Science.gov

Sample records for split-course radiation therapy

  1. High-Dose Split-Course Radiation Therapy for Anal Cancer: Outcome Analysis Regarding the Boost Strategy (CORS-03 Study)

    SciTech Connect

    Hannoun-Levi, Jean-Michel; Ortholan, Cecile; Resbeut, Michel; Teissier, Eric; Ronchin, Philippe; Cowen, Didier; Zaccariotto, Audrey; Benezery, Karen; Francois, Eric; Salem, Naji; Ellis, Steve; Azria, David; Gerard, Jean-Pierre

    2011-07-01

    Purpose: To retrospectively assess the clinical outcome in anal cancer patients treated with split-course radiation therapy and boosted through external-beam radiation therapy (EBRT) or brachytherapy (BCT). Methods and Materials: From January 2000 to December 2004, a selected group (162 patients) with invasive nonmetastatic anal squamous cell carcinoma was studied. Tumor staging reported was T1 = 31 patients (19%), T2 = 77 patients (48%), T3 = 42 patients (26%), and T4= 12 patients (7%). Lymph node status was N0-1 (86%) and N2-3 (14%). Patients underwent a first course of EBRT: mean dose 45.1 Gy (range, 39.5-50) followed by a boost: mean dose 17.9 Gy (range, 8-25) using EBRT (76 patients, 47%) or BCT (86 patients, 53%). All characteristics of patients and tumors were well balanced between the BCT and EBRT groups. Results: The mean overall treatment time (OTT) was 82 days (range, 45-143) and 67 days (range, 37-128) for the EBRT and BCT groups, respectively (p < 0.001). The median follow-up was 62 months (range, 2-108). The 5-year cumulative rate of local recurrence (CRLR) was 21%. In the univariate analysis, the prognostic factors for CRLR were as follows: T stage (T1-2 = 15% vs. T3-4 = 36%, p = 0.03), boost technique (BCT = 12% vs. EBRT = 33%, p = 0.002) and OTT (OTT <80 days = 14%, OTT {>=}80 days = 34%, p = 0.005). In the multivariate analysis, BCT boost was the unique prognostic factor (hazard ratio = 0.62 (0.41-0.92). In the subgroup of patients with OTT <80 days, the 5-year CRLR was significantly increased with the BCT boost (BC = 9% vs. EBRT = 28%, p = 0.03). In the case of OTT {>=}80 days, the 5-year CRLR was not affected by the boost technique (BCT = 29% vs. EBRT = 38%, p = 0.21). Conclusion: In anal cancer, when OTT is <80 days, BCT boost is superior to EBRT boost for CRLR. These results suggest investigating the benefit of BCT boost in prospective trials.

  2. Radiation Therapy

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Radiation Therapy KidsHealth > For Teens > Radiation Therapy Print A ... how to cope with side effects. What Is Radiation Therapy? Cancer is a disease that causes cells ...

  3. Radiation Therapy

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Radiation Therapy KidsHealth > For Teens > Radiation Therapy A A ... how to cope with side effects. What Is Radiation Therapy? Cancer is a disease that causes cells ...

  4. Radiation Therapy

    MedlinePlus

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  5. Radiation therapy

    MedlinePlus

    ... Intensity-modulated radiotherapy (IMRT) Image-guided radiotherapy (IGRT) Proton therapy is another kind of radiation used to ... than using x-rays to destroy cancer cells, proton therapy uses a beam of special particles called ...

  6. Radiation Therapy (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Radiation Therapy KidsHealth > For Parents > Radiation Therapy Print A ... have many questions and concerns about it. About Radiation Therapy In radiation therapy, high-energy radiation from ...

  7. Radiation Therapy: Professions in Radiation Therapy

    MedlinePlus

    ... Resources Professions Site Index A-Z Professions in Radiation Therapy Radiation Oncologist Therapeutic Medical Physicist Radiation Therapist Dosimetrist Radiation Oncology Nurse Social Worker Dietitian Radiation Oncologist Radiation oncologists are physicians who oversee the ...

  8. Radiation Therapy

    MedlinePlus

    ... Proton Therapy Alternative & Integrative Medicine Clinical Trials GBM AGILE TTFields – Optune™ Brain Tumor Treatment Locations Treatment Side ... Proton Therapy Alternative & Integrative Medicine Clinical Trials GBM AGILE TTFields – Optune™ Brain Tumor Treatment Locations Treatment Side ...

  9. Clinical applications of continuous infusion chemotherapy ahd concomitant radiation therapy

    SciTech Connect

    Rosenthal, C.J.; Rotman, M.

    1986-01-01

    This book presents information on the following topics: theoretical basis and clinical applications of 5-FU as a radiosensitizer; treatment of hepatic metastases from gastro intestingal primaries with split course radiation therapy; combined modality therapy with 5-FU, Mitomycin-C and radiation therapy for sqamous cell cancers; treatment of bladder carcinoma with concomitant infusion chemotherapy and irradiation; a treatment of invasiv bladder cancer by the XRT/5FU protocol; concomitant radiation therapy and doxorubicin by continuous infusion in advanced malignancies; cis platin by continuous infusion with concurrent radiation therapy in malignant tumors; combination of radiation with concomitant continuous adriamycin infusion in a patient with partially excised pleomorphic soft tissue sarcoma of the lower extremeity; treatment of recurrent carcinoma of the paranasal sinuses using concomitant infusion cis-platinum and radiation therapy; hepatic artery infusion for hepatic metastases in combination with hepatic resection and hepatic radiation; study of simultaneous radiation therapy, continuous infusion, 5FU and bolus mitomycin-C; cancer of the esophagus; continuous infusion VP-16, bolus cis-platinum and simultaneous radiation therapy as salvage therapy in small cell bronchogenic carcinoma; and concomitant radiation, mitomycin-C and 5-FU infusion in gastro intestinal cancer.

  10. Radiation Therapy for Cancer

    Cancer.gov

    Radiation therapy is a type of cancer treatment that uses high doses of radiation to kill cancer cells and shrink tumors. Learn about the types of radiation, why side effects happen, which ones you might have, and more.

  11. TH-E-BRF-01: Exploiting Tumor Shrinkage in Split-Course Radiotherapy

    SciTech Connect

    Unkelbach, J; Craft, D; Hong, T; Papp, D; Wolfgang, J; Bortfeld, T; Ramakrishnan, J; Salari, E

    2014-06-15

    Purpose: In split-course radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated by radiobiological considerations. However, using modern image-guidance, it also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. In this work, we consider the optimal design of split-course treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. Methods: We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of splitcourse radiotherapy is formulated as a mathematical optimization problem in which the total dose to the liver is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. Results: We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one third of the dose should be delivered in the first stage. The projected benefit of split-course treatments in terms of liver sparing depends on model assumptions. However, the model predicts large liver dose reductions by more than a factor of two for plausible model parameters. Conclusion: The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at split-course radiotherapy for selected disease sites where substantial tumor regression translates into reduced

  12. Re-evaluation of split-course technique for squamous cell carcinoma of the head and neck

    SciTech Connect

    Parsons, J.T.; Bova, F.J.; Million, R.R.

    1980-12-01

    Therapeutic results of split-course vs. continuous-course external beam irradiation were analyzed retrospectively in 468 consecutive patients with squamous cell carcinoma of the oral cavity, oropharynx, nasopharynx, hypopharynx, and supraglottic larynx who were treated with curative intent at the University of Florida between September 1964 and August 1976. 214 patients received split-course treatment and 254 were treated by the continuous-course method. Except for the planned 14 to 16 day interruption after 2820 to 3000 rad in the split-course group, the techniques and total doses of irradiation did not differ. For each stage of disease, patients who received continuous-course irradiation had approximately 10% higher 5-year survival rates than patients who were treated by the split-course technique. The rate of development of late radiation complications was similar for the 2 treatment techniques. Routine use of the split-course technique has been discontinued since the dose required to compensate for the rest interval is unknown.

  13. Radiation Therapy for Cancer

    MedlinePlus

    ... treatment. The radiation may be delivered by a machine outside the body ( external-beam radiation therapy ), or ... by a computer linked to an x-ray machine. CT scans are often used in treatment planning ...

  14. Radiation therapy -- skin care

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000735.htm Radiation therapy - skin care To use the sharing features ... this page, please enable JavaScript. When you have radiation treatment for cancer, you may have some changes ...

  15. Prostate Cancer (Radiation Therapy)

    MedlinePlus

    ... can include incontinence (inability to control urination) and impotence (inability to achieve erection). More recently, several centers ... Radiation therapy (either external radiation or brachytherapy) causes impotence in some men. The rate of impotence is ...

  16. Prostate Cancer (Radiation Therapy)

    MedlinePlus

    ... to three years. If I choose surgery, will radiation treatment still be required? If your surgery is ... option with your physician team. If I choose radiation therapy, will surgical treatment still be an option? ...

  17. Radiation Therapy: Additional Treatment Options

    MedlinePlus

    ... Upper GI What is Radiation Therapy? Find a Radiation Oncologist Last Name: Facility: City: State: Zip Code: ... infections. This is refered to as immunotherapy . Intraoperative Radiation Therapy Radiation therapy given during surgery is called ...

  18. Radiation therapy in horses.

    PubMed

    Fidel, Janean L

    2010-04-01

    Although the diagnosis of cancer is relatively uncommon in horses, tumors do occur in this species. Surgery, radiation, and chemotherapy are traditional cancer treatments in all species. In equine patients, surgery has often been the only treatment offered; however, not all tumors can be controlled with surgery alone. In small animal oncology, newer and better therapies are in demand and available. Radiation therapy is often used to control or palliate tumors locally, especially to satisfy clients who demand sophisticated treatments. The large size of equine patients can make radiation therapy difficult, but it is a valuable tool for treating cancer and should not be overlooked when treating horses.

  19. Microenvironment and Radiation Therapy

    PubMed Central

    Yoshimura, Michio; Itasaka, Satoshi; Harada, Hiroshi; Hiraoka, Masahiro

    2013-01-01

    Dependency on tumor oxygenation is one of the major features of radiation therapy and this has led many radiation biologists and oncologists to focus on tumor hypoxia. The first approach to overcome tumor hypoxia was to improve tumor oxygenation by increasing oxygen delivery and a subsequent approach was the use of radiosensitizers in combination with radiation therapy. Clinical use of some of these approaches was promising, but they are not widely used due to several limitations. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that is activated by hypoxia and induces the expression of various genes related to the adaptation of cellular metabolism to hypoxia, invasion and metastasis of cancer cells and angiogenesis, and so forth. HIF-1 is a potent target to enhance the therapeutic effects of radiation therapy. Another approach is antiangiogenic therapy. The combination with radiation therapy is promising, but several factors including surrogate markers, timing and duration, and so forth have to be optimized before introducing it into clinics. In this review, we examined how the tumor microenvironment influences the effects of radiation and how we can enhance the antitumor effects of radiation therapy by modifying the tumor microenvironment. PMID:23509762

  20. Radiation Therapy (For Parents)

    MedlinePlus

    ... temporary, it can be permanent. Sore Mouth and Tooth Decay The tissues of the mouth may be sore ... and there may be an increased risk of tooth decay if a child received radiation therapy to the ...

  1. Radiation therapy for intrahepatic malignancies.

    PubMed

    Quick, Allison M; Lo, Simon S; Mayr, Nina A; Kim, Edward Y

    2009-10-01

    Historically, radiation was not used in the management of hepatocellular carcinoma and liver metastasis because of the low tolerance of the liver to radiation. More recently, improvements in radiation delivery using advanced techniques, such as 3D conformal radiation therapy, intensity-modulated radiation therapy, image-guided radiation therapy, stereotactic body radiation therapy, proton-beam therapy and internal radiation therapy, have enabled partial and selective irradiation of the liver with promising response rates and toxicity profiles. This review will discuss the different techniques of radiation that can now be used to treat intrahepatic malignancies and the important clinical studies in the medical literature.

  2. Radiation therapy: appropriateness review

    SciTech Connect

    Not Available

    1981-03-01

    Review of the appropriateness of radiation therapy services for the Finger Lakes Region was based on the standards adopted by the Finger Lakes Health Systems Agency (FLHSA) Executive Committee. The standards were developed to address considerations of availability, accessibility, acceptability, continuity, need, financial viability, cost effectiveness, and quality. The FLHSA found that megavoltage radiation therapy services currently being provided are appropriate for residents of the Finger Lakes Region. The overall pattern of performance was satisfactory. The following were among the findings: (1) radiation therapy services are accessible to patients in terms of travel time, hours of operation, and referral source; (2) all regional equipment meets minimum standards for source axis distance and rotational capability; (3) the nine megavoltage radiation therapy units meet the needs of both the regional population and the substantial number of persons from adjacent areas who travel to the Region for radiation therapy services; (4) minimum utilization standards for cases and treatments are met or nearly met by all institutional providers; (5) the two private providers of radiation therapy services are underutilized; and (6) each institutional provider's cost per treatment falls within the accepted range.

  3. Radiation Therapy for Lung Cancer

    MedlinePlus

    ... of the lung cancer and your overall health. Radiation Therapy Radiation is a high-energy X-ray that can ... surgery, chemotherapy or both depending upon the circumstances. Radiation therapy works within cancer cells by damaging their ...

  4. Complications of radiation therapy

    SciTech Connect

    Dalinka, M.K.; Mazzeo, V.P. Jr.

    1985-01-01

    The skeletal effects of radiation are dependent upon many variables, but the pathologic features are consistent. Radiation may cause immediate or delayed cell death, cellular injury with recovery, arrest of cellular division, or abnormal repair with neoplasia. Radiation necrosis and radiation-induced neoplasm still occur despite the use of supervoltage therapy. Complications of radiotherapy are well known and have led to more judicious use of this therapeutic modality. With few exceptions, benign bone tumors are no longer treated with irradiation. Radiation necrosis may be difficult to differentiate from sarcoma arising in irradiated bone. They both occur within the field of irradiation. Radiation necrosis often has a long latent period which is, of course, the rule in radiation-induced neoplasia. A soft tissue mass favors the diagnosis of neoplasia, while its absence suggests radiation necrosis. Lack of pain favors necrosis. Calcification may occur in radiation necrosis and does not indicate neoplasia. A lack of progression on serial roentgenograms also favors radiation necrosis. 76 references.

  5. Whole breast radiation therapy

    MedlinePlus

    ... the cancer cells from growing and dividing, and leads to cell death. ... healthy cells. The death of healthy cells can lead to side effects. These side effects depend on the dose of radiation and how often you have the therapy. Side ...

  6. Radiation Therapy: Professions in Radiation Therapy

    MedlinePlus

    ... and typically one to two years of clinical physics training. They are certified by the American Board of Radiology or the American Board of Medical Physics . Radiation Therapist Radiation therapists work with radiation oncologists. ...

  7. Microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  8. Summary of major radiation fractionation and chemotherapy trials for organ preservation therapy in locally advanced head and neck squamous cell carcinoma.

    PubMed

    Parsons, James T; Greene, Bruce D

    2015-01-01

    To review radiation fractionation and chemotherapy trials for patients undergoing organ preservation therapy for locally advanced head and neck squamous cell carcinoma. Radiation therapy fractionation and chemotherapy trial results as well as historical evidence are systematically reviewed. Trial results, which involve nearly 30,000 patients, have been interpreted, compared, and presented in a structured manner to demonstrate the changing approaches in treatment over the years from the 1960s to the present. The review includes data from the split-course radiation therapy era, meta-analyses of chemotherapy and radiation therapy fractionation trials, cetuximab trials, "triple-drug trials," and modern trials of induction chemotherapy followed by concomitant chemotherapy and radiation therapy. This summary will be useful to clinicians making treatment decisions today and to investigators designing trials in the future. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  9. Partial breast radiation therapy - external beam

    MedlinePlus

    Carcinoma of the breast - partial radiation therapy; Partial external beam radiation - breast; Intensity-modulated radiation therapy - breast cancer; IMRT - breast cancer WBRT; Adjuvant partial breast - IMRT; APBI - ...

  10. Radiation Therapy: Preventing and Managing Side Effects

    MedlinePlus

    ... Radiation Therapy (Brachytherapy) Systemic Radiation Therapy Coping With Radiation Treatment Written by References The American Cancer Society medical and editorial content team Our team is made ...

  11. Radiation Therapy for Skin Cancer

    MedlinePlus

    ... make sure they are safe to use during radiation therapy. • Eat a balanced diet. If food tastes ... your fluid intake. • Treat the skin exposed to radiation with special care. Stay out of the sun, ...

  12. Radiation therapy technolgoy manpower survey.

    PubMed

    Marschke, C H

    1976-01-01

    A survey of 270 radiation therapy facilities in the United States in 1975 was made by the University of Vermont to identify needs in terms of curriculum, new or expanded programs and radiation therapy technology manpower. From the 64 per cent return there is evidence to support the current "Essentials," and to increase educational opportunities for potential radiation therapy technologists to satisfy the demand for more certified technologists as expressed by those who responded.

  13. Radiation Therapy for Testicular Cancer

    MedlinePlus

    ... Treating Testicular Cancer Surgery for Testicular Cancer Radiation Therapy for Testicular Cancer Chemotherapy for Testicular Cancer High-Dose Chemotherapy and ... Cancer Information Cancer Prevention & Detection Cancer Basics ...

  14. Smart Radiation Therapy Biomaterials.

    PubMed

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Radiation Therapy for Skin Cancer

    MedlinePlus

    ... than in African-Americans. TYPES OF SKIN CANCER Basal cell carcinoma: This is the most common form of skin ... epidermis ). Radiation therapy is very effective for treating basal cell cancers that have not spread elsewhere. Other common treatments ...

  16. Radiation therapy in the horse.

    PubMed

    Théon, A P

    1998-12-01

    This article covers the principles and applications of radiation therapy in horses. The goal in treating tumors by irradiation is tumor control with minimum treatment complications. Various treatment techniques are available to achieve this goal. The prognosis depends on many factors such as the extent and location of the tumor, tumor type and tumor cell proliferation. Radiation therapy is a very effective treatment modality for equine tumors but logistical reasons limit its impact in equine oncology.

  17. Radiation therapy for retroperitoneal sarcoma.

    PubMed

    Tuan, Jeffrey; Vitolo, Viviana; Vischioni, Barbara; Iannalfi, Alberto; Fiore, Maria Rosaria; Fossati, Piero; Orecchia, Roberto

    2014-10-01

    Retroperitoneal sarcomas (RPS) are rare tumours with an annual reported incidence of 2.7 per million persons. In spite of improvements in both diagnostic imaging and therapeutic strategies, patients afflicted by RPS still have poor prognoses. There are currently many different therapeutic strategies for these rare tumours and combining several different multi-modality strategies have not proved to have superior long-term clinical results. This review analyses the available published data and discusses multi-modality management of this rare entity. In particular, the role of radiation therapy, treatment-related side effects and the use of modern radiation treatment techniques will be discussed. A comprehensive literature search was conducted using PubMed in January 2011. Relevant international articles published from January 1980 to January 2011 were assessed. The keywords for search purposes were: retroperitoneum, sarcoma, radiotherapy, and radiation therapy. The search was limited to articles published in English. All articles were read in full by the authors and selected for inclusion based on relevance to this article. The addition of radiation therapy (RT) to wide surgical excision for RPS has improved local control rates when compared with surgery alone. Preoperative RT is preferred over postoperative RT. New types and delivery techniques in radiation therapy could further improve patient outcomes. Emerging therapies that employ charged particles (such as protons and carbon ions) are expected to be superior in sparing of normal tissues and efficacy over conventional photon therapy radiation, due to their physical and radiobiological properties.

  18. [Radiation therapy and cardiac pacemakers].

    PubMed

    Serafim, P; Fonseca, G; Oliveira, A; Fernandes, T

    1999-05-01

    The number of patients with cardiac pacemakers submitted annually to radiation therapy is increasing. Radiation therapy causes interference in the normal functioning processes, directly by chemical changes in the structure of the device and also by electromagnetic disturbances generated in the process of treatment. The changes in the technology used in the manufacture of cardiac pacemakers after the 70's, with the introduction of complementary metal-oxide semi-conductors (CMOS) in the circuits, drastically increased the chance of dangerous interference in the normal function of cardiac pacemakers occurring when in contact with an ionizing radiation source. The authors briefly describe the mechanisms underlying the radio-induced damage usually observed. A review of the literature on this issue is made and solutions are pointed out to perform safe radiation therapy and minimize the risk of device malfunction.

  19. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  20. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, Daniel N.; Dilmanian, F. Avraham; Spanne, Per O.

    1994-01-01

    A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

  1. Understanding Radiation Therapy: A Guide for Patients and Families

    MedlinePlus

    ... En Español Treatments and Side Effects Treatment Types Radiation Therapy Radiation therapy is one of the most ... it works and what to expect. Learn About Radiation Therapy Radiation Therapy Basics External Beam Radiation Therapy ...

  2. Intensity-modulated radiation therapy.

    PubMed

    Goffman, Thomas E; Glatstein, Eli

    2002-07-01

    Intensity-modulated radiation therapy (IMRT) is an increasingly popular technical means of tightly focusing the radiation dose around a cancer. As with stereotactic radiotherapy, IMRT uses multiple fields and angles to converge on the target. The potential for total dose escalation and for escalation of daily fraction size to the gross cancer is exciting. The excitement, however, has greatly overshadowed a range of radiobiological and clinical concerns.

  3. [Stereotactic radiation therapy].

    PubMed

    Aristu, J J; Ciérvide, R; Guridi, J; Moreno, M; Arbea, L; Azcona, J D; Ramos, L I; Zubieta, J L

    2009-01-01

    Stereotactic radiotherapy is a form of external radiotherapy that employs a system of three dimensional coordinates independent of the patient for the precise localisation of the lesion. It also has the characteristic that the radiation beams are conformed and precise, and converge on the lesion, making it possible to administer very high doses of radiotherapy without increasing the radiation to healthy adjacent organs or structures. When the procedure is carried out in one treatment session it is termed radiosurgery, and when administered over several sessions it is termed stereotactic radiotherapy. Special systems of fixing or immobilising the patient (guides or stereotactic frames) are required together with radiotherapy devices capable of generating conformed beams (lineal accelerator, gammaknife, cyberknife, tomotherapy, cyclotrons). Modern stereotactic radiotherapy employs intra-tumoural radio-opaque frames or CAT image systems included in the irradiation device, which make possible a precise localisation of mobile lesions in each treatment session. Besides, technological advances make it possible to coordinate the lesion's movements in breathing with the radiotherapy unit (gating and tracking) for maximum tightening of margins and excluding a greater volume of healthy tissue. Radiosurgery is mainly indicated in benign or malign cerebral lesions less than 3-4 centimetres (arteriovenous malformations, neurinomas, meningiomas, cerebral metastases) and stereotactic radiotherapy is basically administered in tumours of extracraneal localisation that require high conforming and precision, such as inoperable early lung cancer and hepatic metastasis.

  4. Sensitizing Osteosarcoma to Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Mamo, Tewodros Kebede

    Several strategies to enhance the effects of radiation therapy are being explored for various cancers, with multiple molecular pathways and physical approaches suggested to play a role. One approach to improve the effectiveness of radiation therapy in tumors is the use of radiosensitizing molecules. Among the key radiosensitizing molecules being explored in various cancers include pharmacologic inhibitors of DNA repair and gold nanoparticles that physically enhance the amount of radiation deposited inside cancer cells. The main goal of this thesis is to explore the role of DNA repair inhibition as a radiosensitizing strategy for osteosarcoma cells. Additionally, the thesis investigates the effects of particle size in the application of gold nanoparticles in osteosarcoma cells to help identify the key parameters relevant to choosing an effective gold nanoparticle-based radiosensitizer.

  5. Inoperable nonmetastatic squamous cell carcinoma of the esophagus managed by concomitant chemotherapy (5-fluorouracil and cisplatin) and radiation therapy

    SciTech Connect

    Seitz, J.F.; Giovannini, M.; Padaut-Cesana, J.; Fuentes, P.; Giudicelli, R.; Gauthier, A.P.; Carcassonne, Y. )

    1990-07-15

    Thirty-five patients with nonmetastatic squamous cell carcinoma of the esophagus were treated with chemotherapy (5-fluorouracil, cisplatin) and concomitant split-course radiation therapy. All of the patients presented with dysphagia. Treatment consisted of two courses of chemotherapy with 5-FU (1 g/m2/day in continuous infusion for 5 days (days 1 to 5 and days 29 to 33) ) and cisplatin (70 mg/m2 intravenous bolus at days 2 and 30). Radiation therapy was concomitant in two courses delivering 20 Gy in 5 days (days 1 to 5 and days 29 to 33). On the first day of treatment, endoscopic peroral dilation or Nd-YAG laser therapy was usually carried out. At the end of the treatment, all of the patients were capable of oral nutrition. Histoendoscopic confirmation was made 8 weeks after the beginning of the therapy. Twenty-five of the 35 patients had a complete response with negative biopsy findings. There was only one serious complication (fatal myelosuppression) in the only patient who received more than two courses of chemotherapy. Sixteen patients died and 19 were still alive at 3 to 42 months after the beginning of treatment. Overall median survival for the 35 patients is 17 months. Actuarial survival was 55 +/- 18% at 1 year and 41 +/- 21% at 2 years. The median survival of the Stage I and II patients is 28 months. These results confirm that concomitant chemoradiotherapy is capable of producing a very high histoendoscopic complete response rate and improved 1-year and 2-year survival. The use of concentrated split-course radiotherapy enabled the authors to reduce the total length of the treatment to two periods of 5 days, with results that are similar to previous studies using classic radiotherapy for a 5-week to 7-week period.

  6. Radiation therapy - what to ask your doctor

    MedlinePlus

    ... my fatigue? When should I call the doctor? Alternative Names What to ask your doctor about radiation therapy References National Cancer Institute. Radiation therapy and you: support for people ...

  7. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... Resources Professions Site Index A-Z Intensity-Modulated Radiation Therapy (IMRT) Intensity-modulated radiotherapy (IMRT) uses linear ... and after this procedure? What is Intensity-Modulated Radiation Therapy and how is it used? Intensity-modulated ...

  8. Radiation therapy of esophageal cancer

    SciTech Connect

    Hancock, S.L.; Glatstein, E.

    1984-06-01

    Radiation therapy has been used extensively in the management of patients with cancer of the esophagus. It has demonstrated an ability to cure a small minority of patients. Cure is likely to be limited to patients who have lesions less than 5 cm in length and have minimal, if any, involvement of lymph nodes. Esophagectomy is likely to cure a similar, small percentage of patients with the same presentation of minimal disease but has a substantial acute postoperative mortality rate and greater morbidity than irradiation. Combining surgery and either preoperative or postoperative irradiation may cure a small percentage of patients beyond the number cured with either modality alone. Radiation has demonstrated benefit as an adjuvant to surgery following the resection of minimal disease. However, radiation alone has never been compared directly with surgery for the highly select, minimal lesions managed by surgery. Radiation provides good palliation of dysphagia in the majority of patients, and roughly one third may have adequate swallowing for the duration of their illness when ''radical'' doses have been employed. Surgical bypass procedures have greater acute morbidity but appear to provide more reliable, prolonged palliation of dysphagia. Several approaches to improving the efficacy of irradiation are currently under investigation. These approahces include fractionation schedules, radiosensitizers, neutron-beam therapy, and helium-ion therapy.

  9. Enhancing radiation therapy for patients with glioblastoma.

    PubMed

    Alexander, Brian M; Ligon, Keith L; Wen, Patrick Y

    2013-05-01

    Radiation therapy has been the foundation of therapy following maximal surgical resection in patients with newly diagnosed glioblastoma for decades and the primary therapy for unresected tumors. Using the standard approach with radiation and temozolomide, however, outcomes are poor, and glioblastoma remains an incurable disease with the majority of recurrences and progression within the radiation treatment field. As such, there is much interest in elucidating the mechanisms of resistance to radiation therapy and in developing novel approaches to overcoming this treatment resistance.

  10. Radiation Therapy and Hearing Loss

    SciTech Connect

    Bhandare, Niranjan; Jackson, Andrew; Eisbruch, Avraham; Pan, Charlie C.; Flickinger, John C.; Antonelli, Patrick; Mendenhall, William M.

    2010-03-01

    A review of literature on the development of sensorineural hearing loss after high-dose radiation therapy for head-and-neck tumors and stereotactic radiosurgery or fractionated stereotactic radiotherapy for the treatment of vestibular schwannoma is presented. Because of the small volume of the cochlea a dose-volume analysis is not feasible. Instead, the current literature on the effect of the mean dose received by the cochlea and other treatment- and patient-related factors on outcome are evaluated. Based on the data, a specific threshold dose to cochlea for sensorineural hearing loss cannot be determined; therefore, dose-prescription limits are suggested. A standard for evaluating radiation therapy-associated ototoxicity as well as a detailed approach for scoring toxicity is presented.

  11. [Radiation therapy of pancreatic cancer].

    PubMed

    Huguet, F; Mornex, F; Orthuon, A

    2016-09-01

    Currently, the use of radiation therapy for patients with pancreatic cancer is subject to discussion. In adjuvant setting, the standard treatment is 6 months of chemotherapy with gemcitabine and capecitabine. Chemoradiation (CRT) may improve the survival of patients with incompletely resected tumors (R1). This should be confirmed by a prospective trial. Neoadjuvant CRT is a promising treatment especially for patients with borderline resectable tumors. For patients with locally advanced tumors, there is no a standard. An induction chemotherapy followed by CRT for non-progressive patients reduces the rate of local relapse. Whereas in the first trials of CRT large fields were used, the treated volumes have been reduced to improve tolerance. Tumor movements induced by breathing should be taken in account. Intensity modulated radiation therapy allows a reduction of doses to the organs at risk. Whereas widely used, this technique is not recommended.

  12. Pulp innervation after radiation therapy

    SciTech Connect

    Knowles, J.C.; Chalian, V.A.; Shidnia, H.

    1986-12-01

    Decreased sensitivity was observed in teeth within and adjacent to an irradiated field. Mandibular teeth outside the field and distal to the irradiated mandibular nerve trunk showed an immediate decrease in sensitivity, Maxillary teeth outside the field showed a delayed decrease in sensitivity. Blood flow rates and nutrition were also related to time. Neurons are though to be relatively radio-resistant and few changes were seen histologically after radiation therapy. However, functional impairment was observed in histologically normal tissue.

  13. [Urethral stricture after radiation therapy].

    PubMed

    Rosenbaum, C M; Engel, O; Fisch, M; Kluth, L A

    2017-03-01

    Radiation-induced urethral stricture occurs most often due to radiation for prostate cancer. It is one of the most common side effects of radiotherapy. Stricture rates are lowest in patients undergoing external beam radiation therapy, occur more frequently in those who require brachytherapy and show highest stricture rates in patients receiving a combination of external beam radiation and brachytherapy. Strictures are mostly located at the bulbomembranous part of the urethra. Diagnostic work-up should include basic urologic work-up, ultrasound, uroflowmetric assessment, urethroscopy, retrograde urethrogram and voiding cystourethrography. Endoscopic management such as dilatation and internal urethrotomy has been proposed in short strictures. However these therapies have a high risk for recurrence. The success rate of urethroplasty is higher. Success rates of primary end-to-end anastomosis (EPA) have been reported to be 70-95 %; rates of incontinence are 7-40 %. While success rates of buccal mucosa graft urethroplasty (BMGU) range from 71-78 %, postoperative incontinence occurs in 10.5-44 %. Usually, postoperative incontinence can successfully be treated with an artificial urinary sphincter. It seems like EPA is the treatment of choice for short urethral strictures, whereas BMGU is indicated in longer, more complex strictures. Patients should be counselled with regard to length and location of strictures as well as with regard to postoperative incontinence.

  14. Applications of Machine Learning for Radiation Therapy.

    PubMed

    Arimura, Hidetaka; Nakamoto, Takahiro

    Radiation therapy has been highly advanced as image guided radiation therapy (IGRT) by making advantage of image engineering technologies. Recently, novel frameworks based on image engineering technologies as well as machine learning technologies have been studied for sophisticating the radiation therapy. In this review paper, the author introduces several researches of applications of machine learning for radiation therapy. For examples, a method to determine the threshold values for standardized uptake value (SUV) for estimation of gross tumor volume (GTV) in positron emission tomography (PET) images, an approach to estimate the multileaf collimator (MLC) position errors between treatment plans and radiation delivery time, and prediction frameworks for esophageal stenosis and radiation pneumonitis risk after radiation therapy are described. Finally, the author introduces seven issues that one should consider when applying machine learning models to radiation therapy.

  15. Missed Radiation Therapy and Cancer Recurrence

    Cancer.gov

    Patients who miss radiation therapy sessions during cancer treatment have an increased risk of their disease returning, even if they eventually complete their course of radiation treatment, according to a new study.

  16. Bile Duct (Cholangiocarcinoma) Cancer: Radiation Therapy

    MedlinePlus

    ... side effects. Three-dimensional conformal radiation therapy (3D-CRT) uses special computers to precisely map the location ... body radiotherapy (SBRT) uses the techniques of 3D-CRT and IMRT, but gives the radiation over fewer ...

  17. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2014-09-01

    author on both abstracts; “Differences Between Beacon-Localized and Cone- Beam CT (CBCT)-Localized Radiation Therapy to the Prostatic Fossa” and “Inter...intent of this task is to create a facility specialized in all modalities of targeted radiation therapy such as cone beam CT, on board kilovoltage... beam CT (CBCT)-localized radiation therapy to the prostatic fossa. Purpose/Objectives: Either CBCT or electromagnetic beacon transponders can

  18. Nasal mucociliary clearance after radiation therapy.

    PubMed

    Stringer, S P; Stiles, W; Slattery, W H; Krumerman, J; Parsons, J T; Mendenhall, W M; Cassisi, N J

    1995-04-01

    Irradiation has been demonstrated to cause decreased mucociliary clearance in animal models. We sought to verify this effect clinically by using the saccharin transport test to evaluate nasal mucociliary clearance in 9 patients previously treated with radiation therapy to the nasal cavity. The patients also completed a questionnaire examining the prevalence of nasal symptoms before and after radiation therapy. Patients who received radiation therapy had no clearance of saccharin from the nasal cavity at a minimum of 20 minutes. The controls had a median clearance time of 5 minutes. The patients noted a higher prevalence of nasal congestion, drainage, and facial pain after radiation therapy. This study demonstrates that radiation therapy to the nasal cavity causes a decrease in nasal mucociliary clearance. This alteration should be considered when selecting therapy for malignancies in the nasal area.

  19. Radiation therapy for Graves' disease

    SciTech Connect

    Brennan, M.W.; Leone, C.R. Jr.; Janaki, L.

    1983-08-01

    We used radiation therapy (a total of 2,000 rads) to treat 14 patients (three men and 11 women, ranging in age from 27 to 72 years) with Graves' disease. Three of these patients had refused to take corticosteroids and the other 11 had failed to respond to them, had experienced side effects, or had other contraindications to their use. After follow-up periods ranging from six months to three years, soft-tissue inflammation was reduced in 13 of the 14 patients. All but two patients showed a decrease in proptosis of 1 to 3 mm. Myopathy showed the least improvement. Although we noted transient eyelid erythema, there were no permanent sequelae and none of the patients has had a recurrence of the inflammation.

  20. Melioidosis: reactivation during radiation therapy

    SciTech Connect

    Jegasothy, B.V.; Goslen, J.B.; Salvatore, M.A.

    1980-05-01

    Melioidosis is caused by Pseudomonas pseudomallei, a gram-negative, motile bacillus which is a naturally occurring soil saprophyte. The organism is endemic in Southeast Asia, the Philippines, Australia, and parts of Central and South America. Most human disease occurs from infection acquired in these countries. Infection with P pseudomallei may produce no apparent clinical disease. Acute pneumonitis or septicemia may result from inhalation of the organism, and inoculation into sites of trauma may cause localized skin abscesses, or the disease may remain latent and be reactivated months or years later by trauma, burns, or pneumococcal pneumonia, diabetic ketoacidosis, influenza, or bronchogenic carcinoma. The last is probably the commonest form of melioidosis seen in the United States. We present the first case of reactivation of melioidosis after radiation therapy for carcinoma of the lung, again emphasizing the need to consider melioidosis in a septic patient with a history of travel, especially to Southeast Asia.

  1. Advanced Semiconductor Dosimetry in Radiation Therapy

    SciTech Connect

    Rosenfeld, Anatoly B.

    2011-05-05

    Modern radiation therapy is very conformal, resulting in a complexity of delivery that leads to many small radiation fields with steep dose gradients, increasing error probability. Quality assurance in delivery of such radiation fields is paramount and requires real time and high spatial resolution dosimetry. Semiconductor radiation detectors due to their small size, ability to operate in passive and active modes and easy real time multichannel readout satisfy many aspects of in vivo and in a phantom quality assurance in modern radiation therapy. Update on the recent developments and improvements in semiconductor radiation detectors and their application for quality assurance in radiation therapy, based mostly on the developments at the Centre for Medical Radiation Physics (CMRP), University of Wollongong, is presented.

  2. Microsystems technology in radiation therapy.

    PubMed

    Maleki, T; Ziaie, B

    2010-01-01

    In this paper, we present several implantable micro-devices targeted towards improving the efficacy of radiation therapy. Three micro-devices are discussed: a self-biased solid state dosimeter to be used for wireless monitoring of the delivered dose, an electromagnetic tracking system to locate the position of tumor in real-time, and a Guyton-chamber-embedded capacitive pressure sensor for wireless measurement of interstitial pressure inside a tumor. Dosimeter and tracking systems are developed to be integrated together to achieve a track-able radiation sensor. Guyton chamber of the pressure sensor will eliminate the sensor drift due to the interaction of cells and fibrous tissue with sensor's membrane. The dosimeter has a sensitivity of up to 9 kΩ/Gy and a dynamic range of 10 Gy, when operating with a zero bias voltage. The tracking system is able to track a tumor that is 60 cm away with a resolution of 2 mm and a dynamic range of up to 5 cm. Finally, the capacitive pressure sensor has a sensitivity of 75 fF/kPa and a dynamic range of 60 mmHg.

  3. Radiation therapy for head and neck neoplasms

    SciTech Connect

    Wang, C.C.

    1990-01-01

    This book presents the clinical manifestations of disease, applied anatomy pertaining to the management of head and neck tumors, and results of conventional radiation therapy for uncommon tumors have been explored. It also contains an additional chapter on altered fractionation radiation therapy pertaining to irradiation of major head and neck tumors.

  4. Radiation therapy for malignant pleural mesothelioma.

    PubMed

    Rosenzweig, K E; Giraud, P

    2017-02-01

    The treatment of malignant pleural mesothelioma with radiation has always been a technical challenge. For many years, conventional radiation therapy was delivered after extrapleural pneumonectomy with acceptable results. Novel radiation treatment techniques, such as intensity modulated radiation therapy (IMRT) were introduced, but the early experience with IMRT demonstrated troubling toxicity. Recent reports from institutions have demonstrated that with greater experience, IMRT, both in the setting of extrapleural pneumonectomy or pleurectomy, can be delivered safely. A recent study, SAKK 17/04, questions the role of using radiation after extrapleural pneumonectomy.

  5. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2012-09-01

    Calypso system, 3) whether Beacon® Transponder is of benefit in pelvic radiation therapy following prostatectomy, 4) whether hypofractionated treatment...goals. This study is expected to enroll a combined total of 20 subjects from both centers. Task 4. A Hypofractionated IMRT Therapy in...metastatic lesions in the liver with hypofractionated radiation therapy. Based on review of the current patient population, it has been

  6. Radiation Sensitization in Cancer Therapy.

    ERIC Educational Resources Information Center

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  7. Radiation Sensitization in Cancer Therapy.

    ERIC Educational Resources Information Center

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  8. PET-based radiation therapy planning.

    PubMed

    Speirs, Christina K; Grigsby, Perry W; Huang, Jiayi; Thorstad, Wade L; Parikh, Parag J; Robinson, Clifford G; Bradley, Jeffrey D

    2015-01-01

    In this review, we review the literature on the use of PET in radiation treatment planning, with an emphasis on describing our institutional methodology (where applicable). This discussion is intended to provide other radiation oncologists with methodological details on the use of PET imaging for treatment planning in radiation oncology, or other oncologists with an introduction to the use of PET in planning radiation therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Future radiation therapy: photons, protons and particles.

    PubMed

    Allison, Ron R; Sibata, Claudio; Patel, Rajen

    2013-04-01

    Radiation therapy plays a critical role in the current management of cancer patients. The most common linear accelerator-based treatment device delivers photons of radiation. In an ever more precise fashion, state-of-the-art technology has recently allowed for both modulation of the radiation beam and imaging for this treatment delivery. This has resulted in better patient outcome with far fewer side effects than were achieved even a decade ago. Recently, a push has begun for proton therapy, which may have clinical advantage in select indications, although significant limitations for these devices have become apparent. In addition, currently, heavy particle therapy has been touted as a potential means to improve cancer patient outcomes. This article will highlight current benefits and drawbacks to modern radiation therapy and speculate on future tools that will likely dramatically improve radiation oncology.

  10. Radiation Therapy Physics, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Hendee, William R.; Ibbott, Geoffrey S.; Hendee, Eric G.

    2004-08-01

    The Third Edition of Radiation Therapy Physics addresses in concise fashion the fundamental diagnostic radiologic physics principles as well as their clinical implications. Along with coverage of the concepts and applications for the radiation treatment of cancer patients, the authors have included reviews of the most up-to-date instrumentation and critical historical links. The text includes coverage of imaging in therapy planning and surveillance, calibration protocols, and precision radiation therapy, as well as discussion of relevant regulation and compliance activities. It contains an updated and expanded section on computer applications in radiation therapy and electron beam therapy, and features enhanced user-friendliness and visual appeal with a new, easy-to-follow format, including sidebars and a larger trim size. With its user-friendly presentation and broad, comprehensive coverage of radiotherapy physics, this Third Edition doubles as a medical text and handy professional reference.

  11. Radiation therapy for renal transplant rejection reactions

    SciTech Connect

    Peeples, W.J.; Wombolt, D.G.; El-Mahdi, A.M.; Turalba, C.I.

    1982-01-01

    Forty-four renal transplant patients were given radiation therapy for severe rejection phenomena. The 29 patients who had only one course of irradiation had a 52.3% successful function rate. Fifteen patients received from two to four courses of irradiation with an ultimate 60% rate of sustained function. Fifty patients who received only steroid and other medical management but no irradiation had a 60% rate of successful renal function. In the irradiation group, no patient whose creatinine level did not respond to radiation therapy maintained a functioning kidney. The data indicate that the overall successful function rate is maintained by radiation therapy in patients who show severe allograft rejection phenomena.

  12. Radiation Therapy for Locally Advanced Esophageal Cancer.

    PubMed

    Chun, Stephen G; Skinner, Heath D; Minsky, Bruce D

    2017-04-01

    The treatment of locally advanced esophageal cancer is controversial. For patients who are candidates for surgical resection, multiple prospective clinical trials have demonstrated the advantages of neoadjuvant chemoradiation. For patients who are medically inoperable, definitive chemoradiation is an alternative approach with survival rates comparable to trimodality therapy. Although trials of dose escalation are ongoing, the standard radiation dose remains 50.4 Gy. Modern radiotherapy techniques such as image-guided radiation therapy with motion management and intensity-modulated radiation therapy are strongly encouraged with a planning objective to maximize conformity to the intended target volume while reducing dose delivered to uninvolved normal tissues.

  13. [Therapy of radiation enteritis--current challenges].

    PubMed

    Baranyai, Zsolt; Sinkó, Dániel; Jósa, Valéria; Zaránd, Attila; Teknos, Dániel

    2011-07-10

    Radiation enteritis is one of the most feared complications after abdominal and pelvic radiation therapy. The incidence varies from 0.5 to 5%. It is not rare that the slowly progressing condition will be fatal. During a period of 13 years 24 patients were operated due to the complication of radiation enteritis. Despite different types of surgery repeated operation was required in 25% of cases and finally 4 patients died. Analyzing these cases predisposing factors and different therapeutic options of this condition are discussed. Treatment options of radiation induced enteritis are limited; however, targeted therapy significantly improves the outcome. Cooperation between oncologist, gastroenterologist and surgeon is required to establish adequate therapeutic plan.

  14. Migratory eosinophilic alveolitis caused by radiation therapy

    PubMed Central

    Lim, Jun Hyeok; Kim, Hun Jung; Choi, Chang-Hwan; Park, In-Suh; Cho, Jae Hwa; Ryu, Jeong-Seon; Kwak, Seung Min; Lee, Hong Lyeol

    2015-01-01

    Although radiation pneumonitis is usually confined to irradiated areas, some studies have reported that radiation-induced lymphocytic alveolitis can also spread to the non-irradiated lung. However, there have been few reports of radiation-induced eosinophilic alveolitis. We report the case of a 27-year-old female with radiation pneumonitis, occurring 4 months after radiation therapy for cancer of the left breast. Clinical and radiological relapse followed withdrawal of corticosteroids. Examination of bronchoalveolar lavage (BAL) in patchy airspace consolidations revealed increased eosinophil counts. Finally, clinical and radiological signs resolved rapidly after reintroduction of corticosteroids. Eosinophilic alveolitis may be promoted by radiation therapy. In the present case report, possible mechanisms for radiation-induced eosinophilic alveolitis are also reviewed. PMID:26101656

  15. Migratory eosinophilic alveolitis caused by radiation therapy.

    PubMed

    Lim, Jun Hyeok; Nam, Hae-Seong; Kim, Hun Jung; Choi, Chang-Hwan; Park, In-Suh; Cho, Jae Hwa; Ryu, Jeong-Seon; Kwak, Seung Min; Lee, Hong Lyeol

    2015-05-01

    Although radiation pneumonitis is usually confined to irradiated areas, some studies have reported that radiation-induced lymphocytic alveolitis can also spread to the non-irradiated lung. However, there have been few reports of radiation-induced eosinophilic alveolitis. We report the case of a 27-year-old female with radiation pneumonitis, occurring 4 months after radiation therapy for cancer of the left breast. Clinical and radiological relapse followed withdrawal of corticosteroids. Examination of bronchoalveolar lavage (BAL) in patchy airspace consolidations revealed increased eosinophil counts. Finally, clinical and radiological signs resolved rapidly after reintroduction of corticosteroids. Eosinophilic alveolitis may be promoted by radiation therapy. In the present case report, possible mechanisms for radiation-induced eosinophilic alveolitis are also reviewed.

  16. Comparing Postoperative Radiation Therapies for Brain Metastases

    Cancer.gov

    In this clinical trial, patients with one to four brain metastases who have had at least one of the metastatic tumors removed surgically will be randomly assigned to undergo whole-brain radiation therapy or stereotactic radiosurgery.

  17. Nursing care update: Internal radiation therapy

    SciTech Connect

    Lowdermilk, D.L.

    1990-01-01

    Internal radiation therapy has been used in treating gynecological cancers for over 100 years. A variety of radioactive sources are currently used alone and in combination with other cancer treatments. Nurses need to be able to provide safe, comprehensive care to patients receiving internal radiation therapy while using precautions to keep the risks of exposure to a minimum. This article discusses current trends and issues related to such treatment for gynecological cancers.20 references.

  18. Hypofractionation in radiation therapy and its impact

    SciTech Connect

    Papiez, Lech; Timmerman, Robert

    2008-01-15

    A brief history of the underlying principles of the conventional fractionation in radiation therapy is discussed, followed by the formulation of the hypothesis for hypofractionated stereotactic body radiation therapy (SBRT). Subsequently, consequences of the hypothesis for SBRT dose shaping and dose delivery techniques are sketched. A brief review of the advantages of SBRT therapy in light of the existing experience is then provided. Finally, the need for new technological developments is advocated to make SBRT therapies more practical, safer, and clinically more effective. It is finally concluded that hypofractionated SBRT treatment will develop into a new paradigm that will shape the future of radiation therapy by providing the means to suppress the growth of most carcinogen-induced carcinomas and by supporting the cure of the disease.

  19. Protective prostheses during radiation therapy

    SciTech Connect

    Poole, T.S.; Flaxman, N.A.

    1986-04-01

    Current applications and complications in the use of radiotherapy for the treatment of oral malignancy are reviewed. Prostheses are used for decreasing radiation to vital structures not involved with the lesion but located in the field of radiation. With a program of oral hygiene and proper dental care, protective prostheses can help decrease greatly the morbidity seen with existing radiotherapy regimens.

  20. Particle Radiation Therapy: Requiem or Reveille

    PubMed Central

    Alexander, Leslie L.; Goldson, Alfred L.; Alexander, George A.

    1979-01-01

    The 1960s and 1970s witnessed a surge of many institutions devoted to electron therapy. Currently, many facilities are adding or have added particle types of radiation to their armamentarium against cancer. The authors review the concepts, problems, and potentials of this form of therapy. ImagesFigure 1 PMID:423289

  1. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy and...

  2. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy and...

  3. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy and...

  4. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy and...

  5. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy and...

  6. Radiation Therapy: Additional Treatment Options

    MedlinePlus

    ... action of molecules on the surface of cancer cells called growth factors. Radioprotectors Some medicines called radioprotectors can help protect healthy tissue from the effects of radiation. Radiosensitizers Any drug that can make tumor cells ...

  7. Impaired skin integrity related to radiation therapy

    SciTech Connect

    Ratliff, C.

    1990-09-01

    Skin reactions associated with radiation therapy require frequent nursing assessment and intervention. Preventive interventions and early management can minimize the severity of the skin reaction. With the understanding of the pathogenesis of radiation skin reactions, the ET nurse can determine who is at risk and then implement preventive measures. Because radiation treatment is fractionated, skin reactions do not usually occur until midway through the course of therapy and will subside within a few weeks after completion of radiation. Many patients and their families still fear that radiation causes severe burns. Teaching and anticipatory guidance by the ET nurse is needed to assist patients and their families to overcome this fear, and to educate them on preventive skin care regimens.

  8. How Should I Care for Myself During Radiation Therapy?

    MedlinePlus

    ... Upper GI What is Radiation Therapy? Find a Radiation Oncologist Last Name: Facility: City: State: Zip Code: ... information How Should I Care for Myself During Radiation Therapy? Get plenty of rest. Many patients experience ...

  9. Radiation Therapy and You: Support for People with Cancer

    MedlinePlus

    ... Terms Blogs and Newsletters Health Communications Publications Reports Radiation Therapy and You: Support for People With Cancer ... Copy This booklet covers: Questions and Answers About Radiation Therapy. Answers common questions, such as what radiation ...

  10. Review of image-guided radiation therapy.

    PubMed

    Jaffray, David; Kupelian, Patrick; Djemil, Toufik; Macklis, Roger M

    2007-01-01

    Image-guided radiation therapy represents a new paradigm in the field of high-precision radiation medicine. A synthesis of recent technological advances in medical imaging and conformal radiation therapy, image-guided radiation therapy represents a further expansion in the recent push for maximizing targeting capabilities with high-intensity radiation dose deposition limited to the true target structures, while minimizing radiation dose deposited in collateral normal tissues. By improving this targeting discrimination, the therapeutic ratio may be enhanced significantly. The principle behind image-guided radiation therapy relies heavily on the acquisition of serial image datasets using a variety of medical imaging platforms, including computed tomography, ultrasound and magnetic resonance imaging. These anatomic and volumetric image datasets are now being augmented through the addition of functional imaging. The current interest in positron-emitted tomography represents a good example of this sort of functional information now being correlated with anatomic localization. As the sophistication of imaging datasets grows, the precise 3D and 4D positions of the target and normal structures become of great relevance, leading to a recent exploration of real- or near-real-time positional replanning of the radiation treatment localization coordinates. This 'adaptive' radiotherapy explicitly recognizes that both tumors and normal tissues change position in time and space during a multiweek course of treatment, and even within a single treatment fraction. As targets and normal tissues change, the attenuation of radiation beams passing through these structures will also change, thus adding an additional level of imprecision in targeting unless these changes are taken into account. All in all, image-guided radiation therapy can be seen as further progress in the development of minimally invasive highly targeted cytotoxic therapies with the goal of substituting remote

  11. [Laser radiations in medical therapy].

    PubMed

    Richand, P; Boulnois, J L

    1983-06-30

    The therapeutic effects of various types of laser beams and the various techniques employed are studied. Clinical and experimental research has shown that Helio-Neon laser beams are most effective as biological stimulants and in reducing inflammation. For this reasons they are best used in dermatological surgery cases (varicose ulcers, decubital and surgical wounds, keloid scars, etc.). Infrared diode laser beams have been shown to be highly effective painkillers especially in painful pathologies like postherpetic neuritis. The various applications of laser therapy in acupuncture, the treatment of reflex dermatologia and optic fibre endocavital therapy are presented. The neurophysiological bases of this therapy are also briefly described.

  12. Overview of image-guided radiation therapy

    SciTech Connect

    Xing Lei . E-mail: lei@reyes.stanford.edu; Thorndyke, Brian; Schreibmann, Eduard; Yang Yong; Li, T.-F.; Kim, Gwe-Ya; Luxton, Gary; Koong, Albert

    2006-07-01

    Radiation therapy has gone through a series of revolutions in the last few decades and it is now possible to produce highly conformal radiation dose distribution by using techniques such as intensity-modulated radiation therapy (IMRT). The improved dose conformity and steep dose gradients have necessitated enhanced patient localization and beam targeting techniques for radiotherapy treatments. Components affecting the reproducibility of target position during and between subsequent fractions of radiation therapy include the displacement of internal organs between fractions and internal organ motion within a fraction. Image-guided radiation therapy (IGRT) uses advanced imaging technology to better define the tumor target and is the key to reducing and ultimately eliminating the uncertainties. The purpose of this article is to summarize recent advancements in IGRT and discussed various practical issues related to the implementation of the new imaging techniques available to radiation oncology community. We introduce various new IGRT concepts and approaches, and hope to provide the reader with a comprehensive understanding of the emerging clinical IGRT technologies. Some important research topics will also be addressed.

  13. Radiation sensitization in cancer therapy

    SciTech Connect

    Greenstock, C.L.

    1981-02-01

    One possible benefit of stimulated oxygen consumption rendering aerobic cancer cells hypoxic, and the reductive sensitizer drug metabolism which has been found to be selective for hypoxic tissue, is that the resulting reductive metabolites are selectively toxic and may be useful in chemotherapy to kill sensitive hypoxic tumor cells. Radiation chemical, biochemical and pharmacological studies are continuing to provide additional information on drug delivery, metabolism and cytotoxicity, in order to select and evaluate clinically acceptable sensitizer drugs. Radiation chemical studies over the past decade have led to the development and selection of the nitroimidazoles, metronidazole and misonidazole for clinical evaluation in terms of improved cancer treatments. The results of ongoing clinical trials will, within the next few years, indicate how successful this application of basic radiation chemical research has been. 39 references are included. (JMT)

  14. Radiation therapy in cholangiocellular carcinomas.

    PubMed

    Brunner, Thomas B; Seufferlein, Thomas

    2016-08-01

    Cholangiocarcinoma can arise in all parts of the biliary tract and this has implications for therapy. Surgery is the mainstay of therapy however local relapse is a major problem. Therefore, adjuvant treatment with chemoradiotherapy was tested in trials. The SWOG-S0809 trial regimen of chemoradiotherapy which was tested in extrahepatic cholangiocarcinoma and in gallbladder cancer can currently be regarded as highest level of evidence for this indication. In contrast to adjuvant therapy where only conventionally fractionated radiotherapy plays a role, stereotactic body radiotherapy (SBRT) today has become a powerful alternative to chemoradiotherapy for definitive treatment due to the ability to administer higher doses of radiotherapy to improve local control. Sequential combinations with chemotherapy are also frequently employed. Nevertheless, in general cholangiocarcinoma is an orphan disease and future clinical trials will have to improve the available level of evidence.

  15. Radiation therapy for widespread actinic keratoses.

    PubMed

    Dinehart, Scott M; Graham, Matt; Maners, Ann

    2011-07-01

    To profile 16 patients with widespread and resistant actinic keratoses (AKs) treated with radiation therapy. Chart review and phone interviews of 16 patients who were treated with radiation therapy between 2003 and 2010. A specialized dermatological practice primarily treating patients with skin cancer. The study population at the time of treatment was aged 70 to 87 with a mean age of 79.6 years and included 14 men and two women. Patients were followed at two weeks and six months after treatment to assess clinical outcome. All adverse effects were recorded. Patients were contacted for phone interview to assess patient satisfaction after treatment. Patients all had significant reduction of AKs in the radiation field with a majority (90%) reporting they were "very satisfied" with their treatment outcome. Of 16 patients at two weeks post-treatment, 13 had complete clinical resolution of their AK after radiation therapy. Three of 16 patients had significant reduction (50-99%) in AK in the treatment field. Patients reported improved quality of life, a reduced need for frequent clinic visits, and long-term remission from the development of new AKs within the treatment field. Patients meeting suggested specific criteria developed by the authors may be treated successfully with radiation therapy with good outcomes at six-month follow up and high levels of patient satisfaction.

  16. Respiratory Motion Prediction in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Vedam, Sastry

    Active respiratory motion management has received increasing attention in the past decade as a means to reduce the internal margin (IM) component of the clinical target volume (CTV)—planning target volume (PTV) margin typically added around the gross tumor volume (GTV) during radiation therapy of thoracic and abdominal tumors. Engineering and technical developments in linear accelerator design and respiratory motion monitoring respectively have made the delivery of motion adaptive radiation therapy possible through real-time control of either dynamic multileaf collimator (MLC) motion (gantry based linear accelerator design) or robotic arm motion (robotic arm mounted linear accelerator design).

  17. Building immunity to cancer with radiation therapy.

    PubMed

    Haikerwal, Suresh J; Hagekyriakou, Jim; MacManus, Michael; Martin, Olga A; Haynes, Nicole M

    2015-11-28

    Over the last decade there has been a dramatic shift in the focus of cancer research toward understanding how the body's immune defenses can be harnessed to promote the effectiveness of cytotoxic anti-cancer therapies. The ability of ionizing radiation to elicit anti-cancer immune responses capable of controlling tumor growth has led to the emergence of promising combination-based radio-immunotherapeutic strategies for the treatment of cancer. Herein we review the immunoadjuvant properties of localized radiation therapy and discuss how technological advances in radio-oncology and developments in the field of tumor-immunotherapy have started to revolutionize the therapeutic application of radiotherapy.

  18. Role of radiation therapy in cutaneous melanoma.

    PubMed

    Shuff, Jaime H; Siker, Malika L; Daly, Mackenzie D; Schultz, Christopher J

    2010-01-01

    Cutaneous melanoma is a disease that often has an aggressive and unpredictable course. It was historically thought to be a radioresistant neoplasm; however, substantial radiobiologic and clinical evidence has emerged to refute this notion. Improved local control has been demonstrated with the use of adjuvant radiation therapy delivered to the primary site or regional lymphatics in patients with high-risk clinical or pathologic features. Despite improved local control, high-risk cutaneous melanoma often spreads systemically, leading to poor survival. In the setting of systemic progression, radiation therapy can frequently palliate symptomatic sites of metastatic disease.

  19. Radiation Therapy for Pilocytic Astrocytomas of Childhood

    SciTech Connect

    Mansur, David B.; Rubin, Joshua B.; Kidd, Elizabeth A.; King, Allison A.; Hollander, Abby S.; Smyth, Matthew D.; Limbrick, David D.; Park, T.S.; Leonard, Jeffrey R.

    2011-03-01

    Purpose: Though radiation therapy is generally considered the most effective treatment for unresectable pilocytic astrocytomas in children, there are few data to support this claim. To examine the efficacy of radiation therapy for pediatric pilocytic astrocytomas, we retrospectively reviewed the experience at our institution. Methods and Materials: Thirty-five patients 18 years old or younger with unresectable tumors and without evidence of neurofibromatosis have been treated since 1982. Patients were treated with local radiation fields to a median dose of 54 Gy. Six patients were treated with radiosurgery to a median dose of 15.5 Gy. Five patients were treated with initial chemotherapy and irradiated after progression. Results: All patients were alive after a median follow-up of 5.0 years. However, progression-free survival was 68.7%. None of 11 infratentorial tumors progressed compared with 6 of 20 supratentorial tumors. A trend toward improved progression-free survival was seen with radiosurgery (80%) compared with external beam alone (66%), but this difference did not reach statistical significance. Eight of the 9 patients progressing after therapy did so within the irradiated volume. Conclusions: Although the survival of these children is excellent, almost one third of patients have progressive disease after definitive radiotherapy. Improvements in tumor control are needed in this patient population, and the optimal therapy has not been fully defined. Prospective trials comparing initial chemotherapy to radiation therapy are warranted.

  20. Early cardiac changes related to radiation therapy

    SciTech Connect

    Ikaeheimo, M.J.N.; Niemelae, K.O.L.; Linnaluoto, M.M.; Jakobsson, M.J.; Takkunen, J.T.; Taskinen, P.J.

    1985-12-01

    To investigate the incidence and severity of possible radiation-induced cardiac changes, 21 women without heart disease were investigated serially by echocardiography and by measuring systolic time intervals before and up to 6 months after postoperative radiation therapy because of breast cancer. Radiation was associated with a decrease in fractional systolic shortening of the left ventricular (LV) minor-axis diameter, from 0.35 +/- 0.05 to 0.32 +/- 0.06 (p less than 0.005), and in the systolic blood pressure/end-systolic diameter ratio, from 4.4 +/- 1.2 to 3.9 +/- 0.9 mm Hg/mm (p less than 0.005). The mitral E point-septal separation increased, from 2.8 +/- 1.5 to 4.2 +/- 2.5 mm (p less than 0.005). The preejection period/LV ejection time ratio of systolic time intervals increased, but only the decrease within 6 months after therapy was significant (p less than 0.005). All these changes reflect slight transient depression of LV function, which became normalized within 6 months after therapy. Up to 6 months after therapy, a slight pericardial effusion was found in 33% of the patients. Hence, conventional radiation therapy appeared to cause an acute transient and usually symptomless decrease in LV function, and later, slight pericardial effusion in one-third of the patients.

  1. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2010-09-01

    Transponder is of benefit in pelvic radiation therapy following prostatectomy, 4) whether hypofractionated treatment plans which are more beam on...centers. Task 4. A Hypofractionated IMRT Therapy in Patients with Favorable Risk Prostate Cancer Using the Calypso® 4D Localization System: A...Feasibility Study. We are awaiting the preliminary results from the RTOG 0415, which is a similar hypofractionated study (not using the Calypso

  2. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2011-09-01

    whether Beacon® Transponder is of benefit in pelvic radiation therapy following prostatectomy, 4) whether hypofractionated treatment plans which...both centers. Task 4. A Hypofractionated IMRT Therapy in Patients with Favorable Risk Prostate Cancer Using the Calypso® 4D Localization System...A Feasibility Study. We are awaiting the preliminary results from the RTOG 0415, which is a similar hypofractionated study (not using the

  3. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2016-09-01

    continence during radiation therapy for prostate cancer. * *Waggoner A, Brown M, Tinnel B, Halligan J, Brand T, Brooks J, Ninneman S, Hughs G...Gossweiler M, Waggoner A, Huang R, Ninneman S, Hughs G, Wendt S, Brown M, Tinnel B, Macdonald D. (8-9 February 2013). Anorectal angle is associated...Therapy Symposium, Orlando, FL. * Gossweiler M, Waggoner A, Huang R, Ninneman S, Hughs G, Wendt S, Brown M, Tinnel B, Macdonald D. (2013, April

  4. Anesthesia for intraoperative radiation therapy in children

    SciTech Connect

    Friesen, R.H.; Morrison, J.E. Jr.; Verbrugge, J.J.; Daniel, W.E.; Aarestad, N.O.; Burrington, J.D.

    1987-06-01

    Intraoperative radiation therapy (IORT) is a relatively new mode of cancer treatment which is being used with increasing frequency. IORT presents several challenges to the anesthesiologist, including patients who are debilitated from their disease or chemotherapy, operations involving major tumor resections, intraoperative interdepartmental transport of patients, and remote monitoring of patients during electron beam therapy. This report discusses the anesthetic management of ten children undergoing IORT. With adequate preparation and interdepartmental communication, complications can be avoided during these challenging cases.

  5. Bullous pemphigoid after radiation therapy

    SciTech Connect

    Duschet, P.; Schwarz, T.; Gschnait, F.

    1988-02-01

    Electron beam therapy applied to a lymph node metastasis from a squamous cell carcinoma was followed by the development of histologically and immunologically typical bullous pemphigoid, the lesions being initially strictly confined to the irradiation area. This observation suggests that the bullous pemphigoid antigen may be altered or unmasked by electron beam radiotherapy, leading subsequently to the production of autoantibodies. The disease in this case effectively responded to the administration of tetracycline and niacinamide, a therapeutic regimen described recently.

  6. Radiation therapy for orbital lymphoma

    SciTech Connect

    Zhou Ping . E-mail: pzhou@partners.org; Ng, Andrea K.; Silver, Barbara; Li Sigui; Hua Ling; Mauch, Peter M.

    2005-11-01

    Purpose: To describe radiation techniques and evaluate outcomes for orbital lymphoma. Methods and Materials: Forty-six patients (and 62 eyes) with orbital lymphoma treated with radiotherapy between 1987 and 2003 were included. The majority had mucosa-associated lymphoid tissue (48%) or follicular (30%) lymphoma. Seventeen patients had prior lymphoma at other sites, and 29 had primary orbital lymphoma. Median follow-up was 46 months. Results: The median dose was 30.6 Gy; one-third received <30 Gy. Electrons were used in 9 eyes with disease confined to the conjunctiva or eyelid, and photons in 53 eyes with involvement of intraorbital tissues to cover entire orbit. Local control rate was 98% for all patients and 100% for those with indolent lymphoma. Three of the 26 patients with localized primary lymphoma failed distantly, resulting in a 5-year freedom-from-distant-relapse rate of 89%. The 5-year disease-specific and overall survival rates were 95% and 88%, respectively. Late toxicity was mainly cataract formation in patients who received radiation without lens block. Conclusions A dose of 30 Gy is sufficient for indolent orbital lymphoma. Distant relapse rate in patients with localized orbital lymphoma was lower than that reported for low-grade lymphoma presenting in other sites. Orbital radiotherapy can be used for salvage of recurrent indolent lymphoma.

  7. Radiation therapy communication: equine hemangioma.

    PubMed

    Kleiter, Miriam; Velde, Karsten; Hainisch, Edmund; Auer, Ulrike; Reifinger, Martin

    2009-01-01

    A 13-month-old Standardbred Colt had a recurrent hemangioma at the level of the coronary band. Multiple excisions had led to a nonhealing skin and hoof defect. Using 14 MV electrons, a total dose of 36 Gy was administered, given as six fractions of 6 Gy twice a week. Wound healing by second intention was achieved over the next 4 months and the colt began race training 6 months after the end of therapy. Twenty months later the colt is sound and there is no evidence of tumor recurrence.

  8. Neutron Measurements for Intensity Modulated Radiation Therapy

    SciTech Connect

    Ipe, Nisy E.

    2000-04-21

    The beam-on time for intensity modulated radiation therapy (IMRT) is increased significantly compared with conventional radiotherapy treatments. Further, the presence of beam modulation devices may potentially affect neutron production. Therefore, neutron measurements were performed for 15 MV photon beams on a Varian Clinac accelerator to determine the impact of IMRT on neutron dose equivalent to the patient.

  9. Process of Coping with Radiation Therapy.

    ERIC Educational Resources Information Center

    Johnson, Jean E.; And Others

    1989-01-01

    Evaluated ability of self-regulation and emotional-drive theories to explain effects of informational intervention entailing objective descriptions of experience on outcomes of coping with radiation therapy among 84 men with prostate cancer. Consistent with self-regulation theory, similarity between expectations and experience and degree of…

  10. Glossodynia after radiation therapy and chemotherapy

    SciTech Connect

    Naylor, G.D.; Marino, G.G.; Shumway, R.C.

    1989-10-01

    Radiation therapy and chemotherapy have decreased the mortality rates of cancer patients, but the morbidity associated with oral complications is high in many cases. A pretreatment oral evaluation and institution of a preventive care program reduce oral symptoms such as glossodynia considerably. When oral symptoms are minimized, the dentist can improve the patient's quality of life.40 references.

  11. Process of Coping with Radiation Therapy.

    ERIC Educational Resources Information Center

    Johnson, Jean E.; And Others

    1989-01-01

    Evaluated ability of self-regulation and emotional-drive theories to explain effects of informational intervention entailing objective descriptions of experience on outcomes of coping with radiation therapy among 84 men with prostate cancer. Consistent with self-regulation theory, similarity between expectations and experience and degree of…

  12. Selective internal radiation therapy for liver tumours.

    PubMed

    Sundram, Francis X; Buscombe, John R

    2017-10-01

    Primary and secondary liver malignancies are common and associated with a poor prognosis. Surgical resection is the treatment of choice; however, many patients have unresectable disease. In these cases, several liver directed therapies are available, including selective internal radiation therapy (SIRT). SIRT is a multidisciplinary treatment involving nuclear medicine, interventional radiology and oncology. High doses of localised internal radiation are selectively delivered to liver tumour tissues, with relative sparing of adjacent normal liver parenchyma. Side effects are minimal and radiation protection measures following treatment are straightforward. In patients who have progressed following chemotherapy, clinical trials demonstrate prolonged liver progression-free survival. SIRT is offered at 10 centres in England via the NHS England Commissioning through Evaluation programme and is approved by the National Institute for Health and Care Excellence for certain liver malignancies. SIRT holds unique promise for personalised treatment of liver tumours. © Royal College of Physicians 2017. All rights reserved.

  13. Radiation therapy for stage IVA cervical cancer.

    PubMed

    Murakami, Naoya; Kasamatsu, Takahiro; Morota, Madoka; Sumi, Minako; Inaba, Koji; Ito, Yoshinori; Itami, Jun

    2013-11-01

    To evaluate the outcome and discover predictive factors for patients with stage IVA cervical cancer treated with definitive radiation therapy. We retrospectively reviewed 34 patients with stage IVA cervical cancer who received definitive radiation therapy between 1992 and 2009. On univariate analysis, statistically significant prognostic factors for improved local control rate (LCR) were absence of pyometra (p=0.037) and equivalent dose in 2 Gy fractions (EQD2) at point A greater than 60 Gy (p=0.023). Prognostic factors for improved progression-free survival (PFS) were absence of pelvic lymph node metastasis at initial presentation (p=0.014), and EQD2 at point A greater than 60 Gy (p=0.023). Patients with stage IVA disease had poor median survival. However adequate radiation dose to point A produced favorable LCR and PFS, therefore efforts should be made to increase the point A dose.

  14. Pulsed laser radiation therapy of skin tumors

    SciTech Connect

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  15. Split-Course, High-Dose Palliative Pelvic Radiotherapy for Locally Progressive Hormone-Refractory Prostate Cancer

    SciTech Connect

    Gogna, Nirdosh Kumar; Baxi, Siddhartha; Hickey, Brigid; Baumann, Kathryn; Burmeister, Elizabeth; Holt, Tanya

    2012-06-01

    Purpose: Local progression, in patients with hormone-refractory prostate cancer, often causes significant morbidity. Pelvic radiotherapy (RT) provides effective palliation in this setting, with most published studies supporting the use of high-dose regimens. The aim of the present study was to examine the role of split-course hypofractionated RT used at our institution in treating this group of patients. Methods and Materials: A total of 34 men with locoregionally progressive hormone-refractory prostate cancer, treated with a split course of pelvic RT (45-60 Gy in 18-24 fractions) between 2000 and 2008 were analyzed. The primary endpoints were the response rate and actuarial locoregional progression-free survival. Secondary endpoints included overall survival, compliance, and acute and late toxicity. Results: The median age was 71 years (range, 53-88). Treatment resulted in an overall initial response rate of 91%, a median locoregional progression-free survival of 43 months, and median overall survival of 28 months. Compliance was excellent and no significant late toxicity was reported. Conclusions: The split course pelvic RT described has an acceptable toxicity profile, is effective, and compares well with other high-dose palliative regimens that have been previously reported.

  16. Radiation Therapy -- What It Is, How It Helps

    MedlinePlus

    ... Types Radiation Therapy EASY READING Radiation Therapy -- What It Is, How It Helps [Download PDF] This easy-to-read guide ... Imagine a world free from cancer. Help make it a reality. DONATE Cancer Information Cancer Prevention & Detection ...

  17. External and internal radiation therapy: past and future directions.

    PubMed

    Sadeghi, Mahdi; Enferadi, Milad; Shirazi, Alireza

    2010-01-01

    Cancer is a leading cause of morbidity and mortality in the modern world. Treatment modalities comprise radiation therapy, surgery, chemotherapy and hormonal therapy. Radiation therapy can be performed by using external or internal radiation therapy. However, each method has its unique properties which undertakes special role in cancer treatment, this question is brought up that: For cancer treatment, whether external radiation therapy is more efficient or internal radiation therapy one? To answer this question, we need to consider principles and structure of individual methods. In this review, principles and application of each method are considered and finally these two methods are compared with each other.

  18. Comparison of particle-radiation-therapy modalities

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1981-01-01

    The characteristics of dose distribution, beam alignment, and radiobiological advantages accorded to high LET radiation were reviewed and compared for various particle beam radiotherapeutic modalities (neutron, Auger electrons, p, ..pi../sup -/, He, C, Ne, and Ar ions). Merit factors were evaluated on the basis of effective dose to tumor relative to normal tissue, linear energy transfer (LET), and dose localization, at depths of 1, 4, and 10 cm. In general, it was found that neutron capture therapy using an epithermal neutron beam provided the best merit factors available for depths up to 8 cm. The position of fast neutron therapy on the Merit Factor Tables was consistently lower than that of other particle modalities, and above only /sup 60/Co. The largest body of clinical data exists for fast neutron therapy; results are considered by some to be encouraging. It then follows that if benefits with fast neutron therapy are real, additional gains are within reach with other modalities.

  19. Radiation therapy with fast neutrons: A review

    NASA Astrophysics Data System (ADS)

    Jones, D. T. L.; Wambersie, A.

    2007-09-01

    Because of their biological effects fast neutrons are most effective in treating large, slow-growing tumours which are resistant to conventional X-radiation. Patients are treated typically 3-4 times per week for 4-5 weeks (sometimes in combination with X-radiation) for a variety of conditions such as carcinomas of the head and neck, salivary gland, paranasal sinus and breast; soft tissue, bone and uterine sarcomas and malignant melanomas. It is estimated that about 27,000 patients have undergone fast neutron therapy to date.

  20. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  1. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  2. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide radiation therapy system. 892.5750... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation therapy system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  3. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  4. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  5. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  6. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  7. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  8. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  9. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  10. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  11. Neuralgic amyotrophy in association with radiation therapy for Hodgkin's disease

    SciTech Connect

    Malow, B.A.; Dawson, D.M. )

    1991-03-01

    We describe 4 patients with Hodgkin's disease who developed neuralgic amyotrophy in the setting of radiation therapy. In contrast to tumor progression or radiation plexopathy, the symptom onset was abrupt and occurred within days to weeks of receiving radiation treatments. There is an association between Hodgkin's disease, radiation therapy, and neuralgic amyotrophy.

  12. Y90 selective internal radiation therapy.

    PubMed

    Lee, Edward W; Thakor, Avnesh S; Tafti, Bashir A; Liu, David M

    2015-01-01

    Primary liver malignancies and liver metastases are affecting millions of individuals worldwide. Because of their late and advanced stage presentation, only 10% of patients can receive curative surgical treatment, including transplant or resection. Alternative treatments, such as systemic chemotherapy, ablative therapy, and chemoembolization, have been used with marginal survival benefits. Selective internal radiation therapy (SIRT), also known as radioembolization, is a compelling alternative treatment option for primary and metastatic liver malignancies with a growing body of evidence. In this article, an introduction to SIRT including background, techniques, clinical outcomes, and complications is reviewed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Gastrointestinal toxicity associated to radiation therapy.

    PubMed

    Rodríguez, Mario López; Martín, Margarita Martín; Padellano, Laura Cerezo; Palomo, Alicia Marín; Puebla, Yamile Ibáñez

    2010-08-01

    Radiation therapy in combination with other treatments, such as surgery and chemotherapy, increases locoregional control and survival in patients with thoracic, abdominal and pelvic malignancies. Nevertheless, significant clinical toxicity with combined treatments may be seen in these patients. With the advent of tridimensional conformal radiotherapy (3D-CRT), dose-volume histograms (DVH) can be generated to assess the dose received by the organs at risk. The possible relationship between these parameters and clinical, anatomical and, more recently, genetic factors has to be considered. Treatment options include initial conservative medical therapies, endoscopic procedures, hyperbaric oxygen and surgery. Some pharmacological agents to prevent gastrointestinal toxicity are under investigation.

  14. Progressive cerebral occlusive disease after radiation therapy.

    PubMed

    Bitzer, M; Topka, H

    1995-01-01

    A case of progressive irradiation-induced cerebral vasculopathy with abnormal netlike vessels and transdural anastomoses (moyamoya syndrome) is presented. Radiological findings in an additional 40 cases reported in the literature are analyzed, and their clinical relevance is discussed. A 19-year-old woman presented with recurrent ischemic brain lesions after radiation therapy for treatment of a craniopharyngioma during childhood. Cerebral angiography 6 and 12 years after completion of radiation therapy revealed progressive cerebral arterial occlusive disease involving the internal carotid artery on either side of the circle of Willis, with abnormal netlike vessels and transdural anastomoses (moyamoya syndrome). Extensive similarities between irradiation-induced cerebral vasculopathy and primary moyamoya syndrome (Nishimoto's disease) support the notion that both disorders share common pathophysiological mechanisms. The occurrence of moyamoya-like vascular changes may not depend on specific trigger mechanisms but may rather represent a nonspecific response of the developing vascular system to a number of various noxious events.

  15. Targeted Radiation Therapy for Cancer Initiative

    DTIC Science & Technology

    2013-09-01

    system, 3) whether Beacon® Transponder is of benefit in pelvic radiation therapy following prostatectomy, 4) whether hypofractionated treatment plans...enroll a combined total of up to 40 subjects from both centers. Task 4. Hypofractionated Radiotherapy in Patients with Favorable Risk Prostate...Cancer Using the Calypso® 4D Localization System. . The original hypofractionated trial listed under this task has been removed and replaced

  16. Generalized morphea after breast cancer radiation therapy.

    PubMed

    Kushi, Jonathan; Csuka, M E

    2011-01-01

    We present a case of a 69-year-old woman who received external beam radiation for the treatment of breast cancer. Seven months later, she developed generalized morphea involving the area of irradiated skin of the breast as well as distant sites of the groin and distal lower extremity. Postirradiation morphea is an uncommon yet well-documented phenomenon, usually confined to the radiated site and the immediate surrounding tissue. To our knowledge, this is only the fourth reported case of morphea occurring distant from the radiation field. While most cases of postirradiation morphea have been shown to either resolve spontaneously or respond to topical corticosteroids, our patient required systemic therapy with methotrexate, which resulted in clinical improvement. With this paper, we hope to bring further awareness to this phenomenon and demonstrate a successful treatment response with the use of methotrexate in postirradiation generalized morphea.

  17. Generalized Morphea after Breast Cancer Radiation Therapy

    PubMed Central

    Kushi, Jonathan; Csuka, M. E.

    2011-01-01

    We present a case of a 69-year-old woman who received external beam radiation for the treatment of breast cancer. Seven months later, she developed generalized morphea involving the area of irradiated skin of the breast as well as distant sites of the groin and distal lower extremity. Postirradiation morphea is an uncommon yet well-documented phenomenon, usually confined to the radiated site and the immediate surrounding tissue. To our knowledge, this is only the fourth reported case of morphea occurring distant from the radiation field. While most cases of postirradiation morphea have been shown to either resolve spontaneously or respond to topical corticosteroids, our patient required systemic therapy with methotrexate, which resulted in clinical improvement. With this paper, we hope to bring further awareness to this phenomenon and demonstrate a successful treatment response with the use of methotrexate in postirradiation generalized morphea. PMID:22937449

  18. Health systems analysis: radiation therapy services

    SciTech Connect

    Not Available

    1981-10-01

    A plan for the distribution of radiation therapy services within Health Services Area I (HSA I) is presented in this report. Four problems concerning health status or health system aspects of megavoltage radiation therapy services within HSA I are identified: (1) the health status of the populations residing in the area of Lexington, Winchester, Louisa and Fluvanna with respect to cancer; (2) the failure of Rockingham Memorial Hospital to meet minimum volume standards and the projection of a failure to meet this minimum volume standard by 1986; (3) the absence of the specialities of hematology or medical oncology on the medical staff of the hospital at Rockingham; and (4) a lack of registered nurses/licensed practical nurses and a docimetrist at Winchester Memorial Hospital, which could impact on the quality of care. An additional area of concern is the increase in charges on the linear accelerator at the University of Virginia. Preliminary findings do not indicate that radiation therapy services within HSA I are inappropriate. Recommendations for addressing problem areas are proposed.

  19. [Radiation therapy of psoriasis and parapsoriasis].

    PubMed

    Wiskemann, A

    1982-09-15

    Selective UV-Phototherapy with lambda 300-320 nm (SUP) as well as oral photochemotherapy with 8-methoxy-psoralene plus UVA-radiation (PUVA intern) are very effective in clearing the lesions of th generalized psoriasis and those of the chronic forms of parapsoriasis. Being treated with 4 suberythemal doses per week psoriasis patients are free or nearly free of symptoms after averaging 6.3 weeks of SUP-therapy or after 5.3 weeks of PUVA orally. The PUVA-therapy is mainly indicated in pustular, inverse and erythrodermic psoriasis as well as in parapsoriasis in plaques and variegata. In all other forms of psoriasis and in pityriasis lichenoides chronica, we prefer the SUP-therapy because of less acute or chronic side effects, and because of its better practicability. X-rays are indicated in psoriasis of nails, grenz-rays in superficial psoriatic lesions of the face, the armpits, the genitals and the anal region.

  20. Treatment planning for conformal proton radiation therapy.

    PubMed

    Bussière, Mark R; Adams, Judith A

    2003-10-01

    Clinical results from various trials have demonstrated the viability of protons in radiation therapy and radiosurgery. This has motivated a few large medical centers to design and build expensive hospital based proton facilities based proton facilities (current cost estimates for a proton facility is around 100 million US dollars). Until this development proton therapy was done using retrofitted equipment originally designed for nuclear experiments. There are presently only three active proton therapy centers in the United States, 22 worldwide. However, more centers are under construction and being proposed in the US and abroad. The important difference between proton and x-ray therapy is in the dose distribution. X-rays deposit most of their dose at shallow depths of a few centimeters with a gradual decay with depth in the patient. Protons deliver most of their dose in the Bragg peak, which can be delivered at most clinically required depths followed by a sharp fall-off. This sharp falloff makes protons sensitive to variations in treatment depths within patients. Treatment planning incorporates all the knowledge of protons into a process, which allows patients to be treated accurately and reliably. This process includes patient immobilization, imaging, targeting, and modeling of planned dose distributions. Although the principles are similar to x-ray therapy some significant differences exist in the planning process, which described in this paper. Target dose conformality has recently taken on much momentum with the advent of intensity modulated radiation therapy (IMRT) with photon beams. Proton treatments provide a viable alternative to IMRT because they are inherently conformal avoiding normal tissue while irradiating the intended targets. Proton therapy will soon bring conformality to a new high with the development of intensity modulated proton therapy (IMPT). Future challenges include keeping the cost down, increasing access to conventional proton therapy as

  1. Intraoperative radiation therapy in recurrent ovarian cancer

    SciTech Connect

    Yap, O.W. Stephanie . E-mail: stbeast@stanford.edu; Kapp, Daniel S.; Teng, Nelson N.H.; Husain, Amreen

    2005-11-15

    Purpose: To evaluate disease outcomes and complications in patients with recurrent ovarian cancer treated with cytoreductive surgery and intraoperative radiation therapy (IORT). Methods and Materials: A retrospective study of 24 consecutive patients with ovarian carcinoma who underwent secondary cytoreduction and intraoperative radiation therapy at our institution between 1994 and 2002 was conducted. After optimal cytoreductive surgery, IORT was delivered with orthovoltage X-rays (200 kVp) using individually sized and beveled cone applications. Outcomes measures were local control of disease, progression-free interval, overall survival, and treatment-related complications. Results: Of these 24 patients, 22 were available for follow-up analysis. Additional treatment at the time of and after IORT included whole abdominopelvic radiation, 9; pelvic or locoregional radiation, 5; chemotherapy, 6; and no adjuvant treatment, 2. IORT doses ranged from 9-14 Gy (median, 12 Gy). The anatomic sites treated were pelvis (sidewalls, vaginal cuff, presacral area, anterior pubis), para-aortic and paracaval lymph node beds, inguinal region, or porta hepatitis. At a median follow-up of 24 months, 5 patients remain free of disease, whereas 17 patients have recurred, of whom 4 are alive with disease and 13 died from disease. Five patients recurred within the radiation fields for a locoregional relapse rate of 32% and 12 patients recurred at distant sites with a median time to recurrence of 13.7 months. Five-year overall survival was 22% with a median survival of 26 months from time of IORT. Nine patients (41%) experienced Grade 3 toxicities from their treatments. Conclusion: In carefully selected patients with locally recurrent ovarian cancer, combined IORT and tumor reductive surgery is reasonably tolerated and may contribute to achieving local control and disease palliation.

  2. Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy

    SciTech Connect

    Choi, Seo-Hyun; Nam, Jae-Kyung; Jang, Junho; Lee, Hae-June Lee, Yoon-Jin

    2015-06-26

    Radiotherapy is a widely used treatment for many tumors. Combination therapy using anti-angiogenic agents and radiation has shown promise; however, these combined therapies are reported to have many limitations in clinical trials. Here, we show that radiation transformed tumor endothelial cells (ECs) to fibroblasts, resulting in reduced vascular endothelial growth factor (VEGF) response and increased Snail1, Twist1, Type I collagen, and transforming growth factor (TGF)-β release. Irradiation of radioresistant Lewis lung carcinoma (LLC) tumors greater than 250 mm{sup 3} increased collagen levels, particularly in large tumor vessels. Furthermore, concomitant sunitinib therapy did not show a significant difference in tumor inhibition versus radiation alone. Thus, we evaluated multimodal therapy that combined pirfenidone, an inhibitor of TGF-induced collagen production, with radiation and sunitinib treatment. This trimodal therapy significantly reduced tumor growth, as compared to radiation alone. Immunohistochemical analysis revealed that radiation-induced collagen deposition and tumor microvessel density were significantly reduced with trimodal therapy, as compared to radiation alone. These data suggest that combined therapy using pirfenidone may modulate the radiation-altered tumor microenvironment, thereby enhancing the efficacy of radiation therapy and concurrent chemotherapy. - Highlights: • Radiation changes tumor endothelial cells to fibroblasts. • Radio-resistant tumors contain collagen deposits, especially in tumor vessels. • Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy. • Pirfenidone reduces radiation-induced collagen deposits in tumors.

  3. Stereotactic radiation therapy and selective internal radiation therapy for hepatocellular carcinoma.

    PubMed

    Bujold, A; Dawson, L A

    2011-02-01

    Recent technological advances allow precise and safe radiation delivery in hepatocellular carcinoma. Stereotactic body radiotherapy is a conformal external beam radiation technique that uses a small number of relatively large fractions to deliver potent doses of radiation therapy to extracranial sites. It requires stringent breathing motion control and image guidance. Selective internal radiotherapy or radioembolization refers to the injection of radioisotopes, usually delivered to liver tumors via the hepatic artery. Clinical results for both treatments show that excellent local control is possible with acceptable toxicity. Most appropriate patient populations and when which type of radiation therapy should be best employed in the vast therapeutic armamentarium of hepatocellular carcinoma are still to be clarified. Copyright © 2010 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  4. Stereotactic body radiation therapy for liver tumors.

    PubMed

    Maingon, P; Nouhaud, É; Mornex, F; Créhange, G

    2014-01-01

    Recent improvements in radiation therapy delivery techniques provide new tools to treat patients with liver-confined disease, either with hepatocellular carcinoma or liver metastases. An appropriate selection of the patients made during a multidisciplinary specialized tumour board is mandatory. It should be based on the disease extension, an accurate evaluation of the comorbidities and the liver functions. The added value of this approach has to be evaluated in well-designed trials, alone or in combination with other treatments such as surgery, local treatments, chemoembolization and/or chemotherapy with or without targeted agents. Stereotactic body radiation therapy should be applied under strict conditions of expertise of the radiation oncology departments, including equipment and educational training programmes. However under these conditions, preliminary results seems highly encouraging in terms of local control and tolerance but should be confirmed in large controlled prospective trials. Copyright © 2014 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  5. Methods for implementing microbeam radiation therapy

    DOEpatents

    Dilmanian, F. Avraham; Morris, Gerard M.; Hainfeld, James F.

    2007-03-20

    A method of performing radiation therapy includes delivering a therapeutic dose such as X-ray only to a target (e.g., tumor) with continuous broad beam (or in-effect continuous) using arrays of parallel planes of radiation (microbeams/microplanar beams). Microbeams spare normal tissues, and when interlaced at a tumor, form a broad-beam for tumor ablation. Bidirectional interlaced microbeam radiation therapy (BIMRT) uses two orthogonal arrays with inter-beam spacing equal to beam thickness. Multidirectional interlaced MRT (MIMRT) includes irradiations of arrays from several angles, which interleave at the target. Contrast agents, such as tungsten and gold, are administered to preferentially increase the target dose relative to the dose in normal tissue. Lighter elements, such as iodine and gadolinium, are used as scattering agents in conjunction with non-interleaving geometries of array(s) (e.g., unidirectional or cross-fired (intersecting) to generate a broad beam effect only within the target by preferentially increasing the valley dose within the tumor.

  6. Optical Tracking Technology in Stereotactic Radiation Therapy

    SciTech Connect

    Wagner, Thomas H. . E-mail: thomas.wagner@orhs.org; Meeks, Sanford L.; Bova, Frank J.; Friedman, William A.; Willoughby, Twyla R.; Kupelian, Patrick A.; Tome, Wolfgang

    2007-07-01

    The last decade has seen the introduction of advanced technologies that have enabled much more precise application of therapeutic radiation. These relatively new technologies include multileaf collimators, 3-dimensional conformal radiotherapy planning, and intensity modulated radiotherapy in radiotherapy. Therapeutic dose distributions have become more conformal to volumes of disease, sometimes utilizing sharp dose gradients to deliver high doses to target volumes while sparing nearby radiosensitive structures. Thus, accurate patient positioning has become even more important, so that the treatment delivered to the patient matches the virtual treatment plan in the computer treatment planning system. Optical and image-guided radiation therapy systems offer the potential to improve the precision of patient treatment by providing a more robust fiducial system than is typically used in conventional radiotherapy. The ability to accurately position internal targets relative to the linac isocenter and to provide real-time patient tracking theoretically enables significant reductions in the amount of normal tissue irradiated. This report reviews the concepts, technology, and clinical applications of optical tracking systems currently in use for stereotactic radiation therapy. Applications of radiotherapy optical tracking technology to respiratory gating and the monitoring of implanted fiducial markers are also discussed.

  7. Personalized Radiation Therapy (PRT) for Lung Cancer.

    PubMed

    Jin, Jian-Yue; Kong, Feng-Ming Spring

    2016-01-01

    This chapter reviews and discusses approaches and strategies of personalized radiation therapy (PRT) for lung cancers at four different levels: (1) clinically established PRT based on a patient's histology, stage, tumor volume and tumor locations; (2) personalized adaptive radiation therapy (RT) based on image response during treatment; (3) PRT based on biomarkers; (4) personalized fractionation schedule. The current RT practice for lung cancer is partially individualized according to tumor histology, stage, size/location, and combination with use of systemic therapy. During-RT PET-CT image guided adaptive treatment is being tested in a multicenter trial. Treatment response detected by the during-RT images may also provide a strategy to further personalize the remaining treatment. Research on biomarker-guided PRT is ongoing. The biomarkers include genomics, proteomics, microRNA, cytokines, metabolomics from tumor and blood samples, and radiomics from PET, CT, SPECT images. Finally, RT fractionation schedule may also be personalized to each individual patient to maximize therapeutic gain. Future PRT should be based on comprehensive considerations of knowledge acquired from all these levels, as well as consideration of the societal value such as cost and effectiveness.

  8. Update on radiation therapy in patients with Cushing's disease.

    PubMed

    Tritos, Nicholas A; Biller, Beverly M K

    2015-04-01

    Radiation therapy is an important therapy for patients with Cushing's disease who are not in remission or relapse after transsphenoidal pituitary surgery and are not considered surgical candidates. The development of stereotactic radiation therapy, using gamma knife, linear accelerators or proton beam based methods, has enabled selective radiation delivery to the target while minimizing exposure of healthy tissues. In patients whose tumors are sufficiently distant from the optic apparatus, stereotactic radiation therapy can be delivered in a single session, a procedure termed radiosurgery, which significantly improves patient convenience. Original articles on radiation therapy in Cushing's disease, published during the past 12 months (2013-2014), were identified and pertinent data extracted. Recent studies have reported on the outcomes of patients with Cushing's disease who received mostly stereotactic radiation therapy. While tumor control has been excellent, biochemical remission was less consistently achieved. Some studies suggested that stereotactic radiation may lead to biochemical remission faster than conventional radiation therapy. In addition, retrospective data have suggested that withdrawing medical therapy around the time stereotactic radiation therapy is administered might lead to a faster biochemical response. Regardless of the radiation therapy method, biochemical recurrences may develop and these patients are at long-term risk of developing anterior hypopituitarism and require lifelong periodic endocrine follow-up. Other, less frequent complications may include cranial neuropathies, secondary tumor formation or temporal lobe necrosis. It is plausible that complications may be less frequent after stereotactic radiation therapy, but this requires confirmation. Radiation therapy is an effective second line therapy in patients with Cushing's disease. Ongoing refinements in delivery of radiation therapy are anticipated to lead to improved patient

  9. Treatment of arterial lesions after radiation therapy

    SciTech Connect

    Bergqvist, D.; Jonsson, K.; Nilsson, M.; Takolander, R.

    1987-08-01

    Of 1,724 patients who underwent peripheral vascular operation, 12 (0.7 per cent) underwent radiation therapy of the areas including the relevant arteries one and one-half to 28 years (a mean of 15 years) previously; one patient had carcinoma of the breast, three had tumors of the neck and eight patients had malignant gynecologic disease. One patient with an occluded carotid artery was not actively treated, two underwent percutaneous transluminal angioplasty and the remaining patients underwent different types of vascular reconstructions. These patients frequently have other radiation lesions as well with involvement of the skin, bladder or intestine, which may make them problematic from a surgical point of view. Extra-anatomic reconstructions or percutaneous transluminal angioplasty can be recommended. One patient died of malignant disease three years after arterial operation. Otherwise, the results of follow-up study for these patients did not differ from other patients who underwent arterial reconstruction.

  10. [Postoperative radiation therapy in lung carcinom].

    PubMed

    Bouchaab, H; Peters, S; Ozsahin, M; Peguret, N; Gonzales, M; Lovis, A

    2014-05-21

    Locally advanced non-small-cell lung carcinoma (NSCLC) is a very heterogeous disease, the role of postoperative radiation therapy (PORT) in pN2 patients with completly resected NSCLC remains controversial. Although an improvment in local control has been described in several studies, the effect on survival has been contradictory or inconclusive. Retrospective evaluation suggest a positive effect of PORT in high risk patients with pN2 disease: RI-resected NSCLC, bulky and multilevel N2. However further evaluation of PORT in prospectively randomized studies in completely resected pN2 NSCLC is needed.

  11. [Application of the PET for Radiation Therapy].

    PubMed

    Mitsumoto, Takuya; Tohyama, Naoki; Koyama, Kazuya; Kodama, Takashi; Kotaka, Kikuo; Hatano, Kazuo

    2015-01-01

    Because radiotherapy is local treatment, it is very important to define target volume and critical organs based on accurate lesion area. The PET using an index such as the SUV is quantifiable noninvasively with information of the molecular biology for individual case/lesion. In particular, PET with 18F-fluorodeoxyglucose (FDG-PET) has been used for the diagnosis and treatment evaluation of various tumors. The radiation therapy based on PET enables the treatment planning that reflected metabolic activity of the lesion. The PET produce an error by various factors, therefore, we must handle the PET image in consideration of this error when apply PET to radiotherapy.

  12. Stereotactic Body Radiation Therapy for Pancreatic Cancer.

    PubMed

    Goodman, Karyn A

    2016-01-01

    The role of radiation therapy in the management of pancreatic cancer represents an area of some controversy. However, local disease progression remains a significant cause of morbidity and even mortality for patients with this disease. Stereotactic body radiotherapy (SBRT) is an emerging treatment option for pancreatic cancer, primarily for locally advanced (unresectable) disease as it can provide a therapeutic benefit with significant advantages for patients' quality of life over standard conventional chemoradiation. There may also be a role for SBRT as neoadjuvant therapy for patients with borderline resectable disease to allow conversion to resectability. The objective of this review is to present the data supporting SBRT in pancreatic cancer as well as the potential limitations and caveats of current studies.

  13. Tissue Biomarkers for Prostate Cancer Radiation Therapy

    PubMed Central

    Tran, PT; Hales, RK; Zeng, J; Aziz, K; Salih, T; Gajula, RP; Chettiar, S; Gandhi, N; Wild, AT; Kumar, R; Herman, JM; Song, DY; DeWeese, TL

    2012-01-01

    Prostate cancer is the most common cancer and second leading cause of cancer deaths among men in the United States. Most men have localized disease diagnosed following an elevated serum prostate specific antigen test for cancer screening purposes. Standard treatment options consist of surgery or definitive radiation therapy directed by clinical factors that are organized into risk stratification groups. Current clinical risk stratification systems are still insufficient to differentiate lethal from indolent disease. Similarly, a subset of men in poor risk groups need to be identified for more aggressive treatment and enrollment into clinical trials. Furthermore, these clinical tools are very limited in revealing information about the biologic pathways driving these different disease phenotypes and do not offer insights for novel treatments which are needed in men with poor-risk disease. We believe molecular biomarkers may serve to bridge these inadequacies of traditional clinical factors opening the door for personalized treatment approaches that would allow tailoring of treatment options to maximize therapeutic outcome. We review the current state of prognostic and predictive tissue-based molecular biomarkers which can be used to direct localized prostate cancer treatment decisions, specifically those implicated with definitive and salvage radiation therapy. PMID:22292443

  14. Mapping the literature of radiation therapy

    PubMed Central

    Delwiche, Frances A.

    2013-01-01

    Objective: This study characterizes the literature of the radiation therapy profession, identifies the journals most frequently cited by authors writing in this discipline, and determines the level of coverage of these journals by major bibliographic indexes. Method: Cited references from three discipline-specific source journals were analyzed according to the Mapping the Literature of Allied Health Project Protocol of the Nursing and Allied Health Resources Section of the Medical Library Association. Bradford's Law of Scattering was applied to all journal references to identify the most frequently cited journal titles. Results: Journal references constituted 77.8% of the total, with books, government documents, Internet sites, and miscellaneous sources making up the remainder. Although a total of 908 journal titles were cited overall, approximately one-third of the journal citations came from just 11 journals. MEDLINE and Scopus provided the most comprehensive indexing of the journal titles in Zones 1 and 2. The source journals were indexed only by CINAHL and Scopus. Conclusion: The knowledgebase of radiation therapy draws heavily from the fields of oncology, radiology, medical physics, and nursing. Discipline-specific publications are not currently well covered by major indexing services, and those wishing to conduct comprehensive literature searches should search multiple resources. PMID:23646027

  15. Mapping the literature of radiation therapy.

    PubMed

    Delwiche, Frances A

    2013-04-01

    This study characterizes the literature of the radiation therapy profession, identifies the journals most frequently cited by authors writing in this discipline, and determines the level of coverage of these journals by major bibliographic indexes. Cited references from three discipline-specific source journals were analyzed according to the Mapping the Literature of Allied Health Project Protocol of the Nursing and Allied Health Resources Section of the Medical Library Association. Bradford's Law of Scattering was applied to all journal references to identify the most frequently cited journal titles. Journal references constituted 77.8% of the total, with books, government documents, Internet sites, and miscellaneous sources making up the remainder. Although a total of 908 journal titles were cited overall, approximately one-third of the journal citations came from just 11 journals. MEDLINE and Scopus provided the most comprehensive indexing of the journal titles in Zones 1 and 2. The source journals were indexed only by CINAHL and Scopus. The knowledgebase of radiation therapy draws heavily from the fields of oncology, radiology, medical physics, and nursing. Discipline-specific publications are not currently well covered by major indexing services, and those wishing to conduct comprehensive literature searches should search multiple resources.

  16. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  17. Radiation therapy in the management of pituitary adenomas.

    PubMed

    Pashtan, Itai; Oh, Kevin S; Loeffler, Jay S

    2014-01-01

    Radiation therapy in the form of fractionated treatment or radiosurgery has an important role in the management of pituitary adenomas. Radiation is a reliable way of gaining local control for radiographically progressing pituitary adenomas. For functioning adenomas that are biochemically recurrent or persistent, radiation therapy is less consistent in offering biochemical normalization and often requires a latency period of years or decades. The decision of when to use radiation therapy is a delicate balance between its benefits and late sequelae, especially in the context of benign disease. Recent technological advances in radiation oncology hold the potential to minimize dose to uninvolved normal tissue and therefore reduce the risk of toxicity.

  18. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy.

    PubMed

    Hess, Clayton B; Thompson, Holly M; Benedict, Stanley H; Seibert, J Anthony; Wong, Kenneth; Vaughan, Andrew T; Chen, Allen M

    2016-04-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning--a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of "gentle IGRT."

  19. Ghrelin as a Novel Therapy for Radiation Combined Injury

    PubMed Central

    Jacob, Asha; Shah, Kavin G; Wu, Rongqian; Wang, Ping

    2010-01-01

    The threat of nuclear terrorism has led to growing worldwide concern about exposure to radiation. Acute radiation syndrome, or radiation sickness, develops after whole-body or a partial-body irradiation with a high dose of radiation. In the terrorist radiation exposure scenario, however, radiation victims likely suffer from additional injuries such as trauma, burns, wounds or sepsis. Thus, high-dose radiation injuries and appropriate therapeutic interventions must be studied. Despite advances in our understanding of the pathophysiology of radiation injury, very little information is available on the therapeutic approaches to radiation combined injury. In this review, we describe briefly the pathological consequences of ionizing radiation and provide an overview of the animal models of radiation combined injury. We highlight the combined radiation and sepsis model we recently established and suggest the use of ghrelin, a novel gastrointestinal hormone, as a potential therapy for radiation combined injury. PMID:20101281

  20. Radiation Therapy For The Solitary Plasmacytoma.

    PubMed

    Koçak, Esengül; Ballerini, Giorgio; Zouhair, Abderrahim; Özşahin, Mahmut

    2010-06-05

    Plasma-cell neoplasms are classically categorized into four groups as: multiple myeloma (MM), plasma-cell leukemias, solitary plasmacytomas (SP) of the bone (SPB), and extramedullary plasmacytomas (EMP). These tumors may be described as localized or diffuse in presentation. Localized plasma-cell neoplasms are rare, and include SP of the skeletal system, accounting for 2-5% of all plasma-cell neoplasms, and EMP of soft tissue, accounting for approximately 3% of all such neoplasms. SP is defined as a solitary mass of neoplastic plasma cells either in the bone marrow or in various soft tissue sites. There appears to be a continuum in which SP often progresses to MM. The main treatment modality for SP is radiation therapy (RT). However, there are no conclusive data in the literature on the optimal RT dose for SP. This review describes the interrelationship of plasma-cell neoplasms, and attempts to determine the minimal RT dose required to obtain local control.

  1. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study

    SciTech Connect

    Lee, Katrina Lenards, Nishele; Holson, Janice

    2016-04-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient's neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient's data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  2. Radiation therapy students' perceptions of a wiki.

    PubMed

    Dungey, Gay; Gallagher, Peter

    2017-09-26

    This pilot study aimed to gain the perceptions of first-year students using a wiki as a learning tool for the Bachelor of Radiation Therapy degree in New Zealand. Literature suggests that wikis have great potential as an educational tool for both lecturers and students, because they encourage collaborative learning and resource sharing. In 2015, the 'Otago Wiki' platform was introduced as a part of the degree. The first-year students were allocated into groups of four. Using the 'Otago Wiki' tool, each group created their own wiki page by addressing assigned tasks over the course of the year that related to a fictional patient. At the end of the year they were invited to participate in an online Survey Monkey(™) questionnaire, which 15/26 students completed. We used a conventional approach to code the free-text responses for our content analysis. Three main themes emerged from the qualitative data: group work experience; developing a greater self-awareness of radiation therapy; and improving the learning experience. Although there is room for improvement, the quantitative data indicate that most students found the wiki to be a valuable group exercise, helping them to understand the patient experience. Overall, the students' perceptions of the wiki as a learning tool indicated that it was a worthwhile experience. Moving forward, wikis will continue to be used and incorporated into other modules in the first year. Setting clearer goals for each task would enable the students to use their time more efficiently in the future. Literature suggests that wikis have great potential as an educational tool for both lecturers and students. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  3. Ultraviolet radiation therapy and UVR dose models

    SciTech Connect

    Grimes, David Robert

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  4. Coronary artery disease following mediastinal radiation therapy

    SciTech Connect

    Annest, L.S.; Anderson, R.P.; Li, W.; Hafermann, M.D.

    1983-02-01

    Coronary artery disease occurred in four young men (mean age 41 years) who had received curative irradiation therapy for mediastinal malignancies 12 to 18 (mean 15) years previously. None was at high risk for developing coronary artery disease by Framingham criteria. Angiography demonstrated proximal coronary artery disease with normal distal vessels. Distribution of the lesions correlated with radiation dosimetry in that vessels exposed to higher radiation intensity were more frequently diseased. A total of 163 patients underwent mediastinal irradiation for lymphoma or thymoma between 1959 and 1980. Among the 29 who survived 10 or more years, five (18%) developed severe coronary artery disease, implicating thoracic radiotherapy as an important risk factor. Because of the importance of mantle irradiation in the treatment of lymphomas, the prevalence of these neoplasms, and the survival patterns following treatment, many long-term survivors may be at increased risk for the development of coronary artery disease. Recognition of the relationship between radiotherapy and coronary artery disease may lead to earlier diagnosis and more timely intervention.

  5. Coronary artery disease following mediastinal radiation therapy

    SciTech Connect

    Annest, L.S.; Anderson, R.P.; Li, W.; Hafermann, M.D.

    1983-02-01

    Coronary artery disease occurred in four young men (mean age 41 years) who had received curative irradiation therapy for mediastinal malignancies 12 to 18 (mean 15) years previously. None was at high risk for developing coronary artery disease by Framingham criteria. Angiography demonstrated proximal coronary artery disease with normal distal vessels. Distribution of the lesions correlated with radiation dosimetry in that vessels exposed to higher radiation intensity were more frequently diseased. Three patients had coronary bypass grafting for intractable angina and are asymptomatic at 10 to 43 months. A total of 163 patients underwent mediastinal irradiation for lymphoma or thymoma between 1959 and 1980. Among the 29 who survived 10 or more years, five (18%) developed severe coronary artery disease, implicating thoracic radiotherapy as an important risk factor. Because of the importance of mantle irradiation in the treatment of lymphomas, the prevalence of these neoplasms, and the survival patterns following treatment, many long-term survivors may be at increased risk for the development of coronary artery disease. Recognition of the relationship between radiotherapy and coronary artery disease may lead to earlier diagnosis and more timely intervention. Standard surgical treatment may be particularly beneficial because of the relative youth of most of these patients and because the proximal distribution of typical lesions increases the likelihood of complete revascularization.

  6. Ultraviolet radiation therapy and UVR dose models.

    PubMed

    Grimes, David Robert

    2015-01-01

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  7. Future Particle Accelerator Developments for Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Holzscheiter, Michael H.; Bassler, Niels

    During the last decade particle beam cancer therapy has seen a rapid increase in interest, and several new centers have been built, are currently under construction, or are in an advanced stage of planning. Typical treatment centers today consist of an accelerator capable of producing proton or ion beams in an energy range of interest for medical treatment, i.e. providing a penetration depth in water of about 30 cm, a beam delivery system to transport the produced beam to the patient treatment rooms, and several patient stations, allowing for an optimal usage of the continuously produced beam. This makes these centers rather large and consequently expensive. Only major hospital centers situated in an area where they can draw on a population of several million can afford such an installation. In order to spread the use of particle beam cancer therapy to a broader population base it will be necessary to scale down the facility size and cost. This can in principle be done by reducing the number of treatment rooms to one, eliminating the need of an elaborate beam delivery system, and thereby reducing the building size and cost. Such a change should be going in parallel with a reduction of the accelerator itself, and a number of approaches to this are currently being pursued. If successful, such developments could eventually lead to a compact system where all components would fit into a single shielded room, not much different in size from a typical radiation vault for radiotherapy with X-rays.

  8. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  9. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  10. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  11. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  12. Localized fibrous mesothelioma of pleura following external ionizing radiation therapy

    SciTech Connect

    Bilbey, J.H.; Mueller, N.L.M.; Miller, R.R.; Nelems, B.

    1988-12-01

    Carcinogenesis is a well-known complication of radiation exposure. Ionizing radiation also leads to an increased incidence of benign tumors. A 36-year-old woman had a localized fibrous mesothelioma of the pleura and an ipsilateral breast carcinoma 23 years after receiving external radiation therapy for treatment of a chest wall keloid.

  13. Coronary artery calcium in breast cancer survivors after radiation therapy.

    PubMed

    Takx, Richard A P; Vliegenthart, Rozemarijn; Schoepf, U Joseph; Pilz, Lothar R; Schoenberg, Stefan O; Morris, Pamela B; Henzler, Thomas; Apfaltrer, Paul

    2017-03-24

    The purpose of the current study is to investigate whether breast cancer survivors after radiation therapy have a higher burden of coronary artery calcium as a potential surrogate of radiation-induced accelerated coronary artery disease. 333 patients were included. 54 patients underwent chest CT ≥ 6 months after the start of radiation therapy (radiation therapy group), while 279 patients had a CT scan either prior to or without undergoing radiation therapy (RT). Coronary artery calcium was quantified from CT by applying a threshold-based automated algorithm. Mean age at diagnosis was similar (p = 0.771) between RT (57.4 ± 13.1 years) and NoRT (58.0 ± 11.9 years). Median time between radiation therapy and CT was 2 years. The groups showed no significant differences in race, smoking history, cancer laterality, or cancer stage. 39 (72.2%) of RT patients had a coronary artery calcium score of 0, compared to 201 (72.0%) in patients without radiation therapy. Median coronary artery calcium burden for both groups was not significantly different (p = 0.982), nor when comparing patients who underwent left- versus right-sided radiation therapy (p = 0.453). When adjusting for the time between diagnosis and CT, radiation therapy patients had a significantly lower risk of a positive coronary artery calcium score. In conclusion, breast cancer survivors after radiation therapy are not more likely to show coronary artery calcium on follow-up CT imaging. Our results thus do not support radiation-induced accelerated coronary artery disease as an explanation for higher rates of heart disease in this group.

  14. Results of multifield conformal radiation therapy of nonsmall-cell lung carcinoma using multileaf collimation beams.

    PubMed

    Bahri, S; Flickinger, J C; Kalend, A M; Deutsch, M; Belani, C P; Sciurba, F C; Luketich, J D; Greenberger, J S

    1999-01-01

    A five-field conformal technique with three-dimensional radiation therapy treatment planning (3-DRTP) has been shown to permit better definition of the target volume for lung cancer, while minimizing the normal tissue volume receiving greater than 50% of the target dose. In an initial study to confirm the safety of conventional doses, we used the five-field conformal 3-DRTP technique. We then used the technique in a second study, enhancing the therapeutic index in a series of 42 patients, as well as to evaluate feasibility, survival outcome, and treatment toxicity. Forty-two consecutive patients with nonsmall-cell lung carcinoma (NSCLC) were evaluated during the years 1993-1997. The median age was 60 years (range 34-80). The median radiation therapy (RT) dose to the gross tumor volume was 6,300 cGy (range 5,000-6,840 cGy) delivered over 6 to 6.5 weeks in 180-275 cGy daily fractions, 5 days per week. There were three patients who received a split course treatment of 5,500 cGy in 20 fractions, delivering 275 cGy daily with a 2-week break built into the treatment course after 10 fractions. The stages of disease were II in 2%, IIIA in 40%, IIIB in 42.9%, and recurrent disease in 14.3% of the patients. The mean tumor volume was 324.14 cc (range 88.3-773.7 cc); 57.1% of the patients received combined chemoradiotherapy, while the others were treated with radiation therapy alone. Of the 42 patients, 7 were excluded from the final analysis because of diagnosis of distant metastasis during treatment. Two of the patients had their histology reinterpreted as being other than NSCLC, 2 patients did not complete RT at the time of analysis, and 1 patient voluntarily discontinued treatment because of progressive deterioration. Median follow-up was 11.2 months (range 3-32.5 months). Survival for patients with Stage III disease was 70.2% at 1 year and 51.5% at 2 years, with median survival not yet reached. Local control for the entire series was 23.3+/-11.4% at 2 years. However, for

  15. Cancer and Radiation Therapy: Current Advances and Future Directions

    PubMed Central

    Baskar, Rajamanickam; Lee, Kuo Ann; Yeo, Richard; Yeoh, Kheng-Wei

    2012-01-01

    In recent years remarkable progress has been made towards the understanding of proposed hallmarks of cancer development and treatment. However with its increasing incidence, the clinical management of cancer continues to be a challenge for the 21st century. Treatment modalities comprise of radiation therapy, surgery, chemotherapy, immunotherapy and hormonal therapy. Radiation therapy remains an important component of cancer treatment with approximately 50% of all cancer patients receiving radiation therapy during their course of illness; it contributes towards 40% of curative treatment for cancer. The main goal of radiation therapy is to deprive cancer cells of their multiplication (cell division) potential. Celebrating a century of advances since Marie Curie won her second Nobel Prize for her research into radium, 2011 has been designated the Year of Radiation therapy in the UK. Over the last 100 years, ongoing advances in the techniques of radiation treatment and progress made in understanding the biology of cancer cell responses to radiation will endeavor to increase the survival and reduce treatment side effects for cancer patients. In this review, principles, application and advances in radiation therapy with their biological end points are discussed. PMID:22408567

  16. Radiation Therapy for Chloroma (Granulocytic Sarcoma)

    SciTech Connect

    Bakst, Richard; Wolden, Suzanne; Yahalom, Joachim

    2012-04-01

    Objectives: Chloroma (granulocytic sarcoma) is a rare, extramedullary tumor of immature myeloid cells related to acute nonlymphocytic leukemia or myelodysplastic syndrome. Radiation therapy (RT) is often used in the treatment of chloromas; however, modern studies of RT are lacking. We reviewed our experience to analyze treatment response, disease control, and toxicity associated with RT to develop treatment algorithm recommendations for patients with chloroma. Patients and Methods: Thirty-eight patients who underwent treatment for chloromas at our institution between February 1990 and June 2010 were identified and their medical records were reviewed and analyzed. Results: The majority of patients that presented with chloroma at the time of initial leukemia diagnosis (78%) have not received RT because it regressed after initial chemotherapy. Yet most patients that relapsed or remained with chloroma after chemotherapy are in the RT cohort (90%). Thirty-three courses of RT were administered to 22 patients. Radiation subsite breakdown was: 39% head and neck, 24% extremity, 9% spine, 9% brain, 6% genitourinary, 6% breast, 3% pelvis, and 3% genitourinary. Median dose was 20 (6-36) Gy. Kaplan-Meier estimates of progression-free survival and overall survival in the RT cohort were 39% and 43%, respectively, at 5 years. At a median follow-up of 11 months since RT, only 1 patient developed progressive disease at the irradiated site and 4 patients developed chloromas at other sites. RT was well tolerated without significant acute or late effects and provided symptom relief in 95% of cases. Conclusions: The majority of patients with chloromas were referred for RT when there was extramedullary progression, marrow relapse, or rapid symptom relief required. RT resulted in excellent local disease control and palliation of symptoms without significant toxicity. We recommend irradiating chloromas to at least 20 Gy, and propose 24 Gy in 12 fractions as an appropriate regimen.

  17. External beam radiation therapy for tracheobronchial amyloidosis.

    PubMed

    Neben-Wittich, Michelle A; Foote, Robert L; Kalra, Sanjay

    2007-07-01

    Tracheobronchial amyloidosis is a rare form of primary amyloidosis. There have been no regimens for treatment of this disease that have proven to be effective. There have been case reports of external beam radiation therapy (EBRT) providing marked improvement in symptoms and the appearance of lesions. We report a series of seven consecutive patients who were treated with EBRT. All patients with tracheobronchial amyloidosis were identified who had received EBRT at Mayo Clinic, Rochester, MN. A retrospective chart review was performed. Data were collected including symptoms, method of diagnosis, treatments, result of treatments, and side effects. All patients received 20 Gy of radiation in 10 fractions. All patients had a favorable response to treatment ranging from symptom relief to a decrease in the frequency of pulmonary infections and objective improvement in pulmonary function. The time to subjective improvement ranged from 1 month to 1 year from the completion of EBRT. Grade 1 esophagitis developed in four patients, and grade 2 esophagitis developed in one patient. Grade 2 pneumonitis that resolved after 10 days of treatment with antibiotics and corticosteroids developed in one patient. FEV(1) was the most consistently used method of objective follow-up, and three of seven patients showed improvement. Follow-up ranged from 10 to 69 months (median, 40 months). The recurrence of asymptomatic endobronchial narrowing requiring no additional treatment was noted on bronchoscopy in one patient after 17 months. Tracheobronchial amyloidosis has been difficult to treat due to the limitations of treatment, recurrence, and complications. EBRT appears to be safe and can provide symptomatic as well as objective improvement.

  18. Scatter factors assessment in microbeam radiation therapy

    SciTech Connect

    Prezado, Y.; Martinez-Rovira, I.; Sanchez, M.

    2012-03-15

    Purpose: The success of the preclinical studies in Microbeam Radiation Therapy (MRT) paved the way to the clinical trials under preparation at the Biomedical Beamline of the European Synchrotron Radiation Facility. Within this framework, an accurate determination of the deposited dose is crucial. With that aim, the scatter factors, which translate the absolute dose measured in reference conditions (2 x 2 cm{sup 2} field size at 2 cm-depth in water) to peak doses, were assessed. Methods: Monte Carlo (MC) simulations were performed with two different widely used codes, PENELOPE and GEANT4, for the sake of safety. The scatter factors were obtained as the ratio of the doses that are deposited by a microbeam and by a field of reference size, at the reference depth. The calculated values were compared with the experimental data obtained by radiochromic (ISP HD-810) films and a PTW 34070 large area chamber. Results: The scatter factors for different microbeam field sizes assessed by the two MC codes were in agreement and reproduced the experimental data within uncertainty bars. Those correction factors were shown to be non-negligible for the future MRT clinical settings: an average 30% lower dose was deposited by a 50 {mu}m microbeam with respect to the reference conditions. Conclusions: For the first time, the scatter factors in MRT were systematically studied. They constitute an essential key to deposit accurate doses in the forthcoming clinical trials in MRT. The good agreement between the different calculations and the experimental data confirms the reliability of this challenging micrometric dose estimation.

  19. Postoperative abdominopelvic radiation therapy for ovarian cancer

    SciTech Connect

    Goldberg, N.; Peschel, R.E.

    1988-03-01

    From 1963 through 1984, 74 patients with Stage I, II, or III epithelial ovarian cancer who completed a total hysterectomy and debulking procedure and had less than 2 cm residual disease were treated with whole abdominal and pelvic boost radiation therapy (WAP) at Yale-New Haven Hospital. WAP consisted of a whole abdominal dose of 1750 to 2500 cGy (at 100-160 cGy per fraction) and a total pelvic dose of 4000-4600 cGy. Based on stage, amount of residual disease, pathologic type, and grade of tumor, the 74 patients were classified into a favorable group (FG) and an unfavorable group (UG) using the classification scheme developed at the Princess Margaret Hospital (PMH). The actuarial survival at 10 years for the FG patients was 77% (+/- 10%, 95% confidence limits) and for the UG patients was only 7% (+/- 13%). Local control of disease in the abdomen and pelvis was 87% in the FG and only 36% in the UG. Severe long-term complications occurred in 7% of the patients and consisted of small bowel obstruction. Our results strongly indicate that the PMH classification of FG and UG is useful in our patient population in determining which subgroup of patients should be offered WAP.

  20. Virtual micro-intensity modulated radiation therapy.

    PubMed

    Siochi, R A

    2000-11-01

    Virtual micro-intensity modulated radiation therapy (VMIMRT) combines a 10 x 5 mm2 intensity map with a 5 x 10 mm2 intensity map, delivered at orthogonal collimator settings. The superposition of these component maps (CM) yields a 5 x 5 mm2 virtual micro-intensity map (VMIM) that can be delivered with a 1 cm leaf width MLC. A pair of CMs with optimal delivery efficiency and quality must be chosen, since a given VMIM can be delivered using several different pairs. This is possible since, for each group of four VMIM cells that can be covered by an MLC leaf in either collimator orientation, the minimum intensity can be delivered from either collimator setting. By varying the proportions of the minimum values that go into each CM, one can simultaneously minimize the number of potential junction effects and the number of segments required to deliver the VMIM. The minimization is achieved by reducing high leaf direction gradients in the CMs. Several pseudoclinical and random VMIMs were studied to determine the applicability of this new technique. A nine level boost map was also studied to investigate dosimetric and spatial resolution issues. Finally, clinical issues for this technique are discussed.

  1. Clinical applications of advanced rotational radiation therapy

    NASA Astrophysics Data System (ADS)

    Nalichowski, Adrian

    Purpose: With a fast adoption of emerging technologies, it is critical to fully test and understand its limits and capabilities. In this work we investigate new graphic processing unit (GPU) based treatment planning algorithm and its applications in helical tomotherapy dose delivery. We explore the limits of the system by applying it to challenging clinical cases of total marrow irradiation (TMI) and stereotactic radiosurgery (SRS). We also analyze the feasibility of alternative fractionation schemes for total body irradiation (TBI) and TMI based on reported historical data on lung dose and interstitial pneumonitis (IP) incidence rates. Methods and Materials: An anthropomorphic phantom was used to create TMI plans using the new GPU based treatment planning system and the existing CPU cluster based system. Optimization parameters were selected based on clinically used values for field width, modulation factor and pitch. Treatment plans were also created on Eclipse treatment planning system (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) for dose delivery on IX treatment unit. A retrospective review was performed of 42 publications that reported IP rates along with lung dose, fractionation regimen, dose rate and chemotherapy. The analysis consisted of nearly thirty two hundred patients and 34 unique radiation regimens. Multivariate logistic regression was performed to determine parameters associated with IP and establish does response function. Results: The results showed very good dosimetric agreement between the GPU and CPU calculated plans. The results from SBRT study show that GPU planning system can maintain 90% target coverage while meeting all the constraints of RTOG 0631 protocol. Beam on time for Tomotherapy and flattening filter free RapidArc was much faster than for Vero or Cyberknife. Retrospective data analysis showed that lung dose and Cyclophosphomide (Cy) are both predictors of IP in TBI/TMI treatments. The

  2. Multidimensional Image Analysis for High Precision Radiation Therapy.

    PubMed

    Arimura, Hidetaka; Soufi, Mazen; Haekal, Mohammad

    2017-01-01

    High precision radiation therapy (HPRT) has been improved by utilizing conventional image engineering technologies. However, different frameworks are necessary for further improvement of HPRT. This review paper attempted to define the multidimensional image and what multidimensional image analysis is, which may be feasible for increasing the accuracy of HPRT. A number of researches in radiation therapy field have been introduced to understand the multidimensional image analysis. Multidimensional image analysis could greatly assist clinical staffs in radiation therapy planning, treatment, and prediction of treatment outcomes.

  3. Thymic cysts following radiation therapy for Hodgkin disease

    SciTech Connect

    Baron, R.L.; Sagel, S.S.; Baglan, R.J.

    1981-12-01

    In 3 patients, benign thymic cycsts developed following radiation therapy for Hodgkin disease. Autopsy or surgical specimens provided a diagnosis in all 3 cases; computed tomographic (CT) scans obtained in two of the patients provided a preoperative diagnosis. The etiology of these cysts is uncertain; they may arise following successful radiation treatment of Hodgkin disease involving the thymus. When an anterior mediastinal mass develops in a patient with Hodgkin disease following radiation therapy, careful evaluation to exclude a benign process is indicated prior to initiating additional therapy.

  4. Mesenchymal stem cell therapy for acute radiation syndrome.

    PubMed

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches.

  5. Overview: Where does radiation therapy fit in the spectrum of liver cancer local-regional therapies?

    PubMed

    Dawson, Laura A

    2011-10-01

    Experience with radiation therapy for the treatment of hepatocellular carcinoma (HCC) and liver metastases has increased rapidly in the past decade. This is principally because of advances in imaging and radiation techniques that can conform high doses to focal cancers and to a better understanding of how to avoid radiation-induced liver toxicity. Guidelines on how to use radiation therapy safely are becoming more clearly established, and reports of tumor control at 2 to 5 years show the potential for cure after radiation therapy for early-stage HCC and liver metastases. For both HCC and liver metastases, the best outcomes after radiation therapy are found in patients with fewer than 3 lesions that are <6 cm in size, with intact liver function and no extrahepatic metastases. There is a strong rationale for using radiation therapy in patients unsuitable for or with expected poor outcomes after standard local-regional therapies. These patients tend to have advanced tumors (large, multifocal, or invading vessels) and/or impaired liver function, reducing the chance of cure and increasing the chance of toxicity. In these patients, the benefits of radiation therapy over systemic therapy or best supportive therapy should be established in randomized trials.

  6. Treatment of pathologic fracture following postoperative radiation therapy: clinical study.

    PubMed

    Kim, Chul-Man; Park, Min-Hyeog; Yun, Seong-Won; Kim, Jin-Wook

    2015-12-01

    Pathologic fractures are caused by diseases that lead to weakness of the bone structure. This process sometimes occurs owing to bony change after radiation therapy. Treatment of pathologic fractures may be difficult because of previous radiation therapy. In this study, we analyzed clinical and radiographic data and progress of five patients with mandibular pathological fractures who had received postoperative radiation therapy following cancer surgery. Patients received an average radiation dose of 59.2 (SD, 7.2) Gy. Four of five patients exhibited bone union regardless of whether open reduction and internal fixation (OR/IF) was performed. Patients have the potential to heal after postoperative radiation therapy. Treatment of a pathologic fracture following postoperative radiation therapy, such as traditional treatment for other types of fractures, may be performed using OR/IF or CR. OR/IF may be selected in cases of significant bone deviation, small remaining bone volume, or occlusive change. Patients have the potential to heal after postoperative radiation therapy.

  7. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  8. Selective internal radiation therapy for liver malignancies.

    PubMed

    Moir, J A G; Burns, J; Barnes, J; Colgan, F; White, S A; Littler, P; Manas, D M; French, J J

    2015-11-01

    Selective internal radiation therapy (SIRT) is a non-ablative technique for the treatment of liver primaries and metastases, with the intention of reducing tumour bulk. This study aimed to determine optimal patient selection, and elucidate its role as a downsizing modality. Data were collected retrospectively on patients who underwent SIRT between 2011 and 2014. The procedure was performed percutaneously by an expert radiologist. Response was analysed in two categories, based on radiological (CT/MRI according to Response Evaluation Criteria In Solid Tumours (RECIST)) and biological (α-fetoprotein, carcinoembryonic antigen, carbohydrate antigen 19-9, chromogranin A) parameters. Forty-four patients were included. Liver metastases from colorectal cancer (22 patients) and hepatocellular carcinoma (HCC) (9) were the most common pathologies. Radiological response data were collected from 31 patients. A reduction in sum of diameters (SOD) was observed in patients with HCC (median -24.1 (95 per cent c.i. -43.4 to -3.8) per cent) and neuroendocrine tumours (-30.0 (-45.6 to -7.7) per cent), whereas a slight increase in SOD was seen in patients with colorectal cancer (4.9 (-10.6 to 55.3) per cent). Biological response was assessed in 17 patients, with a reduction in 12, a mixed response in two and no improvement in three. Six- and 12-month overall survival rates were 71 and 41 per cent respectively. There was no difference in overall survival between the RECIST response groups (median survival 375, 290 and 214 days for patients with a partial response, stable disease and progressive disease respectively; P = 0.130), or according to primary pathology (P = 0.063). Seven patients underwent liver resection with variable responses after SIRT. SIRT may be used to downsize tumours and may be used as a bridge to surgery in patients with tumours deemed borderline for resection. © 2015 BJS Society Ltd Published by John Wiley & Sons Ltd.

  9. Radiation therapy among atomic bomb survivors, Hiroshima and Nagasaki.

    PubMed

    Kato, K; Antoku, S; Russell, W J; Fujita, S; Pinkston, J A; Hayabuchi, N; Hoshi, M; Kodama, K

    1998-06-01

    As a follow-up to the two previous surveys of radiation therapy among the atomic bomb survivors, a large-scale survey was performed to document (1) the number of radiation therapy treatments received by the atomic bomb survivors and (2) the types of radiation treatments conducted in Hiroshima and Nagasaki. The previous two surveys covered the radiation treatments among the Radiation Effects Research Foundation Adult Health Study (AHS) population, which is composed of 20,000 persons. In the present survey, the population was expanded to include the Life Span Study (LSS), including 93,611 atomic bomb survivors and 26,517 Hiroshima and Nagasaki citizens who were not in the cities at the times of the bombings. The LSS population includes the AHS population. The survey was conducted from 1981 to 1984. The survey teams reviewed all the medical records for radiation treatments of 24,266 patients at 11 large hospitals in Hiroshima and Nagasaki. Among them, the medical records for radiation treatments of 1556 LSS members were reviewed in detail. By analyzing the data obtained in the present and previous surveys, the number of patients receiving radiation therapy was estimated to be 4501 (3.7%) in the LSS population and 1026 (5.1%) in the AHS population between 1945-1980. During 1945-1965, 98% of radiation treatments used medium-voltage X rays, and 66% of the treatments were for benign diseases. During 1966-1980, 94% of the radiation treatments were for malignant neoplasms. During this period, 60Co gamma-ray exposure apparatus and high-energy electron accelerators were the prevalent mode of treatment in Hiroshima and in Nagasaki, respectively. The mean frequency of radiation therapy among the LSS population was estimated to have been 158 courses/year during 1945-1965 and 110 courses/year during 1966-1980. The present survey revealed that 377 AHS members received radiation therapy. The number was approximately twice the total number of cases found in the previous two surveys

  10. Measurement of dose in radionuclide therapy by using Cerenkov radiation.

    PubMed

    Ai, Yao; Tang, Xiaobin; Shu, Diyun; Shao, Wencheng; Gong, Chunhui; Geng, Changran; Zhang, Xudong; Yu, Haiyan

    2017-08-14

    This work aims to determine the relationship between Cerenkov photon emission and radiation dose from internal radionuclide irradiation. Water and thyroid phantoms were used to simulate the distribution of Cerenkov photon emission and dose deposition through Monte Carlo method. The relationship between Cerenkov photon emission and dose deposition was quantitatively analyzed. A neck phantom was also used to verify Cerenkov photon detection for thyroid radionuclide therapy. Results show that Cerenkov photon emission and dose deposition exhibit the same distribution pattern in water phantom, and this relative distribution relationship also existed in the thyroid phantom. Moreover, Cerenkov photon emission exhibits a specific quantitative relation to dose deposition. For thyroid radionuclide therapy, only a part of Cerenkov photon produced by thyroid could penetrate the body for detection; therefore, the use of Cerenkov radiation for measurement of radionuclide therapy dose may be more suitable for superficial tumors. This study demonstrated that Cerenkov radiation has the potential to be used for measuring radiation dose for radionuclide therapy.

  11. [Follow-up after radiation therapy for cervical cancer].

    PubMed

    Cao, K I; Mazeron, R; Barillot, I

    2015-10-01

    Radiation therapy plays a central role in treatment strategies of cervical cancer. Follow-up after external pelvic radiation therapy and brachytherapy is based upon French and international specific recommendations. It aims to assess early tumour response, and to detect local or metastatic recurrences which can be suitable for salvage treatment. Follow-up after radiation therapy for cervical cancer should also assess gastro-intestinal, urinary and sexual toxicities which may have an impact on quality of life. This is a major concern in the evaluation of the results of intensity-modulated radiation therapy (IMRT) and MRI-guided brachytherapy, which should lead to a better local control and to a better bowel tolerance.

  12. What to Know about External Beam Radiation Therapy

    MedlinePlus

    ... wife and children.” U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health About the treatment: What is external beam radiation therapy? ■ It is a common cancer treatment that ...

  13. Controlled study of CCNU and radiation therapy in malignant astrocytoma.

    PubMed

    Reagan, T J; Bisel, H F; Childs, D S; Layton, D D; Rhoton, A L; Taylor, W F

    1976-02-01

    The authors report 63 patients with biopsy-proved malignant (Grades 3 and 4) astrocytomas who were randomly placed in one of three treatment schedules within 2 weeks of surgery. One group (22 patients) received radiation therapy alone; the second group (22 patients) received 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) orally at intervals of 8 weeks; and the third group (19 patients) received combined radiation and drug therapy. Patients who received radiation therapy, with or without the drug, had a significantly longer survival than did those who received the drug alone. There was no difference in survival between the two groups who received radiation. The nitrosourea derivative CCNU does not seem to be an effective agent in the therapy of primary malignant brain tumors.

  14. Thyroid neoplasia following radiation therapy for Hodgkin's lymphoma

    SciTech Connect

    McHenry, C.; Jarosz, H.; Calandra, D.; McCall, A.; Lawrence, A.M.; Paloyan, E.

    1987-06-01

    The question of thyroid neoplasia following high-dose radiation treatment to the neck and mediastinum for malignant neoplasms such as Hodgkin's lymphoma in children and young adults has been raised recently. Five patients, 19 to 39 years old, were operated on for thyroid neoplasms that developed following cervical and mediastinal radiation therapy for Hodgkin's lymphoma. Three patients had papillary carcinomas and two had follicular adenomas. The latency period between radiation exposure and the diagnosis of thyroid neoplasm ranged from eight to 16 years. This limited series provided strong support for the recommendation that children and young adults who are to receive high-dose radiation therapy to the head, neck, and mediastinum should receive suppressive doses of thyroxine prior to radiation therapy in order to suppress thyrotropin (thyroid-stimulating hormone) and then be maintained on a regimen of suppression permanently.

  15. Advanced Interventional Therapy for Radiation-Induced Cardiovascular Disease

    PubMed Central

    2016-01-01

    This report describes the case of a 61-year-old woman who presented with dyspnea, aortic stenosis, and coronary artery disease—typical side effects of radiation therapy for Hodgkin lymphoma. A poor candidate for surgery, she underwent successful high-risk percutaneous coronary intervention and subsequent transcatheter aortic valve replacement. This report highlights some of the cardiovascular-specific sequelae of radiation therapy for cancer treatment; in addition, possible directions for future investigations are discussed. PMID:27547140

  16. Adjuvant radiation therapy, local recurrence, and the need for salvage therapy in atypical meningioma

    PubMed Central

    Aizer, Ayal A.; Arvold, Nils D.; Catalano, Paul; Claus, Elizabeth B.; Golby, Alexandra J.; Johnson, Mark D.; Al-Mefty, Ossama; Wen, Patrick Y.; Reardon, David A.; Lee, Eudocia Q.; Nayak, Lakshmi; Rinne, Mikael L.; Beroukhim, Rameen; Weiss, Stephanie E.; Ramkissoon, Shakti H.; Abedalthagafi, Malak; Santagata, Sandro; Dunn, Ian F.; Alexander, Brian M.

    2014-01-01

    Background The impact of adjuvant radiation in patients with atypical meningioma remains poorly defined. We sought to determine the impact of adjuvant radiation therapy in this population. Methods We identified 91 patients with World Health Organization grade II (atypical) meningioma managed at Dana-Farber/Brigham and Women's Cancer Center between 1997 and 2011. A propensity score model incorporating age at diagnosis, gender, Karnofsky performance status, tumor location, tumor size, reason for diagnosis, and era of treatment was constructed using logistic regression for the outcome of receipt versus nonreceipt of radiation therapy. Propensity scores were then used as continuous covariates in a Cox proportional hazards model to determine the adjusted impact of adjuvant radiation therapy on both local recurrence and the combined endpoint of use of salvage therapy and death due to progressive meningioma. Results The median follow-up in patients without recurrent disease was 4.9 years. After adjustment for pertinent confounding variables, radiation therapy was associated with decreased local recurrence in those undergoing gross total resection (hazard ratio, 0.25; 95% CI, 0.07–0.96; P = .04). No differences in overall survival were seen in patients who did and did not receive radiation therapy. Conclusion Patients who have had a gross total resection of an atypical meningioma should be considered for adjuvant radiation therapy given the improvement in local control. Multicenter, prospective trials are required to definitively evaluate the potential impact of radiation therapy on survival in patients with atypical meningioma. PMID:24891451

  17. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  18. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    SciTech Connect

    Gay, Hiram A.; Barthold, H. Joseph; O'Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; and others

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  19. [Reappraisal role of locoregional radiation therapy in metastatic cancers].

    PubMed

    Rancoule, Chloé; Pacaut-Vassal, Cécile; Vallard, Alexis; Mery, Benoite; Trone, Jane-Chloé; El Meddeb Hamrouni, Anis; Magné, Nicolas

    2017-01-01

    Recent innovations in oncology area helped to improve the prognosis of certain cancers including metastatic ones with a decrease in mortality. Recommendations describe the treatment of metastatic cancer as systemic therapy or complementary care and the role of locoregional treatment in the treatment plan only occurs in a palliative context. Currently, in the clinical practice, out of "the evidence based medicine", an early locoregional therapy (surgery or radiation therapy) can be proposed in several cases of metastatic cancers. The aim of the present review is to describe the role of the primary tumor radiation therapy in metastatic disease. In metastatic breast, prostate, cervix, rectal or nasopharyngeal cancers, locoregional treatment including radiation therapy can, in some cases, be discussed and decided in MDT. Ongoing clinical trials in these locations should soon precise the benefit of this locoregional treatment. It will also be important to define the specific criteria in order to select patients who could benefit from this treatment.

  20. An Investigation of Vascular Strategies to Augment Radiation Therapy

    NASA Astrophysics Data System (ADS)

    El Kaffas, Ahmed Nagy

    Radiation therapy is administered to more than 50% of patients diagnosed with cancer. Mechanisms of interaction between radiation and tumour cells are relatively well understood on a molecular level, but much remains uncertain regarding how radiation interacts with the tumour as a whole. Recent studies have suggested that tumour response to radiation may in fact be regulated by endothelial cell response, consequently stressing the role of tumour blood vessels in radiation treatment response. As a result, various treatment regimens have been proposed to strategically combine radiation with vascular targeting agents. A great deal of effort has been aimed towards developing efficient vascular targeting agents. Nonetheless, no optimal method has yet been devised to strategically deliver such agents. Recent evidence suggesting that these drugs may "normalize" tumour blood vessels and enhance radiosensitivity, is supporting experiments where anti-angiogenic drugs are combined with cytotoxic therapies such as radiotherapy. In contrast, ultrasound-stimulated microbubbles have recently been demonstrated to enhance radiation therapy by biophysically interacting with endothelial cells. When combined with single radiation doses, these microbubbles are believed to cause localized vascular destruction followed by tumour cell death. Finally, a new form of 'pro-angiogenics' has also been demonstrated to induce a therapeutic tumour response. The overall aim of this thesis is to study the role of tumour blood vessels in treatment responses to single-dose radiation therapy and to investigate radiation-based vascular targeting strategies. Using pharmacological and biophysical agents, blood vessels were altered to determine how they influence tumour cell death, clonogenicity, and tumour growth, and to study how these may be optimally combined with radiation. Three-dimensional high-frequency power Doppler ultrasound was used throughout these studies to investigate vascular response to

  1. Image-Guidance for Stereotactic Body Radiation Therapy

    SciTech Connect

    Fuss, Martin . E-mail: fussm@ohsu.edu; Boda-Heggemann, Judit; Papanikolau, Nikos; Salter, Bill J.

    2007-07-01

    The term stereotactic body radiation therapy (SBRT) describes a recently introduced external beam radiation paradigm by which small lesions outside the brain are treated under stereotactic conditions, in a single or few fractions of high-dose radiation delivery. Similar to the treatment planning and delivery process for cranial radiosurgery, the emphasis is on sparing of adjacent normal tissues through the creation of steep dose gradients. Thus, advanced methods for assuring an accurate relationship between the target volume position and radiation beam geometry, immediately prior to radiation delivery, must be implemented. Such methods can employ imaging techniques such as planar (e.g., x-ray) or volumetric (e.g., computed tomography [CT]) approaches and are commonly summarized under the general term image-guided radiation therapy (IGRT). This review summarizes clinical experience with volumetric and ultrasound based image-guidance for SBRT. Additionally, challenges and potential limitations of pre-treatment image-guidance are presented and discussed.

  2. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    ERIC Educational Resources Information Center

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  3. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    ERIC Educational Resources Information Center

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  4. Persistence of endometrial activity after radiation therapy for cervical carcinoma

    SciTech Connect

    Barnhill, D.; Heller, P.; Dames, J.; Hoskins, W.; Gallup, D.; Park, R.

    1985-12-01

    Radiation therapy is a proved treatment for cervical carcinoma; however, it destroys ovarian function and has been thought to ablate the endometrium. Estrogen replacement therapy is often prescribed for patients with cervical carcinoma after radiation therapy. A review of records of six teaching hospitals revealed 16 patients who had endometrial sampling for uterine bleeding after standard radiation therapy for cervical carcinoma. Fifteen patients underwent dilatation and curettage, and one patient underwent total abdominal hysterectomy and bilateral salpingo-oophorectomy when a dilatation and curettage was unsuccessful. Six patients had fibrosis and inflammation of the endometrial cavity, seven had proliferative endometrium, one had cystic hyperplasia, one had atypical adenomatous hyperplasia, and one had adenocarcinoma. Although the number of patients who have an active endometrium after radiation therapy for cervical carcinoma is not known, this report demonstrates that proliferative endometrium may persist, and these patients may develop endometrial hyperplasia or adenocarcinoma. Studies have indicated that patients with normal endometrial glands have an increased risk of developing endometrial adenocarcinoma if they are treated with unopposed estrogen. Patients who have had radiation therapy for cervical carcinoma should be treated with estrogen and a progestational agent to avoid endometrial stimulation from unopposed estrogen therapy.

  5. Three-Phase Adaptive Radiation Therapy for Patients With Nasopharyngeal Carcinoma Undergoing Intensity-Modulated Radiation Therapy: Dosimetric Analysis.

    PubMed

    Deng, Shan; Liu, Xu; Lu, Heming; Huang, Huixian; Shu, Liuyang; Jiang, Hailan; Cheng, Jinjian; Peng, Luxing; Pang, Qiang; Gu, Junzhao; Qin, Jian; Lu, Zhiping; Mo, Ying; Wu, Danling; Wei, Yinglin

    2017-01-01

    Patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy may experience significant anatomic changes throughout the entire treatment course, and adaptive radiation therapy may be necessary to maintain optimal dose delivered both to the targets and to the critical structures. The timing of adaptive radiation therapy, however, is largely unknown. This study was to evaluate the dosimetric benefits of a 3-phase adaptive radiation therapy technique for nasopharyngeal carcinoma. Twenty patients with nasopharyngeal carcinoma treated with intensity-modulated radiation therapy were recruited prospectively. After fractions 5 and 15, each patient had repeat computed tomography scans, and adaptive replans with recontouring the targets and organs at risk on the new computed tomography images were generated and used for subsequent treatment (replan 1 and replan 2). Two hybrid intensity-modulated radiation therapy plans (plan 1 and plan 2) were generated by superimposing the initial plan (plan 0) to each repeated new computed tomography image, reflecting the actual dose delivered to the targets and organs at risk if no changes were made to the original plan. Dosimetric comparisons were made between the adaptive replans (adaptive radiation therapy plans: plan 0 + replan 1 + replan 2) and their corresponding nonadaptive radiation therapy plans (plan 0 + plan 1 + plan 2). Comparing with the nonadaptive radiation therapy plans, the adaptive radiation therapy plans resulted in a significant improvement in conformity index for planning target volumes for primary disease, involved lymph node, high-risk clinical target volume, and low-risk clinical target volume (PTVnx, PTVnd, PTV1, and PTV2, respectively). Median V95 for PTVnx; D95, D99, V100, V95, and V93 for PTVnd; D99 and V100 for PTV1; and D95, D99, V100, V95, and V93 for PTV2 were increased significantly. There were significant dose-volume reductions, including maximum doses to the brainstem and

  6. Prototype demonstration of radiation therapy planning code system

    SciTech Connect

    Little, R.C.; Adams, K.J.; Estes, G.P.; Hughes, L.S. III; Waters, L.S.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). Radiation therapy planning is the process by which a radiation oncologist plans a treatment protocol for a patient preparing to undergo radiation therapy. The objective is to develop a protocol that delivers sufficient radiation dose to the entire tumor volume, while minimizing dose to healthy tissue. Radiation therapy planning, as currently practiced in the field, suffers from inaccuracies made in modeling patient anatomy and radiation transport. This project investigated the ability to automatically model patient-specific, three-dimensional (3-D) geometries in advanced Los Alamos radiation transport codes (such as MCNP), and to efficiently generate accurate radiation dose profiles in these geometries via sophisticated physics modeling. Modem scientific visualization techniques were utilized. The long-term goal is that such a system could be used by a non-expert in a distributed computing environment to help plan the treatment protocol for any candidate radiation source. The improved accuracy offered by such a system promises increased efficacy and reduced costs for this important aspect of health care.

  7. Planning and delivery of intensity-modulated radiation therapy.

    PubMed

    Yu, Cedric X; Amies, Christopher J; Svatos, Michelle

    2008-12-01

    Intensity modulated radiation therapy (IMRT) is an advanced form of external beam radiation therapy. IMRT offers an additional dimension of freedom as compared with field shaping in three-dimensional conformal radiation therapy because the radiation intensities within a radiation field can be varied according to the preferences of locations within a given beam direction from which the radiation is directed to the tumor. This added freedom allows the treatment planning system to better shape the radiation doses to conform to the target volume while sparing surrounding normal structures. The resulting dosimetric advantage has shown to translate into clinical advantages of improving local and regional tumor control. It also offers a valuable mechanism for dose escalation to tumors while simultaneously reducing radiation toxicities to the surrounding normal tissue and sensitive structures. In less than a decade, IMRT has become common practice in radiation oncology. Looking forward, the authors wonder if IMRT has matured to such a point that the room for further improvement has diminished and so it is pertinent to ask what the future will hold for IMRT. This article attempts to look from the perspective of the current state of the technology to predict the immediate trends and the future directions. This article will (1) review the clinical experience of IMRT; (2) review what we learned in IMRT planning; (3) review different treatment delivery techniques; and finally, (4) predict the areas of advancements in the years to come.

  8. Once-Daily Radiation Therapy for Inflammatory Breast Cancer

    SciTech Connect

    Brown, Lindsay; Harmsen, William; Blanchard, Miran; Goetz, Matthew; Jakub, James; Mutter, Robert; Petersen, Ivy; Rooney, Jessica; Stauder, Michael; Yan, Elizabeth; Laack, Nadia

    2014-08-01

    Purpose: Inflammatory breast cancer (IBC) is a rare and aggressive breast cancer variant treated with multimodality therapy. A variety of approaches intended to escalate the intensity and efficacy of radiation therapy have been reported, including twice-daily radiation therapy, dose escalation, and aggressive use of bolus. Herein, we examine our outcomes for patients treated with once-daily radiation therapy with aggressive bolus utilization, focusing on treatment technique. Methods and Materials: A retrospective review of patients with nonmetastatic IBC treated from January 1, 2000, through December 31, 2010, was performed. Locoregional control (LRC), disease-free survival (DFS), overall survival (OS) and predictors thereof were assessed. Results: Fifty-two women with IBC were identified, 49 (94%) of whom were treated with neoadjuvant chemotherapy. All underwent mastectomy followed by adjuvant radiation therapy. Radiation was delivered in once-daily fractions of 1.8 to 2.25 Gy (median, 2 Gy). Patients were typically treated with daily 1-cm bolus throughout treatment, and 33 (63%) received a subsequent boost to the mastectomy scar. Five-year Kaplan Meier survival estimates for LRC, DFS, and OS were 81%, 56%, and 64%, respectively. Locoregional recurrence was associated with poorer OS (P<.001; hazard ratio [HR], 4.1). Extracapsular extension was associated with worse LRC (P=.02), DFS (P=.007), and OS (P=.002). Age greater than 50 years was associated with better DFS (P=.03). Pathologic complete response was associated with a trend toward improved LRC (P=.06). Conclusions: Once-daily radiation therapy with aggressive use of bolus for IBC results in outcomes consistent with previous reports using various intensified radiation therapy regimens. LRC remains a challenge despite modern systemic therapy. Extracapsular extension, age ≤50 years, and lack of complete response to chemotherapy appear to be associated with worse outcomes. Novel strategies are needed in IBC

  9. Oxygenation-Enhanced Radiation Therapy of Breast Tumors

    DTIC Science & Technology

    2011-11-01

    10-1-0751 TITLE: Oxygenation-Enhanced Radiation Therapy of Breast Tumors PRINCIPAL INVESTIGATOR: Dr. Mikhail Skliar...locoregional breast cancer has evolved from radical mastectomy to targeted local therapy with breast conservation. The efficacy of conserving treatments...of breast cancers is impeded by tumor hypoxia, which affects 50% of locally advanced breast tumors. Poor oxygenation of hypoxic tumors reduces

  10. Helical Electron Avoidance Radiation Therapy (HEART) for Breast Cancer Treatment

    DTIC Science & Technology

    2005-04-01

    electron beams. Our end point is to test the technical feasibilities of generating helical electrons and its applications for breast cancer treatments . We...therapy", Int. J. Rad. Oncol. 48(2000) No. 3, 219. Summary 9 The BC99087 project "Helical Electron Beam Avoidance Radiation Therapy for Breast Cancer Treatments " completed

  11. Functional imaging in treatment planning in radiation therapy: a review.

    PubMed

    Perez, Carlos A; Bradley, Jeffrey; Chao, Clifford K S; Grigsby, Perry W; Mutic, Sasa; Malyapa, Robert

    2002-01-01

    The remarkable technical developments obtained in radiation oncology have resulted in an increasing use of image-based treatment planning in radiation therapy for three-dimensional and intensity modulated radiation therapy, stereotactic irradiation and image-guided brachytherapy. There has been increased use of computer-based record and verify systems as well as electronic portal imaging to enhance treatment delivery. From the data presented it is evident that PET scanning and other functional imaging techniques play a major role in the definition of tumor extent and staging of patients with cancer. The recent introduction of a combined CT and PET scanner will substantially simplify image acquisition and treatment planning.

  12. Radiation-blocking glasses allow vision during ophthalmic plaque radiation therapy.

    PubMed

    Finger, Paul T; Szechter, Andrzej

    2004-06-01

    To evaluate the use of leaded safety glasses to block radiation and allow for vision during ophthalmic plaque radiation therapy. Interventional case series. Eight patients were treated with palladium 103 ophthalmic plaque radiotherapy and measured for emitted radiation while wearing leaded glasses or a lead patch. Radiation emission was measured at 1 m so as to compare the glasses' ability to block radiation in vivo. In two patients the tumor was in the patients' only seeing eye, and the leaded radiation safety glasses allowed them to function (feed themselves and walk to the bathroom unassisted). In two additional patients, the glasses allowed binocularity and were preferred over the patch. Measurements revealed that both the lead patch and leaded radiation safety glasses reduced exposure to levels acceptable for discharge to home in New York City. Leaded radiation safety glasses improved patients' quality of life without sacrificing radiation safety.

  13. Music therapy CD creation for initial pediatric radiation therapy: a mixed methods analysis.

    PubMed

    Barry, Philippa; O'Callaghan, Clare; Wheeler, Greg; Grocke, Denise

    2010-01-01

    A mixed methods research design was used to investigate the effects of a music therapy CD (MTCD) creation intervention on pediatric oncology patients' distress and coping during their first radiation therapy treatment. The music therapy method involved children creating a music CD using interactive computer-based music software, which was "remixed" by the music therapist-researcher to extend the musical material. Eleven pediatric radiation therapy outpatients aged 6 to 13 years were randomly assigned to either an experimental group, in which they could create a music CD prior to their initial treatment to listen to during radiation therapy, or to a standard care group. Quantitative and qualitative analyses generated multiple perceptions from the pediatric patients, parents, radiation therapy staff, and music therapist-researcher. Ratings of distress during initial radiation therapy treatment were low for all children. The comparison between the two groups found that 67% of the children in the standard care group used social withdrawal as a coping strategy, compared to 0% of the children in the music therapy group; this trend approached significance (p = 0.076). MTCD creation was a fun, engaging, and developmentally appropriate intervention for pediatric patients, which offered a positive experience and aided their use of effective coping strategies to meet the demands of their initial radiation therapy treatment.

  14. Multiple Aperture Radiation Therapy (MART) for Breast Cancer

    DTIC Science & Technology

    2004-11-01

    Solution of an integral equation encountered in rotation therapy . Physics in Medicine & Biology 27 (10): 1221-9, 1982. Chen Y, Michalski D, Houser C...Inverse planning for x-ray rotation therapy : a general solution of the inverse problem. Physics in Medicine & Biology 44 (4): 1089-104, 1999. Olivera...for conformal therapy treatment planning. International Journal of Radiation Oncology, Biology, Physics 33 (5): 1091-9, 1995. Spirou SV, Chui CS. A

  15. Radiation Therapy in Keloids Treatment: History, Strategy, Effectiveness, and Complication.

    PubMed

    Xu, Jing; Yang, Elan; Yu, Nan-Ze; Long, Xiao

    2017-07-20

    Radiation therapy combined with surgical excision was considered as one of the most effective treatment plans for keloid lesions. However, there was no unanimity found over present literatures regarding the issue on optimized treatment strategy for keloids. We here provide a comprehensive review over this issue and emphasize on the influencing factors. The data analyzed in this review were searched from articles included in PubMed and EMBASE databases. The original articles and critical reviews discussing the application of radiation therapy in keloids treatment were selected for this review. The application of radiation therapy has transitioned from simple superficial X-ray irradiation to brachytherapy. Furthermore, several factors including radiation type, dose, fraction, interval, and complications were reviewed, and the results revealed that these factors were significant toward clinical outcome at various levels. Both past and present evidence support the idea that combination therapy of radiation and surgical therapy is safe and feasible. However, the optimization of treatment strategy was based on different radiation types and should take dose, fractions, interval, and complications into consideration, which will then decrease the rate of recurrence and increase the level of satisfaction.

  16. Radiation Therapy in Keloids Treatment: History, Strategy, Effectiveness, and Complication

    PubMed Central

    Xu, Jing; Yang, Elan; Yu, Nan-Ze; Long, Xiao

    2017-01-01

    Objective: Radiation therapy combined with surgical excision was considered as one of the most effective treatment plans for keloid lesions. However, there was no unanimity found over present literatures regarding the issue on optimized treatment strategy for keloids. We here provide a comprehensive review over this issue and emphasize on the influencing factors. Data Sources: The data analyzed in this review were searched from articles included in PubMed and EMBASE databases. Study Selection: The original articles and critical reviews discussing the application of radiation therapy in keloids treatment were selected for this review. Results: The application of radiation therapy has transitioned from simple superficial X-ray irradiation to brachytherapy. Furthermore, several factors including radiation type, dose, fraction, interval, and complications were reviewed, and the results revealed that these factors were significant toward clinical outcome at various levels. Conclusions: Both past and present evidence support the idea that combination therapy of radiation and surgical therapy is safe and feasible. However, the optimization of treatment strategy was based on different radiation types and should take dose, fractions, interval, and complications into consideration, which will then decrease the rate of recurrence and increase the level of satisfaction. PMID:28685723

  17. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  18. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  19. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  20. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  1. [The application of total quality management (TQM) in quality management of radiation therapy].

    PubMed

    Jiang, Rui-yao; Fu, Shen; Li, Bin

    2009-03-01

    The strategies and methods of the total quality management (TQM) need to applied in quality management of radiation therapy. We should improve the level of quality control and quality assurance in radiation therapy. By establishing quality control system in radiation therapy, standardization of radiation therapy workflow, strengthening quality control of devices and physical technique and paying attention to safety protection and staff training.

  2. [Current status and limitation of particle radiation therapy].

    PubMed

    Ogino, Takashi

    2009-11-01

    Almost 9,000 patients have been treated by particle radiation therapy as a highly advanced medical technology in Japan, and definitive evaluation of this technology might now be possible. The process of approval of medical equipment, the law of medical technologists, and the law of medicine for particle radiation therapy have also been prepared. Number of facilities is expected to increase, and time has come that the fee of this medicine would cover by social insurance. Much debate, however, has been published in English journals upon proton therapy. The National Cancer Institute has started to support clinical trials in the United States. In Japan, however, research funding is still quite small.

  3. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  4. Concurrent apatinib and local radiation therapy for advanced gastric cancer

    PubMed Central

    Zhang, Ming; Deng, Weiye; Cao, Xiaoci; Shi, Xiaoming; Zhao, Huanfen; Duan, Zheping; Lv, Bonan; Liu, Bin

    2017-01-01

    Abstract Rationale: Apatinib is a novel anti-angiogenic agent targeting vascular endothelial growth factor receptor-2, which is effective in patients with chemotherapy-refractory gastric cancer. There are no reports of concurrent apatinib with local radiation therapy in elderly patients with advanced gastric cancer. Patient concerns and Diagnoses: we present the first published report of a 70-year-old male patient with advanced gastric cancer who received concurrent apatinib and local radiation therapy after failure of oxaliplatin and S-1 chemotherapy. Interventions and Outcomes: The patient received concurrent apatinib and local radiation therapy and was followed up 7 months after therapy without disease progress, 14 months later indicated extensive metastasis and this patient died of pulmonary infection. Lessons: Elderly patients with advanced gastric cancer may benefit from concurrent apatinib with local radiation therapy when chemotherapy is not tolerated or successful. Further studies are needed to investigate the clinical outcomes and toxicities associated with concurrent apatinib and radiation therapy in gastric cancer. PMID:28248891

  5. Radiation therapy for adjunctive treatment of adrenal cortical carcinoma

    SciTech Connect

    Markoe, A.M.; Serber, W.; Micaily, B.; Brady, L.W. )

    1991-04-01

    Adrenocortical carcinoma is a rare disease which is primarily approached surgically. There have been few reports of the efficacy of radiation therapy and, for the most part, these have been anecdotal. This paper reports on the potential adjuvant role of radiation therapy after surgical excision of primary adrenal cortical carcinoma and also comments about the efficacy of palliative radiation therapy for metastases. We have identified eight patients treated for adrenal cortical carcinomas at Hahnemann University Hospital (HUH) from 1962 until the present and have also identified five patients with the same diagnosis at Philadelphia General Hospital (PGH) from 1962 until its close in 1975. These two groups are examined separately. In the PGH group, in which two patients were diagnosed at autopsy and only one patient was treated by radiation therapy, the median survival was between 0 and 1 month for Stage IV disease with the only patient surviving to 6 months being that patient receiving radiation therapy. In the HUH group, five of eight patients were treated adjunctively after diagnosis, one was not and two received palliative therapy. The median survival for treated Stage III patients was between 34 months and 7 years. The suggestion, based on a limited patient series, is that patients treated postoperatively to the tumor bed and nodal areas in Stage III disease may have improved survival over historic series and improved local control.

  6. Radiation Therapy for Neovascular Age-related Macular Degeneration

    SciTech Connect

    Kishan, Amar U.; Modjtahedi, Bobeck S.; Morse, Lawrence S.; Lee, Percy

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  7. Complications following radiation therapy to the head

    SciTech Connect

    Helpin, M.L.; Krejmas, N.L.; Krolls, S.O.

    1986-03-01

    A case is presented in which a child who received therapeutic radiation as part of his treatment regimen for rhabdomyosarcoma of the infratemporal and parapharyngeal region demonstrated undesirable sequelae in the dentition and the mandible.

  8. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... The final treatment plan is verified on the machine with measurement by the medical physicist before being ... patient on the treatment table and operates the machine. The radiation oncology nurse assesses the patient and ...

  9. Neutron-Activatable Nanoparticles for Intraperitoneal Radiation Therapy.

    PubMed

    Hargrove, Derek; Lu, Xiuling

    2017-01-01

    Intraperitoneal internal radiation therapy is a cancer treatment option that is employed in situations where surgical resection, systemic chemotherapy, and external beam radiotherapy are not amenable for patients. However, exposure of noncancerous tissues to radiation continues to be a hindrance to safe and effective treatment of patients. In addition, reducing prolonged radiation exposure of personnel during preparation of internal radiation therapy agents makes their manufacture complicated and hazardous. Developments in nanotechnology have provided a platform for targeted treatments that combine dual imaging and treatment capabilities all in one package, while also being robust enough to withstand the intense stresses faced during neutron activation. Here, we describe a method for synthesizing neutron activatable mesoporous silica nanoparticles for use in radiotherapy of metastatic peritoneal cancers while limiting personal exposure to radioactive materials, limiting the leakage of radioactive isotopes caused by nanoparticle degradation during neutron activation, and increasing cancer tissue specificity of radiation.

  10. Application of Histogram Analysis in Radiation Therapy (HART) in Intensity Modulation Radiation Therapy (IMRT) Treatments

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-03-01

    A carcinoma is a malignant cancer that emerges from epithelial cells in structures through out the body.It invades the critical organs, could metastasize or spread to lymph nodes.IMRT is an advanced mode of radiation therapy treatment for cancer. It delivers more conformal doses to malignant tumors sparing the critical organs by modulating the intensity of radiation beam.An automated software, HART (S. Jang et al.,2008,Med Phys 35,p.2812) was used for efficient analysis of dose volume histograms (DVH) for multiple targets and critical organs in four IMRT treatment plans for each patient. IMRT data for ten head and neck cancer patients were exported as AAPM/RTOG format files from a commercial treatment planning system at Northwestern Memorial Hospital (NMH).HART extracted DVH statistics were used to evaluate plan indices and to analyze dose tolerance of critical structures at prescription dose (PD) for each patient. Mean plan indices (n=10) were found to be in good agreement with published results for Linac based plans. The least irradiated volume at tolerance dose (TD50) was observed for brainstem and the highest volume for larynx in SIB treatment techniques. Thus HART, an open source platform, has extensive clinical implications in IMRT treatments.

  11. Optimization in Radiation Therapy: Applications in Brachytherapy and Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    McGeachy, Philip David

    Over 50% of cancer patients require radiation therapy (RT). RT is an optimization problem requiring maximization of the radiation damage to the tumor while minimizing the harm to the healthy tissues. This dissertation focuses on two main RT optimization problems: 1) brachytherapy and 2) intensity modulated radiation therapy (IMRT). The brachytherapy research involved solving a non-convex optimization problem by creating an open-source genetic algorithm optimizer to determine the optimal radioactive seed distribution for a given set of patient volumes and constraints, both dosimetric- and implant-based. The optimizer was tested for a set of 45 prostate brachytherapy patients. While all solutions met the clinical standards, they also benchmarked favorably with those generated by a standard commercial solver. Compared to its compatriot, the salient features of the generated solutions were: slightly reduced prostate coverage, lower dose to the urethra and rectum, and a smaller number of needles required for an implant. Historically, IMRT requires modulation of fluence while keeping the photon beam energy fixed. The IMRT-related investigation in this thesis aimed at broadening the solution space by varying photon energy. The problem therefore involved simultaneous optimization of photon beamlet energy and fluence, denoted by XMRT. Formulating the problem as convex, linear programming was applied to obtain solutions for optimal energy-dependent fluences, while achieving all clinical objectives and constraints imposed. Dosimetric advantages of XMRT over single-energy IMRT in the improved sparing of organs at risk (OARs) was demonstrated in simplified phantom studies. The XMRT algorithm was improved to include clinical dose-volume constraints and clinical studies for prostate and head and neck cancer patients were investigated. Compared to IMRT, XMRT provided improved dosimetric benefit in the prostate case, particularly within intermediate- to low-dose regions (≤ 40 Gy

  12. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy.

    PubMed

    Song, Guosheng; Cheng, Liang; Chao, Yu; Yang, Kai; Liu, Zhuang

    2017-08-01

    Radiation therapy (RT) including external beam radiotherapy (EBRT) and internal radioisotope therapy (RIT) has been widely used for clinical cancer treatment. However, owing to the low radiation absorption of tumors, high doses of ionizing radiations are often needed during RT, leading to severe damages to normal tissues adjacent to tumors. Meanwhile, the RT efficacies are limited by different mechanisms, among which the tumor hypoxia-associated radiation resistance is a well-known one, as there exists hypoxia inside most solid tumors while oxygen is essential to enhance radiation-induced DNA damages. With the development in nanotechnology, there have been great interests in using nanomedicine strategies to enhance radiation responses of tumors. Nanomaterials containing high-Z elements to absorb radiation rays (e.g. X-ray) can act as radio-sensitizers to deposit radiation energy within tumors and promote treatment efficacy. Nanoscale carriers are able to deliver therapeutic radioisotopes into tumors for internal RIT, or chemotherapeutic drugs for synergistically combined chemo-radiotherapy. As uncovered in recent studies, the tumor microenvironment could be modulated by various nanomedicine approaches to overcome hypoxia-associated radiation resistance. Herein, the authors will summarize the applications of nanomedicine for RT cancer treatment, and pay particular attention to the latest development of 'advanced materials' for enhanced cancer RT. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Radiation Therapy for Soft Tissue Sarcomas

    MedlinePlus

    ... therapy to the brain for metastatic sarcoma include hair loss, headaches, and problems thinking. If given before surgery, ... Care Professionals Programs & Services Breast Cancer Support TLC Hair Loss & Mastectomy Products Hope Lodge® Lodging Rides To Treatment ...

  14. Extended-field radiation therapy for carcinoma of the cervix

    SciTech Connect

    Podczaski, E.; Stryker, J.A.; Kaminski, P.; Ndubisi, B.; Larson, J.; DeGeest, K.; Sorosky, J.; Mortel, R. )

    1990-07-15

    The survival of cervical carcinoma patients with paraaortic/high common iliac nodal metastases was evaluated by retrospective chart review during a 13-year interval. Thirty-three patients with cervical carcinoma and surgically documented nodal metastases received primary, extended-field radiation therapy. Overall 2-year and 5-year actuarial survival rates after diagnosis were 37% and 31%, respectively. Survival was analyzed in terms of the variables patient age, clinical stage, tumor histologic type, the presence of enlarged paraaortic/high common iliac lymph nodes, the extent of nodal involvement (microscopic versus macroscopic), the presence of intraperitoneal disease, and whether intracavitary brachytherapy was administered. The use of intracavitary radiation therapy was associated with improved local control and survival (P = 0.017). None of the other variables were statistically related to patient survival. Twenty-two of the patients died of cervical cancer and five are surviving without evidence of cancer. Four patients died of intercurrent disease. Two patients developed bowel-related radiation complications; both patients received chemotherapy concurrent with the radiation therapy. One of the two patients died of radiation enteritis. The use of extended-field radiation therapy does benefit a small group of patients and may result in extended patient survival.

  15. [The impact of radiation therapy on sexual function].

    PubMed

    Leroy, T; Gabelle Flandin, I; Habold, D; Hannoun-Lévi, J-M

    2012-09-01

    The aim of this study was to evaluate the impact of radiation therapy on sexual life. The analysis was based on a Pubmed literature review. The keywords used for this research were "sexual, radiation, oncology, and cancer". After a brief reminder on the anatomy and physiology, we explained the main complications of radiation oncology and their impact on sexual life. Preventive measures and therapeutic possibilities were discussed. Radiation therapy entails local, systematic and psychological after-effects. For women, vaginal stenosis and dyspareunia represent the most frequent side effects. For men, radiation therapy leads to erectile disorders for 25 to 75% of the patients. These complications have an echo often mattering on the patient quality of life of and on their sexual life post-treatment reconstruction. The knowledge of the indications and the various techniques of irradiation allow reducing its potential sexual morbidity. The information and the education of patients are essential, although often neglected. In conclusion, radiation therapy impacts in variable degrees on the sexual life of the patients. Currently, there are not enough preventive and therapeutic means. Patient information and the early screening of the sexual complications are at stake in the support of patients in the reconstruction of their sexual life.

  16. Gluteus Maximus Turnover Flap for Sacral Osteomyelitis After Radiation Therapy.

    PubMed

    Ishiwata, Sho; Yanagawa, Takashi; Saito, Kenichi; Takagishi, Kenji

    2015-07-01

    Developments in radiation therapy modalities offer alternative treatments for unresectable malignant tumors in the pelvis and trunk. However, poor vascularity as a result of radiation therapy makes the treated lesion susceptible to infection, and there are no established treatments for pelvic osteomyelitis with a large dead space after radiation therapy. The authors report 2 cases of sacral osteomyelitis after radiation therapy that were treated successfully with a gluteus maximus turnover flap. To create the flap, the distal portion of the lower third of the muscle was detached from the trochanter. The distal edge of the flap was turned toward the sacral defect and sewn to the remnant of the sacrum, which filled the dead space with the muscle bulk. A 68-year-old man with a recurrent sacral chordoma was treated with carbon ion radiation therapy; however, a sacral infection developed 5 months later. Debridement and a course of antibiotics could not control the infection and did not induce sufficient formation of granulation tissue in the large and deep dead space. The turnover flap with both gluteus maximus muscles cured the deep-seated infection and closed the wound. A 58-year-old woman had sacral osteoradionecrosis with infection. A turnover flap created with the left gluteus maximus muscle controlled the infection and closed the wound after the first operation, a V-Y flap, failed. This study showed that a gluteus maximus muscle turnover flap effectively controlled infectious lesions with large and deep dead space around the sacrum. Copyright 2015, SLACK Incorporated.

  17. SYSTEMATIC REVIEW OF HYPOFRACTIONATED RADIATION THERAPY FOR PROSTATE CANCER

    PubMed Central

    Zaorsky, Nicholas G; Ohri, Nitin; Showalter, Timothy N; Dicker, Adam P; Den, Robert B

    2013-01-01

    Prostate cancer is the second most prevalent solid tumor diagnosed in men in the United States and Western Europe. Conventionally fractionated external beam radiation therapy (1.8-2.0 Gy/fraction) is an established treatment modality for men in all disease risk groups. Emerging evidence from experimental and clinical studies suggests that the α/β ratio for prostate cancer may be as low as 1.5 Gy, which has prompted investigators around the world to explore moderately hypofractionated radiation therapy (2.1-3.5 Gy/fraction). We review the impetus behind moderate hypofractionation and the current clinical evidence supporting moderate hypofractionated radiation therapy for prostate cancer. Although hypofractionated radiation therapy has many theoretical advantages, there is no clear evidence from prospective, randomized, controlled trials showing that hypofractionated schedules have improved outcomes or lower toxicity than conventionally fractionated regimens. Currently, hypofractionated schedules should only be used in the context of clinical trials. High dose rate brachytherapy and stereotactic body radiation therapy (fraction size 3.5 Gy and greater) are alternative approaches to hypofractionation, but are beyond the scope of this report. PMID:23453861

  18. Radiation therapy for localized duodenal low-grade follicular lymphoma

    PubMed Central

    Harada, Arisa; Oguchi, Masahiko; Terui, Yasuhito; Takeuchi, Kengo; Igarashi, Masahiro; Kozuka, Takuyo; Harada, Ken; Uno, Takashi; Hatake, Kiyohiko

    2016-01-01

    The aim of this study was to evaluate the initial treatment results and toxicities of radiation therapy for patients with early stage low-grade follicular lymphoma (FL) arising from the duodenum. We reviewed 21 consecutive patients with early stage duodenal FL treated with radiation therapy between January 2005 and December 2013 at the Cancer Institute Hospital, Tokyo. The characteristics of patients were: median age 62 years (range, 46–79 years), gender (male, 6; female, 15), clinical stage (I, 20; II1, 1), histological grade (I, 17; II, 4). All patients were treated with radiation therapy alone. The median radiation dose was 30.6 Gy (range, 30.6–39.6) in 17 fractions. The involved-site radiation therapy was delivered to the whole duodenum. The median follow-up time was 43.2 months (range 21.4–109.3). The 3-year overall survival (OS), relapse-free survival (RFS) and local control (LC) rates were 94.7%, 79.3% and 100%, respectively. There were four relapses documented outside the treated volumes: two in the gastrointestinal tract (jejunum, terminal ileum), one in an abdominal lymph node (mesenteric lymph node) and one in the bone marrow. None died of the disease; one death was due to acute myeloid leukemia. No toxicities greater than Grade 1 were observed during treatment and over the follow-up time. The 30.6 Gy of involved-site radiation therapy provided excellent local control with very low toxicities. Radiation therapy could be an effective and safe treatment option for patients with localized low grade FL arising from the duodenum. PMID:27009323

  19. Radiation-induced fibrosis: mechanisms and implications for therapy

    PubMed Central

    Straub, Jeffrey M.; New, Jacob; Hamilton, Chase D.; Lominska, Chris; Shnayder, Yelizaveta

    2015-01-01

    Purpose Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. Methods A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords “Radiation-Induced Fibrosis,” “Radiotherapy Complications,” “Fibrosis Therapy,” and other closely related terms. Results RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Conclusion Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies. PMID:25910988

  20. Radiation-induced fibrosis: mechanisms and implications for therapy.

    PubMed

    Straub, Jeffrey M; New, Jacob; Hamilton, Chase D; Lominska, Chris; Shnayder, Yelizaveta; Thomas, Sufi M

    2015-11-01

    Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords "Radiation-Induced Fibrosis," "Radiotherapy Complications," "Fibrosis Therapy," and other closely related terms. RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies.

  1. Guidelines for safe practice of stereotactic body (ablative) radiation therapy.

    PubMed

    Foote, Matthew; Bailey, Michael; Smith, Leigh; Siva, Shankar; Hegi-Johnson, Fiona; Seeley, Anna; Barry, Tamara; Booth, Jeremy; Ball, David; Thwaites, David

    2015-10-01

    The uptake of stereotactic ablative body radiation therapy (SABR)/stereotactic body radiation therapy (SBRT) worldwide has been rapid. The Australian and New Zealand Faculty of Radiation Oncology (FRO) assembled an expert panel of radiation oncologists, radiation oncology medical physicists and radiation therapists to establish guidelines for safe practice of SABR. Draft guidelines were reviewed by a number of international experts in the field and then distributed through the membership of the FRO. Members of the Australian Institute of Radiography and the Australasian College of Physical Scientists and Engineers in Medicine were also asked to comment on the draft. Evidence-based recommendations (where applicable) address aspects of departmental staffing, procedures and equipment, quality assurance measures, as well as organisational considerations for delivery of SABR treatments. Central to the guidelines is a set of key recommendations for departments undertaking SABR. These guidelines were developed collaboratively to provide an educational guide and reference for radiation therapy service providers to ensure appropriate care of patients receiving SABR. © 2015 The Royal Australian and New Zealand College of Radiologists.

  2. 3D treatment planning and intensity-modulated radiation therapy.

    PubMed

    Purdy, J A

    1999-10-01

    Three-dimensional (3D) image-based treatment planning and new delivery technologies have spurred the implementation of external beam radiation therapy techniques, in which the high-dose region is conformed much more closely to the target volume than previously possible, thus reducing the volume of normal tissues receiving a high dose. This form of external beam irradiation is referred to as 3D conformal radiation therapy (3DCRT). 3DCRT is not just an add-on to the current radiation oncology process; it represents a radical change in practice, particularly for the radiation oncologist. Defining target volumes and organs at risk in 3D by drawing contours on CT images on a slice-by-slice basis, as opposed to drawing beam portals on a simulator radiograph, can be challenging, because radiation oncologists are generally not well trained in cross-sectional imaging. Currently, the 3DCRT approach will increase the time and effort required by physicians inexperienced with 3D treatment planning. Intensity-modulated radiation therapy (IMRT) is a more advanced form of 3DCRT, but there is considerable developmental work remaining. The instrumentation and methods used for IMRT quality assurance procedures and testing are not well established. Computer optimization cost functions are too simplistic, and thus time-consuming. Subjective plan evaluation by the radiation oncologist is still the norm. In addition, many fundamental questions regarding IMRT remain unanswered. For example, the radiobiophysical consequences of altered time-dose-fraction are unknown. Also, the fact that there is much greater dose heterogeneity for both the target and normal critical structures with IMRT compared to traditional irradiation techniques challenges current radiation oncology planning principles. However, this new process of planning and treatment delivery shows significant potential for improving the therapeutic ratio. In addition, while inefficient today, these systems, when fully developed

  3. Cone positioning device for oral radiation therapy.

    PubMed

    Mahanna, G K; Ivanhoe, J R; Attanasio, R A

    1994-06-01

    This article describes the fabrication and modification of a peroral cone-positioning device. The modification provides added cone stability and prevents tongue intrusion into the radiation field. This device provides a repeatable accurate cone/lesion relationship and the fabrication technique is simplified, accurate, and minimizes patient discomfort.

  4. Influence of radiation therapy on oral Candida albicans colonization: a quantitative assessment

    SciTech Connect

    Rossie, K.M.; Taylor, J.; Beck, F.M.; Hodgson, S.E.; Blozis, G.G.

    1987-12-01

    An increase in quantity of oral Candida albicans was documented in patients receiving head and neck radiation therapy during and after therapy, as assessed by an oral-rinse culturing technique. The amount of the increase was greater in denture wearers and directly related to increasing radiation dose and increasing volume of parotid gland included in the radiation portal. A significant number of patients who did not carry C. albicans prior to radiation therapy developed positive cultures by 1 month after radiation therapy. The percentage of patients receiving head and neck radiation therapy who carried C. albicans prior to radiation therapy did not differ significantly from matched dental patient controls.

  5. Radiation with or without Antiandrogen Therapy in Recurrent Prostate Cancer.

    PubMed

    Shipley, William U; Seiferheld, Wendy; Lukka, Himanshu R; Major, Pierre P; Heney, Niall M; Grignon, David J; Sartor, Oliver; Patel, Maltibehn P; Bahary, Jean-Paul; Zietman, Anthony L; Pisansky, Thomas M; Zeitzer, Kenneth L; Lawton, Colleen A F; Feng, Felix Y; Lovett, Richard D; Balogh, Alexander G; Souhami, Luis; Rosenthal, Seth A; Kerlin, Kevin J; Dignam, James J; Pugh, Stephanie L; Sandler, Howard M

    2017-02-02

    Background Salvage radiation therapy is often necessary in men who have undergone radical prostatectomy and have evidence of prostate-cancer recurrence signaled by a persistently or recurrently elevated prostate-specific antigen (PSA) level. Whether antiandrogen therapy with radiation therapy will further improve cancer control and prolong overall survival is unknown. Methods In a double-blind, placebo-controlled trial conducted from 1998 through 2003, we assigned 760 eligible patients who had undergone prostatectomy with a lymphadenectomy and had disease, as assessed on pathological testing, with a tumor stage of T2 (confined to the prostate but with a positive surgical margin) or T3 (with histologic extension beyond the prostatic capsule), no nodal involvement, and a detectable PSA level of 0.2 to 4.0 ng per milliliter to undergo radiation therapy and receive either antiandrogen therapy (24 months of bicalutamide at a dose of 150 mg daily) or daily placebo tablets during and after radiation therapy. The primary end point was the rate of overall survival. Results The median follow-up among the surviving patients was 13 years. The actuarial rate of overall survival at 12 years was 76.3% in the bicalutamide group, as compared with 71.3% in the placebo group (hazard ratio for death, 0.77; 95% confidence interval, 0.59 to 0.99; P=0.04). The 12-year incidence of death from prostate cancer, as assessed by means of central review, was 5.8% in the bicalutamide group, as compared with 13.4% in the placebo group (P<0.001). The cumulative incidence of metastatic prostate cancer at 12 years was 14.5% in the bicalutamide group, as compared with 23.0% in the placebo group (P=0.005). The incidence of late adverse events associated with radiation therapy was similar in the two groups. Gynecomastia was recorded in 69.7% of the patients in the bicalutamide group, as compared with 10.9% of those in the placebo group (P<0.001). Conclusions The addition of 24 months of antiandrogen

  6. Radiation with or without Antiandrogen Therapy in Recurrent Prostate Cancer

    PubMed Central

    Shipley, W.U.; Seiferheld, W.; Lukka, H.R.; Major, P.P.; Heney, N.M.; Grignon, D.J.; Sartor, O.; Patel, M.P.; Bahary, J.-P.; Zietman, A.L.; Pisansky, T.M.; Zeitzer, K.L.; Lawton, C.A.F.; Feng, F.Y.; Lovett, R.D.; Balogh, A.G.; Souhami, L.; Rosenthal, S.A.; Kerlin, K.J.; Dignam, J.J.; Pugh, S.L.; Sandler, H.M.

    2017-01-01

    BACKGROUND Salvage radiation therapy is often necessary in men who have undergone radical pros-tatectomy and have evidence of prostate-cancer recurrence signaled by a persistently or recurrently elevated prostate-specific antigen (PSA) level. Whether antiandrogen therapy with radiation therapy will further improve cancer control and prolong overall survival is unknown. METHODS In a double-blind, placebo-controlled trial conducted from 1998 through 2003, we assigned 760 eligible patients who had undergone prostatectomy with a lymphadenectomy and had disease, as assessed on pathological testing, with a tumor stage of T2 (confined to the prostate but with a positive surgical margin) or T3 (with histologic extension beyond the prostatic capsule), no nodal involvement, and a detectable PSA level of 0.2 to 4.0 ng per milliliter to undergo radiation therapy and receive either antiandrogen therapy (24 months of bicalutamide at a dose of 150 mg daily) or daily placebo tablets during and after radiation therapy. The primary end point was the rate of overall survival. RESULTS The median follow-up among the surviving patients was 13 years. The actuarial rate of overall survival at 12 years was 76.3% in the bicalutamide group, as compared with 71.3% in the placebo group (hazard ratio for death, 0.77; 95% confidence interval, 0.59 to 0.99; P=0.04). The 12-year incidence of death from prostate cancer, as assessed by means of central review, was 5.8% in the bicalutamide group, as compared with 13.4% in the placebo group (P<0.001). The cumulative incidence of metastatic prostate cancer at 12 years was 14.5% in the bicalutamide group, as compared with 23.0% in the placebo group (P=0.005). The incidence of late adverse events associated with radiation therapy was similar in the two groups. Gynecomastia was recorded in 69.7% of the patients in the bicalutamide group, as compared with 10.9% of those in the placebo group (P<0.001). CONCLUSIONS The addition of 24 months of antiandrogen

  7. Enhanced radiation therapy with multilayer microdisks containing radiosensitizing gold nanoparticles.

    PubMed

    Zhang, Peipei; Qiao, Yong; Xia, Junfei; Guan, Jingjiao; Ma, Liyuan; Su, Ming

    2015-03-04

    A challenge of X-ray radiation therapy is that high dose X-rays at therapeutic conditions damage normal cells. This paper describes the use of gold nanoparticle-loaded multilayer microdisks to enhance X-ray radiation therapy, where each microdisk contains over 10(5) radiosensitizing nanoparticles. The microdisks are attached on cell membranes through electrostatic interaction. Upon X-ray irradiation, more photoelectrons and Auger electrons are generated in the vicinity of the nanoparticles, which cause water ionization and lead to the formation of free radicals that damage the DNA of adjacent cancer cells. By attaching a large amount of gold nanoparticles on cancer cells, the total X-ray dose required for DNA damage and cell killing can be reduced. Due to their controllable structure and composition, multilayer microdisks can be a viable choice for enhanced radiation therapy with nanoparticles.

  8. Progress and controversies: Radiation therapy for prostate cancer.

    PubMed

    Martin, Neil E; D'Amico, Anthony V

    2014-01-01

    Radiation therapy remains a standard treatment option for men with localized prostate cancer. Alone or in combination with androgen-deprivation therapy, it represents a curative treatment and has been shown to prolong survival in selected populations. In this article, the authors review recent advances in prostate radiation-treatment techniques, photon versus proton radiation, modification of treatment fractionation, and brachytherapy-all focusing on disease control and the impact on morbidity. Also discussed are refinements in the risk stratification of men with prostate cancer and how these are better for matching patients to appropriate treatment, particularly around combined androgen-deprivation therapy. Many of these advances have cost and treatment burden implications, which have significant repercussions given the prevalence of prostate cancer. The discussion includes approaches to improve value and future directions for research.

  9. Determinants of job satisfaction among radiation therapy faculty.

    PubMed

    Swafford, Larry G; Legg, Jeffrey S

    2009-01-01

    Job satisfaction is one of the most significant predictors of employee retention in a variety of occupational settings, including health care and education. A national survey of radiation therapy educators (n = 90) has indicated that respondents are not satisfied with their jobs based on data collected using the Minnesota Satisfaction Questionnaire (MSQ). To predict the factors associated with job satisfaction or dissatisfaction, the authors used a nine-item questionnaire derived from the MSQ. Educators were grouped according to their job satisfaction scores, and multiple discriminant analysis was used to determine which factors were predictive of satisfaction among groups of educators. Statistical results indicate that ability utilization, institutional support, compensation, personnel, and job characteristics were key determinants of job satisfaction among radiation therapy educators. These results may better inform faculty and administration of important factors that can promote job satisfaction and retain faculty in radiation therapy education programs.

  10. Communication skills training for radiation therapists: preparing patients for radiation therapy.

    PubMed

    Halkett, Georgia; O'Connor, Moira; Aranda, Sanchia; Jefford, Michael; Merchant, Susan; York, Debra; Miller, Lisa; Schofield, Penelope

    2016-12-01

    Patients sometimes present for radiation therapy with high levels of anxiety. Communication skills training may assist radiation therapists to conduct more effective consultations with patients prior to treatment planning and treatment commencement. The overall aim of our research is to examine the effectiveness of a preparatory programme 'RT Prepare' delivered by radiation therapists to reduce patient psychological distress. The purpose of this manuscript was to describe the communication skills workshops developed for radiation therapists and evaluate participants' feedback. Radiation therapists were invited to participate in two communication skills workshops run on the same day: (1) Consultation skills in radiation therapy and (2) Eliciting and responding to patients' emotional cues. Evaluation forms were completed. Radiation therapists' consultations with patients were then audio-recorded and evaluated prior to providing a follow-up workshop with participants. Nine full day workshops were held. Sixty radiation therapists participated. Positive feedback was received for both workshops with 88% or more participants agreeing or strongly agreeing with all the statements about the different components of the two workshops. Radiation therapists highlighted participating in role play with an actor, discussing issues; receiving feedback; acquiring new skills and knowledge; watching others role play and practicing with checklist were their favourite aspects of the initial workshop. The follow-up workshops provided radiation therapists with feedback on how they identified and addressed patients' psychological concerns; time spent with patients during consultations and the importance of finding private space for consultations. Communication skills training consisting of preparing patients for radiation therapy and eliciting and responding to emotional cues with follow-up workshops has the potential to improve radiation therapists' interactions with patients undergoing

  11. The Role for Radiation Therapy in the Management of Sarcoma.

    PubMed

    Leachman, Brooke K; Galloway, Thomas J

    2016-10-01

    Although there is no consensus regarding the optimal sequencing of external beam radiotherapy and surgery for extremity soft tissue sarcoma, radiation therapy delivered before or after limb-sparing surgery significantly improves local control, particularly for high-grade tumors. Large database analyses suggest that improved local control may translate into an overall survival benefit. Best practices require ample communication between the radiation and surgical teams to ensure appropriate tissues are targeted, unnecessary radiation is avoided, and patients are afforded the best opportunity for cure while maintaining function. Modern experiences with intensity-modulated radiotherapy/image-guided radiation therapy suggest toxicity is reduced through field size reduction and precise targeting, improving the therapeutic ratio. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Hypofractionated radiation therapy versus conventional radiation therapy in prostate cancer: A systematic review of its safety and efficacy.

    PubMed

    Sánchez-Gómez, L M; Polo-deSantos, M; Rodríguez-Melcón, J I; Angulo, J C; Luengo-Matos, S

    2015-01-01

    New therapeutic alternatives can improve the safety and efficacy of prostate cancer treatment. To assess whether hypofractionated radiation therapy results in better safety and efficacy in the treatment of prostate cancer. Systematic review of the literature through searches on PubMed, Cochrane Library, CRD, ClinicalTrials and EuroScan, collecting indicators of safety and efficacy. We included 2 systematic reviews and a clinical trial. In terms of efficacy, there is considerable heterogeneity among the studies, and no conclusive results were found concerning the superiority of the hypofractionated option over the normal fractionated option. In terms of safety, there were no significant differences in the onset of acute genitourinary complications between the 2 treatments. However, one of the reviews found more acute gastrointestinal complications in patients treated with hypofractionated radiation therapy. There were no significant differences in long-term complications based on the type of radiation therapy used, although the studies did have limitations. To date, there are no conclusive results that show that hypofractionated radiation therapy is more effective or safer than normal fractionated radiation therapy in the treatment of localized prostate cancer. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. The physical basis and future of radiation therapy

    PubMed Central

    Bortfeld, T; Jeraj, R

    2011-01-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued “fuelling” of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more “professionalism” in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics. PMID:21606068

  14. The physical basis and future of radiation therapy.

    PubMed

    Bortfeld, T; Jeraj, R

    2011-06-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued "fuelling" of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more "professionalism" in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics.

  15. Endometrial cancer following radiation therapy for cervical cancer

    SciTech Connect

    Gallion, H.H.; van Nagell, J.R. Jr.; Donaldson, E.S.; Powell, D.E.

    1987-05-01

    The clinical and histologic features of eight cases of carcinoma of the endometrium which developed following radiation therapy for squamous cell carcinoma of the cervix are described. No patient had a well-differentiated tumor and significant myometrial invasion was present in all cases. Three of the eight tumors were papillary serous adenocarcinoma. Five of the eight patients developed recurrent tumor and died of their disease. The risk of endometrial cancer in patients previously radiated for cervical cancer is evaluated.

  16. Synchrotron Radiation Therapy from a Medical Physics point of view

    SciTech Connect

    Prezado, Y.; Berkvens, P.; Braeuer-Krisch, E.; Renier, M.; Bravin, A.; Adam, J. F.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Deman, P.; Vautrin, M.

    2010-07-23

    Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT).The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.

  17. Reversible, strokelike migraine attacks in patients with previous radiation therapy.

    PubMed Central

    Bartleson, J. D.; Krecke, Karl N.; O'Neill, Brian P.; Brown, Paul D.

    2003-01-01

    We report 2 adults with a past history of radiation therapy to the head for malignancy (one with primary B-cell lymphoma confined to the skull and the other with multiple hemangioendotheliomas) who developed episodes consistent with migraine with and without aura. In addition to more typical migraine attacks and beginning many years after their radiation therapy, both patients have experienced infrequent, stereotyped, prolonged, reversible neurologic deficits associated with headache, occasional seizures, and striking, transient, cortical gadolinium enhancement of the posterior cerebral gyri on MRI. Interictal MRI brain scans show stable abnormalities consistent with the patients' previous radiation therapy. The neurologic deficits often progressed over a few days, sometimes lasted weeks, and completely resolved. Electroencephalograms did not show epileptiform activity. Thorough investigation showed no residual or recurrent tumor and no recognized cause for the patients' attacks. We postulate a causal relationship between the patients' remote radiation therapy and their prolonged, strokelike migraine attacks. Radiation-induced vascular changes could provoke the episodes, with or without an underlying migraine diathesis. Recognition of this syndrome can help avoid invasive testing. PMID:12672284

  18. Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Peipei; Qiao, Yong; Wang, Chaoming; Ma, Liyuan; Su, Ming

    2014-08-01

    A challenge of X-ray radiation therapy is that high dose X-ray under therapeutic conditions damages normal cells. This paper describes a nanoparticle-based method to enhance X-ray radiation therapy by delivering radio-sensitizing gold nanoparticles into cancer cells. The nanoparticles have been modified with cationic polyelectrolytes to allow internalization. Upon X-ray irradiation of nanoparticles, more photoelectrons and Auger electrons are generated to cause water ionization, leading to formation of free radicals that damage DNA of cancer cells. The X-ray dose required for DNA damage and cell killing is reduced by delivering gold nanoparticles inside cancer cells.

  19. Complications of head and neck radiation therapy and their management

    SciTech Connect

    Engelmeier, R.L.; King, G.E.

    1983-04-01

    Patients who receive radiation therapy to the head and neck suffer potential complications and undesirable side-effects of this therapy. The extent of undesirable responses is dependent on the source of irradiation, the fields of irradiation, and the dose. The radiotherapist determines these factors by the extent, location, and radiosensitivity of the tumor. The potential undesirable side-effects are xerostomia, mucositis, fibrosis, trismus, dermatitis, photosensitivity, radiation caries, soft tissue necrosis, and osteoradionecrosis. Each of these clinical entities and their proposed management have been discussed.

  20. Adjuvant radiation therapy, local recurrence, and the need for salvage therapy in atypical meningioma.

    PubMed

    Aizer, Ayal A; Arvold, Nils D; Catalano, Paul; Claus, Elizabeth B; Golby, Alexandra J; Johnson, Mark D; Al-Mefty, Ossama; Wen, Patrick Y; Reardon, David A; Lee, Eudocia Q; Nayak, Lakshmi; Rinne, Mikael L; Beroukhim, Rameen; Weiss, Stephanie E; Ramkissoon, Shakti H; Abedalthagafi, Malak; Santagata, Sandro; Dunn, Ian F; Alexander, Brian M

    2014-11-01

    The impact of adjuvant radiation in patients with atypical meningioma remains poorly defined. We sought to determine the impact of adjuvant radiation therapy in this population. We identified 91 patients with World Health Organization grade II (atypical) meningioma managed at Dana-Farber/Brigham and Women's Cancer Center between 1997 and 2011. A propensity score model incorporating age at diagnosis, gender, Karnofsky performance status, tumor location, tumor size, reason for diagnosis, and era of treatment was constructed using logistic regression for the outcome of receipt versus nonreceipt of radiation therapy. Propensity scores were then used as continuous covariates in a Cox proportional hazards model to determine the adjusted impact of adjuvant radiation therapy on both local recurrence and the combined endpoint of use of salvage therapy and death due to progressive meningioma. The median follow-up in patients without recurrent disease was 4.9 years. After adjustment for pertinent confounding variables, radiation therapy was associated with decreased local recurrence in those undergoing gross total resection (hazard ratio, 0.25; 95% CI, 0.07-0.96; P = .04). No differences in overall survival were seen in patients who did and did not receive radiation therapy. Patients who have had a gross total resection of an atypical meningioma should be considered for adjuvant radiation therapy given the improvement in local control. Multicenter, prospective trials are required to definitively evaluate the potential impact of radiation therapy on survival in patients with atypical meningioma. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Phototherapy cabinet for ultraviolet radiation therapy

    SciTech Connect

    Horwitz, S.N.; Frost, P.

    1981-08-01

    A newly designed cabinet can be used for the treatment of psoriasis with fluorescent ultraviolet (UV) lamps. the new design provides more uniform distribution of UV radiation in both the horizontal and vertical axes, and several safety features have been added. The distribution and uniformity of UV output in this and in a previously described cabinet are compared. The UV output at the vertical center of the older UV light cabinet was six times greater than that at either the top or bottom, while the design of the present cabinet provides uniform UV radiation except for a slight increase at head height and at the level of the lower legs compared with the middle third of the cabinet. The variation in output of the older cabinet may, in part, explain the commonly encountered difficulty in the phototherapy of psoriasis of the scalp and lower extremities.

  2. Pelvic radiation therapy: Between delight and disaster

    PubMed Central

    Morris, Kirsten AL; Haboubi, Najib Y

    2015-01-01

    In the last few decades radiotherapy was established as one of the best and most widely used treatment modalities for certain tumours. Unfortunately that came with a price. As more people with cancer survive longer an ever increasing number of patients are living with the complications of radiotherapy and have become, in certain cases, difficult to manage. Pelvic radiation disease (PRD) can result from ionising radiation-induced damage to surrounding non-cancerous tissues resulting in disruption of normal physiological functions and symptoms such as diarrhoea, tenesmus, incontinence and rectal bleeding. The burden of PRD-related symptoms, which impact on a patient’s quality of life, has been under appreciated and sub-optimally managed. This article serves to promote awareness of PRD and the vast potential there is to improve current service provision and research activities. PMID:26649150

  3. Pediatric urological complications with intraoperative radiation therapy

    SciTech Connect

    Ritchey, M.L.; Gunderson, L.L.; Smithson, W.A.; Kelalis, P.P.; Kaufman, B.H.; Telander, R.L.; Evans, R.G.; Kramer, S.A. )

    1990-01-01

    Intraoperative radiotherapy with variable energy electrons has been used as a supplemental boost to treat 6 children with locally advanced retroperitoneal malignancies. Of the patients 4 had treatment-related injuries to portions of the urinary tract within the intraoperative and external radiation fields. Three patients had significant renal impairment requiring surgical correction. The pathogenesis and management of treatment-induced injury to the urinary tract are discussed.

  4. Cancer of the breast. Radiation therapy.

    PubMed

    Mercado, R; Deutsch, M

    1979-01-01

    There are many questions that have to be answered concerning the role of radiotherapy in the management of primary breast cancer. Hopefully, prospective clinical trials will provide some answers, but more basic research into the biology of breast cancer and the host-tumor relationship will be needed. There are indications that radiotherapy alone, or following minimal extirpative surgery in selected cases, may be as effective for control of breast cancer as conventional mastectomies. The role of radiotherapy following segmental mastectomy, with or without axillary dissection, needs to be clarified. The possibility exists that high LET (linear energy transfer) radiation such as neutron or pi meson beams may provide better local control than conventional radiation. Thus, it may be possible to treat effectively all primary breast cancers with such radiations and obviate the need for any type of mastectomy. It remains to be demonstrated whether adjuvant chemotherapy is as effective as radiotherapy in preventing chest wall and regional node recurrences. If it is not, there may be a place for both adjuvant chemotherapy and radiotherapy in the treatment of operable cancer of the breast. Likewise, effective chemotherapy combined with radiotherapy may increase the local and regional control achieved with radiotherapy alone and make more primary lesions suitable for treatment without mastectomy. Meyer (1970) recently called attention to the leukopenia and cellualr immune deficiency produced by irradiation to the thorax and mediastinum. Further study is necessary to define exactly how much immunosuppression results from radiotherapy, its clinical significance and what can be done to avoid or counter it. If Stjervsward's thesis (1974) concerning the deleterious effects of radiotherapy on survival is correct, then it is of great importance to identify those patients most likely to be adversely affected by radiotherapy. Conversely, it may be possible in the future to identify a

  5. Hypofractionated radiation therapy for prostate cancer: biologic and technical considerations

    PubMed Central

    Sanfilippo, Nicholas J; Cooper, Benjamin T

    2014-01-01

    The optimal radiation schedule for the curative treatment of prostate cancer is not known. The dose-response of tumors and normal tissues to fractionated irradiation can be described according to a parameter called the alpha-beta ratio (α/β). In the past several years numerous reports have been published that suggest that the alpha-beta ratio for prostate cancer may be quite low; between 1 and 3. If this hypothesis is true, then a radiation therapy schedule that employs less frequent and larger fractions, termed hypofractionation, may be more efficacious. Multiple randomized trials have been conducted comparing moderate (less than 5 Gy/day) hypofractionated radiation therapy and standard radiation therapy in men with prostate cancer. In the majority of these studies the moderate hypofractionated arm had equivalent efficacy with a similar or improved side effect profile. One area to use caution may be in patients with compromised (IPSS > 12) urinary function at baseline due to an increase in urinary toxicity observed in patients treated with hypofractionated radiation in one study. Extreme hypofractionation (greater than or equal to 5 Gy/day), is currently being compared in a randomized trial. Early prospectively collected data from multiple institutions demonstrates efficacy and toxicity that compares favorably with historical controls. The cost savings from hypofractionation could be profound on a national level and only increases the necessity of testing hypofractionated treatment schedules. Long term data and future trials will help radiation oncologists determine the ideal fractionation scheme based on cost, efficacy, and toxicity. PMID:25606574

  6. Audit tool for external beam radiation therapy departments.

    PubMed

    Ritter, Timothy; Balter, James M; Lee, Choonik; Roberts, Don; Roberson, Peter L

    2012-01-01

    Development of a self-contained audit tool for external beam radiation therapy to assess compliance with the major recommendations from professional organizations and generally accepted standards of practice. Intensity modulated radiation therapy, stereotactic body radiation therapy, stereotactic radiosurgery, and volumetric modulated arc therapy were included in this review. A physics quality working group developed a department vision, distinguished and summarized key references, and condensed important elements of good documentation practices. The results were then compiled in a checklist format and used to perform audits at 3 sites. The final audit tool contains 65 items spanning a wide range of external beam radiation therapy practices. Several of the audit items address issues not commonly identified by other authoritative sources. A total of 48 process improvements were identified at the 3 sites audited. The enclosed self-inspection list may be useful to a site as an annual review tool, as an aid in preparation for the American College of Radiology-American Society for Therapeutic Radiology and Oncology practice accreditation, or as a catalyst for general quality improvement. Sites can quickly identify opportunities for improvement by concentrating on high importance items and commonly identified areas of noncompliance. Published by Elsevier Inc.

  7. Novel Silicon Devices for Radiation Therapy Monitoring

    NASA Astrophysics Data System (ADS)

    Bruzzi, Mara

    2016-02-01

    Modern radiotherapy techniques pose specific constraints in radiation-monitoring and dosimetry due to the occurrence of small radiation fields with high dose gradients, variation in space and time of the dose rate, variation in space and time of the beam energy spectrum. Novel devices coping with these strict conditions are needed. This paper reviews the most advanced technologies developed with silicon-based materials for clinical radiotherapy. Novel Si diodes as Pt-doped Si, epitaxial Si as well as thin devices have optimized performance, their response being independent of the accumulated dose, thus ensuring radiation tolerance and no need of recalibration. Monolithic devices based on segmented Si detectors can be easily tailored to optimize spatial resolution in the large active areas required in clinical radiotherapy. In particular, a monolithic device based on epitaxial p-type silicon, characterized by high spatial resolution and ability to directly measure temporal variations in dose modulation proved to be best viable solution for pre-treatment verifications in IMRT fields.

  8. Applications of laser-accelerated particle beams for radiation therapy

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Fourkal, E.; Li, J. S.; Veltchev, I.; Luo, W.; Fan, J. J.; Lin, T.; Tafo, A.

    2011-05-01

    Proton beams are more advantageous than high-energy photons and electrons for radiation therapy because of their finite penetrating range and the Bragg peak near the end of their range, which have been utilized to achieve better dose conformity to the treatment target allowing for dose escalation and/or hypofractionation to increase local tumor control, reduce normal tissue complications and/or treatment time/cost. Proton therapy employing conventional particle acceleration techniques is expensive because of the large accelerators and treatment gantries that require excessive space and shielding. Compact proton acceleration systems are being sought to improve the cost-effectiveness for proton therapy. This paper reviews the physics principles of laser-proton acceleration and the development of prototype laserproton therapy systems as a solution for widespread applications of advanced proton therapy. The system design, the major components and the special delivery techniques for energy and intensity modulation are discussed in detail for laser-accelerated proton therapy.

  9. Radiation beam therapy evolution: From X-rays to hadrons

    SciTech Connect

    Khoroshkov, V. S.

    2006-10-15

    The history of external radiation beam therapy (radiotherapy)-in particular, proton therapy (PT)-is brietly outlined. Two possible strategies in increasing the efficacy of radiotherapy are considered. The radiotherapy methods and techniques are brietly described. The possibilities of PT in providing effective treatment and the main achievements are demonstrated. The state of the art in the PT development involving the active creation of large clinical PT centers since 1990 is analyzed.

  10. Prostate angiosarcoma: is there any association with previous radiation therapy?

    PubMed Central

    Khaliq, Waseem; Meyer, Christian F.; Uzoaru, Ikechukwu; Wolf, Richard M.; Antonarakis, Emmanuel S.

    2013-01-01

    For the current review a literature search was carried out using Pubmed, EmBase, and Cochrane databases. All cases of prostate angioscaroma reported to date and observational studies evaluating the radiation associated cancer occurrence were reviewed. Despite the rarity, prostate angiosarcomas display remarkable clinical and pathological heterogeneity, and a treatment challenge. We found the association of prostate angiosarcoma with radiation therapy to be weak based upon the results from observational studies and case reports. Although radiation exposure has been suggested etiology of prostate angiosarcomas, assumption of such association is not supported by the current literature. PMID:22583810

  11. Phenytoin Induced Erythema Multiforme after Cranial Radiation Therapy

    PubMed Central

    Tekkök, İsmail Hakkı

    2015-01-01

    The prophylactic use of phenytoin during and after brain surgery and cranial irradiation is a common measure in brain tumor therapy. Phenytoin has been associated with variety of adverse skin reactions including urticaria, erythroderma, erythema multiforme (EM), Stevens-Johnson syndrome, and toxic epidermal necrolysis. EM associated with phenytoin and cranial radiation therapy (EMPACT) is a rare specific entity among patients with brain tumors receiving radiation therapy while on prophylactic anti-convulsive therapy. Herein we report a 41-year-old female patient with left temporal glial tumor who underwent surgery and then received whole brain radiation therapy and chemotherapy. After 24 days of continous prophylactic phenytoin therapy the patient developed minor skin reactions and 2 days later the patient returned with generalized erythamatous and itchy maculopapuler rash involving neck, chest, face, trunk, extremities. There was significant periorbital and perioral edema. Painful mucosal lesions consisting of oral and platal erosions also occurred and prevented oral intake significantly. Phenytoin was discontinued gradually. Systemic admistration of corticosteroids combined with topical usage of steroids for oral lesions resulted in complete resolution of eruptions in 3 weeks. All cutaneous lesions in patients with phenytoin usage with the radiotherapy must be evoluated with suspicion for EM. PMID:26361537

  12. Special topics in immunotherapy and radiation therapy: reirradiation and palliation

    PubMed Central

    Ciunci, Christine; Hertan, Lauren; Gomez, Daniel

    2017-01-01

    Immunotherapy has revolutionized the treatment of non-small cell lung cancer (NSCLC). However, thus far, its use has only been established in patients with advanced disease either as first-line therapy in selected patients or following chemotherapy. What is not yet known is how best to incorporate radiation with immunotherapy agents. Many patients with advanced disease can benefit from palliative radiation, but the combination of radiation with immunotherapy has the potential to increase the toxicity of both modalities. Intriguingly, the combination also has the potential to enhance the efficacy of both modalities. For this reason, combining immunotherapy and radiation may help salvage patients with recurrent localized disease who are candidates for re-irradiation. We review the current data evaluating immunotherapy with both palliative radiation as well as definitive re-irradiation in NSCLC. PMID:28529895

  13. The Application of FLUKA to Dosimetry and Radiation Therapy

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Andersen, Victor; Pinsky, Lawrence; Ferrari, Alfredo; Battistoni, Giusenni

    2005-01-01

    Monte Carlo transport codes like FLUKA are useful for many purposes, and one of those is the simulation of the effects of radiation traversing the human body. In particular, radiation has been used in cancer therapy for a long time, and recently this has been extended to include heavy ion particle beams. The advent of this particular type of therapy has led to the need for increased capabilities in the transport codes used to simulate the detailed nature of the treatment doses to the Y O U S tissues that are encountered. This capability is also of interest to NASA because of the nature of the radiation environment in space.[l] While in space, the crew members bodies are continually being traversed by virtually all forms of radiation. In assessing the risk that this exposure causes, heavy ions are of primary importance. These arise both from the primary external space radiation itself, as well as fragments that result from interactions during the traversal of that radiation through any intervening material including intervening body tissue itself. Thus the capability to characterize the details of the radiation field accurately within a human body subjected to such external 'beams" is of critical importance.

  14. Maxillary sinus carcinoma: result of radiation therapy

    SciTech Connect

    Shibuya, H.; Horiuchi, J.; Suzuki, S.; Shioda, S.; Enomoto, S.

    1984-07-01

    This hundred and sixteen patients with carcinoma of the maxillary sinus received primary therapy consisting of external beam irradiation alone or in combination with surgery and/or chemotherapy at the Department of Radiology, Tokyo Medical and Dental University Hospital, between 1953 and 1982. In our institution, methods of treating cancer of the maxillary sinus have been changed from time to time and showed different control rates and clinical courses. An actuarial 10-year survival rate of 21% has been obtained by the megavoltage irradiation alone as well as 34% actuarial 10-year survival rate by megavoltage irradiation with surgery. After the introduction of conservative surgery followed by conventional trimodal combination therapy, the local control rate has been improved. The amount of functional, cosmetic, and brain damages have been remarkably decreased by this mode of therapy. The actuarial five year survival rate was 67%. In addition, along with the improvement of the local control rate, the control of nodal and distant organ metastases have been emerging as one of the important contributions to the prognosis of this disease.

  15. Modern Radiation Therapy and Cardiac Outcomes in Breast Cancer.

    PubMed

    Boero, Isabel J; Paravati, Anthony J; Triplett, Daniel P; Hwang, Lindsay; Matsuno, Rayna K; Gillespie, Erin F; Yashar, Catheryn M; Moiseenko, Vitali; Einck, John P; Mell, Loren K; Parikh, Sahil A; Murphy, James D

    2016-03-15

    Adjuvant radiation therapy, which has proven benefit against breast cancer, has historically been associated with an increased incidence of ischemic heart disease. Modern techniques have reduced this risk, but a detailed evaluation has not recently been conducted. The present study evaluated the effect of current radiation practices on ischemia-related cardiac events and procedures in a population-based study of older women with nonmetastatic breast cancer. A total of 29,102 patients diagnosed from 2000 to 2009 were identified from the Surveillance, Epidemiology, and End Results-Medicare database. Medicare claims were used to identify the radiation therapy and cardiac outcomes. Competing risk models were used to assess the effect of radiation on these outcomes. Patients with left-sided breast cancer had a small increase in their risk of percutaneous coronary intervention (PCI) after radiation therapy-the 10-year cumulative incidence for these patients was 5.5% (95% confidence interval [CI] 4.9%-6.2%) and 4.5% (95% CI 4.0%-5.0%) for right-sided patients. This risk was limited to women with previous cardiac disease. For patients who underwent PCI, those with left-sided breast cancer had a significantly increased risk of cardiac mortality with a subdistribution hazard ratio of 2.02 (95% CI 1.23-3.34). No other outcome, including cardiac mortality for the entire cohort, showed a significant relationship with tumor laterality. For women with a history of cardiac disease, those with left-sided breast cancer who underwent radiation therapy had increased rates of PCI and a survival decrement if treated with PCI. The results of the present study could help cardiologists and radiation oncologists better stratify patients who need more aggressive cardioprotective techniques. Copyright © 2016. Published by Elsevier Inc.

  16. QA in Radiation Therapy: The RPC Perspective

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.

    2010-11-01

    The Radiological Physics Center (RPC) is charged with assuring the consistent delivery of radiation doses to patients on NCI-sponsored clinical trials. To accomplish this, the RPC conducts annual mailed audits of machine calibration, dosimetry audit visits to institutions, reviews of treatment records, and credentialing procedures requiring the irradiation of anthropomorphic phantoms. Through these measurements, the RPC has gained an understanding of the level of quality assurance practiced in this cohort of institutions, and a database of measurements of beam characteristics of a large number of treatment machines. The results of irradiations of phantoms have yielded insight into the delivery of advanced technology treatment procedures.

  17. [Intensity-modulated radiation therapy and stereotactic body radiation therapy for head and neck tumors: evidence-based medicine].

    PubMed

    Lapierre, A; Martin, F; Lapeyre, M

    2014-10-01

    Over the last decade, there have been many technical advances in radiation therapy, such as the spread of intensity-modulated conformal radiotherapy, and the rise of stereotactic body radiation therapy. By allowing better dose-to-target conformation and thus better organs at risk-sparing, these techniques seem very promising, particularly in the field of head and neck tumors. The present work aims at analyzing the level of evidence and recommendation supporting the use of high-technology radiotherapy in head and neck neoplasms, by reviewing the available literature.

  18. Stereotactic Body Radiation Therapy for Patients With Lung Cancer Previously Treated With Thoracic Radiation

    SciTech Connect

    Kelly, Patrick; Balter, Peter A.; Rebueno, Neal; Sharp, Hadley J.; Liao Zhongxing; Komaki, Ritsuko; Chang, Joe Y.

    2010-12-01

    Purpose: Stereotactic body radiation therapy (SBRT) provides excellent local control with acceptable toxicity for patients with early-stage non-small cell lung cancer. However, the efficacy and safety of SBRT for patients previously given thoracic radiation therapy is not known. In this study, we retrospectively reviewed outcomes after SBRT for recurrent disease among patients previously given radiation therapy to the chest. Materials and Methods: A search of medical records for patients treated with SBRT to the thorax after prior fractionated radiation therapy to the chest at The University of Texas M. D. Anderson Cancer Center revealed 36 such cases. The median follow-up time after SBRT was 15 months. The endpoints analyzed were overall survival, local control, and the incidence and severity of treatment-related toxicity. Results: SBRT provided in-field local control for 92% of patients; at 2 years, the actuarial overall survival rate was 59%, and the actuarial progression-free survival rate was 26%, with the primary site of failure being intrathoracic relapse. Fifty percent of patients experienced worsening of dyspnea after SBRT, with 19% requiring oxygen supplementation; 30% of patients experienced chest wall pain and 8% Grade 3 esophagitis. No Grade 4 or 5 toxic effects were noted. Conclusions: SBRT can provide excellent in-field tumor control in patients who have received prior radiation therapy. Toxicity was significant but manageable. The high rate of intrathoracic failure indicates the need for further study to identify patients who would derive the most benefit from SBRT for this purpose.

  19. Radiation plus chemotherapy as adjuvant therapy for rectal cancer.

    PubMed

    Minsky, Bruce D

    2002-04-01

    The most common neo-adjuvant therapy for rectal cancer is chemotherapy and concurrent radiation therapy. In general, it is delivered pre-operatively for patients with clinical evidence of T(3-4) disease or post-operatively in patients who have undergone surgery and have T(3) and/or N(1-2) disease. This chapter reviews the rationale and results for neo-adjuvant therapy, the selection process for pre-operative versus post-operative treatment, and new approaches and controversies.

  20. Radiation therapy in the management of patients with mesothelioma

    SciTech Connect

    Gordon, W. Jr.; Antman, K.H.; Greenberger, J.S.; Weichselbaum, R.R.; Chaffey, J.T.

    1982-01-01

    The results of radiation therapy in the management of 27 patients with malignant mesothelioma were reviewed. Eight patients were treated with a curative intent combining attempted surgical excision of tumor (thoracic in 6 and peritoneal in 2), aggressive radiation therapy, and combination chemotherapy using an adriamycin-containing regimen. One patient achieved a 2-year disease-free inteval followed by recurrence of tumor above the thoracic irradiation field. This patient was retreated with localized irradiation and is disease-free after 5 years of initial diagnosis. One patient has persistent abdominal disease at 18 months; the other 6 patients suffered local recurrence within 8-13 months of initiation of treatment. Radiation therapy was used in 19 other patients who received 29 courses for palliation of dyspnea, superior vena cava syndrome, dysphagia, or neurological symptoms of brain metastasis. A palliation index was used to determine the effectiveness of irradiation and revealed that relief of symptoms was complete or substantial in 5 treatment courses, moderately effective in 6 courses and inadequate in 18 treatment courses. Adequate palliation strongly correlated with a dose at or above 4,000 rad in 4 weeks. The management of patients with mesothelioma requires new and innovative approaches to increase the effectiveness of radiation therapy and minimize the significant potential combined toxicity of pulmonary irradiation and adriamycin.

  1. Factors influencing radiation therapy student clinical placement satisfaction

    SciTech Connect

    Bridge, Pete; Carmichael, Mary-Ann

    2014-02-15

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning.

  2. Radiation and the Microenvironment - Tumorigenesis andTherapy

    SciTech Connect

    Barcellos-Hoff, Mary Helen; Park, Catherine; Wright, Eric G.

    2005-10-01

    Radiation rapidly and persistently alters the soluble and insoluble components of the tissue microenvironment. This affects the cell phenotype, tissue composition and the physical interactions and signaling between cells. These alterations in the microenvironment can contribute to carcinogenesis and alter the tissue response to anticancer therapy. Examples of these responses and their implications are discussed with a view to therapeutic intervention.

  3. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    SciTech Connect

    Kan, Charlene; Zhang, Junran

    2015-10-01

    DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.

  4. Factors Associated With Receipt of Radiation Therapy for Rectal Cancer.

    PubMed

    McClure, Laura A; Sussman, Daniel A; Hernandez, Monique N; Tannenbaum, Stacey L; Yechieli, Raphael L; Bonner, Judith M; Zheng, D Diane; Lee, David J

    2015-12-22

    Appropriate treatment for cancer is vital to increasing the likelihood of survival; however, for rectal cancer, there are demonstrated disparities in receipt of treatment by race/ethnicity and socioeconomic status. We evaluated factors associated with receipt of appropriate radiation therapy for rectal cancer using data from the Florida Cancer Data System that had been previously enriched with detailed treatment information collected from a Centers for Disease Control and Prevention Comparative Effectiveness Research study. This treatment information is not routinely available in cancer registry data and represents a unique data resource. Using multivariable regression, we evaluated factors associated with receiving radiation therapy among rectal cancer cases stage II/III. Our sample (n=403) included cases diagnosed in Florida in 2011 who were 18 years and older. Cases clinically staged as 0/I/IV were excluded. Older age (odds ratio=0.96; 95% confidence interval, 0.94-0.97), the presence of one or more comorbidities (0.61; 0.39-0.96), and receipt of surgical intervention (0.44; 0.22-0.90) were associated with lack of radiation. In this cohort of patients, sociodemographic factors such as race/ethnicity, insurance status, and socioeconomic status, did not influence the receipt of radiation. Further research is needed, however, to understand why aging, greater comorbidity, and having surgery present a barrier to radiation therapy, particularly given that it is a well-tolerated treatment in most patients.

  5. Temporary corneal stem cell dysfunction after radiation therapy.

    PubMed Central

    Fujishima, H; Shimazaki, J; Tsubota, K

    1996-01-01

    BACKGROUND: Radiation therapy can cause corneal and conjunctival abnormalities that sometimes require surgical treatment. Corneal stem cell dysfunction is described, which recovered after the cessation of radiation. METHODS: A 44-year-old man developed a corneal epithelial abnormality associated with conjunctival and corneal inflammation following radiation therapy for maxillary cancer. He experienced ocular pain and loss of vision followed by conjunctival epithelialisation of the upper and lower parts of the cornea. RESULTS: Examination of brush cytology samples showed goblet cells in the upper and lower parts of the cornea, which showed increased fluorescein permeability, and intraepithelial lymphocytes. Impression cytology showed goblet cells in the same part of the cornea. Specular microscopy revealed spindle type epithelial cells. Patient follow up included artificial tears and an antibiotic ophthalmic ointment. The corneal abnormalities resolved after 4 months with improved visual acuity without any surgical intervention, but the disappearance of the palisades of Vogt did not recover at 1 year after radiation. CONCLUSION: Radiation therapy in this patient caused temporary stem cell dysfunction which resulted in conjunctivalisation in a part of the cornea. Although limbal stem cell function did not fully recover, this rare case suggested that medical options should be considered before surgery. Images PMID:8976704

  6. Radiation therapy for primary optic nerve meningiomas.

    PubMed

    Smith, J L; Vuksanovic, M M; Yates, B M; Bienfang, D C

    1981-06-01

    Optic nerve sheath meningiomas, formerly thought to be rare, have been encountered with surprising frequency since the widespread use of computed tomography. Early diagnosis led to an enthusiastic surgical approach to these lesions, but this has been tempered by the realization that even in the best of hands, blindness followed such surgery with distressing frequency. Optic nerve sheath meningiomas may be divided into primary, secondary, and multiple meningioma groups. Five patients with primary optic nerve sheath meningiomas treated with irradiation therapy are presented in this report. Improvement in visual acuity, stabilization to increase in the visual field, and decrease in size to total regression of optociliary veins, have been documented following irradiation therapy of the posterior orbital and intracanalicular portions of the optic nerve in some of these cases. Although each patient must be carefully individualized, there is no question that visual palliation can be achieved in some cases of optic nerve sheath meningioma. Further investigation of this therapeutic modality in selected cases in advised.

  7. Quality assurance in radiation therapy: physical aspects

    SciTech Connect

    Svensson, H.

    1984-06-01

    The present status of the quality assurance work regarding the physical aspects in radiation treatment is discussed. In particular, the situation in Europe is surveyed. An analysis of the errors in the delivered absorbed dose to a specified point in the irradiated patient shows that the uncertainty, to approximately the same degree, depends on the dose distribution determination, the dose planning and the patient irradiation. Following the procedure generally in use, the overall uncertainty will be about 8%. The random uncertainties are estimated as one standard deviation and non-random uncertainties to corresponding degree of uncertainty. It is argued that this level must be improved. Furthermore, dose intercomparisons show that in reality much larger errors occur in clinical practice. Different means to improve the situation are discussed.

  8. [Stereotactic body radiation therapy for spinal metastases].

    PubMed

    Pasquier, D; Martinage, G; Mirabel, X; Lacornerie, T; Makhloufi, S; Faivre, J-C; Thureau, S; Lartigau, É

    2016-10-01

    After the liver and lungs, bones are the third most common sites of cancer metastasis. Palliative radiotherapy for secondary bone tumours helps relieve pain, improve the quality of life and reduce the risk of fractures. Stereotactic body radiotherapy can deliver high radiation doses with very tight margins, which has significant advantages when treating tumours close to the spinal cord. Strict quality control is essential as dose gradient at the edge of the spinal cord is important. Optimal schedule is not defined. A range of dose-fractionation schedules have been used. Pain relief and local control are seen in over 80%. Toxicity rates are low, although vertebral fracture may occur. Ongoing prospective studies will help clarify its role in the management of oligometastatic patients.

  9. Radiation protection at Hadron therapy facilities.

    PubMed

    Pelliccioni, Maorizio

    2011-07-01

    The Italian National Centre for Oncological Hadrontherapy is currently under construction in Pavia. It is designed for the treatment of deep-seated tumours (up to a depth of 27 cm of water equivalent) with proton and C-ion beams as well as for both clinical and radiobiological research. The particles will be accelerated by a 7-MeV u(-1) LINAC injector and a 400-MeV u(-1) synchrotron. In the first phase of the project, three treatment rooms will be in operation, equipped with four fixed beams, three horizontal and one vertical. The accelerators are currently undergoing commissioning. The main radiation protection problems encountered (shielding, activation, etc.) are hereby illustrated and discussed in relation to the constraints set by the Italian national authorities.

  10. Stereotactic Body Radiation Therapy in Spinal Metastases

    SciTech Connect

    Ahmed, Kamran A.; Stauder, Michael C.; Miller, Robert C.; Bauer, Heather J.; Rose, Peter S.; Olivier, Kenneth R.; Brown, Paul D.; Brinkmann, Debra H.; Laack, Nadia N.

    2012-04-01

    Purpose: Based on reports of safety and efficacy, stereotactic body radiotherapy (SBRT) for treatment of malignant spinal tumors was initiated at our institution. We report prospective results of this population at Mayo Clinic. Materials and Methods: Between April 2008 and December 2010, 85 lesions in 66 patients were treated with SBRT for spinal metastases. Twenty-two lesions (25.8%) were treated for recurrence after prior radiotherapy (RT). The mean age of patients was 56.8 {+-} 13.4 years. Patients were treated to a median dose of 24 Gy (range, 10-40 Gy) in a median of three fractions (range, 1-5). Radiation was delivered with intensity-modulated radiotherapy (IMRT) and prescribed to cover 80% of the planning target volume (PTV) with organs at risk such as the spinal cord taking priority over PTV coverage. Results: Tumor sites included 48, 22, 12, and 3 in the thoracic, lumbar, cervical, and sacral spine, respectively. The mean actuarial survival at 12 months was 52.2%. A total of 7 patients had both local and marginal failure, 1 patient experienced marginal but not local failure, and 1 patient had local failure only. Actuarial local control at 1 year was 83.3% and 91.2% in patients with and without prior RT. The median dose delivered to patients who experienced local/marginal failure was 24 Gy (range, 18-30 Gy) in a median of three fractions (range, 1-5). No cases of Grade 4 toxicity were reported. In 1 of 2 patients experiencing Grade 3 toxicity, SBRT was given after previous radiation. Conclusion: The results indicate SBRT to be an effective measure to achieve local control in spinal metastases. Toxicity of treatment was rare, including those previously irradiated. Our results appear comparable to previous reports analyzing spine SBRT. Further research is needed to determine optimum dose and fractionation to further improve local control and prevent toxicity.

  11. High dose bystander effects in spatially fractionated radiation therapy

    PubMed Central

    Asur, Rajalakshmi; Butterworth, Karl T.; Penagaricano, Jose A.; Prise, Kevin M.; Griffin, Robert J.

    2014-01-01

    Traditional radiotherapy of bulky tumors has certain limitations. Spatially fractionated radiation therapy (GRID) and intensity modulated radiotherapy (IMRT) are examples of advanced modulated beam therapies that help in significant reductions in normal tissue damage. GRID refers to the delivery of a single high dose of radiation to a large treatment area that is divided into several smaller fields, while IMRT allows improved dose conformity to the tumor target compared to conventional three-dimensional conformal radiotherapy. In this review, we consider spatially fractionated radiotherapy approaches focusing on GRID and IMRT, and present complementary evidence from different studies which support the role of radiation induced signaling effects in the overall radiobiological rationale for these treatments. PMID:24246848

  12. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    SciTech Connect

    Pollom, Erqi L.; Deng, Lei; Pai, Reetesh K.; Brown, J. Martin; Giaccia, Amato; Loo, Billy W.; Shultz, David B.; Le, Quynh Thu; Koong, Albert C.; Chang, Daniel T.

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.

  13. Clinical Outcomes of Intraoperative Radiation Therapy for Extremity Sarcomas

    PubMed Central

    Tran, Quy N. H.; Kim, Anne C.; Gottschalk, Alexander R.; Wara, William M.; Phillips, Theodore L.; O'Donnell, Richard J.; Weinberg, Vivian; Haas-Kogan, Daphne A.

    2006-01-01

    Purpose. Radiation of extremity lesions, a key component of limb-sparing therapy, presents particular challenges, with significant risks of toxicities. We sought to explore the efficacy of intraoperative radiation therapy (IORT) in the treatment of soft tissue sarcomas of the extremities. Patients. Between 1995 and 2001, 17 patients received IORT for soft tissue sarcomas of the extremities. Indications for IORT included recurrent tumors in a previously radiated field or tumors adjacent to critical structures. Results. Gross total resections were achieved in all 17 patients. Two patients experienced locoregional relapses, six patients recurred at metastatic sites, and one patient died without recurrence. Thirty-six month estimates for locoregional control, disease free survival, and overall survival were 86%, 50%, and 78%, respectively. IORT was extremely well tolerated, with no toxicities referable to IORT. Conclusions. For patients with soft tissue sarcomas of the extremities, IORT used as a boost to EBRT provides excellent local control, with limited acute toxicities. PMID:17040093

  14. Research Findings on Radiation Hormesis and Radon Therapy

    SciTech Connect

    Hattori, Sadao

    1999-06-06

    Radiation hormesis research in Japan to determine the validity of Luckey's claims has revealed information on the health effects of low-level radiation. The scientific data of animal tests we obtained and successful results actually brought by radon therapy on human patients show us a clearer understanding of the health effects of low-level radiation. We obtained many animal test results and epidemiological survey data through our research activities cooperating with more than ten universities in Japan, categorized as follows: 1. suppression of cancer by enhancement of the immune system based on gene activation; 2. rejuvenation and suppression of aging by increasing cell membrane permeability and enzyme syntheses; 3. adaptive response by activation of gene expression on DNA repair and cell apoptosis; 4. pain relief and stress moderation by hormone formation in the brain and central nervous system; 5. avoidance and therapy of obstinate diseases by enhancing damage control systems and form one formation.

  15. Is preoperative radiation therapy as effective as postoperative radiation therapy for heterotopic ossification prevention in acetabular fractures?

    PubMed

    Archdeacon, Michael T; d'Heurle, Albert; Nemeth, Nicole; Budde, Bradley

    2014-11-01

    Prophylactic approaches to prevent heterotopic ossification after acetabular fracture surgery have included indomethacin and/or single-dose external beam radiation therapy administered after surgery. Although preoperative radiation has been used for heterotopic ossification prophylaxis in the THA population, to our knowledge, no studies have compared preoperative and postoperative radiation therapy in the acetabular fracture population. We determined whether heterotopic ossification frequency and severity were different between patients with acetabular fracture treated with prophylactic radiation therapy preoperatively and postoperatively. Between January 2002 and December 2009, we treated 320 patients with a Kocher-Langenbeck approach for acetabular fractures, of whom 50 (34%) were treated with radiation therapy preoperatively and 96 (66%) postoperatively. Thirty-four (68%) and 71 (74%), respectively, had 6-month radiographs available for review and were included. For hospital logistical reasons, patients who underwent operative treatment on a Friday or Saturday received radiation therapy preoperatively, and all others received it postoperatively. The treatment groups were comparable in terms of most demographic parameters, injury severity, and fracture patterns. Six-month postoperative radiographs were reviewed and graded according to Brooker. Followup ranged from 6 to 93 months and 6 to 97 months for the preoperative and postoperative groups, respectively. Post hoc power analysis showed our study was powered to detect a difference of 22% or more between patients with severe heterotopic ossification. Sample size calculations showed 915 subjects would be needed to detect a 5% relative difference in severe heterotopic ossification status between groups. We detected no difference in heterotopic ossification frequency between the preoperative (eight of 36, 22%) and postoperative (19 of 71, 27%) groups (p=0.609). There was also no difference in heterotopic

  16. Renal remodeling after abdominal radiation therapy: parenchymal and functional changes.

    PubMed

    Tran, Linda K; Maturen, Katherine E; Feng, Mary U; Wizauer, Eric J; Watcharotone, Kuanwong; Parker, Robert A; Ellis, James H

    2014-08-01

    The purpose of this study was to quantify changes in renal length, volume, and function over time after upper abdominal radiation therapy. Imaging and clinical data were retrospectively reviewed for 27 adults with abdominal radiation therapy between 2001 and 2012. All had two kidneys, radiation exposure to one kidney, and survival of at least 1 year after therapy. Mean prescribed dose was 52 ± 9 Gy to extrarenal targets. Length and volume of exposed and unexposed kidneys were measured on CT scans before treatment (baseline) and at intervals 0-3, 3-6, 6-12, 12-24, 24-36, and more than 36 months after completion of radiotherapy. Serum creatinine was correlated at each interval. Mixed-models ANOVA was used to test renal length and volume, serum creatinine, and time against multiple models to assess for temporal effects; specific time intervals were compared in pairwise manner. Mean follow-up duration was 35 months (range, 5-94 months). Exposed kidney length and volume progressively decreased from baseline throughout follow-up, with mean loss of 23% (p < 0.001) and 47% (p < 0.001), respectively. Slight increase in unexposed kidney length was not significant. Mean serum creatinine increased from 0.86 ± 0.18 mg/dL at baseline to 1.12 ± 0.27 mg/dL at 12-24 months (p < 0.001), then stabilized. Kidneys exposed to radiation during therapy of adjacent malignancies exhibited continuous progressive atrophy for the entire follow-up period, nearly 8 years. Volume changes were twice as great as length changes. Renal function also declined. To accurately interpret follow-up studies in cancer survivors, radiologists should be aware of the potential for progressive renal atrophy, even many years after radiation therapy.

  17. Radiation Therapy for Liver Tumors: Ready for Inclusion in Guidelines?

    PubMed Central

    Tanguturi, Shyam K.; Wo, Jennifer Y.; Zhu, Andrew X.; Dawson, Laura A.

    2014-01-01

    Despite the historically limited role of radiotherapy in the management of primary hepatic malignancies, modern advances in treatment design and delivery have renewed enthusiasm for radiation as a potentially curative treatment modality. Surgical resection and/or liver transplantation are traditionally regarded as the most effective forms of therapy, although the majority of patients with hepatocellular carcinoma and intrahepatic cholangiocarcinoma present with locally advanced or unresectable disease on the basis of local vascular invasion or inadequate baseline hepatobiliary function. In this context, many efforts have focused on nonoperative treatment approaches including novel systemic therapies, transarterial chemoembolization, ethanol ablation, radiofrequency ablation, and stereotactic body radiation therapy (SBRT). This review aims to summarize modern advances in radiotherapy, particularly SBRT, in the treatment of primary hepatic malignancies. PMID:25001265

  18. Thyroid cancer radioiodine therapy: health service performance and radiation safety.

    PubMed

    Vogiatzi, S; Liossis, A; Lamprinakou, M

    2015-07-01

    Greek Atomic Energy Commission collected data related to radioiodine I-131 therapy (RAIT) delivery to differentiated thyroid carcinoma patients, for the period 2003-13, corresponding to 100 % of hospitals at national level. Radiation safety and health service performance outcome indicators were assessed. The numbers of hospitals and nuclear medicine (NM) therapy wards, as well as RAIT annual frequencies, have increased. Geographical inhomogeneous distribution of existing infrastructure is recorded. In some cases, the observed inefficient use of NM therapy wards seems to be due to lack of human resources (e.g. nurses). Regular assessment of appropriate key indicators could serve as a useful tool for radiation safety monitoring and health service performance improvement. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Radiation therapy for breast cancer: Literature review.

    PubMed

    Balaji, Karunakaran; Subramanian, Balaji; Yadav, Poonam; Anu Radha, Chandrasekaran; Ramasubramanian, Velayudham

    2016-01-01

    Concave shape with variable size target volume makes treatment planning for the breast/chest wall a challenge. Conventional techniques used for the breast/chest wall cancer treatment provided better sparing of organs at risk (OARs), with poor conformity and uniformity to the target volume. Advanced technologies such as intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) improve the target coverage at the cost of higher low dose volumes to OARs. Novel hybrid techniques present promising results in breast/chest wall irradiation in terms of target coverage as well as OARs sparing. Several published data compared these technologies for the benefit of the breast/chest wall with or without nodal volumes. The aim of this article is to review relevant data and identify the scope for further research in developing optimal treatment plan for breast/chest wall cancer treatment. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  20. Some computer graphical user interfaces in radiation therapy

    PubMed Central

    Chow, James C L

    2016-01-01

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  1. Some computer graphical user interfaces in radiation therapy.

    PubMed

    Chow, James C L

    2016-03-28

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  2. Cytokines in therapy of radiation injury

    SciTech Connect

    Neta, R.; Oppenheim, J.J.

    1988-09-01

    Repeated injections or infusion of hematopoietic growth factors, such as interleukin-3 (IL-3), granulocyte macrophage-colony stimulating factor (GM-CSF), or granulocyte-colony stimulating factor (G-CSF), accelerate restoration of hematopoiesis in animals compromised by sublethal doses of cytotoxic drugs or irradiation. Previous work by the investigators has shown that IL-1 induced circulating CSF in normal mice and, when used after sublethal irradiation, accelerated the recovery of endogenous splenic colonies. Therefore, IL-1, as well as IFN-gamma, tumor necrosis factor (TNF), G-CSF, and GM-CSF, were evaluated as potential therapeutic agents in irradiated C3H-HeN mice. A single intraperitoneal injection, administered within three hours after a lethal dose (LD)95/30 of irradiation that would kill 95% of mice within 30 days, protected in a dose-dependent manner up to 100% of mice from radiation-induced death due to hematopoietic syndrome. Significant therapeutic effects were also achieved with a single dose of IFN-gamma or of TNF. In contrast, GM-CSF and G-CSF, administered shortly after irradiation, had no effect in the doses used on mice survival.

  3. Short-course versus split-course radiotherapy in metastatic spinal cord compression: results of a phase III, randomized, multicenter trial.

    PubMed

    Maranzano, Ernesto; Bellavita, Rita; Rossi, Romina; De Angelis, Verena; Frattegiani, Alessandro; Bagnoli, Rita; Mignogna, Marcello; Beneventi, Sara; Lupattelli, Marco; Ponticelli, Pietro; Biti, Gian Paolo; Latini, Paolo

    2005-05-20

    Hypofractionated radiotherapy (RT) is often used in the treatment of metastatic spinal cord compression (MSCC). This randomized trial was planned to assess the clinical outcome and toxicity of two different hypofractionated RT regimens in MSCC. Three hundred patients with MSCC were randomly assigned to a short-course RT (8 Gy x 2 days) or to a split-course RT (5 Gy x 3; 3 Gy x 5). Only patients with a short life expectancy entered the protocol. Median follow-up was 33 months (range, 4 to 61 months). A total of 276 (92%) patients were assessable; 142 (51%) treated with the short-course and 134 (49%) treated with the split-course RT regimen. There was no significant difference in response, duration of response, survival, or toxicity found between the two arms. When short- versus split-course regimens were compared, after RT 56% and 59% patients had back pain relief, 68% and 71% were able to walk, and 90% and 89% had good bladder function, respectively. Median survival was 4 months and median duration of improvement was 3.5 months for both arms. Toxicity was equally distributed between the two arms: grade 3 esophagitis or pharyngitis was registered in four patients (1.5%), grade 3 diarrhea occurred in four patients (1.5%), and grade 3 vomiting or nausea occurred in 10 patients (6%). Late toxicity was never recorded. Both hypofractionated RT schedules adopted were effective and had acceptable toxicity. However, considering the advantages of the short-course regimen in terms of patient convenience and machine time, it could become the RT regimen of choice in the clinical practice for MSCC patients.

  4. Complementary strategies for the management of radiation therapy side effects.

    PubMed

    Stubbe, Christine E; Valero, Meighan

    2013-07-01

    Patients with cancer utilize complementary and alternative medicine (CAM) for a variety of purposes, one of which is the reduction of side effects of conventional treatment. With a large number of their patients using CAM, it is important for advanced practitioners in oncology to have an understanding of these therapies to better guide their patients. Side effects of radiation therapy that may have dose-limiting poten-tial include diarrhea, mucositis, skin toxicity, and xerostomia. A com-mon side effect that is not necessarily dose-limiting but considerably troublesome to patients is cancer- and treatment-related fatigue. The CAM therapies that may alleviate some of the side effects of radiation therapy include probiotics, psyllium, exercise, melatonin, honey, acu-puncture, and calendula. Therapies that require more research or have been shown to be ineffective include aloe vera, glutamine, and deglyc-yrrhizinated licorice. This article provides an overview of these thera-pies as well as related research and analysis.

  5. Scope of nanotechnology-based radiation therapy and thermotherapy methods in cancer treatment.

    PubMed

    Bakht, Mohamadreza K; Sadeghi, Mahdi; Pourbaghi-Masouleh, Milad; Tenreiro, Claudio

    2012-10-01

    The main aim of nanomedicine is to revolutionize the health care system and find effective approaches to fighting fatal diseases. Therapeutic beams, which are employed in radiation therapy, do not discriminate between normal and cancerous cells and must rely on targeting the radiation beams to specific cells. Interestingly, the application of nanoscale particles in radiation therapy has aimed to improve outcomes in radiation therapy by increasing toxicity in tumors and reducing it in normal tissues. This review focuses on approaches to nanotechnology-based cancer radiation therapy methods such as radionuclide therapy, photodynamic therapy, and neutron capture therapy. Moreover, we have investigated nanotechnology-based thermotherapy methods, including hyperthermia and thermoablation, as non-ionizing modalities of treatment using thermal radiation. The results strongly demonstrate that nanotechnology-based cancer radiation therapy and thermotherapy methods hold substantial potential to improve the efficacy of anticancer radiation and thermotherapy modalities.

  6. Radiation therapy for advanced gastric cancer

    SciTech Connect

    Tsukiyama, I.; Akine, Y.; Kajiura, Y.; Ogino, T.; Yamashita, K.; Egawa, S.; Hijikata, J.; Kitagawa, T.

    1988-07-01

    A retrospective study of 75 patients with advanced inoperable gastric cancers, referred to the National Cancer Center Hospital between 1962 and 1982, was performed. According to the Borrmann classification based on X ray findings, Type 1 was found in 3 patients, Type 2 in 5, Type 3 in 40, and Type 4 in 15. Twelve patients could not be classified. The histological type was papillary adenocarcinoma in 7 patients, tubular adenocarcinoma in 23, mucinous carcinoma in 6, poorly differentiated adenocarcinoma in 14, signet ring cell carcinoma in 12 and others in 13. The site of remote metastasis in 19 patients was Virchow's lymph node in 8 patients, Douglas pouch in 3, liver and lung in 2 each and others in 4. All patients were treated by a either telecobalt 60 unit or a linear accelerator using 6 Mv photon and the total dose to primary lesion was 4000 cGy in 5 weeks to 7000 cGy in 8-9 weeks. Complete response (CR) was achieved in 6 patients or 8.0%, partial response (PR) in 46 or 61.3%, and no change (NC) in 23 or 30.7%. The response rate based on the sum of CR and PR was about 70%. The 50% survival period in months was 26.5, 7.3, and 3.2, respectively for patients with CR, PR, and NC. For the response of advanced gastric cancer to chemotherapy in the National Cancer Center Hospital, the combined use of UFT and Mitomycin C gave the highest rate, 46%. As for as local response is concerned, the response rate to radiation was 70%, a better result than that of chemotherapy alone.

  7. Intraoperative radiation therapy (IORT) in head and neck cancer

    PubMed Central

    Kyrgias, George; Hajiioannou, Jiannis; Tolia, Maria; Kouloulias, Vassilios; Lachanas, Vasileios; Skoulakis, Charalambos; Skarlatos, Ioannis; Rapidis, Alexandros; Bizakis, Ioannis

    2016-01-01

    Abstract Background: Multimodality therapy constitutes the standard treatment of advanced and recurrent head and neck cancer. Since locoregional recurrence comprises a major obstacle in attaining cure, the role of intraoperative radiation therapy (IORT) as an add-on in improving survival and local control of the disease has been investigated. IORT allows delivery of a single tumoricidal dose of radiation to areas of potential residual microscopic disease while minimizing doses to normal tissues. Advantages of IORT include the conformal delivery of a large dose of radiation in an exposed and precisely defined tumor bed, minimizing the risk of a geographic miss creating the potential for subsequent dose reduction of external beam radiation therapy (EBRT). This strategy allows for shortening overall treatment time and dose escalation. The aim of this review is to summarize recent published work on the use of IORT as an adjuvant modality to treat common head and neck cancer in the primary or recurrent setting. Methods: We searched the Medline, Scopus, Ovid, Cochrane, Embase, and ISI Web of Science databases for articles published from 1980 up to March 2016. Results: Based on relevant publications it appears that including IORT in the multimodal treatment may contribute to improved local control. However, the benefit in overall survival is not so clear. Conclusion: IORT seems to be a safe, promising adjunct in the management of head and neck cancer and yet further well organized clinical trials are required to determine its role more precisely. PMID:27977569

  8. Neutrophils, a candidate biomarker and target for radiation therapy?

    PubMed

    Schernberg, Antoine; Blanchard, Pierre; Chargari, Cyrus; Deutsch, Eric

    2017-08-23

    Neutrophils are the most abundant blood-circulating white blood cells, continuously generated in the bone marrow. Growing evidence suggests they regulate the innate and adaptive immune system during tumor evolution. This review will first summarize the recent findings on neutrophils as a key player in cancer evolution, then as a potential biomarker, and finally as therapeutic targets, with respective focuses on the interplay with radiation therapy. A complex interplay: Neutrophils have been associated with tumor progression through multiple pathways. Ionizing radiation has cytotoxic effects on cancer cells, but the sensitivity to radiation therapy in vivo differ from isolated cancer cells in vitro, partially due to the tumor microenvironment. Different microenvironmental states, whether baseline or induced, can modulate or even attenuate the effects of radiation, with consequences for therapeutic efficacy. Inflammatory biomarkers: Inflammation-based scores have been widely studied as prognostic biomarkers in cancer patients. We have performed a large retrospective cohort of patients undergoing radiation therapy (1233 patients), with robust relationship between baseline blood neutrophil count and 3-year's patient's overall survival in patients with different cancer histologies. (Pearson's correlation test: p = .001, r = -.93). Therapeutic approaches: Neutrophil-targeting agents are being developed for the treatment of inflammatory and autoimmune diseases. Neutrophils either can exert antitumoral (N1 phenotype) or protumoral (N2 phenotype) activity, depending on the Tumor Micro Environment. Tumor associated N2 neutrophils are characterized by high expression of CXCR4, VEGF, and gelatinase B/MMP9. TGF-β within the tumor microenvironment induces a population of TAN with a protumor N2 phenotype. TGF-β blockade slows tumor growth through activation of CD8 + T cells, macrophages, and tumor associated neutrophils with an antitumor N1 phenotype. This supports

  9. Endobronchial radiation therapy (EBRT) in the management of lung cancer

    SciTech Connect

    Roach, M. III; Leidholdt, E.M. Jr.; Tatera, B.S.; Joseph, J. )

    1990-06-01

    Between October 1987 and November 1988, 19 endobronchial Iridium-192 line source placements were attempted in 17 patients with advanced incurable lung cancer. Approximately 30 Gy was delivered to the endobronchus using a low dose rate (LDR) afterloading technique delivering a mean dose of 70 cGy/hr at 5 mm. Improvement in subjective symptoms was noted in 67% of evaluable patients whereas objective responses defined by chest X ray and bronchoscopy were noted in 26% and 60%, respectively. No significant morbidity was observed. The radiation exposure to health care workers was low ranging from 10 to 40 mRem per treatment course with most of the staff receiving less than 10 mRem per treatment course (minimal detectable level 10 mRem). The results of this series are compared with selected series using low dose rate as well as intermediate dose rate (IDR) and high dose rate (HDR) endobronchial radiation therapy (EBRT). Based on bronchoscopic responses from the selected series reviewed, both HDR low total dose per treatment (range 7.5-10 Gy) and LDR high total dose per treatment (range 30-50 Gy) are effective in palliating the vast majority of patients with endobronchial lesions. Intermediate dose rate is also effective using fractions similar to high dose rate but total dose similar to low dose rate. The efficacy of endobronchial radiation therapy in the palliative setting suggest a possible role for endobronchial radiation therapy combined with external beam irradiation with or without chemotherapy in the initial management of localized lung cancer. Defining the optimal total dose, dose rate, and the exact role of endobronchial radiation therapy in the management of lung cancer will require large cooperative trials with standardization of techniques and definitions.

  10. Immunotherapy and radiation therapy for malignant pleural mesothelioma

    PubMed Central

    Katz, Sharyn I.; Cengel, Keith A.; Simone, Charles B.

    2017-01-01

    Malignant pleural mesothelioma (MPM) is a particularly aggressive thoracic malignancy with limited survival following combination chemotherapy. As a result, there has been increased interested in immunotherapy for mesothelioma, both in the first-line and salvage settings. Early investigations of interleukin-2 (IL-2) and interferon alfa-2a/b have been limited by modest response rates and toxicity, whereas cytokine gene therapy is currently being investigated and shows early promise. The most prominent class of immunotherapies to be trialed with mesothelioma in the past half-decade has been immune checkpoint inhibitors (CPI). Early results are encouraging, particularly for agents targeting the PD-1/PD-L1 pathways. With the increasing recognition of the immune potential of mesothelioma, interest in the immunomodulatory properties of radiation therapy has emerged. The combination of immunotherapy and radiation therapy may allow for complimentary immunologic effects that can enhance antitumor response. This article reviews the existing literature on the efficacy of immunotherapy for MPM, describes the rationale for combining immunotherapy with radiation therapy, and discusses early literature on this treatment combination. PMID:28529903

  11. Radiation therapy: state of the art and the future.

    PubMed

    Ikushima, Hitoshi

    2010-02-01

    Technical innovation in radiation therapy (RT) such as stereotactic irradiation, intensity modulated RT, image-guided RT, and brachytherapy using remote controlled after-loading system have made it possible to deliver ideally distributed radiation dose to the target with great accuracy, while sparing the adjacent organs at risk. As a result, tumor control rate by RT improved markedly and became excellent alternative to surgery for asymptomatic or mildly symptomatic brain tumors, early stage lung cancer, and low-risk prostate cancer. In locally advanced stage of cancer, randomized controlled trials established the chemoradiation therapy as a standard treatment option for patients with head and neck cancer, lung cancer, esophageal cancer, and cervical cancer. RT is also a valuable treatment for palliation of local symptoms caused by cancer with consistently high response rates. Minimally invasive therapy has come to be emphasized its needs in the background of increased tendency of elderly patients with cancer, and advances in conformal dose delivery technique raise the RT at a more important position in cancer therapy. However, adequate number of RT profession is indispensable to utilize highly-sophisticated RT technology. Substantiality of an education system for radiation oncologist, RT technologist, and medical physicists is our current most important issue.

  12. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., and Radiation Therapy Technologists The following section describes basic elements to be incorporated... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses...

  13. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., and Radiation Therapy Technologists The following section describes basic elements to be incorporated... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses...

  14. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Medicine Technologists, and Radiation Therapy Technologists F Appendix F to Part 75 Public Health PUBLIC..., and Radiation Therapy Technologists The following section describes basic elements to be incorporated... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses...

  15. Radiation therapy in the treatment of metastatic renal cell carcinoma

    SciTech Connect

    Onufrey, V.; Mohiuddin, M.

    1985-11-01

    Adenocarcinoma of the kidney is an unusual tumor, both in its biological behavior and in its response to radiation treatment. Historically, these tumors have been considered to be radioresistant, and the role of radiation therapy remains questionable in the primary management of this disease. However, radiation treatment is routinely used in the palliation of metastatic lesions for relief of symptoms. Therefore, we have undertaken a review of our experience in the treatment of this disease to determine the effectiveness of radiation in its palliation. From 1956 to 1981, 125 patients with metastatic lesions from hypernephroma have been treated in the Department of Radiation Therapy at Thomas Jefferson University Hospital. Most patients were referred for relief of bone pain (86), brain metastasis (12), spinal cord compression (9), and soft tissue masses (18). Total doses varied from 2000 rad to a maximum of 6000 rad. Response to treatment was evaluated on the basis of relief of symptoms, either complete, partial or no change. Our results indicate a significantly higher response rate of 65% for total doses equal to or greater than a TDF of 70, as compared to 25% for doses lower than a TDF of 70. No difference in response was observed either for bone or soft tissue metastasis or visceral disease. This leads us to believe that metastatic lesions from adenocarcinomas of the kidney should be treated to higher doses to obtain maximum response rates. Analysis of these results are presented in detail.

  16. Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement

    NASA Astrophysics Data System (ADS)

    Cooper, Daniel; Bekah, Devesh; Nadeau, Jay

    2014-10-01

    Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy. Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  17. Gold nanoparticles and their alternatives for radiation therapy enhancement.

    PubMed

    Cooper, Daniel R; Bekah, Devesh; Nadeau, Jay L

    2014-01-01

    Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy (PDT). Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  18. Gold nanoparticles and their alternatives for radiation therapy enhancement

    PubMed Central

    Cooper, Daniel R.; Bekah, Devesh; Nadeau, Jay L.

    2014-01-01

    Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy (PDT). Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions. PMID:25353018

  19. Hepatocellular Carcinoma Radiation Therapy: Review of Evidence and Future Opportunities

    SciTech Connect

    Klein, Jonathan

    2013-09-01

    Hepatocellular carcinoma (HCC) is a leading cause of global cancer death. Curative therapy is not an option for most patients, often because of underlying liver disease. Experience in radiation therapy (RT) for HCC is rapidly increasing. Conformal RT can deliver tumoricidal doses to focal HCC with low rates of toxicity and sustained local control in HCC unsuitable for other locoregional treatments. Stereotactic body RT and particle therapy have been used with long-term control in early HCC or as a bridge to liver transplant. RT has also been effective in treating HCC with portal venous thrombosis. Patients with impaired liver function and extensive disease are at increased risk of toxicity and recurrence. More research on how to combine RT with other standard and novel therapies is warranted. Randomized trials are also needed before RT will be generally accepted as a treatment option for HCC. This review discusses the current state of the literature and opportunities for future research.

  20. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  1. Toward robust adaptive radiation therapy strategies.

    PubMed

    Böck, Michelle; Eriksson, Kjell; Forsgren, Anders; Hårdemark, Björn

    2017-06-01

    -at-risk protection. In case of unpredictably larger treatment errors, the first strategy in combination with at most weekly adaptation performs best at notably improving treatment quality in terms of target coverage and organ-at-risk protection in comparison with a non-adaptive approach and the other adaptive strategies. The authors present a framework that provides robust plan re-optimization or margin adaptation of a treatment plan in response to interfractional geometric errors throughout the fractionated treatment. According to the simulations, these robust adaptive treatment strategies are able to identify candidates for an adaptive treatment, thus giving the opportunity to provide individualized plans, and improve their treatment quality through adaptation. The simulated robust adaptive framework is a guide for further development of optimally controlled robust adaptive therapy models. © 2017 American Association of Physicists in Medicine.

  2. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system is a device that produces by acceleration high energy charged particles (e.g., electrons and protons...

  3. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  4. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  5. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  6. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  7. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  8. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  9. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  10. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  11. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  12. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  13. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  14. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  15. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  16. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  17. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control x...

  18. Complementary Strategies for the Management of Radiation Therapy Side Effects

    PubMed Central

    Stubbe, Christine E.; Valero, Meighan

    2013-01-01

    Patients with cancer utilize complementary and alternative medicine (CAM) for a variety of purposes, one of which is the reduction of side effects of conventional treatment. With a large number of their patients using CAM, it is important for advanced practitioners in oncology to have an understanding of these therapies to better guide their patients. Side effects of radiation therapy that may have dose-limiting poten­tial include diarrhea, mucositis, skin toxicity, and xerostomia. A com­mon side effect that is not necessarily dose-limiting but considerably troublesome to patients is cancer- and treatment-related fatigue. The CAM therapies that may alleviate some of the side effects of radiation therapy include probiotics, psyllium, exercise, melatonin, honey, acu­puncture, and calendula. Therapies that require more research or have been shown to be ineffective include aloe vera, glutamine, and deglyc­yrrhizinated licorice. This article provides an overview of these thera­pies as well as related research and analysis. PMID:25032003

  19. Adaptive radiation therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Wen, Ning

    standard deviation of markers after rigid registration in L-R direction was 0 and 1 mm. But the mean was 2--4 mm in the A-P and S-I direction and standard deviation was about 2 mm. After DIR, the mean in all three directions became 0 and standard deviation was within sub millimeter. UE images were generated for each CT set and carefully reviewed in the prostate region. DIR provided accurate transformation matrix to be used for dose reconstruction. The delivered dose was evaluated with radiobiological models. TCP for the CTV was calculated to evaluate tumor control in different margin settings. TCP calculated from the reconstructed dose agreed within 5% of the value in the plan for all patients with three different margins. EUD and NTCP were calculated to evaluate reaction of rectum to radiation. Similar biological evaluation was performed for bladder. EUD of actual dose was 3%--9% higher than that of planned dose of patient 1--3, 11%--20% higher of patient 4--5. Smaller margins could not reduce late GU toxicity effectively since bladder complication was directly related to Dmax which was at the same magnitude in the bladder no matter which margin was applied. Re-optimization was performed at the 10th, 20th , 30th, and 40th fraction to evaluate the effectiveness to limit OAR dose while maintaining the target coverage. Reconstructed dose was added to dose from remaining fractions after optimization to show the total dose patient would receive. It showed that if the plan was re-optimized at 10th or 20th fraction, total dose to rectum and bladder were very similar to planned dose with minor deviations. If the plan was re-optimized at the 30th fraction, since there was a large deviation between reconstructed dose and planned dose to OAR, optimization could not limit the OAR dose to the original plan with only 12 fractions left. If the re-optimization was done at the 40th fraction, it was impossible to compensate in the last 2 fractions. Large deviations of total dose to bladder

  20. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    SciTech Connect

    Valicenti, Richard K.; Thompson, Ian; Albertsen, Peter; Davis, Brian J.; Goldenberg, S. Larry; Wolf, J. Stuart; Sartor, Oliver; Klein, Eric; Hahn, Carol; Michalski, Jeff; Roach, Mack; Faraday, Martha M.

    2013-08-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review.

  1. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    SciTech Connect

    Orton, C; Borras, C; Carlson, D

    2014-06-15

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protection will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples of how

  2. Adaptive and robust radiation therapy in the presence of drift

    NASA Astrophysics Data System (ADS)

    Mar, Philip Allen; Chan, Timothy C. Y.

    2015-05-01

    Combining adaptive and robust optimization in radiation therapy has the potential to mitigate the negative effects of both intrafraction and interfraction uncertainty over a fractionated treatment course. A previously developed adaptive and robust radiation therapy (ARRT) method for lung cancer was demonstrated to be effective when the sequence of breathing patterns was well-behaved. In this paper, we examine the applicability of the ARRT method to less well-behaved breathing patterns. We develop a novel method to generate sequences of probability mass functions that represent different types of drift in the underlying breathing pattern. Computational results derived from applying the ARRT method to these sequences demonstrate that the ARRT method is effective for a much broader class of breathing patterns than previously demonstrated.

  3. [Ameloblastoma of the maxillary sinus treated with radiation therapy].

    PubMed

    Chehal, Asmaa; Lobo, Rosabel; Naim, Asmaa; Azinovic, Ignacio

    2017-01-01

    Ameloblastoma is a benign aggressive odontogenic tumor which requires early diagnosis and appropriate treatment. It commonly affects the mandible and radical surgery is the gold standard treatment. We report the case of a patient with ameloblastoma in extremely advanced phase affecting the maxillary sinus who was treated with intensity modulated conformal radiation therapy. Patient's evolution was marked by complete remission maintained after 24 months follow-up. Maxillary ameloblastoma is not well documented in the literature. It is usually diagnosed at the later stage when optimal surgery cannot be performed. This case study aimed to demonstrate that radiation therapy is a real therapeutic alternative in the treatment of advanced and inoperable forms of ameloblastoma.

  4. Stereotactic body radiation therapy for metastasis to the adrenal glands.

    PubMed

    Shiue, Kevin; Song, Andrew; Teh, Bin S; Ellis, Rodney J; Yao, Min; Mayr, Nina A; Huang, Zhibin; Sohn, Jason; Machtay, Mitchell; Lo, Simon S

    2012-12-01

    Many primary cancers can metastasize to the adrenal glands. Adrenalectomy via an open or laparoscopic approach is the current definitive treatment, but not all patients are eligible or wish to undergo surgery. There are only limited studies on the use of conventional radiation therapy for palliation of symptoms from adrenal metastasis. However, the advent of stereotactic body radiation therapy (SBRT) - also named stereotactic ablative radiotherapy for primary lung cancer, metastases to the lung, and metastases to the liver - have prompted some investigators to consider the use of SBRT for metastases to the adrenal glands. This review focuses on the emerging data on SBRT of metastasis to the adrenal glands, while also providing a brief discussion of the overall management of adrenal metastasis.

  5. Impact of dose calculation algorithm on radiation therapy

    PubMed Central

    Chen, Wen-Zhou; Xiao, Ying; Li, Jun

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimize the normal tissue complication probability. Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems. The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work. The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic. Further, the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups. All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy. PMID:25431642

  6. Acute and Chronic Cutaneous Reactions to Ionizing Radiation Therapy.

    PubMed

    Bray, Fleta N; Simmons, Brian J; Wolfson, Aaron H; Nouri, Keyvan

    2016-06-01

    Ionizing radiation is an important treatment modality for a variety of malignant conditions. However, development of radiation-induced skin changes is a significant adverse effect of radiation therapy (RT). Cutaneous repercussions of RT vary considerably in severity, course, and prognosis. When they do occur, cutaneous changes to RT are commonly graded as acute, consequential-late, or chronic. Acute reactions can have severe sequelae that impact quality of life as well as cancer treatment. Thus, dermatologists should be informed about these adverse reactions, know how to assess their severity and be able to determine course of management. The majority of measures currently available to prevent these acute reactions are proper skin hygiene and topical steroids, which limit the severity and decrease symptoms. Once acute cutaneous reactions develop, they are treated according to their severity. Treatments are similar to those used in prevention, but incorporate wound care management that maintains a moist environment to hasten recovery. Chronic changes are a unique subset of adverse reactions to RT that may develop months to years following treatment. Chronic radiation dermatitis is often permanent, progressive, and potentially irreversible with substantial impact on quality of life. Here, we also review the etiology, clinical manifestations, pathogenesis, prevention, and management of late-stage cutaneous reactions to radiotherapy, including chronic radiation dermatitis and radiation-induced fibrosis.

  7. Three Cases of Levodopa-Resistant Parkinsonism After Radiation Therapy

    PubMed Central

    Mehanna, Raja; Jimenez-Shahed, Joohi; Itin, Ilia

    2016-01-01

    Case series Patients: Male, 77 • Female, 44 • Male, 9 Final Diagnosis: Radiation induced parkinsonism Symptoms: Slowness Medication: — Clinical Procedure: — Specialty: Neurology Objective: Unusual or unexpected effect of treatment Background: Unequivocal brain radiation-induced parkinsonism has so far been reported in only in two pediatric patients. However, with the rising incidence rates for brain tumors in industrialized countries and the consequential increased exposure to cranial radiotherapy, clinicians might become more exposed to this entity. Case Report: Three patients were treated for intraparenchymal brain tumor with resection, chemotherapy, and whole brain radiation. One patient developed leukoencephalopathy and parkinsonism within one year of treatment, one developed it seven years after treatment completion, and one developed dementia, parkinsonism and cerebral infracts 40 years after whole brain radiation. Brain MRIs and a DaTscan were obtained. All patients failed a trial of carbidopa/levodopa. We suggest that the brain radiation exposure was responsible for levodopa resistant parkinsonism, cognitive decline, and diffuse leukoencephalopathy. Conclusions: Although rare, radiation therapy-induced parkinsonism might be responsible for levodopa-resistant parkinsonism. PMID:27909286

  8. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    SciTech Connect

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  9. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    PubMed Central

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  10. Fibrosarcoma after high energy radiation therapy for pituitary adenoma

    SciTech Connect

    Martin, W.H.; Cail, W.S.; Morris, J.L.; Constable, W.C.

    1980-11-01

    Pituitary sarcoma is a rare late complication of radiotherapy for pituitary tumors. Although early case reports involved multiple courses of relatively low-energy radiation therapy, pituitary sarcoma has been seen with single courses of high-energy x-ray or heavy particle radiotherapy. This report describes a fibrosarcoma of the pituitary occurring 5 years after 4,500 rad (45 Gy) of x-irradiation delivered in 20 treatments over 3 weeks by an 8 MeV linear accelerator.

  11. Sick sinus syndrome as a complication of mediastinal radiation therapy

    SciTech Connect

    Pohjola-Sintonen, S.; Toetterman, K.J.K.; Kupari, M. )

    1990-06-01

    A 33-year-old man who had received mediastinal radiation therapy for Hodgkin's disease 12 years earlier developed a symptomatic sick sinus syndrome requiring the implantation of a permanent pacemaker. The sick sinus syndrome and a finding of an occult constrictive pericarditis were considered to be due to the previous mediastinal irradiation. A ventricular pacemaker was chosen because mediastinal radiotherapy also increases the risk of developing atrioventricular conduction defects.

  12. The radiation biology of boron neutron capture therapy.

    PubMed

    Coderre, J A; Morris, G M

    1999-01-01

    Boron neutron capture therapy (BNCT) is a targeted radiation therapy that significantly increases the therapeutic ratio relative to conventional radiotherapeutic modalities. BNCT is a binary approach: A boron-10 (10B)-labeled compound is administered that delivers high concentrations of 10B to the target tumor relative to surrounding normal tissues. This is followed by irradiation with thermal neutrons or epithermal neutrons which become thermalized at depth in tissues. The short range (5-9 microm) of the alpha and 7Li particles released from the 10B(n,alpha)7Li neutron capture reaction make the microdistribution of 10B of critical importance in therapy. The radiation field in tissues during BNCT consists of a mixture of components with differing LET characteristics. Studies have been carried out in both normal and neoplastic tissues to characterize the relative biological effectiveness of each radiation component. The distribution patterns and radiobiological characteristics of the two 10B delivery agents in current clinical use, the amino acid p-boronophenylalanine (BPA) and the sulfhydryl borane (BSH), have been evaluated in a range of normal tissues and tumor types. Considered overall, BSH-mediated BNCT elicits proportionately less damage to normal tissue than does BNCT mediated with BPA. However, BPA exhibits superior in vivo tumor targeting and has proven much more effective in the treatment of brain tumors in rats. In terms of fractionation effects, boron neutron capture irradiation modalities are comparable with other high-LET radiation modalities such as fast-neutron therapy. There was no appreciable advantage in increasing the number of daily fractions of thermal neutrons beyond two with regard to sparing of normal tissue in the rat spinal cord model. The experimental studies described in this review constitute the radiobiological basis for the new BNCT clinical trials for glioblastoma at Brookhaven National Laboratory, at the Massachusetts Institute of

  13. Radiation therapy of lymphoblastic renal masses - benefit or hazard

    SciTech Connect

    Saarinen, U.M.

    1985-05-01

    A child with non-Hodgkin lymphoma and massively enlarged kidneys received a single dose of 300 rad (3 Gy) to the right kidney before initiation of chemotherapy. Measurement of the split renal function with 99m-Tc-DTPA four days postirradiation revealed that the function of the right kidney had substantially deteriorated, suggesting that hazards may be involved with the use of radiation therapy for lymphoblastic renal masses.

  14. WE-B-BRD-02: MR Simulation for Radiation Therapy

    SciTech Connect

    Sheng, K.

    2015-06-15

    The use of MRI in radiation therapy is rapidly increasing. Applications vary from the MRI simulator, to the MRI fused with CT, and to the integrated MRI+RT system. Compared with the standard MRI QA, a broader scope of QA features has to be defined in order to maximize the benefits of using MRI in radiation therapy. These QA features include geometric fidelity, image registration, motion management, cross-system alignment, and hardware interference. Advanced MRI techniques require a specific type of QA, as they are being widely used in radiation therapy planning, dose calculations, post-implant dosimetry, and prognoses. A vigorous and adaptive QA program is crucial to defining the responsibility of the entire radiation therapy group and detecting deviations from the performance of high-quality treatment. As a drastic departure from CT simulation, MRI simulation requires changes in the work flow of treatment planning and image guidance. MRI guided radiotherapy platforms are being developed and commercialized to take the advantage of the advance in knowledge, technology and clinical experience. This symposium will from an educational perspective discuss the scope and specific issues related to MRI guided radiotherapy. Learning Objectives: Understand the difference between a standard and a radiotherapy-specific MRI QA program. Understand the effects of MRI artifacts (geometric distortion and motion) on radiotherapy. Understand advanced MRI techniques (ultrashort echo, fast MRI including dynamic MRI and 4DMRI, diffusion, perfusion, and MRS) and related QA. Understand the methods to prepare MRI for treatment planning (electron density assignment, multimodality image registration, segmentation and motion management). Current status of MRI guided treatment platforms. Dr. Jihong Wang has a research grant with Elekta-MRL project. Dr. Ke Sheng receives research grants from Varian Medical systems.

  15. Vocal changes in patients undergoing radiation therapy for glottic carcinoma

    SciTech Connect

    Miller, S.; Harrison, L.B.; Solomon, B.; Sessions, R.B. )

    1990-06-01

    A prospective evaluation of vocal changes in patients receiving radiation therapy for T1 and T2 (AJC) glottic carcinoma was undertaken in January 1987. Vocal analysis was performed prior to radiotherapy and at specific intervals throughout the radiation treatment program. The voicing ratio was extrapolated from a sustained vowel phonation using the Visipitch interfaced with the IBM-PC. Preliminary observations suggested three distinct patterns of vocal behavior: 1. reduced voicing ratio with precipitous improvement within the course of treatment, 2. high initial voicing ratio with reduction secondary to radiation induced edema, with rapid improvement in the voicing component after the edema subsided, and 3. fluctuating voicing ratio during and following treatment. Enrollment of new patients and a 2-year follow-up of current patients was undertaken.

  16. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance

    PubMed Central

    Western, Craig; Hristov, Dimitre

    2015-01-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included. PMID:26180704

  17. Postprostatectomy radiation therapy: an evidence-based review.

    PubMed

    Mishra, Mark V; Champ, Colin E; Den, Robert B; Scher, Eli D; Shen, Xinglei; Trabulsi, Edouard J; Lallas, Costas D; Knudsen, Karen E; Dicker, Adam P; Showalter, Timothy N

    2011-12-01

    While the majority of men with localized prostate cancer who undergo a radical prostatectomy will remain disease free, men with certain clinical and pathological features are known to be at an increased risk for developing a biochemical recurrence and, ultimately, distant metastatic disease. The optimal management of these patients continues to be a source of controversy. To date, three randomized Phase III trials have demonstrated that adjuvant radiation therapy (ART) for patients with certain adverse pathological features results in an improvement in several clinically-relevant end points, including biochemical recurrence-free survival and overall survival. Despite the evidence from these trials showing a benefit for ART, many believe that ART results in overtreatment and unwarranted treatment morbidity for a significant number of patients. Many physicians, therefore, instead advocate for close observation followed by early salvage radiation therapy (SRT) at the time of a biochemical recurrence. The purpose of this review is to evaluate the evidence for and to distinguish between ART and early SRT. We will also highlight current and future areas of research for this patient population, including radiation treatment dose escalation, hypofractionation and androgen deprivation therapy. We will also discuss the cost-effectiveness of ART and early SRT.

  18. Intraoperative radiation therapy in malignant glioma: early clinical results.

    PubMed

    Ortiz de Urbina, D; Santos, M; Garcia-Berrocal, I; Bustos, J C; Samblas, J; Gutierrez-Diaz, J A; Delgado, J M; Donckaster, G; Calvo, F A

    1995-08-01

    Intraoperative radiation therapy (IORT) with high energy electron beams is a treatment modality that has been included in multimodal programs in oncology to improve local tumor control. From August 1991 to December 1993, 17 patients with primary (8) or recurrent (9) high grade malignant gliomas, anaplastic astrocytoma (4), anaplastic oligodendroglioma (6) and glioblastoma multiforme (7), underwent surgical resection and a single dose of 10-20 Gy intraoperative radiation therapy was delivered in tumor bed. Fourteen patients received either pre-operative (8) or post-operative (6) external beam radiation therapy. Primary gliomas: 18-months actuarial survival rate has been 56% (range: 1-21+ months) and the median survival time has not yet been achieved. Four patients developed tumor progression (median time to tumor progression: 9 months). Recurrent gliomas: 18-months actuarial survival rate and median survival time has been 47% and 13 months (range: 6-32+ months) respectively. The median time to tumor progression was 11 months. No IORT related mortality has been observed. IORT is an attractive, tolerable and feasible treatment modality as antitumoral intensification procedure in high grade malignant gliomas.

  19. Chronic eosinophilic pneumonia after radiation therapy for breast cancer.

    PubMed

    Cottin, V; Frognier, R; Monnot, H; Levy, A; DeVuyst, P; Cordier, J F

    2004-01-01

    The priming of bronchiolitis obliterans organising pneumonia by radiation therapy (RT) to the breast is now a well recognised syndrome. This study describes the occurrence of chronic eosinophilic pneumonia following RT after surgery for breast cancer in five female patients, with a mean age of 68 yrs (range 49-77). All patients had a history of asthma and/or allergy. At the onset of eosinophilic pneumonia, all patients were symptomatic. Chest radiograph showed pulmonary infiltrates, unilateral and limited to the irradiated lung in three patients, and bilateral in two. Pulmonary opacities were migratory in one patient. All patients had blood eosinophilia >1.0 10(9) x L(-1) and/or eosinophilia >40% at bronchoalveolar lavage differential cell count. The median time interval between the end of radiation therapy and the onset of eosinophilic pneumonia was 3.5 months (range 1-10). All patients rapidly improved with oral corticosteroids without sequelae. Relapse occurred in two patients after treatment withdrawal. Priming of alveolitis by radiation therapy to the breast might promote either bronchiolitis obliterans organising pneumonia or chronic eosinophilic pneumonia, with the latter depending on genetic or acquired characteristics of patients and/or further stimulation that may trigger a T-helper cell type 2 form of lymphocyte response, especially in patients with asthma or other atopic manifestations.

  20. CT evaluation of effects of cranial radiation therapy in children

    SciTech Connect

    Davis, P.C.; Hoffman, J.C. Jr.; Pearl, G.S.; Braun, I.F.

    1986-09-01

    A retrospective evaluation was completed of 49 children who received conventional cranial radiation therapy for primary central nervous system and/or skull-base neoplasia and who had follow-up CT studies. In these children, abnormalities in normal parenchyma away from the tumor itself were surprisingly frequent, with or without chemotherapy. Generalized volume loss or atrophy was the most frequent abnormality (51%), but in this population it may have resulted from a variety of causes. Calcification in nontumorous parenchyma was common (28%) with or without chemotherapy. The most frequent site of calcification was subcortical at the gray-white junction. Calcification was progressive over 1-2 years and correlated pathologically with mineralizing microangiopathy and dystrophic calcification with demyelination. White-matter abnormalities other than those associated with shunt malfunction and tumor edema occurred in 26% of the patients. Both white-matter abnormalities and calcification occurred predominantly in younger children, particularly those under 3 years old at the time of radiation therapy. Of the 21 children who received chemotherapy in this series, only two received methotrexate. White-matter abnormalities and calcifications occurred with similar frequency in children with and without chemotherapy; thus, radiation therapy is the most likely cause of these findings.

  1. Aesthetic results following partial mastectomy and radiation therapy

    SciTech Connect

    Matory, W.E. Jr.; Wertheimer, M.; Fitzgerald, T.J.; Walton, R.L.; Love, S.; Matory, W.E.

    1990-05-01

    This study was undertaken to determine the aesthetic changes inherent in partial mastectomy followed by radiation therapy in the treatment of stage I and stage II breast cancer. A retrospective analysis of breast cancer patients treated according to the National Surgical Adjuvant Breast Project Protocol B-06 was undertaken in 57 patients from 1984 to the present. The size of mastectomy varied between 2 x 1 cm and 15 x 8 cm. Objective aesthetic outcome, as determined by physical and photographic examination, was influenced primarily by surgical technique as opposed to the effects of radiation. These technical factors included orientation of resections, breast size relative to size of resection, location of tumor, and extent and orientation of axillary dissection. Regarding cosmesis, 80 percent of patients treated in this study judged their result to be excellent or good, in comparison to 50 percent excellent or good as judged by the plastic surgeon. Only 10 percent would consider mastectomy with reconstruction for contralateral disease. Asymmetry and contour abnormalities are far more common than noted in the radiation therapy literature. Patients satisfaction with lumpectomy and radiation, however, is very high. This satisfaction is not necessarily based on objective criteria defining aesthetic parameters, but is strongly influenced by retainment of the breast as an original body part.

  2. Environmental UVA radiation and eye protection during PUVA therapy.

    PubMed

    Morison, W L; Strickland, P T

    1983-10-01

    Experimental and clinical evidence suggests that patients receiving psoralens plus UVA radiation (PUVA) therapy for the treatment of psoriasis or other skin diseases run the risk of developing cataracts. The total exposure to UVA radiation of these patients has been difficult to quantify because they are exposed to UVA radiation in the environment as well as during PUVA therapy. In our studies, the spectral irradiances of possible environmental sources of UVA radiation (sunlight, daylight and cool white fluorescent bulbs, and incandescent bulbs) were measured and compared to the spectral irradiance of a bank of PUVA bulbs. Sunlight and PUVA bulbs were found to have similar irradiances in the UVA waveband. Window glass reduced the UVA irradiance from sunlight. Artificial sources of illumination had a very low UVA irradiance compared with PUVA bulbs and sunlight. These results indicate that patients should protect their eyes from sunlight both outdoors and indoors after ingestion of psoralens; however, protection from incandescent bulbs or cool white and daylight fluorescent bulbs is much less important, and possibly unnecessary.

  3. Limited Stage Follicular Lymphoma: Current Role of Radiation Therapy

    PubMed Central

    Filippi, Andrea Riccardo; Ciammella, Patrizia; Ricardi, Umberto

    2016-01-01

    Radiation therapy (RT) alone has been considered for a long time as the standard therapeutic option for limited stage FL, due to its high efficacy in terms of local disease control with a quite significant proportion of “cured” patients (without further relapses at 10–15 years). Multiple therapeutic choices are currently accepted for the management of early stage FL at diagnosis, and better staging procedures as well as better systemic therapy partially modified the role of RT in this setting. RT has also changed in terms of prescribed dose as well as treatment volumes. In this review, we present and discuss the current role of RT for limited stage FL in light of the historical data and the modern RT concepts along with the possible combination with systemic therapy. PMID:27648204

  4. Boron neutron capture therapy (BNCT): A radiation oncology perspective

    SciTech Connect

    Dorn, R.V. III Idaho National Engineering Lab., Idaho Falls, ID )

    1994-03-30

    Boron neutron capture therapy (BNCT) offers considerable promise in the search for the ideal cancer therapy, a therapy which selectively and maximally damages malignant cells while sparing normal tissue. This bimodal treatment modality selectivity concentrates a boron compound in malignant cells, and then [open quotes]activates[close quotes] this compound with slow neutrons resulting in a highly lethal event within the cancer cell. This article reviews this treatment modality from a radiation oncology, biology, and physics perspective. The remainder of the articles in this special issue provide a survey of the current [open quotes]state-of-the-art[close quotes] in this rapidly expanding field, including information with regard to boron compounds and their localization. 118 refs., 3 figs.

  5. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    SciTech Connect

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

    2011-08-15

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu{sup 2+}), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu{sup 2+} dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate {sup 137}Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu{sup 2+}, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu{sup 2+} dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100-700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0-5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu{sup 2+} material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu{sup 2+} exhibits strong radiation hardness and

  6. Definitive radiation therapy for squamous cell carcinoma of the vagina.

    PubMed

    Frank, Steven J; Jhingran, Anuja; Levenback, Charles; Eifel, Patricia J

    2005-05-01

    To evaluate outcome and describe clinical treatment guidelines for patients with primary squamous cell carcinoma of the vagina treated with definitive radiation therapy. Between 1970 and 2000, a total of 193 patients were treated with definitive radiation therapy for squamous cell carcinoma of the vagina at The University of Texas M. D. Anderson Cancer Center. The patients' medical records were reviewed to obtain information about patient, tumor, and treatment characteristics, as well as outcome and patterns of recurrence. Surviving patients were followed for a median of 137 months. Survival rates were calculated using the Kaplan-Meier method, with differences assessed using log-rank tests. Disease-specific survival (DSS) and pelvic disease control rates correlated with International Federation of Gynecology and Obstetrics (FIGO) stage and tumor size. At 5 years, DSS rates were 85% for the 50 patients with Stage I, 78% for the 97 patients with Stage II, and 58% for the 46 patients with Stage III-IVA disease (p = 0.0013). Five-year DSS rates were 82% and 60% for patients with tumors < or =4 cm or >4 cm, respectively (p = 0.0001). At 5 years, pelvic disease control rates were 86% for Stage I, 84% for Stage II, and 71% for Stage III-IVA (p = 0.027). The predominant mode of relapse after definitive radiation therapy was local-regional (68% and 83%, respectively, for patients with stages I-II or III-IVA disease). The incidence of major complications was correlated with FIGO stage; at 5 years, the rates of major complications were 4% for Stage I, 9% for Stage II, and 21% for Stage III-IVA (p < 0.01). Excellent outcomes can be achieved with definitive radiation therapy for invasive squamous cell carcinoma of the vagina. However, to achieve these results, treatment must be individualized according to the site and size of the tumor at presentation and the response to initial external-beam radiation therapy. Brachytherapy plays an important role in the treatment of many

  7. Prone breast intensity modulated radiation therapy: 5-year results.

    PubMed

    Osa, Etin-Osa O; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D; Formenti, Silvia C

    2014-07-15

    To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm(3), mean 19.65 cm(3). In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm(3), mean 1.59 cm(3). There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and fractionation approach to standard 6-week radiation therapy with a

  8. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    SciTech Connect

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  9. The New Radiation Therapy Clinical Practice: The Emerging Role of Clinical Peer Review for Radiation Therapists and Medical Dosimetrists

    SciTech Connect

    Adams, Robert D.; Marks, Lawrence B.; Pawlicki, Todd; Hayman, James; Church, Jessica

    2010-01-01

    The concept of peer review for radiation therapists and medical dosimetrists has been studied very little in radiation oncology practice. The purpose of this manuscript is to analyze the concept of peer review in the clinical setting for both radiation therapists and medical dosimetrists. The literature reviewed both the percentages and causes of radiation therapy deviations. The results indicate that peer review can be both implemented and evaluated into both the radiation therapist and medical dosimetrist clinical practice patterns.

  10. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    SciTech Connect

    Gunther, Jillian R.; Sato, Mariko; Chintagumpala, Murali; Ketonen, Leena; Jones, Jeremy Y.; Allen, Pamela K.; Paulino, Arnold C.; Okcu, M. Fatih; Su, Jack M.; Weinberg, Jeffrey; Boehling, Nicholas S.; Khatua, Soumen; Adesina, Adekunle; Dauser, Robert; Whitehead, William E.; Mahajan, Anita

    2015-09-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.

  11. Intraoperative radiation therapy as an adjunctive therapy for huge and highly vascular parasagittal meningiomas.

    PubMed Central

    Cho, T. H.; Chung, Y. G.; Kim, C. Y.; Kim, H. K.; Lee, N. J.; Chu, J. W.; Choi, M. S.

    2000-01-01

    This case presents a 34-year-old man who had a huge parasagittal meningioma. Initial treatment consisted of preoperative external carotid artery embolization and partial tumor resection. During the resection, we found that the tumor invaded the adjacent calvarium, and due to massive hemorrhage, total removal of the tumor was impossible. The patient was treated with intraoperative radiation therapy (IORT) (25 Gy via 16 MeV) as an adjunctive therapy. Eight months after IORT, we were able to remove the tumor completely without surgical difficulties. IORT can be considered an useful adjunctive therapy for the superficially located, huge, and highly vascular meningioma. PMID:11194202

  12. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer

    PubMed Central

    Lin, Mei; Huang, Junxing; Shi, Yujuan; Xiao, Yanhong; Guo, Ting

    2015-01-01

    Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy. PMID:26783511

  13. Evaluation of selection criteria for graduate students in radiation therapy.

    PubMed

    Schneider-Kolsky, Michal; Wright, Caroline; Baird, Marilyn

    2006-12-01

    Selection of suitable students into graduate medical and specialist health professional courses can be difficult. Historically, selection of students was primarily based on prior academic performance. Recently, however, more emphasis has been placed on considering broader academic backgrounds and personal characteristics and attitudes of students, but no reliable measurement tool is available to predict student success and satisfaction with their choice of profession. The aim of this study was to survey practising radiation therapists in Australia to seek their opinions regarding suitable selection criteria for graduate entry radiation therapy (RT) students in order to optimize selection procedures for future applicants. Four hundred questionnaires were sent to nine RT centres in three states within Australia. All nine clinics participated in the survey and 189 questionnaires were returned. Results show that the majority of radiation therapists place a high level of importance upon a sound knowledge of physics and mathematics, as well as life experience, and agree that a visit to an RT clinic plus an interview comprise important components of the selection process. Humanities, psychology and a psychometric test were not viewed as essential entry requirements. Experienced radiation therapists placed less value on academic performance in the primary degree and were more likely to include an interview as a selection criterion than junior practitioners. Empathy for patients was identified as the most important personal attribute. It is thus recommended that not only cognitive but also personal skills be evaluated during the selection of prospective radiation therapists.

  14. Breast cancer after chest radiation therapy for childhood cancer.

    PubMed

    Moskowitz, Chaya S; Chou, Joanne F; Wolden, Suzanne L; Bernstein, Jonine L; Malhotra, Jyoti; Novetsky Friedman, Danielle; Mubdi, Nidha Z; Leisenring, Wendy M; Stovall, Marilyn; Hammond, Sue; Smith, Susan A; Henderson, Tara O; Boice, John D; Hudson, Melissa M; Diller, Lisa R; Bhatia, Smita; Kenney, Lisa B; Neglia, Joseph P; Begg, Colin B; Robison, Leslie L; Oeffinger, Kevin C

    2014-07-20

    The risk of breast cancer is high in women treated for a childhood cancer with chest irradiation. We sought to examine variations in risk resulting from irradiation field and radiation dose. We evaluated cumulative breast cancer risk in 1,230 female childhood cancer survivors treated with chest irradiation who were participants in the CCSS (Childhood Cancer Survivor Study). Childhood cancer survivors treated with lower delivered doses of radiation (median, 14 Gy; range, 2 to 20 Gy) to a large volume (whole-lung field) had a high risk of breast cancer (standardized incidence ratio [SIR], 43.6; 95% CI, 27.2 to 70.3), as did survivors treated with high doses of delivered radiation (median, 40 Gy) to the mantle field (SIR, 24.2; 95% CI, 20.7 to 28.3). The cumulative incidence of breast cancer by age 50 years was 30% (95% CI, 25 to 34), with a 35% incidence among Hodgkin lymphoma survivors (95% CI, 29 to 40). Breast cancer-specific mortality at 5 and 10 years was 12% (95% CI, 8 to 18) and 19% (95% CI, 13 to 25), respectively. Among women treated for childhood cancer with chest radiation therapy, those treated with whole-lung irradiation have a greater risk of breast cancer than previously recognized, demonstrating the importance of radiation volume. Importantly, mortality associated with breast cancer after childhood cancer is substantial. © 2014 by American Society of Clinical Oncology.

  15. Effects of radiation therapy and chemotherapy on testicular function

    SciTech Connect

    Kinsella, T.J. )

    1989-01-01

    Chemotherapy and radiation therapy are commonly used alone or in combination in the curative management of many malignancies in adolescent and adult males. Over the last 15-20 years, the striking success in the treatment of some common cancers in reproductive males has led to increasing concern for damage to normal tissues, such as the testes, resulting from curative cancer treatment. Indeed, a major future goal for cancer treatment will be to improve on the complication-free cure rate. Inherent in achieving this goal is to understand the pathophysiology and clinical expression of testicular injury. Both chemotherapy and radiation therapy result in germ cell depletion with the development of oligo- to azoospermia and testicular atrophy. The type of drug (particularly the alkylating agents), duration of treatment, intensity of treatment, and drug combination are major variables in determining the extent and duration of testicular injury. Testicular injury with chemotherapy also appears to vary with the age of the patient at the time of treatment. Newer drug combinations are now being used which appear to have curative potential in tumors such as Hodgkin's disease and germ cell testicular cancer with less potential for testicular injury. The most accurate and complete information on radiation injury to the testes is derived from two studies of normal volunteers who received graded single doses directly to the testes. A clear dose-response relationship of clinical and histological testicular damage was found with gradual recovery occurring following doses of up to 600 cGy. While these two studies provide an important clinical data base, radiation therapy used in treating cancers involves multiple daily treatments, usually 25-35 delivered over several weeks. Additionally, direct testicular irradiation is seldom used clinically. 37 references.

  16. Anonymization of DICOM electronic medical records for radiation therapy.

    PubMed

    Newhauser, Wayne; Jones, Timothy; Swerdloff, Stuart; Newhauser, Warren; Cilia, Mark; Carver, Robert; Halloran, Andy; Zhang, Rui

    2014-10-01

    Electronic medical records (EMR) and treatment plans are used in research on patient outcomes and radiation effects. In many situations researchers must remove protected health information (PHI) from EMRs. The literature contains several studies describing the anonymization of generic Digital Imaging and Communication in Medicine (DICOM) files and DICOM image sets but no publications were found that discuss the anonymization of DICOM radiation therapy plans, a key component of an EMR in a cancer clinic. In addition to this we were unable to find a commercial software tool that met the minimum requirements for anonymization and preservation of data integrity for radiation therapy research. The purpose of this study was to develop a prototype software code to meet the requirements for the anonymization of radiation therapy treatment plans and to develop a way to validate that code and demonstrate that it properly anonymized treatment plans and preserved data integrity. We extended an open-source code to process all relevant PHI and to allow for the automatic anonymization of multiple EMRs. The prototype code successfully anonymized multiple treatment plans in less than 1min/patient. We also tested commercial optical character recognition (OCR) algorithms for the detection of burned-in text on the images, but they were unable to reliably recognize text. In addition, we developed and tested an image filtering algorithm that allowed us to isolate and redact alpha-numeric text from a test radiograph. Validation tests verified that PHI was anonymized and data integrity, such as the relationship between DICOM unique identifiers (UID) was preserved.

  17. Melanoma Therapy via Peptide-Targeted a-Radiation

    SciTech Connect

    Miao, Yubin; Hylarides, Mark; Fisher, Darrell R.; Shelton, Tiffani; Moore, Herbert A.; Wester, Dennis W.; Fritzberg, Alan R.; Winkelmann, Christopher T.; Hoffman, Timothy J.; Quinn, Thomas P.

    2005-08-01

    Malignant melanoma is the most lethal form of skin cancer. Current chemotherapy and external beam radiation therapy regimens are ineffective agents against melanoma, as shown by a 10-year survival rate for patients with disseminated disease of approximately 5% (reference?). In this study, the unique combination of a melanoma targeting peptide and an in vivo generated a-particle emitting radioisotope was investigated for its melanoma therapy potential. Alpha-radiation is densely ionizing and energy is locally absorbed, resulting in high concentrations of destructive free radicals and irreparable DNA double strand breaks. This high linear-energy-transfer overcomes radiation resistant tumor cells and oxygen-enhancement effects. The melanoma targeting peptide DOTA-Re(Arg11)CCMSH was radiolabeled with 212Pb, the parent of 212Bi, which decays via alpha and beta decay. Biodistribution and therapy studies were performed in the B16/F1 melanoma bearing C57 mouse flank tumor model. 212Pb[DOTA]-R e(Arg11)CCMSH exhibited rapid tumor uptake and extended retention coupled with rapid whole body disappearance. Radiation dose delivered to the tumor was estimated to be 61 cGy/uCi 212Pb administered. Treatment of melanoma-bearing mice with 50, 100 and 200 uCi of 212Pb[DOTA]-Re(Arg11)CCMSH extended mean survival of mice to 22, 28, and 49.8 days, respectively, compared to the 14.6 day mean survival of the placebo control group. Forty-five percent of the mice receiving 200 uCi survived the study disease-free.

  18. Accuracy of marketing claims by providers of stereotactic radiation therapy.

    PubMed

    Narang, Amol K; Lam, Edwin; Makary, Martin A; Deweese, Theodore L; Pawlik, Timothy M; Pronovost, Peter J; Herman, Joseph M

    2013-01-01

    Direct-to-consumer advertising by industry has been criticized for encouraging overuse of unproven therapies, but advertising by health care providers has not been as carefully scrutinized. Stereotactic radiation therapy is an emerging technology that has sparked controversy regarding the marketing campaigns of some manufacturers. Given that this technology is also being heavily advertised on the Web sites of health care providers, the accuracy of providers' marketing claims should be rigorously evaluated. We reviewed the Web sites of all U.S. hospitals and private practices that provide stereotactic radiation using two leading brands of stereotactic radiosurgery technology. Centers were identified by using data from the manufacturers. Centers without Web sites were excluded. The final study population consisted of 212 centers with online advertisements for stereotactic radiation. Web sites were evaluated for advertisements that were inconsistent with advertising guidelines provided by the American Medical Association. Most centers (76%) had individual pages dedicated to the marketing of their brand of stereotactic technology that frequently contained manufacturer-authored images (50%) or text (55%). Advertising for the treatment of tumors that have not been endorsed by professional societies was present on 66% of Web sites. Centers commonly claimed improved survival (22%), disease control (20%), quality of life (17%), and toxicity (43%) with stereotactic radiation. Although 40% of Web sites championed the center's regional expertise in delivering stereotactic treatments, only 15% of Web sites provided data to support their claims. Provider advertisements for stereotactic radiation were prominent and aggressive. Further investigation of provider advertising, its effects on quality of care, and potential oversight mechanisms is needed.

  19. Medical factors influencing decision making regarding radiation therapy for breast cancer.

    PubMed

    Dilaveri, Christina A; Sandhu, Nicole P; Neal, Lonzetta; Neben-Wittich, Michelle A; Hieken, Tina J; Mac Bride, Maire Brid; Wahner-Roedler, Dietlind L; Ghosh, Karthik

    2014-01-01

    Radiation therapy is an important and effective adjuvant therapy for breast cancer. Numerous health conditions may affect medical decisions regarding tolerance of breast radiation therapy. These factors must be considered during the decision-making process after breast-conserving surgery or mastectomy for breast cancer. Here, we review currently available evidence focusing on medical conditions that may affect the patient-provider decision-making process regarding the use of radiation therapy.

  20. Medical factors influencing decision making regarding radiation therapy for breast cancer

    PubMed Central

    Dilaveri, Christina A; Sandhu, Nicole P; Neal, Lonzetta; Neben-Wittich, Michelle A; Hieken, Tina J; Mac Bride, Maire Brid; Wahner-Roedler, Dietlind L; Ghosh, Karthik

    2014-01-01

    Radiation therapy is an important and effective adjuvant therapy for breast cancer. Numerous health conditions may affect medical decisions regarding tolerance of breast radiation therapy. These factors must be considered during the decision-making process after breast-conserving surgery or mastectomy for breast cancer. Here, we review currently available evidence focusing on medical conditions that may affect the patient–provider decision-making process regarding the use of radiation therapy. PMID:25429241

  1. Intensity-modulated radiation therapy for oropharyngeal cancer: radiation dosage constraint at the anterior mandible.

    PubMed

    Verdonck, Henk W D; de Jong, Jos M A; Granzier, Marlies E P G; Nieman, Fred H; de Baat, Cees; Stoelinga, Paul J W

    2009-06-01

    Because the survival of endosseous implants in irradiated bone is lower than in non-irradiated bone, particularly if the irradiation dose exceeds 50Gy, a study was carried out to assess the irradiation dose in the anterior mandible, when intensity modulated radiation therapy (IMRT) is used. The hypothesis was that adequate IMRT planning in oropharyngeal cancer patients is allowing sufficiently low anterior mandibular bone radiation dosages to safely insert endosseous implants. Ten randomly selected patients with oropharyngeal cancer, primarily treated by intensity-modulated radiotherapy (IMRT), were included in this study. First, at five determined positions distributed over the anterior mandible, the appropriate radiation dosages were calculated according to the originally arranged fractionated radiation schedule. Second, for each patient an adjusted fractionated radiation schedule was established with an extra dose constraint which allowed a lower dose in the mandible taking into account that the anterior mandible needs protection against radiation-induced osteoradionecrosis. The goal for the adjusted fractionated radiation schedule was similar as that of the original fractionated radiation schedule, including a desired tumour target dosage of 70Gy and maximum mean local dosages for organs at risk. The data revealed a considerable and statistically significant, irradiation dose reduction in the anterior mandible without compromising the other constraints. As a result of this study it is strongly advised to maximize dose constraint to the anterior mandible when planning irradiation for oropharyngeal cancer patients, using IMRT. This would greatly facilitate successful implant treatment for this group of patients. The fractionated radiation schedules used, should also be used for the planning of the best implant positions by integrating them in the implant planning software.

  2. Hypofractionated Whole-Breast Radiation Therapy: Does Breast Size Matter?

    SciTech Connect

    Hannan, Raquibul; Thompson, Reid F.; Chen Yu; Bernstein, Karen; Kabarriti, Rafi; Skinner, William; Chen, Chin C.; Landau, Evan; Miller, Ekeni; Spierer, Marnee; Hong, Linda; Kalnicki, Shalom

    2012-11-15

    Purpose: To evaluate the effects of breast size on dose-volume histogram parameters and clinical toxicity in whole-breast hypofractionated radiation therapy using intensity modulated radiation therapy (IMRT). Materials and Methods: In this retrospective study, all patients undergoing breast-conserving therapy between 2005 and 2009 were screened, and qualifying consecutive patients were included in 1 of 2 cohorts: large-breasted patients (chest wall separation >25 cm or planning target volume [PTV] >1500 cm{sub 3}) (n=97) and small-breasted patients (chest wall separation <25 cm and PTV <1500 cm{sub 3}) (n=32). All patients were treated prone or supine with hypofractionated IMRT to the whole breast (42.4 Gy in 16 fractions) followed by a boost dose (9.6 Gy in 4 fractions). Dosimetric and clinical toxicity data were collected and analyzed using the R statistical package (version 2.12). Results: The mean PTV V95 (percentage of volume receiving >= 95% of prescribed dose) was 90.18% and the mean V105 percentage of volume receiving >= 105% of prescribed dose was 3.55% with no dose greater than 107%. PTV dose was independent of breast size, whereas heart dose and maximum point dose to skin correlated with increasing breast size. Lung dose was markedly decreased in prone compared with supine treatments. Radiation Therapy Oncology Group grade 0, 1, and 2 skin toxicities were noted acutely in 6%, 69%, and 25% of patients, respectively, and at later follow-up (>3 months) in 43%, 57%, and 0% of patients, respectively. Large breast size contributed to increased acute grade 2 toxicity (28% vs 12%, P=.008). Conclusions: Adequate PTV coverage with acceptable hot spots and excellent sparing of organs at risk was achieved by use of IMRT regardless of treatment position and breast size. Although increasing breast size leads to increased heart dose and maximum skin dose, heart dose remained within our institutional constraints and the incidence of overall skin toxicity was comparable

  3. Peripheral Doses from Noncoplanar IMRT for Pediatric Radiation Therapy

    SciTech Connect

    Kan, Monica W.K.; Leung, Lucullus H.T.; Kwong, Dora L.W.; Wong, Wicger; Lam, Nelson

    2010-01-01

    The use of noncoplanar intensity-modulated radiation therapy (IMRT) might result in better sparing of some critical organs because of a higher degree of freedom in beam angle optimization. However, this can lead to a potential increase in peripheral dose compared with coplanar IMRT. The peripheral dose from noncoplanar IMRT has not been previously quantified. This study examines the peripheral dose from noncoplanar IMRT compared with coplanar IMRT for pediatric radiation therapy. Five cases with different pediatric malignancies in head and neck were planned with both coplanar and noncoplanar IMRT techniques. The plans were performed such that the tumor coverage, conformality, and dose uniformity were comparable for both techniques. To measure the peripheral doses of the 2 techniques, thermoluminescent dosimeters (TLD) were placed in 10 different organs of a 5-year-old pediatric anthropomorphic phantom. With the use of noncoplanar beams, the peripheral doses to the spinal cord, bone marrow, lung, and breast were found to be 1.8-2.5 times of those using the coplanar technique. This is mainly because of the additional internal scatter dose from the noncoplanar beams. Although the use of noncoplanar technique can result in better sparing of certain organs such as the optic nerves, lens, or inner ears depending on how the beam angles were optimized on each patient, oncologists should be alert of the possibility of significantly increasing the peripheral doses to certain radiation-sensitive organs such as bone marrow and breast. This might increase the secondary cancer risk to patients at young age.

  4. The role of medical physics in prostate cancer radiation therapy.

    PubMed

    Fiorino, Claudio; Seuntjens, Jan

    2016-03-01

    Medical physics, both as a scientific discipline and clinical service, hugely contributed and still contributes to the advances in the radiotherapy of prostate cancer. The traditional translational role in developing and safely implementing new technology and methods for better optimizing, delivering and monitoring the treatment is rapidly expanding to include new fields such as quantitative morphological and functional imaging and the possibility of individually predicting outcome and toxicity. The pivotal position of medical physicists in treatment personalization probably represents the main challenge of current and next years and needs a gradual change of vision and training, without losing the traditional and fundamental role of physicists to guarantee a high quality of the treatment. The current focus issue is intended to cover traditional and new fields of investigation in prostate cancer radiation therapy with the aim to provide up-to-date reference material to medical physicists daily working to cure prostate cancer patients. The papers presented in this focus issue touch upon present and upcoming challenges that need to be met in order to further advance prostate cancer radiation therapy. We suggest that there is a smart future for medical physicists willing to perform research and innovate, while they continue to provide high-quality clinical service. However, physicists are increasingly expected to actively integrate their implicitly translational, flexible and high-level skills within multi-disciplinary teams including many clinical figures (first of all radiation oncologists) as well as scientists from other disciplines. Copyright © 2016. Published by Elsevier Ltd.

  5. Strategies for quality assurance of intensity modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Benedek, Hunor; Isacsson, Ulf; Olevik-Dunder, Maria; Westermark, Mathias; Hållström, Per; Olofsson, Jörgen; Gustafsson, Magnus

    2015-01-01

    In late 2011 The Swedish Society of Radiation Physics formed a working group to concentrate on the Quality Assurance of modern radiation therapy techniques. The given task was to identify and summarise the different QA strategies in Sweden and also the international recommendations. This was used to formulate recommendations for practical guidelines within Sweden. In this paper a brief summery of the group's work is presented. All the Swedish radiation therapy centres do a pre treatment verification measurement as QA for every new IMRT and VMAT plan. Physicists do it and they believe it to be time consuming. A general standpoint from all the centres was that new guidelines and legislation is needed to allow QA that does not require a measurement. Based on various international publications and recommendations the working group has presented two strategies, one where all new plans are checked through measurement and one where no measurement is needed. The measurement- based strategy is basically the same as the one used today with an extended machine QA part. The other presented strategy is process oriented where all the different parts of the treatment chain are checked separately. The final report can be found in Swedish on http://www.radiofysik.org.

  6. Endoscopic diode laser therapy for chronic radiation proctitis.

    PubMed

    Polese, Lino; Marini, Lucia; Rizzato, Roberto; Picardi, Edgardo; Merigliano, Stefano

    2017-09-11

    The purpose of this study is to determine the effectiveness of endoscopic diode laser therapy in patients presenting rectal bleeding due to chronic radiation proctitis (CRP). A retrospective analysis of CRP patients who underwent diode laser therapy in a single institution between 2010 and 2016 was carried out. The patients were treated by non-contact fibers without sedation in an outpatient setting. Fourteen patients (median age 77, range 73-87 years) diagnosed with CRP who had undergone high-dose radiotherapy for prostatic cancer and who presented with rectal bleeding were included. Six required blood transfusions. Antiplatelet (three patients) and anticoagulant (two patients) therapy was not suspended during the treatments. The patients underwent a median of two sessions; overall, a mean of 1684 J of laser energy per session was used. Bleeding was resolved in 10/14 (71%) patients, and other two patients showed improvement (93%). Only one patient, who did not complete the treatment, required blood transfusions after laser therapy; no complications were noted during or after the procedures. Study findings demonstrated that endoscopic non-contact diode laser treatment is safe and effective in CRP patients, even in those receiving antiplatelet and/or anticoagulant therapy.

  7. Deciding on radiation therapy for prostate cancer: the physician's perspective.

    PubMed

    Krisch, E B; Koprowski, C D

    2000-08-01

    Multiple treatment options are available for the radiation therapy of prostate cancer including whole pelvic radiotherapy (WPRT), prostate-only radiotherapy (PORT), three-dimensional conformal radiotherapy (3DCRT), intensity modulated radiotherapy (IMRT), as well as proton or neutron beam based therapies and brachytherapy. Numerous technical variations hamper objective assessment of these different treatment modalities. These variations are extensive and often subtle (dose to the prostate, the dose per fraction, number and size of fields, the photon energy, patient positioning, prostatic motion, the use of immobilization devices, 2D or 3D planning for treatment, and others) may cause interpretive uncertainty. Despite this confusion, there is some consensus. Prostate-specific antigen (PSA) nadirs, as well as pretreatment PSA levels, significantly alter outcome. Low-risk patients do well no matter which treatment they receive, although the question of dose-escalation therapy to improve results remains unanswered. High-risk patients do poorly regardless of treatment, although the addition of androgen ablation and dose-escalation therapy may improve results. Quality of life (QOL) studies continue to show a problem for radical prostatectomy (RP) patients secondary to impotence and incontinence and a problem for radiotherapy patients due to gastrointestinal (GI) disturbances. Patients can have access to any specific study through technologies such as the Internet. Although this information can be useful, the subtleties of each different article are usually beyond the understanding of most patients. This report examines some of the new radiotherapy modalities as well as corrects some misconceptions regarding radiotherapy results and morbidity. In addition, we discuss some studies comparing surgery and radiotherapy and attempt to objectively compare different radiation therapy strategies for localized prostate cancer.

  8. Intensity-Modulated Radiation Therapy with Stereotactic Body Radiation Therapy Boost for Unfavorable Prostate Cancer: The Georgetown University Experience.

    PubMed

    Mercado, Catherine; Kress, Marie-Adele; Cyr, Robyn A; Chen, Leonard N; Yung, Thomas M; Bullock, Elizabeth G; Lei, Siyuan; Collins, Brian T; Satinsky, Andrew N; Harter, K William; Suy, Simeng; Dritschilo, Anatoly; Lynch, John H; Collins, Sean P

    2016-01-01

    Stereotactic body radiation therapy (SBRT) is emerging as a minimally invasive alternative to brachytherapy to deliver highly conformal, dose--escalated radiation therapy (RT) to the prostate. SBRT alone may not adequately cover the tumor extensions outside the prostate commonly seen in unfavorable prostate cancer. External beam radiation therapy (EBRT) with high dose rate brachytherapy boost is a proven effective therapy for unfavorable prostate cancer. This study reports on early prostate-specific antigen and prostate cancer-specific quality of life (QOL) outcomes in a cohort of unfavorable patients treated with intensity-modulated radiation therapy (IMRT) and SBRT boost. Prostate cancer patients treated with SBRT (19.5 Gy in three fractions) followed by fiducial-guided IMRT (45-50.4 Gy) from March 2008 to September 2012 were included in this retrospective review of prospectively collected data. Biochemical failure was assessed using the Phoenix definition. Patients completed the expanded prostate cancer index composite (EPIC)-26 at baseline, 1 month after the completion of RT, every 3 months for the first year, then every 6 months for a minimum of 2 years. One hundred eight patients (4 low-, 45 intermediate-, and 59 high-risk) with median age of 74 years completed treatment, with median follow-up of 4.4 years. Sixty-four percent of the patients received androgen deprivation therapy prior to the initiation of RT. The 3-year actuarial biochemical control rates were 100 and 89.8% for intermediate- and high-risk patients, respectively. At the initiation of RT, 9 and 5% of men felt their urinary and bowel function was a moderate to big problem, respectively. Mean EPIC urinary and bowel function and bother scores exhibited transient declines, with subsequent return to near baseline. At 2 years posttreatment, 13.7 and 5% of men felt their urinary and bowel function was a moderate to big problem, respectively. At 3-year follow-up, biochemical control

  9. Combining molecular targeted agents with radiation therapy for malignant gliomas

    PubMed Central

    Scaringi, Claudia; Enrici, Riccardo Maurizi; Minniti, Giuseppe

    2013-01-01

    The expansion in understanding the molecular biology that characterizes cancer cells has led to the rapid development of new agents to target important molecular pathways associated with aberrant activation or suppression of cellular signal transduction pathways involved in gliomagenesis, including epidermal growth factor receptor, vascular endothelial growth factor receptor, mammalian target of rapamycin, and integrins signaling pathways. The use of antiangiogenic agent bevacizumab, epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib, mammalian target of rapamycin inhibitors temsirolimus and everolimus, and integrin inhibitor cilengitide, in combination with radiation therapy, has been supported by encouraging preclinical data, resulting in a rapid translation into clinical trials. Currently, the majority of published clinical studies on the use of these agents in combination with radiation and cytotoxic therapies have shown only modest survival benefits at best. Tumor heterogeneity and genetic instability may, at least in part, explain the poor results observed with a single-target approach. Much remains to be learned regarding the optimal combination of targeted agents with conventional chemoradiation, including the use of multipathways-targeted therapies, the selection of patients who may benefit from combined treatments based on molecular biomarkers, and the verification of effective blockade of signaling pathways. PMID:23966794

  10. Probiotic bacteria in cancer patients undergoing chemotherapy and radiation therapy.

    PubMed

    Mego, Michal; Holec, Vladimir; Drgona, Lubos; Hainova, Katarina; Ciernikova, Sona; Zajac, Vladimir

    2013-12-01

    Probiotics are live microorganisms, which as drugs or food supplements help to maintain health beneficial microbial balance in the digestive tract of a human or other host. Probiotics by their properties may help strengthen homeostasis and thus reduce side effects associated with cancer treatment. Experimental evidence suggests that probiotics might have beneficial effect on the toxicity of anticancer therapy. A computer-based literature search was carried out using PubMed (keywords: "probiotic" and "lactic acid bacteria" in association with the search terms "cancer" or "oncology" or "chemotherapy" or "radiation"); data reported at international meetings were included. Probiotics might have beneficial effects on some aspects of toxicity related to anticancer treatment especially radiation therapy. However, reported trials vary in utilized probiotic strains, dose of probiotics and vast majority of them are small trials with substantial risk of bias. Despite limited data, it seems that probiotic bacteria as live microorganisms could be safely administered even in the setting of neutropenia. Current evidence supporting probiotic use as adjunctive therapy to anticancer treatment is limited, especially in cancer patients treated with chemotherapy. Well designed clinical trials are needed to find true role of probiotics in oncology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Role of a Prone Setup in Breast Radiation Therapy

    PubMed Central

    Huppert, Nelly; Jozsef, Gabor; DeWyngaert, Keith; Formenti, Silvia Chiara

    2011-01-01

    Most patients undergoing breast conservation therapy receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of heart and lung within the field. The prone setup has been accepted as the best localizing position for both MRI and stereotactic biopsy, but its adoption has been delayed in radiotherapy. New technological advances including image-modulated radiation therapy and image-guided radiation therapy have made possible the exploration of accelerated fractionation schemes with a concomitant boost to the tumor bed in the prone position, along with better imaging and verification of reproducibility of patient setup. This review describes some of the available techniques for prone breast radiotherapy and the available experience in their application. The NYU prone breast radiotherapy approach is discussed, including a summary of the results from several prospective trials. PMID:22655240

  12. The role of a prone setup in breast radiation therapy.

    PubMed

    Huppert, Nelly; Jozsef, Gabor; Dewyngaert, Keith; Formenti, Silvia Chiara

    2011-01-01

    Most patients undergoing breast conservation therapy receive radiotherapy in the supine position. Historically, prone breast irradiation has been advocated for women with large pendulous breasts in order to decrease acute and late toxicities. With the advent of CT planning, the prone technique has become both feasible and reproducible. It was shown to be advantageous not only for women with larger breasts but in most patients since it consistently reduces, if not eliminates, the inclusion of heart and lung within the field. The prone setup has been accepted as the best localizing position for both MRI and stereotactic biopsy, but its adoption has been delayed in radiotherapy. New technological advances including image-modulated radiation therapy and image-guided radiation therapy have made possible the exploration of accelerated fractionation schemes with a concomitant boost to the tumor bed in the prone position, along with better imaging and verification of reproducibility of patient setup. This review describes some of the available techniques for prone breast radiotherapy and the available experience in their application. The NYU prone breast radiotherapy approach is discussed, including a summary of the results from several prospective trials.

  13. Monitoring the radiation dose to a multiprogrammable pacemaker during radical radiation therapy: A case report

    SciTech Connect

    Muller-Runkel, R.; Orsolini, G.; Kalokhe, U.P. )

    1990-11-01

    Multiprogrammable pacemakers, using complimentary metaloxide semiconductor (CMOS) circuitry, may fail during radiation therapy. We report about a patient who received 6,400 cGy for unresectable carcinoma of the left lung. In supine treatment position, arms raised above the head, the pacemaker was outside the treated area by a margin of at least 1 cm, shielded by cerrobend blocking mounted on a tray. From thermoluminescent dosimeter (TLD) measurements, we estimate that the pacemaker received 620 cGy in scatter doses. Its function was monitored before, during, and after completion of radiation therapy. The pacemaker was functioning normally until the patient's death 5 months after completion of treatment. The relevant electrocardiograms (ECGs) are presented.

  14. A case of radiation retinopathy of left eye after radiation therapy of right brain metastasis.

    PubMed

    Hong, Kwon Ho; Chang, Sung Dong

    2009-06-01

    A 37-year-old female, who had received modified radical mastectomy for cancer of her right breast, presented with decreased visual acuity in the left eye after radiation therapy for the management of the metastasis to her right brain 14 months ago. After ocular examination, we diagnosed her as radiation retinopathy. At the time of the first visit, the corrected best visual acuity was 0.4 in the left eye, and fundus examination revealed cotton wool spots and cystoid macular edema (CME). The findings in the right eye were normal except for cotton wool spots in the superior major arch. Fluorescein angiography (FA) showed marked telangiectasia and microaneurysms in her left eye but tiny microaneurysms in her right eye. Subsequent optical coherent tomography (OCT) showed CME. We injected intravitreal triamcinolone acetonide (TA). Two weeks after treatment, the visual acuity was improved to 0.6 and the retinal thickness was decreased. Three months later, the visual acuity in the left eye was dropped to 0.3 due to the recurrence of CME, so we injected intravitreal TA again. Five months later, visual acuity was improved to 0.5 and OCT revealed the improvement of CME. The incidence of radiation retinopathy is higher in the side nearer to radiation, but careful radiation blocking is also required on the opposite side of irradiation site considering the possibility of radiation retinopathy and careful observation is required on both sides of the eyes when performing fundus examination.

  15. Cherenkov imaging and biochemical sensing in vivo during radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao

    While Cherenkov emission was discovered more than eighty years ago, the potential applications of imaging this during radiation therapy have just recently been explored. With approximately half of all cancer patients being treated by radiation at some point during their cancer management, there is a constant challenge to ensure optimal treatment efficiency is achieved with maximal tumor to normal tissue therapeutic ratio. To achieve this, the treatment process as well as biological information affecting the treatment should ideally be effective and directly derived from the delivery of radiation to the patient. The value of Cherenkov emission imaging was examined here, primarily for visualization of treatment monitoring and then secondarily for Cherenkov-excited luminescence for tissue biochemical sensing within tissue. Through synchronized gating to the short radiation pulses of a linear accelerator (200Hz & 3 micros pulses), and applying a gated intensified camera for imaging, the Cherenkov radiation can be captured near video frame rates (30 frame per sec) with dim ambient room lighting. This procedure, sometimes termed Cherenkoscopy, is readily visualized without affecting the normal process of external beam radiation therapy. With simulation, phantoms and clinical trial data, each application of Cherenkoscopy was examined: i) for treatment monitoring, ii) for patient position monitoring and motion tracking, and iii) for superficial dose imaging. The temporal dynamics of delivered radiation fields can easily be directly imaged on the patient's surface. Image registration and edge detection of Cherenkov images were used to verify patient positioning during treatment. Inter-fraction setup accuracy and intra-fraction patient motion was detectable to better than 1 mm accuracy. Cherenkov emission in tissue opens up a new field of biochemical sensing within the tissue environment, using luminescent agents which can be activated by this light. In the first study of

  16. Dynamic Lung Tumor Tracking for Stereotactic Ablative Body Radiation Therapy

    PubMed Central

    Kunos, Charles A.; Fabien, Jeffrey M.; Shanahan, John P.; Collen, Christine; Gevaert, Thierry; Poels, Kenneth; Van den Begin, Robbe; Engels, Benedikt; De Ridder, Mark

    2015-01-01

    Physicians considering stereotactic ablative body radiation therapy (SBRT) for the treatment of extracranial cancer targets must be aware of the sizeable risks for normal tissue injury and the hazards of physical tumor miss. A first-of-its-kind SBRT platform achieves high-precision ablative radiation treatment through a combination of versatile real-time imaging solutions and sophisticated tumor tracking capabilities. It uses dual-diagnostic kV x-ray units for stereoscopic open-loop feedback of cancer target intrafraction movement occurring as a consequence of respiratory motions and heartbeat. Image-guided feedback drives a gimbaled radiation accelerator (maximum 15 x 15 cm field size) capable of real-time ±4 cm pan-and-tilt action. Robot-driven ±60° pivots of an integrated ±185° rotational gantry allow for coplanar and non-coplanar accelerator beam set-up angles, ultimately permitting unique treatment degrees of freedom. State-of-the-art software aids real-time six dimensional positioning, ensuring irradiation of cancer targets with sub-millimeter accuracy (0.4 mm at isocenter). Use of these features enables treating physicians to steer radiation dose to cancer tumor targets while simultaneously reducing radiation dose to normal tissues. By adding respiration correlated computed tomography (CT) and 2-[18F] fluoro-2-deoxy-ᴅ-glucose (18F-FDG) positron emission tomography (PET) images into the planning system for enhanced tumor target contouring, the likelihood of physical tumor miss becomes substantially less1. In this article, we describe new radiation plans for the treatment of moving lung tumors. PMID:26131774

  17. Novel Multicompartment 3-Dimensional Radiochromic Radiation Dosimeters for Nanoparticle-Enhanced Radiation Therapy Dosimetry

    SciTech Connect

    Alqathami, Mamdooh; Blencowe, Anton; Yeo, Un Jin; Doran, Simon J.; Qiao, Greg; Geso, Moshi

    2012-11-15

    Purpose: Gold nanoparticles (AuNps), because of their high atomic number (Z), have been demonstrated to absorb low-energy X-rays preferentially, compared with tissue, and may be used to achieve localized radiation dose enhancement in tumors. The purpose of this study is to introduce the first example of a novel multicompartment radiochromic radiation dosimeter and to demonstrate its applicability for 3-dimensional (3D) dosimetry of nanoparticle-enhanced radiation therapy. Methods and Materials: A novel multicompartment phantom radiochromic dosimeter was developed. It was designed and formulated to mimic a tumor loaded with AuNps (50 nm in diameter) at a concentration of 0.5 mM, surrounded by normal tissues. The novel dosimeter is referred to as the Sensitivity Modulated Advanced Radiation Therapy (SMART) dosimeter. The dosimeters were irradiated with 100-kV and 6-MV X-ray energies. Dose enhancement produced from the interaction of X-rays with AuNps was calculated using spectrophotometric and cone-beam optical computed tomography scanning by quantitatively comparing the change in optical density and 3D datasets of the dosimetric measurements between the tissue-equivalent (TE) and TE/AuNps compartments. The interbatch and intrabatch variability and the postresponse stability of the dosimeters with AuNps were also assessed. Results: Radiation dose enhancement factors of 1.77 and 1.11 were obtained using 100-kV and 6-MV X-ray energies, respectively. The results of this study are in good agreement with previous observations; however, for the first time we provide direct experimental confirmation and 3D visualization of the radiosensitization effect of AuNps. The dosimeters with AuNps showed small (<3.5%) interbatch variability and negligible (<0.5%) intrabatch variability. Conclusions: The SMART dosimeter yields experimental insights concerning the spatial distributions and elevated dose in nanoparticle-enhanced radiation therapy, which cannot be performed using any of

  18. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    SciTech Connect

    Adam, Jean-Francois

    2005-04-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size <50x50 {mu}m{sup 2}) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal

  19. Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials

    SciTech Connect

    Cui Yunfeng; Galvin, James M.; Parker, William; Breen, Stephen; Yin Fangfang; Cai Jing; Papiez, Lech S.; Li, X. Allen; Bednarz, Greg; Chen Wenzhou; Xiao Ying

    2013-01-01

    Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA

  20. Implementation of remote 3-dimensional image guided radiation therapy quality assurance for radiation therapy oncology group clinical trials.

    PubMed

    Cui, Yunfeng; Galvin, James M; Parker, William; Breen, Stephen; Yin, Fang-Fang; Cai, Jing; Papiez, Lech S; Li, X Allen; Bednarz, Greg; Chen, Wenzhou; Xiao, Ying

    2013-01-01

    To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. This first experience indicated that remote review for 3D IGRT as part of QA for RTOG clinical trials is feasible and effective

  1. Sparing of tissue by using micro-slit-beam radiation therapy reduces neurotoxicity compared with broad-beam radiation therapy

    PubMed Central

    Mukumoto, Naritoshi; Nakayama, Masao; Akasaka, Hiroaki; Shimizu, Yasuyuki; Osuga, Saki; Miyawaki, Daisuke; Yoshida, Kenji; Ejima, Yasuo; Miura, Yasushi; Umetani, Keiji; Kondoh, Takeshi; Sasaki, Ryohei

    2017-01-01

    Micro-slit-beam radiation therapy (MRT) using synchrotron-generated X-ray beams allows for extremely high-dose irradiation. However, the toxicity of MRT in central nervous system (CNS) use is still unknown. To gather baseline toxicological data, we evaluated mortality in normal mice following CNS-targeted MRT. Male C57BL/6 J mice were head-fixed in a stereotaxic frame. Synchrotron X-ray-beam radiation was provided by the SPring-8 BL28B2 beam-line. For MRT, radiation was delivered to groups of mice in a 10 × 12 mm unidirectional array consisting of 25-μm-wide beams spaced 100, 200 or 300 μm apart; another group of mice received the equivalent broad-beam radiation therapy (BRT) for comparison. Peak and valley dose rates of the MRT were 120 and 0.7 Gy/s, respectively. Delivered doses were 96–960 Gy for MRT, and 24–120 Gy for BRT. Mortality was monitored for 90 days post-irradiation. Brain tissue was stained using hematoxylin and eosin to evaluate neural structure. Demyelination was evaluated by Klüver–Barrera staining. The LD50 and LD100 when using MRT were 600 Gy and 720 Gy, respectively, and when using BRT they were 80 Gy and 96 Gy, respectively. In MRT, mortality decreased as the center-to-center beam spacing increased from 100 μm to 300 μm. Cortical architecture was well preserved in MRT, whereas BRT induced various degrees of cerebral hemorrhage and demyelination. MRT was able to deliver extremely high doses of radiation, while still minimizing neuronal death. The valley doses, influenced by beam spacing and irradiated dose, could represent important survival factors for MRT. PMID:27422939

  2. Hypofractionated radiation therapy of oral melanoma in five cats.

    PubMed

    Farrelly, John; Denman, David L; Hohenhaus, Ann E; Patnaik, Amiya K; Bergman, Philip J

    2004-01-01

    Five cats with melanoma involving the oral cavity were treated with hypofractionated radiation therapy (RT). Cobalt photons were used to administer three fractions of 8.0 Gray (Gy) for a total dose of 24 Gy. Four cats received radiation on days 0, 7, and 21 and one cat received radiation on days 0, 7, and 13. One of the cats received additional irradiation following the initial treatment course. Two cats received chemotherapy. Their age ranged from 11 to 15 years with a median age of 12 years. Three cats had a response to radiation, including one complete response and two partial responses. All five cats were euthanized due to progression of disease, with one cat having evidence of metastatic disease at the time of euthanasia. The median survival time for the five cats was 146 days (range 66-224 days) from the start of RT. The results of this study suggest that oral melanoma in cats may be responsive to hypofractionated RT, but response does not seem to be durable.

  3. Hematopoietic bone marrow recovery after radiation therapy: MRI evaluation

    SciTech Connect

    Casamassima, F.; Ruggiero, C.; Caramella, D.; Tinacci, E.; Villari, N.; Ruggiero, M. )

    1989-05-01

    Magnetic resonance imaging (MRI) is able to detect the increase of adipocytes in the hematopoietic bone marrow that occurs as a consequence of radiotherapy and is indicative of the loss of myeloid tissue. By monitoring this process, it is also possible to determine the recovery of the bone marrow. The amount of viable hematopoietic tissue plays a fundamental role in determining whether the patient is able to undergo further antineoplastic therapy, particularly chemotherapy. We examined 35 patients who had been treated with radiotherapy for Hodgkin's lymphoma (12), uterine cervix carcinoma (nine), ovarian dysgerminoma (six), testicular seminoma (four), and non-Hodgkin's lymphoma (four). We observed that radiation-induced modifications of the MRI pattern in the bone marrow are tightly linked to two parameters; the administered radiation dose and the length of time passed after the treatment. Bone marrow recovery was observed only when patients were treated with doses lower than 50 Gy. The earlier radiation-induced modifications of the bone marrow MRI pattern occurred 6 to 12 months after irradiation, and they were most evident 5 to 6 years after the treatment. From 2 to 9 years after radiotherapy, we observed partial recovery. Complete recovery, when it occurred, was observed only 10 to 23 years after the treatment. Our results indicate that MRI studies are likely to be useful in the assessment of radiation-induced injuries.

  4. Optimizing the Benefit of CNS Radiation Therapy in the Pediatric Population-PART 2: Novel Methods of Radiation Delivery.

    PubMed

    Rowe, Lindsay S; Krauze, Andra V; Ning, Holly; Camphausen, Kevin A; Kaushal, Aradhana

    2017-03-15

    Newer approaches in the field of radiation therapy have raised the bar in the treatment of central nervous system (CNS) malignancies, with recognized advances that have aimed to increase the therapeutic index by improving conformality of the radiation dose to the planned target volume. Beyond these advances, the continued evolution of more effective systems for delivery of radiation to the CNS may offer further benefit not only to adults but also to pediatric patients, a cohort of the population that may be more sensitive to the long-term effects of radiation. This article describes several novel irradiation techniques under investigation that hold promise in the pediatric population. These include newer approaches to intensity-modulated radiation therapy; stereotactic radiosurgery and radiation therapy; particle therapy, most notably proton therapy, which may be of particular benefit in enabling young patients to avoid radiation-related adverse effects; and radioimmunotherapy strategies that spare healthy tissue from radiotoxicity by delivering therapy directly to tumor tissue. Although emerging strategies for the delivery of radiation therapy hold promise for improved outcomes in pediatric patients, there must be rigorous long-term evaluation of consequences associated with the various techniques employed, to weigh risks, benefits, and impact on quality of life.

  5. [Radiation-induced and therapy-related AML/MDS].

    PubMed

    Inaba, Toshiya

    2009-10-01

    Radiation induced acute myeloid leukemia (AML) was recognized a century ago, soon after mankind found radiation. Atomic bomb survivors developed de novo AML with relatively short latency with very high frequency. By contrast, excess occurrence of myelodysplastic syndrome (MDS) as well as solid tumors was found decades late. This difference may be due to etiology that many de novo AML patients harbor chimeric leukemogenic genes caused by chromosomal translocations, while MDS patients rarely carry chimeras. In addition, epigenetic change would play important roles. Therapy related leukemia is mainly caused by topoisomerase II inhibitors that cause de novo AML with an 11q23 translocation or by alkyrating agents that induce MDS/AML with an AML1 point mutation and monosomy 7.

  6. Reversible neurotoxicity following hyperfractionated radiation therapy of brain stem glioma

    SciTech Connect

    Griebel, M.; Friedman, H.S.; Halperin, E.C.; Wiener, M.D.; Marks, L.; Oakes, W.J.; Hoffman, J.M.; DeLong, G.R.; Schold, S.C.; Hockenberger, B. )

    1991-01-01

    Two patients with brain stem gliomas were treated with hyperfractionated radiation therapy (HFR) (7,020 and 7,560 cGy, respectively). Despite initial clinical improvement during irradiation, both patients demonstrated clinical deterioration approximately 3 weeks after completion of radiotherapy. Cranial magnetic resonance imaging (MRI) revealed a progressive increase in distribution of abnormal brain stem signal consistent with either tumor or edema. {sup 18}FDG positron emission tomography (PET) was obtained in one patient and demonstrated a hypermetabolic lesion at diagnosis and a hypometabolic lesion at the time of clinical deterioration postirradiation. Management with a tapering dose of dexamethasone alone resulted in marked clinical (both patients) and radiographic (one patient) improvement, allowing reduction or discontinuation of this medication. These results suggest that patients with brain stem tumors demonstrating clinical and radiographic evidence of progressive tumor shortly after completion of HFR should be initially managed conservatively with dexamethasone, since these findings may be manifestations of reversible radiation-related neurotoxicity.

  7. Technical aspects of radiation therapy for anal cancer

    PubMed Central

    Scher, Eli D.; Ahmed, Inaya; Yue, Ning J.

    2014-01-01

    Historically treated with surgery, current practice recommends anal carcinoma to be treated with a combination of chemotherapy and radiation. This review will examine the anatomy, modes of disease spread and recurrence, and evaluate the existing evidence for treatment options for these tumors. An in-depth examination of specific radiation therapy (RT) techniques—such as conventional 3D-conformal RT and intensity-modulated RT—will be discussed along with modern dose constraints. RT field arrangement, patient setup, and recommended gross and clinical target volume (CTV) contours will be considered. Areas in need of further investigation, such as the role in treatment for positron emission tomography (PET) will be explored. PMID:24982768

  8. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  9. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  10. Extrapleural pneumonectomy, photodynamic therapy and intensity modulated radiation therapy for the treatment of malignant pleural mesothelioma.

    PubMed

    Du, Kevin L; Both, Stefan; Friedberg, Joseph S; Rengan, Ramesh; Hahn, Stephen M; Cengel, Keith A

    2010-09-01

    Intensity modulated radiation therapy (IMRT) has recently been proposed for the treatment of malignant pleural mesothelioma (MPM). Here, we describe our experience with a multimodality approach for the treatment of mesothelioma, incorporating extrapleural pneumonectomy, intraoperative photodynamic therapy and postoperative hemithoracic IMRT. From 2004-2007, we treated 11 MPM patients with hemithoracic IMRT, 7 of whom had undergone porfimer sodium-mediated PDT as an intraoperative adjuvant to surgical debulking. The median radiation dose to the planning treatment volume (PTV) ranged from 45.4-54.5 Gy. For the contralateral lung, V20 ranged from 1.4-28.5%, V5 from 42-100% and MLD from 6.8-16.5 Gy. In our series, 1 patient experienced respiratory failure secondary to radiation pneumonitis that did not require mechanical ventilation. Multimodality therapy combining surgery with increased doses of radiation using IMRT, and newer treatment modalities such as PDT , appears safe. Future prospective analysis will be needed to demonstrate efficacy of this approach in the treatment of malignant mesothelioma. Efforts to reduce lung toxicity and improve dose delivery are needed and provide the promise of improved local control and quality of life in a carefully chosen multidisciplinary approach.

  11. A Method for Evaluating Quality Assurance Needs in Radiation Therapy

    SciTech Connect

    Huq, M. Saiful Fraass, Benedick A.; Dunscombe, Peter B.; Gibbons, John P.; Ibbott, Geoffrey S.; Medin, Paul M.; Mundt, Arno; Mutic, Sassa; Palta, Jatinder R.; Thomadsen, Bruce R.; Williamson, Jeffrey F.; Yorke, Ellen D.

    2008-05-01

    The increasing complexity of modern radiation therapy planning and delivery techniques challenges traditional prescriptive quality control and quality assurance programs that ensure safety and reliability of treatment planning and delivery systems under all clinical scenarios. Until now quality management (QM) guidelines published by concerned organizations (e.g., American Association of Physicists in Medicine [AAPM], European Society for Therapeutic Radiology and Oncology [ESTRO], International Atomic Energy Agency [IAEA]) have focused on monitoring functional performance of radiotherapy equipment by measurable parameters, with tolerances set at strict but achievable values. In the modern environment, however, the number and sophistication of possible tests and measurements have increased dramatically. There is a need to prioritize QM activities in a way that will strike a balance between being reasonably achievable and optimally beneficial to patients. A systematic understanding of possible errors over the course of a radiation therapy treatment and the potential clinical impact of each is needed to direct limited resources in such a way to produce maximal benefit to the quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and is developing a framework for designing QM activities, and hence allocating resources, based on estimates of clinical outcome, risk assessment, and failure modes. The report will provide guidelines on risk assessment approaches with emphasis on failure mode and effect analysis (FMEA) and an achievable QM program based on risk analysis. Examples of FMEA to intensity-modulated radiation therapy and high-dose-rate brachytherapy are presented. Recommendations on how to apply this new approach to individual clinics and further research and development will also be discussed.

  12. Change in Seroma Volume During Whole-Breast Radiation Therapy

    SciTech Connect

    Sharma, Rajiv; Spierer, Marnee Mutyala, Subhakar; Thawani, Nitika; Cohen, Hillel W.; Hong, Linda; Garg, Madhur K.; Kalnicki, Shalom

    2009-09-01

    Purpose: After breast-conserving surgery, a seroma often forms in the surgical cavity. If not drained, it may affect the volume of tumor bed requiring a boost after whole-breast radiation therapy (WBRT). Our objective was to evaluate the change in seroma volume that occurs during WBRT, before boost planning. Methods and Materials: A retrospective review was performed of women receiving breast-conserving therapy with evidence of seroma at the time of WBRT planning. Computed tomography (CT) simulation was performed before WBRT and before the tumor bed boost. All patients received either a hypofractionated (42.4 Gy/16 fraction + 9.6 Gy/4 fraction boost) or standard fractionated (50.4 Gy/28 fraction + 10 Gy/5 fraction boost) regimen. Seroma volumes were contoured and compared on CT at the time of WBRT simulation and tumor bed boost planning. Results: Twenty-four patients with evidence of seroma were identified and all patients received WBRT without drainage of the seroma. Mean seroma volume before WBRT and at boost planning were significantly different at 65.7 cm{sup 3} (SD, 50.5 cm{sup 3}) and 35.6 cm{sup 3} (SD, 24.8 cm{sup 3}), respectively (p < 0.001). Mean and median reduction in seroma volume during radiation were 39.6% (SD, 23.8%) and 46.2% (range, 10.7-76.7%), respectively. Fractionation schedule was not correlated with change in seroma volume. Length of time from surgery to start of radiation therapy showed an inverse correlation with change in seroma volume (Pearson correlation r = -0.53, p < 0.01). Conclusions: The volume of seroma changes significantly during WBRT. Consequently, the accuracy of breast boost planning is likely affected, as is the volume of normal breast tissue irradiated. CT-based boost planning before boost irradiation is suggested to ensure appropriate coverage.

  13. Arc binary intensity modulated radiation therapy (AB IMRT)

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    The state of the art Intensity Modulate Radiation Therapy (IMRT) has been one of the most significant breakthroughs in the cancer treatment in the past 30 years. There are two types of IMRT systems. The first system is the binary-based tomotherapy, represented by the Peacock (Nomos Corp) and Tomo unit (TomoTherapy Inc.), adopting specific binary collimator leafs to deliver intensity modulated radiation fields in a serial or helical fashion. The other uses the conventional dynamic multileaf collimator (MLC) to deliver intensity modulated fields through a number of gantry positions. The proposed Arc Binary IMRT attempts to deliver Tomo-like IMRT with conventional dynamic MLC and combines the advantages of the two types of IMRT techniques: (1) maximizing the number of pencil beams for better dose optimization, (2) enabling conventional linear accelerator with dynamic MLC to deliver Tomo-like IMRT. In order to deliver IMRT with conventional dynamic MLC in a binary fashion, the slice-by-slice treatment with limited slice thickness has been proposed in the thesis to accommodate the limited MLC traveling speed. Instead of moving the patient to subsequent treatment slices, the proposed method offsets MLC to carry out the whole treatment, slice by slice sequentially, thus avoid patient position error. By denoting one arc pencil beam set as a gene, genetic algorithm (GA) is used as the searching engine for the dose optimization process. The selection of GA parameters is a crucial step and has been studied in depth so that the optimization process will converge with reasonable speed. Several hypothetical and clinical cases have been tested with the proposed IMRT method. The comparison of the dose distribution with other commercially available IMRT systems demonstrates the clear advantage of the new method. The proposed Arc Binary Intensity Modulated Radiation Therapy is not only theoretically sound but practically feasible. The implementation of this method would expand the

  14. A method for evaluating quality assurance needs in radiation therapy.

    PubMed

    Huq, M Saiful; Fraass, Benedick A; Dunscombe, Peter B; Gibbons, John P; Ibbott, Geoffrey S; Medin, Paul M; Mundt, Arno; Mutic, Sassa; Palta, Jatinder R; Thomadsen, Bruce R; Williamson, Jeffrey F; Yorke, Ellen D

    2008-01-01

    The increasing complexity of modern radiation therapy planning and delivery techniques challenges traditional prescriptive quality control and quality assurance programs that ensure safety and reliability of treatment planning and delivery systems under all clinical scenarios. Until now quality management (QM) guidelines published by concerned organizations (e.g., American Association of Physicists in Medicine [AAPM], European Society for Therapeutic Radiology and Oncology [ESTRO], International Atomic Energy Agency [IAEA]) have focused on monitoring functional performance of radiotherapy equipment by measurable parameters, with tolerances set at strict but achievable values. In the modern environment, however, the number and sophistication of possible tests and measurements have increased dramatically. There is a need to prioritize QM activities in a way that will strike a balance between being reasonably achievable and optimally beneficial to patients. A systematic understanding of possible errors over the course of a radiation therapy treatment and the potential clinical impact of each is needed to direct limited resources in such a way to produce maximal benefit to the quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and is developing a framework for designing QM activities, and hence allocating resources, based on estimates of clinical outcome, risk assessment, and failure modes. The report will provide guidelines on risk assessment approaches with emphasis on failure mode and effect analysis (FMEA) and an achievable QM program based on risk analysis. Examples of FMEA to intensity-modulated radiation therapy and high-dose-rate brachytherapy are presented. Recommendations on how to apply this new approach to individual clinics and further research and development will also be discussed.

  15. Hepatic duct stricture after radical radiation therapy for biliary cancer: recurrence or fibrosis

    SciTech Connect

    Martenson, J.A. Jr.; Gunderson, L.L.; Buskirk, S.J.; Nagorney, D.M.; Martin, J.K.; May, G.R.; Bender, C.E.; Tremaine, W.J.

    1986-07-01

    Two patients with biliary cancer received radical radiation therapy. After treatment, both patients experienced episodes of biliary obstruction without definite evidence of progression of the tumor. These cases emphasize the importance of including radiation-induced biliary fibrosis in the differential diagnosis of hepatic duct stricture after radical radiation therapy.

  16. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy

    SciTech Connect

    Brown, Lindsay C.; Diehn, Felix E.; Boughey, Judy C.; Childs, Stephanie K.; Park, Sean S.; Yan, Elizabeth S.; Petersen, Ivy A.; Mutter, Robert W.

    2015-07-01

    Purpose: To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Methods and Materials: Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Results: Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. Conclusions: For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted.

  17. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy.

    PubMed

    Brown, Lindsay C; Diehn, Felix E; Boughey, Judy C; Childs, Stephanie K; Park, Sean S; Yan, Elizabeth S; Petersen, Ivy A; Mutter, Robert W

    2015-07-01

    To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Fast Monte Carlo for radiation therapy: the PEREGRINE Project

    SciTech Connect

    Hartmann Siantar, C.L.; Bergstrom, P.M.; Chandler, W.P.; Cox, L.J.; Daly, T.P.; Garrett, D.; House, R.K.; Moses, E.I.; Powell, C.L.; Patterson, R.W.; Schach von Wittenau, A.E.

    1997-11-11

    The purpose of the PEREGRINE program is to bring high-speed, high- accuracy, high-resolution Monte Carlo dose calculations to the desktop in the radiation therapy clinic. PEREGRINE is a three- dimensional Monte Carlo dose calculation system designed specifically for radiation therapy planning. It provides dose distributions from external beams of photons, electrons, neutrons, and protons as well as from brachytherapy sources. Each external radiation source particle passes through collimator jaws and beam modifiers such as blocks, compensators, and wedges that are used to customize the treatment to maximize the dose to the tumor. Absorbed dose is tallied in the patient or phantom as Monte Carlo simulation particles are followed through a Cartesian transport mesh that has been manually specified or determined from a CT scan of the patient. This paper describes PEREGRINE capabilities, results of benchmark comparisons, calculation times and performance, and the significance of Monte Carlo calculations for photon teletherapy. PEREGRINE results show excellent agreement with a comprehensive set of measurements for a wide variety of clinical photon beam geometries, on both homogeneous and heterogeneous test samples or phantoms. PEREGRINE is capable of calculating >350 million histories per hour for a standard clinical treatment plan. This results in a dose distribution with voxel standard deviations of <2% of the maximum dose on 4 million voxels with 1 mm resolution in the CT-slice plane in under 20 minutes. Calculation times include tracking particles through all patient specific beam delivery components as well as the patient. Most importantly, comparison of Monte Carlo dose calculations with currently-used algorithms reveal significantly different dose distributions for a wide variety of treatment sites, due to the complex 3-D effects of missing tissue, tissue heterogeneities, and accurate modeling of the radiation source.

  19. Radiation exposure and radiation protection of the physician in iodine-131 Lipiodol therapy of liver tumours.

    PubMed

    Risse, J H; Ponath, C; Palmedo, H; Menzel, C; Grünwald, F; Biersack, H J

    2001-07-01

    Intra-arterial iodine-131 labelled Lipiodol therapy for liver cancer has been investigated for safety and efficacy over a number of years, but data on radiation exposure of personnel have remained unavailable to date. The aim of this study was to assess the radiation exposure of the physician during intra-arterial 131I-Lipiodol therapy for liver malignancies and to develop appropriate radiation protection measures and equipment. During 20 intra-arterial administrations of 131I-Lipiodol (1110-1924 MBq), radiation dose equivalents (RDE) to the whole body, fingers and eyes of the physician were determined for (a) conventional manual administration through a shielded syringe, (b) administration with an automatic injector and (c) administration with a lead container developed in-house. Administration by syringe resulted in a finger RDE of 19.5 mSv, an eye RDE of 130-140 microSv, and a whole-body RDE of 108-119 microSv. The injector reduced the finger RDE to 5 mSv. With both technique (a) and technique (b), contamination of angiography materials was observed. The container allowed safe transport and administration of the radiopharmaceutical from 4 m distance and reduced the finger RDE to <3 microSv and the eye RDE to <1 microSv during injection. During femoral artery compression, radiation exposure to the fingers reached 170 microSv, but the whole-body dose could be reduced from a mean RDE of 114 microSv to 14 microSv. No more contamination occurred. In conclusion, radiation exposure was high when 131I-Lipiodol was administered by syringe or injector, but was significantly reduced with the lead container.

  20. Has the use of computers in radiation therapy improved the accuracy in radiation dose delivery?

    NASA Astrophysics Data System (ADS)

    Van Dyk, J.; Battista, J.

    2014-03-01

    Purpose: It is well recognized that computer technology has had a major impact on the practice of radiation oncology. This paper addresses the question as to how these computer advances have specifically impacted the accuracy of radiation dose delivery to the patient. Methods: A review was undertaken of all the key steps in the radiation treatment process ranging from machine calibration to patient treatment verification and irradiation. Using a semi-quantitative scale, each stage in the process was analysed from the point of view of gains in treatment accuracy. Results: Our critical review indicated that computerization related to digital medical imaging (ranging from target volume localization, to treatment planning, to image-guided treatment) has had the most significant impact on the accuracy of radiation treatment. Conversely, the premature adoption of intensity-modulated radiation therapy has actually degraded the accuracy of dose delivery compared to 3-D conformal radiation therapy. While computational power has improved dose calibration accuracy through Monte Carlo simulations of dosimeter response parameters, the overall impact in terms of percent improvement is relatively small compared to the improvements accrued from 3-D/4-D imaging. Conclusions: As a result of computer applications, we are better able to see and track the internal anatomy of the patient before, during and after treatment. This has yielded the most significant enhancement to the knowledge of "in vivo" dose distributions in the patient. Furthermore, a much richer set of 3-D/4-D co-registered dose-image data is thus becoming available for retrospective analysis of radiobiological and clinical responses.

  1. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  2. 3D measurement of absolute radiation dose in grid therapy

    NASA Astrophysics Data System (ADS)

    Trapp, J. V.; Warrington, A. P.; Partridge, M.; Philps, A.; Leach, M. O.; Webb, S.

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.

  3. Linear algebraic methods applied to intensity modulated radiation therapy.

    PubMed

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  4. [Patient data processing system in radiation therapy (author's transl)].

    PubMed

    Richter, J; Klotz, E; Richter, E; Rossa, C; Bohndorf, W

    1980-06-01

    The present system stores the patients' data and is well adapted to the needs of radiation therapy. With a large computer available, there is no hardware required for clinical use but an intelligent terminal, a double drive mechanism for floppy disks, and a printer. Data acquisition is realized by means of marking sheets and screen display. The structure of the data, organization of the data bank, guarantee of data protection and of authenticity of the data, the evaluations possible until now and, finally, the practical procedure are described.

  5. Updates in outcomes of stereotactic radiation therapy in acromegaly.

    PubMed

    Gheorghiu, Monica Livia

    2017-02-01

    Purpose Treatment of acromegaly has undergone important progress in the last 20 years mainly due to the development of new medical options and advances in surgical techniques. Pituitary surgery is usually first-line therapy, and medical treatment is indicated for persistent disease, while radiation (RT) is often used as third-line therapy. The benefits of RT (tumor volume control and decreased hormonal secretion) are hampered by the long latency of the effect and the high risk of adverse effects. Stereotactic RT methods have been developed with the aim to provide more precise targeting of the tumor with better control of the radiation dose received by the adjacent brain structures. The purpose of this review is to present the updates in the efficacy and safety of pituitary RT in acromegalic patients, with an emphasis on the new stereotactic radiation techniques. Methods A systematic review was performed using PubMed and articles/abstracts and reviews detailing RT in acromegaly from 2000 to 2016 were included. Results Stereotactic radiosurgery and fractionated stereotactic RT (FSRT) for patients with persistent active acromegaly after surgery and/or during medical therapy provide comparable high rates of tumor control, i.e. stable or decrease in size of the tumor in 93-100% of patients at 5-10 years and endocrinological remission in 40-60% of patients at 5 years. Hypofractionated RT is an optimal option for tumors located near the optic structures, due to its lower toxicity for the optic nerves compared to single-dose radiosurgery. The rate of new hypopituitarism varies from 10 to 50% at 5 years and increases with the duration of follow-up. The risk for other radiation-induced complications is usually low (0-5% for new visual deficits, cranial nerves damage or brain radionecrosis and 0-1% for secondary brain tumors) and risk of stroke may be higher in FSRT. Conclusion Although the use of radiotherapy in patients with acromegaly has decreased with advances in

  6. Obstructive ureteropathy following radiation therapy for carcinoma of the cervix

    SciTech Connect

    Parliament, M.; Genest, P.; Girard, A.; Gerig, L.; Prefontaine, M.

    1989-05-01

    Between January 1959 and December 1986, 10 of 328 patients (3%) treated with curative intent using primary radiation therapy for carcinoma of the cervix developed obstructive ureteropathy due to fibrosis. The mean age of the patients with obstructive ureteropathy was 45 years and the median time to obstruction was 26 months. The obstruction was unilateral in 8 cases and involved the parametrial portion of the ureter in at least 5 cases. No predisposing risk factor was found to be associated with the development of obstructive ureteropathy. After corrective surgery, renal function remained normal in 8 patients, and resolution of the hydronephrosis occurred in 4 patients.

  7. Monte Carlo dose enhancement studies in microbeam radiation therapy

    SciTech Connect

    Martinez-Rovira, I.; Prezado, Y.

    2011-07-15

    Purpose: A radical radiation therapy treatment for gliomas requires extremely high absorbed doses resulting in subsequent deleterious side effects in healthy tissue. Microbeam radiation therapy (MRT) is an innovative technique based on the fact that normal tissue can withstand high radiation doses in small volumes without any significant damage. The synchrotron-generated x-ray beam is collimated and delivered to an array of narrow micrometer-sized planar rectangular fields. Several preclinical experiments performed at the Brookhaven National Laboratory (BNL) and at the European Synchrotron Radiation Facility (ESRF) confirmed that MRT yields a higher therapeutic index than nonsegmented beams of the same characteristics. This index can be greatly improved by loading the tumor with high atomic number (Z) contrast agents. The aim of this work is to find the high-Z element that provides optimum dose enhancement. Methods: Monte Carlo simulations (PENELOPE/penEasy) were performed to assess the peak and valley doses as well as their ratio (PVDR) in healthy tissue and in the tumor, loaded with different contrast agents. The optimization criteria used were maximization of the ratio between the PVDR values in healthy tissue respect to the PVDR in the tumor and minimization of bone and brain valley doses. Results: Dose enhancement factors, PVDR, and valley doses were calculated for different high-Z elements. A significant decrease of PVDR values in the tumor, accompanied by a gain in the valley doses, was found in the presence of high-Z elements. This enables the deposited dose in the healthy tissue to be reduced. The optimum high-Z element depends on the irradiation configuration. As a general trend, the best outcome is provided by the highest Z contrast agents considered, i.e., gold and thallium. However, lanthanides (especially Lu) and hafnium also offer a satisfactory performance. Conclusions: The remarkable therapeutic index in microbeam radiation therapy can be further

  8. Weight Gain in Advanced Non-Small-Cell Lung Cancer Patients During Treatment With Split-Course Concurrent Chemoradiotherapy Is Associated With Superior Survival

    SciTech Connect

    Gielda, Benjamin T.; Mehta, Par; Khan, Atif; Marsh, James C.; Zusag, Thomas W.; Warren, William H.; Fidler, Mary Jo; Abrams, Ross A.; Bonomi, Philip; Liptay, Michael; Faber, L. Penfield

    2011-11-15

    Background: Preoperative concurrent chemoradiotherapy (CRT) is an accepted treatment for potentially resectable, locally advanced, non-small-cell lung cancer (NSCLC). We reviewed a decade of single institution experience with preoperative split-course CRT followed by surgical resection to evaluate survival and identify factors that may be helpful in predicting outcome. Methods and Materials: All patients treated with preoperative split-course CRT and resection at Rush University Medical Center (RUMC) between January 1999 and December 2008 were retrospectively analyzed. Endpoints included overall survival (OS), progression-free survival (PFS), local-regional progression-free survival (LRPFS), and distant metastasis-free survival (DMFS). Patient and treatment related variables were assessed for correlation with outcomes. Results: A total of 54 patients were analyzed, 76% Stage IIIA, 18% Stage IIIB, and 6% oligometastatic. The pathologic complete response (pCR) rate was 31.5%, and the absence of nodal metastases (pN0) was 64.8%. Median OS and 3-year actuarial survival were 44.6 months and 50%, respectively. Univariate analysis revealed initial stage (p < 0.01) and percent weight change during CRT (p < 0.01) significantly correlated with PFS/OS. On multivariate analysis initial stage (HR, 2.4; 95% CI, 1.18-4.90; p = 0.02) and percent weight change (HR, 0.79; 95% CI, 0.67-0.93; p < 0.01) maintained significance with respect to OS. There were no cases of Grade 3+ esophagitis, and there was a single case of Grade 3 febrile neutropenia. Conclusions: The strong correlation between weight change during CRT and OS/PFS suggests that this clinical parameter may be useful as a complementary source of predictive information in addition to accepted factors such as pathological response.

  9. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    PubMed Central

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Summary Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. PMID:25025713

  10. Surgery and radiation therapy for extramedullary plasmacytoma of the penile mucosa in a dog.

    PubMed

    Wypij, Jackie M; de Lorimier, Louis-Philippe

    2012-09-01

    A 10-year-old neutered male Italian greyhound dog was presented because it had a penile plasmacytoma. Surgery followed by radiation therapy resulted in local control and survival for 1688 days. This is the first report of surgery and definitive radiation therapy for curative intent therapy of extramedullary penile plasmacytoma in a dog.

  11. A Survivin-Associated Adaptive Response in Radiation Therapy

    PubMed Central

    Grdina, David J.; Murley, Jeffrey S.; Miller, Richard C.; Mauceri, Helena J.; Sutton, Harold G.; Li, Jian Jian; Woloschak, Gayle E.; Weichselbaum, Ralph R.

    2013-01-01

    Adaptive responses can be induced in cells by very low doses of ionizing radiation resulting in an enhanced resistance to much larger exposures. The inhibitor of apoptosis (IAP) protein, survivin, has been implicated in many adaptive responses to cellular stress. Computerized axial tomography (CAT) used in image guided radiotherapy to position and monitor tumor response utilizes very low radiation doses ranging from 0.5 to 100 mGy. We investigated the ability of these very low radiation doses administered along with two 2 Gy doses separated by 24 h, a standard conventional radiotherapy dosing schedule, to initiate adaptive responses resulting in the elevation of radiation resistance in exposed cells. Human colon carcinoma (RKO36), mouse sarcoma (SA-NH), along with transformed mouse embryo fibroblasts (MEF), wild type (WT) or cells lacking functional tumor necrosis factor receptors 1 and 2 (TNFR1−R2−) were used to assess their relative ability to express an adaptive response when grown either to confluence in vitro or as tumors in the flank of C57BL/6 mice. The survival of each of these cells was elevated from 5 to 20% (P ≤ 0.05) as compared to cells not receiving a 100 mGy or lesser dose. Additionally, the cells exposed to 100 mGy exhibited elevations in survivin levels, reductions in apoptosis frequencies, and loss of an adaptive response if transfected with survivin siRNA. This survivin-mediated adaptive response has the potential for affecting outcomes if regularly induced throughout a course of image guided radiation therapy. PMID:23651635

  12. Retrospective analysis of nonradiation complications in dogs undergoing radiation therapy.

    PubMed

    Farrelly, John; Shi, Qiuhu

    2017-09-10

    Dogs receiving radiation can develop complications unrelated to the radiation treatment. No study to date has described these complications in clinical patients undergoing multiple radiation therapy treatments. The purpose of this retrospective case-control study was to characterize the incidence and type of complications that occur in these dogs. A secondary goal was to evaluate whether patient and treatment characteristics could be identified to predict the risk of these complications. Medical records of 268 dogs receiving at least one radiation treatment at a single institution, between September, 2004 and June, 2007 were reviewed. Age, breed, gender, body weight, tumor type, tumor location, number of treatments, pre-treatment blood work abnormalities, and whether chemotherapy, glucocorticoids, or nonsteroidal anti-inflammatory drugs were given were collected. Number, type, and severity of nonradiation complications were recorded. Complications attributed to the tumor or to the radiation were excluded. Statistical analyses were performed to determine whether demographic and clinical characteristics were associated with development of a complication. General anesthesia was used for all treatments. Complications occurred in 101 (37%) cases including diarrhea, vomiting, cough, and loss of appetite, which were typically mild. Seventeen dogs (6%) developed severe complications. Eight dogs (3%) died from their complication. Dogs that developed complications were younger, received more treatments, had leukocytosis, received glucocorticoids, and were less likely to have thrombocytopenia. On multivariate analysis, number of treatments and leukocytosis were significantly associated with complications. Findings indicate that nonradiation complications are common in dogs receiving radiotherapy under general anesthesia. In this population, complications were usually mild or self-limiting. © 2017 American College of Veterinary Radiology.

  13. A survivin-associated adaptive response in radiation therapy.

    PubMed

    Grdina, David J; Murley, Jeffrey S; Miller, Richard C; Mauceri, Helena J; Sutton, Harold G; Li, Jian Jian; Woloschak, Gayle E; Weichselbaum, Ralph R

    2013-07-15

    Adaptive responses can be induced in cells by very low doses of ionizing radiation resulting in an enhanced resistance to much larger exposures. The inhibitor of apoptosis protein, survivin, has been implicated in many adaptive responses to cellular stress. Computerized axial tomography used in image-guided radiotherapy to position and monitor tumor response uses very low radiation doses ranging from 0.5 to 100 mGy. We investigated the ability of these very low radiation doses administered along with two 2 Gy doses separated by 24 hours, a standard conventional radiotherapy dosing schedule, to initiate adaptive responses resulting in the elevation of radiation resistance in exposed cells. Human colon carcinoma (RKO36), mouse sarcoma (SA-NH), along with transformed mouse embryo fibroblasts, wild type or cells lacking functional tumor necrosis factor receptors 1 and 2 were used to assess their relative ability to express an adaptive response when grown either to confluence in vitro or as tumors in the flank of C57BL/6 mice. The survival of each of these cells was elevated from 5% to 20% (P ≤ 0.05) as compared to cells not receiving a 100 mGy or lesser dose. In addition, the cells exposed to 100 mGy exhibited elevations in survivin levels, reductions in apoptosis frequencies, and loss of an adaptive response if transfected with survivin siRNA. This survivin-mediated adaptive response has the potential for affecting outcomes if regularly induced throughout a course of image guided radiation therapy. ©2013 AACR.

  14. Image-guided radiation therapy in lymphoma management

    PubMed Central

    Eng, Tony

    2015-01-01

    Image-guided radiation therapy (IGRT) is a process of incorporating imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), Positron emission tomography (PET), and ultrasound (US) during radiation therapy (RT) to improve treatment accuracy. It allows real-time or near real-time visualization of anatomical information to ensure that the target is in its position as planned. In addition, changes in tumor volume and location due to organ motion during treatment can be also compensated. IGRT has been gaining popularity and acceptance rapidly in RT over the past 10 years, and many published data have been reported on prostate, bladder, head and neck, and gastrointestinal cancers. However, the role of IGRT in lymphoma management is not well defined as there are only very limited published data currently available. The scope of this paper is to review the current use of IGRT in the management of lymphoma. The technical and clinical aspects of IGRT, lymphoma imaging studies, the current role of IGRT in lymphoma management and future directions will be discussed. PMID:26484299

  15. Subacute brain atrophy after radiation therapy for malignant brain tumor

    SciTech Connect

    Asai, A.; Matsutani, M.; Kohno, T.; Nakamura, O.; Tanaka, H.; Fujimaki, T.; Funada, N.; Matsuda, T.; Nagata, K.; Takakura, K.

    1989-05-15

    Brain atrophy with mental and neurologic deterioration developing a few months after radiation therapy in patients without residual or recurrent brain tumors has been recognized. Two illustrative case reports of this pathologic entity are presented. Six autopsy cases with this entity including the two cases were reviewed neurologically, radiographically, and histopathologically. All patients presented progressive disturbances of mental status and consciousness, akinesia, and tremor-like involuntary movement. Computerized tomography (CT) demonstrated marked enlargement of the ventricles, moderate widening of the cortical sulci, and a moderately attenuated CT number for the white matter in all six patients. Four of the six patients had CSF drainage (ventriculoperitoneal shunt or continuous lumbar drainage), however, none of them improved. Histologic examination demonstrated swelling and loss of the myelin sheath in the white matter in all patients, and reactive astrocytosis in three of the six patients. Neither prominent neuronal loss in the cerebral cortex or basal ganglia, nor axonal loss in the white matter was generally identified. The blood vessels of the cerebral cortex and white matter were normal. Ependymal layer and the surrounding brain tissue were normal in all patients. These findings suggested that this pathologic condition results from demyelination secondary to direct neurotoxic effect of irradiation. The authors' previous report was reviewed and the differential diagnoses, the risk factors for this pathologic entity, and the indication for radiation therapy in aged patients with a malignant brain tumor are discussed.

  16. Does concrete composition affect photoneutron production inside radiation therapy bunkers?

    PubMed

    Mesbahi, Asghar; Azarpeyvand, Ali-Asghar; Khosravi, Hamid Reza

    2012-02-01

    Different types of concretes are used for bunker construction for radiation therapy. As neutron production occurs in high-energy photon beams, the purpose of this study was to investigate the effect of different concretes on photoneutron doses at an isocenter and maze entrance door. The 18-MV photon beam of a Varian 2100 C/D linear accelerator and a radiation therapy bunker were simulated using the MCNPX Monte Carlo code. Different commercially available concretes were used in photoneutron calculations for the simulated bunker. Higher neutron doses of the water phantom were seen for barytes and galena concretes, while there was no significant (less than 1%) difference between the neutron dose of the phantom for all other concretes. Also, the neutron fluence at the inner and outer maze entrance varied up to 36% depending on the concretes' atomic compositions. It can be concluded that application of high-density concretes in order to use limited space or for other purposes may cause higher neutron doses in the maze entrance door and consequently may impose stricter requirements for neutron shielding of maze entrance doors.

  17. Interference detection in implantable defibrillators induced by therapeutic radiation therapy

    PubMed Central

    Uiterwaal, G.J.; Springorum, B.G.F.; Scheepers, E.; de Ruiter, G.S.; Hurkmans, C.W.

    2006-01-01

    Background Electromagnetic fields and ionising radiation during radiotherapy can influence the functioning of ICDs. Guidelines for radiotherapy treatment were published in 1994, but only based on experience with pacemakers. Data on the influence of radiotherapy on ICDs is limited. Objectives We determined the risk to ICDs of interference detection induced by radiotherapy. Methods In our study we irradiated 11 ICDs. The irradiation was performed with a 6 megavolt photon beam. In each individual device test, a total of 20 Gray was delivered in a fractionated fashion. During each irradiation the output stimulation rate was monitored and electrogram storage was activated. In case of interference the test was repeated with the ICD outside and the lead(s) inside and outside the irradiation field. Results With the ICD inside the irradiation field, interference detection was observed in all ICDs. This caused pacing inhibition or rapid ventricular pacing. Ventricular tachycardia (VT) or ventricular fibrillation (VF) detection occurred, which would have caused tachycardia-terminating therapy. If the ICD was placed outside the irradiation field, no interference was observed. Conclusion Interference by ionising radiation on the ICDs is demonstrated both on bradycardia and tachycardia therapy. This can have consequences for patients. Recommendations for radiotherapy are presented in this article. ImagesFigure 1Figure 5 PMID:25696559

  18. Sexual function after surgical and radiation therapy for cervical carcinoma

    SciTech Connect

    Seibel, M.; Freeman, M.G.; Graves, W.L.

    1982-10-01

    One hundred women treated for carcinoma of the cervix were interviewed more than one year later to establish the effects of radiation or surgical therapy on sexual function. Forty-three had received irradiation, 44 nonradical surgery, six combined surgery and irradiation, and seven radical surgery. The irradiation and nonradical surgery groups were each further subdivided into subgroups of patients aged 30 to 49 for age-controlled comparison. Patients in the irradiation group had statistically significant decreases in sexual enjoyment, ability to attain orgasm, coital opportunity, frequency of intercourse, and coital desire. The group who had nonradical surgical procedures had no significant change in sexual function after treatment. Similar results were found in both age-controlled subgroups, eliminating age as a major etiologic factor. Marked vaginal alterations were recorded in the majority of irradiated patients, but were not present among the groups treated with nonradical surgery. The vaginal changes alone could not be held accountable for the significant decrease in sexual function among women who received pelvic irradiation. The origin of decreased sexual desire after radiation therapy is complex, and not yet completely understood. We propose therapeutic programs to help women deal with the emotional and physical consequences of pelvic irradiation.

  19. Intraluminal radiation therapy in the management of malignant biliary obstruction

    SciTech Connect

    Molt, P.; Hopfan, S.; Watson, R.C.; Botet, J.F.; Brennan, M.F.

    1986-02-01

    Fifteen patients with malignant biliary obstruction from carcinoma of the bile ducts, gallbladder, and pancreas (Group I) or metastatic disease (Group II) were treated with intraluminal radiation therapy (ILRT) at Memorial Sloan-Kettering Cancer Center. In 11 cases ILRT was used as a central boost in combination with 3000 cGy external beam radiation therapy (ERT). No significant treatment toxicity was observed. Cholangiographic response was observed in 2 of 12 evaluable patients. In no patient was long-term relief of jaundice without indwelling biliary stent achieved. Survival from treatment in eight Group I patients treated with ILRT +/- ERT was 3 to 13 months (median, 4.5). Survival in seven similarly treated Group II patients was 0.5 to 8 months (median, 4.0). Additional data for ten similar patients referred for ILRT but treated with ERT alone are presented. Analysis of this and other reports indicate the need for prospective controlled trials of the role of this regimen in the management of malignant biliary obstruction before wider application can be recommended.

  20. Inflammatory bowel diseases activity in patients undergoing pelvic radiation therapy

    PubMed Central

    Seisen, Thomas; Klotz, Caroline; Mazeron, Renaud; Maroun, Pierre; Petit, Claire; Deutsch, Eric; Bossi, Alberto; Haie-Meder, Christine; Chargari, Cyrus; Blanchard, Pierre

    2017-01-01

    Background Few studies with contradictory results have been published on the safety of pelvic radiation therapy (RT) in patients with inflammatory bowel disease (IBD). Methods From 1989 to 2015, a single center retrospective analysis was performed including all IBD patients who received pelvic external beam radiation therapy (EBRT) or brachytherapy (BT) for a pelvic malignancy. Treatment characteristics, IBD activity and gastrointestinal (GI) toxicity were examined. Results Overall, 28 patients with Crohn’s disease (CD) (n=13) or ulcerative colitis (n=15) were included in the present study. Median follow-up time after irradiation was 5.9 years. Regarding IBD activity, only one and two patients experienced a severe episode within and after 6 months of follow-up, respectively. Grade 3/4 acute GI toxicity occurred in 3 (11%) patients, whereas one (3.6%) patient experienced late grade 3/4 GI toxicity. Only patients with rectal IBD location (P=0.016) or low body mass index (BMI) (P=0.012) experienced more severe IBD activity within or after 6 months following RT, respectively. Conclusions We report an acceptable tolerance of RT in IBD patients with pelvic malignancies. Specifically, a low risk of uncontrolled flare-up was observed. PMID:28280621

  1. Outcome and Prognostic Factors of Radiation Therapy for Medulloblastoma

    SciTech Connect

    Rieken, Stefan; Mohr, Angela; Habermehl, Daniel; Welzel, Thomas; Lindel, Katja; Witt, Olaf; Kulozik, Andreas E.; Wick, Wolfgang; Debus, Juergen; Combs, Stephanie E.

    2011-11-01

    Purpose: To investigate treatment outcome and prognostic factors after radiation therapy in patients with medulloblastomas (MB). Methods and Materials: Sixty-six patients with histologically confirmed MB were treated at University Hospital of Heidelberg between 1985 and 2009. Forty-two patients (64%) were pediatric ({<=}18 years), and 24 patients (36%) were adults. Tumor resection was performed in all patients and was complete in 47%. All patients underwent postoperative craniospinal irradiation (CSI) delivering a median craniospinal dose of 35.5 Gy with additional boosts to the posterior fossa up to 54.0 Gy. Forty-seven patients received chemotherapy, including 21 in whom chemotherapy was administered before CSI. Statistical analysis was performed using the log-rank test and the Kaplan-Meier method. Results: Median follow-up was 93 months. Overall survival (OS) and local and distant progression-free survival (LPFS and DPFS) were 73%, 62%, and 77% at 60 months. Both local and distant recurrence predisposed for significantly reduced OS. Macroscopic complete tumor resection, desmoplastic histology and early initiation of postoperative radiation therapy within 28 days were associated with improved outcome. The addition of chemotherapy did not improve survival rates. Toxicity was moderate. Conclusions: Complete resection of MB followed by CSI yields long survival rates in both children and adults. Delayed initiation of CSI is associated with poor outcome. Desmoplastic histology is associated with improved survival. The role of chemotherapy, especially in the adult population, must be further investigated in clinical studies.

  2. Mertk on tumor macrophages is a therapeutic target to prevent tumor recurrence following radiation therapy

    PubMed Central

    Crittenden, Marka R.; Baird, Jason; Friedman, David; Savage, Talicia; Uhde, Lauren; Alice, Alejandro; Cottam, Benjamin; Young, Kristina; Newell, Pippa; Nguyen, Cynthia; Bambina, Shelly; Kramer, Gwen; Akporiaye, Emmanuel; Malecka, Anna; Jackson, Andrew; Gough, Michael J.

    2016-01-01

    Radiation therapy provides a means to kill large numbers of cancer cells in a controlled location resulting in the release of tumor-specific antigens and endogenous adjuvants. However, by activating pathways involved in apoptotic cell recognition and phagocytosis, irradiated cancer cells engender suppressive phenotypes in macrophages. We demonstrate that the macrophage-specific phagocytic receptor, Mertk is upregulated in macrophages in the tumor following radiation therapy. Ligation of Mertk on macrophages results in anti-inflammatory cytokine responses via NF-kB p50 upregulation, which in turn limits tumor control following radiation therapy. We demonstrate that in immunogenic tumors, loss of Mertk is sufficient to permit tumor cure following radiation therapy. However, in poorly immunogenic tumors, TGFb inhibition is also required to result in tumor cure following radiation therapy. These data demonstrate that Mertk is a highly specific target whose absence permits tumor control in combination with radiation therapy. PMID:27602953

  3. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    SciTech Connect

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish; Wong, Michael; Poli, Jaganmohan; Brady, Luther W.; Komarnicky, Lydia T.

    2012-11-01

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15-84 years). The range of external-beam radiation delivered was 50.0-75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90-120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues-Subjective, Objective, Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7-70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.

  4. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy

    PubMed Central

    Kim, Byeong Mo; Hong, Yunkyung; Lee, Seunghoon; Liu, Pengda; Lim, Ji Hong; Lee, Yong Heon; Lee, Tae Ho; Chang, Kyu Tae; Hong, Yonggeun

    2015-01-01

    Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR. PMID:26569225

  5. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy.

    PubMed

    Kim, Byeong Mo; Hong, Yunkyung; Lee, Seunghoon; Liu, Pengda; Lim, Ji Hong; Lee, Yong Heon; Lee, Tae Ho; Chang, Kyu Tae; Hong, Yonggeun

    2015-11-10

    Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.

  6. Radiation Therapy Using High-Energy Carbon Beams

    NASA Astrophysics Data System (ADS)

    Kanai, T.

    Heavy-ion radiotherapy using high-energy carbon beams has been performed at the National Institute of Radiological Sciences, Japan. The physical frameworks for heavy-ion radiotherapy are established using an understanding of radiation physics. In this chapter, the biophysical and medical physics aspects of heavy-ion radiotherapy are presented. In order to increase the accuracy of heavy-ion radiotherapy, many physical problems should be solved. A calorimeter was developed to measure the absolute dose of the heavy-ion beams. From a comparison of the dosimetry, it was found that the dose indicated by the ionization chamber was underestimated by 3-4%. The clinical results of carbon therapy at heavy-ion medical accelerator in Chiba (HIMAC) are assessed using the linear-quadratic (LQ) model of radiation effect. Development of new scintillation and Rossi counters will allow simultaneous measurement of the radiation dose and quality of heavy-ion beams. Further research is required to provide a comprehensive biophysical model for clinical applications.

  7. Ultrasound Thermometry for Therapy-level Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Taylor, Courtney

    2010-03-01

    Radiation oncology is the process of administering a specified dose of radiation to a patient currently receiving treatment for a form of cancer. In this process, it is vital to know the delivered dose for a given radiation beam to correctly treat a patient. The primary reference standard for absorbed dose is established using water calorimetry. The absorbed dose, typically of order 1 Gy (J/kg) at therapy levels, is realized by measuring sub-millikelvin temperature changes using a thermistor in a sensitive Wheatstone bridge. Ultrasound technology has been investigated as an alternative to thermistor measurements since the speed of sound propagation in water varies with temperature. With ultrasonic time-of-flight and highly sensitive phase detection techniques, temperature sensitivity comparable to that of the thermistor bridge has been achieved without introducing non-water materials into the test area. A single ultrasound transducer transmitting and receiving at 5.0 MHz throughout the length of the water phantom, and the phase change of the sound wave was used to determine temperature increase from an irradiative source at specified depths of the phantom. In this experiment, the exposure period was varied from 15s to 160s cyclically by modulating a heat lamp, and a profile of the measured temperature response as a function of the period was obtained using Fourier analysis. Due to the large temperature gradient in the water phantom, measurements are prone to convection which was indeed observed and will be discussed.

  8. Radiation therapy for older patients with brain tumors.

    PubMed

    Minniti, Giuseppe; Filippi, Andrea Riccardo; Osti, Mattia Falchetto; Ricardi, Umberto

    2017-06-19

    The incidence of brain tumors in the elderly population has increased over the last few decades. Current treatment includes surgery, radiotherapy and chemotherapy, but the optimal management of older patients with brain tumors remains a matter of debate, since aggressive radiation treatments in this population may be associated with high risks of neurological toxicity and deterioration of quality of life. For such patients, a careful clinical status assessment is mandatory both for clinical decision making and for designing randomized trials to adequately evaluate the optimal combination of radiotherapy and chemotherapy.Several randomized studies have demonstrated the efficacy and safety of chemotherapy for patients with glioblastoma or lymphoma; however, the use of radiotherapy given in association with chemotherapy or as salvage therapy remains an effective treatment option associated with survival benefit. Stereotactic techniques are increasingly used for the treatment of patients with brain metastases and benign tumors, including pituitary adenomas, meningiomas and acoustic neuromas. Although no randomized trials have proven the superiority of SRS over other radiation techniques in older patients with brain metastases or benign brain tumors, data extracted from recent randomized studies and large retrospective series suggest that SRS is an effective approach in such patients associated with survival advantages and toxicity profile similar to those observed in young adults. Future trials need to investigate the optimal radiation techniques and dose/fractionation schedules in older patients with brain tumors with regard to clinical outcomes, neurocognitive function, and quality of life.

  9. Stereotactic multibeam radiation therapy system in a PACS environment

    NASA Astrophysics Data System (ADS)

    Fresne, Francoise; Le Gall, G.; Barillot, Christian; Gibaud, Bernard; Manens, Jean-Pierre; Toumoulin, Christine; Lemoine, Didier; Chenal, C.; Scarabin, Jean-Marie

    1991-05-01

    A Multibeam radiation therapy treatment is a non-invasive technique devoted to treat a lesion within the cerebral medium by focusing photon-beams on the same target from a high number of entrance points. We present here a computer assisted dosimetric planning procedure which includes: (1) an analysis module to define the target volume by using 2D and 3D displays, (2) a planing module to issue a treatment strategy including the dosimetric simulations and (3) a treatment module setting up the parameters to order the robotized treatment system (i.e. chair- framework, radiation unit machine). Another important feature of this system is its connection to the PACS system SIRENE settled in the University hospital of Rennes which makes possible the archiving and the communication of the multimodal images (CT, MRI, Angiography) used by this application. The corporate use of stereotactic methods and the multimodality imagery ensures spatial coherence and makes the target definition and the cognition of the structures environment more accurate. The dosimetric planning suited to the spatial reference (i.e. the stereotactic frame) guarantees an optimal distribution of the dose computed by an original 3D volumetric algorithm. The robotic approach of the treatment stage has consisted to design a computer driven chair-framework cluster to position the target volume at the radiation unit isocenter.

  10. Skeletal sequelae of radiation therapy for malignant childhood tumors

    SciTech Connect

    Butler, M.S.; Robertson, W.W. Jr.; Rate, W.; D'Angio, G.J.; Drummond, D.S. )

    1990-02-01

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) had scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy.

  11. Predictors of overall satisfaction of cancer patients undergoing radiation therapy.

    PubMed

    Becker-Schiebe, Martina; Pinkert, Uwe; Ahmad, Tahera; Schäfer, Christof; Hoffmann, Wolfgang; Franz, Heiko

    2015-01-01

    Reporting the experiences and satisfaction of patients, as well as their quality of care scores is an emerging recommendation in health care systems. Many aspects of patients' experience determine their overall satisfaction. The aim of this evaluation was to define the main factors contributing to the satisfaction of patients undergoing radiotherapy in an outpatient setting. A total of 1,710 patients with a histologically proven cancer, who were treated in our department between 2012 and 2014, were recruited for this prospective evaluation. At the end of therapy, each patient was asked to grade the skills and the care provided by radiation therapists, physicians, and physician's assistants, as well as the overall satisfaction during therapy. Statistical analysis was performed to determine which parameters had the greatest influence on overall satisfaction. Overall satisfaction with the provided care was high with a mean satisfaction score of 1.4. Significant correlations were found between overall satisfaction and each of the following survey items: courtesy, protection of privacy, professional skills and care provided by the radiation therapists and physicians, accuracy of provided information, and cleanliness. Linear regression analysis demonstrated that courteous behavior and the protection of privacy were the strongest predictors for overall satisfaction (P<0.001), followed by care and skills of physicians and radiation therapists. Patients suffering from head and neck cancer expressed lower overall satisfaction. Based on our prospectively acquired data, we were able to identify and confirm key factors for patient satisfaction in an outpatient radiooncological cancer center. From these results, we conclude that patients want most importantly to be treated with courtesy, protection of privacy and care.

  12. Deformation estimation and analysis for adaptive radiation therapy

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xuan, Jianhua; Wu, Jackie Qingrong; Zhang, Su; Wang, Yue

    2008-03-01

    To accommodate the inter- and intra-fractional motion of internal organs in prostate cancer treatment, a large margin (5mm-25mm) has often to be considered during radiation therapy planning. Normally, the inter-fractional motion is more substantial than the intra-fractional counterpart. Therefore, the study of inter-fractional motion pattern is of special interest for adaptive radiation therapy. Existing methods on organ motion analysis mainly focus on the deviation of an organ's shape from its mean shape. The deviation information is helpful in choosing a statistically proper margin, but is of limited use for plan adaptation. In this paper, we propose a new deformation analysis method that can be directly used for plan adaptation. First, deformation estimation is accomplished by a fast deformable registration method, which utilizes a contour based multi-grid strategy to register treatment cone-beam CT (CBCT) images with planning CT images. Second, dominant deformation modes are extracted by a novel deformation analysis approach. To be specific, a cooperative principal component analysis (PCA) method is developed to analyze the deformation field in a coarse-to-fine strategy. The deformation modes are initialized by applying PCA on the organs as a whole and refined by analyzing the individual organs subsequently. The experimental results show that the organ motion can be well characterized by a few dominant deformation modes. Based on the dominant modes, a corresponding set of dominant modal plans could be generated for further optimization. Ultimately, an adaptive plan for each treatment can be obtained on-line while the margin can be effectively reduced to minimize the unnecessary radiation dosage.

  13. Molecular pathways: targeted α-particle radiation therapy.

    PubMed

    Baidoo, Kwamena E; Yong, Kwon; Brechbiel, Martin W

    2013-02-01

    An α-particle, a (4)He nucleus, is exquisitely cytotoxic and indifferent to many limitations associated with conventional chemo- and radiotherapy. The exquisite cytotoxicity of α-radiation, the result of its high mean energy deposition [high linear energy transfer (LET)] and limited range in tissue, provides for a highly controlled therapeutic modality that can be targeted to selected malignant cells [targeted α-therapy (TAT)] with minimal normal tissue effects. A burgeoning interest in the development of TAT is buoyed by the increasing number of ongoing clinical trials worldwide. The short path length renders α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking, hematologic cancers, infections, and compartmental cancers such as ovarian cancer or neoplastic meningitis. Yet, despite decades of study of high LET radiation, the mechanistic pathways of the effects of this modality remain not well defined. The modality is effectively presumed to follow a simple therapeutic mechanism centered on catastrophic double-strand DNA breaks without full examination of the actual molecular pathways and targets that are activated that directly affect cell survival or death. This Molecular Pathways article provides an overview of the mechanisms and pathways that are involved in the response to and repair of TAT-induced DNA damage as currently understood. Finally, this article highlights the current state of clinical translation of TAT as well as other high-LET radionuclide radiation therapy using α-emitters such as (225)Ac, (211)At, (213)Bi, (212)Pb, and (223)Ra.

  14. Molecular Pathways: Targeted α-Particle Radiation Therapy

    PubMed Central

    Baidoo, Kwamena E.; Yong, Kwon; Brechbiel, Martin W.

    2012-01-01

    An α-particle, a 4He nucleus, is exquisitely cytotoxic, and indifferent to many limitations associated with conventional chemo- and radiotherapy. The exquisite cytotoxicity of α radiation, the result of its high mean energy deposition (high linear energy transfer, LET) and limited range in tissue, provides for a highly controlled therapeutic modality that can be targeted to selected malignant cells (targeted α-therapy (TAT)) with minimal normal tissue effects. There is a burgeoning interest in the development of TAT that is buoyed by the increasing number of ongoing clinical trials worldwide. The short path length renders α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking, hematological cancers, infections, and compartmental cancers such as ovarian cancer or neoplastic meningitis. Yet, despite decades of study of high-LET radiation, the mechanistic pathways of the effects of this modality remain not well defined. The modality is effectively presumed to follow a simple therapeutic mechanism centered on catastrophic double strand (ds) DNA breaks without full examination of the actual molecular pathways and targets that are activated that directly impact cell survival or death. This Molecular Pathways article provides an overview of the mechanisms and pathways that are involved in the response to and repair of TAT induced DNA damage as currently understood. Finally, this article highlights the current state of clinical translation of TAT as well as other high-LET radionuclide radiation therapy using α-emitters such as 225Ac, 211At, 213Bi, 212Pb and 223Ra. PMID:23230321

  15. Academic Career Selection and Retention in Radiation Oncology: The Joint Center for Radiation Therapy Experience

    SciTech Connect

    Balboni, Tracy A. . E-mail: tbalboni@partners.org; Chen, M.-H.; Harris, Jay R.; Recht, Abram; Stevenson, Mary Ann; D'Amico, Anthony V.

    2007-05-01

    Purpose: The United States healthcare system has witnessed declining reimbursement and increasing documentation requirements for longer than 10 years. These have decreased the time available to academic faculty for teaching and mentorship. The impact of these changes on the career choices of residents is unknown. The purpose of this report was to determine whether changes have occurred during the past decade in the proportion of radiation oncology trainees from a single institution entering and staying in academic medicine. Methods and Materials: We performed a review of the resident employment experience of Harvard Joint Center for Radiation Therapy residents graduating during 13 recent consecutive years (n = 48 residents). The outcomes analyzed were the initial selection of an academic vs. nonacademic career and career changes during the first 3 years after graduation. Results: Of the 48 residents, 65% pursued an academic career immediately after graduation, and 44% remained in academics at the last follow-up, after a median of 6 years. A later graduation year was associated with a decrease in the proportion of graduates immediately entering academic medicine (odds ratio, 0.78; 95% confidence interval, 0.65-0.94). However, the retention rate at 3 years of those who did immediately enter academics increased with a later graduation year (p = 0.03). Conclusion: During a period marked by notable changes in the academic healthcare environment, the proportion of graduating Harvard Joint Center for Radiation Therapy residents pursuing academic careers has been declining; however, despite this decline, the retention rates in academia have increased.

  16. Radiation Therapy Alone for Imaging-Defined Meningiomas

    SciTech Connect

    Korah, Mariam P.; Nowlan, Adam W.; Johnstone, Peter A.S.; Crocker, Ian R.

    2010-01-15

    Purpose: To assess local control and treatment-related toxicity of single-modality radiation therapy (RT) in the treatment of imaging-defined meningiomas. Methods and Materials: The records of Emory University School of Medicine, Atlanta, GA, were reviewed between 1985 and 2003. We identified 41 patients with 42 meningiomas treated with RT alone for lesions diagnosed on imaging alone. No patients received a histologic diagnosis. Patients in whom there was uniform agreement that the tumor represented a meningioma were accepted for therapy. Of the patients, 22 were treated with stereotactic radiosurgery (SRS), 11 with fractionated stereotactic radiotherapy (FSR), and 9 with three-dimensional conformal therapy (3DCRT). The median doses of SRS, FSR, and 3DCRT were 14 Gy, 50.4 Gy, and 52.2 Gy, respectively. Results: Median follow-up was 60 months. Of 42 meningiomas, 39 were locally controlled. The 8-year actuarial local control rate by Kaplan-Meier methods was 94%. One failure occurred 6 months after 3DCRT, a second at 34 months after FSR, and a third at 125 months after SRS. A temporary symptomatic radiation-related neurologic sequela developed in 1 patient treated with SRS. No fatal treatment complications occurred. The 8-year rate for actuarial freedom from complication survival by Kaplan-Meier methods was 97%. Conclusions: RT alone is an attractive alternative to surgery for imaging-defined meningiomas without significant mass effect. It offers local control comparable to surgical resection with minimal morbidity. RT should be considered as a viable alternative to surgery for tumors in various locations.

  17. Combination Regimens of Radiation Therapy and Therapeutic Cancer Vaccines: Mechanisms and Opportunities

    PubMed Central

    Garnett-Benson, Charlie; Hodge, James W.; Gameiro, Sofia R.

    2014-01-01

    Radiation therapy is widely used with curative or palliative intent in the clinical management of multiple cancers. Although mainly aimed at direct tumor cell killing, mounting evidence suggests that radiation can alter the tumor to become an immunostimulatory milieu. Data suggest that the immunogenic effects of radiation can be exploited to promote synergistic antitumor effects in combination with immunotherapeutic agents. Here we review concepts associated with the immunogenic consequences of radiation therapy, and highlight how preclinical findings are translating into clinical benefit for patients receiving combination regimens of radiation therapy and therapeutic cancer vaccines. PMID:25481266

  18. Radiation therapy and chemotherapy-induced oral mucositis.

    PubMed

    Volpato, Luiz Evaristo Ricci; Silva, Thiago Cruvinel; Oliveira, Thaís Marchini; Sakai, Vivien Thiemy; Machado, Maria Aparecida Andrade Moreira

    2007-01-01

    Increasing the intensity of radiation therapy and chemotherapy in the management of cancer has increased the incidence of adverse effects, especially oral mucositis. a bibliographical review was conducted on the definition of oral mucositis, its clinical findings, the incidence, its etiology, the pathophysiology, associated morbidity, prevention and treatment. current studies define oral mucositis as a very frequent and painful inflammation with ulcers on the oral mucosa that are covered by a pseudo membrane. The incidence and severity of lesions are influenced by patient and treatment variables. Oral mucositis is a result of two major mechanisms: direct toxicity on the mucosa and myelosuppression due to the treatment. Its pathophysiology is composed of four interdependent phases: an initial inflammatory/vascular phase; an epithelial phase; an ulcerative/bacteriological phase; and a healing phase. It is considered a potential source of life-threatening infection and often is a dose-limiting factor in anticancer therapy. Some interventions have been shown to be potentially effective to prevent and treat oral mucositis. Further intensive research through well-structured clinical trials to obtain the best scientific evidence over the standard therapy of oral mucositis is necessary to attain ideal parameters for radiotherapy and chemotherapy.

  19. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  20. Carbon and oxygen minibeam radiation therapy: An experimental dosimetric evaluation.

    PubMed

    Martínez-Rovira, Immaculada; González, Wilfredo; Brons, Stephan; Prezado, Yolanda

    2017-08-01

    To perform dosimetric characterization of a minibeam collimator in both carbon and oxygen ion beams to guide optimal setup geometry and irradiation for future radiobiological studies. Carbon and oxygen minibeams were generated using a prototype tungsten multislit collimator presenting line apertures 700 μm wide, which are spaced 3500 μm centre-to-centre distance apart. Several radiation beam spots generated the desired field size of 15 × 15 mm(2) and production of a 50 mm long spread out Bragg peak (SOBP) centered at 80 mm depth in water. Dose evaluations were performed with two different detectors: a PTW microDiamond® single crystal diamond detector and radiochromic films (EBT3). Peak-to-valley dose ratio (PVDR) values, output factors (OF), penumbras, and full width at half maximum (FWHM) were measured. Measured lateral dose profiles exhibited spatial fractionation of dose at depth in a water phantom in the expected form of peaks and valleys for both carbon and oxygen radiation fields. The diamond detector and radiochromic film provided measurements of PVDR in good agreement. PVDR values at shallow depth were about 60 and decreased to about 10 at 80 mm depth in water. OF in the center of the SOBP was about 0.4; this value is larger than the corresponding one in proton minibeam radiation therapy measured using a comparable collimator due to a reduced lateral scattering for carbon and oxygen minibeams. Carbon and oxygen minibeams may be produced by a mechanical collimator. PVDR values and output factors measured in this first study of these minibeam radiation types indicate there is potential for their therapeutic use. Optimization of minibeam collimator design and the number and size of focal spots for irradiation are advocated to improve PDVR values and dose distributions for each specific applied use. © 2017 American Association of Physicists in Medicine.

  1. Salvage Radiation Therapy for Biochemical Failure Following Radical Prostatectomy.

    PubMed

    Spieler, Benjamin; Goldstein, Jeffrey; Lawrence, Yaacov R; Saad, Akram; Berger, Raanan; Ramon, Jacob; Dotan, Zohar; Laufer, Menachem; Weiss, Ilana; Tzvang, Lev; Poortmans, Philip; Symon, Zvi

    2017-01-01

    Radiotherapy to the prostate bed is used to eradicate residual microscopic disease following radical prostatectomy for prostate cancer. Recommendations are based on historical series. To determine outcomes and toxicity of contemporary salvage radiation therapy (SRT) to the prostate bed. We reviewed a prospective ethics committee-approved database of 229 patients referred for SRT. Median pre-radiation prostate-specific antigen (PSA) was 0.5 ng/ml and median follow-up was 50.4 months (range 13.7-128). Treatment was planned and delivered using modern three-dimensional radiation techniques. Mean bioequivalent dose was 71 Gy (range 64-83 Gy). Progression was defined as two consecutive increases in PSA level > 0.2 ng/ml, metastases on follow-up imaging, commencement of anti-androgen treatment for any reason, or death from prostate cancer. Kaplan-Meier survival estimates and multivariate analysis was performed using STATA. Five year progression-free survival was 68% (95%CI 59.8-74.8%), and stratified by PSA was 87%, 70% and 47% for PSA < 0.3, 0.3-0.7, and > 0.7 ng/ml (P < 0.001). Metastasis-free survival was 92.5%, prostate cancer-specific survival 96.4%, and overall survival 94.9%. Low pre-radiation PSA value was the most important predictor of progression-free survival (HR 2.76, P < 0.001). Daily image guidance was associated with reduced risk of gastrointestinal and genitourinary toxicity (P < 0.005). Contemporary SRT is associated with favorable outcomes. Early initiation of SRT at PSA < 0.3 ng/ml improves progression-free survival. Daily image guidance with online correction is associated with a decreased incidence of late toxicity.

  2. Combined Radiation Therapy and Immune Checkpoint Blockade Therapy for Breast Cancer.

    PubMed

    Hu, Zishuo I; Ho, Alice Y; McArthur, Heather L

    2017-09-01

    Treatment with checkpoint inhibitors has shown durable responses in a number of solid tumors, including melanoma, lung, and renal cell carcinoma. However, most breast cancers are resistant to monotherapy with checkpoint inhibitors. Radiation therapy (RT) has been shown to have a number of immunostimulatory effects, including priming the immune system, recruiting immune cells to the tumor environment, and altering the immunosuppressive effects of the tumor microenvironment. RT therefore represents a promising adjuvant therapy to checkpoint blockade in breast cancer. We review the data from the checkpoint blockade studies on breast cancer reported to date, the mechanisms by which RT potentiates immune responses, the preclinical and clinical data of checkpoint blockade and RT combinations, and the landscape of current clinical trials of RT and immune checkpoint inhibitor combinations in breast cancer. Clinical trials with checkpoint blockade therapy have demonstrated response rates of up to 19% in breast cancer, and many of the responses are durable. Preclinical data indicate that RT combined with checkpoint inhibition synergizes not only to enhance antitumor efficacy but also to induce responses outside of the radiation field. Thus multiple clinical trials are currently investigating the combination of checkpoint inhibition with RT. The use of combination strategies that incorporate chemotherapy and/or local strategies such as RT may be needed to augment responses to immune therapy in breast cancer. Preclinical and clinical results show that RT in combination with checkpoint blockade may be a promising therapeutic option in breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement

    NASA Astrophysics Data System (ADS)

    Tanny, Sean

    The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.

  4. Radiation-Induced Lymphocyte Apoptosis to Predict Radiation Therapy Late Toxicity in Prostate Cancer Patients

    SciTech Connect

    Schnarr, Kara; Boreham, Douglas; Sathya, Jinka; Julian, Jim; Dayes, Ian S.

    2009-08-01

    Purpose: To examine a potential correlation between the in vitro apoptotic response of lymphocytes to radiation and the risk of developing late gastrointestinal (GI)/genitourinary (GU) toxicity from radiotherapy for prostate cancer. Methods and Materials: Prostate cancer patients formerly enrolled in a randomized study were tested for radiosensitivity by using a radiation-induced lymphocyte apoptosis assay. Apoptosis was measured using flow cytometry-based Annexin-FITC/7AAD and DiOC{sub 6}/7AAD assays in subpopulations of lymphocytes (total lymphocytes, CD4+, CD8+ and CD4-/CD8-) after exposure to an in vitro dose of 0, 2, 4, or 8 Gy. Results: Patients with late toxicity after radiotherapy showed lower lymphocyte apoptotic responses to 8 Gy than patients who had not developed late toxicity (p = 0.01). All patients with late toxicity had apoptosis levels that were at or below the group mean. The negative predictive value in both apoptosis assays ranged from 95% to 100%, with sensitivity values of 83% to 100%. Apoptosis at lower dose points and in lymphocyte subpopulations had a weaker correlation with the occurrence of late toxicity. Conclusions: Lymphocyte apoptosis after 8 Gy of radiation has the potential to predict which patients will be spared late toxicity after radiation therapy. Further research should be performed to identify the specific subset of lymphocytes that correlates with late toxicity, followed by a corresponding prospective study.

  5. Neutron, proton, and photonuclear cross-sections for radiation therapy and radiation protection.

    PubMed

    Chadwick, M B

    1998-12-01

    I review recent work at Los Alamos undertaken to evaluate neutron, proton, and photonuclear cross-sections up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. In radiation protection, these data can be used to determine shielding requirements in accelerator environments and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross-section and kerma coefficient data with measurements are given.

  6. Intraoperative radiation therapy using mobile electron linear accelerators: report of AAPM Radiation Therapy Committee Task Group No. 72.

    PubMed

    Beddar, A Sam; Biggs, Peter J; Chang, Sha; Ezzell, Gary A; Faddegon, Bruce A; Hensley, Frank W; Mills, Michael D

    2006-05-01

    Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT, (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.

  7. Scatter correction for cone-beam CT in radiation therapy

    PubMed Central

    Zhu, Lei; Xie, Yaoqin; Wang, Jing; Xing, Lei

    2009-01-01

    Cone-beam CT (CBCT) is being increasingly used in modern radiation therapy for patient setup and adaptive replanning. However, due to the large volume of x-ray illumination, scatter becomes a rather serious problem and is considered as one of the fundamental limitations of CBCT image quality. Many scatter correction algorithms have been proposed in literature, while a standard practical solution still remains elusive. In radiation therapy, the same patient is scanned repetitively during a course of treatment, a natural question to ask is whether one can obtain the scatter distribution on the first day of treatment and then use the data for scatter correction in the subsequent scans on different days. To realize this scatter removal scheme, two technical pieces must be in place: (i) A strategy to obtain the scatter distribution in on-board CBCT imaging and (ii) a method to spatially match a prior scatter distribution with the on-treatment CBCT projection data for scatter subtraction. In this work, simple solutions to the two problems are provided. A partially blocked CBCT is used to extract the scatter distribution. The x-ray beam blocker has a strip pattern, such that partial volume can still be accurately reconstructed and the whole-field scatter distribution can be estimated from the detected signals in the shadow regions using interpolation∕extrapolation. In the subsequent scans, the patient transformation is determined using a rigid registration of the conventional CBCT and the prior partial CBCT. From the derived patient transformation, the measured scatter is then modified to adapt the new on-treatment patient geometry for scatter correction. The proposed method is evaluated using physical experiments on a clinical CBCT system. On the Catphan©600 phantom, the errors in Hounsfield unit (HU) in the selected regions of interest are reduced from about 350 to below 50 HU; on an anthropomorphic phantom, the error is reduced from 15.7% to 5.4%. The proposed

  8. Scatter correction for cone-beam CT in radiation therapy

    SciTech Connect

    Zhu Lei; Xie Yaoqin; Wang Jing; Xing Lei

    2009-06-15

    Cone-beam CT (CBCT) is being increasingly used in modern radiation therapy for patient setup and adaptive replanning. However, due to the large volume of x-ray illumination, scatter becomes a rather serious problem and is considered as one of the fundamental limitations of CBCT image quality. Many scatter correction algorithms have been proposed in literature, while a standard practical solution still remains elusive. In radiation therapy, the same patient is scanned repetitively during a course of treatment, a natural question to ask is whether one can obtain the scatter distribution on the first day of treatment and then use the data for scatter correction in the subsequent scans on different days. To realize this scatter removal scheme, two technical pieces must be in place: (i) A strategy to obtain the scatter distribution in on-board CBCT imaging and (ii) a method to spatially match a prior scatter distribution with the on-treatment CBCT projection data for scatter subtraction. In this work, simple solutions to the two problems are provided. A partially blocked CBCT is used to extract the scatter distribution. The x-ray beam blocker has a strip pattern, such that partial volume can still be accurately reconstructed and the whole-field scatter distribution can be estimated from the detected signals in the shadow regions using interpolation/extrapolation. In the subsequent scans, the patient transformation is determined using a rigid registration of the conventional CBCT and the prior partial CBCT. From the derived patient transformation, the measured scatter is then modified to adapt the new on-treatment patient geometry for scatter correction. The proposed method is evaluated using physical experiments on a clinical CBCT system. On the Catphan(c)600 phantom, the errors in Hounsfield unit (HU) in the selected regions of interest are reduced from about 350 to below 50 HU; on an anthropomorphic phantom, the error is reduced from 15.7% to 5.4%. The proposed method

  9. [Benchmark experiment to verify radiation transport calculations for dosimetry in radiation therapy].

    PubMed

    Renner, Franziska

    2016-09-01

    Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide.

  10. Prospective peer review quality assurance for outpatient radiation therapy.

    PubMed

    Ballo, Matthew T; Chronowski, Gregory M; Schlembach, Pamela J; Bloom, Elizabeth S; Arzu, Isadora Y; Kuban, Deborah A

    2014-01-01

    We implemented a peer review program that required presentation of all nonpalliative cases to a weekly peer review conference. The purpose of this review is to document compliance and determine how this program impacted care. A total of 2988 patients were eligible for peer review. Patient data were presented to a group of physicians, physicists, and dosimetrists, and the radiation therapy plan was reviewed. Details of changes made were documented within a quality assurance note dictated after discussion. Changes recommended by the peer review process were categorized as changes to radiation dose, target, or major changes. Breast cancer accounted for 47.9% of all cases, followed in frequency by head-and-neck (14.8%), gastrointestinal (9.9%), genitourinary (9.3%), and thoracic (6.7%) malignancies. Of the 2988 eligible patients, 158 (5.3%) were not presented for peer review. The number of missed presentations decreased over time; 2007, 8.2%; 2008, 5.7%; 2009, 3.8%; and 2010, 2.7% (P < .001). The reason for a missed presentation was unknown but varied by disease site and physician. Of the 2830 cases presented for peer review, a change was recommended in 346 cases (12.2%) and categorized as a dose change in 28.3%, a target change in 69.1%, and a major treatment change in 2.6%. When examined by year of treatment the number of changes recommended decreased over time: 2007, 16.5%; 2008, 11.5%; 2009, 12.5%; and 2010, 7.8% (P < .001). The number of changes recommended varied by disease site and physician. The head-and-neck, gynecologic, and gastrointestinal malignancies accounted for the majority of changes made. Compliance with this weekly program was satisfactory and improved over time. The program resulted in decreased treatment plan changes over time reflecting a move toward treatment consensus. We recommend that peer review be considered for patients receiving radiation therapy as it creates a culture where guideline adherence and discussion are part of normal practice

  11. Automatic CT simulation optimization for radiation therapy: A general strategy

    SciTech Connect

    Li, Hua Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa; Yu, Lifeng; Anastasio, Mark A.; Low, Daniel A.

    2014-03-15

    Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube

  12. Radiation Hardness of dSiPM Sensors in a Proton Therapy Radiation Environment

    NASA Astrophysics Data System (ADS)

    Diblen, Faruk; Buitenhuis, Tom; Solf, Torsten; Rodrigues, Pedro; van der Graaf, Emiel; van Goethem, Marc-Jan; Brandenburg, Sytze; Dendooven, Peter

    2017-07-01

    In vivo verification of dose delivery in proton therapy by means of positron emission tomography (PET) or prompt gamma imaging is mostly based on fast scintillation detectors. The digital silicon photomultiplier (dSiPM) allows excellent scintillation detector timing properties and is thus being considered for such verification methods. We present here the results of the first investigation of radiation damage to dSiPM sensors in a proton therapy radiation environment. Radiation hardness experiments were performed at the AGOR cyclotron facility at the KVI-Center for Advanced Radiation Technology, University of Groningen. A 150-MeV proton beam was fully stopped in a water target. In the first experiment, bare dSiPM sensors were placed at 25 cm from the Bragg peak, perpendicular to the beam direction, a geometry typical for an in situ implementation of a PET or prompt gamma imaging device. In the second experiment, dSiPM-based PET detectors containing lutetium yttrium orthosilicate scintillator crystal arrays were placed at 2 and 4 m from the Bragg peak, perpendicular to the beam direction; resembling an in-room PET implementation. Furthermore, the experimental setup was simulated with a Geant4-based Monte Carlo code in order to determine the angular and energy distributions of the neutrons and to determine the 1-MeV equivalent neutron fluences delivered to the dSiPM sensors. A noticeable increase in dark count rate (DCR) after an irradiation with about 108 1-MeV equivalent neutrons/cm2 agrees with observations by others for analog SiPMs, indicating that the radiation damage occurs in the single photon avalanche diodes and not in the electronics integrated on the sensor chip. It was found that in the in situ location, the DCR becomes too large for successful operation after the equivalent of a few weeks of use in a proton therapy treatment room (about 5 × 1013 protons). For PET detectors in an in-room setup, detector performance was unchanged even after an

  13. Modern Radiation Therapy for Primary Cutaneous Lymphomas: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    SciTech Connect

    Specht, Lena; Dabaja, Bouthaina; Illidge, Tim; Wilson, Lynn D.; Hoppe, Richard T.

    2015-05-01

    Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment, either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era.

  14. Combinations of Radiation Therapy and Immunotherapy for Melanoma: A Review of Clinical Outcomes

    SciTech Connect

    Barker, Christopher A.; Postow, Michael A.

    2014-04-01

    Radiation therapy has long played a role in the management of melanoma. Recent advances have also demonstrated the efficacy of immunotherapy in the treatment of melanoma. Preclinical data suggest a biologic interaction between radiation therapy and immunotherapy. Several clinical studies corroborate these findings. This review will summarize the outcomes of studies reporting on patients with melanoma treated with a combination of radiation therapy and immunotherapy. Vaccine therapies often use irradiated melanoma cells, and may be enhanced by radiation therapy. The cytokines interferon-α and interleukin-2 have been combined with radiation therapy in several small studies, with some evidence suggesting increased toxicity and/or efficacy. Ipilimumab, a monoclonal antibody which blocks cytotoxic T-lymphocyte antigen-4, has been combined with radiation therapy in several notable case studies and series. Finally, pilot studies of adoptive cell transfer have suggested that radiation therapy may improve the efficacy of treatment. The review will demonstrate that the combination of radiation therapy and immunotherapy has been reported in several notable case studies, series and clinical trials. These clinical results suggest interaction and the need for further study.

  15. ROENTGEN: case-based reasoning and radiation therapy planning.

    PubMed Central

    Berger, J.

    1992-01-01

    ROENTGEN is a design assistant for radiation therapy planning which uses case-based reasoning, an artificial intelligence technique. It learns both from specific problem-solving experiences and from direct instruction from the user. The first sort of learning is the normal case-based method of storing problem solutions so that they can be reused. The second sort is necessary because ROENTGEN does not, initially, have an internal model of the physics of its problem domain. This dependence on explicit user instruction brings to the forefront representational questions regarding indexing, failure definition, failure explanation and repair. This paper presents the techniques used by ROENTGEN in its knowledge acquisition and design activities. PMID:1482869

  16. Image correlation techniques in radiation therapy treatment planning.

    PubMed

    Chen, G T; Pelizzari, C A

    1989-01-01

    A technique to spatially correlate multi-modality or serial imaging studies of the head is described. Surface fitting of a well defined structure in different imaging studies is used to determine the optimal three dimensional transformation between the coordinate systems. The transformation is then used to map volumes of interest between studies or to reslice the studies along comparable planes. The approach is feasible in the presence of variations in slice thickness, pixel size, imaging plane, or head position, and for correlations between different modalities. Correlations have been performed between serial CT, CT/MRI, and PET/CT/MRI studies. Phantom studies and clinical cases are presented. Accuracy is typically on the order of the sum of the pixel sizes between studies. Applications in radiation therapy treatment planning are described.

  17. Nanoparticles for Radiation Therapy Enhancement: the Key Parameters

    PubMed Central

    Retif, Paul; Pinel, Sophie; Toussaint, Magali; Frochot, Céline; Chouikrat, Rima; Bastogne, Thierry; Barberi-Heyob, Muriel

    2015-01-01

    This review focuses on the radiosensitization strategies that use high-Z nanoparticles. It does not establish an exhaustive list of the works in this field but rather propose constructive criticisms pointing out critical factors that could improve the nano-radiation therapy. Whereas most reviews show the chemists and/or biologists points of view, the present analysis is also seen through the prism of the medical physicist. In particular, we described and evaluated the influence of X-rays energy spectra using a numerical analysis. We observed a lack of standardization in preclinical studies that could partially explain the low number of translation to clinical applications for this innovative therapeutic strategy. Pointing out the critical parameters of high-Z nanoparticles radiosensitization, this review is expected to contribute to a larger preclinical and clinical development. PMID:26155318

  18. Radiation Therapy Oncology Group clinical trials with misonidazole

    SciTech Connect

    Wasserman, T.H.; Stetz, J.; Phillips, T.L.

    1981-05-15

    This paper presents a review of the progressive clinical trials of the hypoxic cell radiosensitizer, misonidazole, in the Radiation Therapy Oncology Group (RTOG). Presentation is made of all the schemas of the recently completed and currently active RTOG Phase II and Phase III studies. Detailed information is provided on the clinical toxicity of the Phase II trials, specifically regarding neurotoxicity. With limitations in drug total dose, a variety of dose schedules have proven to be tolerable, with a moderate incidence of nausea and vomiting and mild peripheral neuropathy or central neuropathy. No other organ toxicity has been seen, specifically no liver, renal or bone marrow toxicities. An additional Phase III malignant glioma trial in the Brain Tumor Study Group is described.

  19. Effects of Radiation Therapy on Established Neurogenic Heterotopic Ossification

    PubMed Central

    2016-01-01

    Heterotopic ossification (HO) is frequently seen on rehabilitation units after spinal cord injuries, fractures, brain injuries, and limb amputations. Currently, there is no effective treatment for HO other than prophylaxis with anti-inflammatory medications, irradiation, and bisphosphonate administration. These prophylactic treatments are not effective for managing ectopic bone once it has formed. Here we describe three cases of established neurogenic HO treated with radiation therapy (RT). All patients had decreased serum alkaline phosphatase (ALP) and bone-specific ALP levels with decreased pain but increased range of motion immediately after RT. Post-treatment X-rays revealed no further growth of the HO. All patients maintained clinical and laboratory improvements 4 or 6 months after the RT. Our results suggest that RT is safe and effective in decreasing pain and activity of neurogenic HO. PMID:28119846

  20. Cancer of the glottis: prognostic factors in radiation therapy

    SciTech Connect

    Mantravadi, R.V.; Liebner, E.J.; Haas, R.E.; Skolnik, E.M.; Applebaum, E.L.

    1983-10-01

    The authors conducted a multivariate analysis of the prognostic factors in 96 patients with early glottic cancer treated by radiation therapy. Of these, 73 had T1 and 23 had T2 tumor. The primary tumor was controlled in 82% of T1 and 74% of T2 lesions. Actuarial five-year survival rates were 87% for T1 and 74% for T2. Carcinoma of the anterior commissure associated with bilateral vocal cord involvement, subglottic tumor extension, persistent or recurrent laryngeal edema, and impaired cord mobility was found to adversely influence the prognosis. The data suggest that irradiation is the treatment of choice for glottic cancer limited to the vocal cords or with minimal extension to the anterior commissure or supraglottic larynx.

  1. Cancer of the glottis: prognostic factors in radiation therapy

    SciTech Connect

    Mantravadi, R.V.P.; Liebner, E.J.; Haas, R.E.; Skolnik, E.M.; Applebaum, E.L.

    1983-10-01

    The authors conducted a multivariate analysis of the prognostic factors in 96 patients with early glottic cancer treated by radiation therapy. Of these, 73 had T/sub 1/ and 23 had T/sub 2/ tumor. The primary tumor was controlled in 82% of T/sub 1/ amd 74% for T/sub 2/. Carcinoma of the anterior commissure associated with bilateral vocal cord involvement, subglottic tumor extension, persistent or recurrent laryngeal edema, and impaired cord mobility was found to adversely influence the prognosis. The data suggest that irradiation is the treatment of choice for glottic cancer limited to the vocal cords or with minimal extension to the anterior commissure or gupraglottic larynx.

  2. Head and Neck Soft Tissue Sarcomas Treated with Radiation Therapy

    PubMed Central

    Vitzthum, Lucas K.; Brown, Lindsay C.; Rooney, Jessica W.; Foote, Robert L.

    2016-01-01

    Head and neck soft tissue sarcomas (HNSTSs) are rare and heterogeneous cancers in which radiation therapy (RT) has an important role in local tumor control (LC). The purpose of this study was to evaluate outcomes and patterns of treatment failure in patients with HNSTS treated with RT. A retrospective review was performed of adult patients with HNSTS treated with RT from January 1, 1998, to December 31, 2012. LC, locoregional control (LRC), disease-free survival (DFS), overall survival (OS), and predictors thereof were assessed. Forty-eight patients with HNSTS were evaluated. Five-year Kaplan-Meier estimates of LC, LRC, DFS, and OS were 87, 73, 63, and 83%, respectively. Angiosarcomas were found to be associated with worse LC, LRC, DFS, and OS. Patients over the age of 60 had lower rates of DFS. HNSTSs comprise a diverse group of tumors that can be managed with various treatment regimens involving RT. Angiosarcomas have higher recurrence and mortality rates. PMID:27441072

  3. Implementation of Image-Guidance Techniques in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Thomas, Michael; Clark, Brenda; MacPherson, Miller; Montgomery, Lynn; Gerig, Lee

    2008-06-01

    For more than 100 years, physicists have been a vital part of the medical team required to deliver radiation therapy. Their role encompasses the verification of dose accuracy to the development and implementation of new techniques, the most recent of which is the incorporation of daily image guidance to account for inter- and intra-fraction target changes. For example, computed tomography (CT) integrated into radiotherapy treatment units allows the image-guided treatment of the prostate where the target location depends on the degree of rectal filling--a parameter that changes on timescales from minutes to weeks. Different technology is required for the adequate treatment of small lung tumours since respiration occurs on timescales of seconds. This presentation will review current image-guided techniques.

  4. [Dosimetric verification of the intensity modulated radiation therapy].

    PubMed

    Zhang, Yuhai; Gao, Yang

    2010-05-01

    To research the method of dosimetric verification of the intensity modulated radiation therapy (IMRT). The IMRT treatment plans were designed by Eclipse TPS and were implemented in Varian ClinacIX LA with 6MV X-ray. The absolute point doses were measured using a PTW 0.6 cc ion chamber with UNIDOS E dosimeter and the planes dose distributions were measured using PTW 2D-Array ion chamber in the phantom. The error between the measured dose and calculated dose in the interesting points was less than 3%. The points passed ratio was more than 90% in gamma analysis method (3 mm 13%) about the plane dose distribution verification. The method of dosimetric verification of IMRT is reliable and efficient in the implementation.

  5. Low Level Laser Therapy: laser radiation absorption in biological tissues

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Paola; Orlando, Stefano; Dell'Ariccia, Marco; Brandimarte, Bruno

    2013-07-01

    In this paper we report the results of an experimental study in which we have measured the transmitted laser radiation through dead biological tissues of various animals (chicken, adult and young bovine, pig) in order to evaluate the maximum thickness through which the power density could still produce a reparative cellular effect. In our experiments we have utilized a pulsed laser IRL1 ISO model (based on an infrared diode GaAs, λ=904 nm) produced by BIOMEDICA s.r.l. commonly used in Low Level Laser Therapy. Some of the laser characteristics have been accurately studied and reported in this paper. The transmission results suggest that even with tissue thicknesses of several centimeters the power density is still sufficient to produce a cell reparative effect.

  6. Palliative intensity modulated radiation therapy for symptomatic adrenal metastasis.

    PubMed

    Mod, H; Patel, V

    2013-05-01

    Metastasis to the adrenal glands is quite common; especially from melanomas, breast, lung, renal and gastro-intestinal tumours. The most common tumour found in the adrenals in post mortem series is a metastatic tumour; incidence ranging from 13 to 27%. The diagnosis of adrenal metastasis is now more common and easier due to staging and subsequent follow up with Computed tomography /Magnetic resonance imaging and or positron emission tomography-computed tomography imaging studies. Most of the times these metastatic lesions are clinically occult and those that do have clinical symptoms complain of pain, nausea, vomiting and early satiety. We irradiated a patient of non small cell lung cancer with adrenal metastasis with palliative Intensity Modulated Radiation Therapy and achieved a good response in terms of pain relief, stable disease and no side effects of the treatment.

  7. [Radiation therapy in simultaneous choroidal and brain metastases].

    PubMed

    Conill, C; Jorcano, S; Planas, I; Marruecos, J; Casas, F; Fontenla, J R

    2005-09-01

    Choroidal metastases from lung cancer can be the initial clinical manifestation of metastasic disease, although they generally coexist with at least two more metastasic sites. The most common symptom is decreased vision, however 20% of brain metastases can present with visual alterations. A differential diagnosis within brain metastases and/or choroidal is necessary. We present the case of a patient with lung cancer and decreased vision who was diagnosed as simultaneous choroidal and brain metastases. Radiation therapy (20Gy/5fractions) significantly improves decreased vision. This case shows that, although life expectancy of patients with metastasic lung cancer is short, an adequate diagnosis and treatment, can improve the quality of life of those patients.

  8. Dianhydrogalactitol and radiation therapy. Treatment of supratentorial glioma.

    PubMed

    Eagan, R T; Childs, D S; Layton, D D; Laws, E R; Bisel, H F; Holbrook, M A; Fleming, T R

    1979-05-11

    Dianhydrogalactitol was the most active of 177 agents tested against a mouse ependymoblastoma tumor. We conducted a prospectively randomized trial comparing whole-brain irradiation alone vs identical irradiation plus dianhydrogalactitol in 42 patients with grade 3 and 4 supratentorial astrocytomas. Patients receiving dianhydrogalactitol in addition to irradiation had a significantly longer median survival time (67 vs 35 weeks) than did patients receiving only irradiation. The major toxic effect of dianhydrogalactitol is hematologic suppression of a cumulative nature. Dianhydrogalactitol may play an important role (in conjunction with radiation therapy) in the initial treatment of patients with supratentorial glioma. Our data may indicate that the mouse ependymoblastoma system is a useful screen for agents to be used in the treatment of human glioma.

  9. Effects of radiation therapy on skeletal growth in childhood

    SciTech Connect

    Goldwein, J.W. )

    1991-01-01

    Ionizing radiation was used to treat childhood cancer long before the advent of chemotherapy, and it took little time for physicians to appreciate the deleterious effects it had on skeletal growth. The cause of this complication results predominantly from alteration of chondroblastic activity. This may stem directly from irradiation at the epiphyseal plate or indirectly from irradiation of glands that secrete growth-mediating hormones. The complication can go far beyond the obvious physical afflictions and extend into the psychologic domain, rendering deeper, more permanent scars. Presently, many of these effects are predictable, reducible, and treatable without compromising the cure that so often depends on the use of irradiation. Because of the complexities of childhood cancer therapy, strategies aimed at diminishing these effects are challenging. It is imperative that these effects be understood so that they can be reduced in current patients and prevented in future patients.33 references.

  10. Nanoparticles for Radiation Therapy Enhancement: the Key Parameters.

    PubMed

    Retif, Paul; Pinel, Sophie; Toussaint, Magali; Frochot, Céline; Chouikrat, Rima; Bastogne, Thierry; Barberi-Heyob, Muriel

    2015-01-01

    This review focuses on the radiosensitization strategies that use high-Z nanoparticles. It does not establish an exhaustive list of the works in this field but rather propose constructive criticisms pointing out critical factors that could improve the nano-radiation therapy. Whereas most reviews show the chemists and/or biologists points of view, the present analysis is also seen through the prism of the medical physicist. In particular, we described and evaluated the influence of X-rays energy spectra using a numerical analysis. We observed a lack of standardization in preclinical studies that could partially explain the low number of translation to clinical applications for this innovative therapeutic strategy. Pointing out the critical parameters of high-Z nanoparticles radiosensitization, this review is expected to contribute to a larger preclinical and clinical development.

  11. Commissioning and implementation of an implantable dosimeter for radiation therapy.

    PubMed

    Buzurovic, Ivan; Showalter, Timothy N; Studenski, Matthew T; Den, Robert B; Dicker, Adam P; Cao, Junsheng; Xiao, Ying; Yu, Yan; Harrison, Amy

    2013-03-04

    In this article we describe commissioning and implementation procedures for the Dose Verification System (DVS) with permanently implanted in vivo wireless, telemetric radiation dosimeters for absolute dose measurements. The dosimeter uses a semiconductor device called a metal-oxide semiconductor field-effect transistor (MOSFET) to measure radiation dose. A MOSFET is a transistor that is generally used for amplifying or switching electronic signals. The implantable dosimeter was implemented with the goal of verifying the dose delivered to radiation therapy patients. For the purpose of acceptance testing, commissioning, and clinical implementation and to evaluate characteristics of the dosimeter, the following tests were performed: 1) temperature dependence, 2) reproducibility,3) field size dependence, 4) postirradiation signal drift, 5) dependence on average dose rate, 6) linearity test, 7) angular dependence (different gantry angle position), 8) angular dependence (different DVS angle position), 9) dose rate dependence,10) irradiation depth dependence, 11) effect of cone-beam exposure to the dosimeter, and 12) multiple reading effect. The dosimeter is not currently calibrated for use in the kV range; nonetheless, the effect of the cone-beam procedure on the MOSFET dosimeter was investigated. Phantom studies were performed in both air and water using an Elekta Synergy S Beam-Modulator linear accelerator. Commissioning and clinical implementation for prostate cancer patients receiving external-beam radiation therapy were performed in compliance with the general recommendations given for in vivo dosimetry devices. The reproducibility test in water at human body temperature (37°C) showed a 1.4% absolute difference, with a standard deviation of 5.72 cGy (i.e., SD = 2.9%). The constancy test shows that the average readings at room temperature were 3% lower compared to the readings at human body temperature, with a SD = 2%. Measurements were not dependent upon field size

  12. Direct aperture optimization for online adaptive radiation therapy

    SciTech Connect

    Mestrovic, Ante; Milette, Marie-Pierre; Nichol, Alan; Clark, Brenda G.; Otto, Karl

    2007-05-15

    This paper is the first investigation of using direct aperture optimization (DAO) for online adaptive radiation therapy (ART). A geometrical model representing the anatomy of a typical prostate case was created. To simulate interfractional deformations, four different anatomical deformations were created by systematically deforming the original anatomy by various amounts (0.25, 0.50, 0.75, and 1.00 cm). We describe a series of techniques where the original treatment plan was adapted in order to correct for the deterioration of dose distribution quality caused by the anatomical deformations. We found that the average time needed to adapt the original plan to arrive at a clinically acceptable plan is roughly half of the time needed for a complete plan regeneration, for all four anatomical deformations. Furthermore, through modification of the DAO algorithm the optimization search space was reduced and the plan adaptation was significantly accelerated. For the first anatomical deformation (0.25 cm), the plan adaptation was six times more efficient than the complete plan regeneration. For the 0.50 and 0.75 cm deformations, the optimization efficiency was increased by a factor of roughly 3 compared to the complete plan regeneration. However, for the anatomical deformation of 1.00 cm, the reduction of the optimization search space during plan adaptation did not result in any efficiency improvement over the original (nonmodified) plan adaptation. The anatomical deformation of 1.00 cm demonstrates the limit of this approach. We propose an innovative approach to online ART in which the plan adaptation and radiation delivery are merged together and performed concurrently--adaptive radiation delivery (ARD). A fundamental advantage of ARD is the fact that radiation delivery can start almost immediately after image acquisition and evaluation. Most of the original plan adaptation is done during the radiation delivery, so the time spent adapting the original plan does not

  13. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    SciTech Connect

    Lim, Karen; Stewart, James; Kelly, Valerie; Xie, Jason; Brock, Kristy K.; Moseley, Joanne; Cho, Young-Bin; Fyles, Anthony; Lundin, Anna; Rehbinder, Henrik; Löf, Johan; Jaffray, David A.; Milosevic, Michael

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  14. Properties of a new mouthrinse for patients receiving radiation therapy.

    PubMed

    Patel, M; Ndlovu, N N; Owen, C P; Veale, R

    2010-10-01

    Patients receiving radiation therapy due to oral cancer develop complications such as hyposalivation, mucositis, oral infections, dental hypersensitivity and caries. Mouthrinses can alleviate some of these problems. To investigate the in vitro antimicrobial properties and cytotoxicity of an experimental mouthrinse. The mouthrinse contained 30% hexylene glycol (glycerine), 7% potassium nitrate and 0.025% sodium fluoride. The minimal inhibitory concentration (MIC) of these ingredients and the mixture was determined for C. albicans, S. aureus and S. mutans over 24 hours at different concentrations. The MICs of two commercial mouthrinses, Corsodyl and Plax, were also determined using the same organisms. All mouthrinses were then tested to determine the percentage kill over 1, 2, and 3 minutes. The MICs for hexylene glycol were 10%, 30% and 10% for C. albicans, S. aureus and S. mutons respectively. Potassium nitrate and sodium fluoride had no antimicrobial effects. The MIC of Corsodyl was 0.016 mg/ml for all the test organisms. The MIC for Plax varied from 0.0002 mg/ml to 0.001 mg/ml. The kill rates for all mouthrinses were acceptable, with no statistical differences between them. The experimental mouthrinse was not toxic to human oesophageal SCC cells after 1 minute exposure. At the time of the experiment, the costs of a similar quantity of the experimental mouthrinse, Corsodyl and Plax were R5.24, R30.00 and R10.00 respectively. The experimental mouthrinse was cost-effective and proved to have an antimicrobial effect and could be used safely to alleviate oral infections, desensitize teeth, improve oral hygiene and control dental caries in cancer patients after radiation therapy.

  15. Proton-minibeam radiation therapy: A proof of concept

    SciTech Connect

    Prezado, Y.; Fois, G. R.

    2013-03-15

    Purpose: This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. Methods: Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. Results: Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. Conclusions: The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.

  16. Hypofractionated stereotactic radiation therapy in skull base meningiomas.

    PubMed

    Navarria, Pierina; Pessina, Federico; Cozzi, Luca; Clerici, Elena; Villa, Elisa; Ascolese, Anna Maria; De Rose, Fiorenza; Comito, Tiziana; Franzese, Ciro; D'Agostino, Giuseppe; Lobefalo, Francesca; Fogliata, Antonella; Reggiori, Giacomo; Fornari, Maurizio; Tomatis, Stefano; Bello, Lorenzo; Scorsetti, Marta

    2015-09-01

    To investigate the role of hypo-fractionated stereotactic radiation treatment (HSRT) in the management of skull base meningioma. Twenty-six patients were included in the study and treated with a dose of 30 Gy in 5 fractions with volumetric modulated arc therapy (RapidArc). Eighteen patients were symptomatic before treatment. Endpoints were local toxicity and relief from symptoms. Tumors were located in anterior skull base in 4/27 cases, in middle skull base in 12/27 and in posterior skull base in 11/27. HSRT was performed as first treatment in 17 (65 %) patients, in 9 (35 %) patients it followed a previous partial resection. Median follow up was 24.5 months (range 5-57 months). clinical remission of symptoms, complete or partial, was obtained in the vast majority of patients after treatment. Out of the 18 symptomatic patients, partial remission occurred in 9 (50 %) patients and complete remission in 9 (50 %). All asymptomatic patients retained their status after treatment. No severe neurologic toxicity grade III-IV was recorded. No increase of meningioma in the same site of treatment occurred; 16 (62 %) patients had stable disease and 9 (38 %) patients had tumor reduction. The mean tumor volume after treatment was 10.8 ± 17.8 cm(3) compared with 13.0 ± 19.1 cm(3) before treatment (p = 0.02). The mean actuarial OS was 54.4 ± 2.8 months. The 1- and 2-years OS was 92.9 ± 0.7 %. HSRT proved to be feasible for these patients not eligible to full surgery or to ablative radiation therapy. Local control and durability of results suggest for a routine application of this approach in properly selected cases.

  17. Pitfalls in normalization for intensity-modulated radiation therapy planning

    SciTech Connect

    Williams, Greg . E-mail: greg.williams@hci.utah.edu; Tobler, Matt; Leavitt, Dennis

    2005-01-01

    Three-dimensional (3D) treatment planning often involves complex combinations of beam energies, treatment fields, and beam modifying devices. Even when a plan is devised that meets many treatment-planning objectives, limitations in the planner's ability to further adjust beam characteristics may require the radiation dose prescription to be normalized to an isodose level that best covers the target volume. While these normalizations help meet the volume coverage goals, they also result in adjustment of the dose delivered to the normal tissues and must be carefully evaluated. Intensity-modulated radiation therapy (IMRT) treatment planning allows combinations of complex dose patterns, in order to achieve the desired treatment planning goals. These dose patterns are created by defining a set of treatment planning objectives and then allowing the treatment planning computer to create intensity patterns, through the use of moving multileaf collimation that will meet the requested goals. Often, when an IMRT treatment plan is created that meets many of the treatment planning goals but falls short of volume coverage requirements, the planner is tempted to apply normalization principles similar to those utilized with 3D treatment planning. Again, these normalizations help meet the volume coverage goals, but unlike 3D planning situations, may result in avoidable delivery of additional doses to the normal tissues. The focus of this study is to evaluate the effect of application of normalization for IMRT planning using multiple patient situations. Recommendations would favor re-optimization over normalization in most planning situations.

  18. Models for the risk of secondary cancers from radiation therapy.

    PubMed

    Dasu, Alexandru; Toma-Dasu, Iuliana

    2017-02-24

    The interest in the induction of secondary tumours following radiotherapy has greatly increased as developments in detecting and treating the primary tumours have improved the life expectancy of cancer patients. However, most of the knowledge on the current levels of risk comes from patients treated many decades ago. As developments of irradiation techniques take place at a much faster pace than the progression of the carcinogenesis process, the earlier results could not be easily extrapolated to modern treatments. Indeed, the patterns of irradiation from historically-used orthovoltage radiotherapy and from contemporary techniques like conformal radiotherapy with megavoltage radiation, intensity modulated radiation therapy with photons or with particles are quite different. Furthermore, the increased interest in individualised treatment options raises the question of evaluating and ranking the different treatment plan options from the point of view of the risk for cancer induction, in parallel with the quantification of other long-term effects. It is therefore inevitable that models for risk assessment will have to be used to complement the knowledge from epidemiological studies and to make predictions for newer forms of treatment for which clinical evidence is not yet available. This work reviews the mathematical models that could be used to predict the risk of secondary cancers from radiotherapy-relevant dose levels, as well as the approaches and factors that have to be taken into account when including these models in the clinical evaluation process. These include the effects of heterogeneous irradiation, secondary particles production, imaging techniques, interpatient variability and other confounding factors.

  19. Stereotactic Body Radiation Therapy Boost in Locally Advanced Pancreatic Cancer

    SciTech Connect

    Seo, Young Seok; Kim, Mi-Sook; Yoo, Sung Yul; Cho, Chul Koo; Yang, Kwang Mo; Yoo, Hyung Jun; Choi, Chul Won; Lee, Dong Han; Kim, Jin; Kim, Min Suk; Kang, Hye Jin; Kim, YoungHan

    2009-12-01

    Purpose: To investigate the clinical application of a stereotactic body radiation therapy (SBRT) boost in locally advanced pancreatic cancer patients with a focus on local efficacy and toxicity. Methods and Materials: We retrospectively reviewed 30 patients with locally advanced and nonmetastatic pancreatic cancer who had been treated between 2004 and 2006. Follow-up duration ranged from 4 to 41 months (median, 14.5 months). A total dose of 40 Gy was delivered in 20 fractions using a conventional three-field technique, and then a single fraction of 14, 15, 16, or 17 Gy SBRT was administered as a boost without a break. Twenty-one patients received chemotherapy. Overall and local progression-free survival were calculated and prognostic factors were evaluated. Results: One-year overall survival and local progression-free survival rates were 60.0% and 70.2%, respectively. One patient (3%) developed Grade 4 toxicity. Carbohydrate antigen 19-9 response was found to be an independent prognostic factor for survival. Conclusions: Our findings indicate that a SBRT boost provides a safe means of increasing radiation dose. Based on the results of this study, we recommend that a well controlled Phase II study be conducted on locally advanced pancreatic cancer.

  20. Radiation therapy of conjunctival and orbital lymphoid tumors

    SciTech Connect

    Jereb, B.; Lee, H.; Jakobiec, F.A.; Kutcher, J.

    1984-07-01

    Lymphoid tumors of the conjuctiva and orbit are rare and remain localized in the majority of cases. Sometimes it is not possible either clinically or histologically to differentiate between a non-Hodgkin's lymphoma (NHL) and benign lymphoid hyperplasia. A series of 24 patients is reported. Nineteen were classified as having malignant NHL and 5 benign hyperplasia; 1 of these 5 later developed metastases, however. All patients had systemic work-up: 18 had Stage I, 1 had Stage II, and 5 had Stage IV disease. All patients received local radiation therapy with doses of 2400 to 2750 rad in 2-3 weeks for lesions of the eyelid and conjunctiva, and between 3000 and 3750 rad in 3-4 weeks for retrobulbar lesions. A method of shielding the lens with a lead block mounted on a low vac lens is described, and the dose distribution within the eye and orbit is presented. Patients who were treated with doses higher than 3000 rad experienced conjunctivitis and skin erythema that resolved completely. No other effects of radiation on normal structures of the ocular adnexa were observed in the 20 patients who are alive and without signs of tumor 10-46 months with a median follow-up time of 22 months.