System (ADS)
Manoharan, Sanjivan
Engines continue to grow in size to meet the current thrust requirements of the civil aerospace industry. Large engines pose significant transportation problems and require them to be split in order to be shipped. Thus, large amounts of time have been spent in researching methods to increase thrust capabilities while maintaining a reasonable engine size. Unfortunately, much of this research has been focused on increasing the performance and efficiencies of individual components while limited research has been done on innovative engine configurations. This thesis focuses on an innovative engine configuration, the High Double Bypass Engine, aimed at increasing fuel efficiency and thrust while maintaining a competitive fan diameter and engine length. The 1-D analysis was done in Excel and then compared to the results from Numerical Propulsion Simulation System (NPSS) software and were found to be within 4% error. Flow performance characteristics were also determined and validated against their criteria.
Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme
Zhang, Junshe; Haribal, Vasudev; Li, Fanxing
2017-01-01
We report iron-containing mixed-oxide nanocomposites as highly effective redox materials for thermochemical CO2 splitting and methane partial oxidation in a cyclic redox scheme, where methane was introduced as an oxygen “sink” to promote the reduction of the redox materials followed by reoxidation through CO2 splitting. Up to 96% syngas selectivity in the methane partial oxidation step and close to complete conversion of CO2 to CO in the CO2-splitting step were achieved at 900° to 980°C with good redox stability. The productivity and production rate of CO in the CO2-splitting step were about seven times higher than those in state-of-the-art solar-thermal CO2-splitting processes, which are carried out at significantly higher temperatures. The proposed approach can potentially be applied for acetic acid synthesis with up to 84% reduction in CO2 emission when compared to state-of-the-art processes. PMID:28875171
Wang, Hao; Cao, Yingjie; Sun, Cheng; Zou, Guifu; Huang, Jianwen; Kuai, Xiaoxiao; Zhao, Jianqing; Gao, Lijun
2017-09-22
High-performance and affordable electrocatalysts from earth-abundant elements are desirably pursued for water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Here, a bifunctional electrocatalyst of highly crystalline Mo 2 C nanoparticles supported on carbon sheets (Mo 2 C/CS) was designed toward overall water splitting. Owing to the highly active catalytic nature of Mo 2 C nanoparticles, the high surface area of carbon sheets and efficient charge transfer in the strongly coupled composite, the designed catalysts show excellent bifunctional behavior with an onset potential of -60 mV for HER and an overpotential of 320 mV to achieve a current density of 10 mA cm -2 for OER in 1 m KOH while maintaining robust stability. Moreover, the electrolysis cell using the catalyst only requires a low cell voltage of 1.73 V to achieve a current density of 10 mA cm -2 and maintains the activity for more than 100 h when employing the Mo 2 C/CS catalyst as both anode and cathode electrodes. Such high performance makes Mo 2 C/CS a promising electrocatalyst for practical hydrogen production from water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015-11-22
SECURITY CLASSIFICATION OF: This project aims to investigate a novel core-shell redox catalyst for combined methane partial oxidation and water...Properly designed redox catalyst are shown to be highly effective for syngas production (from methane ) and water-splitting. The resulting syngas has a...27709-2211 redox catalyst, methane partial oxidation, water-splitting REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR
Split and Splice Approach for Highly Selective Targeting of Human NSCLC Tumors
2014-10-01
development and implementation of the “split-and- spice ” approach required optimization of many independent parameters, which were addressed in parallel...verify the feasibility of the “split and splice” approach for targeting human NSCLC tumor cell lines in culture and prepare the optimized toxins for...for cultured cells (months 2- 8). 2B. To test the efficiency of cell targeting by the toxin variants reconstituted in vitro (months 3-6). 2C. To
Mechano-chemical pathways to H2O and CO2 splitting
NASA Astrophysics Data System (ADS)
Vedadi, Mohammad H.; Haas, Stephan
2011-10-01
The shock-induced collapse of CO2-filled nanobubbles is investigated using molecular dynamics simulations based on a reactive force field. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water and formation of O2 molecules. The dominant pathways through which splitting of water molecules occur are identified.
New Splitting Criteria for Decision Trees in Stationary Data Streams.
Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Rutkowski, Leszek; Duda, Piotr; Jaworski, Maciej
2018-06-01
The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type- splitting criteria guarantee, with high probability, the highest expected value of split measure. Type- criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.
Traffic dispersion through a series of signals with irregular split
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2016-01-01
We study the traffic behavior of a group of vehicles moving through a sequence of signals with irregular splits on a roadway. We present the stochastic model of vehicular traffic controlled by signals. The dynamic behavior of vehicular traffic is clarified by analyzing traffic pattern and travel time numerically. The group of vehicles breaks up more and more by the irregularity of signal's split. The traffic dispersion is induced by the irregular split. We show that the traffic dispersion depends highly on the cycle time and the strength of split's irregularity. Also, we study the traffic behavior through the series of signals at the green-wave strategy. The dependence of the travel time on offset time is derived for various values of cycle time. The region map of the traffic dispersion is shown in (cycle time, offset time)-space.
Xia, Yangkun; Fu, Zhuo; Pan, Lijun; Duan, Fenghua
2018-01-01
The vehicle routing problem (VRP) has a wide range of applications in the field of logistics distribution. In order to reduce the cost of logistics distribution, the distance-constrained and capacitated VRP with split deliveries by order (DCVRPSDO) was studied. We show that the customer demand, which can't be split in the classical VRP model, can only be discrete split deliveries by order. A model of double objective programming is constructed by taking the minimum number of vehicles used and minimum vehicle traveling cost as the first and the second objective, respectively. This approach contains a series of constraints, such as single depot, single vehicle type, distance-constrained and load capacity limit, split delivery by order, etc. DCVRPSDO is a new type of VRP. A new tabu search algorithm is designed to solve the problem and the examples testing show the efficiency of the proposed algorithm. This paper focuses on constructing a double objective mathematical programming model for DCVRPSDO and designing an adaptive tabu search algorithm (ATSA) with good performance to solving the problem. The performance of the ATSA is improved by adding some strategies into the search process, including: (a) a strategy of discrete split deliveries by order is used to split the customer demand; (b) a multi-neighborhood structure is designed to enhance the ability of global optimization; (c) two levels of evaluation objectives are set to select the current solution and the best solution; (d) a discriminating strategy of that the best solution must be feasible and the current solution can accept some infeasible solution, helps to balance the performance of the solution and the diversity of the neighborhood solution; (e) an adaptive penalty mechanism will help the candidate solution be closer to the neighborhood of feasible solution; (f) a strategy of tabu releasing is used to transfer the current solution into a new neighborhood of the better solution.
Xia, Yangkun; Pan, Lijun; Duan, Fenghua
2018-01-01
The vehicle routing problem (VRP) has a wide range of applications in the field of logistics distribution. In order to reduce the cost of logistics distribution, the distance-constrained and capacitated VRP with split deliveries by order (DCVRPSDO) was studied. We show that the customer demand, which can’t be split in the classical VRP model, can only be discrete split deliveries by order. A model of double objective programming is constructed by taking the minimum number of vehicles used and minimum vehicle traveling cost as the first and the second objective, respectively. This approach contains a series of constraints, such as single depot, single vehicle type, distance-constrained and load capacity limit, split delivery by order, etc. DCVRPSDO is a new type of VRP. A new tabu search algorithm is designed to solve the problem and the examples testing show the efficiency of the proposed algorithm. This paper focuses on constructing a double objective mathematical programming model for DCVRPSDO and designing an adaptive tabu search algorithm (ATSA) with good performance to solving the problem. The performance of the ATSA is improved by adding some strategies into the search process, including: (a) a strategy of discrete split deliveries by order is used to split the customer demand; (b) a multi-neighborhood structure is designed to enhance the ability of global optimization; (c) two levels of evaluation objectives are set to select the current solution and the best solution; (d) a discriminating strategy of that the best solution must be feasible and the current solution can accept some infeasible solution, helps to balance the performance of the solution and the diversity of the neighborhood solution; (e) an adaptive penalty mechanism will help the candidate solution be closer to the neighborhood of feasible solution; (f) a strategy of tabu releasing is used to transfer the current solution into a new neighborhood of the better solution. PMID:29763419
Solar thermochemical splitting of water to generate hydrogen
Rao, C. N. R.; Dey, Sunita
2017-01-01
Solar photochemical means of splitting water (artificial photosynthesis) to generate hydrogen is emerging as a viable process. The solar thermochemical route also promises to be an attractive means of achieving this objective. In this paper we present different types of thermochemical cycles that one can use for the purpose. These include the low-temperature multistep process as well as the high-temperature two-step process. It is noteworthy that the multistep process based on the Mn(II)/Mn(III) oxide system can be carried out at 700 °C or 750 °C. The two-step process has been achieved at 1,300 °C/900 °C by using yttrium-based rare earth manganites. It seems possible to render this high-temperature process as an isothermal process. Thermodynamics and kinetics of H2O splitting are largely controlled by the inherent redox properties of the materials. Interestingly, under the conditions of H2O splitting in the high-temperature process CO2 can also be decomposed to CO, providing a feasible method for generating the industrially important syngas (CO+H2). Although carbonate formation can be addressed as a hurdle during CO2 splitting, the problem can be avoided by a suitable choice of experimental conditions. The choice of the solar reactor holds the key for the commercialization of thermochemical fuel production. PMID:28522461
Complete kinetic mechanism for recycling of the bacterial ribosome
Borg, Anneli; Pavlov, Michael
2016-01-01
How EF-G and RRF act together to split a post-termination ribosomal complex into its subunits has remained obscure. Here, using stopped-flow experiments with Rayleigh light scattering detection and quench-flow experiments with radio-detection of GTP hydrolysis, we have clarified the kinetic mechanism of ribosome recycling and obtained precise estimates of its kinetic parameters. Ribosome splitting requires that EF-G binds to an already RRF-containing ribosome. EF-G binding to RRF-free ribosomes induces futile rounds of GTP hydrolysis and inhibits ribosome splitting, implying that while RRF is purely an activator of recycling, EF-G acts as both activator and competitive inhibitor of RRF in recycling of the post-termination ribosome. The ribosome splitting rate and the number of GTPs consumed per splitting event depend strongly on the free concentrations of EF-G and RRF. The maximal recycling rate, here estimated as 25 sec−1, is approached at very high concentrations of EF-G and RRF with RRF in high excess over EF-G. The present in vitro results, suggesting an in vivo ribosome recycling rate of ∼5 sec−1, are discussed in the perspective of rapidly growing bacterial cells. PMID:26527791
NASA Technical Reports Server (NTRS)
Weick, Fred E; Wenzinger, Carl J
1935-01-01
This report covers the twelfth of a series of tests conducted to compare different lateral control devices with particular reference to their effectiveness at high angles of attack. The present wind tunnel tests were made with two sizes of upper-surface ailerons on rectangular Clark Y wing models equipped with full span split flaps. The tests showed the effect of the upper-surface ailerons and of the split flaps on the general performance characteristics of the wings, and on the lateral controllability and stability characteristics. The results are compared with those for plain wings with ordinary ailerons of similar sizes.
Perspectives on Interlanguage Phonetics and Phonology.
ERIC Educational Resources Information Center
Monroy, Rafael, Ed.; Gutierrez, Francisco, Ed.
2001-01-01
Articles in this special issue include the following: "Allophonic Splits in L2 Phonology: The Questions of Learnability" (Fred R. Eckman, Abdullah Elreyes, Gregory K. Iverson); "Native Language Influence in Learners' Assessment of English Focus" (M. L. Garcia Lecumberri); "Obstruent Voicing in English and Polish. A…
A Christian Fellowship's Ban on Gay Leaders Splits 2 Campuses.
ERIC Educational Resources Information Center
McMurtrie, Beth
2000-01-01
Reports on conflicts between student religious groups and college nondiscrimination policies concerning homosexuality. Incidents involved the student Christian Fellowship chapters at Tufts University (Massachusetts) and Middlebury College (Vermont). Conflict focuses on freedom of religion versus the institution's right to withhold funding from…
Wave front engineering by means of diffractive optical elements for applications in microscopy
NASA Astrophysics Data System (ADS)
Cojoc, Dan; Ferrari, Enrico; Garbin, Valeria; Cabrini, Stefano; Carpentiero, Alessandro; Prasciolu, Mauro; Businaro, Luca; Kaulich, Burchard; Di Fabrizio, Enzo
2006-05-01
We present a unified view regarding the use of diffractive optical elements (DOEs) for microscopy applications a wide range of electromagnetic spectrum. The unified treatment is realized through the design and fabrication of DOE through which wave front beam shaping is obtained. In particular we show applications ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy. We report some details on the design and physical implementation of diffractive elements that beside focusing perform also other optical functions: beam splitting, beam intensity and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of spherical micro beads and for direct trapping and manipulation of biological cells with non-spherical shapes. Another application is the Gauss to Laguerre-Gaussian mode conversion, which allows to trap and transfer orbital angular momentum of light to micro particles with high refractive index and to trap and manipulate low index particles. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for DOEs implementation. High resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in X-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field X-ray microscopy.
Learning-Based Object Identification and Segmentation Using Dual-Energy CT Images for Security.
Martin, Limor; Tuysuzoglu, Ahmet; Karl, W Clem; Ishwar, Prakash
2015-11-01
In recent years, baggage screening at airports has included the use of dual-energy X-ray computed tomography (DECT), an advanced technology for nondestructive evaluation. The main challenge remains to reliably find and identify threat objects in the bag from DECT data. This task is particularly hard due to the wide variety of objects, the high clutter, and the presence of metal, which causes streaks and shading in the scanner images. Image noise and artifacts are generally much more severe than in medical CT and can lead to splitting of objects and inaccurate object labeling. The conventional approach performs object segmentation and material identification in two decoupled processes. Dual-energy information is typically not used for the segmentation, and object localization is not explicitly used to stabilize the material parameter estimates. We propose a novel learning-based framework for joint segmentation and identification of objects directly from volumetric DECT images, which is robust to streaks, noise and variability due to clutter. We focus on segmenting and identifying a small set of objects of interest with characteristics that are learned from training images, and consider everything else as background. We include data weighting to mitigate metal artifacts and incorporate an object boundary field to reduce object splitting. The overall formulation is posed as a multilabel discrete optimization problem and solved using an efficient graph-cut algorithm. We test the method on real data and show its potential for producing accurate labels of the objects of interest without splits in the presence of metal and clutter.
NASA Astrophysics Data System (ADS)
Zhai, Li-Xue; Wang, Yan; An, Zhong
2018-05-01
Spin-dependent transport in one-dimensional (1D) three-terminal Rashba rings is investigated under a weak magnetic field, and we focus on the Zeeman splitting (ZS) effect. For this purpose, the interaction between the electron spin and the weak magnetic field has been treated by perturbation theory. ZS removes the spin degeneracy, and breaks both the time reversal symmetry and the spin reversal symmetry of the ring system. Consequently, all conductance zeros are lifted and turned into conductance dips. Aharonov-Bohm (AB) oscillations can be found in both branch conductances and the total conductance as a function of the magnetic field. In a relatively high magnetic field, the decoherence caused by ZS decreases the amplitude of the branch conductance and increases that of the total conductance. The results have been compared with those reported in the published literature, and a reasonable agreement is obtained. The conductance as a function of the Rashba spin-orbit coupling (RSOC) strength has also been investigated. As the RSOC strength increases, the role of ZS becomes weaker and weaker; ZS can even be neglected when B ≤ 0.1 T.
NASA Astrophysics Data System (ADS)
Kodre, A.; Tellier, J.; Arčon, I.; Malič, B.; Kosec, M.
2009-06-01
Following an x-ray diffraction study of phase transitions of the piezoelectric perovskite K0.5Na0.5NbO3 the structural changes of the material are studied using extended x-ray absorption fine structure analysis, whereby the neighborhood of Nb atom is determined in the temperature range of monoclinic, tetragonal, and cubic phases. Within the entire range Nb atom is displaced from the center of the octahedron of its immediate oxygen neighbors, as witnessed by the splitting of Nb-O distance. The model shows high prevalence of the displacement in the (111) crystallographic direction of the simple perovskite cell. The corresponding splitting of the Nb-Nb distance is negligible. There is no observable disalignment of the linear Nb-O-Nb bonds from the ideal cubic arrangement, judging from the intensity of the focusing of the photoelectron wave on the Nb-Nb scattering path by the interposed oxygen atom. As a general result, the phase transitions are found as an effect of the long-range order, while the placement of the atoms in the immediate vicinity remains largely unaffected.
Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herk, Anastasia
This project was created from a partnership between the U.S. Department of Energy’s (DOE’s) Building America research team IBACOS, Inc. and Imagine Homes, a production homebuilder of high-performance homes in San Antonio, Texas—a hot-humid climate. The primary purpose was to evaluate the performance of a multihead mini-split heat pump (MSHP) space-conditioning system, which consists of ducted and ductless indoor units, in maintaining uniform comfort in an occupied test house. The research team evaluated the MSHP space-conditioning strategy for its effectiveness in achieving uniform temperature and relative humidity (RH) levels throughout the test house and for overall constructability and cost. Thismore » evaluation was based on data that were collected from short-term tests and monitoring during 1 year of occupancy, as well as from builder and occupant feedback. Design considerations for integrating an MSHP system into the builder’s full range of production home designs were also explored, with a focus on minimizing the cost and complexity of the system design while meeting the thermal loads of the house and providing occupant comfort according to ANSI/ASHRAE Standard 55-2010 (ASHRAE 2010a).« less
Najafpour, Mohammad Mahdi; Rahimi, Fahimeh; Aro, Eva-Mari; Lee, Choon-Hwan; Allakhverdiev, Suleyman I.
2012-01-01
There has been a tremendous surge in research on the synthesis of various metal compounds aimed at simulating the water-oxidizing complex (WOC) of photosystem II (PSII). This is crucial because the water oxidation half reaction is overwhelmingly rate-limiting and needs high over-voltage (approx. 1 V), which results in low conversion efficiencies when working at current densities required for hydrogen production via water splitting. Particular attention has been given to the manganese compounds not only because manganese has been used by nature to oxidize water but also because manganese is cheap and environmentally friendly. The manganese–calcium cluster in PSII has a dimension of about approximately 0.5 nm. Thus, nano-sized manganese compounds might be good structural and functional models for the cluster. As in the nanometre-size of the synthetic models, most of the active sites are at the surface, these compounds could be more efficient catalysts than micrometre (or bigger) particles. In this paper, we focus on nano-sized manganese oxides as functional and structural models of the WOC of PSII for hydrogen production via water splitting and review nano-sized manganese oxides used in water oxidation by some research groups. PMID:22809849
Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng
2014-10-08
Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.
Design of Single-Site Photocatalyst using Metal-Organic Framework as Matrix.
Wen, Meicheng; Mori, Kohsuke; Kuwahara, Yasutaka; An, Taicheng; Yamashita, Hiromi
2018-05-14
Single-site photocatalyst generally displays excellent photocatalytic activtiy and considerable high stability as compared to homogeneous catalytic system. A rational structural design of single-site photocatalyst with isolated, uniform and spatially separated active sites in a given solid is of prime importance to achieve high photocatalytic activity. Intense attentions have been focused on the engineering and fabrication of single-site photocatalys by using porous materials as platform. Metal-organic frameworks (MOFs) hold great potential for the design and fabrication of single-site photocatalysts due to their remarkable porosity, ultrahigh surface area, extraordinary tailorability and significant diversity. MOFs can provide abundant number of binding sites for anchoring active sites, result in significant enhancement of photocatalytic performance. In this focus review, the development of single-site MOF photocatalysts that perform in important and challenging chemical redox reaction such as photocatalytic water splitting, photocatalytic CO₂ conversion and organic transformations is summarized thoroughly. The successful strategies applied for the construction of single-site MOF photocatalysts and major challenge toward practical application was summarized and pointed out, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-destructive splitter of twisted light based on modes splitting in a ring cavity.
Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can
2016-02-08
Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spectra will split. When mode and impedance matches between the cavity and one OAM-carried beam are achieved, this beam will transmit through the cavity and other beam will be reflected, both beams keep their spatial shapes. In this case, the cavity acts like a polarized beam splitter. Besides, the transmitting beam can be selected at your will, the splitting efficiency can reach unity if the cavity is lossless and it completely matches the beam. Furthermore, beams carry multi-OAMs can also be split by cascading ring cavities.
Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting
NASA Astrophysics Data System (ADS)
Dong, Zhenbiao; Ding, Dongyan; Li, Ting; Ning, Congqin
2018-06-01
Photoelectrochemical (PEC) water splitting hydrogen production provides a promising way for sustainable development. In this work, we prepared Ni-doped TiO2 (Ti-Ni-O) nanotubes through anodizing different Ti-Ni alloys and further annealing them at elevated temperatures, and reported their PEC water splitting performance. It was found that Ni doping could improve light absorption and facilitate separation of photo-excited electron-hole pair. The nanotubes fabricated on Ti-1 wt.% Ni alloy and annealed at 550 °C exhibited better PEC water splitting performance than those on Ti-10 wt.% Ni alloy. The photoconversion efficiency was 0.67%, which was 3.35 times the photoconversion efficiency of undoped TiO2. It demonstrated that it was feasible to fabricate high-performance Ti-Ni-O nanotubes on Ti-Ni alloys and used as photoanode for improving PEC water splitting.
Landau level splitting in Cd3As2 under high magnetic fields
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Cao, Junzhi; Liang, Sihang; Xia, Zhengcai; Li, Liang; Xiu, Faxian
2015-03-01
Three-dimensional (3D) topological Dirac semimetals (TDSs) are a new kind of Dirac materials that adopt nontrivial topology in band structure and possess degenerated massless Dirac fermions in the bulk. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport evidence of Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry (TRS). The observed Landau level splitting is originated from the joint contributions of orbit and Zeeman splitting in Cd3As2. In addition, the detected Berry phase is found to vary from nontrivial to trivial at different field directions, revealing a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results demonstrate a feasible path to generate a Weyl semimetal phase based on the TDSs by breaking TRS.
Universal exchange-driven phonon splitting
NASA Astrophysics Data System (ADS)
Deisenhofer, Joachim; Kant, Christian; Schmidt, Michael; Wang, Zhe; Mayr, Franz; Tsurkan, Vladimir; Loidl, Alois
2012-02-01
We report on a linear dependence of the phonon splitting on the non-dominant exchange coupling Jnd in the antiferromagnetic monoxides MnO, Fe0.92O, CoO and NiO, and in the highly frustrated antiferromagnetic spinels CdCr2O4, MgCr2O4 and ZnCr2O4. For the monoxides our results directly confirm the theoretical prediction of a predominantly exchange induced splitting of the zone-centre optical phonon [1,2]. We find the linear relation δφ= βJndS^2 with slope β = 3.7. This relation also holds for a very different class of systems, namely the highly frustrated chromium spinels. Our finding suggests a universal dependence of the exchange-induced phonon splitting at the antiferromagnetic transition on the non-dominant exchange coupling [3].[4pt] [1] S. Massidda et al., Phys. Rev. Lett. 82, 430 (1999).[0pt] [2] W. Luo et al., Solid State Commun. 142, 504 (2007).[0pt] [3] Ch. Kant et al., arxiv:1109.4809.
Dynamics of a split torque helicopter transmission
NASA Technical Reports Server (NTRS)
Rashidi, Majid; Krantz, Timothy
1992-01-01
A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.
OECD Review of Career Guidance Policies. Norway: Country Note.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France).
Norway's career guidance system and policies were evaluated. The review team met with policymakers and guidance practitioners in the public and private sectors, analyzed data from a national questionnaire, and reviewed pertinent documentation. The evaluation focused on the following areas: splitting educational/vocational guidance from personal…
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Woods is a Habitat for Humanity (HFH) community of ENERGY STAR Homes (c) Northwest (ESHNW)-certified homes located in the marine climate of Tacoma/Pierce County, Washington. This research report builds on an earlier preliminary draft 2014 BA report, and includes significant billing analysis and cost effectiveness research from a collaborative, ongoing Ductless Heat Pump (DHP) research effort for Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013more » and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.
The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.
The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.
Lee, Gileung; Lee, Kang-Ie; Lee, Yunjoo; Kim, Backki; Lee, Dongryung; Seo, Jeonghwan; Jang, Su; Chin, Joong Hyoun; Koh, Hee-Jong
2018-07-01
The split-hull phenotype caused by reduced lemma width and low lignin content is under control of SPH encoding a type-2 13-lipoxygenase and contributes to high dehulling efficiency. Rice hulls consist of two bract-like structures, the lemma and palea. The hull is an important organ that helps to protect seeds from environmental stress, determines seed shape, and ensures grain filling. Achieving optimal hull size and morphology is beneficial for seed development. We characterized the split-hull (sph) mutant in rice, which exhibits hull splitting in the interlocking part between lemma and palea and/or the folded part of the lemma during the grain filling stage. Morphological and chemical analysis revealed that reduction in the width of the lemma and lignin content of the hull in the sph mutant might be the cause of hull splitting. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene, sph (Os04g0447100), which encodes a type-2 13-lipoxygenase. SPH knockout and knockdown transgenic plants displayed the same split-hull phenotype as in the mutant. The sph mutant showed significantly higher linoleic and linolenic acid (substrates of lipoxygenase) contents in spikelets compared to the wild type. It is probably due to the genetic defect of SPH and subsequent decrease in lipoxygenase activity. In dehulling experiment, the sph mutant showed high dehulling efficiency even by a weak tearing force in a dehulling machine. Collectively, the results provide a basis for understanding of the functional role of lipoxygenase in structure and maintenance of hulls, and would facilitate breeding of easy-dehulling rice.
Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells
Qiu, Yongcai; Liu, Wei; Chen, Wei; Chen, Wei; Zhou, Guangmin; Hsu, Po-Chun; Zhang, Rufan; Liang, Zheng; Fan, Shoushan; Zhang, Yuegang; Cui, Yi
2016-01-01
Bismuth vanadate (BiVO4) has been widely regarded as a promising photoanode material for photoelectrochemical (PEC) water splitting because of its low cost, its high stability against photocorrosion, and its relatively narrow band gap of 2.4 eV. However, the achieved performance of the BiVO4 photoanode remains unsatisfactory to date because its short carrier diffusion length restricts the total thickness of the BiVO4 film required for sufficient light absorption. We addressed the issue by deposition of nanoporous Mo-doped BiVO4 (Mo:BiVO4) on an engineered cone-shaped nanostructure, in which the Mo:BiVO4 layer with a larger effective thickness maintains highly efficient charge separation and high light absorption capability, which can be further enhanced by multiple light scattering in the nanocone structure. As a result, the nanocone/Mo:BiVO4/Fe(Ni)OOH photoanode exhibits a high water-splitting photocurrent of 5.82 ± 0.36 mA cm−2 at 1.23 V versus the reversible hydrogen electrode under 1-sun illumination. We also demonstrate that the PEC cell in tandem with a single perovskite solar cell exhibits unassisted water splitting with a solar-to-hydrogen conversion efficiency of up to 6.2%. PMID:27386565
A numerical study of adaptive space and time discretisations for Gross–Pitaevskii equations
Thalhammer, Mechthild; Abhau, Jochen
2012-01-01
As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross–Pitaevskii equation arising in the description of Bose–Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross–Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter 0<ε≪1, especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the numerical approximation captures correctly the behaviour of the analytical solution. Further illustrations for Gross–Pitaevskii equations with a focusing nonlinearity or a sharp Gaussian as initial condition, respectively, complement the numerical study. PMID:25550676
A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.
Thalhammer, Mechthild; Abhau, Jochen
2012-08-15
As a basic principle, benefits of adaptive discretisations are an improved balance between required accuracy and efficiency as well as an enhancement of the reliability of numerical computations. In this work, the capacity of locally adaptive space and time discretisations for the numerical solution of low-dimensional nonlinear Schrödinger equations is investigated. The considered model equation is related to the time-dependent Gross-Pitaevskii equation arising in the description of Bose-Einstein condensates in dilute gases. The performance of the Fourier-pseudo spectral method constrained to uniform meshes versus the locally adaptive finite element method and of higher-order exponential operator splitting methods with variable time stepsizes is studied. Numerical experiments confirm that a local time stepsize control based on a posteriori local error estimators or embedded splitting pairs, respectively, is effective in different situations with an enhancement either in efficiency or reliability. As expected, adaptive time-splitting schemes combined with fast Fourier transform techniques are favourable regarding accuracy and efficiency when applied to Gross-Pitaevskii equations with a defocusing nonlinearity and a mildly varying regular solution. However, the numerical solution of nonlinear Schrödinger equations in the semi-classical regime becomes a demanding task. Due to the highly oscillatory and nonlinear nature of the problem, the spatial mesh size and the time increments need to be of the size of the decisive parameter [Formula: see text], especially when it is desired to capture correctly the quantitative behaviour of the wave function itself. The required high resolution in space constricts the feasibility of numerical computations for both, the Fourier pseudo-spectral and the finite element method. Nevertheless, for smaller parameter values locally adaptive time discretisations facilitate to determine the time stepsizes sufficiently small in order that the numerical approximation captures correctly the behaviour of the analytical solution. Further illustrations for Gross-Pitaevskii equations with a focusing nonlinearity or a sharp Gaussian as initial condition, respectively, complement the numerical study.
Development of RLV-TD Stage Separation System
NASA Astrophysics Data System (ADS)
Mohan, Ganesh; Rao, Y. Naga Sreenivasa; Prakash, P.; Subramanian, U. A.; Purushothaman, P.; Premdas, M.; Abraham, Baby; Kishorenath, V.; Jayachandran, T.
2017-12-01
Hyper Sonic Experiment (HEX-01), with main focus on the aero thermodynamic characterization and end to end autonomous mission management, is the first in a series of demonstrators planned by ISRO for the development of a Reusable Launch Vehicle (RLV). This paper gives the evolution of the split collet based separation system used in the separation of the spent booster stage from the RLV-Technology Demonstrator Vehicle (TDV). The separation mechanism is very compact, yet has a very high load bearing capacity. The design details and the challenges faced during flight qualification of the system are discussed in this paper. There are a lot of promising areas where this system can be used.
Outcomes for split-thickness skin transplantation in high-risk patients using octenidine.
Matiasek, J; Djedovic, G; Unger, L; Beck, H; Mattesich, M; Pierer, G; Koller, R; Rieger, U M
2015-06-01
Skin transplantation is a commonly used surgical technique; however, the complication rate, including postoperative infection and delayed wound healing due to inefficient perfusion, is significantly higher in patients suffering from comorbidities. Hence, a subsequent repeat procedure is often necessary. In this report, two case studies are presented in which an octenidine-based antiseptic is used with a tie-over dressing (TOD) instead of povidone iodine (PVP-iodine), following a split-thickness skin graft. The two patients selected were deemed to be at high risk of impaired wound healing due to comorbidities. The first patient, a confirmed smoker with diabetes, presented with a nodular melanoma that was resected and covered with a split-thickness skin graft. After 5 days of negative pressure wound therapy as a TOD, in combination with PVP-iodine, the graft became necrotic. A second split-thickness skin graft was performed and an antiseptic regimen with octenidine in combination with the same TOD resulted in a completely healed transplant. The second patient, also a confirmed smoker with diabetes and receiving oral corticosteroid treatment, was diagnosed with a skin necrosis on her leg. Following the split-thickness skin graft, octenidine and TOD were applied. The patient's skin graft completely healed without any adverse events. These two case studies indicate that the combination of octenidine and TOD following split-thickness skin transplantation is safe, well-tolerated and appears to have positive benefits in the reconstruction of defects in patients with impaired wound healing.
Zhu, Ruoqing; Zeng, Donglin; Kosorok, Michael R.
2015-01-01
In this paper, we introduce a new type of tree-based method, reinforcement learning trees (RLT), which exhibits significantly improved performance over traditional methods such as random forests (Breiman, 2001) under high-dimensional settings. The innovations are three-fold. First, the new method implements reinforcement learning at each selection of a splitting variable during the tree construction processes. By splitting on the variable that brings the greatest future improvement in later splits, rather than choosing the one with largest marginal effect from the immediate split, the constructed tree utilizes the available samples in a more efficient way. Moreover, such an approach enables linear combination cuts at little extra computational cost. Second, we propose a variable muting procedure that progressively eliminates noise variables during the construction of each individual tree. The muting procedure also takes advantage of reinforcement learning and prevents noise variables from being considered in the search for splitting rules, so that towards terminal nodes, where the sample size is small, the splitting rules are still constructed from only strong variables. Last, we investigate asymptotic properties of the proposed method under basic assumptions and discuss rationale in general settings. PMID:26903687
Many-body and spin-orbit aspects of the alternating current phenomena
NASA Astrophysics Data System (ADS)
Glenn, Rachel M.
The thesis reports on research in the general field of light interaction with matter. According to the topics addressed, it can be naturally divided into two parts: Part I, many-body aspects of the Rabi oscillations which a two-level systems undergoes under a strong resonant drive; and Part II, absorption of the ac field between the spectrum branches of two-dimensional fermions that are split by the combined action of Zeeman and spin-orbit (SO) fields. The focus of Part I is the following many-body effects that modify the conventional Rabi oscillations: Chapter 1, coupling of a two-level system to a single vibrational mode of the environment. Chapter 2, correlated Rabi oscillations in two electron-hole systems coupled by tunneling with strong electron-hole attraction. In Chapter 1, a new effect of Rabi-vibronic resonance is uncovered. If the frequency of the Rabi oscillations, OR, is close to the frequency o0 of the vibrational mode, the oscillations acquire a collective character. It is demonstrated that the actual frequency of the collective oscillations exhibits a bistable behavior as a function of OR - o0. The main finding in Chapter 2 is, that the Fourier spectrum of the Rabi oscillations in two coupled electron-hole systems undergoes a strong transformation with increasing O R. For OR smaller than the tunneling frequency, the spectrum is dominated by a low-frequency (<< OR ) component and contains two additional weaker lines; conventional Rabi oscillations are restored only as OR exceeds the electron-hole attraction strength. The highlight of Part II is a finding that, while the spectrum of absorption between either Zeeman-split branches or SO-split branches is close to a delta-peak, in the presence of both, it transforms into a broad line with singular behavior at the edges. In particular, when the magnitudes of Zeeman and SO are equal, absorption of very low (much smaller than the splitting) frequencies become possible. The shape of the absorption spectrum is highly anisotropic with respect to the exciting field. This peculiar behavior of the absorption is also studied in wire geometry, where the interplay between two couplings (Zeeman and spin-orbit splitting) affects the shape of numerous absorption peaks.
An efficient unstructured WENO method for supersonic reactive flows
NASA Astrophysics Data System (ADS)
Zhao, Wen-Geng; Zheng, Hong-Wei; Liu, Feng-Jun; Shi, Xiao-Tian; Gao, Jun; Hu, Ning; Lv, Meng; Chen, Si-Cong; Zhao, Hong-Da
2018-03-01
An efficient high-order numerical method for supersonic reactive flows is proposed in this article. The reactive source term and convection term are solved separately by splitting scheme. In the reaction step, an adaptive time-step method is presented, which can improve the efficiency greatly. In the convection step, a third-order accurate weighted essentially non-oscillatory (WENO) method is adopted to reconstruct the solution in the unstructured grids. Numerical results show that our new method can capture the correct propagation speed of the detonation wave exactly even in coarse grids, while high order accuracy can be achieved in the smooth region. In addition, the proposed adaptive splitting method can reduce the computational cost greatly compared with the traditional splitting method.
Gogna, Nirdosh Kumar; Baxi, Siddhartha; Hickey, Brigid; Baumann, Kathryn; Burmeister, Elizabeth; Holt, Tanya
2012-06-01
Local progression, in patients with hormone-refractory prostate cancer, often causes significant morbidity. Pelvic radiotherapy (RT) provides effective palliation in this setting, with most published studies supporting the use of high-dose regimens. The aim of the present study was to examine the role of split-course hypofractionated RT used at our institution in treating this group of patients. A total of 34 men with locoregionally progressive hormone-refractory prostate cancer, treated with a split course of pelvic RT (45-60 Gy in 18-24 fractions) between 2000 and 2008 were analyzed. The primary endpoints were the response rate and actuarial locoregional progression-free survival. Secondary endpoints included overall survival, compliance, and acute and late toxicity. The median age was 71 years (range, 53-88). Treatment resulted in an overall initial response rate of 91%, a median locoregional progression-free survival of 43 months, and median overall survival of 28 months. Compliance was excellent and no significant late toxicity was reported. The split course pelvic RT described has an acceptable toxicity profile, is effective, and compares well with other high-dose palliative regimens that have been previously reported. Copyright © 2012 Elsevier Inc. All rights reserved.
Full acoustic and thermal characterization of HIFU field in the presence of a ribcage model
NASA Astrophysics Data System (ADS)
Cao, Rui; Le, Nhan; Nabi, Ghulam; Huang, Zhihong
2017-03-01
In the treatment of abdominal organs using high intensity focused ultrasound (HIFU), the patient's ribs are in the pathway of the HIFU beams which could result in acoustic distortion, occasional skin burns and insufficient energy delivered to the target organs. To provide full characterization of HIFU field with the influence of ribcage, the ribcage phantom reconstructed from a patient's CT images was created by tissue mimicking materials and its effect on acoustic field was characterized. The effect of the ribcage on acoustic field has been provided in acoustic pressure distribution, acoustic power and focal temperature. Measurement result shows focus splitting with one main focus and two secondary intensity maxima. With the presence of ribcage phantom, the acoustic pressure was reduced by 48.3% and another two peak values were observed near the main focus, reduced by 65.0% and 71.7% respectively. The acoustic power was decreased by 47.5% to 52.5%. With these characterization results, the form of the focus, the acoustic power, acoustic pressure and temperature rise are provided before the transcostal HIFU treatment, which are significant to determine the energy delivery dose. In conclusion, this ribcage model and characterization technique will be useful for the further study in the abdominal HIFU treatment.
Laser-Induced Graphene Formation on Wood.
Ye, Ruquan; Chyan, Yieu; Zhang, Jibo; Li, Yilun; Han, Xiao; Kittrell, Carter; Tour, James M
2017-10-01
Wood as a renewable naturally occurring resource has been the focus of much research and commercial interests in applications ranging from building construction to chemicals production. Here, a facile approach is reported to transform wood into hierarchical porous graphene using CO 2 laser scribing. Studies reveal that the crosslinked lignocellulose structure inherent in wood with higher lignin content is more favorable for the generation of high-quality graphene than wood with lower lignin content. Because of its high electrical conductivity (≈10 Ω per square), graphene patterned on wood surfaces can be readily fabricated into various high-performance devices, such as hydrogen evolution and oxygen evolution electrodes for overall water splitting with high reaction rates at low overpotentials, and supercapacitors for energy storage with high capacitance. The versatility of this technique in formation of multifunctional wood hybrids can inspire both research and industrial interest in the development of wood-derived graphene materials and their nanodevices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes.
Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J; Thayne, Iain G; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai
2018-05-25
Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 μeV. Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.
Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes
NASA Astrophysics Data System (ADS)
Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J.; Thayne, Iain G.; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai
2018-05-01
Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 μ eV . Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.
Miyamoto, Kenji; Kuwano, Shigeru; Terada, Jun; Otaka, Akihiro
2016-01-25
We analyze the mobile fronthaul (MFH) bandwidth and the wireless transmission performance in the split-PHY processing (SPP) architecture, which redefines the functional split of centralized/cloud RAN (C-RAN) while preserving high wireless coordinated multi-point (CoMP) transmission/reception performance. The SPP architecture splits the base stations (BS) functions between wireless channel coding/decoding and wireless modulation/demodulation, and employs its own CoMP joint transmission and reception schemes. Simulation results show that the SPP architecture reduces the MFH bandwidth by up to 97% from conventional C-RAN while matching the wireless bit error rate (BER) performance of conventional C-RAN in uplink joint reception with only 2-dB signal to noise ratio (SNR) penalty.
Electron refrigeration in hybrid structures with spin-split superconductors
NASA Astrophysics Data System (ADS)
Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.
2018-01-01
Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.
Focus of Attention and Choice of Text Modality in Multimedia Learning
ERIC Educational Resources Information Center
Schnotz, Wolfgang; Mengelkamp, Christoph; Baadte, Christiane; Hauck, Georg
2014-01-01
The term "modality effect" in multimedia learning means that students learn better from pictures combined with spoken rather than written text. The most prominent explanations refer to the split attention between visual text reading and picture observation which could affect transfer of information into working memory, maintenance of…
Algorithms for Mathematical Programming with Emphasis on Bi-level Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldfarb, Donald; Iyengar, Garud
2014-05-22
The research supported by this grant was focused primarily on first-order methods for solving large scale and structured convex optimization problems and convex relaxations of nonconvex problems. These include optimal gradient methods, operator and variable splitting methods, alternating direction augmented Lagrangian methods, and block coordinate descent methods.
Residential Wiring: Electrical Connections [and] Tools and Equipment.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Intended for student use, this unit focuses on making good electrical splices and electrical connections, and discusses tools and equipment used in house wiring jobs. Specific areas covered in the connections section are types of splices, solder equipment and supplies, and solderless connectors (plastic caps, split bolt connectors, crimp-type…
Development of splitting convergent beam electron diffraction (SCBED).
Houdellier, Florent; Röder, Falk; Snoeck, Etienne
2015-12-01
Using a combination of condenser electrostatic biprism with dedicated electron optic conditions for sample illumination, we were able to split a convergent beam electron probe focused on the sample in two half focused probes without introducing any tilt between them. As a consequence, a combined convergent beam electron diffraction pattern is obtained in the back focal plane of the objective lens arising from two different sample areas, which could be analyzed in a single pattern. This splitting convergent beam electron diffraction (SCBED) pattern has been tested first on a well-characterized test sample of Si/SiGe multilayers epitaxially grown on a Si substrate. The SCBED pattern contains information from the strained area, which exhibits HOLZ lines broadening induced by surface relaxation, with fine HOLZ lines observed in the unstrained reference part of the sample. These patterns have been analyzed quantitatively using both parts of the SCBED transmitted disk. The fine HOLZ line positions are used to determine the precise acceleration voltage of the microscope while the perturbed HOLZ rocking curves in the stained area are compared to dynamical simulated ones. The combination of these two information leads to a precise evaluation of the sample strain state. Finally, several SCBED setups are proposed to tackle fundamental physics questions as well as applied materials science ones and demonstrate how SCBED has the potential to greatly expand the range of applications of electron diffraction and electron holography. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Harrison, Neil; Shekhter, Arkady
2015-03-01
We investigate the origin of the small residual nodal bilayer-splitting in the underdoped high-Tc superconductor YBa2Cu3O6+x using the results of recently published angle-resolved quantum oscillation data [Sebastian et al., Nature 511, 61 (2014)]. A crucial clue to the origin of the residual bilayer-splitting is found to be provided by the anomalously small Zeeman-splitting of some of the observed cyclotron orbits. We show that such an anomalously Zeeman-splitting (or small effective g-factor) for a subset of orbits can be explained by spin-orbit interactions, which become significant in the nodal regions as a result of the vanishing bilayer coupling. The primary effect of spin-orbit interactions is to cause quasiparticles traversing the nodal region of the Brillouin zone to undergo a spin flip. We suggest that the Rashba-like spin-orbit interactions, naturally present in bilayer systems, have the right symmetry and magnitude to give rise to a network of coupled orbits consistent with experimental observations in underdoped YBa2Cu3O6+x. This work is supported by the DOEm BES proposal LANLF100, while the magnet lab is supported by the NSF and Florida State.
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Torres, R. M.; Dodson, R.
2011-05-01
Context. To properly determine the role of magnetic fields during massive star formation, a statistically significant sample of field measurements probing different densities and regions around massive protostars needs to be established. However, relating Zeeman splitting measurements to magnetic field strengths needs a carefully determined splitting coefficient. Aims: Polarization observations of, in particular, the very abundant 6.7 GHz methanol maser, indicate that these masers appear to be good probes of the large scale magnetic field around massive protostars at number densities up to nH2 ≈ 109 cm-3. We thus investigate the Zeeman splitting of the 6.7 GHz methanol maser transition. Methods: We have observed of a sample of 46 bright northern hemisphere maser sources with the Effelsberg 100-m telescope and an additional 34 bright southern masers with the Parkes 64-m telescope in an attempt to measure their Zeeman splitting. We also revisit the previous calculation of the methanol Zeeman splitting coefficients and show that these were severely overestimated making the determination of magnetic field strengths highly uncertain. Results: In total 44 of the northern masers were detected and significant splitting between the right- and left-circular polarization spectra is determined in >75% of the sources with a flux density >20 Jy beam-1. Assuming the splitting is due to a magnetic field according to the regular Zeeman effect, the average detected Zeeman splitting corrected for field geometry is ~0.6 m s-1. Using an estimate of the 6.7 GHz A-type methanol maser Zeeman splitting coefficient based on old laboratory measurements of 25 GHz E-type methanol transitions this corresponds to a magnetic field of ~120 mG in the methanol maser region. This is significantly higher than expected using the typically assumed relation between magnetic field and density (B∝ n_H_20.47) and potentially indicates the extrapolation of the available laboratory measurements is invalid. The stability of the right- and left-circular calibration of the Parkes observations was insufficient to determine the Zeeman splitting of the Southern sample. Spectra are presented for all sources in both samples. Conclusions: There is no strong indication that the measured splitting between right- and left-circular polarization is due to non-Zeeman effects, although this cannot be ruled out until the Zeeman coefficient is properly determined. However, although the 6.7 GHz methanol masers are still excellent magnetic field morphology probes through linear polarization observations, previous derivations of magnetic fields strength turn out to be highly uncertain. A solution to this problem will require new laboratory measurements of the methanol Landé-factors. Table 2 and Figs. 5-7 are only available in electronic form at http://www.aanda.org
In the present investigation, hydrogen production via water splitting by nano ferrites has been studied using ethanol as the sacrificial donor. The nano ferrite has shown great potential in hydrogen generation with hydrogen yield of 8275 9moles/h/ g of photocatalyst under visible...
Zhao, Henan; Bryant, Garnett W.; Griffin, Wesley; Terrill, Judith E.; Chen, Jian
2017-01-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks. PMID:28113469
Henan Zhao; Bryant, Garnett W; Griffin, Wesley; Terrill, Judith E; Jian Chen
2017-06-01
We designed and evaluated SplitVectors, a new vector field display approach to help scientists perform new discrimination tasks on large-magnitude-range scientific data shown in three-dimensional (3D) visualization environments. SplitVectors uses scientific notation to display vector magnitude, thus improving legibility. We present an empirical study comparing the SplitVectors approach with three other approaches - direct linear representation, logarithmic, and text display commonly used in scientific visualizations. Twenty participants performed three domain analysis tasks: reading numerical values (a discrimination task), finding the ratio between values (a discrimination task), and finding the larger of two vectors (a pattern detection task). Participants used both mono and stereo conditions. Our results suggest the following: (1) SplitVectors improve accuracy by about 10 times compared to linear mapping and by four times to logarithmic in discrimination tasks; (2) SplitVectors have no significant differences from the textual display approach, but reduce cluttering in the scene; (3) SplitVectors and textual display are less sensitive to data scale than linear and logarithmic approaches; (4) using logarithmic can be problematic as participants' confidence was as high as directly reading from the textual display, but their accuracy was poor; and (5) Stereoscopy improved performance, especially in more challenging discrimination tasks.
HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorensek, M.; Summers, W.; Boltrunis, C.
2009-05-12
This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, whilemore » also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.« less
NASA Astrophysics Data System (ADS)
di Lauro, Carlo; D'Amico, Giuseppe; Snels, Marcel
2009-04-01
High resolution infrared spectra (0.001 cm -1 FWHM) have been measured for mixtures of 1-chloro-1,1-difluoroethane in Ne, expanded in a supersonic planar jet. The ν6 fundamental, infrared active with a dominant parallel transition moment, exhibits a remarkable splitting of about 0.035 cm -1 for both 35Cl and 37Cl isotopomers. Several mechanisms of interaction of ν6 with states with high torsional excitation are critically examined to explain the observed effect. It is concluded that the observed torsional splitting patterns can be explained in terms of a torsional Coriolis interaction between ν6 and a highly excited torsional mode, 6 ν18. A full numerical analysis, performed including a torsional Coriolis term in the Hamiltonian, shows that the interaction mechanism requires a torsional barrier height of about 1270 cm -1.
Generation of sub-femtoliter droplet by T-junction splitting on microfluidic chips
NASA Astrophysics Data System (ADS)
Yang, Yu-Jun; Feng, Xuan; Xu, Na; Pang, Dai-Wen; Zhang, Zhi-Ling
2013-03-01
In the paper, sub-femtoliter droplets were easily produced by droplet splitting at a simple T-junction with orifice, which did not need expensive equipments, complex photolithography skill, or high energy input. The volume of the daughter droplet was not limited by channel size but controlled by channel geometry and fluidic characteristic. Moreover, single bead sampling and bead quantification in different orders of magnitude of droplet volumes were investigated. The droplets split at our T-junction chip had small volume and monodispersed size and could be produced efficiently, orderly, and controllably.
Modulated-splitting-ratio fiber-optic temperature sensor
NASA Technical Reports Server (NTRS)
Beheim, Glenn; Anthan, Donald J.; Rys, John R.; Fritsch, Klaus; Ruppe, Walter A.
1988-01-01
A fiber-optic temperature sensor is described, which uses a small silicon beamsplitter whose splitting ratio varies as a function of temperature. A four-beam technique is used to measure the sensor's temperature-indicating splitting ratio. This referencing method provides a measurement that is largely independent of the transmission properties of the sensor's optical fiber link. A significant advantage of this sensor, relative to other fiber-optic sensors, is its high stability, which permits the fiber-optic components to be readily substituted, thereby simplifying the sensor's installation and maintenance.
Visible-light driven nitrogen-doped petal-morphological ceria nanosheets for water splitting
NASA Astrophysics Data System (ADS)
Qian, Junchao; Zhang, Wenya; Wang, Yaping; Chen, Zhigang; Chen, Feng; Liu, Chengbao; Lu, Xiaowang; Li, Ping; Wang, Kaiyuan; Chen, Ailian
2018-06-01
Water splitting is a promising sustainable technology for solar-to-chemical energy conversion. Herein, we successfully fabricated nitrogen-doped ultrathin CeO2 nanosheets by using field poppy petals as templates, which exhibit an efficiently catalytic activity for water splitting. Abundant oxygen vacancies and substitutional N atoms were experimentally observed in the film due to its unique biomorphic texture. In view of high efficiency and long durability of the as-prepared photocatalyst, this biotemplate method may provide an alternative technique for using biomolecules to assemble 2D nanomaterials.
Mayer, Matthew T; Lin, Yongjing; Yuan, Guangbi; Wang, Dunwei
2013-07-16
In order for the future energy needs of humanity to be adequately and sustainably met, alternative energy techniques such as artificial photosynthesis need to be made more efficient and therefore commercially viable. On a grand scale, the energies coming to and leaving from the earth are balanced. With the fast increasing waste heat produced by human activities, the balance may be shifted to threaten the ecosystem in which we reside. To avoid such dire consequences, it is necessary to power human activities using energy derived from the incoming source, which is predominantly solar irradiation. Indeed, most life on the surface of the earth is supported, directly or indirectly, by photosynthesis that harvests solar energy and stores it in chemical bonds for redistribution. Being able to mimic the process and perform it at high efficiencies using low-cost materials has significant implications. Such an understanding is a major intellectual driving force that motivates research by us and many others. From a thermodynamic perspective, the key energy conversion step in natural photosynthesis happens in the light reactions, where H₂O splits to give O₂ and reactive protons. The capability of carrying out direct sunlight-driven water splitting with high efficiency is therefore fundamentally important. We are particularly interested in doing so using inorganic semiconductor materials because they offer the promise of durability and low cost. In this Account, we share our recent efforts in bringing semiconductor-based water splitting reactions closer to reality. More specifically, we focus on earth-abundant oxide semiconductors such as Fe₂O₃ and work on improving the performance of these materials as photoelectrodes for photoelectrochemical reactions. Using hematite (α-Fe₂O₃) as an example, we examine how the main problems that limit the performance, namely, the short hole collection distance, poor light absorption near the band edge, and mismatch of the band edge energetics with those of water redox reactions, can in principle be addressed by adding nanoscale charge collectors, forming buried junctions, and including additional light absorbers. These results highlight the power of forming homo- or heterojunctions at the nanoscale, which permits us to engineer the band structures of semiconductors to the specific application of water splitting. The key enabling factor is our ability to synthesize materials with precise control over the dimensions, crystallinity, and, most importantly, the interface quality at the nanoscale. While being able to tailor specific properties on a simple, earth-abundant device is not straightforward, the approaches we report here take significant steps towards efficient artificial photosynthesis, an energy harvesting technique necessary for the well-being of humanity.
Analysis of operator splitting errors for near-limit flame simulations
NASA Astrophysics Data System (ADS)
Lu, Zhen; Zhou, Hua; Li, Shan; Ren, Zhuyin; Lu, Tianfeng; Law, Chung K.
2017-04-01
High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction-diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction of ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory combustion from cool flames, both the Strang splitting and the midpoint method can successfully capture the dynamic behavior, whereas the balanced splitting scheme results in significant errors.
Analysis of operator splitting errors for near-limit flame simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zhen; Zhou, Hua; Li, Shan
High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction–diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction ofmore » ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory combustion from cool flames, both the Strang splitting and the midpoint method can successfully capture the dynamic behavior, whereas the balanced splitting scheme results in significant errors.« less
Nidanapu, Ravi Prasad; Rajan, Sundaram; Mahadevan, Subramanian; Gitanjali, Batmanabane
2016-12-01
Tablet splitting is the process of dividing a tablet into portions to obtain a prescribed dose of medication. Very few studies have investigated whether split parts of a tablet deliver the expected amount of drug to patients. Our objectives were to evaluate the split parts of adult-dose tablet formulations for percentage of weight deviation, weight uniformity, weight loss, drug content, and the content uniformity of four antiepileptic drugs (AEDs) prescribed to pediatric patients. We also measured AED plasma concentrations in the children. We chose to study first-line AEDs (phenytoin sodium [PHE], sodium valproate [SVA], carbamazepine, and phenobarbitone) as they are routinely prescribed in India. We asked caregivers to perform the same splitting process they follow in their homes on three whole tablets during their routine visit to the outpatient department. After caregivers split the tablets, we studied the weight and content of the split parts. We also used high-performance liquid chromatography to study plasma drug concentrations in children who had received split AEDs for at least 4 months. A total of 168 caregivers participated in the study, and we analyzed 1098 split tablet parts. In total, 539 (49.0 %) split parts were above the specified limit of the 2010 Indian Pharmacopeia (IP) acceptable percentage weight deviation (PHE 169 [48.8 %], SVA 187 [51.9 %], carbamazepine 56 [41.1 %], phenobarbitone 127 [49.6 %]); 456 (41.5 %) split parts were outside the proxy IP specification for drug content (PHE 135 [39.0 %], SVA 140 [38.8 %], carbamazepine 51 [37.5 %], phenobarbitone 130 [50.7 %]), and 253 split parts were outside the acceptable content uniformity range of <85 % and >115 % (PHE 85 [24.5 %], SVA 98 [27.2 %], carbamazepine 14 [10.2 %], phenobarbitone 56 [21.8 %]). In total, 130 (72.2 %) patients had plasma drug concentrations outside the therapeutic range (PHE 36 [72.0 %], SVA 39 [78.0 %], carbamazepine 34 [68.0 %], phenobarbitone 21 [70.0 %]). Splitting adult-dosage formulations of AEDs results in patients not receiving the optimal dose. Plasma drug concentrations are also not optimal. Pediatric dosage formulations should be preferred to splitting adult-dosage formulations in pediatric epilepsy.
Analysis of nonreciprocal noise based on mode splitting in a high-Q optical microresonator
NASA Astrophysics Data System (ADS)
Yang, Zhaohua; Xiao, Yarong; Huo, Jiayan; Shao, Hui
2018-01-01
The whispering gallery mode optical microresonator offers a high quality factor, which enables it to act as the core component of a high sensitivity resonator optic gyro; however, nonreciprocal noise limits its precision. Considering the Sagnac effect, i.e. mode splitting in high-quality optical micro-resonators, we derive the explicit expression for the angular velocity versus the splitting amount, and verify the sensing mechanism by simulation using finite element method. Remarkably, the accuracy of the angular velocity measurement in the whispering gallery mode optical microresonator with a quality factor of 108 is 106 °/s. We obtain the optimal coupling position of the novel angular velocity sensing system by detecting the output transmittance spectra of different vertical coupling distances and axial coupling positions. In addition, the reason for the nonreciprocal phenomenon is determined by theoretical analysis of the evanescent distribution of a tapered fiber. These results will provide an effective method and a theoretical basis for suppression of the nonreciprocal noise.
Chuchottaworn, Charoen; Saipan, Benjawan; Kittisup, Chomnapa; Cheewakul, Krisana
2012-08-01
Standard six months short course regimen for treatment of pulmonary tuberculosis is very effective and is recommended as standard treatment. But this regimen composes of many drugs and causes high adverse drug reactions especially gastrointestinal irritation. Spitted administration of drugs to two times a day may reduce adverse drug reactions. To study adverse drug reactions and outcome of single daily versus split drug (two times a day) administration of standard six month short course regimen in newly diagnosed pulmonary tuberculosis. Newly diagnosed pulmonary tuberculosis patients of the Central Chest Institute of Thailand were randomized to receive standard six months regimen once daily or two times a day (split drug). Patients were followed-up every two weeks and a questionnaire was used to detect adverse drug reactions. Outcome of treatment was evaluated according to national tuberculosis treatment guideline. 122 pulmonary tuberculosis were eligible for the present study and 61 patients were enrolled to each group of once daily or split drug regimen. Pulmonary tuberculosis patients who received split drug regimen had a higher cure rate but not statistical significance because of lower transfer out rate. Adverse drug reactions were similar in both groups of patients who received once daily and split drug regimen. Although split drug group had lower gastrointestinal adverse drug reactions. Split drug regimen has the same cure rate of treatment as single daily regimen and same adverse drug reactions.
NASA Astrophysics Data System (ADS)
Xu, Li-Hong
2016-06-01
Methanol is a simple and intensively studied organic molecule possessing one large-amplitude torsional motion. It has, for nearly a century, been a favorite of researchers in many fields, e.g., instrument builders, for whom methanol is often the first molecule chosen for testing an improved or a newly built instrument (including HIFI, the Heterodyne Instrument for the Far Infrared on board the Herschel space mission); theorists and/or dynamicists studying the challenging effects of a large-amplitude motion coupling with small-amplitude motions to enhance intramolecular vibrational energy redistribution; astronomers who have elevated methanol to their #1 interstellar weed because of its rich and omnipresent spectrum in the interstellar garden, where it serves as a unique probe for diagnosing conditions in star-forming regions; astrochemists studying isotopic ratios as clues to the chemical evolution of the universe; and fundamentalists seeking possible time variation of the proton/electron mass ratio in the standard model; just to name a few. From high-resolution to high-precision spectroscopy, the large-amplitude internal rotation of the methyl top against its OH framework in methanol has never failed to produce new surprises in spectral regions from the microwave all the way to the near IR. The very recent observation of completely unexpected large methanol hyperfine splittings is a vivid testimonial that the large-amplitude torsional motion can still lead us to unexplored landscapes. This talk will focus on the complicated vibration-torsion-rotation energy networks and interactions deduced from high resolution spectra; our efforts to understand some of them using ab-initio-assisted approaches and the modeling of torsion-rotation and torsionally mediated spin-rotation hyperfine splittings in methanol. These topics represent one part of the much larger fascinating world inhabited by methanolics.
NASA Astrophysics Data System (ADS)
Xu, Bo; Yang, He; Yuan, Lincheng; Sun, Yiqiang; Chen, Zhiming; Li, Cuncheng
2017-10-01
Development of low-cost, highly active bifunctional catalyst for efficient overall water splitting based on earth-abundant metals is still a great challenging task. In this work, we report a NiFe-Se/C composite nanorod as efficient non-precious-metal electrochemical catalyst derived from direct selenylation of a mixed Ni/Fe metal-organic framework. The as-obtained catalyst requires low overpotential to drive 10 mA cm-2 for HER (160 mV) and OER (240 mV) in 1.0 M KOH, respectively, and its catalytic activity is maintained for at least 20 h. Moreover, water electrolysis using this catalyst achieves high water splitting current density of 10 mA cm-2 at cell voltage of 1.68 V.
NASA Astrophysics Data System (ADS)
Arifi, Eva; Cahya, Evi Nur; Christin Remayanti, N.
2017-09-01
The performance of porous concrete made of recycled coarse aggregate was investigated. Fly ash was used as cement partial replacement. In this study, the strength of recycled aggregate was coMPared to low quality natural coarse aggregate which has high water absorption. Compression strength and tensile splitting strength test were conducted to evaluate the performance of porous concrete using fly ash as cement replacement. Results have shown that the utilization of recycled coarse aggregate up to 75% to replace low quality natural coarse aggregate with high water absorption increases compressive strength and splitting tensile strength of porous concrete. Using fly ash up to 25% as cement replacement improves compressive strength and splitting tensile strength of porous concrete.
Data splitting for artificial neural networks using SOM-based stratified sampling.
May, R J; Maier, H R; Dandy, G C
2010-03-01
Data splitting is an important consideration during artificial neural network (ANN) development where hold-out cross-validation is commonly employed to ensure generalization. Even for a moderate sample size, the sampling methodology used for data splitting can have a significant effect on the quality of the subsets used for training, testing and validating an ANN. Poor data splitting can result in inaccurate and highly variable model performance; however, the choice of sampling methodology is rarely given due consideration by ANN modellers. Increased confidence in the sampling is of paramount importance, since the hold-out sampling is generally performed only once during ANN development. This paper considers the variability in the quality of subsets that are obtained using different data splitting approaches. A novel approach to stratified sampling, based on Neyman sampling of the self-organizing map (SOM), is developed, with several guidelines identified for setting the SOM size and sample allocation in order to minimize the bias and variance in the datasets. Using an example ANN function approximation task, the SOM-based approach is evaluated in comparison to random sampling, DUPLEX, systematic stratified sampling, and trial-and-error sampling to minimize the statistical differences between data sets. Of these approaches, DUPLEX is found to provide benchmark performance with good model performance, with no variability. The results show that the SOM-based approach also reliably generates high-quality samples and can therefore be used with greater confidence than other approaches, especially in the case of non-uniform datasets, with the benefit of scalability to perform data splitting on large datasets. Copyright 2009 Elsevier Ltd. All rights reserved.
Bernet, William; Gregory, Nilgun; Reay, Kathleen M; Rohner, Ronald P
2018-05-01
Both clinicians and forensic practitioners should distinguish parental alienation (rejection of a parent without legitimate justification) from other reasons for contact refusal. Alienated children-who were not abused-often engage in splitting and lack ambivalence with respect to the rejected parent; children who were maltreated usually perceive the abusive parent in an ambivalent manner. The purpose of this study was to assess the usefulness of the Parental Acceptance-Rejection Questionnaire (PARQ) in identifying and quantifying the degree of splitting, which may assist in diagnosing parental alienation. Results showed that severely alienated children engaged in a high level of splitting, by perceiving the preferred parent in extremely positive terms and the rejected parent in extremely negative terms. Splitting was not manifested by the children in other family groups. The PARQ may be useful for both clinicians and forensic practitioners in evaluating children of divorced parents when there is a concern about the possible diagnosis of parental alienation. © 2017 American Academy of Forensic Sciences.
Neutrino mass hierarchy and three-flavor spectral splits of supernova neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Basudeb; Mirizzi, Alessandro; Tomas, Ricard
2010-05-01
It was recently realized that three-flavor effects could peculiarly modify the development of spectral splits induced by collective oscillations, for supernova neutrinos emitted during the cooling phase of a protoneutron star. We systematically explore this case, explaining how the impact of these three-flavor effects depends on the ordering of the neutrino masses. In inverted mass hierarchy, the solar mass splitting gives rise to instabilities in regions of the (anti)neutrino energy spectra that were otherwise stable under the leading two-flavor evolution governed by the atmospheric mass splitting and by the 1-3 mixing angle. As a consequence, the high-energy spectral splits foundmore » in the electron (anti)neutrino spectra disappear, and are transferred to other flavors. Imperfect adiabaticity leads to smearing of spectral swap features. In normal mass hierarchy, the three-flavor and the two-flavor instabilities act in the same region of the neutrino energy spectrum, leading to only minor departures from the two-flavor treatment.« less
Higher-order modulation instability in nonlinear fiber optics.
Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry
2011-12-16
We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society
Transition metal ions in ZnO: Effects of intrashell coulomb repulsion on electronic properties
NASA Astrophysics Data System (ADS)
Ciechan, A.; Bogusławski, P.
2018-05-01
Electronic structure of the transition metal (TM) dopants in ZnO is calculated by first principles approach. Analysis of the results is focused on the properties determined by the intrashell Coulomb coupling. The role of both direct and exchange interaction channel is analyzed. The coupling is manifested in the strong charge state dependence of the TM gap levels, which leads to the metastability of photoexcited Mn, and determines the accessible equilibrium charge states of TM ions. The varying magnitude of the exchange coupling is reflected in the dependence of the spin splitting energy on the chemical identity across the 3d series, as well as the charge state dependence of spin-up spin-down exchange splitting.
Dual-comb spectroscopy of laser-induced plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergevin, Jenna; Wu, Tsung-Han; Yeak, Jeremy
Dual-comb spectroscopy has become a powerful spectroscopic technique in applications that rely on its broad spectral coverage combined with high frequency resolution capabilities. Experiments to date have primarily focused on detection and analysis of multiple gas species under semi-static conditions, with applications ranging from environmental monitoring of greenhouse gases to high resolution molecular spectroscopy. Here, we utilize dual-comb spectroscopy to demonstrate broadband, high-resolution, and time-resolved measurements in a laser induced plasma for the first time. As a first demonstration, we simultaneously detect trace amounts of Rb and K in solid samples with a single laser ablation shot, with transitions separatedmore » by over 6 THz (13 nm) and spectral resolution sufficient to resolve isotopic and ground state hyperfine splittings of the Rb D2 line. This new spectroscopic approach offers the broad spectral coverage found in the powerful techniques of laser-induced breakdown spectroscopy (LIBS) while providing the high-resolution and accuracy of cw laser-based spectroscopies.« less
Zhu, Yanping; Chen, Gao; Zhong, Yijun; Zhou, Wei; Shao, Zongping
2018-02-01
Practical application of hydrogen production from water splitting relies strongly on the development of low-cost and high-performance electrocatalysts for hydrogen evolution reaction (HER). The previous researches mainly focused on transition metal nitrides as HER catalysts due to their electrical conductivity and corrosion stability under acidic electrolyte, while tungsten nitrides have reported poorer activity for HER. Here the activity of tungsten nitride is optimized through rational design of a tungsten nitride-carbon composite. More specifically, tungsten nitride (WN x ) coupled with nitrogen-rich porous graphene-like carbon is prepared through a low-cost ion-exchange/molten-salt strategy. Benefiting from the nanostructured WN x , the highly porous structure and rich nitrogen dopant (9.5 at%) of the carbon phase with high percentage of pyridinic-N (54.3%), and more importantly, their synergistic effect, the composite catalyst displays remarkably high catalytic activity while maintaining good stability. This work highlights a powerful way to design more efficient metal-carbon composites catalysts for HER.
A Mineral Processing Field Course
ERIC Educational Resources Information Center
Carmody, Maurice
2014-01-01
This article describes a field course in Cornwall looking at mineral processing with the focus on the chemistry involved. The course was split into two parts. The first looked at tin mining based around Penzance. This involved visiting mines, hunting for mineral samples, carrying out a stream survey and visiting the Camborne School of Mines…
The Role and Design of Screen Images in Software Documentation.
ERIC Educational Resources Information Center
van der Meij, Hans
2000-01-01
Discussion of learning a new computer software program focuses on how to support the joint handling of a manual, input devices, and screen display. Describes a study that examined three design styles for manuals that included screen images to reduce split-attention problems and discusses theory versus practice and cognitive load theory.…
Inclusive Pedagogy and Knowledge in Special Education: Addressing the Tension
ERIC Educational Resources Information Center
Mintz, Joseph; Wyse, Dominic
2015-01-01
There has been an increasing focus in policy and practice on adopting inclusive pedagogy as a way of reconceptualising how schools work with children with special educational needs (SEN). The paper considers the split between knowledge and pedagogy inherent in some dominant strains of "inclusive pedagogy". Drawing on the "knowledge…
Mobile medical computing driven by the complexity of neurologic diagnosis.
Segal, Michael M
2006-07-01
Medical computing has been split between palm-sized computers optimized for mobility and desktop computers optimized for capability. This split was due to technology too immature to deliver both mobility and capability in the same computer and the lack of medical software that demanded both mobility and capability. Advances in hardware and software are ushering in an era in which fully capable computers will be available ubiquitously. As a result, medical practice, education and publishing will change. Medical practice will be improved by the use of software that not only assists with diagnosis but can do so at the bedside, where the doctor can act immediately upon suggestions such as useful findings to check. Medical education will shift away from a focus on details of unusual diseases and toward a focus on skills of physical examination and using computerized tools. Medical publishing, in contrast, will shift toward greater detail: it will be increasingly important to quantitate the frequency of findings in diseases and their time course since such information can have a major impact clinically when added to decision support software.
A Recessive Pollination Control System for Wheat Based on Intein-Mediated Protein Splicing.
Gils, Mario
2017-01-01
A transgene-expression system for wheat that relies on the complementation of inactive precursor protein fragments through a split-intein system is described. The N- and C-terminal fragments of a barnase gene from Bacillus amyloliquifaciens were fused to intein sequences from Synechocystis sp. and transformed into wheat plants. Upon translation, both barnase fragments are assembled by an autocatalytic intein-mediated trans-splicing reaction, thus forming a cytotoxic enzyme. This chapter focuses on the use of introns and flexible polypeptide linkers to foster the expression of a split-barnase expression system in plants. The methods and protocols that were employed with the objective to test the effects of such genetic elements on transgene expression and to find the optimal design of expression vectors for use in wheat are provided. Split-inteins can be used to form an agriculturally important trait (male sterility) in wheat plants. The use of this principle for the production of hybrid wheat seed is described. The suggested toolbox will hopefully be a valuable contribution to future optimization strategies in this commercially important crop.
Split Bregman's optimization method for image construction in compressive sensing
NASA Astrophysics Data System (ADS)
Skinner, D.; Foo, S.; Meyer-Bäse, A.
2014-05-01
The theory of compressive sampling (CS) was reintroduced by Candes, Romberg and Tao, and D. Donoho in 2006. Using a priori knowledge that a signal is sparse, it has been mathematically proven that CS can defY Nyquist sampling theorem. Theoretically, reconstruction of a CS image relies on the minimization and optimization techniques to solve this complex almost NP-complete problem. There are many paths to consider when compressing and reconstructing an image but these methods have remained untested and unclear on natural images, such as underwater sonar images. The goal of this research is to perfectly reconstruct the original sonar image from a sparse signal while maintaining pertinent information, such as mine-like object, in Side-scan sonar (SSS) images. Goldstein and Osher have shown how to use an iterative method to reconstruct the original image through a method called Split Bregman's iteration. This method "decouples" the energies using portions of the energy from both the !1 and !2 norm. Once the energies are split, Bregman iteration is used to solve the unconstrained optimization problem by recursively solving the problems simultaneously. The faster these two steps or energies can be solved then the faster the overall method becomes. While the majority of CS research is still focused on the medical field, this paper will demonstrate the effectiveness of the Split Bregman's methods on sonar images.
A STRICTLY CONTRACTIVE PEACEMAN-RACHFORD SPLITTING METHOD FOR CONVEX PROGRAMMING.
Bingsheng, He; Liu, Han; Wang, Zhaoran; Yuan, Xiaoming
2014-07-01
In this paper, we focus on the application of the Peaceman-Rachford splitting method (PRSM) to a convex minimization model with linear constraints and a separable objective function. Compared to the Douglas-Rachford splitting method (DRSM), another splitting method from which the alternating direction method of multipliers originates, PRSM requires more restrictive assumptions to ensure its convergence, while it is always faster whenever it is convergent. We first illustrate that the reason for this difference is that the iterative sequence generated by DRSM is strictly contractive, while that generated by PRSM is only contractive with respect to the solution set of the model. With only the convexity assumption on the objective function of the model under consideration, the convergence of PRSM is not guaranteed. But for this case, we show that the first t iterations of PRSM still enable us to find an approximate solution with an accuracy of O (1/ t ). A worst-case O (1/ t ) convergence rate of PRSM in the ergodic sense is thus established under mild assumptions. After that, we suggest attaching an underdetermined relaxation factor with PRSM to guarantee the strict contraction of its iterative sequence and thus propose a strictly contractive PRSM. A worst-case O (1/ t ) convergence rate of this strictly contractive PRSM in a nonergodic sense is established. We show the numerical efficiency of the strictly contractive PRSM by some applications in statistical learning and image processing.
Discrete breathers for a discrete nonlinear Schrödinger ring coupled to a central site.
Jason, Peter; Johansson, Magnus
2016-01-01
We examine the existence and properties of certain discrete breathers for a discrete nonlinear Schrödinger model where all but one site are placed in a ring and coupled to the additional central site. The discrete breathers we focus on are stationary solutions mainly localized on one or a few of the ring sites and possibly also the central site. By numerical methods, we trace out and study the continuous families the discrete breathers belong to. Our main result is the discovery of a split bifurcation at a critical value of the coupling between neighboring ring sites. Below this critical value, families form closed loops in a certain parameter space, implying that discrete breathers with and without central-site occupation belong to the same family. Above the split bifurcation the families split up into several separate ones, which bifurcate with solutions with constant ring amplitudes. For symmetry reasons, the families have different properties below the split bifurcation for even and odd numbers of sites. It is also determined under which conditions the discrete breathers are linearly stable. The dynamics of some simpler initial conditions that approximate the discrete breathers are also studied and the parameter regimes where the dynamics remain localized close to the initially excited ring site are related to the linear stability of the exact discrete breathers.
The Split Virus Influenza Vaccine rapidly activates immune cells through Fcγ receptors.
O'Gorman, William E; Huang, Huang; Wei, Yu-Ling; Davis, Kara L; Leipold, Michael D; Bendall, Sean C; Kidd, Brian A; Dekker, Cornelia L; Maecker, Holden T; Chien, Yueh-Hsiu; Davis, Mark M
2014-10-14
Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
NASA Astrophysics Data System (ADS)
Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.
2015-07-01
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.
Geist, Barbara Katharina; Dobrozemsky, Georg; Samal, Martin; Schaffarich, Michael P; Sinzinger, Helmut; Staudenherz, Anton
2015-12-01
The split or differential renal function is the most widely accepted quantitative parameter derived from radionuclide renography. To examine the intercenter variance of this parameter, we designed a worldwide round robin test. Five selected dynamic renal studies have been distributed all over the world by e-mail. Three of these studies are anonymized patient data acquired using the EANM standardized protocol and two studies are phantom studies. In a simple form, individual participants were asked to measure renal split function as well as to provide additional information such as data analysis software, positioning of background region of interest, or the method of calculation. We received the evaluation forms from 34 centers located in 21 countries. The analysis of the round robin test yielded an overall z-score of 0.3 (a z-score below 1 reflecting a good result). However, the z-scores from several centers were unacceptably high, with values greater than 3. In particular, the studies with impaired renal function showed a wide variance. A wide variance in the split renal function was found in patients with impaired kidney function. This study indicates the ultimate importance of quality control and standardization of the measurement of the split renal function. It is especially important with respect to the commonly accepted threshold for significant change in split renal function by 10%.
Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wójcik, P., E-mail: pawel.wojcik@fis.agh.edu.pl; Adamowski, J., E-mail: janusz.adamowski@fis.agh.edu.pl; Wołoszyn, M.
2015-07-07
We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be usedmore » to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.« less
Efficient solar water-splitting using a nanocrystalline CoO photocatalyst
NASA Astrophysics Data System (ADS)
Liao, Longb; Zhang, Qiuhui; Su, Zhihua; Zhao, Zhongzheng; Wang, Yanan; Li, Yang; Lu, Xiaoxiang; Wei, Dongguang; Feng, Guoying; Yu, Qingkai; Cai, Xiaojun; Zhao, Jimin; Ren, Zhifeng; Fang, Hui; Robles-Hernandez, Francisco; Baldelli, Steven; Bao, Jiming
2014-01-01
The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy. Various water-splitting methods have been investigated previously, but the use of photocatalysts to split water into stoichiometric amounts of H2 and O2 (overall water splitting) without the use of external bias or sacrificial reagents is of particular interest because of its simplicity and potential low cost of operation. However, despite progress in the past decade, semiconductor water-splitting photocatalysts (such as (Ga1-xZnx)(N1-xOx)) do not exhibit good activity beyond 440 nm (refs 1,2,9) and water-splitting devices that can harvest visible light typically have a low solar-to-hydrogen efficiency of around 0.1%. Here we show that cobalt(II) oxide (CoO) nanoparticles can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The photocatalysts were synthesized from non-active CoO micropowders using two distinct methods (femtosecond laser ablation and mechanical ball milling), and the CoO nanoparticles that result can decompose pure water under visible-light irradiation without any co-catalysts or sacrificial reagents. Using electrochemical impedance spectroscopy, we show that the high photocatalytic activity of the nanoparticles arises from a significant shift in the position of the band edge of the material.
Silicon technology compatible photonic molecules for compact optical signal processing
NASA Astrophysics Data System (ADS)
Barea, Luis A. M.; Vallini, Felipe; Jarschel, Paulo F.; Frateschi, Newton C.
2013-11-01
Photonic molecules (PMs) based on multiple inner coupled microring resonators allow to surpass the fundamental constraint between the total quality factor (QT), free spectral range (FSR), and resonator size. In this work, we use a PM that presents doublets and triplets resonance splitting, all with high QT. We demonstrate the use of the doublet splitting for 34.2 GHz signal extraction by filtering the sidebands of a modulated optical signal. We also demonstrate that very compact optical modulators operating 2.75 times beyond its resonator linewidth limit may be obtained using the PM triplet splitting, with separation of ˜55 GHz.
On the impact bending test technique for high-strength pipe steels
NASA Astrophysics Data System (ADS)
Arsenkin, A. M.; Odesskii, P. D.; Shabalov, I. P.; Likhachev, M. V.
2015-10-01
It is shown that the impact toughness (KCV-40 = 250 J/cm2) accepted for pipe steels of strength class K65 (σy ≥ 550 MPa) intended for large-diameter gas line pipes is ineffective to classify steels in fracture strength. The results obtained upon testing of specimens with a fatigue crack and additional sharp lateral grooves seem to be more effective. In energy consumption, a macrorelief with splits is found to be intermediate between ductile fracture and crystalline brittle fracture. A split formation mechanism is considered and a scheme is proposed for split formation.
Novel approach using DNA-RNA hybrids in RNA nanotechnology | Center for Cancer Research
Developing simple approaches to detect interactions, modifications, and cellular locations of macromolecules is essential for understanding biochemical processes. The use of protein fragment complementation assays, also called split-protein systems, is a highly sensitive approach for studying protein interactions in biological systems. In this approach, functional proteins are split into non-functional fragments, and when attached to possible interacting partners, can reassemble and become functional again. Use of split-protein assays can establish differences between a healthy and a diseased state in the cell as well as determine the outcome of a therapeutic intervention.
NASA Astrophysics Data System (ADS)
Dos Santos, Wayler S.; Rodriguez, Mariandry; Afonso, André S.; Mesquita, João P.; Nascimento, Lucas L.; Patrocínio, Antônio O. T.; Silva, Adilson C.; Oliveira, Luiz C. A.; Fabris, José D.; Pereira, Márcio C.
2016-08-01
The conversion of solar energy into hydrogen fuel by splitting water into photoelectrochemical cells (PEC) is an appealing strategy to store energy and minimize the extensive use of fossil fuels. The key requirement for efficient water splitting is producing a large band bending (photovoltage) at the semiconductor to improve the separation of the photogenerated charge carriers. Therefore, an attractive method consists in creating internal electrical fields inside the PEC to render more favorable band bending for water splitting. Coupling ferroelectric materials exhibiting spontaneous polarization with visible light photoactive semiconductors can be a likely approach to getting higher photovoltage outputs. The spontaneous electric polarization tends to promote the desirable separation of photogenerated electron- hole pairs and can produce photovoltages higher than that obtained from a conventional p-n heterojunction. Herein, we demonstrate that a hole inversion layer induced by a ferroelectric Bi4V2O11 perovskite at the n-type BiVO4 interface creates a virtual p-n junction with high photovoltage, which is suitable for water splitting. The photovoltage output can be boosted by changing the polarization by doping the ferroelectric material with tungsten in order to produce the relatively large photovoltage of 1.39 V, decreasing the surface recombination and enhancing the photocurrent as much as 180%.
dos Santos, Wayler S.; Rodriguez, Mariandry; Afonso, André S.; Mesquita, João P.; Nascimento, Lucas L.; Patrocínio, Antônio O. T.; Silva, Adilson C.; Oliveira, Luiz C. A.; Fabris, José D.; Pereira, Márcio C.
2016-01-01
The conversion of solar energy into hydrogen fuel by splitting water into photoelectrochemical cells (PEC) is an appealing strategy to store energy and minimize the extensive use of fossil fuels. The key requirement for efficient water splitting is producing a large band bending (photovoltage) at the semiconductor to improve the separation of the photogenerated charge carriers. Therefore, an attractive method consists in creating internal electrical fields inside the PEC to render more favorable band bending for water splitting. Coupling ferroelectric materials exhibiting spontaneous polarization with visible light photoactive semiconductors can be a likely approach to getting higher photovoltage outputs. The spontaneous electric polarization tends to promote the desirable separation of photogenerated electron- hole pairs and can produce photovoltages higher than that obtained from a conventional p-n heterojunction. Herein, we demonstrate that a hole inversion layer induced by a ferroelectric Bi4V2O11 perovskite at the n-type BiVO4 interface creates a virtual p-n junction with high photovoltage, which is suitable for water splitting. The photovoltage output can be boosted by changing the polarization by doping the ferroelectric material with tungsten in order to produce the relatively large photovoltage of 1.39 V, decreasing the surface recombination and enhancing the photocurrent as much as 180%. PMID:27503274
Seismic Imaging of the crust and upper mantle beneath Afar, Ethiopia
NASA Astrophysics Data System (ADS)
Hammond, J. O.; Kendall, J. M.; Stuart, G. W.; Ebinger, C. J.
2009-12-01
In March 2007 41 seismic stations were deployed in north east Ethiopia. These stations recorded until October 2009, whereupon the array was condensed to 13 stations. Here we show estimates of crustal structure derived from receiver functions and upper mantle velocity structure, derived from tomography and shear-wave splitting using the first 2.5 years of data. Bulk crustal structure has been determined by H-k stacking receiver functions. Crustal Thickness varies from ~45km on the rift margins to ~16km beneath the northeastern Afar stations. Estimates of Vp/Vs show normal continental crust values (1.7-1.8) on the rift margins, and very high values (2.0-2.2) in Afar, similar to results for the Main Ethiopian Rift (MER). This supports ideas of high levels of melt in the crust beneath the Ethiopian Rift. Additionally, we use a common conversion point migration technique to obtain high resolution images of crustal structure beneath the region. Both techniques show a linear region of thin crust (~16km) trending north-south, the same trend as the Red Sea rift. SKS-wave splitting results show a general north east-south west fast direction in the MER, systematically rotating to a more north-south fast direction towards the Red Sea. Additionally, stations close to the recent Dabbahu diking episode show sharp lateral changes over small lateral distances (40° over <30km), with fast directions overlying the Dabbahu segment aligning parallel with the recent diking. This supports ideas of melt dominated anisotropy beneath the Ethiopian rift. The magnitude of splitting in this region is smaller than that seen at the MER, suggesting a thinner region of melt, or less focused melt is causing the anisotropy. Seismic tomography inversions show that in the top 150km low velocities highlight plate boundaries. The low velocity anomalies extend from the main Ethiopian rift NE, towards Djibouti, and from Djibouti NW towards the Dabbahu segment The lowest velocities exist on the rift margins, supporting ideas of preferential melt generation at these regions of high strain. This includes a region of low velocity close to the edge of the proposed location of the Danakil microplate. Outside of these focused regions the velocities are relatively fast. Below ~250km the anomaly broadens to cover most of the Afar region with only the rift margins remaining fast. At transition zone depths little anomaly is seen beneath Afar, but some low velocities remain present beneath the MER. These studies suggest that in northern Ethiopia the Red Sea rift is dominant. The presence of thin crust beneath northern Afar suggests that the Red Sea rift is creating oceanic like crust in this region. The lack of deep mantle low velocity anomalies beneath Afar suggest that a typical narrow conduit plume does not exist in this region, rather the velocity models seem more similar to passive upwelling of material beneath Afar.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
NASA Astrophysics Data System (ADS)
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong
2016-07-01
This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.
2016-07-14
This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e.,more » to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.« less
Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.
Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying
2012-07-30
We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.
String splitting and strong coupling meson decay.
Cotrone, A L; Martucci, L; Troost, W
2006-04-14
We study the decay of high spin mesons using the gauge-string theory correspondence. The rate of the process is calculated by studying the splitting of a macroscopic string intersecting a D-brane. The result is applied to the decay of mesons in N=4 super Yang-Mills theory with a small number of flavors and in a gravity dual of large N QCD. In QCD the decay of high spin mesons is found to be heavily suppressed in the regime of validity of the supergravity description.
Zhu, Yingming; Liu, Dongsheng; Meng, Ming
2014-06-07
Black TiO2 was usually obtained via hydrogenation at high pressure and high temperature. Herein, we reported a facile hydrogenation of TiO2 in the presence of a small amount of Pt at relatively low temperature and atmospheric pressure. The hydrogen spillover from Pt to TiO2 accounts well for the greatly enhanced hydrogenation capability. The as-synthesized Pt/TiO2 exhibits remarkably improved photocatalytic activity for water splitting.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Riccardi, D. P.; Mitchell, J. C.
1993-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashikhin, V.; Cheban, S.; DiMarco, J.
New LCLS-II Linear Superconducting Accelerator Cry-omodules are under construction at Fermilab. Installed in-side each SCRF Cryomodule is a superconducting magnet package to focus and steer an electron beam. The magnet package is an iron dominated configuration with conduc-tively cooled racetrack-type quadrupole and dipole coils. For easier installation the magnet can be split in the vertical plane. Initially the magnet was tested in a liquid helium bath, and high precision magnetic field measurements were performed. The first (prototype) Cryomodule with the magnet inside was built and successfully tested at Fermilab test facility. In this paper the magnet package is discussed, themore » Cryomodule magnet test results and current leads con-duction cooling performance are presented. So far magnets in nine Cryomodules were successfully tested at Fermilab.« less
How to polarise all neutrons in one beam: a high performance polariser and neutron transport system
NASA Astrophysics Data System (ADS)
Rodriguez, D. Martin; Bentley, P. M.; Pappas, C.
2016-09-01
Polarised neutron beams are used in disciplines as diverse as magnetism,soft matter or biology. However, most of these applications often suffer from low flux also because the existing neutron polarising methods imply the filtering of one of the spin states, with a transmission of 50% at maximum. With the purpose of using all neutrons that are usually discarded, we propose a system that splits them according to their polarisation, flips them to match the spin direction, and then focuses them at the sample. Monte Carlo (MC) simulations show that this is achievable over a wide wavelength range and with an outstanding performance at the price of a more divergent neutron beam at the sample position.
NASA Astrophysics Data System (ADS)
Bodmer, M.; Toomey, D. R.; Hooft, E. E. E.
2014-12-01
We present SKS splitting measurements for the first two years of data collected by the Cascadia Initiative (CI) amphibious array. Our analysis includes observations from over 100 ocean bottom seismometers (OBS), as well as 31 onshore stations, and spans both the Juan de Fuca and Gorda plates. The CI dataset is unique in that it includes several regions that can distinctly influence anisotropic fabric development such as: the upwelling mantle beneath the Juan de Fuca and Gorda ridges, the young evolving oceanic lithosphere of the plate interior, the Blanco transform fault, and the Cascadia subduction zone. For the first time, we are able to analyze these regions with a single dataset, and using a common methodology. Splitting measurements are routinely done on land sites, but have been completed on relatively few OBS stations. This is largely due to the low signal to noise present in OBS data, which can obscure the splitting results. To address that nearly all the OBS data exceeds the global high noise limit at the frequencies used for splitting, we implement a rigorous quality control scheme. Our method specifically takes into account the response of common splitting methods to high noise data and addresses known issues such as cycle skipping, false minima, low transverse energy, and near-null measurements. Individual measurements are filtered at 0.03-0.1 Hz, manually checked for quality, and stacked. Preliminary results show trench perpendicular onshore measurements consistent with previous studies. Oceanic measurements in the plate interior show a coherent fast axis roughly aligned with absolute plate motion. Several measurements near the ridge and trench appear to be rotated in the ridge and trench parallel directions. Continuing work will integrate splitting measurements from the final two years of the CI with these findings, which will be used to characterize the ridge-to-trench mantle flow across the Juan de Fuca plate system.
Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation.
Maillard, F; Lu, G-Q; Wieckowski, A; Stimming, U
2005-09-01
This feature article concerns Pt surfaces modified (decorated) by ruthenium as model fuel cell electrocatalysts for electrooxidation processes. This work reveals the role of ruthenium promoters in enhancing electrocatalytic activity toward organic fuels for fuel cells, and it particularly concerns the methanol decomposition product, surface CO. A special focus is on surface mobility of the CO as it is catalytically oxidized to CO(2). Different methods used to prepare Ru-decorated Pt single crystal surfaces as well as Ru-decorated Pt nanoparticles are reviewed, and the methods of characterization and testing of their activity are discussed. The focus is on the origin of peak splitting involved in the voltammetric electrooxidation of CO on Ru-decorated Pt surfaces, and on the interpretative consequences of the splitting for single crystal and nanoparticle Pt/Ru bimetallic surfaces. Apparently, screening through the literature allows formulating several models of the CO stripping reaction, and the validity of these models is discussed. Major efforts are made in this article to compare the results reported by the Urbana-Champaign group and the Munich group, but also by other groups. As electrocatalysis is progressively more and more driven by theory, our review of the experimental findings may serve to summarize the state of the art and clarify the roads ahead. Future studies will deal with highly dispersed and reactive nanoscale surfaces and other more advanced catalytic materials for fuel cell catalysis and related energy applications. It is expected that the metal/metal and metal/substrate interactions will be increasingly investigated on atomic and electronic levels, with likewise increasing participation of theory, and the structure and reactivity of various monolayer catalytic systems involving more than two metals (that is ternary and quaternary systems) will be interrogated.
USDA-ARS?s Scientific Manuscript database
The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two conveyance structures. Water is circulated between the two basins with high-volume pumps and many different pumping systems are being used on commercial farms. Pump performance was evaluated with fou...
NASA Astrophysics Data System (ADS)
Okamoto, Shin-ichi; Maekawa, Kei-ichi; Kawashima, Yoshiyuki; Shiba, Kazutoshi; Sugiyama, Hideki; Inoue, Masao; Nishida, Akio
2015-04-01
High quality static random access memory (SRAM) for 40-nm embedded MONOS flash memory with split gate (SG-MONOS) was developed. Marginal failure, which results in threshold voltage/drain current tailing and outliers of SRAM transistors, occurs when using a conventional SRAM structure. These phenomena can be explained by not only gate depletion but also partial depletion and percolation path formation in the MOS channel. A stacked poly-Si gate structure can suppress these phenomena and achieve high quality SRAM without any defects in the 6σ level and with high affinity to the 40-nm SG-MONOS process was developed.
Simulations of Dynamics and Transport during the September 2002 Antarctic Major Warming
NASA Technical Reports Server (NTRS)
Manney, Gloria L.; Sabutis, Joseph L.; Allen, Douglas R.; Lahoz, Willian A.; Scaife, Adam A.; Randall, Cora E.; Pawson, Steven; Naujokat, Barbara; Swinbank, Richard
2005-01-01
A mechanistic model simulation initialized on 14 September 2002, forced by 100-hPa geopotential heights from Met Office analyses, reproduced the dynamical features of the 2002 Antarctic major warming. The vortex split on approx.25 September; recovery after the warming, westward and equatorward tilting vortices, and strong baroclinic zones in temperature associated with a dipole pattern of upward and downward vertical velocities were all captured in the simulation. Model results and analyses show a pattern of strong upward wave propagation throughout the warming, with zonal wind deceleration throughout the stratosphere at high latitudes before the vortex split, continuing in the middle and upper stratosphere and spreading to lower latitudes after the split. Three-dimensional Eliassen-Palm fluxes show the largest upward and poleward wave propagation in the 0(deg)-90(deg)E sector prior to the vortex split (coincident with the location of strongest cyclogenesis at the model's lower boundary), with an additional region of strong upward propagation developing near 180(deg)-270(deg)E. These characteristics are similar to those of Arctic wave-2 major warmings, except that during this warming, the vortex did not split below approx.600 K. The effects of poleward transport and mixing dominate modeled trace gas evolution through most of the mid- to high-latitude stratosphere, with a core region in the lower-stratospheric vortex where enhanced descent dominates and the vortex remains isolated. Strongly tilted vortices led to low-latitude air overlying vortex air, resulting in highly unusual trace gas profiles. Simulations driven with several meteorological datasets reproduced the major warming, but in others, stronger latitudinal gradients at high latitudes at the model boundary resulted in simulations without a complete vortex split in the midstratosphere. Numerous tests indicate very high sensitivity to the boundary fields, especially the wave-2 amplitude. Major warmings occurred for initial fields with stronger winds and larger vortices, but not smaller vortices, consistent with the initiation of wind-deceleration by upward-propagating waves near the poleward edge of the region where wave 2 can propagate above the jet core. Thus, given the observed 100-hPa boundary forcing, stratospheric preconditioning is not needed to reproduce a major warming similar to that observed. The anomalously strong forcing in the lower stratosphere can be viewed as the primary direct cause of the major warming.
NASA Astrophysics Data System (ADS)
Borkar, Rajnikant; Dahake, Rashmi; Rayalu, Sadhana; Bansiwal, Amit
2018-03-01
A biphasic copper oxide thin film of grass-like appendage morphology is synthesized by two-step electro-deposition method and later investigated for photoelectrochemical (PEC) water splitting for hydrogen production. Further, the thin film was characterized by UV-Visible spectroscopy, x-ray diffraction (XRD), Scanning electron microscopy (SEM) and PEC techniques. The XRD analysis confirms formation of biphasic copper oxide phases, and SEM reveals high surface area grass appendage-like morphology. These grass appendage structures exhibit a high cathodic photocurrent of - 1.44 mAcm-2 at an applied bias of - 0.7 (versus Ag/AgCl) resulting in incident to photon current efficiency (IPCE) of ˜ 10% at 400 nm. The improved light harvesting and charge transport properties of grass appendage structured biphasic copper oxides makes it a potential candidate for PEC water splitting for hydrogen production.
One‐dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting
Ge, Mingzheng; Li, Qingsong; Cao, Chunyan; Huang, Jianying; Li, Shuhui; Zhang, Songnan; Chen, Zhong; Zhang, Keqin; Al‐Deyab, Salem S.
2016-01-01
Hydrogen production from water splitting by photo/photoelectron‐catalytic process is a promising route to solve both fossil fuel depletion and environmental pollution at the same time. Titanium dioxide (TiO2) nanotubes have attracted much interest due to their large specific surface area and highly ordered structure, which has led to promising potential applications in photocatalytic degradation, photoreduction of CO2, water splitting, supercapacitors, dye‐sensitized solar cells, lithium‐ion batteries and biomedical devices. Nanotubes can be fabricated via facile hydrothermal method, solvothermal method, template technique and electrochemical anodic oxidation. In this report, we provide a comprehensive review on recent progress of the synthesis and modification of TiO2 nanotubes to be used for photo/photoelectro‐catalytic water splitting. The future development of TiO2 nanotubes is also discussed. PMID:28105391
NASA Astrophysics Data System (ADS)
Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd
2015-01-01
The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.
Entropy Splitting and Numerical Dissipation
NASA Technical Reports Server (NTRS)
Yee, H. C.; Vinokur, M.; Djomehri, M. J.
1999-01-01
A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock-turbulence interactions. The fourth is to determine if this method can be extended to other physical equations of state and other evolutionary equation sets. If numerical dissipation is needed, the Yee, Sandham, and Djomehri (1999) numerical dissipation is employed. The Yee et al. schemes fit in the Olsson and Oliger framework.
NASA Astrophysics Data System (ADS)
van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis
2014-11-01
In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.
Young, James L.; Steiner, Myles A.; Döscher, Henning; ...
2017-03-13
Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-dopedmore » photocathodes by using a buried p-n junction. Lastly, advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III-V device.« less
NASA Astrophysics Data System (ADS)
Mojiri, Ahmad; Stanley, Cameron; Rosengarten, Gary
2015-09-01
Hybrid photovoltaic/thermal (PV-T) solar collectors are capable of delivering heat and electricity concurrently. Implementing such receivers in linear concentrators for high temperature applications need special considerations such as thermal decoupling of the photovoltaic (pv) cells from the thermal receiver. Spectral beam splitting of concentrated light provides an option for achieving this purpose. In this paper we introduce a relatively simple hybrid receiver configuration that spectrally splits the light between a high temperature thermal fluid and silicon pv cells using volumetric light filtering by semi-conductor doped glass and propylene glycol. We analysed the optical performance of this device theoretically using ray tracing and experimentally through the construction and testing of a full scale prototype. The receiver was mounted on a commercial parabolic trough concentrator in an outdoor experiment. The prototype receiver delivered heat and electricity at total thermal efficiency of 44% and electrical efficiency of 3.9% measured relative to the total beam energy incident on the primary mirror.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, James L.; Steiner, Myles A.; Döscher, Henning
Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-dopedmore » photocathodes by using a buried p-n junction. Lastly, advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III-V device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzu, Hisashi, E-mail: Hisashi.Uzu@kaneka.co.jp, E-mail: npark@skku.edu; Ichikawa, Mitsuru; Hino, Masashi
2015-01-05
We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cellmore » or a CH{sub 3}NH{sub 3}PbI{sub 3} perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.« less
Wang, Rui; Wang, Lei; Zhao, Haiyan; Jiang, Wei
2016-12-15
MicroRNAs (miRNAs) are vital for many biological processes and have been regarded as cancer biomarkers. Specific and sensitive detection of miRNAs is essential for cancer diagnosis and therapy. Herein, a split recognition mode combined with cascade signal amplification strategy is developed for highly specific and sensitive detection of miRNA. The split recognition mode possesses two specific recognition processes, which are based on toehold-mediated strand displacement reaction (TSDR) and direct hybridization reaction. Two recognition probes, hairpin probe (HP) with overhanging toehold domain and assistant probe (AP), are specially designed. Firstly, the toehold domain of HP and AP recognize part of miRNA simultaneously, accompanied with TSDR to unfold the HP and form the stable DNA Y-shaped junction structure (YJS). Then, the AP in YJS can further act as primer to initiate strand displacement amplification, releasing numerous trigger sequences. Finally, the trigger sequences hybridize with padlock DNA to initiate circular rolling circle amplification and generate enhanced fluorescence responses. In this strategy, the dual recognition effect of split recognition mode guarantees the excellent selectivity to discriminate let-7b from high-homology sequences. Furthermore, the high amplification efficiency of cascade signal amplification guarantees a high sensitivity with the detection limit of 3.2 pM and the concentration of let-7b in total RNA sample extracted from Hela cells is determined. These results indicate our strategy will be a promising miRNA detection strategy in clinical diagnosis and disease treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Which One Is Ithaca? Multilingualism and Sense of Identity among Third Culture Kids
ERIC Educational Resources Information Center
Tannenbaum, Michal; Tseng, Jenny
2015-01-01
The linguistic transition that usually accompanies immigration is often related to a strong sense of split between two places, languages, identities and emotional settings. What happens, then, when people change countries and languages three, four or even five times during childhood and adolescence? In the present study, focusing on Third Culture…
NASA Astrophysics Data System (ADS)
Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.
2009-12-01
The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single photon ranging precision of 8 cm. The high speed, high throughput data system is capable of recording 22 million time-tagged photon detection events per second. At typical aircraft flight speeds, each of the 16 channels acquires a single photon range every 5 to 15 cm along the four profiles providing a highly sampled measure of surface roughness. The nominal flight altitude is 5 km yielding 10 m spacing between the four beam profiles, providing a measure of surface slope at 10 m length scales. The altitude is currently constrained by the low signal level of the NIR cross-polarized channels. SIMPL’s measurement capabilities provide information about surface elevation, roughness, slope and type of value in characterizing ice sheet surfaces and sea ice, including their melt state. Capabilities will be illustrated using data acquired over Lake Erie ice cover in February, 2009.
NASA Astrophysics Data System (ADS)
Duffey, Jason N.; Jones, Brian K.; Loudin, Jeffrey A.; Booth, Joseph J.
1995-03-01
Liquid crystal televisions are popular low-cost spatial light modulators. One LCTV of interest is found in the InFocus TVT-6000 television projector. A wavefront splitting interferometer has been constructed and analyzed for measuring the complex characteristics of these modulators, including phase and amplitude coupling. The results of this evaluation using the TVT-6000 projector drive electronics have been presented in a previous work. This work will present results of the complex characterizations of these modulators using custom drive electronics.
Splitting of electrons and violation of the Luttinger sum rule
NASA Astrophysics Data System (ADS)
Quinn, Eoin
2018-03-01
We obtain a controlled description of a strongly correlated regime of electronic behavior. We begin by arguing that there are two ways to characterize the electronic degree of freedom, either by the canonical fermion algebra or the graded Lie algebra su (2 |2 ) . The first underlies the Fermi liquid description of correlated matter, and we identify a regime governed by the latter. We exploit an exceptional central extension of su (2 |2 ) to employ a perturbative scheme recently developed by Shastry and obtain a series of successive approximations for the electronic Green's function. We then focus on the leading approximation, which reveals a splitting in two of the electronic dispersion. The Luttinger sum rule is violated, and a Mott metal-insulator transition is exhibited. We offer a perspective.
NASA Astrophysics Data System (ADS)
Johnson, Ryan; Kercher, Andrew; Schwer, Douglas; Corrigan, Andrew; Kailasanath, Kazhikathra
2017-11-01
This presentation focuses on the development of a Discontinuous Galerkin (DG) method for application to chemically reacting flows. The in-house code, called Propel, was developed by the Laboratory of Computational Physics and Fluid Dynamics at the Naval Research Laboratory. It was designed specifically for developing advanced multi-dimensional algorithms to run efficiently on new and innovative architectures such as GPUs. For these results, Propel solves for convection and diffusion simultaneously with detailed transport and thermodynamics. Chemistry is currently solved in a time-split approach using Strang-splitting with finite element DG time integration of chemical source terms. Results presented here show canonical unsteady reacting flow cases, such as co-flow and splitter plate, and we report performance for higher order DG on CPU and GPUs.
Tablet splitting and weight uniformity of half-tablets of 4 medications in pharmacy practice.
Tahaineh, Linda M; Gharaibeh, Shadi F
2012-08-01
Tablet splitting is a common practice for multiple reasons including cost savings; however, it does not necessarily result in weight-uniform half-tablets. To determine weight uniformity of half-tablets resulting from splitting 4 products available in the Jordanian market and investigate the effect of tablet characteristics on weight uniformity of half-tablets. Ten random tablets each of warfarin 5 mg, digoxin 0.25 mg, phenobarbital 30 mg, and prednisolone 5 mg were weighed and split by 6 PharmD students using a knife. The resulting half-tablets were weighed and evaluated for weight uniformity. Other relevant physical characteristics of the 4 products were measured. The average tablet hardness of the sampled tablets ranged from 40.3 N to 68.9 N. Digoxin, phenobarbital, and prednisolone half-tablets failed the weight uniformity test; however, warfarin half-tablets passed. Digoxin, warfarin, and phenobarbital tablets had a score line and warfarin tablets had the deepest score line of 0.81 mm. Splitting warfarin tablets produces weight-uniform half-tablets that may possibly be attributed to the hardness and the presence of a deep score line. Digoxin, phenobarbital, and prednisolone tablet splitting produces highly weight variable half-tablets. This can be of clinical significance in the case of the narrow therapeutic index medication digoxin.
Waite, Gregory P.; Schutt, D.L.; Smith, Robert B.
2005-01-01
Teleseismic shear wave splitting measured at 56 continuous and temporary seismographs deployed in a 500 km by 600 km area around the Yellowstone hot spot indicates that fast anisotropy in the mantle is parallel to the direction of plate motion under most of the array. The average split time from all stations of 0.9 s is typical of continental stations. There is little evidence for plume-induced radial strain, suggesting that any contribution of gravitationally spreading plume material is undetectably small with respect to the plate motion velocity. Two stations within Yellowstone have splitting measurements indicating the apparent fast anisotropy direction (ϕ) is nearly perpendicular to plate motion. These stations are ∼30 km from stations with ϕ parallel to plate motion. The 70° rotation over 30 km suggests a shallow source of anisotropy; however, split times for these stations are more than 2 s. We suggest melt-filled, stress-oriented cracks in the lithosphere are responsible for the anomalous ϕ orientations within Yellowstone. Stations southeast of Yellowstone have measurements of ϕ oriented NNW to WNW at high angles to the plate motion direction. The Archean lithosphere beneath these stations may have significant anisotropy capable of producing the observed splitting.
Development of new flux splitting schemes. [computational fluid dynamics algorithms
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Steffen, Christopher J., Jr.
1992-01-01
Maximizing both accuracy and efficiency has been the primary objective in designing a numerical algorithm for computational fluid dynamics (CFD). This is especially important for solutions of complex three dimensional systems of Navier-Stokes equations which often include turbulence modeling and chemistry effects. Recently, upwind schemes have been well received for their capability in resolving discontinuities. With this in mind, presented are two new flux splitting techniques for upwind differencing. The first method is based on High-Order Polynomial Expansions (HOPE) of the mass flux vector. The second new flux splitting is based on the Advection Upwind Splitting Method (AUSM). The calculation of the hypersonic conical flow demonstrates the accuracy of the splitting in resolving the flow in the presence of strong gradients. A second series of tests involving the two dimensional inviscid flow over a NACA 0012 airfoil demonstrates the ability of the AUSM to resolve the shock discontinuity at transonic speed. A third case calculates a series of supersonic flows over a circular cylinder. Finally, the fourth case deals with tests of a two dimensional shock wave/boundary layer interaction.
Boone, Marc; Draye, Jean Pierre; Verween, Gunther; Pirnay, Jean-Paul; Verbeken, Gilbert; De Vos, Daniel; Rose, Thomas; Jennes, Serge; Jemec, Gregor B E; Del Marmol, Véronique
2014-10-01
While real-time 3-D evaluation of human skin constructs is needed, only 2-D non-invasive imaging techniques are available. The aim of this paper is to evaluate the potential of high-definition optical coherence tomography (HD-OCT) for real-time 3-D assessment of the epidermal splitting and decellularization. Human skin samples were incubated with four different agents: Dispase II, NaCl 1 M, sodium dodecyl sulphate (SDS) and Triton X-100. Epidermal splitting, dermo-epidermal junction, acellularity and 3-D architecture of dermal matrices were evaluated by High-definition optical coherence tomography before and after incubation. Real-time 3-D HD-OCT assessment was compared with 2-D en face assessment by reflectance confocal microscopy (RCM). (Immuno) histopathology was used as control. HD-OCT imaging allowed real-time 3-D visualization of the impact of selected agents on epidermal splitting, dermo-epidermal junction, dermal architecture, vascular spaces and cellularity. RCM has a better resolution (1 μm) than HD-OCT (3 μm), permitting differentiation of different collagen fibres, but HD-OCT imaging has deeper penetration (570 μm) than RCM imaging (200 μm). Dispase II and NaCl treatments were found to be equally efficient in the removal of the epidermis from human split-thickness skin allografts. However, a different epidermal splitting level at the dermo-epidermal junction could be observed and confirmed by immunolabelling of collagen type IV and type VII. Epidermal splitting occurred at the level of the lamina densa with dispase II and above the lamina densa (in the lamina lucida) with NaCl. The 3-D architecture of dermal papillae and dermis was more affected by Dispase II on HD-OCT which corresponded with histopathologic (orcein staining) fragmentation of elastic fibres. With SDS treatment, the epidermal removal was incomplete as remnants of the epidermal basal cell layer remained attached to the basement membrane on the dermis. With Triton X-100 treatment, the epidermis was not removed. In conclusion, HD-OCT imaging permits real-time 3-D visualization of the impact of selected agents on human skin allografts. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A MEMS and agile optics-based dual-mode variable optical power splitter with no moving parts
NASA Astrophysics Data System (ADS)
Khwaja, Tariq S.; Suleman, Hamid; Reza, Syed Azer
2017-06-01
In this paper, we present a novel design of an optical power splitter. Owing to the inherent variable power split ratios that the proposed design delivers, it is ideal for use in communications, sensing and signal processing applications where variable power splitting is often quintessential. The proposed power splitter module is dual mode as it combines the use of a Micro-Electro-Mechanical Systems (MEMS) based Digital Micro-mirror Device (DMD) and an Electronically Controlled Tunable Lens (ECTL) to split the power of an input optical signal between two output ports - the designated port and the surplus port. The use of a reflective Digital Spatial Light Modulator (DSLM) such as the DMD provides a motion-free digital control of the split ratio between the two output ports. Although the digital step between two possible successive split ratios can be fairly minimal with the use of a high resolution DMD but it is a challenge to correctly ascertain the exact image pattern on the DMD to obtain any desired specific split ratio. To counter this challenge, we propose the synchronized use of a circular pattern on the DMD, which serves as a circular clear aperture with a tunable radius, and an ECTL. The radius of the circular pattern on the DMD provides a digital control of the split ratio between the two ports whereas the ECTL, depending on its controller, can provide either an analog or a digital control by altering the beam radius which is incident at the DMD circular pattern. The radius of the circular pattern on the DMD can be minimally changed by one micro-pixel thickness. Setting the radius of the circular pattern on the DMD to an appropriate value provides the closest "ball-park" split ratio whereas further tuning the ECTL aids in slightly altering from this digitally set value to obtain the exact desired split ratio in-between any two digitally-set successive split ratios that correspond to any clear aperture radius of the DMD pattern and its incremental minimal allowable change of one micropixel. We provide a detailed scheme to calculate the desired DMD aperture radius as well as the focal length setting of the ECTL to obtain any given split ratio. By setting tolerance limits on the split ratio, we also show that our method affords diversity by providing multiple possible solutions to achieve a desired optical power split ratio within the specified tolerances. We also demonstrate the validation of the proposed concept with initial experimental results and discussions. These experimental results show a repeatable splitter operation and the resulting power split ratios according to the theoretical predictions. With the experimental data, we also demonstrate the effectiveness of the method in obtaining any particular split ratio through different DMD and ECTL configurations with specific split ratio tolerance values.
NASA Astrophysics Data System (ADS)
Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.
2013-04-01
The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm-2 in the free field in water and 40 W cm-2 in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.
Yuldashev, Petr V.; Shmeleva, Svetlana M.; Ilyin, Sergey A.; Sapozhnikov, Oleg A.; Gavrilov, Leonid R.; Khokhlova, Vera A.
2013-01-01
The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path, and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low power sonications. Intensity levels at the face of the array elements that corresponded to formation of high amplitude shock fronts in the focal region were determined as 10 W·cm−2 in the free field in water and 40 W·cm−2 in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue. PMID:23528338
Fundamental metallurgical aspects of axial splitting in zircaloy cladding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, H. M.
Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10{sup 21} n cm{sup {minus}2} to 5.9 x 10{sup 21} n cm{sup {minus}2} (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest claddingmore » were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed.« less
NASA Astrophysics Data System (ADS)
Yao, Lihua; Zhang, Nan; Wang, Yin; Ni, Yuanman; Yan, Dongpeng; Hu, Changwen
2018-01-01
Exploring efficient non-precious electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for many renewable energy conversion processes. In this work, we report that 2D Co2P@Co3O4 microsheets can be prepared through an in-situ toptactic conversion from single-crystal β-Co(OH)2 microplatelets, associated with a surface phosphatization and corrosion process. The resultant Co2P@Co3O4 2D hybrid materials can further serve as self-supported bifunctional catalytic electrodes to drive the overall water splitting for HER and OER simultaneously, with low overpotentials and high long-term stability. Furthermore, a water electrolyzer based on Co2P@Co3O4 hybrid as both anode and cathode is fabricated, which achieves 10 mA cm-2 current at only 1.57 V during water splitting process. Therefore, this work provides a facile strategy to obtain 2D Co2P-based micro/nanostructures, which act as low-cost and highly active electrocatalysts towards overall water splitting application.
Opitz, Alexander K; Nenning, Andreas; Rameshan, Christoph; Rameshan, Raffael; Blume, Raoul; Hävecker, Michael; Knop-Gericke, Axel; Rupprechter, Günther; Fleig, Jürgen; Klötzer, Bernhard
2015-02-23
In the search for optimized cathode materials for high-temperature electrolysis, mixed conducting oxides are highly promising candidates. This study deals with fundamentally novel insights into the relation between surface chemistry and electrocatalytic activity of lanthanum ferrite based electrolysis cathodes. For this means, near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and impedance spectroscopy experiments were performed simultaneously on electrochemically polarized La0.6 Sr0.4 FeO3-δ (LSF) thin film electrodes. Under cathodic polarization the formation of Fe(0) on the LSF surface could be observed, which was accompanied by a strong improvement of the electrochemical water splitting activity of the electrodes. This correlation suggests a fundamentally different water splitting mechanism in presence of the metallic iron species and may open novel paths in the search for electrodes with increased water splitting activity. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Development concept for a small, split-core, heat-pipe-cooled nuclear reactor
NASA Technical Reports Server (NTRS)
Lantz, E.; Breitwieser, R.; Niederauer, G. F.
1974-01-01
There have been two main deterrents to the development of semiportable nuclear reactors. One is the high development costs; the other is the inability to satisfy with assurance the questions of operational safety. This report shows how a split-core, heat-pipe cooled reactor could conceptually eliminate these deterrents, and examines and summarizes recent work on split-core, heat-pipe reactors. A concept for a small reactor that could be developed at a comparatively low cost is presented. The concept would extend the technology of subcritical radioisotope thermoelectric generators using 238 PuO2 to the evolution of critical space power reactors using 239 PuO2.
The gj factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions
NASA Astrophysics Data System (ADS)
Beier, Thomas
2000-12-01
The comparison between theory and experiment of the hyperfine structure splitting and the electronic gj factor in heavy highly charged ions provides a unique testing ground for quantum electrodynamics in the presence of strong electric and magnetic fields. A theoretical evaluation is presented of all quantum electrodynamical contributions to the ground-state hfs splitting in hydrogenlike and lithiumlike atoms as well as to the gj factor. Binding and nuclear effects are discussed as well. A comparison with the available experimental data is performed, and a detailed discussion of theoretical sources of uncertainty is included which is mainly due to insufficiently known nuclear properties.
High temperature thermometric phosphors
Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.
1999-03-23
A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.
High temperature thermometric phosphors
Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.
1999-03-23
A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.
High temperature thermometric phosphors for use in a temperature sensor
Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.
1998-03-24
A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.
New Insights into the Formation of the Blue Main Sequence in NGC 1850
NASA Astrophysics Data System (ADS)
Yang, Yujiao; Li, Chengyuan; Deng, Licai; de Grijs, Richard; Milone, Antonino P.
2018-06-01
Recent discoveries of bimodal main sequences (MSs) associated with young clusters (with ages ≲1 Gyr) in the Magellanic Clouds have drawn a lot of attention. One of the prevailing formation scenarios attributes these split MSs to a bimodal distribution in stellar rotation rates, with most stars belonging to a rapidly rotating population. In this scenario, only a small fraction of stars populating a secondary blue sequence are slowly or non-rotating stars. Here, we focus on the blue MS in the young cluster NGC 1850. We compare the cumulative number fraction of the observed blue-MS stars to that of the high-mass-ratio binary systems at different radii. The cumulative distributions of both populations exhibit a clear anti-correlation, characterized by a highly significant Pearson coefficient of ‑0.97. Our observations are consistent with the possibility that blue-MS stars are low-mass-ratio binaries, and therefore their dynamical disruption is still ongoing. High-mass-ratio binaries, on the other hand, are more centrally concentrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Chen, Bo; Transue, Wesley J.
Three newly-synthesized [Na+(221-kryptofix)] salts containing AsCO–, PCO–, and PCS– anions were successfully electrosprayed into the vacuum, and the ECX– (E = As, P; X = O, S) anions were investigated by negative ion photoelectron spectroscopy (NIPES) and high resolution photoelectron imaging spectroscopy. For each ECX– anion, a well-resolved NIPE spectrum was obtained, in which every major peak is split into a doublet. The splittings are attributed to spin-orbit coupling (SOC) in the ECX• radicals. Vibrational progressions in the NIPE spectra of ECX– were assigned to the symmetric and antisymmetric stretching modes in ECX• radicals. The electron affinities (EAs) and SOCmore » splittings of ECX• are determined from the NIPE spectra to be: AsCO•: EA = 2.414 ± 0.002 eV, SOC splitting = 988 cm-1; PCO•: EA = 2.670 ± 0.005 eV, SOC splitting = 175 cm-1; PCS•: EA = 2.850 ± 0.005 eV, SOC splitting = 300 cm-1. Calculations using the B3LYP, CASPT2, and CCSD(T) methods all predict linear geometries for both the anions and neutral radicals. The calculated EAs and SOC splittings for ECX• are in excellent agreement with the experimentally-measured values. The simulated NIPE spectra, based on the calculated Franck-Condon factors, and SOC splittings nicely reproduce all of the observed spectral peaks, thus allowing unambiguous spectral assignments. The finding that PCS has the greatest EA of the three triatomic molecules considered here is counterintuitive based upon electronegativity considerations, but understandable in terms of the HOMO of PCS– having the greatest degree of delocalization onto both terminal atoms.« less
Cool covered sky-splitting spectrum-splitting FK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi
2014-09-26
Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell formore » better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.« less
Enhancement of intrinsic optical signal recording with split spectrum optical coherence tomography
NASA Astrophysics Data System (ADS)
Thapa, Damber; Wang, Benquan; Lu, Yiming; Son, Taeyoon; Yao, Xincheng
2017-09-01
Functional optical coherence tomography (OCT) of stimulus-evoked intrinsic optical signal (IOS) promises to be a new methodology for high-resolution mapping of retinal neural dysfunctions. However, its practical applications for non-invasive examination of retinal function have been hindered by the low signal-to-noise ratio (SNR) and small magnitude of IOSs. Split spectrum amplitude-decorrelation has been demonstrated to improve the image quality of OCT angiography. In this study, we exploited split spectrum strategy to improve the sensitivity of IOS recording. The full OCT spectrum was split into multiple spectral bands and IOSs from each sub-band were calculated separately and then combined to generate a single IOS image sequence. The algorithm was tested on in vivo images of frog retinas. It significantly improved both IOS magnitude and SNR, which are essential for practical applications of functional IOS imaging.
NASA Astrophysics Data System (ADS)
Qiu, Weiqia; Zhou, Junjie; Yu, Jianhui; Xiao, Yi; Lu, Huihui; Guan, Heyuan; Zhong, Yongchun; Zhang, Jun; Chen, Zhe
2016-06-01
We established a theoretical model for a single knot-ring resonator and investigated the transmission spectrum by Jones matrix. The numerical results show that two orthogonal polarization modes of knot-ring, which are originally resonated at the same wavelength, will split into two resonant modes with different wavelengths. The mode splitting is due to the coupling between the two orthogonal polarization modes in the knot-ring when the twisted angle of the twist coupler is not exactly equal to 2mπ (m is an integer). It is also found that the separation of the mode splitting is linearly proportional to the deviation angle δθ with a high correlation coefficient of 99.6% and a slope of 3.17 nm/rad. Furthermore, a transparency phenomenon analogous to coupled-resonator-induced transparency was also predicted by the model. These findings may have potential applications in lasers and sensors.
Shinagawa, Tatsuya
2017-01-01
Abstract Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine‐tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. PMID:27984671
NASA Astrophysics Data System (ADS)
Izosimov, I. N.; Solnyshkin, A. A.; Khushvaktov, J. H.; Vaganov, Yu. A.
2018-05-01
The experimental measurement data on the fine structure of beta-decay strength function S β( E) in spherical, transitional, and deformed nuclei are analyzed. Modern high-resolution nuclear spectroscopy methods made it possible to identify the splitting of peaks in S β( E) for deformed nuclei. By analogy with splitting of the peak of E1 giant dipole resonance (GDR) in deformed nuclei, the peaks in S β( E) are split into two components from the axial nuclear deformation. In this report, the fine structure of S β( E) is discussed. Splitting of the peaks connected with the oscillations of neutrons against protons (E1GDR), of proton holes against neutrons (peaks in S β( E) of β+/ EC-decay), and of protons against neutron holes (peaks in S β( E) of β--decay) is discussed.
NASA Technical Reports Server (NTRS)
Grossman, B.; Cinella, P.
1988-01-01
A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.
Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde
NASA Astrophysics Data System (ADS)
Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.
2017-12-01
Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.
Split-ball resonator as a three-dimensional analogue of planar split-rings
NASA Astrophysics Data System (ADS)
Kuznetsov, Arseniy I.; Miroshnichenko, Andrey E.; Hsing Fu, Yuan; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Ying Pan, Zhen; Kivshar, Yuri; Pickard, Daniel S.; Luk'Yanchuk, Boris
2014-01-01
Split-ring resonators are basic elements of metamaterials, which can induce a magnetic response in metallic nanosctructures. Tunability of such response up to the visible frequency range is still a challenge. Here we introduce the concept of the split-ball resonator and demonstrate the strong magnetic response in the visible for both gold and silver spherical plasmonic nanoparticles with nanometre scale cuts. We realize this concept experimentally by employing the laser-induced transfer method to produce near-perfect metallic spheres and helium ion beam milling to make cuts with the clean straight sidewalls and nanometre resolution. The magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. This method can be applied to the structuring of arbitrary three-dimensional features on the surface of nanoscale resonators. It provides new ways for engineering hybrid resonant modes and ultra-high near-field enhancement.
Kang, Moon-Sung; Choi, Yong-Jin; Moon, Seung-Hyeon
2004-05-15
An approach to enhancing the water-splitting performance of bipolar membranes (BPMs) is introducing an inorganic substance at the bipolar (BP) junction. In this study, the immobilization of inorganic matters (i.e., iron hydroxides and silicon compounds) at the BP junction and the optimum concentration have been investigated. To immobilize these inorganic matters, novel methods (i.e., electrodeposition of the iron hydroxide and processing of the sol-gel to introduce silicon groups at the BP junction) were suggested. At optimal concentrations, the immobilized inorganic matters significantly enhanced the water-splitting fluxes, indicating that they provide alternative paths for water dissociation, but on the other hand possibly reduce the polarization of water molecules between the sulfonic acid and quaternary ammonium groups at high contents. Consequently, the amount of inorganic substances introduced should be optimized to obtain the maximum water splitting in the BPM.
Engineered Photoactivatable Genetic Switches Based on the Bacterium Phage T7 RNA Polymerase.
Han, Tiyun; Chen, Quan; Liu, Haiyan
2017-02-17
Genetic switches in which the activity of T7 RNA polymerase (RNAP) is directly regulated by external signals are obtained with an engineering strategy of splitting the protein into fragments and using regulatory domains to modulate their reconstitutions. Robust switchable systems with excellent dark-off/light-on properties are obtained with the light-activatable VVD domain and its variants as regulatory domains. For the best split position found, working switches exploit either the light-induced interactions between the VVD domains or allosteric effects. The split fragments show high modularity when they are combined with different regulatory domains such as those with chemically inducible interaction, enabling chemically controlled switches. To summarize, the T7 RNA polymerase-based switches are powerful tools to implement light-activated gene expression in different contexts. Moreover, results about the studied split positions and domain organizations may facilitate future engineering studies on this and on related proteins.
First-order symmetry-adapted perturbation theory for multiplet splittings.
Patkowski, Konrad; Żuchowski, Piotr S; Smith, Daniel G A
2018-04-28
We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S 2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S 2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.
First-order symmetry-adapted perturbation theory for multiplet splittings
NASA Astrophysics Data System (ADS)
Patkowski, Konrad; Żuchowski, Piotr S.; Smith, Daniel G. A.
2018-04-01
We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.
Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation
Mukherjee, Mukul; Eikema, Diderik Jan A.; Chien, Jung Hung; Myers, Sara A.; Scott-Pandorf, Melissa; Bloomberg, Jacob J.; Stergiou, Nicholas
2015-01-01
Patterns of human locomotion are highly adaptive and flexible, and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 minutes of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant groups differences were observed overground. Step and swing time asymmetries learned on the split belt treadmill, were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after-effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern. PMID:26169104
Pihosh, Yuriy; Turkevych, Ivan; Mawatari, Kazuma; Uemura, Jin; Kazoe, Yutaka; Kosar, Sonya; Makita, Kikuo; Sugaya, Takeyoshi; Matsui, Takuya; Fujita, Daisuke; Tosa, Masahiro; Kondo, Michio; Kitamori, Takehiko
2015-01-01
Efficient photocatalytic water splitting requires effective generation, separation and transfer of photo-induced charge carriers that can hardly be achieved simultaneously in a single material. Here we show that the effectiveness of each process can be separately maximized in a nanostructured heterojunction with extremely thin absorber layer. We demonstrate this concept on WO3/BiVO4+CoPi core-shell nanostructured photoanode that achieves near theoretical water splitting efficiency. BiVO4 is characterized by a high recombination rate of photogenerated carriers that have much shorter diffusion length than the thickness required for sufficient light absorption. This issue can be resolved by the combination of BiVO4 with more conductive WO3 nanorods in a form of core-shell heterojunction, where the BiVO4 absorber layer is thinner than the carrier diffusion length while it’s optical thickness is reestablished by light trapping in high aspect ratio nanostructures. Our photoanode demonstrates ultimate water splitting photocurrent of 6.72 mA cm−2 under 1 sun illumination at 1.23 VRHE that corresponds to ~90% of the theoretically possible value for BiVO4. We also demonstrate a self-biased operation of the photoanode in tandem with a double-junction GaAs/InGaAsP photovoltaic cell with stable water splitting photocurrent of 6.56 mA cm−2 that corresponds to the solar to hydrogen generation efficiency of 8.1%. PMID:26053164
NASA Astrophysics Data System (ADS)
Pihosh, Yuriy; Turkevych, Ivan; Mawatari, Kazuma; Uemura, Jin; Kazoe, Yutaka; Kosar, Sonya; Makita, Kikuo; Sugaya, Takeyoshi; Matsui, Takuya; Fujita, Daisuke; Tosa, Masahiro; Kondo, Michio; Kitamori, Takehiko
2015-06-01
Efficient photocatalytic water splitting requires effective generation, separation and transfer of photo-induced charge carriers that can hardly be achieved simultaneously in a single material. Here we show that the effectiveness of each process can be separately maximized in a nanostructured heterojunction with extremely thin absorber layer. We demonstrate this concept on WO3/BiVO4+CoPi core-shell nanostructured photoanode that achieves near theoretical water splitting efficiency. BiVO4 is characterized by a high recombination rate of photogenerated carriers that have much shorter diffusion length than the thickness required for sufficient light absorption. This issue can be resolved by the combination of BiVO4 with more conductive WO3 nanorods in a form of core-shell heterojunction, where the BiVO4 absorber layer is thinner than the carrier diffusion length while it’s optical thickness is reestablished by light trapping in high aspect ratio nanostructures. Our photoanode demonstrates ultimate water splitting photocurrent of 6.72 mA cm-2 under 1 sun illumination at 1.23 VRHE that corresponds to ~90% of the theoretically possible value for BiVO4. We also demonstrate a self-biased operation of the photoanode in tandem with a double-junction GaAs/InGaAsP photovoltaic cell with stable water splitting photocurrent of 6.56 mA cm-2 that corresponds to the solar to hydrogen generation efficiency of 8.1%.
Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.
Mukherjee, Mukul; Eikema, Diderik Jan A; Chien, Jung Hung; Myers, Sara A; Scott-Pandorf, Melissa; Bloomberg, Jacob J; Stergiou, Nicholas
2015-10-01
Patterns of human locomotion are highly adaptive and flexible and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 min of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated-measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant group differences were observed overground. Step and swing time asymmetries learned on the split-belt treadmill were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, C.; Golberg, D., E-mail: xuzhi@iphy.ac.cn, E-mail: golberg.dmitri@nims.go.jp; Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1, Tsukuba, Ibaraki 3058577
2015-08-31
Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structuremore » of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.« less
High order parallel numerical schemes for solving incompressible flows
NASA Technical Reports Server (NTRS)
Lin, Avi; Milner, Edward J.; Liou, May-Fun; Belch, Richard A.
1992-01-01
The use of parallel computers for numerically solving flow fields has gained much importance in recent years. This paper introduces a new high order numerical scheme for computational fluid dynamics (CFD) specifically designed for parallel computational environments. A distributed MIMD system gives the flexibility of treating different elements of the governing equations with totally different numerical schemes in different regions of the flow field. The parallel decomposition of the governing operator to be solved is the primary parallel split. The primary parallel split was studied using a hypercube like architecture having clusters of shared memory processors at each node. The approach is demonstrated using examples of simple steady state incompressible flows. Future studies should investigate the secondary split because, depending on the numerical scheme that each of the processors applies and the nature of the flow in the specific subdomain, it may be possible for a processor to seek better, or higher order, schemes for its particular subcase.
NASA Astrophysics Data System (ADS)
Bae, Hyojung; Rho, Hokyun; Min, Jung-Wook; Lee, Yong-Tak; Lee, Sang Hyun; Fujii, Katsushi; Lee, Hyo-Jong; Ha, Jun-Seok
2017-11-01
Gallium nitride (GaN) nanowires are one of the most promising photoelectrode materials due to their high stability in acidic and basic electrolytes, and tunable band edge potentials. In this study, GaN nanowire arrays (GaN NWs) were prepared by molecular beam epitaxy (MBE); their large surface area enhanced the solar to hydrogen conversion efficiency. More significantly, graphene was grown by chemical vapor deposition (CVD), which enhanced the electron transfer between NWs for water splitting and protected the GaN NW surface. Structural characterizations of the prepared composite were performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocurrent density of Gr/GaN NWs exhibited a two-fold increase over pristine GaN NWs and sustained water splitting up to 70 min. These improvements may accelerate possible applications for hydrogen generation with high solar to hydrogen conversion efficiency.
Enhancing uniformity and overall quality of red cell concentrate with anaerobic storage
Yoshida, Tatsuro; Blair, Abbejane; D'Alessandro, Angelo; Nemkov, Travis; Dioguardi, Michael; Silliman, Christopher C.; Dunham, Andrew
2017-01-01
Background Recent research focused on understanding stored red blood cell (RBC) quality has demonstrated high variability in measures of RBC function and health across units. Studies have historically linked this high variability to variations in processing, storage method, and age. More recently, a large number of studies have focused on differences in donor demographics, donor iron sufficiency, and genetic predisposition of the donor to poor storage, particularly through mechanisms of accelerated oxidative damage. A study was undertaken to evaluate a potential additional source of unit to unit variation in stored RBC: the role of variable percent oxygen saturation (%SO2) levels on blood quality parameters during storage. Materials and methods %SO2 data from 492 LR-RBC/AS-3 units used for internal and external collaborative research was included in the analysis. Whole blood units were processed into red blood cells, AS-3 added, leucocyte reduced, in compliance with American Association of Blood Banks guidelines. LR-RBC/AS-3 products were subsequently analysed for %SO2 levels within 3–24 hours of phlebotomy using a co-oximeter. Separately, to evaluate the impact of pre-storage as well as increasing levels of %SO2 during storage, a pool-and-split study was performed. Four units of LR-RBC/AS-3 were split 6 ways; “as is” (control), hyperoxygenated to more than 90%, and four levels of pre-storage %SO2. The units were periodically sampled up to 42 days and analysed for %SO2, pCO2, methaemoglobin, ATP, 2,3-BPG as well as with the metabolomics workflow. Results The measured mean %SO2 in LR-RBC/AS-3 within 24 hours of collection was 45.9±17.5% with (32.7–61.0 IQR). %SO2 in all products increased to approximately 95–100% in three weeks. Measured blood quality parameters including ATP, % haemolysis, methaemoglobin, oxidised lipids, and GSH/GSSG indicated suppressed cellular metabolism and increased red cell degradation in response to higher %SO2 levels. Discussion The surprisingly high variability in starting %SO2 levels, coupled with negative impacts of high oxygen saturation on red blood cell quality indicates that oxygen levels may be an important and under-appreciated source of unit-to-unit variability in RBC quality. PMID:28263176
Enhancing uniformity and overall quality of red cell concentrate with anaerobic storage.
Yoshida, Tatsuro; Blair, Abbejane; D'alessandro, Angelo; Nemkov, Travis; Dioguardi, Michael; Silliman, Christopher C; Dunham, Andrew
2017-03-01
Recent research focused on understanding stored red blood cell (RBC) quality has demonstrated high variability in measures of RBC function and health across units. Studies have historically linked this high variability to variations in processing, storage method, and age. More recently, a large number of studies have focused on differences in donor demographics, donor iron sufficiency, and genetic predisposition of the donor to poor storage, particularly through mechanisms of accelerated oxidative damage. A study was undertaken to evaluate a potential additional source of unit to unit variation in stored RBC: the role of variable percent oxygen saturation (%SO 2 ) levels on blood quality parameters during storage. %SO 2 data from 492 LR-RBC/AS-3 units used for internal and external collaborative research was included in the analysis. Whole blood units were processed into red blood cells, AS-3 added, leucocyte reduced, in compliance with American Association of Blood Banks guidelines. LR-RBC/AS-3 products were subsequently analysed for %SO 2 levels within 3-24 hours of phlebotomy using a co-oximeter. Separately, to evaluate the impact of pre-storage as well as increasing levels of %SO 2 during storage, a pool-and-split study was performed. Four units of LR-RBC/AS-3 were split 6 ways; "as is" (control), hyperoxygenated to more than 90%, and four levels of pre-storage %SO 2 . The units were periodically sampled up to 42 days and analysed for %SO 2 , pCO 2 , methaemoglobin, ATP, 2,3-BPG as well as with the metabolomics workflow. The measured mean %SO 2 in LR-RBC/AS-3 within 24 hours of collection was 45.9±17.5% with (32.7-61.0 IQR). %SO 2 in all products increased to approximately 95-100% in three weeks. Measured blood quality parameters including ATP, % haemolysis, methaemoglobin, oxidised lipids, and GSH/GSSG indicated suppressed cellular metabolism and increased red cell degradation in response to higher %SO 2 levels. The surprisingly high variability in starting %SO 2 levels, coupled with negative impacts of high oxygen saturation on red blood cell quality indicates that oxygen levels may be an important and under-appreciated source of unit-to-unit variability in RBC quality.
A STRICTLY CONTRACTIVE PEACEMAN–RACHFORD SPLITTING METHOD FOR CONVEX PROGRAMMING
BINGSHENG, HE; LIU, HAN; WANG, ZHAORAN; YUAN, XIAOMING
2014-01-01
In this paper, we focus on the application of the Peaceman–Rachford splitting method (PRSM) to a convex minimization model with linear constraints and a separable objective function. Compared to the Douglas–Rachford splitting method (DRSM), another splitting method from which the alternating direction method of multipliers originates, PRSM requires more restrictive assumptions to ensure its convergence, while it is always faster whenever it is convergent. We first illustrate that the reason for this difference is that the iterative sequence generated by DRSM is strictly contractive, while that generated by PRSM is only contractive with respect to the solution set of the model. With only the convexity assumption on the objective function of the model under consideration, the convergence of PRSM is not guaranteed. But for this case, we show that the first t iterations of PRSM still enable us to find an approximate solution with an accuracy of O(1/t). A worst-case O(1/t) convergence rate of PRSM in the ergodic sense is thus established under mild assumptions. After that, we suggest attaching an underdetermined relaxation factor with PRSM to guarantee the strict contraction of its iterative sequence and thus propose a strictly contractive PRSM. A worst-case O(1/t) convergence rate of this strictly contractive PRSM in a nonergodic sense is established. We show the numerical efficiency of the strictly contractive PRSM by some applications in statistical learning and image processing. PMID:25620862
Takian, Amirhossein; Rashidian, Arash; Doshmangir, Leila
2015-12-01
The Iranian health system, under the banner of family physician (FP) programme, has undergone substantial reforms to change utilization of health services, improve quality of care and enhance affordability. The national implementation of FP initiated in 2005 in parallel with rural health insurance (RHI) in rural areas and cities of <20 000 populations in Iran. The implementation of FP was the first national attempt to split the purchaser and provider of the primary health-care services in Iran. Using an adapted institutional approach, this article aims to explore the process of purchaser-provider split (PPS) during the implementation of FP and RHI reforms, and its consequences for the health system in Iran. We conducted 71 face-to-face interviews and three focus group discussions at national, provincial and local levels with policy makers, managers, researchers, health-care practitioners and representatives of the public. Interviews and focus groups were digitally recorded and transcribed verbatim. Data collection was supplemented by the review of relevant documents at all three levels. We analysed the data using an inductive-deductive framework analysis approach. Views towards PPS and its consequences on the implementation of FP were diverse. Some participants identified the PPS as an essential reform for undertaking the parallel implementation of FP and RHI. Others wondered whether the split has been beneficial as expected and asked for more scrutiny. The implementation of FP and RHI in Iran demonstrated the mixed effects of PPS on health system performance. Our research revealed that PPS did not succeed in changing the status quo, became a reason for fighting, misunderstanding, lack of co-operation and failure of the fragile partnership between the purchaser and provider. We advocate careful contextual preparation prior to large-scale application of PPS during nationwide implementation of FP in Iran as well as other settings. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2015; all rights reserved.
Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea
NASA Astrophysics Data System (ADS)
Hongsresawat, S.; Russo, R. M.
2016-12-01
We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that parallel the strike of the now-inoperative spreading center in the South China Sea. This transition appears to occur in the central portion of Peninsular Malaysia and may mark the boundary between Tethyan upper mantle extruded from the India-Asia collision zone and supra-subduction upper mantle of the Indonesian arc.
Review on advanced composite materials boring mechanism and tools
NASA Astrophysics Data System (ADS)
Shi, Runping; Wang, Chengyong
2010-12-01
With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.
Review on advanced composite materials boring mechanism and tools
NASA Astrophysics Data System (ADS)
Shi, Runping; Wang, Chengyong
2011-05-01
With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling composite materials.
Shear-Wave Splitting and Crustal Anisotropy in the Shillong-Mikir Plateau of Northeast India
NASA Astrophysics Data System (ADS)
Bora, Dipok K.; Hazarika, Devajit; Paul, Arpita; Borah, Kajaljyoti; Borgohain, Jayanta Madhab
2018-01-01
Seismic anisotropy of crust beneath the Shillong-Mikir Plateau and the surrounding regions of northeast India have been investigated with the help of splitting analysis of S-wave of local earthquakes. We estimate a total 83 pairs of splitting parameters ( Φ and δt) from 67 local shallow focus earthquakes (depth ≤ 32 km) recorded by the 10 broadband seismological stations operated in the study region. The results show delay times ranging from 0.02 to 0.2 s, which correspond to anisotropy up to 4%, suggesting significant strength of anisotropy in the study region. Fast polarization direction ( Φ) in the Shillong Plateau shows mostly NW-SE trend in the western part and NE-SW trend in the northern part. Φs near Kopili fault (KF) follows NW-SE trend. Φ at most of the stations in the study region is consistent with the local stress orientation, suggesting that the anisotropy is mainly caused by preferentially aligned cracks responding to the stress field. On the other hand, anisotropy observed near the KF is due to aligned macroscopic fracture related to strike-slip movement in the fault zone.
ERIC Educational Resources Information Center
Brown, Nicholas R.; Terry, Robert, Jr.
2013-01-01
Many state FFA associations conduct summer camps focusing on leadership and personal development for FFA members. Interestingly, little research has been conducted on the impact or outcomes of these common activities. The purpose of this split-plot factorial repeated-measures experiment was to assess the level of campers' learning of the…
The Developmental Influence of Primary Memory Capacity on Working Memory and Academic Achievement
ERIC Educational Resources Information Center
Hall, Debbora; Jarrold, Christopher; Towse, John N.; Zarandi, Amy L.
2015-01-01
In this study, we investigate the development of primary memory capacity among children. Children between the ages of 5 and 8 completed 3 novel tasks (split span, interleaved lists, and a modified free-recall task) that measured primary memory by estimating the number of items in the focus of attention that could be spontaneously recalled in…
ERIC Educational Resources Information Center
Norton, Anderson
2008-01-01
This article reports on students' learning through conjecturing, by drawing on a semester-long teaching experiment with 6 sixth-grade students. It focuses on 1 of the students, Josh, who developed especially powerful ways of operating over the course of the teaching experiment. Through a fine-grained analysis of Josh's actions, this article…
ERIC Educational Resources Information Center
Xiaoxin, Du
2018-01-01
This study explains the dual task on both political and academic issues in Chinese higher education, using Fudan University in Hong Kong SAR, People's Republic of China (PRC), as a case study. The research problem focuses on the dynamics and complexity of the interplay among the state, university, staff, and students in the process of…
ERIC Educational Resources Information Center
Obata, Miki
2010-01-01
The goal of the dissertation is to determine aspects of the structure of the human language faculty, a cognitive system, specifically focusing on human syntactic systems, (unique in the animal kingdom) which enable us to creatively produce an unlimited number of grammatical sentences (like the one you just read, probably never before written or…
ERIC Educational Resources Information Center
Goodell, Judy; Robinson, David C.
2008-01-01
This article proposes a paradigm shift in the view of the school counselor role. Evolving from the dualistic mind/body split of traditional physics, counseling has largely focused on problem identification and attempting to fix what is wrong. The new sciences of chaos and complexity invite a more holistic view, with the psychospiritual development…
Wu, Jiang; Liu, Shu-Zhen; Dong, Shan-Shan; Dong, Xiao-Ping; Zhang, Wu-Li; Lu, Min; Li, Chang-Gui; Zhou, Ji-Chen; Fang, Han-Hua; Liu, Yan; Liu, Li-Ying; Qiu, Yuan-Zheng; Gao, Qiang; Zhang, Xiao-Mei; Chen, Jiang-Ting; Zhong, Xiang; Yin, Wei-Dong; Feng, Zi-Jian
2010-08-31
Highly pathogenic avian influenza A virus H5N1 has the potential to cause a pandemic. Many prototype pandemic influenza A (H5N1) vaccines had been developed and well evaluated in adults in recent years. However, data in children are limited. Herein we evaluate the safety and immunogenicity of adjuvanted split-virion and whole-virion H5N1 vaccines in children. An open-labelled phase I trial was conducted in children aged 3-11 years to receive aluminum-adjuvated, split-virion H5N1 vaccine (5-30 microg) and in children aged 12-17 years to receive aluminum-adjuvated, whole-virion H5N1 vaccine (5-15 microg). Safety of the two formulations was assessed. Then a randomized phase II trial was conducted, in which 141 children aged 3-11 years received the split-virion vaccine (10 or 15 microg) and 280 children aged 12-17 years received the split-virion vaccine (10-30 microg) or the whole-virion vaccine (5 microg). Serum samples were collected for hemagglutination-inhibition (HI) assays. 5-15 microg adjuvated split-virion vaccines were well tolerated in children aged 3-11 years and 5-30 microg adjuvated split-virion vaccines and 5 microg adjuvated whole-virion vaccine were well tolerated in children aged 12-17 years. Most local and systemic reactions were mild or moderate. Before vaccination, all participants were immunologically naïve to H5N1 virus. Immune responses were induced after the first dose and significantly boosted after the second dose. In 3-11 years children, the 10 and 15 microg split-virion vaccine induced similar responses with 55% seroconversion and seroprotection (HI titer >or=1:40) rates. In 12-17 years children, the 30 microg split-virion vaccine induced the highest immune response with 71% seroconversion and seroprotection rates. The 5 microg whole-virion vaccine induced higher response than the 10 microg split-virion vaccine did. The aluminum-adjuvanted, split-virion prototype pandemic influenza A (H5N1) vaccine showed good safety and immunogenicity in children and 30 microg dose induced immune response complying with European Union licensure criteria. (c) 2010 Elsevier Ltd. All rights reserved.
[Morphine-antiemetics mixtures for continuous subcutaneous infusion in terminal cancer].
Ottesen, S; Monrad, L
1992-05-30
Simultaneous pain, nausea and vomiting are not uncommon in terminal suffering requiring treatment with various compounds of analgesics and antiemetics. At Baerum Hospital the pump reservoirs for continuous, subcutaneous drug delivery are routinely filled by the hospital pharmacist. We examined the physico-chemical stability of various concentrations of mixtures of morphine-metoclopramide and morphine-metoclopramide-haloperidol at 25 degrees C. We found good stability for at least seven days. Addition of haloperidol seems to reduce stability. Plain morphine-haloperidol solutions are unstable. Split products were not found in any of the mixtures. We also examined the osmolality of current clinical compounds, focusing on local irritant effect at the infusion site. All solutions except for one with a high concentration of haloperidol were found to be close to isoosmolarl.
A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Thor, Jasper J.; Madsen, Anders
In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less
A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography
van Thor, Jasper J.; Madsen, Anders
2015-01-01
In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less
A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography
van Thor, Jasper J.; Madsen, Anders
2015-01-01
In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse. PMID:26798786
Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F
2006-09-01
This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.
Liu, Tzu-Yin; Chou, Wen-Chun; Chen, Wei-Yuan; Chu, Ching-Yi; Dai, Chen-Yi; Wu, Pei-Yu
2018-05-01
Despite the great interest in identifying protein-protein interactions (PPIs) in biological systems, only a few attempts have been made at large-scale PPI screening in planta. Unlike biochemical assays, bimolecular fluorescence complementation allows visualization of transient and weak PPIs in vivo at subcellular resolution. However, when the non-fluorescent fragments are highly expressed, spontaneous and irreversible self-assembly of the split halves can easily generate false positives. The recently developed tripartite split-GFP system was shown to be a reliable PPI reporter in mammalian and yeast cells. In this study, we adapted this methodology, in combination with the β-estradiol-inducible expression cassette, for the detection of membrane PPIs in planta. Using a transient expression assay by agroinfiltration of Nicotiana benthamiana leaves, we demonstrate the utility of the tripartite split-GFP association in plant cells and affirm that the tripartite split-GFP system yields no spurious background signal even with abundant fusion proteins readily accessible to the compartments of interaction. By validating a few of the Arabidopsis PPIs, including the membrane PPIs implicated in phosphate homeostasis, we proved the fidelity of this assay for detection of PPIs in various cellular compartments in planta. Moreover, the technique combining the tripartite split-GFP association and dual-intein-mediated cleavage of polyprotein precursor is feasible in stably transformed Arabidopsis plants. Our results provide a proof-of-concept implementation of the tripartite split-GFP system as a potential tool for membrane PPI screens in planta. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.
2018-01-01
The technique of designing, optimizing, and fabricating broadband volume transmission holograms using dichromate gelatin (DCG) is summarized for solar spectrum-splitting applications. The spectrum-splitting photovoltaic (PV) system uses a series of single-bandgap PV cells that have different spectral conversion efficiency properties to more fully utilize the solar spectrum. In such a system, one or more high-performance optical filters are usually required to split the solar spectrum and efficiently send them to the corresponding PV cells. An ideal spectral filter should have a rectangular shape with sharp transition wavelengths. A methodology of designing and modeling a transmission DCG hologram using coupled wave analysis for different PV bandgap combinations is described. To achieve a broad diffraction bandwidth and sharp cutoff wavelength, a cascaded structure of multiple thick holograms is described. A search algorithm is then developed to optimize both single- and two-layer cascaded holographic spectrum-splitting elements for the best bandgap combinations of two- and three-junction spectrum-splitting photovoltaic (SSPV) systems illuminated under the AM1.5 solar spectrum. The power conversion efficiencies of the optimized systems are found to be 42.56% and 48.41%, respectively, using the detailed balance method, and show an improvement compared with a tandem multijunction system. A fabrication method for cascaded DCG holographic filters is also described and used to prototype the optimized filter for the three-junction SSPV system.
Observation of Landau quantization and standing waves in HfSiS
NASA Astrophysics Data System (ADS)
Jiao, L.; Xu, Q. N.; Qi, Y. P.; Wu, S.-C.; Sun, Y.; Felser, C.; Wirth, S.
2018-05-01
Recently, HfSiS was found to be a new type of Dirac semimetal with a line of Dirac nodes in the band structure. Meanwhile, Rashba-split surface states are also pronounced in this compound. Here we report a systematic study of HfSiS by scanning tunneling microscopy/spectroscopy at low temperature and high magnetic field. The Rashba-split surface states are characterized by measuring Landau quantization and standing waves, which reveal a quasilinear dispersive band structure. First-principles calculations based on density-functional theory are conducted and compared with the experimental results. Based on these investigations, the properties of the Rashba-split surface states and their interplay with defects and collective modes are discussed.
NASA Astrophysics Data System (ADS)
Zhao, R.; Cumby, B.; Russell, A.; Heikenfeld, J.
2013-11-01
A large area (>10 cm2) and low-power (0.1-10 Hz AC voltage, ˜10's μW/cm2) dielectrowetting optical shutter requiring no pixelation is demonstrated. The device consists of 40 μm interdigitated electrodes covered by fluid splitting features and a hydrophobic fluoropolymer. When voltage is removed, the fluid splitting features initiate breakup of the fluid film into small droplets resulting in ˜80% transmission. Both the dielectrowetting and fluid splitting follow theory, allowing prediction of alternate designs and further improved performance. Advantages include scalability, optical polarization independence, high contrast ratio, fast response, and simple construction, which could be of use in switchable windows or transparent digital signage.
Malcolm, James G; Tan, Lee A; Johnson, Andrew K
2017-07-20
A sagittal split fracture of the C1 lateral mass is an unstable subtype of C1 fractures and has a high propensity for developing late deformities and pain with nonoperative management. A primary internal fixation of this type of fracture has been recently described with good clinical outcomes and preservation of motion. We present a modified technique of primary internal fixation using an obliquely inserted C1 lag screw with imaging guidance. We successfully treated a 55-year-old woman with a unilateral C1 oblique sagittal split fracture who failed nonoperative management. Technical nuances are discussed with a review of pertinent literature.
Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo
2015-01-01
Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint. PMID:26289658
Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo
2015-09-06
Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the interlimb coordination appeared in a manner that was similar to the late-type adaptations and after-effects observed in humans. The adaptation results of the robot were then evaluated in comparison with human split-belt treadmill walking, and the adaptation mechanism was clarified from a dynamic viewpoint. © 2015 The Authors.
Polarized micro-cavity organic light-emitting devices.
Park, Byoungchoo; Kim, Mina; Park, Chan Hyuk
2009-04-27
We present the results of a study of light emissions from a polarized micro-cavity Organic Light-Emitting Device (OLED), which consisted of a flexible, anisotropic one-dimensional (1-D) photonic crystal (PC) film substrate. It is shown that luminous Electroluminescent (EL) emissions from the polarized micro-cavity OLED were produced at relatively low operating voltages. It was also found that the peak wavelengths of the emitted EL light corresponded to the two split eigen modes of the high-energy band edges of the anisotropic PC film, with a strong dependence on the polarization state of the emitting light. For polarization along the ordinary axis of the anisotropic PC film, the optical split micro-cavity modes occurred at the longer high-energy photonic band gap (PBG) edge, while for polarization along the extraordinary axis, the split micro-cavity modes occurred at the shorter high-energy PBG edge, with narrow bandwidths. We demonstrated that the polarization and emission mode of the micro-cavity OLED may be selected by choosing the appropriate optical axis of the anisotropic 1-D PC film.
Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.
Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu
2015-01-01
Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.
Origin of the enhancement of tunneling probability in the nearly integrable system
NASA Astrophysics Data System (ADS)
Hanada, Yasutaka; Shudo, Akira; Ikeda, Kensuke S.
2015-04-01
The enhancement of tunneling probability in the nearly integrable system is closely examined, focusing on tunneling splittings plotted as a function of the inverse of the Planck's constant. On the basis of the analysis using the absorber which efficiently suppresses the coupling, creating spikes in the plot, we found that the splitting curve should be viewed as the staircase-shaped skeleton accompanied by spikes. We further introduce renormalized integrable Hamiltonians and explore the origin of such a staircase structure by investigating the nature of eigenfunctions closely. It is found that the origin of the staircase structure could trace back to the anomalous structure in tunneling tail which manifests itself in the representation using renormalized action bases. This also explains the reason why the staircase does not appear in the completely integrable system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, Céline, E-mail: cmichel@ulg.ac.be; Habraken, Serge; Hololab, University of Liège, Allée du 6 Août, 17
2015-09-28
This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, andmore » the description of an experimental realization highlighting the feasibility of the concept and the closeness of theoretical and experimental results.« less
Stable static structures in models with higher-order derivatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazeia, D., E-mail: bazeia@fisica.ufpb.br; Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, PB; Lobão, A.S.
2015-09-15
We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that themore » zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.« less
Ortmann, Frank; Roche, Stephan
2013-02-22
We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.
Light Modulation and Water Splitting Enhancement Using a Composite Porous GaN Structure.
Yang, Chao; Xi, Xin; Yu, Zhiguo; Cao, Haicheng; Li, Jing; Lin, Shan; Ma, Zhanhong; Zhao, Lixia
2018-02-14
On the basis of the laterally porous GaN, we designed and fabricated a composite porous GaN structure with both well-ordered lateral and vertical holes. Compared to the plane GaN, the composite porous GaN structure with the combination of the vertical holes can help to reduce UV reflectance and increase the saturation photocurrent during water splitting by a factor of ∼4.5. Furthermore, we investigated the underlying mechanism for the enhancement of the water splitting performance using a finite-difference time-domain method. The results show that the well-ordered vertical holes can not only help to open the embedded pore channels to the electrolyte at both sides and reduce the migration distance of the gas bubbles during the water splitting reactions but also help to modulate the light field. Using this composite porous GaN structure, most of the incident light can be modulated and trapped into the nanoholes, and thus the electric fields localized in the lateral pores can increase dramatically as a result of the strong optical coupling. Our findings pave a new way to develop GaN photoelectrodes for highly efficient solar water splitting.
3D CFD Simulation of Plug Dynamics and Splitting through a Bifurcating Airway Model
NASA Astrophysics Data System (ADS)
Hoi, Cory; Raessi, Mehdi
2017-11-01
Respiratory distress syndrome (RDS) occurs because of pulmonary surfactant insufficiency in the lungs of preterm infants. The common medical procedure to treat RDS, called surfactant respiratory therapy (SRT), involves instilling liquid surfactant plugs into the pulmonary airways. SRT's effectiveness highly depends on the ability to deliver surfactant through the complex branching airway network. Experimental and computational efforts have been made to understand complex fluid dynamics of liquid plug motion through the lung airways in order to increase SRT's response rate. However, previous computational work used 2D airway model geometries and studied plug dynamics of a pre-split plug. In this work, we present CFD simulations of surfactant plug motion through a 3D bifurcating airway model. In our 3D y-tube geometry representing the lung airways, we are not limited by 2D or pre-split plug assumptions. The airway walls are covered with a pre-existing liquid film. Using a passive scalar marking the surfactant plug, the plug splitting and surfactant film deposition is studied under various airway orientations. Exploring the splitting process and liquid distribution in a 3D geometry will advance our understanding of surfactant delivery and will increase the effectiveness of SRT.
Shear-wave splitting and moonquakes
NASA Astrophysics Data System (ADS)
Dimech, J. L.; Weber, R. C.; Savage, M. K.
2017-12-01
Shear-wave splitting is a powerful tool for measuring anisotropy in the Earth's crust and mantle, and is sensitive to geological features such as fluid filled cracks, thin alternating layers of rock with different elastic properties, and preferred mineral orientations caused by strain. Since a shear wave splitting measurement requires only a single 3-component seismic station, it has potential applications for future single-station planetary seismic missions, such as the InSight geophysical mission to Mars, as well as possible future missions to Europa and the Moon. Here we present a preliminary shear-wave splitting analysis of moonquakes detected by the Apollo Passive Seismic Experiment. Lunar seismic data suffers from several drawbacks compared to modern terrestrial data, including severe seismic scattering, low intrinsic attenuation, 10-bit data resolution, thermal spikes, and timing errors. Despite these drawbacks, we show that it is in principle possible to make a shear wave splitting measurement using the S-phase arrival of a relatively high-quality moonquake, as determined by several agreeing measurement criteria. Encouraged by this finding, we further extend our analysis to clusters of "deep moonquake" events by stacking multiple events from the same cluster together to further enhance the quality of the S-phase arrivals that the measurement is based on.
Wallace, Gregory L.; Sokoloff, Jennifer L.; Kenworthy, Lauren
2011-01-01
We investigated the relationship of discrepancies between VIQ and NVIQ (IQ split) to autism symptoms and adaptive behavior in a sample of high-functioning (mean FSIQ = 98.5) school-age children with autism spectrum disorders divided into three groups: discrepantly high VIQ (n = 18); discrepantly high NVIQ (n = 24); and equivalent VIQ and NVIQ (n = 36). Discrepantly high VIQ and NVIQ were associated with autism social symptoms but not communication symptoms or repetitive behaviors. Higher VIQ and NVIQ were associated with better adaptive communication but not socialization or Daily Living Skills. IQ discrepancy may be an important phenotypic marker in autism. Although better verbal abilities are associated with better functional outcomes in autism, discrepantly high VIQ in high-functioning children may also be associated with social difficulties. PMID:19572193
Design of a dual linear polarization antenna using split ring resonators at X-band
NASA Astrophysics Data System (ADS)
Ahmed, Sadiq; Chandra, Madhukar
2017-11-01
Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).
NASA Astrophysics Data System (ADS)
Savage, M. K.; Ferrazzini, V.; Peltier, A.; Rivemale, E.; Mayor, J.; Schmid, A.; Brenguier, F.; Massin, F.; Got, J.-L.; Battaglia, J.; DiMuro, A.; Staudacher, T.; Rivet, D.; Taisne, B.; Shelley, A.
2015-05-01
The Piton de la Fournaise volcano exhibits frequent eruptions preceded by seismic swarms and is a good target to test hypotheses about magmatically induced variations in seismic wave properties. We use a permanent station network and a portable broadband network to compare seismic anisotropy measured via shear wave splitting with geodetic displacements, ratios of compressional to shear velocity (Vp/Vs), earthquake focal mechanisms, and ambient noise correlation analysis of surface wave velocities and to examine velocity and stress changes from 2000 through 2012. Fast directions align radially to the central cone and parallel to surface cracks and fissures, suggesting stress-controlled cracks. High Vp/Vs ratios under the summit compared with low ratios under the flank suggest spatial variations in the proportion of fluid-filled versus gas-filled cracks. Secular variations of fast directions (ϕ) and delay times (dt) between split shear waves are interpreted to sense changing crack densities and pressure. Delay times tend to increase while surface wave velocity decreases before eruptions. Rotations of ϕ may be caused by changes in either stress direction or fluid pressure. These changes usually correlate with GPS baseline changes. Changes in shear wave splitting measurements made on multiplets yield several populations with characteristic delay times, measured incoming polarizations, and fast directions, which change their proportion as a function of time. An eruption sequence on 14 October 2010 yielded over 2000 shear wave splitting measurements in a 14 h period, allowing high time resolution measurements to characterize the sequence. Stress directions from a propagating dike model qualitatively fit the temporal change in splitting.
NASA Astrophysics Data System (ADS)
Kulakov, V. L.; Terrasi, G. P.; Arnautov, A. K.; Portnov, G. G.; Kovalov, A. O.
2014-03-01
A finite element analysis is carried out to determine the stress-strain state of anchors for round rods made of a high- modulus, high-strength unidirectional carbon-fiber reinforced plastic. The rods have splitted ends in which Duralumin wedges are glued. Three types of contact between the composite rods and a potted epoxy compound are considered: adhesion, adhesion-friction, and friction ones. The corresponding three-dimensional problems in the elastic statement are solved by the finite-element method (FEM) with account of nonlinear Coulomb friction. An analysis of stresses on the surface of the composite rod revealed the locations of high concentrations of operating stresses. The results of FEM calculations agree with experimental data.
Photocatalytic water splitting—The untamed dream: A review of recent advances
Jafari, Tahereh; Moharreri, Ehsan; Amin, Alireza Shirazi; ...
2016-07-09
Here, photocatalytic water splitting using sunlight is a promising technology capable of providing high energy yield without pollutant byproducts. Herein, we review various aspects of this technology including chemical reactions, physiochemical conditions and photocatalyst types such as metal oxides, sulfides, nitrides, nanocomposites, and doped materials followed by recent advances in computational modeling of photoactive materials. As the best-known catalyst for photocatalytic hydrogen and oxygen evolution, TiO 2 is discussed in a separate section, along with its challenges such as the wide band gap, large overpotential for hydrogen evolution, and rapid recombination of produced electron-hole pairs. Various approaches are addressed tomore » overcome these shortcomings, such as doping with different elements, heterojunction catalysts, noble metal deposition, and surface modification. Development of a photocatalytic corrosion resistant, visible light absorbing, defect-tuned material with small particle size is the key to complete the sunlight to hydrogen cycle efficiently. Computational studies have opened new avenues to understand and predict the electronic density of states and band structure of advanced materials and could pave the way for the rational design of efficient photocatalysts for water splitting. Future directions are focused on developing innovative junction architectures, novel synthesis methods and optimizing the existing active materials to enhance charge transfer, visible light absorption, reducing the gas evolution overpotential and maintaining chemical and physical stability« less
NASA Astrophysics Data System (ADS)
Garrett, H.
2016-12-01
The behavior of the jet stream during the last glacial maximum (LGM 21ka) has been the focus of multiple studies but remains highly debated. Proxy data shows that during this time in the United States, the northwest was drier than modern conditions and the southwest was wetter than modern conditions. To explain this there are two competing hypothesis, one which suggests that the jet stream shifted uniformly south and the other which suggests a stronger jet that split shifting both north and south. For this study we used TECA, to reanalyze model out-put, looking at the frequency and patterns of Extra Tropical Cyclones (ETC's), which have been found to be steered by the jet stream. We used the CCSM4 model based on its agreement with proxy data, and compared data from both the LGM and pre-industrial time periods. Initial results show a dramatic shift of ETC's north by about 10º-15º degrees and a decrease in frequency compared to pre-industrial conditions, coupled with a less pronounced southward shift of 5º-10º degrees.This evidence supports the idea that the jet stream split during the LGM. A stronger understanding of jet stream behavior will help to improve future models and prediction capabilities to prepare for hydro-climate change in drought sensitive areas.
Rupture Dynamics Simulation for Non-Planar fault by a Curved Grid Finite Difference Method
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zhu, G.; Chen, X.
2011-12-01
We first implement the non-staggered finite difference method to solve the dynamic rupture problem, with split-node, for non-planar fault. Split-node method for dynamic simulation has been used widely, because of that it's more precise to represent the fault plane than other methods, for example, thick fault, stress glut and so on. The finite difference method is also a popular numeric method to solve kinematic and dynamic problem in seismology. However, previous works focus most of theirs eyes on the staggered-grid method, because of its simplicity and computational efficiency. However this method has its own disadvantage comparing to non-staggered finite difference method at some fact for example describing the boundary condition, especially the irregular boundary, or non-planar fault. Zhang and Chen (2006) proposed the MacCormack high order non-staggered finite difference method based on curved grids to precisely solve irregular boundary problem. Based upon on this non-staggered grid method, we make success of simulating the spontaneous rupture problem. The fault plane is a kind of boundary condition, which could be irregular of course. So it's convinced that we could simulate rupture process in the case of any kind of bending fault plane. We will prove this method is valid in the case of Cartesian coordinate first. In the case of bending fault, the curvilinear grids will be used.
Adaptive Harmonic Balance Method for Unsteady, Nonlinear, One-Dimensional Periodic Flows
2002-09-01
Design and Implemen- tation. May 1999. REF-2 23. Toro , Eleuterio F . Fiemann Solvers and Numerical Methods for Fluid Dynamics, chapter 15. New York...prominent for high-frequency unsteady-flows. Experimental Analysis of Splitting-induced Error To assess the actual effect of splitting error on a...VITA-1 vi List of Figures Figure Page 1.1. Experimental Pressure Data on Inlet Guide Vane Upstream of Transonic Rotating
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Xiao, Jianyuan; Zhang, Ruili
Hamiltonian time integrators for the Vlasov-Maxwell equations are developed by a Hamiltonian splitting technique. The Hamiltonian functional is split into five parts, which produces five exactly solvable subsystems. Each subsystem is a Hamiltonian system equipped with the Morrison-Marsden-Weinstein Poisson bracket. Compositions of the exact solutions provide Poisson structure preserving/Hamiltonian methods of arbitrary high order for the Vlasov-Maxwell equations. They are then accurate and conservative over a long time because of the Poisson-preserving nature.
Evaluation of the InFocus TVT-6000 LCTV
NASA Astrophysics Data System (ADS)
Duffey, Jason N.; Jones, Brian K.; Gregory, Don A.; McClain, John L., Jr.
1994-03-01
Liquid crystal televisions have become increasingly popular as low-cost spatial light modulators. While the early devices suffered from poor resolution and low contrast, recent models compare favorably to the more traditional (and expensive) modulators. One of the most recent LCTVs is found in the InFocus TVT-6000 television projector. The panels in this projector have 480 X 440 pixels with a 1.32' diagonal clear aperture. A wavefront splitting interferometer has been constructed and analyzed for measuring the complex characteristics of these modulators, including phase and amplitude coupling. The results of this evaluation will be presented.
Frequency metrology using highly charged ions
NASA Astrophysics Data System (ADS)
Crespo López-Urrutia, J. R.
2016-06-01
Due to the scaling laws of relativistic fine structure splitting, many forbidden optical transitions appear within the ground state configurations of highly charged ions (HCI). In some hydrogen-like ions, even the hyperfine splitting of the 1s ground state gives rise to optical transitions. Given the very low polarizability of HCI, such laser-accessible transitions are extremely impervious to external perturbations and systematics that limit optical clock performance and arise from AC and DC Stark effects, such as black-body radiation and light shifts. Moreover, AC and DC Zeeman splitting are symmetric due to the much larger relativistic spin-orbit coupling and corresponding fine-structure splitting. Appropriate choice of states or magnetic sub-states with suitable total angular momentum and magnetic quantum numbers can lead to a cancellation of residual quadrupolar shifts. All these properties are very advantageous for the proposed use of HCI forbidden lines as optical frequency standards. Extremely magnified relativistic, quantum electrodynamic, and nuclear size contributions to the binding energies of the optically active electrons make HCI ideal tools for fundamental research, as in proposed studies of a possible time variation of the fine structure constant. Beyond this, HCI that cannot be photoionized by vacuum-ultraviolet photons could also provide frequency standards for future lasers operating in that range.
NASA Astrophysics Data System (ADS)
Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Sheng, Chuan-Xiang; McGill, Stephen; Semenov, Dmitry; Vardeny, Zeev Valy
2018-04-01
The organic-inorganic hybrid perovskites show excellent optical and electrical properties for photovoltaic and a myriad of other optoelectronics applications. Using high-field magneto-optical measurements up to 17.5 T at cryogenic temperatures, we have studied the spin-dependent optical transitions in the prototype C H3N H3Pb I3 , which are manifested in the field-induced circularly polarized photoluminescence emission. The energy splitting between left and right circularly polarized emission bands is measured to be ˜1.5 meV at 17.5 T, from which we obtained an exciton effective g factor of ˜1.32. Also from the photoluminescence diamagnetic shift we estimate the exciton binding energy to be ˜17 meV at low temperature. Surprisingly, the corresponding field-induced circular polarization is "anomalous" in that the photoluminescence emission of the higher split energy band is stronger than that of the lower split band. This "reversed" intensity ratio originates from the combination of long electron spin relaxation time and hole negative g factor in C H3N H3Pb I3 , which are in agreement with a model based on the k.p effective-mass approximation.
Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi
2017-09-15
In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Perrin, Agnes; Kwabia Tchana, F.; Flaud, Jean-Marie; Manceron, Laurent; Demaison, Jean; Vogt, Natalja; Groner, Peter; Lafferty, Walter
2015-06-01
A high resolution (0.0015 wn) IR spectrum of propane, C_3H_8, has been recorded with synchrotron radiation at the French light source facility at SOLEIL coupled to a Bruker IFS-125 Fourier transform spectrometer. A preliminary analysis of the ν21 fundamental band (B1, CH3 rock) near 921.4 wn reveals that the rotational energy levels of 211 are split by interactions with the internal rotations of the methyl groups. Conventional analysis of this A-type band yielded band centers at 921.3724(38), 921.3821(33) and 921.3913(44) wn for the AA, EE and AE+EA tunneling splitting components, respectively. These torsional splittings most probably are due to anharmonic and/or Coriolis resonance coupling with nearby highly excited states of both internal rotations of the methyl groups. In addition, several vibrational-rotational resonances were observed that affect the torsional components in different ways. The analysis of the B-type band near 870 wn (ν8, sym. C-C stretch) which also contains split rovibrational transitions due to internal rotation is in progress. It is performed by using the effective rotational Hamiltonian method ERHAM with a code that allows prediction and least-squares fitting of such vibration-rotation spectra. A. Perrin et al., submitted to J. Mol. Spectrosc. P. Groner, J. Chem. Phys. 107 (1997) 4483; J. Mol. Spectrosc. 278 (2012) 52.
NASA Astrophysics Data System (ADS)
Arnautov, A. K.; Terrasi, G. P.; Kulakov, V. L.; Portnov, G. G.
2014-01-01
The effectiveness of fastening of high-strength unidirectional CFRP/epoxy rods in potted anchors was investigated experimentally. The rods had splitted ends, in which duralumin wedges were glued. The experiments, performed for three types of contact between the composite rods and the potted material, showed that the most effective were full adhesion and adhesion-friction contacts, when the maximum load-carrying capacity of CFRP rods under tension could be reached. The full friction contact was ineffective because of the shear failure of CFRP rods inside the anchorage zone.
Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, H. C.; Tang, Harry (Technical Monitor)
2002-01-01
Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes with incremental studies was initiated. Here we further refine the analysis on, and improve the understanding of the adaptive numerical dissipation control strategy. Basically, the development of these schemes focuses on high order nondissipative schemes and takes advantage of the progress that has been made for the last 30 years in numerical methods for conservation laws, such as techniques for imposing boundary conditions, techniques for stability at shock waves, and techniques for stable and accurate long-time integration. We concentrate on high order centered spatial discretizations and a fourth-order Runge-Kutta temporal discretizations as the base scheme. Near the bound-aries, the base scheme has stable boundary difference operators. To further enhance stability, the split form of the inviscid flux derivatives is frequently used for smooth flow problems. To enhance nonlinear stability, linear high order numerical dissipations are employed away from discontinuities, and nonlinear filters are employed after each time step in order to suppress spurious oscillations near discontinuities to minimize the smearing of turbulent fluctuations. Although these schemes are built from many components, each of which is well-known, it is not entirely obvious how the different components be best connected. For example, the nonlinear filter could instead have been built into the spatial discretization, so that it would have been activated at each stage in the Runge-Kutta time stepping. We could think of a mechanism that activates the split form of the equations only at some parts of the domain. Another issue is how to define good sensors for determining in which parts of the computational domain a certain feature should be filtered by the appropriate numerical dissipation. For the present study we employ a wavelet technique introduced in as sensors. Here, the method is briefly described with selected numerical experiments.
An efficient three-dimensional Poisson solver for SIMD high-performance-computing architectures
NASA Technical Reports Server (NTRS)
Cohl, H.
1994-01-01
We present an algorithm that solves the three-dimensional Poisson equation on a cylindrical grid. The technique uses a finite-difference scheme with operator splitting. This splitting maps the banded structure of the operator matrix into a two-dimensional set of tridiagonal matrices, which are then solved in parallel. Our algorithm couples FFT techniques with the well-known ADI (Alternating Direction Implicit) method for solving Elliptic PDE's, and the implementation is extremely well suited for a massively parallel environment like the SIMD architecture of the MasPar MP-1. Due to the highly recursive nature of our problem, we believe that our method is highly efficient, as it avoids excessive interprocessor communication.
NASA Astrophysics Data System (ADS)
Best, James P.; Zechner, Johannes; Wheeler, Jeffrey M.; Schoeppner, Rachel; Morstein, Marcus; Michler, Johann
2016-12-01
For the implementation of thin ceramic hard coatings into intensive application environments, the fracture toughness is a particularly important material design parameter. Characterisation of the fracture toughness of small-scale specimens has been a topic of great debate, due to size effects, plasticity, residual stress effects and the influence of ion penetration from the sample fabrication process. In this work, several different small-scale fracture toughness geometries (single-beam cantilever, double-beam cantilever and micro-pillar splitting) were compared, fabricated from a thin physical vapour-deposited ceramic film using a focused ion beam source, and then the effect of the gallium-milled notch on mode I toughness quantification investigated. It was found that notching using a focused gallium source influences small-scale toughness measurements and can lead to an overestimation of the fracture toughness values for chromium nitride (CrN) thin films. The effects of gallium ion irradiation were further studied by performing the first small-scale high-temperature toughness measurements within the scanning electron microscope, with the consequence that annealing at high temperatures allows for diffusion of the gallium to grain boundaries promoting embrittlement in small-scale CrN samples. This work highlights the sensitivity of some materials to gallium ion penetration effects, and the profound effect that it can have on fracture toughness evaluation.
Lyman-α forest constraints on decaying dark matter
NASA Astrophysics Data System (ADS)
Wang, Mei-Yu; Croft, Rupert A. C.; Peter, Annika H. G.; Zentner, Andrew R.; Purcell, Chris W.
2013-12-01
We present an analysis of high-resolution N-body simulations of decaying dark matter cosmologies focusing on the statistical properties of the transmitted Lyman-α (Lyα) forest flux in the high-redshift intergalactic medium (IGM). In this type of model a dark matter particle decays into a slightly less massive stable dark matter daughter particle and a comparably light particle. The small mass splitting provides a nonrelativistic kick velocity Vk=cΔM/M to the daughter particle resulting in free-streaming and subsequent damping of small-scale density fluctuations. Current Lyα forest power spectrum measurements probe comoving scales up to ˜2-3h-1Mpc at redshifts z˜2-4, providing one of the most robust ways to probe cosmological density fluctuations on relatively small scales. The suppression of structure growth due to the free-streaming of dark matter daughter particles also has a significant impact on the neutral hydrogen cloud distribution, which traces the underlying dark matter distribution well at high redshift. We exploit Lyα forest power spectrum measurements to constrain the amount of free-streaming of dark matter in such models and thereby place limits on decaying dark matter based only on the dynamics of cosmological perturbations without any assumptions about the interactions of the decay products. We use a suite of dark-matter-only simulations together with the fluctuating Gunn-Peterson approximation to derive the Lyα flux distribution. We argue that this approach should be sufficient for our main purpose, which is to demonstrate the power of the Lyα forest to constrain decaying dark matter models. We find that Sloan Digital Sky Survey 1D Lyα forest power spectrum data place a lifetime-dependent upper limit Vk≲30-70km/s for decay lifetimes ≲10Gyr. This is the most stringent model-independent bound on invisible dark matter decays with small mass splittings. For larger mass splittings (large Vk), Lyα forest data restrict the dark matter lifetime to Γ-1≳40Gyr. We leave the calibration of IGM properties using high-resolution hydrodynamic simulations for future work, which might become necessary if we consider data with higher precision such as the Baryon Oscillation and Spectroscopic Survey (BOSS) Lyα data. Forthcoming BOSS data should be able to provide more stringent constraints on exotic dark matter, mainly because the larger BOSS quasar spectrum sample will significantly reduce statistical errors.
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.
2016-01-01
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309
Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting
Kim, Jin Hyun; Jang, Ji-Wook; Jo, Yim Hyun; Abdi, Fatwa F.; Lee, Young Hye; van de Krol, Roel; Lee, Jae Sung
2016-01-01
Metal oxide semiconductors are promising photoelectrode materials for solar water splitting due to their robustness in aqueous solutions and low cost. Yet, their solar-to-hydrogen conversion efficiencies are still not high enough for practical applications. Here we present a strategy to enhance the efficiency of metal oxides, hetero-type dual photoelectrodes, in which two photoanodes of different bandgaps are connected in parallel for extended light harvesting. Thus, a photoelectrochemical device made of modified BiVO4 and α-Fe2O3 as dual photoanodes utilizes visible light up to 610 nm for water splitting, and shows stable photocurrents of 7.0±0.2 mA cm−2 at 1.23 VRHE under 1 sun irradiation. A tandem cell composed with the dual photoanodes–silicon solar cell demonstrates unbiased water splitting efficiency of 7.7%. These results and concept represent a significant step forward en route to the goal of >10% efficiency required for practical solar hydrogen production. PMID:27966548
Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.
Jia, Jieyang; Seitz, Linsey C; Benck, Jesse D; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S; Jaramillo, Thomas F
2016-10-31
Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.
NASA Astrophysics Data System (ADS)
Elsheikh, Ahmed A.; Gao, Stephen S.; Liu, Kelly H.; Mohamed, Abdelnasser A.; Yu, Youqiang; Fat-Helbary, Raafat E.
2014-04-01
For most continental areas, the mechanisms leading to mantle fabrics responsible for the observed anisotropy remain ambiguous, partially due to the lack of sufficient spatial coverage of reliable seismological observations. Here we report the first joint analysis of shear-wave splitting measurements obtained at stations on the Arabian and Nubian Plates adjacent to the Red Sea. More than 1100 pairs of high-quality splitting parameters show dominantly N-S fast orientations at all 47 stations and larger-than-normal splitting times beneath the Afro-Arabian Dome (AAD). The uniformly N-S fast orientations and large splitting times up to 1.5 s are inconsistent with significant contributions from the lithosphere, which is about 50-80 km thick beneath the AAD and even thinner beneath the Red Sea. The results can best be explained by simple shear between the lithosphere and the asthenosphere associated with northward subduction of the African/Arabian Plates over the past 150 Ma.
Shinagawa, Tatsuya; Takanabe, Kazuhiro
2017-04-10
Recent advances in power generation from renewable resources necessitate conversion of electricity to chemicals and fuels in an efficient manner. Electrocatalytic water splitting is one of the most powerful and widespread technologies. The development of highly efficient, inexpensive, flexible, and versatile water electrolysis devices is desired. This review discusses the significance and impact of the electrolyte on electrocatalytic performance. Depending on the circumstances under which the water splitting reaction is conducted, the required solution conditions, such as the identity and molarity of ions, may significantly differ. Quantitative understanding of such electrolyte properties on electrolysis performance is effective to facilitate the development of efficient electrocatalytic systems. The electrolyte can directly participate in reaction schemes (kinetics), affect electrode stability, and/or indirectly impact the performance by influencing the concentration overpotential (mass transport). This review aims to guide fine-tuning of the electrolyte properties, or electrolyte engineering, for (photo)electrochemical water splitting reactions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Chen, Yong-Siou; Manser, Joseph S; Kamat, Prashant V
2015-01-21
The quest for economic, large-scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. Here we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons, and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard AM 1.5G illumination, the photoanode-photovoltaic architecture, in conjunction with an earth-abundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially promising new frontier for solar water splitting research.
Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting.
Kim, Jin Hyun; Jang, Ji-Wook; Jo, Yim Hyun; Abdi, Fatwa F; Lee, Young Hye; van de Krol, Roel; Lee, Jae Sung
2016-12-14
Metal oxide semiconductors are promising photoelectrode materials for solar water splitting due to their robustness in aqueous solutions and low cost. Yet, their solar-to-hydrogen conversion efficiencies are still not high enough for practical applications. Here we present a strategy to enhance the efficiency of metal oxides, hetero-type dual photoelectrodes, in which two photoanodes of different bandgaps are connected in parallel for extended light harvesting. Thus, a photoelectrochemical device made of modified BiVO 4 and α-Fe 2 O 3 as dual photoanodes utilizes visible light up to 610 nm for water splitting, and shows stable photocurrents of 7.0±0.2 mA cm -2 at 1.23 V RHE under 1 sun irradiation. A tandem cell composed with the dual photoanodes-silicon solar cell demonstrates unbiased water splitting efficiency of 7.7%. These results and concept represent a significant step forward en route to the goal of >10% efficiency required for practical solar hydrogen production.
Lukens, W. W.; Speldrich, M.; Yang, P.; ...
2016-01-01
The electronic structures of 4f 3/5f 3Cp" 3M and Cp"sub>3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions.
NASA Astrophysics Data System (ADS)
Martinez, F.; Stern, R. J.; Kelley, K. A.; Ohara, Y.; Sleeper, J. D.; Ribeiro, J. M.; Brounce, M. N.
2017-12-01
Opening of the southern Mariana margin takes place in contrasting modes: Extension normal to the trench forms crust that is passively accreted to a rigid Philippine Sea plate and forms along focused and broad accretion axes. Extension also occurs parallel to the trench and has split apart an Eocene-Miocene forearc terrain accreting new crust diffusely over a 150-200 km wide zone forming a pervasive volcano-tectonic fabric oriented at high angles to the trench and the backarc spreading center. Earthquake seismicity indicates that the forearc extension is active over this broad area and basement samples date young although waning volcanic activity. Diffuse formation of new oceanic crust and lithosphere is unusual; in most oceanic settings extension rapidly focuses to narrow plate boundary zones—a defining feature of plate tectonics. Diffuse crustal accretion has been inferred to occur during subduction zone infancy, however. We hypothesize that, in a near-trench extensional setting, the continual addition of water from the subducting slab creates a weak overriding hydrous lithosphere that deforms broadly. This process counteracts mantle dehydration and strengthening proposed to occur at mid-ocean ridges that may help to focus deformation and melt delivery to narrow plate boundary zones. The observations from the southern Mariana margin suggest that where lithosphere is weakened by high water content narrow seafloor spreading centers cannot form. These conditions likely prevail during subduction zone infancy, explaining the diffuse contemporaneous volcanism inferred in this setting.
NASA Astrophysics Data System (ADS)
Xie, Z.; Wu, Q.; Zhang, R.
2017-12-01
Collision between Indian and Eurasian result in intense deformation and crustal shortening in the Tibetan Plateau. NE margin of Tibetan Plateau experienced complex deformation between Qilian orogen and its adjacent blocks, Alxa Block in the north and Ordos Block in the east. We focus on if there any evidences exist in the NE margin of Tibetan Plateau, which can support crustal channel flow model. China Earthquake Administration had deployed temporary seismic array which is called ChinaArray Phase Ⅱ, dense seismic stations covered NE margin of Tibetan Plateau. Seismic data recorded by 81 seismic stations is applied in this research. We calculated receiver functions with time-domain deconvolution. We selected RFs which have clear Ps phase both in radial and transverse components to measure Ps splitting owing to crustal anisotropy, and 130 pairs of anisotropy parameters of 51 seismic stations were obtained. We would like to discuss about dynamic mechanism of this area using crustal anisotropy associated with the result of SKS-splitting and surface constrains like GPS velocity. The result can be summarized as follows. The large scale of delay time imply that the crustal anisotropy mainly derives from middle to lower crust rather than upper crust. In the southeastern part of the research area, crustal anisotropy is well agree with the result computed form SKS-splitting and GPS velocity directions trending NWW-SEE or E-W direction. This result imply a vertically coherent deformation in the area as the directions of crustal anisotropy trend to be perpendicular to the direction of normal stress. In the middle and north part of the research area, the fast polarization direction of crustal anisotropy is NEE-SWW or E-W direction, parallels with direction of GPS velocity, but differ to the direction of the result of SKS-splitting. This result may imply that decoupled deformation in this area associated with middle to lower crustal flow.
Lukens, Wayne W.; Speldrich, Manfred; Yang, Ping; ...
2016-05-31
The electronic structures of 4f 3/5f 3 Cp" 3M and Cp" 3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(III) and uranium(III) tris-cyclopentadienylmore » complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. As a result, while interaction with the isocyanide π*-orbitals lowers the energies of the 5f xz2 and 5f yz2-orbitals, spin–orbit coupling greatly reduces the population of 5f xz2 and 5f yz2 in the ground state.« less
NASA Astrophysics Data System (ADS)
Sun, Ya; Liu, Jianxin; Zhou, Keping; Chen, Bo; Guo, Rongwen
2015-07-01
The convergence of India and Eurasia and the obstruction from the rigid Sichuan Basin cause the Longmenshan (LMS) to have the steepest topographic gradient at the eastern margin of the Tibetan Plateau. However, the mechanisms of surface uplift are still controversial. In this paper, we estimate the crustal structure and deformation under the LMS and its surroundings by analyzing a large amount of receiver function data recorded by regional seismic networks of the China Earthquake Administration. We apply a comprehensive splitting measurement technique on Ps conversion phase at the Moho (Moho Ps splitting) to calculate crustal anisotropy from azimuthal variations of receiver functions. Our results show that most of the seismic stations beneath the LMS area exhibit significant seismic anisotropy with the splitting time of 0.22-0.94 s and a fast polarization direction of NW-SE, while less or even no crustal anisotropy has been observed under the Sichuan Basin. Comparing the fast polarization directions of Moho Ps splitting with the indicators of lithospheric deformation (such as shear wave splitting, absolute plate motion, and global positioning system) imply a consistent tendency of deformation between the lower crust and upper mantle, but decoupling deformation in the crust beneath the LMS area. We further compare Moho Ps splitting time to that estimated from previous SKS splitting, indicating that crustal anisotropy is an important source of the SKS splitting time in this study area. In addition, a thick crust (>50 km) with high Vp/Vs values (1.74-1.86) is also observed using the H-κ stacking method. These seismic observations are consistent with the scenario that the LMS area has been built by the lower crustal flow. Combined with the seismic reflection/refraction profile and geology studies, we further suggest that the lower crustal flow may extrude upward into the upper crust along the steeply dipping strike faults under the LMS area, resulting in the surface uplift of the LMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Hui; Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, shanghai 200240; Faculty of Engineering Sciences, Kyushu University, Fukuoka 816-8580
2012-02-15
Novel Bi{sub 0.5}M{sub 0.5}VO{sub 4} (BMV; M=La, Eu, Sm and Y) solid solutions were prepared and studied in this paper. All the samples were proved to produce H{sub 2} and O{sub 2} simultaneously from pure water under the irradiation of UV light. M-O bond lengths were proved to increase with M cations by refining cell parameters and atomic positions. Besides, band gaps, energy gaps and photocatalytic activities of BMV also changed with M cations. Both of M-O and V-O bond lengths were suggested to account for this phenomenon. Inactive A{sub 0.5}Y{sub 0.5}VO{sub 4} (A=La, Ce) for water splitting proved incorporationmore » of Bi rather than distortion of VO{sub 4} tetrahedron was a critical factor for improving efficiency of overall water splitting by facilitating the generation of electron and hole with lighter effective masses. Replacement of Bi by M cations not only gave indirect effect on band structure but also raised position of conduction band minimum to meet requirement of H{sub 2} production. - Graphical abstract: Novel Bi{sub 0.5}M{sub 0.5}VO{sub 4} (M=La, Eu, Sm and Y) solid solutions showed the high and stable photocatalytic activities for overall water splitting with their crystal radii of M elements. Highlights: Black-Right-Pointing-Pointer BMV solid solutions were novel highly efficient V-based photocatalysts for overall water splitting. Black-Right-Pointing-Pointer Photocatalytic activity of BMV solid solution related to the effective ionic radii of M cations. Black-Right-Pointing-Pointer Incorporation of Bi is one of key factors for the highly efficient activity of BMV solid solution. Black-Right-Pointing-Pointer Incorporation of Y is dispensable for H{sub 2} production.« less
NASA Astrophysics Data System (ADS)
Juneja, P.; Gupta, S. L.; Pancholi, S. C.; Kumar, Ashok; Mehta, D.; Chaturvedi, L.; Katoch, S. K.; Malik, S.; Shanker, G.; Bhowmik, R. K.; Muralithar, S.; Rodrigues, G.; Singh, R. P.
1996-03-01
High spin states in the odd-odd 164Lu nucleus have been investigated for the first time, through in-beam gamma-ray spectroscopy, following the 150Sm(19F,5n) reaction at beam energy Elab=105 MeV. Four bands, including two signature split bands are identified. The interpretation of the experimental results is discussed in comparison with the existing data in the neighboring nuclei and in the framework of the cranked shell model. The πh11/2⊗νi13/2 yrast band exhibits anomalous signature splitting and signature inversion is observed at a spin of 18ħ. This provides the missing datum for the systematics of staggering and signature inversion for the neighboring odd-odd N=93 isotones and supports the predictions of angular-momentum projection calculations by Hara and Sun. In the second signature split πh 11/2h9/2 band, the AB neutron crossing occurs at a rotational frequency of ~0.29 MeV. This is indicative of the disappearance of the blocking effect of the odd neutron.
Kang, Dongseok; Young, James L.; Lim, Haneol; ...
2017-03-27
Despite their excellent photophysical properties and record-high solar-to-hydrogen conversion efficiency, the high cost and limited stability of III-V compound semiconductors prohibit their practical application in solar-driven photoelectrochemical water splitting. Here in this paper we present a strategy for III-V photocatalysis that can circumvent these difficulties via printed assemblies of epitaxially grown compound semiconductors. A thin film stack of GaAs-based epitaxial materials is released from the growth wafer and printed onto a non-native transparent substrate to form an integrated photocatalytic electrode for solar hydrogen generation. The heterogeneously integrated electrode configuration together with specialized epitaxial design serve to decouple the material interfacesmore » for illumination and electrocatalysis. Subsequently, this allows independent control and optimization of light absorption, carrier transport, charge transfer, and material stability. Using this approach, we construct a series-connected wireless tandem system of GaAs photoelectrodes and demonstrate 13.1% solar-to-hydrogen conversion efficiency of unassisted-mode water splitting.« less
New predictions on meson decays from string splitting
NASA Astrophysics Data System (ADS)
Bigazzi, Francesco; Cotrone, Aldo L.
2006-11-01
We study certain exclusive decays of high spin mesons into mesons in models of large Nc Yang-Mills with few flavors at strong coupling using string theory. The rate of the process is calculated by studying the splitting of a macroscopic string on the relevant dual gravity backgrounds. In the leading channel for the decay of heavy quarkonium into two open-heavy quark states, one of the two produced mesons has much larger spin than the other. In this channel the decay rate is practically independent on the spin and has a mild dependence on the mass of the heavy quarks. Moreover, it is only power-like suppressed with the mass of the produced quark-anti quark pair. We also reconsider decays of high spin mesons made up of light quarks, confirming the linear dependence of the rate on the mass of the decaying meson. As a bonus of our computation, we provide a formula for the splitting rate of a macroscopic string lying on a Dp-brane in flat space.
On the occurrence of false positives in tests of migration under an isolation with migration model
Hey, Jody; Chung, Yujin; Sethuraman, Arun
2015-01-01
The population genetic study of divergence is often done using a Bayesian genealogy sampler, like those implemented in IMa2 and related programs, and these analyses frequently include a likelihood-ratio test of the null hypothesis of no migration between populations. Cruickshank and Hahn (2014, Molecular Ecology, 23, 3133–3157) recently reported a high rate of false positive test results with IMa2 for data simulated with small numbers of loci under models with no migration and recent splitting times. We confirm these findings and discover that they are caused by a failure of the assumptions underlying likelihood ratio tests that arises when using marginal likelihoods for a subset of model parameters. We also show that for small data sets, with little divergence between samples from two populations, an excellent fit can often be found by a model with a low migration rate and recent splitting time and a model with a high migration rate and a deep splitting time. PMID:26456794
Split-second escape decisions in blue tits (Parus caeruleus)
NASA Astrophysics Data System (ADS)
Lind, Johan; Kaby, Ulrika; Jakobsson, Sven
2002-07-01
Bird mortality is heavily affected by birds of prey. Under attack, take-off is crucial for survival and even minor mistakes in initial escape response can have devastating consequences. Birds may respond differently depending on the character of the predator's attack and these split-second decisions were studied using a model merlin (Falco columbarius) that attacked feeding blue tits (Parus caeruleus) from two different attack angles in two different speeds. When attacked from a low attack angle they took off more steeply than when attacked from a high angle. This is the first study to show that escape behaviour also depends on predator attack speed. The blue tits responded to a high-speed attack by dodging sideways more often than when attacked at a low speed. Escape speed was not significantly affected by the different treatments. Although they have only a split-second before escaping an attack, blue tits do adjust their escape strategy to the prevailing attack conditions.
NASA Astrophysics Data System (ADS)
Kang, Dongseok; Young, James L.; Lim, Haneol; Klein, Walter E.; Chen, Huandong; Xi, Yuzhou; Gai, Boju; Deutsch, Todd G.; Yoon, Jongseung
2017-03-01
Despite their excellent photophysical properties and record-high solar-to-hydrogen conversion efficiency, the high cost and limited stability of III-V compound semiconductors prohibit their practical application in solar-driven photoelectrochemical water splitting. Here we present a strategy for III-V photocatalysis that can circumvent these difficulties via printed assemblies of epitaxially grown compound semiconductors. A thin film stack of GaAs-based epitaxial materials is released from the growth wafer and printed onto a non-native transparent substrate to form an integrated photocatalytic electrode for solar hydrogen generation. The heterogeneously integrated electrode configuration together with specialized epitaxial design serve to decouple the material interfaces for illumination and electrocatalysis. Subsequently, this allows independent control and optimization of light absorption, carrier transport, charge transfer, and material stability. Using this approach, we construct a series-connected wireless tandem system of GaAs photoelectrodes and demonstrate 13.1% solar-to-hydrogen conversion efficiency of unassisted-mode water splitting.
NASA Astrophysics Data System (ADS)
Guo, Si-yao; Zhao, Tie-jun; Jin, Zu-quan; Wan, Xiao-mei; Wang, Peng-gang; Shang, Jun; Han, Song
2015-10-01
A simple and straightforward solution growth routine is developed to prepare microporous 3D nano/micro ZnO microsphere with a large BET surface area of 288 m2 g-1 at room temperature. The formation mechanism of the hierarchical 3D nano/micro ZnO microsphere and its corresponding hydrogen evolution performance has been deeply discussed. In particular, this novel hierarchical 3D ZnO microspheres performs undiminished hydrogen evolution for at least 24 h under simulated solar light illumination, even under the condition of no precious metal as cocatalyst. Since the complex production process of photocatalysts and high cost of precious metal cocatalyst remains a major constraint that hinders the application of solar water splitting, this 3D nano/micro ZnO microspheres could be expected to be applicable in the precious-metal-free solar water splitting system due to its merits of low cost, simple procedure and high catalytic activity.
Wang, Qian; Hisatomi, Takashi; Suzuki, Yohichi; Pan, Zhenhua; Seo, Jeongsuk; Katayama, Masao; Minegishi, Tsutomu; Nishiyama, Hiroshi; Takata, Tsuyoshi; Seki, Kazuhiko; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari
2017-02-01
Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO 3 :La,Rh/C/BiVO 4 :Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H + and OH - concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.
Kastenbauer, E R; Hochgesand, K; Hochstrasser, K; Tappermann, G
1975-07-01
Proteolytic enzymes such as pepsine or papaine are able to split IgG antibodies into large fragments in vitro. These immunoglobulin fragments (IgG, IgA, IgM) were now detected in vivo from the purulent secretions of cholesteatoma, chronic otitis media and radical mastoid cavities. During chronic otitis media the intact immunoglobulins are split due to the proteolytic activity of neutral proteinases. These fragments were qualitatively and quantitatively investigated by means of various immunological procedures. After the immunoelectrophoretic separation of the purulent middle-ear-secretions and after diffusion against anti-IgG-, anti-IgA- and anti-IgM- serum double precipitate lines could be observed especially in middle-ear-secretion with a bacterial flora of pseudomonas aeruginosa (pyocyanea) and of the proteus-providencia-group. This was the first proof of the presence of split products of the immunoglobulins. The exact demonstration of these split products could be carried out by gel-filtration and fractionation of the intact and split immunoglobulins. During chronic otitis media intact immunoglobulins are split by leucocytic and extracellular bacterial proteinases into fragments of different molecular weight. The most malignant extracellular proteinases with the greatest proteolytic activity against intact immunoglobulins are the bacterial proteinases of pseudomonas aeruginosa. These proteinases can not be inhibited by the other serum proteinaseinhibitors except for alpha-2-macroglobulin of the human blood serum. This inhibitor has a very high molecular weight so that we can not find it in a higher concentration in the middle-ear-secretion. We can liberate this inhibitor by injuring the blood vessels during a tympanoplasty. In this way we get an inhibitory effect against these proteinases and combined with an appropriate antibiotic therapy we can cure a chronic otitis media.
RNA detection using peptide-inserted Renilla luciferase.
Andou, Takashi; Endoh, Tamaki; Mie, Masayasu; Kobatake, Eiry
2009-01-01
A novel complementation system with short peptide-inserted-Renilla luciferase (PI-Rluc) and split-RNA probes was constructed for noninvasive RNA detection. The RNA binding peptides HIV-1 Rev and BIV Tat were used as inserted peptides. They display induced fit conformational changes upon binding to specific RNAs and trigger complementation or discomplementation of Rluc. Split-RNA probes were designed to reform the peptide binding site upon hybridization with arbitrarily selected target RNA. This set of recombinant protein and split-RNA probes enabled a high degree of sensitivity in RNA detection. In this study, we show that the Rluc system is comparable to Fluc, but that its detection limit for arbitrarily selected RNA (at least 100 pM) exceeds that of Fluc by approximately two orders of magnitude.
Malcolm, James G; Johnson, Andrew K
2017-01-01
A sagittal split fracture of the C1 lateral mass is an unstable subtype of C1 fractures and has a high propensity for developing late deformities and pain with nonoperative management. A primary internal fixation of this type of fracture has been recently described with good clinical outcomes and preservation of motion. We present a modified technique of primary internal fixation using an obliquely inserted C1 lag screw with imaging guidance. We successfully treated a 55-year-old woman with a unilateral C1 oblique sagittal split fracture who failed nonoperative management. Technical nuances are discussed with a review of pertinent literature. PMID:28948116
NASA Astrophysics Data System (ADS)
Wu, Chengjun; Liu, Jiang; Pan, Jie
2014-07-01
DC-inverter split air-conditioner is widely used in Chinese homes as a result of its high-efficiency and energy-saving. Recently, the researches on its outdoor unit have focused on the influence of surrounding structures upon the aerodynamic and acoustic performance, however they are only limited to the influence of a few parameters on the performance, and practical design of the unit requires more detailed parametric analysis. Three-dimensional computational fluid dynamics(CFD) and computational aerodynamic acoustics(CAA) simulation based on FLUENT solver is used to study the influence of surrounding structures upon the aforementioned properties of the unit. The flow rate and sound pressure level are predicted for different rotating speed, and agree well with the experimental results. The parametric influence of three main surrounding structures(i.e. the heat sink, the bell-mouth type shroud and the outlet grille) upon the aerodynamic performance of the unit is analyzed thoroughly. The results demonstrate that the tip vortex plays a major role in the flow fields near the blade tip and has a great effect on the flow field of the unit. The inlet ring's size and throat's depth of the bell-mouth type shroud, and the through-flow area and configuration of upwind and downwind sections of the outlet grille are the most important factors that affect the aerodynamic performance of the unit. Furthermore, two improved schemes against the existing prototype of the unit are developed, which both can significantly increase the flow rate more than 6 %(i.e. 100 m3·h-1) at given rotating speeds. The inevitable increase of flow noise level when flow rate is increased and the advantage of keeping a lower rotating speed are also discussed. The presented work could be a useful guideline in designing the aerodynamic and acoustic performance of the split air-conditioner in engineering practice.
Toward a High-Efficient Utilization of Solar Radiation by Quad-Band Solar Spectral Splitting.
Cao, Feng; Huang, Yi; Tang, Lu; Sun, Tianyi; Boriskina, Svetlana V; Chen, Gang; Ren, Zhifeng
2016-12-01
The promising quad-band solar spectral splitter incorporates the properties of the optical filter and the spectrally selective solar thermal absorber can direct PV band to PV modules and absorb thermal band energy for thermal process with low thermal losses. It provides a new strategy for spectral splitting and offers potential ways for hybrid PVT system design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Feng, David J. Y.; Lay, T. S.; Chang, T. Y.
2007-02-01
We show that it is possible to obtain 2 x 2 waveguide couplers with new power splitting ratios for cross coupling of 7%, 64%, 80% and 93% by cascading two short MMI sections. These couplers have simple geometry and low loss. They offer valuable new possibilities for designing waveguide power taps, high-Q ring resonators, ladder-structure optical filters, and loop-mirror partial reflectors.
Percutaneous Mitral Valve Dilatation: Single Balloon versus Double Balloon - A Finite Element Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schievano, Silvia; Kunzelman, Karyn; Nicosia, Mark
2009-01-01
Background: Percutaneous mitral valve (MV) dilatation is performed with either a single balloon (SB) or double balloon (DB) technique. The aim of this study was to compare the two balloon system results using the finite element (FE) method. Methods and Results: An established FE model of the MV was modified by fusing the MV leaflet edges at commissure level to simulate a stenotic valve (orifice area=180mm2). A FE model of a 30mm SB (low-pressure, elastomeric balloon) and an 18mm DB system (high-pressure, non-elastic balloon) was created. Both SB and DB simulations resulted in splitting of the commissures and subsequent stenosismore » dilatation (final MV area=610mm2 and 560mm2 respectively). Stresses induced by the two balloon systems varied across the valve. At the end of inflation, SB showed higher stresses in the central part of the leaflets and at the commissures compared to DB simulation, which demonstrated a more uniform stress distribution. The higher stresses in the SB analysis were due to the mismatch of the round balloon shape with the oval mitral orifice. The commissural split was not easily accomplished with the SB due to its high compliance. The high pressure applied to the DB guaranteed the commissural split even when high forces were required to break the commissure welds. Conclusions: The FE model demonstrated that MV dilatation can be accomplished by both SB and DB techniques. However, the DB method resulted in higher probability of splitting of the fused commissures and less damage caused to the MV leaflets by overstretching.« less
Holographic spectrum-splitting optical systems for solar photovoltaics
NASA Astrophysics Data System (ADS)
Zhang, Deming
Solar energy is the most abundant source of renewable energy available. The relatively high cost prevents solar photovoltaic (PV) from replacing fossil fuel on a larger scale. In solar PV power generation the cost is reduced with more efficient PV technologies. In this dissertation, methods to improve PV conversion efficiency with holographic optical components are discussed. The tandem multiple-junction approach has achieved very high conversion efficiency. However it is impossible to manufacture tandem PV cells at a low cost due to stringent fabrication standards and limited material types that satisfy lattice compatibility. Current produced by the tandem multi-junction PV cell is limited by the lowest junction due to series connection. Spectrum-splitting is a lateral multi-junction concept that is free of lattice and current matching constraints. Each PV cell can be optimized towards full absorption of a spectral band with tailored light-trapping schemes. Holographic optical components are designed to achieve spectrum-splitting PV energy conversion. The incident solar spectrum is separated onto multiple PV cells that are matched to the corresponding spectral band. Holographic spectrum-splitting can take advantage of existing and future low-cost technologies that produces high efficiency thin-film solar cells. Spectrum-splitting optical systems are designed and analyzed with both transmission and reflection holographic optical components. Prototype holograms are fabricated and high optical efficiency is achieved. Light-trapping in PV cells increases the effective optical path-length in the semiconductor material leading to improved absorption and conversion efficiency. It has been shown that the effective optical path length can be increased by a factor of 4n2 using diffusive surfaces. Ultra-light-trapping can be achieved with optical filters that limit the escape angle of the diffused light. Holographic reflection gratings have been shown to act as angle-wavelength selective filters that can function as ultra-light-trapping filters. Results from an experimental reflection hologram are used to model the absorption enhancement factor for a silicon solar cell and light-trapping filter. The result shows a significant improvement in current generation for thin-film silicon solar cells under typical operating conditions.
Mediator- and co-catalyst-free direct Z-scheme composites of Bi2WO6-Cu3P for solar-water splitting.
Rauf, Ali; Ma, Ming; Kim, Sungsoon; Sher Shah, Md Selim Arif; Chung, Chan-Hwa; Park, Jong Hyeok; Yoo, Pil J
2018-02-08
Exploring new single, active photocatalysts for solar-water splitting is highly desirable to expedite current research on solar-chemical energy conversion. In particular, Z-scheme-based composites (ZBCs) have attracted extensive attention due to their unique charge transfer pathway, broader redox range, and stronger redox power compared to conventional heterostructures. In the present report, we have for the first time explored Cu 3 P, a new, single photocatalyst for solar-water splitting applications. Moreover, a novel ZBC system composed of Bi 2 WO 6 -Cu 3 P was designed employing a simple method of ball-milling complexation. The synthesized materials were examined and further investigated through various microscopic, spectroscopic, and surface area characterization methods, which have confirmed the successful hybridization between Bi 2 WO 6 and Cu 3 P and the formation of a ZBC system that shows the ideal position of energy levels for solar-water splitting. Notably, the ZBC composed of Bi 2 WO 6 -Cu 3 P is a mediator- and co-catalyst-free photocatalyst system. The improved photocatalytic efficiency obtained with this system compared to other ZBC systems assisted by mediators and co-catalysts establishes the critical importance of interfacial solid-solid contact and the well-balanced position of energy levels for solar-water splitting. The promising solar-water splitting under optimum composition conditions highlighted the relationship between effective charge separation and composition.
Overholt, M F; Arkfeld, E K; Wilson, K B; Mohrhauser, D A; King, D A; Wheeler, T L; Dilger, A C; Shackelford, S D; Boler, D D
2016-12-01
Objectives were to determine the effects of marketing group on quality and variability of belly and adipose tissue quality traits of pigs sourced from differing production focuses (lean vs. quality). Pigs ( = 8,042) raised in 8 barns representing 2 seasons (cold and hot) were used. Three groups were marketed from each barn with 2 barns per production focus marketed per season. Data were collected on 7,684 carcasses at a commercial abattoir. Fresh belly characteristics, American Oil Chemists' Society iodine value (AOCS-IV), and near-infrared iodine value were measured on a targeted 50, 10, and 100% of carcasses, respectively. Data were analyzed as a split-plot design in the MIXED procedure of SAS 9.4 with production focus as the whole-plot factor and marketing group as the split-plot factor. Barn (block), season, and sex were random variables. A multivariance model was fit using the REPEATED statement with the marketing group × production focus interaction as the grouping variable. Variances for production focus and marketing groups were calculated using the MEANS procedure. Homogeneity of variance was tested on raw data using the Levene's test of the GLM procedure. Among quality focus carcasses, marketing group 3 bellies weighed less ( ≤ 0.03) than those from either marketing group 1 or 2, but there was no difference ( ≥ 0.99) among marketing groups of the lean focus carcasses. There was no effect ( ≥ 0.11) of production focus on fresh belly measures, SFA, or iodine value (IV), but lean focus carcasses had decreased ( = 0.04) total MUFA and increased ( < 0.01) total PUFA compared with quality focus carcasses. Marketing group did not affect ( ≥ 0.10) fresh belly dimensions, total SFA, total MUFA, total PUFA, or IV. Belly weight, flop score, width, and all depth measurements were less variable ( ≤ 0.01); whereas, belly length, total SFA, and total MUFA were more variable ( < 0.0001) in lean focus carcasses than in quality focus carcasses. There was no difference ( ≥ 0.17) in total PUFA or AOCS-IV variability between production focuses. Variance of flop score, total MUFA, and total PUFA were not equal ( ≤ 0.01) among marketing groups. Belly weight, length, width, and depth measurements; SFA; or IV variance did not differ ( ≥ 0.06) among marketing groups. Although a multiple-marketing strategy was effective at minimizing differences in belly characteristics, differences in the variability of these traits exist among marketing groups and are likely dependent on the production system used.
High efficiency solar photovoltaic power module concept
NASA Technical Reports Server (NTRS)
Bekey, I.
1978-01-01
The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.
Efficiency limits for photoelectrochemical water-splitting
Fountaine, Katherine T.; Lewerenz, Hans Joachim; Atwater, Harry A.
2016-12-02
Theoretical limiting efficiencies have a critical role in determining technological viability and expectations for device prototypes, as evidenced by the photovoltaics community’s focus on detailed balance. However, due to their multicomponent nature, photoelectrochemical devices do not have an equivalent analogue to detailed balance, and reported theoretical efficiency limits vary depending on the assumptions made. Here we introduce a unified framework for photoelectrochemical device performance through which all previous limiting efficiencies can be understood and contextualized. Ideal and experimentally realistic limiting efficiencies are presented, and then generalized using five representative parameters—semiconductor absorption fraction, external radiative efficiency, series resistance, shunt resistance andmore » catalytic exchange current density—to account for imperfect light absorption, charge transport and catalysis. Finally, we discuss the origin of deviations between the limits discussed herein and reported water-splitting efficiencies. This analysis provides insight into the primary factors that determine device performance and a powerful handle to improve device efficiency.« less
Majorana splitting from critical currents in Josephson junctions
NASA Astrophysics Data System (ADS)
Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa
2017-11-01
A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.
On the dual-cone nature of the conical refraction phenomenon.
Turpin, A; Loiko, Yu; Kalkandjiev, T K; Tomizawa, H; Mompart, J
2015-04-15
In conical refraction (CR), a focused Gaussian input beam passing through a biaxial crystal and parallel to one of the optic axes is transformed into a pair of concentric bright rings split by a dark (Poggendorff) ring at the focal plane. Here, we show the generation of a CR transverse pattern that does not present the Poggendorff fine splitting at the focal plane, i.e., it forms a single light ring. This light ring is generated from a nonhomogeneously polarized input light beam obtained by using a spatially inhomogeneous polarizer that mimics the characteristic CR polarization distribution. This polarizer allows modulating the relative intensity between the two CR light cones in accordance with the recently proposed dual-cone model of the CR phenomenon. We show that the absence of interfering rings at the focal plane is caused by the selection of one of the two CR cones.
Resin bleed improvement on surface mount semiconductor device
NASA Astrophysics Data System (ADS)
Rajoo, Indra Kumar; Tahir, Suraya Mohd; Aziz, Faieza Abdul; Shamsul Anuar, Mohd
2018-04-01
Resin bleed is a transparent layer of epoxy compound which occurs during molding process but is difficult to be detected after the molding process. Resin bleed on the lead on the unit from the focused package, SOD123, can cause solderability failure at end customer. This failed unit from the customer will be considered as a customer complaint. Generally, the semiconductor company has to perform visual inspection after the plating process to detect resin bleed. Mold chase with excess hole, split cavity & stepped design ejector pin hole have been found to be the major root cause of resin bleed in this company. The modifications of the mold chase, changing of split cavity to solid cavity and re-design of the ejector pin proposed were derived after a detailed study & analysis conducted to arrive at these solutions. The solutions proposed have yield good results during the pilot run with zero (0) occurrence of resin bleed for 3 consecutive months.
Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighton, Daniel; Rugh, John
Computational fluid dynamics (CFD) simulations of a Ford Focus Electric demonstrated that a split flow heating, ventilating and air conditioning (HVAC) system with rear recirculation ducts can reduce cabin heating loads by up to 57.4% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Simulations also showed that implementing a continuous recirculation fraction control system into the original equipment manufacturer (OEM) HVAC system can reduce cabin heating loads by up to 50.0% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 degmore » C). Identified that continuous fractional recirculation control of the OEM system can provide significant energy savings for EVs at minimal additional cost, while a split flow HVAC system with rear recirculation ducts only provides minimal additional improvement at significant additional cost.« less
A Continuing Search for a Near-Perfect Numerical Flux Scheme. Part 1; [AUSM+
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
1994-01-01
While enjoying demonstrated improvement in accuracy, efficiency, and robustness over existing schemes, the Advection Upstream Splitting Scheme (AUSM) was found to have some deficiencies in extreme cases. This recent progress towards improving the AUSM while retaining its advantageous features is described. The new scheme, termed AUSM+, features: unification of velocity and Mach number splitting; exact capture of a single stationary shock; and improvement in accuracy. A general construction of the AUSM+ scheme is layed out and then focus is on the analysis of the a scheme and its mathematical properties, heretofore unreported. Monotonicity and positivity are proved, and a CFL-like condition is given for first and second order schemes and for generalized curvilinear co-ordinates. Finally, results of numerical tests on many problems are given to confirm the capability and improvements on a variety of problems including those failed by prominent schemes.
Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oesterling, Patrick; Heine, Christian; Weber, Gunther H.
2012-05-04
Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity.We propose to split data analysis into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase performs topological analysis to support accurate and non-overlapping presentation of the high-dimensional cluster structure as a topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and shape reflect cluster coherence, size, and stability, respectively. A second local analysis phasemore » utilizes this global structural knowledge to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual clutter in established geometric visualizations and permits a clearer, more thorough data analysis. In conclusion, this analysis complements the global topological perspective and enables the user to study subspaces or geometric properties, such as shape.« less
Plänkers, Tomas
2015-02-01
With respect to theorisations of psychical splitting, this paper explores the psychical mechanisms that underlie different forms of social splitting. The paper first outlines Freud's and Kleins different theorisations of the psychical mechanisms of splitting, where the good is split from the bad, the inside split from the outside, and the painful disavowed. I then consider the psychical mechanisms of splitting that underlie ideological supports of certain social systems, specifically that of National Socialist Germany, East Germany during the Cold War period, and neoliberal capitalism. Here, I consider ideological splits between good and evil, the relation between external and internal splits, the relation between geographical, social and internal splitting, as well as splitting as disavowal of the other. Copyright © 2015 Institute of Psychoanalysis.
Peng, Yuelin; Govindaraju, Gokul V; Lee, Dong Ki; Choi, Kyoung-Shin; Andrew, Trisha L
2017-07-12
We report an unassisted solar water splitting system powered by a diketopyrrolopyrrole (DPP)-containing semitransparent organic solar cell. Two major merits of this fullerene-free solar cell enable its integration with a BiVO 4 photoanode. First is the high open circuit voltage and high fill factor displayed by this single junction solar cell, which yields sufficient power to effect water splitting when serially connected to an appropriate electrode/catalyst. Second, the wavelength-resolved photoaction spectrum of the DPP-based solar cell has minimal overlap with that of the BiVO 4 photoanode, thus ensuring that light collection across these two components can be optimized. The latter feature enables a new water splitting device configuration wherein the solar cell is placed first in the path of incident light, before the BiVO 4 photoanode, although BiVO 4 has a wider bandgap. This configuration is accessed by replacing the reflective top electrode of the standard DPP-based solar cell with a thin metal film and an antireflection layer, thus rendering the solar cell semitransparent. In this configuration, incident light does not travel through the aqueous electrolyte to reach the solar cell or photoanode, and therefore, photon losses due to the scattering of water are reduced. Moreover, this new configuration allows the BiVO 4 photoanode to be back-illuminated, i.e., through the BiVO 4 /back contact interface, which leads to higher photocurrents compared to front illumination. The combination of a semitransparent single-junction solar cell and a BiVO 4 photoanode coated with oxygen evolution catalysts in a new device configuration yielded an unassisted solar water splitting system with a solar-to-hydrogen conversion efficiency of 2.2% in water.
NASA Astrophysics Data System (ADS)
Bagci, Fulya; Akaoglu, Baris
2017-08-01
We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.
Slab anisotropy from subduction zone guided waves in Taiwan
NASA Astrophysics Data System (ADS)
Chen, K. H.; Tseng, Y. L.; Hu, J. C.
2014-12-01
Frozen-in anisotropic structure in the oceanic lithosphere and faulting/hydration in the upper layer of the slab are expected to play an important role in anisotropic signature of the subducted slab. Over the past several decades, despite the advances in characterizing anisotropy using shear wave splitting method and its developments, the character of slab anisotropy remains poorly understood. In this study we investigate the slab anisotropy using subduction zone guided waves characterized by long path length in the slab. In the southernmost Ryukyu subduction zone, seismic waves from events deeper than 100 km offshore northern Taiwan reveal wave guide behavior: (1) a low-frequency (< 1 Hz) first arrival recognized on vertical and radial components but not transverse component (2) large, sustained high-frequency (3-10 Hz) signal in P and S wave trains. The depth dependent high-frequency content (3-10Hz) confirms the association with a waveguide effect in the subducting slab rather than localized site amplification effects. Using the selected subduction zone guided wave events, we further analyzed the shear wave splitting for intermediate-depth earthquakes in different frequency bands, to provide the statistically meaningful shear wave splitting parameters. We determine shear wave splitting parameters from the 34 PSP guided events that are deeper than 100 km with ray path traveling along the subducted slab. From shear wave splitting analysis, the slab and crust effects reveal consistent polarization pattern of fast directions of EN-WS and delay time of 0.13 - 0.27 sec. This implies that slab anisotropy is stronger than the crust effect (<0.1 s) but weaker than the mantle wedge and sub-slab mantle effect (0.3-1.3 s) in Taiwan.
Photoelectrochemical hydrogen production from biomass derivatives and water.
Lu, Xihong; Xie, Shilei; Yang, Hao; Tong, Yexiang; Ji, Hongbing
2014-11-21
Hydrogen, a clean energy carrier with high energy capacity, is a very promising candidate as a primary energy source for the future. Photoelectrochemical (PEC) hydrogen production from renewable biomass derivatives and water is one of the most promising approaches to producing green chemical fuel. Compared to water splitting, hydrogen production from renewable biomass derivatives and water through a PEC process is more efficient from the viewpoint of thermodynamics. Additionally, the carbon dioxide formed can be re-transformed into carbohydrates via photosynthesis in plants. In this review, we focus on the development of photoanodes and systems for PEC hydrogen production from water and renewable biomass derivatives, such as methanol, ethanol, glycerol and sugars. We also discuss the future challenges and opportunities for the design of the state-of-the-art photoanodes and PEC systems for hydrogen production from biomass derivatives and water.
In Search of the Physics: The Interplay of Experiment and Computation in Slat Aeroacoustics
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Choudhari, Meelan; Singer, Bart A.; Lockard, David P.; Streett, Craig L.
2003-01-01
The synergistic use of experiments and numerical simulations can uncover the underlying physics of airframe noise sources. We focus on the high-lift noise component associated with a leading-edge slat; flap side-edge noise is discussed in a companion paper by Streett et al. (2003). The present paper provides an overview of how slat noise was split into subcomponents and analyzed with carefully planned complementary experimental and numerical tests. We consider both tonal and broadband aspects of slat noise. The predicted far-field noise spectra are shown to be in good qualitative (and, to lesser extent, good quantitative agreement) with acoustic array measurements. Although some questions remain unanswered, the success of current airframe noise studies provides ample promise that remaining technical issues can be successfully addressed in the near future.
Private sector development of stem cell technology and therapeutic cloning.
Lysaght, Michael J; Hazlehurst, Anne L
2003-06-01
Based on data collected in June 2002, more than 30 biotechnology startup firms in 11 countries are pursuing commercial development of stem cell technology and therapeutic cloning. These firms employ 950-1000 scientists and support staff and spend just under $200 million on research and development each year. The field has the look and feel of a high-tech cottage industry, with about half the startups employing fewer than 15 FTEs (full time equivalents). Funding is mostly from venture capitalists and private investors. Participants are geographically dispersed, with about 40% of the activity outside the United States. Focus is equally split between embryonic and adult stem cells. Taken as a whole, both the structure and scope of the private sector in stem cell research seem appropriate to the promise and development time frames of this important new technology.
Bui, Hoa Thi; Shrestha, Nabeen K; Khadtare, Shubhangi; Bathula, Chinna D; Giebeler, Lars; Noh, Yong-Young; Han, Sung-Hwan
2017-05-31
One of the challenges in obtaining hydrogen economically by electrochemical water splitting is to identify and substitute cost-effective earth-abundant materials for the traditionally used precious-metal-based water-splitting electrocatalysts. Herein, we report the electrochemical formation of a thin film of nickel-based Prussian blue analogue hexacyanoferrate (Ni-HCF) through the anodization of a nickel substrate in ferricyanide electrolyte. As compared to the traditionally used Nafion-binder-based bulk film, the anodically obtained binder-free Ni-HCF film demonstrates superior performance in the electrochemical hydrogen evolution reaction (HER), which is highly competitive with that shown by a Pt-plate electrode. The HER onset and the benchmark cathodic current density of 10 mA cm -2 were achieved at small overpotentials of 15 mV and 0.2 V (not iR-corrected), respectively, in 1 M KOH electrolyte, together with the long-term electrochemical durability of the film. Further, a metal-HCF-electrode-based full water-splitting device consisting of the binder-free Ni-HCF film on a Ni plate and a one-dimensional Co-HCF film on carbon paper as the electrodes for the HER and the oxygen evolution reaction (OER), respectively, was designed and was found to demonstrate very promising performance for overall water splitting.
Split brain: divided perception but undivided consciousness.
Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara
2017-05-01
In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Vorndran, Shelby D.; Wu, Yuechen; Ayala, Silvana; Kostuk, Raymond K.
2015-09-01
Concentrating and spectrum splitting photovoltaic (PV) modules have a limited acceptance angle and thus suffer from optical loss under off-axis illumination. This loss manifests itself as a substantial reduction in energy yield in locations where a significant portion of insulation is diffuse. In this work, a spectrum splitting PV system is designed to efficiently collect and convert light in a range of illumination conditions. The system uses a holographic lens to concentrate shortwavelength light onto a smaller, more expensive indium gallium phosphide (InGaP) PV cell. The high efficiency PV cell near the axis is surrounded with silicon (Si), a less expensive material that collects a broader portion of the solar spectrum. Under direct illumination, the device achieves increased conversion efficiency from spectrum splitting. Under diffuse illumination, the device collects light with efficiency comparable to a flat-panel Si module. Design of the holographic lens is discussed. Optical efficiency and power output of the module under a range of illumination conditions from direct to diffuse are simulated with non-sequential raytracing software. Using direct and diffuse Typical Metrological Year (TMY3) irradiance measurements, annual energy yield of the module is calculated for several installation sites. Energy yield of the spectrum splitting module is compared to that of a full flat-panel Si reference module.
Zhao, Yixin; Swierk, John R.; Megiatto, Jackson D.; Sherman, Benjamin; Youngblood, W. Justin; Qin, Dongdong; Lentz, Deanna M.; Moore, Ana L.; Moore, Thomas A.; Gust, Devens; Mallouk, Thomas E.
2012-01-01
Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light. PMID:22547794
Gutiérrez, Lucio
2017-08-01
Ideas about psychoanalysis via videoconference-videoconference teleanalysis (VT)-are presented with the general understanding that these settings produce a twofold split between various degrees of recognition/negativisation of the absence of the other, on one hand, and the expectation of physical co-presence, on the other. This split has been put forward as dismantling the here, now, with me pre-reflexive unity of the analytic experience. This article suggests that both members of the analytic dyad will seek to reappropriate the experience through a forced ego integration that interferes with accessing states of unintegration in the analytic treatment and produces subtle alterations to symbolisation work. The effort to overcome this condition is illustrated with clinical vignettes and therapists' comments about feelings of inauthenticity and discontent when trying to sustain evenly-suspended attention, as well as in the perception of a form of flattening of the alive nature of speech. However, this is not a constant for all VT, and mutual understanding can be an important mitigating feature. The focus of the discussion should be on the capacity of the analytic dyad to overcome such a split and not on a direct extrapolation of the perceptual limitations of VT to possible effects on transference / countertransference. Copyright © 2016 Institute of Psychoanalysis.
Immiscible three-dimensional fingering in porous media: A weakly nonlinear analysis
NASA Astrophysics Data System (ADS)
Brandão, Rodolfo; Dias, Eduardo O.; Miranda, José A.
2018-03-01
We present a weakly nonlinear theory for the development of fingering instabilities that arise at the interface between two immiscible viscous fluids flowing radially outward in a uniform three-dimensional (3D) porous medium. By employing a perturbative second-order mode-coupling scheme, we investigate the linear stability of the system as well as the emergence of intrinsically nonlinear finger branching events in this 3D environment. At the linear stage, we find several differences between the 3D radial fingering and its 2D counterpart (usual Saffman-Taylor flow in radial Hele-Shaw cells). These include the algebraic growth of disturbances and the existence of regions of absolute stability for finite values of viscosity contrast and capillary number in the 3D system. On the nonlinear level, our main focus is to get analytical insight into the physical mechanism resulting in the occurrence of finger tip-splitting phenomena. In this context, we show that the underlying mechanism leading to 3D tip splitting relies on the coupling between the fundamental interface modes and their first harmonics. However, we find that in three dimensions, in contrast to the usual 2D fingering structures normally encountered in radial Hele-Shaw flows, tip splitting into three branches can also be observed.
Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J.; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan
2011-01-01
l-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by 13C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an l-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for l-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP. PMID:21784914
Phase transition of Surprise optimization in community detection
NASA Astrophysics Data System (ADS)
Xiang, Ju; Tang, Yan-Ni; Gao, Yuan-Yuan; Liu, Lang; Hao, Yi; Li, Jian-Ming; Zhang, Yan; Chen, Shi
2018-02-01
Community detection is one of important issues in the research of complex networks. In literatures, many methods have been proposed to detect community structures in the networks, while they also have the scope of application themselves. In this paper, we investigate an important measure for community detection, Surprise (Aldecoa and Marín, Sci. Rep. 3 (2013) 1060), by focusing on the critical points in the merging and splitting of communities. We firstly analyze the critical behavior of Surprise and give the phase diagrams in community-partition transition. The results show that the critical number of communities for Surprise has a super-exponential increase with the increase of the link-density difference, while it is close to that of Modularity for small difference between inter- and intra-community link densities. By directly optimizing Surprise, we experimentally test the results on various networks, following a series of comparisons with other classical methods, and further find that the heterogeneity of networks could quicken the splitting of communities. On the whole, the results show that Surprise tends to split communities due to various reasons such as the heterogeneity in link density, degree and community size, and it thus exhibits higher resolution than other methods, e.g., Modularity, in community detection. Finally, we provide several approaches for enhancing Surprise.
High performance, high bandgap, lattice-mismatched, GaInP solar cells
Wanlass, Mark W; Carapella, Jeffrey J; Steiner, Myles A
2016-11-01
High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.
High performance, high bandgap, lattice-mismatched, GaInP solar cells
Wanlass, Mark W.; Carapella, Jeffrey J.; Steiner, Myles A.
2014-07-08
High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.
High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1 eV.
Tran, Thai-Truong D; Sun, Hao; Ng, Kar Wei; Ren, Fan; Li, Kun; Lu, Fanglu; Yablonovitch, Eli; Chang-Hasnain, Constance J
2014-06-11
The growth of III-V nanowires on silicon is a promising approach for low-cost, large-scale III-V photovoltaics. However, performances of III-V nanowire solar cells have not yet been as good as their bulk counterparts, as nanostructured light absorbers are fundamentally challenged by enhanced minority carriers surface recombination rates. The resulting nonradiative losses lead to significant reductions in the external spontaneous emission quantum yield, which, in turn, manifest as penalties in the open-circuit voltage. In this work, calibrated photoluminescence measurements are utilized to construct equivalent voltage-current characteristics relating illumination intensities to Fermi level splitting ΔF inside InP microillars. Under 1 sun, we show that splitting can exceed ΔF ∼ 0.90 eV in undoped pillars. This value can be increased to values of ΔF ∼ 0.95 eV by cleaning pillar surfaces in acidic etchants. Pillars with nanotextured surfaces can yield splitting of ΔF ∼ 0.90 eV, even though they exhibit high densities of stacking faults. Finally, by introducing n-dopants, ΔF of 1.07 eV can be achieved due to a wider bandgap energy in n-doped wurzite InP, the higher brightness of doped materials, and the extraordinarily low surface recombination velocity of InP. This is the highest reported value for InP materials grown on a silicon substrate. These results provide further evidence that InP micropillars on silicon could be a promising material for low-cost, large-scale solar cells with high efficiency.
Plume splitting and rebounding in a high-intensity CO{sub 2} laser induced air plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Anmin; Jiang Yuanfei; Liu Hang
2012-07-15
The dynamics of plasma plume formed by high-intensity CO{sub 2} laser induced breakdown of air at atmospheric pressure is investigated. The laser wavelength is 10.6 {mu}m. Measurements were made using 3 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The behavior of the plasma plume was studied with a laser energy of 3 J and 10 J. The results show that the evolution of the plasma plume is very complicated. The splitting and rebounding of the plasma plume is observed to occur early in the plumes history.
Tobing, Landobasa Y. M.; Tjahjana, Liliana; Zhang, Dao Hua; Zhang, Qing; Xiong, Qihua
2013-01-01
Metamaterials provide a good platform for biochemical sensing due to its strong field localization at nanoscale. In this work, we show that electric and magnetic resonant modes in split-ring-resonator (SRR) can be efficiently excited under unpolarized light illumination when the SRRs are arranged in fourfold rotationally symmetric lattice configuration. The fabrication and characterization of deep subwavelength (~λ/15) gold-based SRR structures with resonator size as small as ~ 60 nm are reported with magnetic resonances in Vis-NIR spectrum range. The feasibility for sensing is demonstrated with refractive index sensitivity as high as ~ 636 nm/RIU. PMID:23942416
Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail
2016-11-14
We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.
Sakata, Yoshihisa; Hayashi, Takuya; Yasunaga, Ryō; Yanaga, Nobuyuki; Imamura, Hayao
2015-08-21
Remarkably high photocatalytic activity for the overall H2O splitting, where the activity was 32 mmol h(-1) for H2 production and 16 mmol h(-1) for O2 production under irradiation from a 450 W high-pressure Hg lamp and the apparent quantum yield (AQY) was 71% under irradiation at 254 nm, was achieved by utilizing a Rh(0.5)Cr(1.5)O3(Rh; 0.5 wt%)/Zn(3 mol%)-Ga2O3 photocatalyst when Ga2O3 was prepared using dilute CaCl2 aqueous solution having a concentration of 0.001 mol l(-1).
Three-stage linear, split-Stirling cryocooler for 1 to 2K magnetic cold stage
NASA Technical Reports Server (NTRS)
Longsworth, R. C.
1993-01-01
A long-life, linear, high efficiency 8K split Stirling cycle cryocooler was designed, built, and tested. The refrigerator is designed for cooling a 50 mW, 1.5K magnetic cold stage. Dual opposed piston compressors are driven by moving-coil linear motors. The three stage expander, although not completed, is also driven by a linear motor and is designed to produce 1 SW at 60K, 4W at 16K, and 1.2W at 8K. The cold regenerator employs a parallel gap construction for high efficiency. The key technology areas addressed include warm and cold flexible suspension bearings and a new cold regenerator geometry for high efficiency at 8K.
A highly resistant structure between cuticle and cortex of human hair.
Takahashi, T; Yoshida, S
2017-06-01
To clarify the presence and properties of a unique structure which is located between the cuticle and cortex of human hair. Whole hair fibre and longitudinally split hair were used. Treated with a mixture of urea, reductant and alkaline, hair was split at the interface between cuticle and cortex. The residues in the solution were observed by microscope, and the distribution of lipids and protein was determined. From the treated longitudinally split hair, a membrane-like structure which was located at the interface between cuticle and cortex was obtained. This structure showed especially high resistance against chemical treatment and was thought to be the region into which the proximal roots of the cuticle cells are embedded. It was supposed that some steryl glucoside-like lipid, of which the presence in the cuticle and cortex interface was previously reported, is located in this structure. This study proposed the presence of a membrane-like structure, which is highly resistant against chemical treatment, at the region between cuticle and cortex of human hair. This may protect cortex from external stimuli more firmly than the surface part of cuticle. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Mcentire, R. W.; Lui, A. T. Y.; Lopez, R. E.; Krimigis, S. M.
1987-01-01
This paper presents a magnetic field drift shell-splitting model for the unusual butterfly and head-and-shoulder energetic (E greater than 25 keV) particle pitch angle distributions (PADs) which appear deep within the dayside magnetosphere during the course of storms and substorms. Drift shell splitting separates the high and low pitch angle particles in nightside injections as they move to the dayside magnetosphere, so that the higher pitch angle particles move radially away from earth. Consequently, butterfly PADs with a surplus of low pitch angle particles form on the inner edge of the injection, but head-and-shoulder PADs with a surplus of high pitch angle particles form on the outer edge. A similar process removes high pitch angle particles from the inner dayside magnetosphere during storms, leaving the remaining lower pitch angle particles to form butterfly PADs on the inner edge of the ring current. A detailed case and statistical study of Charge Composition Explorer/Medium-energy Particle Analyzer observations, as well as a review of previous work, shows most examples of unusual PADs to be consistent with the model.
NASA Astrophysics Data System (ADS)
Wu, Chengrong; Liu, Bitao; Wang, Jun; Su, Yongyao; Yan, Hengqing; Ng, Chuntan; Li, Cheng; Wei, Jumeng
2018-05-01
Searching for a cost-effective, high efficient and stable bifunctional electrocatalyst for overall water-splitting is critical to renewable energy systems. In this study, three-dimensional (3D) curved nanosheets of Mo-doped Ni3S2 grown on nickel foam were successfully synthesized via a one-step hydrothermal process. The hydrogen-evolution reaction (HER) and the oxygen-evolution reaction (OER) in alkaline environment of this 3D catalyst are investigated in detail. The results show that it possesses lower overpotential, high current densities and small Tafel slopes both in OER and HER. For HER, the catalysts show excellent electrochemical performance, demonstrating a low over-potential of 212 mV at 10 mA cm-2 with a large decrease of 127 mV compared to the undoped Ni3S2. And it also shows a lower overpotential of 260 mV at 10 mA cm-2 which decreases 30 mV for OER. In addition, it is only need 1.67 V for the overall water splitting at 10 mA cm-2 which is 70 mV. It found that the Mo element would change the morphology of Ni3S2 and induce much more active sites for HER and OER. The as-prepared Mo-doped Ni3S2 bi-functional electrocatalyst could act as the promising electrode materials for water splitting.
Direct surface magnetometry with photoemission magnetic x-ray dichroism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, J.G.; Goodman, K.W.; Schumann, F.O.
1997-04-01
Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data ofmore » linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.« less
High temperature thermometric phosphors for use in a temperature sensor
Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.
1998-01-01
A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.
New Drive Train Concept with Multiple High Speed Generator
NASA Astrophysics Data System (ADS)
Barenhorst, F.; Serowy, S.; Andrei, C.; Schelenz, R.; Jacobs, G.; Hameyer, K.
2016-09-01
In the research project RapidWind (financed by the German Federal Ministry for Economic Affairs and Energy under Grant 0325642) an alternative 6 MW drive train configuration with six high-speed (n = 5000 rpm) permanent magnet synchronous generators for wind turbine generators (WTG) is designed. The gearbox for this drive train concept is assembled with a six fold power split spur gear stage in the first stage, followed by six individual 1 MW geared driven generators. Switchable couplings are developed to connect and disconnect individual geared generators depending on the input power. With this drive train configuration it is possible to improve the efficiency during partial load operation, increasing the energy yield about 1.15% for an exemplary low-wind site. The focus of this paper is the investigation of the dynamic behavior of this new WTG concept. Due to the high gear ratio the inertia relationship between rotor and generator differs from conventional WT concepts, possibly leading to intensified vibration behavior. Moreover there are switching procedures added, that might also lead to vibration issues.
ERIC Educational Resources Information Center
Biesta, Gert
2015-01-01
In this paper I focus on a split within the field of educational research between those who approach education as an activity or practice governed by "cause-effect" relationships and those who see education as a human event of communication, meaning making and interpretation. Rather than just arguing against the former and in favour of…
StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab
NASA Astrophysics Data System (ADS)
Grund, Michael
2017-04-01
The SplitLab package (Wüstefeld et al., Computers and Geosciences, 2008), written in MATLAB, is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to seaside or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure.
Velasquez, Alejandra E; Castro, Fidel O; Veraguas, Daniel; Cox, Jose F; Lara, Evelyn; Briones, Mario; Rodriguez-Alvarez, Lleretny
2016-02-01
Embryo splitting might be used to increase offspring yield and for molecular analysis of embryo competence. How splitting affects developmental potential of embryos is unknown. This research aimed to study the effect of bovine blastocyst splitting on morphological and gene expression homogeneity of demi-embryos and on embryo competence during elongation. Grade I bovine blastocyst produced in vitro were split into halves and distributed in nine groups (3 × 3 setting according to age and stage before splitting; age: days 7-9; stage: early, expanded and hatched blastocysts). Homogeneity and survival rate in vitro after splitting (12 h, days 10 and 13) and the effect of splitting on embryo development at elongation after embryo transfer (day 17) were assessed morphologically and by RT-qPCR. The genes analysed were OCT4, SOX2, NANOG, CDX2, TP1, TKDP1, EOMES, and BAX. Approximately 90% of split embryos had a well conserved defined inner cell mass (ICM), 70% of the halves had similar size with no differences in gene expression 12 h after splitting. Split embryos cultured further conserved normal and comparable morphology at day 10 of development; this situation changes at day 13 when embryo morphology and gene expression differed markedly among demi-embryos. Split and non-split blastocysts were transferred to recipient cows and were recovered at day 17. Fifty per cent of non-split embryos were larger than 100 mm (33% for split embryos). OCT4, SOX2, TP1 and EOMES levels were down-regulated in elongated embryos derived from split blastocysts. In conclusion, splitting day-8 blastocysts yields homogenous demi-embryos in terms of developmental capability and gene expression, but the initiation of the filamentous stage seems to be affected by the splitting.
Design of high energy laser pulse delivery in a multimode fiber for photoacoustic tomography.
Ai, Min; Shu, Weihang; Salcudean, Tim; Rohling, Robert; Abolmaesumi, Purang; Tang, Shuo
2017-07-24
In photoacoustic tomography (PAT), delivering high energy pulses through optical fiber is critical for achieving high quality imaging. A fiber coupling scheme with a beam homogenizer is demonstrated for coupling high energy pulses in a single multimode fiber. This scheme can benefit PAT applications that require miniaturized illumination or internal illumination with a small fiber. The beam homogenizer is achieved by using a cross cylindrical lens array, which provides a periodic spatial modulation on the phase of the input light. Thus the lens array acts as a phase grating which diffracts the beam into a 2D diffraction pattern. Both theoretical analysis and experiments demonstrate that the focused beam can be split into a 2D spot array that can reduce the peak power on the fiber tip surface and thus enhance the coupling performance. The theoretical analysis of the intensity distribution of the focused beam is carried out by Fourier optics. In experiments, coupled energy at 48 mJ/pulse and 60 mJ/pulse have been achieved and the corresponding coupling efficiency is 70% and 90% in a 1000-μm and a 1500-μm-core-diameter fiber, respectively. The high energy pulses delivered by the multimode fiber are further tested for PAT imaging in phantoms. PAT imaging of a printed dot array shows a large illumination area of 7 cm 2 under 5 mm thick chicken breast tissue. In vivo imaging is also demonstrated on the human forearm. The large improvement in coupling energy can potentially benefit PAT with single fiber delivery to achieve large area imaging and deep penetration detection.
Lopez, P E; Smart, C E; McElduff, P; Foskett, D C; Price, D A; Paterson, M A; King, B R
2017-10-01
To determine the optimum combination bolus split to maintain postprandial glycaemia with a high-fat and high-protein meal in young people with Type 1 diabetes. A total of 19 young people (mean age 12.9 ± 6.7 years) participated in a randomized, repeated-measures trial comparing postprandial glycaemic control across six study conditions after a high-fat and high-protein meal. A standard bolus and five different combination boluses were delivered over 2 h in the following splits: 70/30 = 70% standard /30% extended bolus; 60/40=60% standard/40% extended bolus; 50/50=50% standard/50% extended bolus; 40/60=40% standard/60% extended bolus; and 30/70=30% standard/70% extended bolus. Insulin dose was determined using the participant's optimized insulin:carbohydrate ratio. Continuous glucose monitoring was used to assess glucose excursions for 6 h after the test meal. Standard bolus and combination boluses 70/30 and 60/40 controlled the glucose excursion up to 120 min. From 240 to 300 min after the meal, the glucose area under the curve was significantly lower for combination bolus 30/70 compared with standard bolus (P=0.004). High-fat and high-protein meals require a ≥60% insulin:carbohydrate ratio as a standard bolus to control the initial postprandial rise. Additional insulin at an insulin:carbohydrate ratio of up to 70% is needed in the extended bolus for a high fat and protein meal to prevent delayed hyperglycaemia. © 2017 Diabetes UK.
Mössbauer spectroscopic characterization of iron methyl pyropheophorbide a and its derivatives
NASA Astrophysics Data System (ADS)
Inoue, H.; Soeda, K.; Akahori, H.; Nonomura, Y.; Yoshioka, N.
1994-12-01
Two kinds of iron chlorophylls, i.e. (methyl pyropheophorbide a)iron(III) chloride and its bis-pyridine adduct, were prepared and characterized by57Fe Mössbauer spectroscopy. (Methyl pyropheophorbide a)iron(III) chloride gave an asymmetric quadrupole-split doublet typical of high-spin iron(III) chlorophylls, while its bis-pyridine adduct showed a symmetric quadrupole-split doublet characteristic of low-spin iron(II) chlorophylls. The isomer shift and quadrupole splitting obtained for (methyl pyropheophorbide a)iron(III) chloride and its bis-pyridine adduct have led to the following conclusions. The substitution of the bulky phytyl group for the methyl group hardly affects the electronic state of the iron(II,III) ion, but the elimination of the methoxycarbonyl group increases the planarity of the macrocyclic chlorin ligand.
Coherent and dynamic beam splitting based on light storage in cold atoms
Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho
2016-01-01
We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing. PMID:27677457
Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.
1993-01-01
A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.
Clark, M.C.; Coleman, P.D.; Marder, B.M.
1993-08-10
A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.
The Split Red Clump of the Galactic Bulge from OGLE-III
NASA Astrophysics Data System (ADS)
Nataf, D. M.; Udalski, A.; Gould, A.; Fouqué, P.; Stanek, K. Z.
2010-09-01
The red clump (RC) is found to be split into two components along several sightlines toward the Galactic bulge. This split is detected with high significance toward the areas (-3.5 < l < 1, b < -5) and (l, b) = (0, + 5.2), i.e., along the bulge minor axis and at least 5 deg off the plane. The fainter (hereafter "main") component is the one that more closely follows the distance-longitude relation of the bulge RC. The main component is ~0.5 mag fainter than the secondary component and with an overall approximately equal population. For sightlines further from the plane, the difference in brightness increases, and more stars are found in the secondary component than in the main component. The two components have very nearly equal (V - I) color.
Dressed photon-orbital states in a quantum dot: Intervalley spin resonance
Scarlino, P.; Kawakami, E.; Jullien, T.; ...
2017-04-19
Because of the symmetry in silicon quantum wells, silicon quantum dots have an extra degree of freedom leading to a small energy splitting called the valley splitting. This degree of freedom has been viewed alternately as a hazard, especially when the lowest valley-orbit splitting is small compared to the thermal energy, or as an asset, most prominently in proposals to use the valley degree of freedom itself as a qubit. Here we present experiments in which microwave electric field driving induces transitions between both valley-orbit and spin states. We show that this system is highly nonlinear and can be understoodmore » through the use of dressed photon-orbital states, enabling a unified understanding of six resonance lines we observe in these experiments.« less
NASA Astrophysics Data System (ADS)
Singh, Anant Bir
This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the serpentine channel with similar conditions. Simulations for mass transfer show that recombining of the flow streams generate more uniform current density unlike the serpentine configuration where the current density was concentrated at the entrance of the flow stream. The background section provides a brief overview of the governing equations, the theory of flow field operation and previous bodies of work on flow field design. Recommendations are made for further verification of the design using a real working cell based on the results.
[NiFeSe]-hydrogenase chemistry.
Wombwell, Claire; Caputo, Christine A; Reisner, Erwin
2015-11-17
The development of technology for the inexpensive generation of the renewable energy vector H2 through water splitting is of immediate economic, ecological, and humanitarian interest. Recent interest in hydrogenases has been fueled by their exceptionally high catalytic rates for H2 production at a marginal overpotential, which is presently only matched by the nonscalable noble metal platinum. The mechanistic understanding of hydrogenase function guides the design of synthetic catalysts, and selection of a suitable hydrogenase enables direct applications in electro- and photocatalysis. [FeFe]-hydrogenases display excellent H2 evolution activity, but they are irreversibly damaged upon exposure to O2, which currently prevents their use in full water splitting systems. O2-tolerant [NiFe]-hydrogenases are known, but they are typically strongly biased toward H2 oxidation, while H2 production by [NiFe]-hydrogenases is often product (H2) inhibited. [NiFeSe]-hydrogenases are a subclass of [NiFe]-hydrogenases with a selenocysteine residue coordinated to the active site nickel center in place of a cysteine. They exhibit a combination of unique properties that are highly advantageous for applications in water splitting compared with other hydrogenases. They display a high H2 evolution rate with marginal inhibition by H2 and tolerance to O2. [NiFeSe]-hydrogenases are therefore one of the most active molecular H2 evolution catalysts applicable in water splitting. Herein, we summarize our recent progress in exploring the unique chemistry of [NiFeSe]-hydrogenases through biomimetic model chemistry and the chemistry with [NiFeSe]-hydrogenases in semiartificial photosynthetic systems. We gain perspective from the structural, spectroscopic, and electrochemical properties of the [NiFeSe]-hydrogenases and compare them with the chemistry of synthetic models of this hydrogenase active site. Our synthetic models give insight into the effects on the electronic properties and reactivity of the active site upon the introduction of selenium. We have utilized the exceptional properties of the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum in a number of photocatalytic H2 production schemes, which are benchmark systems in terms of single site activity, tolerance toward O2, and in vitro water splitting with biological molecules. Each system comprises a light-harvesting component, which allows for light-driven electron transfer to the hydrogenase in order for it to catalyze H2 production. A system with [NiFeSe]-hydrogenase on a dye-sensitized TiO2 nanoparticle gives an enzyme-semiconductor hybrid for visible light-driven generation of H2 with an enzyme-based turnover frequency of 50 s(-1). A stable and inexpensive polymeric carbon nitride as a photosensitizer in combination with the [NiFeSe]-hydrogenase shows good activity for more than 2 days. Light-driven H2 evolution with the enzyme and an organic dye under high O2 levels demonstrates the excellent robustness and feasibility of water splitting with a hydrogenase-based scheme. This has led, most recently, to the development of a light-driven full water splitting system with a [NiFeSe]-hydrogenase wired to the water oxidation enzyme photosystem II in a photoelectrochemical cell. In contrast to the other systems, this photoelectrochemical system does not rely on a sacrificial electron donor and allowed us to establish the long sought after light-driven water splitting with an isolated hydrogenase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Tongsong, E-mail: jiangtongsong@sina.com; Department of Mathematics, Heze University, Heze, Shandong 274015; Jiang, Ziwu
In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.
Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio
2017-01-01
To ensure an efficient and targeted adaptation with low injury risk during strength exercises, knowledge of the participant specific internal loading conditions is essential. The goal of this study was to calculate the lower limb muscles forces during the strength exercises deadlifts, goodmornings and splits squats by means of musculoskeletal simulation. 11 participants were assessed performing 10 different variations of split squats by varying the step length as well as the maximal frontal tibia angle, and 13 participants were measured performing deadlift and goodmorning exercises. Using individualised musculoskeletal models, forces of the Quadriceps ( four parts), Hamstrings (four parts) and m. gluteus maximus (three parts) were computed. Deadlifts resulted highest loading for the Quadriceps, especially for the vasti (18-34 N/kg), but not for the rectus femoris (8-10 N/kg), which exhibited its greatest loading during split squats (13-27 N/kg) in the rear limb. Hamstrings were loaded isometrically during goodmornings but dynamically during deadlifts. For the m. gluteus maximus , the highest loading was observed during split squats in the front limb (up to 25 N/kg), while deadlifts produced increasingly, large loading over large ranges of motion in hip and knee. Acting muscle forces vary between exercises, execution form and joint angle. For all examined muscles, deadlifts produced considerable loading over large ranges of motion, while split squats seem to be highly dependent upon exercise variation. This study provides key information to design strength-training programs with respect to loading conditions and ranges of motion of lower extremity muscles.
Influence of the large-small split effect on strategy choice in complex subtraction.
Xiang, Yan Hui; Wu, Hao; Shang, Rui Hong; Chao, Xiaomei; Ren, Ting Ting; Zheng, Li Ling; Mo, Lei
2018-04-01
Two main theories have been used to explain the arithmetic split effect: decision-making process theory and strategy choice theory. Using the inequality paradigm, previous studies have confirmed that individuals tend to adopt a plausibility-checking strategy and a whole-calculation strategy to solve large and small split problems in complex addition arithmetic, respectively. This supports strategy choice theory, but it is unknown whether this theory also explains performance in solving different split problems in complex subtraction arithmetic. This study used small, intermediate and large split sizes, with each split condition being further divided into problems requiring and not requiring borrowing. The reaction times (RTs) for large and intermediate splits were significantly shorter than those for small splits, while accuracy was significantly higher for large and middle splits than for small splits, reflecting no speed-accuracy trade-off. Further, RTs and accuracy differed significantly between the borrow and no-borrow conditions only for small splits. This study indicates that strategy choice theory is suitable to explain the split effect in complex subtraction arithmetic. That is, individuals tend to choose the plausibility-checking strategy or the whole-calculation strategy according to the split size. © 2016 International Union of Psychological Science.
StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab
NASA Astrophysics Data System (ADS)
Grund, Michael
2017-08-01
SplitLab is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to the noisy seaside, ocean bottom or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure which is based on MATLAB. The effectiveness and use of this plugin is demonstrated with data examples of a long running seismological recording station in Finland.
Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)
NASA Astrophysics Data System (ADS)
Pounds, Andrew
2001-05-01
This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.
The LPM effect in sequential bremsstrahlung 2: factorization
Arnold, Peter; Chang, Han-Chih; Iqbal, Shahin
2016-09-13
The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. In this paper, we continue analysis of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-gluon approximations. In particular, this paper analyzes the subtle problem of how to precisely separate overlapping double splitting (e.g. overlapping double bremsstrahlung) from the case of consecutive, independent bremsstrahlung (which is themore » case that would be implemented in a Monte Carlo simulation based solely on single splitting rates). As an example of the method, we consider the rate of real double gluon bremsstrahlung from an initial gluon with various simplifying assumptions (thick media; q approximation; large N c; and neglect for the moment of processes involving 4-gluon ver-tices) and explicitly compute the correction Δ dΓ/dx dy due to overlapping formation times.« less
Upper Mantle Dynamics of Bangladesh by Splitting Analyzes of Core Refracted SKS and SKKS Waves
NASA Astrophysics Data System (ADS)
Tiwari, A. K.; Bhushan, K.; Eken, T.; Singh, A.
2017-12-01
New shear wave splitting measurements are obtained from hitherto less studied Bengal Basin using core refracted SKS and SKKS phases. Splitting parameters, time delays (δt) and fast polarization directions (Φ) were estimated through analysis of 64 high-quality waveforms (≥ 2.5 signal to noise ratio) from 29 earthquakes with magnitude ≥5.5 recorded at eight seismic stations deployed over Bangladesh. We found no evidence of splitting which indicates azimuthal isotropy beneath the region. Null measurements can be explained by near vertical axis of anisotropy or by the presence of multiple anisotropic layers with different fast polarization directions, where combined effect results in null. We consider that the presence of partial melts within the upper mantle due to Kerguelen mantle plume activities may be the potential geodynamic cause for observed null measurements. It locally perturbed mantle convection flow beneath the region and reoriented the lattice preferred orientation of the upper mantle mineral mainly olivine as this disabled the core refracted SKS and SKKS phases to scan the anisotropic characteristics of the region, and hence null measurements are obtained.
Rational design of a split-Cas9 enzyme complex
Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.; ...
2015-02-23
Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. The lobes do not interactmore » on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.« less
Rational design of a split-Cas9 enzyme complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Addison V.; Sternberg, Samuel H.; Taylor, David W.
Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. The lobes do not interactmore » on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.« less
NASA Astrophysics Data System (ADS)
Tiwari, Ashwani Kant; Bhushan, Kirti; Eken, Tuna; Singh, Arun
2018-06-01
New shear wave splitting measurements are obtained from the Bengal Basin using core-mantle refracted SKS, PKS, and SKKS phases. The splitting parameters, namely time delays (δ t) and fast polarization directions (ϕ), were estimated through analysis of 54 high-quality waveforms (⩾ 2.5 signal to noise ratio) from 30 earthquakes with magnitude ⩾ 5.5 recorded at ten seismic stations deployed over Bangladesh. No evidence of splitting was found, which indicates azimuthal isotropy beneath the region. These null measurements can be explained by either vertically dipping anisotropic fast axes or by the presence of multiple horizontal anisotropic layers with different fast polarization directions, where the combined effect results in a null characterization. The anisotropic fabric preserved from rifting episodes of Antarctica and India, subduction-related dynamics of the Indo-Burmese convergence zone, and northward movement of the Indian plate creating shear at the base of the lithosphere can explain the observed null measurements. The combined effect of all these most likely results in a strong vertical anisotropic heterogeneity, creating the observed null results.
Rational design of a split-Cas9 enzyme complex.
Wright, Addison V; Sternberg, Samuel H; Taylor, David W; Staahl, Brett T; Bardales, Jorge A; Kornfeld, Jack E; Doudna, Jennifer A
2015-03-10
Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. Although the lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.
Xin, Yanmei; Kan, Xiang; Gan, Li-Yong; Zhang, Zhonghai
2017-10-24
Solar-driven overall water splitting is highly desirable for hydrogen generation with sustainable energy sources, which need efficient, earth-abundant, robust, and bifunctional electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, we propose a heterogeneous bimetallic phosphide/sulfide nanocomposite electrocatalyst of NiFeSP on nickel foam (NiFeSP/NF), which shows superior electrocatalytic activity of low overpotentials of 91 mV at -10 mA cm -2 for HER and of 240 mV at 50 mA cm -2 for OER in 1 M KOH solution. In addition, the NiFeSP/NF presents excellent overall water splitting performance with a cell voltage as low as 1.58 V at a current density of 10 mA cm -2 . Combining with a photovoltaic device of a Si solar cell or integrating into photoelectrochemical (PEC) systems, the bifunctional NiFeSP/NF electrocatalyst implements unassisted solar-driven water splitting with a solar-to-hydrogen conversion efficiency of ∼9.2% and significantly enhanced PEC performance, respectively.
Fabrication of cooled radial turbine rotor
NASA Technical Reports Server (NTRS)
Hammer, A. N.; Aigret, G. G.; Psichogios, T. P.; Rodgers, C.
1986-01-01
A design and fabrication program was conducted to evaluate a unique concept for constructing a cooled, high temperature radial turbine rotor. This concept, called split blade fabrication was developed as an alternative to internal ceramic coring. In this technique, the internal cooling cavity is created without flow dividers or any other detail by a solid (and therefore stronger) ceramic plate which can be more firmly anchored within the casting shell mold than can conventional detailed ceramic cores. Casting is conducted in the conventional manner, except that the finished product, instead of having finished internal cooling passages, is now a split blade. The internal details of the blade are created separately together with a carrier sheet. The inserts are superalloy. Both are produced by essentially the same software such that they are a net fit. The carrier assemblies are loaded into the split blade and the edges sealed by welding. The entire wheel is Hot Isostatic Pressed (HIPed), braze bonding the internal details to the inside of the blades. During this program, two wheels were successfully produced by the split blade fabrication technique.
High Sulfation and a High Molecular Weight Are Important for Anti-hepcidin Activity of Heparin
Asperti, Michela; Naggi, Annamaria; Esposito, Emiliano; Ruzzenenti, Paola; Di Somma, Margherita; Gryzik, Magdalena; Arosio, Paolo; Poli, Maura
2016-01-01
Heparins are efficient inhibitors of hepcidin expression even in vivo, where they induce an increase of systemic iron availability. Heparins seem to act by interfering with BMP6 signaling pathways that control the expression of liver hepcidin, causing the suppression of SMAD1/5/8 phosphorylation. The anti-hepcidin activity persists also when the heparin anticoagulant property is abolished or reduced by chemical reactions of oxidation/reduction (glycol-split, Gs-Heparins) or by high sulfation (SS-Heparins), but the structural characteristics needed to optimize this inhibitory activity have not been studied in detail. To this aim we analyzed three different heparins (Mucosal Heparin, the Glycol split RO-82, the partially desulfated glycol-split RO-68 and the oversulfated SSLMWH) and separated them in fractions of molecular weight in the range 4–16 kD. Since the distribution of the negative charges in heparins contributes to the activity, we produced 2-O- and 6-O-desulfated heparins. These derivatives were analyzed for the capacity to inhibit hepcidin expression in hepatic HepG2 cells and in mice. The two approaches produced consistent results and showed that the anti-hepcidin activity strongly decreases with molecular weight below 7 kD, with high N-acetylation and after 2-O and 6-O desulfation. The high sulfation and high molecular weight properties for efficient anti-hepcidin activity suggest that heparin is involved in multiple binding sites. PMID:26955355
Experimental demonstration of counterfactual quantum key distribution
NASA Astrophysics Data System (ADS)
Ren, M.; Wu, G.; Wu, E.; Zeng, H.
2011-04-01
Counterfactual quantum key distribution provides natural advantage against the eavesdropping on the actual signal particles. It can prevent the photon-number-splitting attack when a weak coherent light source is used for the practical implementation. We experimentally realized the counterfactual quantum key distribution in an unbalanced Mach-Zehnder interferometer of 12.5-km-long quantum channel with a high-fringe visibility of 97.4%. According to the security analysis, the system was robust against the photon-number-splitting attack. The article is published in the original.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J; Szczykutowicz, T; Bayouth, J
Purpose: To compare the ability of two dual-energy CT techniques, a novel split-filter single-source technique of superior temporal resolution against an established sequential-scan technique, to remove iodine contrast from images with minimal impact on CT number accuracy. Methods: A phantom containing 8 tissue substitute materials and vials of varying iodine concentrations (1.7–20.1 mg I /mL) was imaged using a Siemens Edge CT scanner. Dual-energy virtual non-contrast (VNC) images were generated using the novel split-filter technique, in which a 120kVp spectrum is filtered by tin and gold to create high- and low-energy spectra with < 1 second temporal separation between themore » acquisition of low- and high-energy data. Additionally, VNC images were generated with the sequential-scan technique (80 and 140kVp) for comparison. CT number accuracy was evaluated for all materials at 15, 25, and 35mGy CTDIvol. Results: The spectral separation was greater for the sequential-scan technique than the split-filter technique with dual-energy ratios of 2.18 and 1.26, respectively. Both techniques successfully removed iodine contrast, resulting in mean CT numbers within 60HU of 0HU (split-filter) and 40HU of 0HU (sequential-scan) for all iodine concentrations. Additionally, for iodine vials of varying diameter (2–20 mm) with the same concentration (9.9 mg I /mL), the system accurately detected iodine for all sizes investigated. Both dual-energy techniques resulted in reduced CT numbers for bone materials (by >400HU for the densest bone). Increasing the imaging dose did not improve the CT number accuracy for bone in VNC images. Conclusion: VNC images from the split-filter technique successfully removed iodine contrast. These results demonstrate a potential for improving dose calculation accuracy and reducing patient imaging dose, while achieving superior temporal resolution in comparison sequential scans. For both techniques, inaccuracies in CT numbers for bone materials necessitate consideration for radiation therapy treatment planning.« less
One-dimensional high-order compact method for solving Euler's equations
NASA Astrophysics Data System (ADS)
Mohamad, M. A. H.; Basri, S.; Basuno, B.
2012-06-01
In the field of computational fluid dynamics, many numerical algorithms have been developed to simulate inviscid, compressible flows problems. Among those most famous and relevant are based on flux vector splitting and Godunov-type schemes. Previously, this system was developed through computational studies by Mawlood [1]. However the new test cases for compressible flows, the shock tube problems namely the receding flow and shock waves were not investigated before by Mawlood [1]. Thus, the objective of this study is to develop a high-order compact (HOC) finite difference solver for onedimensional Euler equation. Before developing the solver, a detailed investigation was conducted to assess the performance of the basic third-order compact central discretization schemes. Spatial discretization of the Euler equation is based on flux-vector splitting. From this observation, discretization of the convective flux terms of the Euler equation is based on a hybrid flux-vector splitting, known as the advection upstream splitting method (AUSM) scheme which combines the accuracy of flux-difference splitting and the robustness of flux-vector splitting. The AUSM scheme is based on the third-order compact scheme to the approximate finite difference equation was completely analyzed consequently. In one-dimensional problem for the first order schemes, an explicit method is adopted by using time integration method. In addition to that, development and modification of source code for the one-dimensional flow is validated with four test cases namely, unsteady shock tube, quasi-one-dimensional supersonic-subsonic nozzle flow, receding flow and shock waves in shock tubes. From these results, it was also carried out to ensure that the definition of Riemann problem can be identified. Further analysis had also been done in comparing the characteristic of AUSM scheme against experimental results, obtained from previous works and also comparative analysis with computational results generated by van Leer, KFVS and AUSMPW schemes. Furthermore, there is a remarkable improvement with the extension of the AUSM scheme from first-order to third-order accuracy in terms of shocks, contact discontinuities and rarefaction waves.
Zhao, Yufei; Zhang, Yuxia; Yang, Zhiyu; Yan, Yiming; Sun, Kening
2013-08-01
Scientists increasingly witness the applications of MoS 2 and MoO 2 in the field of energy conversion and energy storage. On the one hand, MoS 2 and MoO 2 have been widely utilized as promising catalysts for electrocatalytic or photocatalytic hydrogen evolution in aqueous solution. On the other hand, MoS 2 and MoO 2 have also been verified as efficient electrode material for lithium ion batteries. In this review, the synthesis, structure and properties of MoS 2 and MoO 2 are briefly summarized according to their applications for H 2 generation and lithium ion batteries. Firstly, we overview the recent advancements in the morphology control of MoS 2 and MoO 2 and their applications as electrocatalysts for hydrogen evolution reactions. Secondly, we focus on the photo-induced water splitting for H 2 generation, in which MoS 2 acts as an important co-catalyst when combined with other semiconductor catalysts. The newly reported research results of the significant functions of MoS 2 nanocomposites in photo-induced water splitting are presented. Thirdly, we introduce the advantages of MoS 2 and MoO 2 for their enhanced cyclic performance and high capacity as electrode materials of lithium ion batteries. Recent key achievements in MoS 2 - and MoO 2 -based lithium ion batteries are highlighted. Finally, we discuss the future scope and the important challenges emerging from these fascinating materials.
Influence of Stationary Crossflow Modulation on Secondary Instability
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Li, Fei; Paredes, Pedro
2016-01-01
A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.
Esposito, Daniel V; Levin, Igor; Moffat, Thomas P; Talin, A Alec
2013-06-01
Photoelectrochemical (PEC) water splitting represents a promising route for renewable production of hydrogen, but trade-offs between photoelectrode stability and efficiency have greatly limited the performance of PEC devices. In this work, we employ a metal-insulator-semiconductor (MIS) photoelectrode architecture that allows for stable and efficient water splitting using narrow bandgap semiconductors. Substantial improvement in the performance of Si-based MIS photocathodes is demonstrated through a combination of a high-quality thermal SiO2 layer and the use of bilayer metal catalysts. Scanning probe techniques were used to simultaneously map the photovoltaic and catalytic properties of the MIS surface and reveal the spillover-assisted evolution of hydrogen off the SiO2 surface and lateral photovoltage driven minority carrier transport over distances that can exceed 2 cm. The latter finding is explained by the photo- and electrolyte-induced formation of an inversion channel immediately beneath the SiO2/Si interface. These findings have important implications for further development of MIS photoelectrodes and offer the possibility of highly efficient PEC water splitting.
Sahasrabudhe, Atharva; Dixit, Harsha; Majee, Rahul; Bhattacharyya, Sayan
2018-05-22
Herein, we present an innovative approach for transforming commonly available cellulose paper into a flexible and catalytic current collector for overall water splitting. A solution processed soak-and-coat method of electroless plating was used to render a piece of paper conducting by conformably depositing metallic nickel nanoparticles, while still retaining the open macroporous framework. Proof-of-concept paper-electrodes are realized by modifying nickel-paper current collector with model electrocatalysts nickel-iron oxyhydroxide and nickel-molybdenum bimetallic alloy through electrodeposition route. The paper-electrodes demonstrate exceptional activities towards oxygen evolution reaction and hydrogen evolution reaction, requiring overpotentials of 240 and 32 mV at 50 and -10 mA cm -2 , respectively, even as they endure extreme mechanical stress. The generality of this approach is demonstrated by fabricating similar electrodes on cotton fabric, which also show high activity. Finally, a two-electrode paper-electrolyzer is constructed which can split water with an efficiency of 98.01%, and exhibits robust stability for more than 200 h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banasek, J. T., E-mail: jtb254@cornell.edu; Engelbrecht, J. T.; Pikuz, S. A.
2016-11-15
We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with amore » return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.« less
NASA Astrophysics Data System (ADS)
Li, Haoyi; Chen, Shuangming; Jia, Xiaofan; Xu, Biao; Lin, Haifeng; Yang, Haozhou; Song, Li; Wang, Xun
2017-05-01
Highly active and robust eletcrocatalysts based on earth-abundant elements are desirable to generate hydrogen and oxygen as fuels from water sustainably to replace noble metal materials. Here we report an approach to synthesize porous hybrid nanostructures combining amorphous nickel-cobalt complexes with 1T phase molybdenum disulfide (MoS2) via hydrazine-induced phase transformation for water splitting. The hybrid nanostructures exhibit overpotentials of 70 mV for hydrogen evolution and 235 mV for oxygen evolution at 10 mA cm-2 with long-term stability, which have superior kinetics for hydrogen- and oxygen-evolution with Tafel slope values of 38.1 and 45.7 mV dec-1. Moreover, we achieve 10 mA cm-2 at a low voltage of 1.44 V for 48 h in basic media for overall water splitting. We propose that such performance is likely due to the complete transformation of MoS2 to metallic 1T phase, high porosity and stabilization effect of nickel-cobalt complexes on 1T phase MoS2.
Possible origin of the Bighorn uplift, WY, by lithospheric buckling during the Laramide orogeny
NASA Astrophysics Data System (ADS)
Tikoff, B.; Siddoway, C. S.; Worthington, L. L.; Anderson, M. L.
2017-12-01
The EarthScope Bighorn Project investigated the Bighorn uplift, Wyoming, a foreland structure developed during the 75-55 Ma Laramide orogeny. Any model for the Bighorn uplift must account for several geological and geophysical results from the EarthScope broadband and passive-active seismic study, the broader context provided by USArray, and legacy datasets: 1) The Moho is bulged up below portions of the surface exposure of the basement arch; 2) a high-velocity, high-density material (the "7.x layer") is absent in the lower crust beneath the arch culmination; 3) Shear wave splitting analysis shows distinct mantle fabrics on either side of the uplift; 4) Crustal thicknesses varied widely prior to the Laramide-age deformation; 5) A lack of reflectors associated with a regional decollement; 6) The Bighorn arch forms one in an array of low-amplitude, large-wavelength folds throughout the High Plains region. The uplift borders a NNW-trending (E-dipping?) geophysical anomaly inferred to be Proterozoic suture. A lithospheric buckling model offers a framework that accommodates most of the geological and geophysical data. Lithospheric buckling is the concept of low-amplitude, large-wavelength (150-350 km) lithospheric folding developed in response to an end-load, replicated in scaled physical models. A buckling instability focuses initial deformation, with faults developed in layered media/crustal section as shortening progresses. The strength/age of the mantle controls the fold wavelength, based on examples from multiple orogens (e.g. Urals, central Asia). Rarely does the geometry of the upward Moho deflection identically mirror the surface uplift in scaled models, nor does it in the Bighorn uplift, where fold localization is likely controlled by a pre-existing Proterozoic suture and/or mantle asperity. Indicated by shear wave SKS splitting data, distinct mantle fabrics on either side of the uplift extend into the lithospheric mantle, indicated the presence of a deep-rooted structure of a type that has not been incorporated in physical models.
Appreciating the World: A Framework for Doing Socio-Political Analysis
2012-06-08
intuitively understand the structure will result in some individuals poaching elephants for personal gain and know that selfish interest can drive...ivory poaching in Africa. The group is focused on improving a condition they view negatively, thus progressing to a better state of affairs. They...The soldier provides a unique opportunity to explore the impact of interests on individual decision making. The soldier’s split identity meant he had a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dergachev, A A; Kandidov, V P; Shlenov, S A
We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)
Extended axial imaging range, widefield swept source optical coherence tomography angiography.
Liu, Gangjun; Yang, Jianlong; Wang, Jie; Li, Yan; Zang, Pengxiao; Jia, Yali; Huang, David
2017-11-01
We developed a high-speed, swept source OCT system for widefield OCT angiography (OCTA) imaging. The system has an extended axial imaging range of 6.6 mm. An electrical lens is used for fast, automatic focusing. The recently developed split-spectrum amplitude and phase-gradient angiography allow high-resolution OCTA imaging with only two B-scan repetitions. An improved post-processing algorithm effectively removed trigger jitter artifacts and reduced noise in the flow signal. We demonstrated high contrast 3 mm×3 mm OCTA image with 400×400 pixels acquired in 3 seconds and high-definition 8 mm×6 mm and 12 mm×6 mm OCTA images with 850×400 pixels obtained in 4 seconds. A widefield 8 mm×11 mm OCTA image is produced by montaging two 8 mm×6 mm scans. An ultra-widefield (with a maximum of 22 mm along both vertical and horizontal directions) capillary-resolution OCTA image is obtained by montaging six 12 mm×6 mm scans. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kang, Yvonne Q.; François, Alexandre; Riesen, Nicolas; Monro, Tanya M.
2018-02-01
Whispering Gallery Mode (WGM) biosensors have been widely exploited over the past decade, owing to their unprecedented detection limits and label free capability. WGM based sensing mechanisms, such as resonance frequency shift, linewidth broadening, and splitting of the two counter-propagating WGMs, have been extensively researched and applied for bio-chemical sensing. However, the mode-splitting of the originally degenerate WGMs from different equatorial planes on a fluorescent microsphere has not been fully investigated. In this work, we break the symmetry of the surrounding environment outside the microsphere by partially embedding the sphere into a high-refractive-index medium (i.e. glue), to lift the degeneracy of the modes from different WGM planes. The split-modes from multiple planes of the fluorescent microsphere are indiscriminately collected. It is found that the effective quality factor Q of the WGMs increases non-conventionally as the Refractive Index (RI) of the probing liquid increases up to the point where it is equal to that of the glue. This presents a new methodology for quantifying changes in the probing environment based on the Q spoiling of the resonances as determined by the RI difference between the environment and that of the reference glue. Furthermore, we find that this sensing platform opens the door to simple self-referenced sensing techniques based on the analysis of the spectral positions of subsets of the split modes.
Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions
NASA Astrophysics Data System (ADS)
Guo, Ya-Fei; Chen, Peng-Hui; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing
2017-10-01
Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The impacts of the isoscalar and isovector parts of the momentum dependent interaction on the emissions of isospin particles are explored, i.e., the mass splittings of and (). The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of 112Sn+112Sn and 124Sn+124Sn at incident energies of 50 and 120 MeV/nucleon, respectively. It is found that both the effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). The isospin splitting of nucleon effective mass slightly impacts the double ratio spectra at the energy of 50 MeV/nucleon. A soft symmetry energy with stiffness coefficient of γ s=0.5 is constrained from the experimental data with the Fermi-energy heavy-ion collisions. Supported by Major State Basic Research Development Program in China (2014CB845405, 2015CB856903), National Natural Science Foundation of China (11722546, 11675226, 11675066, U1332207) and Youth Innovation Promotion Association of Chinese Academy of Sciences
Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas.
Łukasik, Piotr; Nazario, Katherine; Van Leuven, James T; Campbell, Matthew A; Meyer, Mariah; Michalik, Anna; Pessacq, Pablo; Simon, Chris; Veloso, Claudio; McCutcheon, John P
2018-01-09
Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades To better understand the frequency, timing, and outcomes of Hodgkinia lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral Hodgkinia lineage has split at least six independent times in Tettigades over the last 4 million years, resulting in complexes of between two and six distinct Hodgkinia lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each Hodgkinia lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, Hodgkinia complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.
NASA Astrophysics Data System (ADS)
Gupta, S. L.; Pancholi, S. C.; Juneja, P.; Mehta, D.; Kumar, Ashok; Bhowmik, R. K.; Muralithar, S.; Rodrigues, G.; Singh, R. P.
1997-09-01
An experimental investigation of the odd-odd 162Lu nucleus, following the 148Sm(19F,5n) reaction at beam energy Elab=112 MeV, has been performed through in-beam gamma-ray spectroscopy. It revealed three signature-split bands. The yrast band based on πh11/2⊗νi13/2 configuration exhibits anomalous signature splitting (the unfavored signature Routhian lying lower than the favored one) whose magnitude Δe'~25 keV, is considerably reduced in contrast to sizable normal signature splitting Δe'~125 and 60 keV observed in the yrast πh11/2 bands of the neighboring odd-A 161,163Lu nuclei, respectively. The signature inversion in this band occurs at spin ~20ħ (frequency=0.37 MeV). The second signature-split band, observed above the band crossing associated with the alignment of a pair of i13/2 quasineutrons, is a band based on the four-quasiparticle [πh11/2[523]7/2-⊗νh9/2[521]3/2-⊗(νi13/2)2], i.e., EABAp(Bp), configuration. The third signature-split band is also likely to be a four-quasiparticle band with configuration similar to the second band but involving F quasineutron, i.e., FABAp(Bp). The experimental results are discussed in comparison with the existing data in the neighboring nuclei and in the framework of the cranking shell model.
A wide angle low coherence interferometry based eye length optometer
NASA Astrophysics Data System (ADS)
Meadway, Alexander; Siegwart, John; Wildsoet, Christine; Norton, Thomas; Zhang, Yuhua
2015-03-01
Interest in eye growth regulation has burgeoned with the rise in myopia prevalence world-wide. Eye length and eye shape are fundamental metrics for related research, but current in vivo measurement techniques are generally limited to the optical axis of the eye. We describe a high resolution, time domain low coherence interferometry based optometer for measuring the eye length of small animals over a wide field of view. The system is based upon a Michelson interferometer using a superluminescent diode as a source, including a sample arm and a reference arm. The sample arm is split into two paths by a polarisation beam splitter; one focuses the light on the cornea and the other focuses the light on the retina. This method has a high efficiency of detection for reflections from both surfaces. The reference arm contains a custom high speed linear motor with 25 mm stroke and equipped with a precision displacement encoder. Light reflected from the cornea and the retina is combined with the reference beam to generate low coherence interferograms. Two galvo scanners are employed to steer the light to different angles so that the eye length over a field of view of 20° × 20° can be measured. The system has an axial resolution of 6.8 μm (in air) and the motor provides accurate movement, allowing for precise and repeatable measurement of coherence peak positions. Example scans from a tree shrew are presented.
Bubbles with shock waves and ultrasound: a review.
Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong
2015-10-06
The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.
Bubbles with shock waves and ultrasound: a review
Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong
2015-01-01
The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed ‘acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics–bubble interactions, with a focus on shock wave–bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the ‘resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave–bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead. PMID:26442143
Uranus, H P; Zhuang, L; Roeloffzen, C G H; Hoekstra, H J W M
2007-09-01
We report experimental observations of the negative-group-velocity (v(g)) phenomenon in an integrated-optical two-port ring-resonator circuit. We demonstrate that when the v(g) is negative, the (main) peak of output pulse appears earlier than the peak of a reference pulse, while for a positive v(g), the situation is the other way around. We observed that a pulse splitting phenomenon occurs in the neighborhood of the critical-coupling point. This pulse splitting limits the maximum achievable delay and advancement of a single device as well as facilitating a smooth transition from highly advanced to highly delayed pulse, and vice versa, across the critical-coupling point.