Sample records for spontaneously generated gravity

  1. Spontaneous generation and reversals of mean flows in a convectively-generated internal gravity wave field

    NASA Astrophysics Data System (ADS)

    Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael

    2017-11-01

    We investigate via direct numerical simulations the spontaneous generation and reversals of mean zonal flows in a stably-stratified fluid layer lying above a turbulent convective fluid. Contrary to the leading idealized theories of mean flow generation by self-interacting internal waves, the emergence of a mean flow in a convectively-generated internal gravity wave field is not always possible because nonlinear interactions of waves of different frequencies can disrupt the mean flow generation mechanism. Strong mean flows thus emerge when the divergence of the Reynolds stress resulting from the nonlinear interactions of internal waves produces a strong enough anti-diffusive acceleration for the mean flow, which, as we will demonstrate, is the case when the Prandtl number is sufficiently low, or when the energy input into the internal wavefield by the convection and density stratification are sufficiently large. Implications for mean zonal flow production as observed in the equatorial stratospheres of the Earth, Saturn and Jupiter, and possibly occurring in other geophysical systems such as planetary and stellar interiors will be briefly discussed. Funding provided by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program through Grant Agreement No. 681835-FLUDYCO-ERC-2015-CoG.

  2. No chiral truncation of quantum log gravity?

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  3. Jet-front systems nearing strongly stratified region in differentially heated, rotating stratified annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Achatz, Ulrich

    2017-04-01

    The differentially heated, rotating annulus configuration has been used for a long time as a model system of the earth troposphere. It can easily reproduce thermal wind and baroclinic waves in the laboratory. It has recently been shown numerically that provided the Rossby number, the rotation rate and the Brunt-Väisälä frequency were well chosen, this configuration also reproduces the spontaneous emission of gravity waves by jet front systems [1]. This offers a very practical configuration in which to study an important process of emission of atmospheric gravity waves. It has also been shown experimentally that this configuration can be modified in order to add the possibility for the emitted wave to reach a strongly stratified region [2]. It thus creates a system containing a model troposphere where gravity waves are spontaneously emitted and can propagate to a model stratosphere. For this matter a stratification was created using a salinity gradient in the experimental apparatus. Through double diffusion, this generates a strongly stratified layer in the middle of the flow (the model stratosphere) and two weakly stratified region in the top and bottom layers (the model troposphere). In this poster, we present simulations of this configuration displaying baroclinic waves in the top and bottom layers. We aim at creating jet front systems strong enough that gravity waves can be spontaneously emitted. This will thus offer the possibility of studying the wave characteristic and mechanisms in emission and propagation in details. References [1] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [2] M. Vincze, I. Borcia, U. Harlander, P. Le Gal, Double-diffusive convection convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability, Fluid Dyn. Res. 48, 061414 (2016).

  4. Instabilities of Internal Gravity Wave Beams

    NASA Astrophysics Data System (ADS)

    Dauxois, Thierry; Joubaud, Sylvain; Odier, Philippe; Venaille, Antoine

    2018-01-01

    Internal gravity waves play a primary role in geophysical fluids: They contribute significantly to mixing in the ocean, and they redistribute energy and momentum in the middle atmosphere. Until recently, most studies were focused on plane wave solutions. However, these solutions are not a satisfactory description of most geophysical manifestations of internal gravity waves, and it is now recognized that internal wave beams with a confined profile are ubiquitous in the geophysical context. We discuss the reason for the ubiquity of wave beams in stratified fluids, which is related to the fact that they are solutions of the nonlinear governing equations. We focus more specifically on situations with a constant buoyancy frequency. Moreover, in light of recent experimental and analytical studies of internal gravity beams, it is timely to discuss the two main mechanisms of instability for those beams: (a) the triadic resonant instability generating two secondary wave beams and (b) the streaming instability corresponding to the spontaneous generation of a mean flow.

  5. Medium generated gap in gravity and a 3D gauge theory

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Older, Daniel

    2018-05-01

    It is well known that a physical medium that sets a Lorentz frame generates a Lorentz-breaking gap for a graviton. We examine such generated "mass" terms in the presence of a fluid medium whose ground state spontaneously breaks spatial translation invariance in d =D +1 spacetime dimensions, and for a solid in D =2 spatial dimensions. By requiring energy positivity and subluminal propagation, certain constraints are placed on the equation of state of the medium. In the case of D =2 spatial dimensions, classical gravity can be recast as a Chern-Simons gauge theory, and motivated by this we recast the massive theory of gravity in AdS3 as a massive Chern-Simons gauge theory with an unusual mass term. We find that in the flat space limit the Chern-Simons theory has a novel gauge invariance that mixes the kinetic and mass terms, and enables the massive theory with a noncompact internal group to be free of ghosts and tachyons.

  6. Educing the emission mechanism of internal gravity waves in the differentially heat rotating annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Hien, Steffen; Achatz, Ulrich; Borchert, Sebastian; Fruman, Mark

    2016-04-01

    Understanding the lifecycle of gravity waves is fundamental to a good comprehension of the dynamics of the atmosphere. In this lifecycle, the emission mechanisms may be the most elusive. Indeed, while the emission of gravity waves by orography or convection is well understood, the so-called spontaneous emission is still a quite open topic of investigation [1]. This type of emission usually occur very near jet-front systems in the troposphere. In this abstract, we announce our numerical study of the question. Model systems of the atmosphere which can be easily simulated or built in a laboratory have always been an important part of the study of atmospheric dynamics, alongside global simulations, in situ measurements and theory. In the case of the study of the spontaneous emission of gravity waves near jet-front systems, the differentially heated rotating annulus set up has been proposed and extensively used. It comprises of an annular tank containing water: the inner cylinder is kept at a cold temperature while the outer cylinder is kept at a warm temperature. The whole system is rotating. Provided the values of the control parameters (temperature, rotation rate, gap between the cylinders, height of water) are well chosen, the resulting flow mimics the troposphere at midlatitudes: it has a jet stream, and a baroclinic lifecycle develops on top of it. A very reasonable ratio of Brunt-Väisälä frequency over rotation rate of the system can be obtained, so as to be as close to the atmosphere as possible. Recent experiments as well as earlier numerical simulations in our research group have shown that gravity waves are indeed emitted in this set up, in particular near the jet front system of the baroclinic wave [2]. After a first experimental stage of characterising the emitted wavepacket, we focused our work on testing hypotheses on the gravity wave emission mechanism: we have tested and validated the hypothesis of spontaneous imbalance generated by the flow in geostrophic balance. For the first stage of this investigation, we separated the flow between a balance and an imbalanced part at first order in Rossby number: the balanced pressure field was computed through an inversion of the potential vorticity equation [3]. The balanced horizontal velocity field and buoyancy were then computed using the geostrophic and hydrostatic balance conditions. We first checked that this decomposition gave on the one hand a large scaled balanced flow, comprising mostly of the baroclinic wave, and on the other hand a small scale flow comprising mostly of the gravity wave signal. We then proceeded with the central stage of the validation: we simulated the tangent linear dynamics of the imbalanced part of the flow [4]. The equations are linearised about the balanced part, and any imbalances forces the modeled imbalanced part. The output of this simulation compares very well with the actual imbalanced part, thus confirming that the observed gravity waves are indeed generated through spontaneous imbalance. To our knowledge, this is the first demonstration of emission by this mechanism in a flow which is not idealised: a flow which can be obtained as a result of a numerical simulation of primitive equations or actually observed in a laboratory experiment. References [1] R. Plougonven, F. Zhang, Internal gravity waves from atmospheric jets and fronts, Rev. Geophys. 52, 33-76 (2014). [2] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [3] F. Zhang, S.E . Koch, C. A. Davis, M. L. Kaplan, A Survey of unbalanced flow diagnostics and their application, Adv. Atmo. Sci. 17, 165-183 (2000). [4] S. Wang, F. Zhang, Source of gravity waves within a vortex dipole jet revealed by a linear model, J. Atmo. Sci. 67, 1438-1455 (2010).

  7. A model-based theory on the origin of downbeat nystagmus.

    PubMed

    Marti, Sarah; Straumann, Dominik; Büttner, Ulrich; Glasauer, Stefan

    2008-07-01

    The pathomechanism of downbeat nystagmus (DBN), an ocular motor sign typical for vestibulo-cerebellar lesions, remains unclear. Previous hypotheses conjectured various deficits such as an imbalance of central vertical vestibular or smooth pursuit pathways to be causative for the generation of spontaneous upward drift. However, none of the previous theories explains the full range of ocular motor deficits associated with DBN, i.e., impaired vertical smooth pursuit (SP), gaze evoked nystagmus, and gravity dependence of the upward drift. We propose a new hypothesis, which explains the ocular motor signs of DBN by damage of the inhibitory vertical gaze-velocity sensitive Purkinje cells (PCs) in the cerebellar flocculus (FL). These PCs show spontaneous activity and a physiological asymmetry in that most of them exhibit downward on-directions. Accordingly, a loss of vertical floccular PCs will lead to disinhibition of their brainstem target neurons and, consequently, to spontaneous upward drift, i.e., DBN. Since the FL is involved in generation and control of SP and gaze holding, a single lesion, e.g., damage to vertical floccular PCs, may also explain the associated ocular motor deficits. To test our hypothesis, we developed a computational model of vertical eye movements based on known ocular motor anatomy and physiology, which illustrates how cortical, cerebellar, and brainstem regions interact to generate the range of vertical eye movements seen in healthy subjects. Model simulation of the effect of extensive loss of floccular PCs resulted in ocular motor features typically associated with cerebellar DBN: (1) spontaneous upward drift due to decreased spontaneous PC activity, (2) gaze evoked nystagmus corresponding to failure of the cerebellar loop supporting neural integrator function, (3) asymmetric vertical SP deficit due to low gain and asymmetric attenuation of PC firing, and (4) gravity-dependence of DBN caused by an interaction of otolith-ocular pathways with impaired neural integrator function.

  8. Inertial Spontaneous Symmetry Breaking and Quantum Scale Invariance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Pedro G.; Hill, Christopher T.; Ross, Graham G.

    Weyl invariant theories of scalars and gravity can generate all mass scales spontaneously, initiated by a dynamical process of "inertial spontaneous symmetry breaking" that does not involve a potential. This is dictated by the structure of the Weyl current,more » $$K_\\mu$$, and a cosmological phase during which the universe expands and the Einstein-Hilbert effective action is formed. Maintaining exact Weyl invariance in the renormalised quantum theory is straightforward when renormalisation conditions are referred back to the VEV's of fields in the action of the theory, which implies a conserved Weyl current. We do not require scale invariant regulators. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential.« less

  9. Criteria for Applying the Lucas-Washburn Law.

    PubMed

    Li, Kewen; Zhang, Danfeng; Bian, Huiyuan; Meng, Chao; Yang, Yanan

    2015-09-14

    Spontaneous imbibition happens in many natural and chemical engineering processes in which the mean advancing front usually follows Lucas-Washburn's law. However it has been found that the scaling law does not apply in many cases. There have been few criteria to determine under what conditions the Washburn law works. The effect of gravity on spontaneous imbibition in porous media was investigated both theoretically and experimentally. The mathematical model derived analytically was used to calculate the imbibition rates in porous media with different permeabilities. The results demonstrated that the effect of gravity on spontaneous imbibition was governed by the hydraulic conductivity of the porous media (permeability of the imbibition systems). The criteria for applying the Lucas-Washburn law have been proposed. The effect of gravity becomes more apparent with the increase in permeability or with the decrease in CGR number (the ratio of capillary pressure to gravity forces) and may be ignored when the CGR number is less than a specific value N(*)(cg) ≅ 3.0. The effect of gravity on imbibition in porous media can be modeled theoretically. It may not be necessary to conduct spontaneous imbibition experiments horizontally in order to exclude the effect of gravity, as has been done previously.

  10. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.

    PubMed

    Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-22

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

  11. Spontaneously broken topological SL(5,R) gauge theory with standard gravity emerging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Eckehard W.

    2011-02-15

    A completely metric-free sl(5,R) gauge framework is developed in four dimensions. After spontaneous symmetry breaking of the corresponding topological BF scheme, Einstein spaces with a tiny cosmological constant emerge, similarly as in (anti-)de Sitter gauge theories of gravity. The induced {Lambda} is related to the scale of the symmetry breaking. A ''background'' metric surfaces from a Higgs-like mechanism. The finiteness of such a topological scheme converts into asymptotic safeness after quantization of the spontaneously broken model.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Pedro G.; Hill, Christopher T.; Ross, Graham G.

    We revisit the possibility that the Planck mass is spontaneously generated in scale-invariant scalar-tensor theories of gravity, typically leading to a “dilaton.” The fifth force, arising from the dilaton, is severely constrained by astrophysical measurements. We explore the possibility that nature is fundamentally scale invariant and argue that, as a consequence, the fifth-force effects are dramatically suppressed and such models are viable. Finally, we discuss possible obstructions to maintaining scale invariance and how these might be resolved.

  13. Care Practice #5: Spontaneous Pushing in Upright or Gravity-Neutral Positions

    PubMed Central

    DiFranco, Joyce T.; Romano, Amy M.; Keen, Ruth

    2007-01-01

    This updated edition of Care Practice Paper #5 presents the evidence for the benefits of spontaneous pushing in upright or gravity-neutral positions during labor. Various pushing positions and techniques are described, and the advantages and disadvantages are reviewed. Women are encouraged to push when and how their bodies tell them to and to choose the positions for birth that are the most comfortable. PMID:18566649

  14. No fifth force in a scale invariant universe

    DOE PAGES

    Ferreira, Pedro G.; Hill, Christopher T.; Ross, Graham G.

    2017-03-15

    We revisit the possibility that the Planck mass is spontaneously generated in scale-invariant scalar-tensor theories of gravity, typically leading to a “dilaton.” The fifth force, arising from the dilaton, is severely constrained by astrophysical measurements. We explore the possibility that nature is fundamentally scale invariant and argue that, as a consequence, the fifth-force effects are dramatically suppressed and such models are viable. Finally, we discuss possible obstructions to maintaining scale invariance and how these might be resolved.

  15. Holographic Phonons

    NASA Astrophysics Data System (ADS)

    Alberte, Lasma; Ammon, Martin; Jiménez-Alba, Amadeo; Baggioli, Matteo; Pujolàs, Oriol

    2018-04-01

    We present a class of holographic massive gravity models that realize a spontaneous breaking of translational symmetry—they exhibit transverse phonon modes whose speed relates to the elastic shear modulus according to elasticity theory. Massive gravity theories thus emerge as versatile and convenient theories to model generic types of translational symmetry breaking: explicit, spontaneous, and a mixture of both. The nature of the breaking is encoded in the radial dependence of the graviton mass. As an application of the model, we compute the temperature dependence of the shear modulus and find that it features a glasslike melting transition.

  16. Highly compact neutron stars in scalar-tensor theories of gravity: Spontaneous scalarization versus gravitational collapse

    NASA Astrophysics Data System (ADS)

    Mendes, Raissa F. P.; Ortiz, Néstor

    2016-06-01

    Scalar-tensor theories of gravity are extensions of general relativity (GR) including an extra, nonminimally coupled scalar degree of freedom. A wide class of these theories, albeit indistinguishable from GR in the weak field regime, predicts a radically different phenomenology for neutron stars, due to a nonperturbative, strong-field effect referred to as spontaneous scalarization. This effect is known to occur in theories where the effective linear coupling β0 between the scalar and matter fields is sufficiently negative, i.e. β0≲-4.35 , and has been strongly constrained by pulsar timing observations. In the test-field approximation, spontaneous scalarization manifests itself as a tachyonic-like instability. Recently, it was argued that, in theories where β0>0 , a similar instability would be triggered by sufficiently compact neutron stars obeying realistic equations of state. In this work we investigate the end state of this instability for some representative coupling functions with β0>0 . This is done both through an energy balance analysis of the existing equilibrium configurations, and by numerically determining the nonlinear Cauchy development of unstable initial data. We find that, contrary to the β0<0 case, the final state of the instability is highly sensitive to the details of the coupling function, varying from gravitational collapse to spontaneous scalarization. In particular, we show, for the first time, that spontaneous scalarization can happen in theories with β0>0 , which could give rise to novel astrophysical tests of the theory of gravity.

  17. Effective holographic theory of charge density waves

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    We use gauge/gravity duality to write down an effective low energy holographic theory of charge density waves. We consider a simple gravity model which breaks translations spontaneously in the dual field theory in a homogeneous manner, capturing the low energy dynamics of phonons coupled to conserved currents. We first focus on the leading two-derivative action, which leads to excited states with nonzero strain. We show that including subleading quartic derivative terms leads to dynamical instabilities of AdS2 translation invariant states and to stable phases breaking translations spontaneously. We compute analytically the real part of the electric conductivity. The model allows to construct Lifshitz-like hyperscaling violating quantum critical ground states breaking translations spontaneously. At these critical points, the real part of the dc conductivity can be metallic or insulating.

  18. A noncompact Weyl-Einstein-Yang-Mills model: A semiclassical quantum gravity

    NASA Astrophysics Data System (ADS)

    Dengiz, Suat

    2017-08-01

    We construct and study perturbative unitarity (i.e., ghost and tachyon analysis) of a 3 + 1-dimensional noncompact Weyl-Einstein-Yang-Mills model. The model describes a local noncompact Weyl's scale plus SU(N) phase invariant Higgs-like field,conformally coupled to a generic Weyl-invariant dynamical background. Here, the Higgs-like sector generates the Weyl's conformal invariance of system. The action does not admit any dimensionful parameter and genuine presence of de Sitter vacuum spontaneously breaks the noncompact gauge symmetry in an analogous manner to the Standard Model Higgs mechanism. As to flat spacetime, the dimensionful parameter is generated within the dimensional transmutation in quantum field theories, and thus the symmetry is radiatively broken through the one-loop Effective Coleman-Weinberg potential. We show that the mere expectation of reducing to Einstein's gravity in the broken phases forbids anti-de Sitter space to be its stable vacua. The model is unitary in de Sitter and flat vacua around which a massless graviton, N2 - 1 massless scalar bosons, N massless Dirac fermions, N2 - 1 Proca-type massive Abelian and non-Abelian vector bosons are generically propagated.

  19. Spontaneous imbibition in fractal tortuous micro-nano pores considering dynamic contact angle and slip effect: phase portrait analysis and analytical solutions.

    PubMed

    Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Zhang, Yanjun; Liu, Tao

    2018-03-02

    Shales have abundant micro-nano pores. Meanwhile, a considerable amount of fracturing liquid is imbibed spontaneously in the hydraulic fracturing process. The spontaneous imbibition in tortuous micro-nano pores is special to shale, and dynamic contact angle and slippage are two important characteristics. In this work, we mainly investigate spontaneous imbibition considering dynamic contact angle and slip effect in fractal tortuous capillaries. We introduce phase portrait analysis to analyse the dynamic state and stability of imbibition. Moreover, analytical solutions to the imbibition equation are derived under special situations, and the solutions are verified by published data. Finally, we discuss the influences of slip length, dynamic contact angle and gravity on spontaneous imbibition. The analysis shows that phase portrait is an ideal tool for analysing spontaneous imbibition because it can evaluate the process without solving the complex governing ordinary differential equations. Moreover, dynamic contact angle and slip effect play an important role in fluid imbibition in fractal tortuous capillaries. Neglecting slip effect in micro-nano pores apparently underestimates imbibition capability, and ignoring variations in contact angle causes inaccuracy in predicting imbibition speed at the initial stage of the process. Finally, gravity is one of the factors that control the stabilisation of the imbibition process.

  20. Formal and Applied AdS/CFT

    NASA Astrophysics Data System (ADS)

    Pufu, Silviu Stefan

    The gauge/gravity duality is a powerful mathematical tool that relates strongly-interacting gauge theories with large numbers of colors to classical gravitational theories with negative cosmological constant. This thesis uses the gauge/gravity duality in two ways. The first half of the thesis explores the notion of a holographic p-wave superconductor/superfluid. On the gauge theory side there is an SU(2) global symmetry that is explicitly broken to U(1) by turning on a charge density. This U(1) symmetry is in turn spontaneously broken when the ratio between temperature and charge density is smaller than a critical value. The spontaneous breaking of the U(1) symmetry is accompanied by a spontaneous breaking of rotational symmetry. On the gravity side the SU(2) and U(1) symmetries are gauged, and the symmetry-broken backgrounds are charged black branes surrounded by clouds made of off-diagonal gauge bosons. The gauge/gravity duality is used to compute various critical exponents and transport coefficients related to the phase transition between the U(1) symmetry-broken and symmetry-restored phases. The second half of this thesis builds on the recent progress on using the technique of localization for computing supersymmetry-protected quantities in gauge theories with N ≥ 2 supersymmetry on the three-sphere. Using this technique, the infinite-dimensional path integrals of these theories were reduced to finite-dimensional multi-matrix integrals. In the second half of this thesis these multi-matrix integrals are computed approximately for the case of effective gauge theories on M2-branes probing various Calabi-Yau singularities. The answers match the predictions of the gauge/gravity duality. In particular, they reproduce the N3/2 scaling of the number of degrees of freedom on N coincident M2-branes.

  1. Lorentz violation and gravity

    NASA Astrophysics Data System (ADS)

    Bailey, Quentin G.

    2007-08-01

    This work explores the theoretical and experimental aspects of Lorentz violation in gravity. A set of modified Einstein field equations is derived from the general Lorentz-violating Standard-Model Extension (SME). Some general theoretical implications of these results are discussed. The experimental consequences for weak-field gravitating systems are explored in the Earth- laboratory setting, the solar system, and beyond. The role of spontaneous Lorentz-symmetry breaking is discussed in the context of the pure-gravity sector of the SME. To establish the low-energy effective Einstein field equations, it is necessary to take into account the dynamics of 20 coefficients for Lorentz violation. As an example, the results are compared with bumblebee models, which are general theories of vector fields with spontaneous Lorentz violation. The field equations are evaluated in the post- newtonian limit using a perfect fluid description of matter. The post-newtonian metric of the SME is derived and compared with some standard test models of gravity. The possible signals for Lorentz violation due to gravity-sector coefficients are studied. Several new effects are identified that have experimental implications for current and future tests. Among the unconventional effects are a new type of spin precession for a gyroscope in orbit and a modification to the local gravitational acceleration on the Earth's surface. These and other tests are expected to yield interesting sensitivities to dimensionless gravity- sector coefficients.

  2. Pure gravity mediation and spontaneous B–L breaking from strong dynamics

    DOE PAGES

    Babu, Kaladi S.; Schmitz, Kai; Yanagida, Tsutomu T.

    2016-04-01

    In pure gravity mediation (PGM), the most minimal scheme for the mediation of supersymmetry (SUSY) breaking to the visible sector, soft masses for the standard model gauginos are generated at one loop rather than via direct couplings to the SUSY-breaking field. In any concrete implementation of PGM, the SUSY-breaking field is therefore required to carry nonzero charge under some global or local symmetry. As we point out in this note, a prime candidate for such a symmetry might be B–L, the Abelian gauge symmetry associated with the difference between baryon number Band lepton number L. The F-term of the SUSY-breakingmore » field then not only breaks SUSY, but also B–L, which relates the respective spontaneous breaking of SUSY and B–Lat a fundamental level. As a particularly interesting consequence, we find that the heavy Majorana neutrino mass scale ends up being tied to the gravitino mass, Λ N~m 3/2. Furthermore, assuming nonthermal leptogenesis to be responsible for the generation of the baryon asymmetry of the universe, this connection may then explain why SUSY necessarily needs to be broken at a rather high energy scale, so that m 3/2≳1000 TeV in accord with the concept of PGM. We illustrate our idea by means of a minimal model of dynamical SUSY breaking, in which B–Lis identified as a weakly gauged flavor symmetry. We also discuss the effect of the B–L gauge dynamics on the superparticle mass spectrum as well as the resulting constraints on the parameter space of our model. In particular, we comment on the role of the B–LD-term.« less

  3. Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland

    NASA Astrophysics Data System (ADS)

    Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. B.; Lüthi, D.; Wernli, H.

    2004-08-01

    A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates.

    In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.

  4. Exact Schwarzschild-like solution in a bumblebee gravity model

    NASA Astrophysics Data System (ADS)

    Casana, R.; Cavalcante, A.; Poulis, F. P.; Santos, E. B.

    2018-05-01

    We obtain an exact vacuum solution from the gravity sector contained in the minimal standard-model extension. The theoretical model assumes a Riemann spacetime coupled to the bumblebee field which is responsible for the spontaneous Lorentz symmetry breaking. The solution achieved in a static and spherically symmetric scenario establishes a Schwarzschild-like black hole. In order to study the effects of the spontaneous Lorentz symmetry breaking we investigate some classic tests, including the advance of perihelion, the bending of light, and Shapiro's time delay. Furthermore, we compute some upper bounds, among which the most stringent associated with existing experimental data provides a sensitivity at the 10-15 level and that for future missions at the 10-19 level.

  5. Regularization of instabilities in gravity theories

    NASA Astrophysics Data System (ADS)

    Ramazanoǧlu, Fethi M.

    2018-01-01

    We investigate instabilities and their regularization in theories of gravitation. Instabilities can be beneficial since their growth often leads to prominent observable signatures, which makes them especially relevant to relatively low signal-to-noise ratio measurements such as gravitational wave detections. An indefinitely growing instability usually renders a theory unphysical; hence, a desirable instability should also come with underlying physical machinery that stops the growth at finite values, i.e., regularization mechanisms. The prototypical gravity theory that presents such an instability is the spontaneous scalarization phenomena of scalar-tensor theories, which feature a tachyonic instability. We identify the regularization mechanisms in this theory and show that they can be utilized to regularize other instabilities as well. Namely, we present theories in which spontaneous growth is triggered by a ghost rather than a tachyon and numerically calculate stationary solutions of scalarized neutron stars in these theories. We speculate on the possibility of regularizing known divergent instabilities in certain gravity theories using our findings and discuss alternative theories of gravitation in which regularized instabilities may be present. Even though we study many specific examples, our main point is the recognition of regularized instabilities as a common theme and unifying mechanism in a vast array of gravity theories.

  6. Benefits of Objective Collapse Models for Cosmology and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Okon, Elias; Sudarsky, Daniel

    2014-02-01

    We display a number of advantages of objective collapse theories for the resolution of long-standing problems in cosmology and quantum gravity. In particular, we examine applications of objective reduction models to three important issues: the origin of the seeds of cosmic structure, the problem of time in quantum gravity and the information loss paradox; we show how reduction models contain the necessary tools to provide solutions for these issues. We wrap up with an adventurous proposal, which relates the spontaneous collapse events of objective collapse models to microscopic virtual black holes.

  7. Topics in Higher-Derivative Supergravity and N = 2 Yang-Mills Theories

    NASA Astrophysics Data System (ADS)

    Hindawi, Ahmed Abdel-Ati

    1997-09-01

    In Part I of the thesis we discuss higher-derivative theories of gravity. We start by discussing the field content of quadratic higher-derivative gravity, together with a new example of a massless spin-two field consistently coupled to gravity. The full quadratic gravity theory is shown to be equivalent to a canonical second-order theory of a massive scalar field, a massive spin-two symmetric tensor field and gravity. It is shown that flat-space is the only stable vacuum, and that the spin-two field around it is always ghost-like. We give a procedure for exhibiting the new propagating degrees of freedom in a generic higher-derivative gravity, at the full non-linear level. We show that around any vacuum the elementary excitations remain the massless graviton, a massive scalar field and a massive ghost-like spin-two field. In Part II of the thesis we extend our investigations to the realm of supergravity. We consider the general form of quadratic (1, 1) supergravity in two dimensions. It is demonstrated that the theory possesses stable vacua with vanishing cosmological constant which spontaneously break supersymmetry. We then consider higher-derivative N=1 supergravity in four dimensions. We construct two classes of higher-derivative supergravity theories. They are found to be equivalent to Einstein supergravity coupled to one or two chiral superfields and have a rich vacuum structure. It is demonstrated that theories of the second class can possess a stable vacuum with vanishing cosmological constant that spontaneously breaks supersymmetry. We then proceed to show how spontaneous supersymmetry breaking in the vacuum state of higher-derivative supergravity is transmitted, as explicit soft supersymmetry-breaking terms, to the effective Lagrangian of the standard electroweak model. In Part III we use central charge superspace to give a geometrical construction of the N=2 Abelian vector-tensor multiplet consisting, under N=1 supersymmetry, of one vector and one linear multiplet. We derive the component field supersymmetry and central charge transformations, and show that there is a super-Lagrangian, the higher components of which are all total derivatives, allowing us to construct superfield and component actions.

  8. More on Weinberg's no-go theorem in quantum gravity

    NASA Astrophysics Data System (ADS)

    Nagahama, Munehiro; Oda, Ichiro

    2018-05-01

    We complement Weinberg's no-go theorem on the cosmological constant problem in quantum gravity by generalizing it to the case of a scale-invariant theory. Our analysis makes use of the effective action and the BRST symmetry in a manifestly covariant quantum gravity instead of the classical Lagrangian density and the G L (4 ) symmetry in classical gravity. In this sense, our proof is very general since it does not depend on details of quantum gravity and holds true for general gravitational theories which are invariant under diffeomorphisms. As an application of our theorem, we comment on an idea that in the asymptotic safety scenario the functional renormalization flow drives a cosmological constant to zero, solving the cosmological constant problem without reference to fine tuning of parameters. Finally, we also comment on the possibility of extending the Weinberg theorem in quantum gravity to the case where the translational invariance is spontaneously broken.

  9. Cosmological evolution of generalized non-local gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xue; Wu, Ya-Bo; Liu, Yu-Chen

    2016-07-01

    We construct a class of generalized non-local gravity (GNLG) model which is the modified theory of general relativity (GR) obtained by adding a term m {sup 2} {sup n} {sup -2} R □{sup -} {sup n} R to the Einstein-Hilbert action. Concretely, we not only study the gravitational equation for the GNLG model by introducing auxiliary scalar fields, but also analyse the classical stability and examine the cosmological consequences of the model for different exponent n . We find that the half of the scalar fields are always ghost-like and the exponent n must be taken even number for amore » stable GNLG model. Meanwhile, the model spontaneously generates three dominant phases of the evolution of the universe, and the equation of state parameters turn out to be phantom-like. Furthermore, we clarify in another way that exponent n should be even numbers by the spherically symmetric static solutions in Newtonian gauge. It is worth stressing that the results given by us can include ones in refs. [28, 34] as the special case of n =2.« less

  10. [Temporal pattern of walking on various training facilities under the conditions of the earth's and simulated lunar gravity].

    PubMed

    Panfilov, V E; Gurfinkel', V S

    2009-01-01

    Eight test-subjects participated in 120 treadmill tests (drive power of 10 and 85 kW) aimed to compare the walking patterns at 1 and reduced gravity. The temporal pattern of steps was noted to change significantly on the low-power treadmill. On the strength of convergence of calculated and experimental data the suggestion has been made that the leg transfer movement follows the pattern of spontaneous oscillations.

  11. Quantum Structure of Space and Time

    NASA Astrophysics Data System (ADS)

    Duff, M. J.; Isham, C. J.

    2012-07-01

    Foreword Abdus Salam; Preface; List of participants; Part I. Quantum Gravity, Fields and Topology: 1. Some remarks on gravity and quantum mechanics Roger Penrose; 2. An experimental test of quantum gravity Don N. Page and C. D. Geilker; 3. Quantum mechanical origin of the sandwich theorem in classical gravitation theory Claudio Teitelboim; 4. θ-States induced by the diffeomorphism group in canonically quantized gravity C. J. Isham; 5. Strong coupling quantum gravity: an introduction Martin Pilati; 6. Quantizing fourth order gravity theories S. M. Christensen; 7. Green's functions, states and renormalisation M. R. Brown and A. C. Ottewill; 8. Introduction to quantum regge calculus Martin Roček and Ruth Williams; 9. Spontaneous symmetry breaking in curved space-time D. J. Toms; 10. Spontaneous symmetry breaking near a black hole M. S. Fawcett and B. F. Whiting; 11. Yang-Mills vacua in a general three-space G. Kunstatter; 12. Fermion fractionization in physics R. Jackiw; Part II. Supergravity: 13. The new minimal formulation of N=1 supergravity and its tensor calculus M. F. Sohnius and P. C. West; 14. A new deteriorated energy-momentum tensor M. J. Duff and P. K. Townsend; 15. Off-shell N=2 and N=4 supergravity in five dimensions P. Howe; 16. Supergravity in high dimensions P. van Niewenhuizen; 17. Building linearised extended supergravities J. G. Taylor; 18. (Super)gravity in the complex angular momentum plane M. T. Grisaru; 19. The multiplet structure of solitons in the O(2) supergravity theory G. W. Gibbons; 20. Ultra-violet properties of supersymmetric gauge theory S. Ferrara; 21. Extended supercurrents and the ultra-violet finiteness of N=4 supersymmetric Yang-Mills theories K. S. Stelle; 22. Duality rotations B. Zumino; Part III. Cosmology and the Early Universe: 23. Energy, stability and cosmological constant S. Deser; 24. Phase transitions in the early universe T. W. B. Kibble; 25. Complete cosmological theories L. P. Grishchuk and Ya. B. Zeldovich; 26. The cosmological constant and the weak anthropic principle S. W. Hawking.

  12. New Gravity Wave Treatments for GISS Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2011-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.

  13. New Gravity Wave Treatments for GISS Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2010-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.

  14. Principle of least decoherence for Newtonian semiclassical gravity

    NASA Astrophysics Data System (ADS)

    Tilloy, Antoine; Diósi, Lajos

    2017-11-01

    Recent works have proved that semiclassical theories of gravity needed not be fundamentally inconsistent, at least in the Newtonian regime. Using the machinery of continuous measurement theory and feedback, it was shown that one could construct well-behaved models of hybrid quantum-classical dynamics at the price of an imposed (nonunique) decoherence structure. We introduce a principle of least decoherence (PLD) which allows us to naturally single out a unique model from all the available options; up to some unspecified short distance regularization scale. Interestingly, the resulting model is found to coincide with the old—erstwhile only heuristically motivated—proposal of Penrose and one of us for gravity-related spontaneous decoherence and collapse. Finally, this paper suggests that it is in the submillimeter behavior of gravity that new phenomena might be found.

  15. General relativity with small cosmological constant from spontaneous compactification of Lovelock theory in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canfora, Fabrizio; Willison, Steven; Giacomini, Alex

    2009-08-15

    It is shown that Einstein gravity in four dimensions with small cosmological constant and small extra dimensions can be obtained by spontaneous compactification of Lovelock gravity in vacuum. Assuming that the extra dimensions are compact spaces of constant curvature, general relativity is recovered within a certain class of Lovelock theories possessing necessarily cubic or higher order terms in curvature. This bounds the higher dimension to at least 7. Remarkably, the effective gauge coupling and Newton constant in four dimensions are not proportional to the gravitational constant in higher dimensions, but are shifted with respect to their standard values. This effectmore » opens up new scenarios where a maximally symmetric solution in higher dimensions could decay into the compactified spacetime either by tunneling or through a gravitational analog of ghost condensation. Indeed, this is what occurs requiring both the extra dimensions and the four-dimensional cosmological constant to be small.« less

  16. Gravity separation of pericardial fat in cardiotomy suction blood: an in vitro model.

    PubMed

    Kinard, M Rhett; Shackelford, Anthony G; Sistino, Joseph J

    2009-06-01

    Fat emboli generated during cardiac surgery have been shown to cause neurologic complications in patients postoperatively. Cardiotomy suction has been known to be a large generator of emboli. This study will examine the efficacy of a separation technique in which the cardiotomy suction blood is stored in a cardiotomy reservoir for various time intervals to allow spontaneous separation of fat from blood by density. Soybean oil was added to heparinized porcine blood to simulate the blood of a patient with hypertriglyceridemia (> 150 mg/dL). Roller pump suction was used to transfer the room temperature blood into the cardiotomy reservoir. Blood was removed from the reservoir in 200-mL aliquots at 0, 15, 30 45, and 60 minutes. Samples were taken at each interval and centrifuged to facilitate further separation of liquid fat. Fat content in each sample was determined by a point-of-care triglyceride analyzer. Three trials were conducted for a total of 30 samples. The 0-minute group was considered a baseline and was compared to the other four times. Fat concentration was reduced significantly in the 45- and 60-minute groups compared to the 0-, 15-, and 30-minute groups (p < .05). Gravity separation of cardiotomy suction blood is effective; however, it may require retention of blood for more time than is clinically acceptable during a routing coronary artery bypass graft surgery.

  17. Higgs mechanism for gravity. II. Higher spin connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulanger, Nicolas; Kirsch, Ingo; Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

    We continue the work of [Phys. Rev. D 72, 024001 (2005)] in which gravity is considered as the Goldstone realization of a spontaneously broken diffeomorphism group. We complete the discussion of the coset space Diff (d,R)/SO(1,d-1) formed by the d-dimensional group of analytic diffeomorphisms and the Lorentz group. We find that this coset space is parametrized by coordinates, a metric, and an infinite tower of higher-spin or generalized connections. We then study effective actions for the corresponding symmetry breaking which gives mass to the higher spin connections. Our model predicts that gravity is modified at high energies by the exchangemore » of massive higher spin particles.« less

  18. Rainbow valley of colored (anti) de Sitter gravity in three dimensions

    NASA Astrophysics Data System (ADS)

    Gwak, Seungho; Joung, Euihun; Mkrtchyan, Karapet; Rey, Soo-Jong

    2016-04-01

    We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra (gl_2oplus gl_2)⊗ u(N) , obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among N 2 massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as colored spinning matter that strongly interacts at large N. Remarkably, these colored spinning matter acts as Higgs field and generates a non-trivial potential of staircase shape. At each extremum labelled by k=0,dots, [N-1/2] , the u(N) color gauge symmetry is spontaneously broken down to u(N-k)oplus u(k) and provides different (A)dS backgrounds with the cosmological constants {(N/N-2k)}^2Λ . When this symmetry breaking takes place, the spin-two Goldstone modes combine with (or are eaten by) the spin-one gauge fields to become partially-massless spin-two fields. We discuss various aspects of this theory and highlight physical implications.

  19. Gravitational Instabilities in Protostellar and Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Durisen, R. H.; Mejia, A. C.; Pickett, B. K.

    Self-gravity in fluid and particle systems is the primary mechanism for the creation of structure in the Universe on astronomical scales. The rapidly rotating Solar System-sized disks which orbit stars during the early phases of star and planet formation can be massive and thus susceptible to spontaneous growth of spiral distortions driven by disk self-gravity. These are called gravitational instabilities (GI's). They can be important sources of mass and angular momentum transport due to the long-range torques they generate; and, if strong enough, they may fragment the disk into bound lumps with masses in therange of gas giant planets and brown dwarfs. My research group has been using numerical 3D hydrodynamics techniques to study the growth and nonlinear behavior of GI's in disks around young stars. Our simulations have demonstrated the sensitivity of outcomes to the thermal physics of the disks and have helped to delineate conditions conducive to the formation of dense clumps. We are currently concentrating our efforts on determining how GI's affect the long-term evolution and appearance of young stellar disks, with the hope of finding characteristic GI signatures by which we may recognize their occurrence in real systems.

  20. FRW and domain walls in higher spin gravity

    NASA Astrophysics Data System (ADS)

    Aros, R.; Iazeolla, C.; Noreña, J.; Sezgin, E.; Sundell, P.; Yin, Y.

    2018-03-01

    We present exact solutions to Vasiliev's bosonic higher spin gravity equations in four dimensions with positive and negative cosmological constant that admit an interpretation in terms of domain walls, quasi-instantons and Friedman-Robertson-Walker (FRW) backgrounds. Their isometry algebras are infinite dimensional higher-spin extensions of spacetime isometries generated by six Killing vectors. The solutions presented are obtained by using a method of holomorphic factorization in noncommutative twistor space and gauge functions. In interpreting the solutions in terms of Fronsdal-type fields in space-time, a field-dependent higher spin transformation is required, which is implemented at leading order. To this order, the scalar field solves Klein-Gordon equation with conformal mass in ( A) dS 4 . We interpret the FRW solution with de Sitter asymptotics in the context of inflationary cosmology and we expect that the domain wall and FRW solutions are associated with spontaneously broken scaling symmetries in their holographic description. We observe that the factorization method provides a convenient framework for setting up a perturbation theory around the exact solutions, and we propose that the nonlinear completion of particle excitations over FRW and domain wall solutions requires black hole-like states.

  1. Spontaneous generation in medieval Jewish philosophy and theology.

    PubMed

    Gaziel, Ahuva

    2012-01-01

    The concept of life forms emerging from inanimate matter--spontaneous generation--was widely accepted until the nineteenth century. Several medieval Jewish scholars acknowledged this scientific theory in their philosophical and religious contemplations. Quite interestingly, it served to reinforce diverse, or even opposite, theological conclusions. One approach excluded spontaneously-generated living beings form the biblical account of creation or the story of the Deluge. Underlying this view is an understanding that organisms that generate spontaneously evolve continuously in nature and, therefore, do not require divine intervention in their formation or survival during disastrous events. This naturalistic position reduces the miraculous dimension of reality. Others were of the opinion that spontaneous generation is one of the extraordinary marvels exhibited in this world and, accordingly, this interpretation served to accentuate the divine aspect of nature. References to spontaneous generation also appear in legal writings, influencing practical applications such as dietary laws and actions forbidden on the Sabbath.

  2. Gravity dual to a quantum critical point with spontaneous symmetry breaking.

    PubMed

    Gubser, Steven S; Rocha, Fábio D

    2009-02-13

    We consider zero-temperature solutions to the Abelian Higgs model coupled to gravity with a negative cosmological constant. With appropriate choices of parameters, the geometry contains two copies of anti-de Sitter space, one describing conformal invariance in the ultraviolet, and one in the infrared. The effective speed of signal propagation is smaller in the infrared. Green's functions and associated transport coefficients can have unusual power-law scaling in the infrared. We provide an example in which the real part of the conductivity scales approximately as omega;{3.5} for small omega.

  3. Understanding movement control in infants through the analysis of limb intersegmental dynamics.

    PubMed

    Schneider, K; Zernicke, R F; Ulrich, B D; Jensen, J L; Thelen, E

    1990-12-01

    One important component in the understanding of the control of limb movements is the way in which the central nervous system accounts for joint forces and torques that may be generated not only by muscle actions but by gravity and by passive reactions related to the movements of limb segments. In this study, we asked how the neuromotor system of young infants controls a range of active and passive forces to produce a stereotypic, nonintentional movement. We specifically analyzed limb intersegmental dynamics in spontaneous, cyclic leg movements (kicking) of varying intensity in supine 3-month-old human infants. Using inverse dynamics, we calculated the contributions of active (muscular) and passive (motion-dependent and gravitational) torque components at the hip, knee, and ankle joints from three-dimensional limb kinematics. To calculate joint torques, accurate estimates were needed of the limb's anthropometric parameters, which we determined using a model of the human body. Our analysis of limb intersegmental dynamics explicitly quantified the complex interplay of active and passive forces producing the simple, involuntary kicking movements commonly seen in 3-month-old infants. our results revealed that in nonvigorous kicks, hip joint reversal was the result of an extensor torque due to gravity, opposed by the combined flexor effect of the muscle torque and the total motion-dependent torque. The total motion-dependent torque increased as a hip flexor torque in more vigorous kicks; an extensor muscle torque was necessary to counteract the flexor influences of the total motion-dependent torque and, in the case of large ranges of motion, a flexor gravity torque as well. Thus, with changing passive torque influences due to motions of the linked segments, the muscle torques were adjusted to produce a net torque to reverse the kicking motion. As a consequence, despite considerable heterogeneity in the intensity, range of motion, coordination, and movement context of each kick, smooth trajectories resulted from the muscle torque, counteracting and complementing not only gravity but also the motion-dependent torques generated by movement of the linked segments.

  4. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts.

    PubMed

    Lehmann, D; Strik, W K; Henggeler, B; Koenig, T; Koukkou, M

    1998-06-01

    Prompted reports of recall of spontaneous, conscious experiences were collected in a no-input, no-task, no-response paradigm (30 random prompts to each of 13 healthy volunteers). The mentation reports were classified into visual imagery and abstract thought. Spontaneous 19-channel brain electric activity (EEG) was continuously recorded, viewed as series of momentary spatial distributions (maps) of the brain electric field and segmented into microstates, i.e. into time segments characterized by quasi-stable landscapes of potential distribution maps which showed varying durations in the sub-second range. Microstate segmentation used a data-driven strategy. Different microstates, i.e. different brain electric landscapes must have been generated by activity of different neural assemblies and therefore are hypothesized to constitute different functions. The two types of reported experiences were associated with significantly different microstates (mean duration 121 ms) immediately preceding the prompts; these microstates showed, across subjects, for abstract thought (compared to visual imagery) a shift of the electric gravity center to the left and a clockwise rotation of the field axis. Contrariwise, the microstates 2 s before the prompt did not differ between the two types of experiences. The results support the hypothesis that different microstates of the brain as recognized in its electric field implement different conscious, reportable mind states, i.e. different classes (types) of thoughts (mentations); thus, the microstates might be candidates for the 'atoms of thought'.

  5. Wave Dynamics and Transport in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Holton, James R.; Alexander, M. Joan

    1999-01-01

    The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.

  6. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  7. Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses.

    PubMed

    Mayorova, Tatiana D; Smith, Carolyn L; Hammar, Katherine; Winters, Christine A; Pivovarova, Natalia B; Aronova, Maria A; Leapman, Richard D; Reese, Thomas S

    2018-01-01

    Trichoplax adhaerens has only six cell types. The function as well as the structure of crystal cells, the least numerous cell type, presented an enigma. Crystal cells are arrayed around the perimeter of the animal and each contains a birefringent crystal. Crystal cells resemble lithocytes in other animals so we looked for evidence they are gravity sensors. Confocal microscopy showed that their cup-shaped nuclei are oriented toward the edge of the animal, and that the crystal shifts downward under the influence of gravity. Some animals spontaneously lack crystal cells and these animals behaved differently upon being tilted vertically than animals with a typical number of crystal cells. EM revealed crystal cell contacts with fiber cells and epithelial cells but these contacts lacked features of synapses. EM spectroscopic analyses showed that crystals consist of the aragonite form of calcium carbonate. We thus provide behavioral evidence that Trichoplax are able to sense gravity, and that crystal cells are likely to be their gravity receptors. Moreover, because placozoans are thought to have evolved during Ediacaran or Cryogenian eras associated with aragonite seas, and their crystals are made of aragonite, they may have acquired gravity sensors during this early era.

  8. Quasi-12 h inertia-gravity waves in the lower mesosphere observed by the PANSY radar at Syowa Station (39.6° E, 69.0° S)

    NASA Astrophysics Data System (ADS)

    Shibuya, Ryosuke; Sato, Kaoru; Tsutsumi, Masaki; Sato, Toru; Tomikawa, Yoshihiro; Nishimura, Koji; Kohma, Masashi

    2017-05-01

    The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS Radar) installed at Syowa Station (39.6° E, 69.0° S) were successfully performed from 16 to 24 March 2015. Over this period, quasi-half-day period (12 h) disturbances in the lower mesosphere at heights of 70 to 80 km were observed. Estimated vertical wavelengths, wave periods and vertical phase velocities of the disturbances were approximately 13.7 km, 12.3 h and -0.3 m s-1, respectively. Under the working hypothesis that such disturbances are attributable to inertia-gravity waves, wave parameters are estimated using a hodograph analysis. The estimated horizontal wavelengths are longer than 1100 km, and the wavenumber vectors tend to point northeastward or southwestward. Using the nonhydrostatic numerical model with a model top of 87 km, quasi-12 h disturbances in the mesosphere were successfully simulated. We show that quasi-12 h disturbances are due to wave-like disturbances with horizontal wavelengths longer than 1400 km and are not due to semidiurnal migrating tides. Wave parameters, such as horizontal wavelengths, vertical wavelengths and wave periods, simulated by the model agree well with those estimated by the PANSY radar observations under the abovementioned assumption. The parameters of the simulated waves are consistent with the dispersion relationship of the inertia-gravity wave. These results indicate that the quasi-12 h disturbances observed by the PANSY radar are attributable to large-scale inertia-gravity waves. By examining a residual of the nonlinear balance equation, it is inferred that the inertia-gravity waves are likely generated by the spontaneous radiation mechanism of two different jet streams. One is the midlatitude tropospheric jet around the tropopause while the other is the polar night jet. Large vertical fluxes of zonal and meridional momentum associated with large-scale inertia-gravity waves are distributed across a slanted region from the midlatitude lower stratosphere to the polar mesosphere in the meridional cross section. Moreover, the vertical flux of the zonal momentum has a strong negative peak in the mesosphere, suggesting that some large-scale inertia-gravity waves originate in the upper stratosphere.

  9. Self-cleaning of superhydrophobic surfaces by spontaneously jumping condensate drops

    NASA Astrophysics Data System (ADS)

    Wisdom, Katrina; Watson, Jolanta; Watson, Gregory; Chen, Chuan-Hua

    2012-11-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a new self-cleaning mechanism, whereby condensate drops spontaneously jump upon coalescence on a superhydrophobic surface, and the merged drop self-propels away from the surface along with the contaminants. The jumping-condensate mechanism is shown to autonomously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by external wind flow. Our findings offer new insights for the development of self-cleaning materials.

  10. Spontaneous rise in open rectangular channels under gravity.

    PubMed

    Thammanna Gurumurthy, Vignesh; Roisman, Ilia V; Tropea, Cameron; Garoff, Stephen

    2018-05-17

    Fluid movement in microfluidic devices, porous media, and textured surfaces involves coupled flows over the faces and corners of the media. Spontaneous wetting of simple grooved surfaces provides a model system to probe these flows. This numerical study investigates the spontaneous rise of a liquid in an array of open rectangular channels under gravity, using the Volume-of-Fluid method with adaptive mesh refinement. The rise is characterized by the meniscus height at the channel center, outer face and the interior and exterior corners. At lower contact angles and higher channel aspect ratios, the statics and dynamics of the rise in the channel center show little deviation with the classical model for capillarity, which ignores the existence of corners. For contact angles smaller than 45°, rivulets are formed in the interior corners and a cusp at the exterior corner. The rivulets at long times obey the one-third power law in time, with a weak dependence on the geometry. The cusp behaviour at the exterior corner transforms into a smooth meniscus when the capillary force is higher in the channel, even for contact angles smaller than 45°. The width of the outer face does not influence the capillary rise inside the channel, and the channel size does not influence the rise on the outer face. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Research on metal solidification in zero-g state

    NASA Technical Reports Server (NTRS)

    Papazian, J. M.; Larson, D. J., Jr.

    1975-01-01

    The containerless solidification of several pure metals and metallic alloys was studied in a low gravity environment. The tests were performed in the MSFC 4.2 s drop tower using a rapid wire melting apparatus designed and built for this purpose. Pure iron and nickel, and alloys of iron-nickel, iron-carbon, nickel-aluminum and tungsten-rhenium were all melted and solidified at a gravity level of approximately 100.000/-4 g. Interpretation of the results has led to an appreciation of the factors controlling the successful execution of this drop test experiment and to a delineation of the limits of applicability of the apparatus. Preliminary metallurgical evaluations are presented of the overall shapes, lattice parameters, surface microstructure,, cross-sectional microstructures, solidification and transformation sequences, evaporative segregation, and localized solute redistribution observed in the low-gravity specimens. The effects of low gravity on metallic solidification are discussed with particular emphasis on observations of spontaneous undercooling and evaporative segregation in uncontained melts.

  12. Internal gravity waves in the upper atmosphere, generated by tropospheric jet streams

    NASA Technical Reports Server (NTRS)

    Chunchuzov, Y. P.; Torgashin, Y. M.

    1979-01-01

    A mechanism of internal gravity wave generation by jet streams in the troposphere is considered. Evaluations of the energy and pulse of internal gravity waves emitted into the upper atmosphere are given. The obtained values of flows can influence the thermal and dynamic regime of these layers.

  13. I've Just Seen a Face: Portraits. [Lesson Plan].

    ERIC Educational Resources Information Center

    National Endowment for the Humanities (NFAH), Washington, DC.

    Image has always been important to the powerful. Their portraits have traditionally been designed to impress people with the gravity of the subject, but changing sensibilities and media have tended to introduce more intimacy and spontaneity. Creating visual and literary representations of people has proved to be an enduring human activity. This…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hojin

    The thesis presents studies of vacuum pair productions and its applications in early universe cosmology and high energy astrophysics. Vacuum often becomes unstable and spontaneously decays into pairs of particles in rapidly expanding universes or under strong external electromagnetic fields. Theoretically, spontaneous pair productions due to such non-trivial backgrounds of spacetimes or electromagnetic fields are well-understood. However, the effect of particle productions has not been observed so far because of experiemtal difficulties in obtaining large curvatures of space-times or strong electric fields. Although it may be impossible to observe the pair productions directly via laboratory experiments, there are still powerfulmore » sources of space-time curvatures or electric fields in cosmology and astrophysics, which result in observations. In Part I, we explore the inflationary models in early universe utilizing pair productions through gravity. We study observable signatures on the cosmic microwave background, such as isocurvature perturbations and non-Gaussianities, generated from the particle production of WIMPzillas and axions during or after inflation. In Part II, we investigate the electron-positron pair production in the magnetosphere of pulsars whose electromagnetic fields are expected to close to or even greater than the pair production threshold. In particular, we demonstrate that the pair production may be responsible for giant pulses from the Crab pulsar.« less

  15. Spontaneous generation of bending waves in isolated Milky Way-like discs

    NASA Astrophysics Data System (ADS)

    Chequers, Matthew H.; Widrow, Lawrence M.

    2017-12-01

    We study the spontaneous generation and evolution of bending waves in N-body simulations of two isolated Milky Way-like galaxy models. The models differ by their disc-to-halo mass ratios, and hence by their susceptibility to the formation of a bar and spiral structure. Seeded from shot noise in the particle distribution, bending waves rapidly form in both models and persist for many billions of years. Waves at intermediate radii manifest as corrugated structures in vertical position and velocity that are tightly wound, morphologically leading and dominated by the m = 1 azimuthal Fourier component. A spectral analysis of the waves suggests they are a superposition of modes from two continuous branches in the Galactocentric radius-rotational frequency plane. The lower frequency branch is dominant and is responsible for the corrugated, leading and warped structure. Over time, power in this branch migrates outward, lending credence to an inside-out formation scenario for the warp. Our power spectra qualitatively agree with results from linear perturbation theory and a WKB analysis, both of which include self-gravity. Thus, we conclude that the waves in our simulations are self-gravitating and not purely kinematic. These waves are reminiscent of the wave-like pattern recently found in Galactic star counts from the Sloan Digital Sky Survey and smoothly transition to a warp near the disc's edge. Velocity measurements from Gaia data will be instrumental in testing the true wave nature of the corrugations. We also compile a list of 'minimum requirements' needed to observe bending waves in external galaxies.

  16. Lepton number violation in theories with a large number of standard model copies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalenko, Sergey; Schmidt, Ivan; Paes, Heinrich

    2011-03-01

    We examine lepton number violation (LNV) in theories with a saturated black hole bound on a large number of species. Such theories have been advocated recently as a possible solution to the hierarchy problem and an explanation of the smallness of neutrino masses. On the other hand, the violation of the lepton number can be a potential phenomenological problem of this N-copy extension of the standard model as due to the low quantum gravity scale black holes may induce TeV scale LNV operators generating unacceptably large rates of LNV processes. We show, however, that this issue can be avoided bymore » introducing a spontaneously broken U{sub 1(B-L)}. Then, due to the existence of a specific compensation mechanism between contributions of different Majorana neutrino states, LNV processes in the standard model copy become extremely suppressed with rates far beyond experimental reach.« less

  17. Renormalizable, asymptotically free gravity without ghosts or tachyons

    NASA Astrophysics Data System (ADS)

    Einhorn, Martin B.; Jones, D. R. Timothy

    2017-12-01

    We analyze scale invariant quadratic quantum gravity incorporating nonminimal coupling to a multiplet of scalar fields in a gauge theory, with particular emphasis on the consequences for its interpretation resulting from a transformation from the Jordan frame to the Einstein frame. The result is the natural emergence of a de Sitter space solution which, depending the gauge theory and region of parameter space chosen, can be free of ghosts and tachyons, and completely asymptotically free. In the case of an SO(10) model, we present a detailed account of the spontaneous symmetry breaking, and we calculate the leading (two-loop) contribution to the dilaton mass.

  18. Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses

    PubMed Central

    Smith, Carolyn L.; Hammar, Katherine; Winters, Christine A.; Pivovarova, Natalia B.; Aronova, Maria A.; Leapman, Richard D.; Reese, Thomas S.

    2018-01-01

    Trichoplax adhaerens has only six cell types. The function as well as the structure of crystal cells, the least numerous cell type, presented an enigma. Crystal cells are arrayed around the perimeter of the animal and each contains a birefringent crystal. Crystal cells resemble lithocytes in other animals so we looked for evidence they are gravity sensors. Confocal microscopy showed that their cup-shaped nuclei are oriented toward the edge of the animal, and that the crystal shifts downward under the influence of gravity. Some animals spontaneously lack crystal cells and these animals behaved differently upon being tilted vertically than animals with a typical number of crystal cells. EM revealed crystal cell contacts with fiber cells and epithelial cells but these contacts lacked features of synapses. EM spectroscopic analyses showed that crystals consist of the aragonite form of calcium carbonate. We thus provide behavioral evidence that Trichoplax are able to sense gravity, and that crystal cells are likely to be their gravity receptors. Moreover, because placozoans are thought to have evolved during Ediacaran or Cryogenian eras associated with aragonite seas, and their crystals are made of aragonite, they may have acquired gravity sensors during this early era. PMID:29342202

  19. Heterogeneous CPA sensitivity of spontaneous excitation in smooth muscle of the rabbit urethra.

    PubMed

    Hashitani, Hikaru; Yanai, Yoshimasa; Kohri, Kenjiro; Suzuki, Hikaru

    2006-06-01

    1. To investigate the role of intracellular Ca stores in generating spontaneous excitation of the urethra, the effects of cyclopiazonic acid (CPA) on spontaneous contractions, transient increases in intracellular calcium concentration ([Ca2+]i; Ca transients) and depolarizations were examined in smooth muscles of the rabbit urethra. 2. In about 90% of circular smooth muscle (CSM) preparations, CPA (10 microM) increased the amplitude of spontaneous contractions by about 180% and reduced their frequency to some 25% of control values (CPA-resistant), while it readily abolished the contractions in the remaining preparations. 3. In about 70% of CSM preparations, CPA prevented the generation of spontaneous depolarizations termed slow waves, but increased their amplitude and duration in the remainder. CPA also prevented the generation of spontaneous Ca transients in about 40% of CSM preparations, while increasing their amplitude and duration in the remaining preparations. In CPA-resistant preparations that had been exposed to nicardipine (1 microM), subsequent CPA invariably abolished residual spontaneous depolarizations or Ca transients. CPA abolished caffeine-induced Ca transients in Ca-free solutions, suggesting that it effectively depleted intracellular Ca stores. 4. Longitudinal smooth muscles generated spontaneous action potentials, which had a shape distinct from that of slow waves in CSM. Spontaneous action potentials were abolished by nicardipine but not CPA. 5. Transmural nerve stimulation increased the frequency of Ca transients to give a sustained rise in [Ca2+]i, but inhibited their generation after blocking alpha-adrenoceptors with phentolamine (1 microM). These nerve-evoked responses were preserved in preparations that had been exposed to CPA. Similarly, both in control and CPA-treated CSM preparations, spontaneous Ca transients were accelerated by noradrenaline (NAd, 1 microM) and were suppressed by 3-morpholino-sydnonimine (SIN-1, 10 microM), a nitric oxide (NO) donor. 6. In conclusion, CSM of the urethra generates spontaneous activity, which depends on Ca release from intracellular Ca stores. However, after blocking this primary pacemaking mechanism, L-type Ca channel-dependent action potentials may drive CSM. Irrespective of the origin of pacemaking, neurally-released NAd and NO are capable of modulating spontaneous excitation.

  20. Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere

    DTIC Science & Technology

    2015-10-08

    Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...ABSTRACT Build a compatible set of models which 1) calculate the spectrum of atmospheric GWs excited by a tsunami (using ocean model data as input...for public release; distribution is unlimited. Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon

  1. Spontaneous Breaking of Scale Invariance in U(N) Chern-Simons Gauge Theories in Three Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardeen, William A.

    2015-09-24

    I explore the existence of a massive phase in a conformally invariant U(N) Chern-Simons gauge theories in D = 3 with matter fields in the fundamental representation. These models have attracted recent attention as being dual, in the conformal phase, to theories of higher spin gravity on AdS 4. Using the 0t Hooft large N expansion, exact solutions are obtained for scalar current correlators in the massive phase where the conformal symmetry is spontaneously broken. A massless dilaton appears as a composite state, and its properties are discussed. Solutions exist for matters field that are either bosons or fermions.

  2. Spontaneous Breaking of Scale Invariance in U(N) Chern-Simons Gauge Theories in Three Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardeen, William

    2014-10-24

    I explore the existence of a massive phase in a conformally invariant U(N) Chern-Simons gauge theories in D = 3 with matter fields in the fundamental representation. These models have attracted recent attention as being dual, in the conformal phase, to theories of higher spin gravity on AdS 4. Using the 1t Hooft large N expansion, exact solutions are obtained for scalar current correlators in the massive phase where the conformal symmetry is spontaneously broken. A massless dilaton appears as a composite state, and its properties are discussed. Solutions exist for matters field that are either bosons or fermions.

  3. dRGT theory of massive gravity from spontaneous symmetry breaking

    NASA Astrophysics Data System (ADS)

    Torabian, Mahdi

    2018-05-01

    In this note we propose a topological action for a Poincare times diffeomorphism invariant gauge theory. We show that there is Higgs phase where the gauge symmetry is spontaneous broken to a diagonal Lorentz subgroup and gives the Einstein-Hilbert action plus the dRGT potential terms. In this vacuum, there are five (three from Goldstone modes) propagating degrees of freedom which form polarizations of a massive spin 2 particle, an extra healthy heavy scalar (Higgs) mode and no Boulware-Deser ghost mode. We further show that the action can be derived in a limit from a topological de Sitter invariant gauge theory in 4 dimensions.

  4. Gravity Waves Generated by Convection: A New Idealized Model Tool and Direct Validation with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Alexander, M. Joan; Stephan, Claudia

    2015-04-01

    In climate models, gravity waves remain too poorly resolved to be directly modelled. Instead, simplified parameterizations are used to include gravity wave effects on model winds. A few climate models link some of the parameterized waves to convective sources, providing a mechanism for feedback between changes in convection and gravity wave-driven changes in circulation in the tropics and above high-latitude storms. These convective wave parameterizations are based on limited case studies with cloud-resolving models, but they are poorly constrained by observational validation, and tuning parameters have large uncertainties. Our new work distills results from complex, full-physics cloud-resolving model studies to essential variables for gravity wave generation. We use the Weather Research Forecast (WRF) model to study relationships between precipitation, latent heating/cooling and other cloud properties to the spectrum of gravity wave momentum flux above midlatitude storm systems. Results show the gravity wave spectrum is surprisingly insensitive to the representation of microphysics in WRF. This is good news for use of these models for gravity wave parameterization development since microphysical properties are a key uncertainty. We further use the full-physics cloud-resolving model as a tool to directly link observed precipitation variability to gravity wave generation. We show that waves in an idealized model forced with radar-observed precipitation can quantitatively reproduce instantaneous satellite-observed features of the gravity wave field above storms, which is a powerful validation of our understanding of waves generated by convection. The idealized model directly links observations of surface precipitation to observed waves in the stratosphere, and the simplicity of the model permits deep/large-area domains for studies of wave-mean flow interactions. This unique validated model tool permits quantitative studies of gravity wave driving of regional circulation and provides a new method for future development of realistic convective gravity wave parameterizations.

  5. Energy bounds in designer gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amsel, Aaron J.; Marolf, Donald

    We consider asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound in d{>=}4 spacetime dimensions. The boundary conditions in these ''designer gravity'' theories are defined in terms of an arbitrary function W. We give a general argument that the Hamiltonian generators of asymptotic symmetries for such systems will be finite, and proceed to construct these generators using the covariant phase space method. The direct calculation confirms that the generators are finite and shows that they take the form of the pure gravity result plus additional contributions from the scalar fields. Bymore » comparing the generators to the spinor charge, we derive a lower bound on the gravitational energy when W has a global minimum and the Breitenlohner-Freedman bound is not saturated.« less

  6. Relationship between Ripples and Gravity Waves Observed in OH Airglow over the Andes Lidar Observatory

    NASA Astrophysics Data System (ADS)

    Cao, B.; Gelinas, L. J.; Liu, A. Z.; Hecht, J. H.

    2016-12-01

    Instabilities generated by large amplitude gravity waves are ubiquitous in the mesopause region, and contribute to the strong forcing on the background atmosphere. Gravity waves and ripples generated by instability are commonly detected by high resolution airglow imagers that measure the hydroxyl emissions near the mesopause ( 87 km). Recently, a method based on 2D wavelet is developed by Gelinas et al. to characterize the statistics of ripple parameters from the Aerospace Infrared Camera at Andes Lidar Observatory located at Cerro Pachón, Chile (70.74°W, 30.25°S). In the meantime, data from a collocated all-sky imager is used to derive gravity wave parameters and their statistics. In this study, the relationship between the ripples and gravity waves that appeared at the same time and location are investigated in terms of their orientations, magnitudes and scales, to examine the statistical properties of the gravity wave induced instabilities and the ripples they generate.

  7. Next Generation Robots for STEM Education andResearch at Huston Tillotson University

    DTIC Science & Technology

    2017-11-10

    dynamics through the following command: roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion : After...understood the system’s natural dynamics. roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion ...is created using the following command: roslaunch mtb_lab6_feedback_linearization gravity_inversion.launch Gravity inversion is just one

  8. Combustion of PTFE: The Effects of Gravity and Pigmentation on Ultrafine Particle Generation

    NASA Technical Reports Server (NTRS)

    McKinnon, J. Thomas; Srivastava, Rajiv; Todd, Paul

    1997-01-01

    Ultrafine particles generated during polymer thermodegradation are a major health hazard, owing to their unique pathway of processing in the lung. This hazard in manned spacecraft is poorly understood, because the particulate products of polymer thermodegradation are generated under low gravity conditions. Particulate generated from the degradation of PolyTetraFluoroEthylene (PTFE), insulation coating for 20 AWG copper wire (representative of spacecraft application) under intense ohmic heating were studied in terrestrial gravity and microgravity. Microgravity tests were done in a 1.2-second drop tower at the Colorado School of Mines (CSM). Thermophoretic sampling was used for particulate collection. Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy (STEM) were used to examine the smoke particulates. Image software was used to calculate particle size distribution. In addition to gravity, the color of PTFE insulation has an overwhelming effect on size, shape and morphology of the particulate. Nanometer-sized primary particles were found in all cases, and aggregation and size distribution was dependent on both color and gravity; higher aggregation occurred in low gravity. Particulates from white, black, red and yellow colored PTFE insulations were studied. Elemental analysis of the particulates shows the presence of inorganic pigments.

  9. Spontaneous breaking of scale invariance in a D = 3 U(N ) model with Chern-Simons gauge fields

    DOE PAGES

    Bardeen, William A.; Moshe, Moshe

    2014-06-18

    We study spontaneous breaking of scale invariance in the large N limit of three dimensional U(N ) κ Chern-Simons theories coupled to a scalar field in the fundamental representation. When a λ 6 ( Ø † · Ø) 3 self interaction term is added to the action we find a massive phase at a certain critical value for a combination of the λ(6) and ’t Hooft’s λ = N/κ couplings. This model attracted recent attention since at finite κ it contains a singlet sector which is conjectured to be dual to Vasiliev’s higher spin gravity on AdS 4. Our papermore » concentrates on the massive phase of the 3d boundary theory. We discuss the advantage of introducing masses in the boundary theory through spontaneous breaking of scale invariance.« less

  10. Filling box stratification fed by a gravity current

    NASA Astrophysics Data System (ADS)

    Hogg, Charlie; Huppert, Herbert; Imberger, Jorg

    2012-11-01

    Fluids in confined basins can be stratified by the filling box mechanism. The source of dense fluid in geophysical applications, such as a cold river entering a warmer lake, can be a gravity current running over a shallow slope. Filling box models are often, however, based on the dynamics of vertically falling, unconfined, plumes which entrain fluid by a different mechanism to gravity currents on shallow slopes. Laboratory tank experiments of a filling box fed by a gravity current running over a shallow slope were carried out using a dye attenuation technique to investigate the development of the stratification of the ambient. These results demonstrate the differences in the stratification generated by a gravity current compared to that generated by a plume and demonstrate the nature of entrainment into gravity currents on shallow slopes.

  11. Mars - Crustal structure inferred from Bouguer gravity anomalies.

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Saunders, R. S.; Conel, J. E.

    1973-01-01

    Bouguer gravity has been computed for the equatorial region of Mars by differencing free air gravity and the gravity predicted from topographic variations. The free air gravity was generated from an eighth-order set of spherical harmonic coefficients. The gravity from topographic variations was generated by integrating a two-dimensional Green's function over each contour level. The Bouguer gravity indicates crustal inhomogeneities on Mars that are postulated to be variations in crustal thickness. The Tharsis ridge is a region of thick continental type crust. The gravity data, structural patterns, topography, and surface geology of this region lead to the interpretation of the Tharsis topographic high as a broad crustal upwarp possibly associated with local formation of lower-density crustal material and subsequent rise of a thicker crust. The Amazonis region is one of several basins of relatively thin crust, analogous to terrestrial ocean basins. The Libya and Hellas basins, which are probable impact features, are also underlain by thin crust and are possible regions of mantle upwelling.

  12. Familial spontaneous pneumothorax in three generations and its HLA.

    PubMed

    Yamada, Akitoshi; Takeda, Yoshitaka; Hayashi, Satoru; Shimizu, Kazuta

    2003-09-01

    We experienced a case of familial spontaneous pneumothorax in three generations. Six of 13 family members had episodes of spontaneous pneumothorax. It is well established that there are some diseases associated with human leukocyte antigen (HLA). We performed HLA phenotyping for HLA of A, B and C. In our study, we detected the HLA haplotype A2, B61 in three of 4 who had episodes of spontaneous pneumothorax. The HLA haplotype A2, B70 were also detected in three of 4 who had episodes. This suggests that familial spontaneous pneumothorax might have hereditary factors.

  13. Chromogravity explains {open_quotes}strong gravity{close_quotes}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ne`eman, Y.; Sijacki, D.

    1993-03-01

    In this paper the authors deal with the question of gravitational type interactions in the case of strong interaction phenomena. They present arguments which indicate that it is not necessary to invoke a gravity type interaction into QCD in order to account for observed phenomena. They argue that the gravitational type phenomena discussed in previous work is a manifestation of a class of Feynmann diagrams. These seem to generate an analog to gravity, a J=2 {open_quotes}chromograviton{close_quotes} or {open_quotes}pseudo-graviton{close_quotes} whose action effectively generates Salam`s {open_quotes}Strong Gravity{close_quotes} or {open_quotes}f-gravity{close_quotes}, withthough having to introduce the theory as an additional input.

  14. Electroweak standard model with very special relativity

    NASA Astrophysics Data System (ADS)

    Alfaro, Jorge; González, Pablo; Ávila, Ricardo

    2015-05-01

    The very special relativity electroweak Standard Model (VSR EW SM) is a theory with SU (2 )L×U (1 )R symmetry, with the same number of leptons and gauge fields as in the usual Weinberg-Salam model. No new particles are introduced. The model is renormalizable and unitarity is preserved. However, photons obtain mass and the massive bosons obtain different masses for different polarizations. Besides, neutrino masses are generated. A VSR-invariant term will produce neutrino oscillations and new processes are allowed. In particular, we compute the rate of the decays μ →e +γ . All these processes, which are forbidden in the electroweak Standard Model, put stringent bounds on the parameters of our model and measure the violation of Lorentz invariance. We investigate the canonical quantization of this nonlocal model. Second quantization is carried out, and we obtain a well-defined particle content. Additionally, we do a counting of the degrees of freedom associated with the gauge bosons involved in this work, after spontaneous symmetry breaking has been realized. Violations of Lorentz invariance have been predicted by several theories of quantum gravity [J. Alfaro, H. Morales-Tecotl, and L. F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000); Phys. Rev. D 65, 103509 (2002)]. It is a remarkable possibility that the low-energy effects of Lorentz violation induced by quantum gravity could be contained in the nonlocal terms of the VSR EW SM.

  15. Energy emission from a high curvature region and its backreaction

    NASA Astrophysics Data System (ADS)

    Kokubu, Takafumi; Jhingan, Sanjay; Harada, Tomohiro

    2018-05-01

    A strong gravity naked singular region can give important clues toward understanding the classical as well as spontaneous nature of General Relativity. We propose here a model for energy emission from a naked singular region in a self-similar dust spacetime by gluing two self-similar dust solutions at the Cauchy horizon. The energy is defined and evaluated as a surface energy of a null hypersurface, the null shell. Also included are scenarios of the spontaneous creation or disappearance of a singularity, the end of inflation, black hole formation, and bubble nucleation. Our examples investigated here explicitly show that one can model unlimitedly luminous and energetic objects in the framework of General Relativity.

  16. Gravity Gradients Frame Oceanus Procellarum

    NASA Image and Video Library

    2014-10-01

    Topography of Earth moon generated from data NASA LRO, with the gravity anomalies bordering the Procellarum region superimposed in blue. The border structures are shown using gravity gradients calculated with data from NASA GRAIL mission.

  17. Head-Shaking Nystagmus Depends on Gravity

    PubMed Central

    Marti, Sarah; Straumann, Dominik

    2005-01-01

    In acute unilateral peripheral vestibular deficit, horizontal spontaneous nystagmus (SN) increases when patients lie on their affected ear. This phenomenon indicates an ipsilesional reduction of otolith function that normally suppresses asymmetric semicircular canal signals. We asked whether head-shaking nystagmus (HSN) in patients with chronic unilateral vestibular deficit following vestibular neuritis is influenced by gravity in the same way as SN in acute patients. Using a three-dimensional (3-D) turntable, patients (N = 7) were placed in different whole-body positions along the roll plane and oscillated (1 Hz, ±10°) about their head-fixed vertical axis. Eye movements were recorded with 3-D magnetic search coils. HSN was modulated by gravity: When patients lay on their affected ear, slow-phase eye velocity significantly increased upon head shaking and consisted of a horizontal drift toward the affected ear (average: 1.2°/s ±0.5 SD), which was added to the gravity-independent and directionally nonspecific SN. In conclusion, HSN in patients with chronic unilateral peripheral vestibular deficit is best elicited when they are lying on their affected ear. This suggests a gravity-dependent mechanism similar to the one observed for SN in acute patients, i.e., an asymmetric suppression of vestibular nystagmus by the unilaterally impaired otolith organs. PMID:15735939

  18. Spontaneously Generating Life in Your Classroom? Pasteur, Spallanzani and Science Process.

    ERIC Educational Resources Information Center

    Byington, Scott

    2001-01-01

    Presents an experiment that tests for spontaneous generation, or abiogenesis. Observes microbial growth in nutrient broth under seven different flask environments. Includes instructions for the methods. (YDS)

  19. Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction.

    PubMed

    Cheron, G; Leroy, A; De Saedeleer, C; Bengoetxea, A; Lipshits, M; Cebolla, A; Servais, L; Dan, B; Berthoz, A; McIntyre, J

    2006-11-22

    Electroencephalographic oscillations at 10 Hz (alpha and mu rhythms) are the most prominent rhythms observed in awake, relaxed (eye-closed) subjects. These oscillations may be considered as a marker of cortical inactivity or an index of the active inhibition of the sensory information. Different cortical sources may participate in the 10-Hz oscillation and appear to be modulated by the sensory context and functional demands. In microgravity, the marked reduction in multimodal graviceptive inputs to cortical networks participating in the representation of space could be expected to affect the 10-Hz activity. The effect of microgravity on this basic oscillation has heretofore not been studied quantitatively. Because the alpha rhythm has a functional role in the regulation of network properties of the visual areas, we hypothesised that the absence of gravity would affect its strength. Here, we report the results of an experiment conducted over the course of 3 space flights, in which we quantified the power of the 10-Hz activity in relation to the arrest reaction (i.e., in 2 distinct physiological states: eyes open and eyes closed). We observed that the power of the spontaneous 10-Hz oscillation recorded in the eyes-closed state in the parieto-occipital (alpha rhythm) and sensorimotor areas (mu rhythm) increased in the absence of gravity. The suppression coefficient during the arrest reaction and the related spectral perturbations produced by eye-opening/closure state transition also increased in on orbit. These results are discussed in terms of current theories on the source and the importance of the alpha rhythm for cognitive function.

  20. Forward modeling of gravity data using geostatistically generated subsurface density variations

    USGS Publications Warehouse

    Phelps, Geoffrey

    2016-01-01

    Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.

  1. Atmospheric-like rotating annulus experiment: gravity wave emission from baroclinic jets

    NASA Astrophysics Data System (ADS)

    Rodda, Costanza; Borcia, Ion; Harlander, Uwe

    2017-04-01

    Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating- annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modelling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Joint laboratory experiment and numerical simulation have been conducted. The comparison between the data obtained from the experiment and the numerical simulations shows a very good agreement for the large scale baroclinic wave regime. Moreover, in both cases a clear signal of horizontal divergence, embedded in the baroclinic wave front, appears suggesting IGWs emission.

  2. Band-limited Bouguer gravity identifies new basins on the Moon

    NASA Astrophysics Data System (ADS)

    Featherstone, W. E.; Hirt, C.; Kuhn, M.

    2013-06-01

    Spectral domain forward modeling is used to generate topography-implied gravity for the Moon using data from the Lunar Orbiter Laser Altimeter instrument operated on board the Lunar Reconnaissance Orbiter mission. This is subtracted from Selenological and Engineering Explorer (SELENE)-derived gravity to generate band-limited Bouguer gravity maps of the Moon so as to enhance the gravitational signatures of anomalous mass densities nearer the surface. This procedure adds evidence that two previously postulated basins on the lunar farside, Fitzgerald-Jackson (25°N, 191°E) and to the east of Debye (50°N, 180°E), are indeed real. When applied over the entire lunar surface, band-limited Bouguer gravity reveals the locations of 280 candidate basins that have not been identified when using full-spectrum gravity or topography alone, showing the approach to be of utility. Of the 280 basins, 66 are classified as distinct from their band-limited Bouguer gravity and topographic signatures, making them worthy of further investigation.

  3. Vascular biology in altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Bradamante, Silvia; Maier, Janette A. M.; Duncker, Dirk J.

    2005-10-01

    The physical environment of Endothelial Cells profoundly affects their gene expression, structure, function, growth differentiation and apoptosis. However, the mechanisms by which the genetic and local growth determinants driving morphogenesis are established and maintained remain unknown. Understanding how gravity affects vascular cells will offer new insights for novel therapeutical approaches for cardiovascular disease in general. In terms of tissue engineering and stem-cell therapy, significant future developments will depend on a profound understanding of the cellular and molecular basis of angiogenesis and of the biology of circulating Endothelial Precursor Cells. this MAP project has demonstrated how modelled microgravity influences endothelial proliferation and differentiation with the involvement of anti-angiogenic factors that may be responsible for the non-spontaneous formation of blood vessels.

  4. The Role of Gravity on the Reproduction of Arabidopsis Plants

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.

    1985-01-01

    The presence of gravity as a necessary environmental factor for higher plants to complete their life cycle was examined. Arabidopsis thalliana (L.) Heynh. Columbia strain plants were grown continuously for three generations in a simulated micro-g environment as induced by horizontal clinostats. Growth, development and reproduction were followed. The Arabidopsis plants were selected for three generations on clinostats because: (1) a short life cycle of around 35 days; (2) the cells of third generation plants would in theory be free of gravity imprint; and (3) a third generation plant would therefore more than likely grow and respond like a plant growing in a micro-g environment. It is found that gravity is not a required environmental factor for higher plants to complete their life cycle, at least as tested by a horizontal clinostat. Clinostatting does not prevent the completion of the plant life cycle. However, clinostatting does appear to slow down the reproductive process of Arabidopsis plants. Whether higher plants can continue to reproduce for many generations in a true micro-g environment of space can only be determined by long duration experiments in space.

  5. Hypergravity-Induced Changes in Hematological and Lymphocyte Function Parameters in a Mouse Model

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Miller, Glen M.; Nelson, Gregory A.; Pecaut, Michael J.

    2003-01-01

    The purpose of this study was to quantify hypergravity-induced changes in hematological and lymphocyte characteristics. Mice were subjected to 1, 2, and 3G and euthanized on days 1 , 4, 7, 10, and 21. The data show that increased gravitational force resulted in persistent hypothermia. Red blood cell (RBC) counts, hematocrit, and hemoglobin were reduced by day 21, whereas hemoglobin and RBC volume were low at most times of measurement. A transient increase was noted in platelet numbers in the 3G group. Fluctuations in spontaneous blastogenesis of lymphocytes were dependent upon centrifugation time and not gravity. Changes in splenocyte responses to T and B cell mitogens due to gravity were also noted. Cytokine production was primarily affected during the first week; IL-2, IL-4 and TNF-alpha were increased, whereas IFN-gamma was decreased. These findings indicate that altered gravity can influence both hematological and functional variables that may translate into serious health consequences.

  6. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons: Unified analyses

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-Chan; Noh, Hyerim

    2005-03-01

    We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein’s gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein’s gravity and others.

  7. Laboratory Alluvial Rivers

    NASA Astrophysics Data System (ADS)

    Devauchelle, O.; Abramian, A.; Seizilles, G.; Lajeunesse, E.

    2015-12-01

    By which physical mechanisms does a river select its shape and size? We investigate this question using small laboratory rivers formed by laminar flows.In its simplest form, this experiment consists in a flow of glycerol over a uniform layer of plastic sediments. After a few hours, a channel forms spontaneously, and eventually reaches a stable geometry. This equilibrium state corresponds accurately to the force balance proposed by Henderson (1961).If we impose a sediment discharge at the inlet of the experiment, the river adjusts to this boundary condition by widening its channel. Observation suggests that this new equilibrium results from the balance between gravity, which pulls the entrained grains towards the center of the channel, and bedload diffusion, which returns them towards the banks. This balance explains why experimental rivers get wider and shallower as their sediment load increases.However, to test quantitatively this theory against observation, we need to evaluate independently the effect of transverse slope on bedload transport. We propose to use an instability generated by bedload diffusion to do so.

  8. Quantum origin of the primordial fluctuation spectrum and its statistics

    NASA Astrophysics Data System (ADS)

    Landau, Susana; León, Gabriel; Sudarsky, Daniel

    2013-07-01

    The usual account for the origin of cosmic structure during inflation is not fully satisfactory, as it lacks a physical mechanism capable of generating the inhomogeneity and anisotropy of our Universe, from an exactly homogeneous and isotropic initial state associated with the early inflationary regime. The proposal in [A. Perez, H. Sahlmann, and D. Sudarsky, Classical Quantum Gravity 23, 2317 (2006)] considers the spontaneous dynamical collapse of the wave function as a possible answer to that problem. In this work, we review briefly the difficulties facing the standard approach, as well as the answers provided by the above proposal and explore their relevance to the investigations concerning the characterization of the primordial spectrum and other statistical aspects of the cosmic microwave background and large-scale matter distribution. We will see that the new approach leads to novel ways of considering some of the relevant questions, and, in particular, to distinct characterizations of the non-Gaussianities that might have left imprints on the available data.

  9. Scalar field dark matter with spontaneous symmetry breaking and the 3.5 keV line

    NASA Astrophysics Data System (ADS)

    Cosme, Catarina; Rosa, João G.; Bertolami, O.

    2018-06-01

    We show that the present dark matter abundance can be accounted for by an oscillating scalar field that acquires both mass and a non-zero expectation value from interactions with the Higgs field. The dark matter scalar field can be sufficiently heavy during inflation, due to a non-minimal coupling to gravity, so as to avoid the generation of large isocurvature modes in the CMB anisotropies spectrum. The field begins oscillating after reheating, behaving as radiation until the electroweak phase transition and afterwards as non-relativistic matter. The scalar field becomes unstable, although sufficiently long-lived to account for dark matter, due to mass mixing with the Higgs boson, decaying mainly into photon pairs for masses below the MeV scale. In particular, for a mass of ∼7 keV, which is effectively the only free parameter, the model predicts a dark matter lifetime compatible with the recent galactic and extragalactic observations of a 3.5 keV X-ray line.

  10. Spontaneous Wave Generation from Submesoscale Fronts and Filaments

    NASA Astrophysics Data System (ADS)

    Shakespeare, C. J.; Hogg, A.

    2016-02-01

    Submesoscale features such as eddies, fronts, jets and filaments can be significant sources of spontaneous wave generation at the ocean surface. Unlike near-inertial waves forced by winds, these spontaneous waves are typically of higher frequency and can propagate through the thermocline, whereupon they break and drive mixing in the ocean interior. Here we investigate the spontaneous generation, propagation and subsequent breaking of these waves using a combination of theory and submesoscale resolving numerical models. The mechanism of generation is nearly identical to that of lee waves where flow is deflected over a rigid obstacle on the sea floor. Here, very sharp fronts and filaments of order 100m width moving in the submesoscale surface flow generate "surface lee waves" by presenting an obstacle to the surrounding stratified fluid. Using our numerical model we quantify the net downward wave energy flux from the surface, and where it is dissipated in the water column. Our results suggest an alternative to the classical paradigm where the energy associated with mixing in the ocean interior is sourced from bottom-generated lee waves.

  11. Sustaining the U.S. Air Force Nuclear Mission

    DTIC Science & Technology

    2013-01-01

    B61 -7 B83 B61 -11 B-2 NC3 ITW Tornado F-16...F-15E MMIII W78 W87 Mk-12A Mk-21 B61 -3/4 Gravity bomb: Tactical delivery Long- range standoff ICBM Gravity bomb: Strategic delivery 6...1 Follow-on ALCM B61 -7 B83 B61 -11 Next generation bomber NC3 ITW F-35 New GBSD Follow-on to W87/W78 Next generation fuse B61 -3/4 Gravity

  12. Spontaneous scalarization with an extremely massive field and heavy neutron stars

    NASA Astrophysics Data System (ADS)

    Morisaki, Soichiro; Suyama, Teruaki

    2017-10-01

    We investigate the internal structure and the mass-radius relation of neutron stars in a recently proposed scalar-tensor theory dubbed asymmetron in which a massive scalar field undergoes spontaneous scalarization inside neutron stars. We focus on the case where the Compton wavelength is shorter than 10 km, which has not been investigated in the literature. By solving the modified Einstein equations, either purely numerically or by partially using a semianalytic method, we find that not only the weakening of gravity by spontaneous scalarization but also the scalar force affect the internal structure significantly in the massive case. We also find that the maximum mass of neutron stars is larger for certain parameter sets than that in general relativity and reaches 2 M⊙ even if the effect of strange hadrons is taken into account. There is even a range of parameters where the maximum mass of neutron stars largely exceeds the threshold that violates the causality bound in general relativity.

  13. On the origin of Poincaré gauge gravity

    NASA Astrophysics Data System (ADS)

    Chkareuli, J. L.

    2017-06-01

    We argue that the origin of Poincaré gauge gravity (PGG) may be related to spontaneous violation of underlying spacetime symmetries involved and appearance of gauge fields as vector Goldstone bosons. In essence, we start with an arbitrary theory of some vector and fermion fields which possesses only global spacetime symmetries, such as Lorentz and translational invariance, in flat Minkowski space. The two vector field multiplets involved are assumed to belong, respectively, to the adjoint (Aμij) and vector (eμi) representations of the starting global Lorentz symmetry. We propose that these prototype vector fields are covariantly constrained, Aμij Aijμ = ±MA2 and eμi eiμ = ±Me2 , that causes a spontaneous violation of the accompanying global symmetries (MA,e are their presumed violation scales). It then follows that the only possible theory compatible with these length-preserving constraints is turned out to be the gauge invariant PGG, while the corresponding massless (pseudo)Goldstone modes are naturally collected in the emergent gauge fields of tetrads and spin-connections. In a minimal theory case being linear in a curvature we unavoidably come to the Einstein-Cartan theory. The extended theories with propagating spin-connection and tetrad modes are also considered and their possible unification with the Standard Model is briefly discussed.

  14. Stability of disformally coupled accretion disks

    NASA Astrophysics Data System (ADS)

    Koivisto, Tomi S.; Nyrhinen, Hannu J.

    2017-10-01

    The no-hair theorem postulates that the only externally observable properties of a black hole are its mass, its electric charge, and its angular momentum. In scalar-tensor theories of gravity, a matter distribution around a black hole can lead to the so called ‘spontaneous scalarisation’ instability that triggers the development of scalar hair. In the Brans-Dicke type theories, this effect can be understood as a result of tachyonic effective mass of the scalar field. Here we consider the instability in the generalised class of scalar-theories that feature non-conformal, i.e. ‘disformal’, couplings to matter. Such theories have gained considerable interest in the recent years and have been studied in a wide variety of systems, both cosmological and astrophysical. In view of the prospects of gravitational wave astronomy, it is relevant to explore the implications of the theories in the strong-gravity regime. In this article, we concentrate on the spontaneous scalarisation of matter configurations around Schwarzschild and Kerr black holes. We find that in the more generic scalar-tensor theories, the instability of the Brans-Dicke theory can be enhanced, suggesting violations of the no-hair theorem. On the other hand, we find that, especially if the coupling is very strong, or if the gradients in the matter distribution are negligible, the disformal coupling tends to stabilise the system.

  15. Ultraviolet complete dark energy model

    NASA Astrophysics Data System (ADS)

    Narain, Gaurav; Li, Tianjun

    2018-04-01

    We consider a local phenomenological model to explain a nonlocal gravity scenario which has been proposed to address dark energy issues. This nonlocal gravity action has been seen to fit the data as well as Λ -CDM and therefore demands a more fundamental local treatment. The induced gravity model coupled with higher-derivative gravity is exploited for this proposal, as this perturbatively renormalizable model has a well-defined ultraviolet (UV) description where ghosts are evaded. We consider a generalized version of this model where we consider two coupled scalar fields and their nonminimal coupling with gravity. In this simple model, one of the scalar field acquires a vacuum expectation value (VEV), thereby inducing a mass for one of the scalar fields and generating Newton's constant. The induced mass however is seen to be always above the running energy scale thereby leading to its decoupling. The residual theory after decoupling becomes a platform for driving the accelerated expansion under certain conditions. Integrating out the residual scalar generates a nonlocal gravity action. The leading term of which is the nonlocal gravity action used to fit the data of dark energy.

  16. The oxidative burst reaction in mammalian cells depends on gravity

    PubMed Central

    2013-01-01

    Gravity has been a constant force throughout the Earth’s evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in “functional weightlessness” were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex. PMID:24359439

  17. The oxidative burst reaction in mammalian cells depends on gravity.

    PubMed

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function of the NADPH oxidase complex.

  18. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  19. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

  20. Terrestrial Gravity Fluctuations.

    PubMed

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10 -23 Hz -1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.

  1. Can inertia-gravity waves persistently alter the tropopause inversion layer?

    NASA Astrophysics Data System (ADS)

    Kunkel, Daniel; Hoor, Peter; Wirth, Volkmar

    2014-11-01

    Previous simulations of baroclinic life cycles have shown, among many other features, the evolution of a tropopause inversion layer (TIL) as well as the spontaneous emission of inertia-gravity waves (IGWs). This study suggests that the latter two are related to each other, i.e., that IGWs may affect the TIL in a persistent manner. The IGWs are emitted along the jet and grow to large amplitudes, leading to the appearance of low-gradient Richardson numbers that indicate Kelvin-Helmholtz instability. Ensuing energy dissipation, local heating, and turbulence may persistently alter the thermodynamical structure of the tropopause region and, therefore, contribute to TIL formation or alter an existing TIL. Moreover, the flow in the region of the IGW favors the occurrence of wave capture, which may enhance the effect of wave breaking.

  2. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  3. Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators?

    PubMed

    Wit, Hero P; van Dijk, Pim

    2012-08-01

    Spontaneous otoacoustic emissions (SOAEs) are generated by self-sustained cochlear oscillators. Properties of a computational model for a linear array of active oscillators with nearest neighbor coupling are investigated. The model can produce many experimentally well-established properties of SOAEs.

  4. The JPL Mars gravity field, Mars50c, based upon Viking and Mariner 9 Doppler tracking data

    NASA Technical Reports Server (NTRS)

    Konopliv, Alexander S.; Sjogren, William L.

    1995-01-01

    This report summarizes the current JPL efforts of generating a Mars gravity field from Viking 1 and 2 and Mariner 9 Doppler tracking data. The Mars 50c solution is a complete gravity field to degree and order 50 with solutions as well for the gravitational mass of Mars, Phobos, and Deimos. The constants and models used to obtain the solution are given and the method for determining the gravity field is presented. The gravity field is compared to the best current gravity GMM1 of Goddard Space Flight Center.

  5. Origin of life. The role of experiments, basic beliefs, and social authorities in the controversies about the spontaneous generation of life and the subsequent debates about synthesizing life in the laboratory.

    PubMed

    Deichmann, Ute

    2012-01-01

    For centuries the question of the origin of life had focused on the question of the spontaneous generation of life, at least primitive forms of life, from inanimate matter, an idea that had been promoted most prominently by Aristotle. The widespread belief in spontaneous generation, which had been adopted by the Church, too, was finally abandoned at the beginning of the twentieth century, when the question of the origin of life became related to that of the artificial generation of life in the laboratory. This paper examines the role of social authorities, researchers' basic beliefs, crucial experiments, and scientific advance in the controversies about spontaneous generation from the seventeenth to the nineteenth centuries and analyzes the subsequent debates about the synthesis of artificial life in the changing scientific contexts of the nineteenth and early-twentieth centuries. It shows that despite the importance of social authorities, basic beliefs, and crucial experiments scientific advances, especially those in microbiology, were the single most important factor in the stepwise abandoning of the doctrine of spontaneous generation. Research on the origin of life and the artificial synthesis of life became scientifically addressed only when it got rid of the idea of constant smooth transitions between inanimate matter and life and explored possible chemical and physical mechanisms of the specificity of basic molecules and processes of life.

  6. Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Shao, Lijing; Sennett, Noah; Buonanno, Alessandra; Kramer, Michael; Wex, Norbert

    2017-10-01

    Pulsar timing and laser-interferometer gravitational-wave (GW) detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF), which predicts nonperturbative scalarization phenomena for neutron stars (NSs). First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs) for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical) scalarization sets in during the early (or late) stages of a binary NS (BNS) evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.

  7. Testing quantum gravity through dumb holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir; Faizal, Mir, E-mail: f2mir@uwaterloo.ca; Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, Kelowna, BC V1V 1V7

    We propose a method to test the effects of quantum fluctuations on black holes by analyzing the effects of thermal fluctuations on dumb holes, the analogs for black holes. The proposal is based on the Jacobson formalism, where the Einstein field equations are viewed as thermodynamical relations, and so the quantum fluctuations are generated from the thermal fluctuations. It is well known that all approaches to quantum gravity generate logarithmic corrections to the entropy of a black hole and the coefficient of this term varies according to the different approaches to the quantum gravity. It is possible to demonstrate thatmore » such logarithmic terms are also generated from thermal fluctuations in dumb holes. In this paper, we claim that it is possible to experimentally test such corrections for dumb holes, and also obtain the correct coefficient for them. This fact can then be used to predict the effects of quantum fluctuations on realistic black holes, and so it can also be used, in principle, to experimentally test the different approaches to quantum gravity.« less

  8. Acoustic-gravity waves, theory and application

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  9. Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Voight, Barry

    2010-04-01

    The sudden ejection of material during an explosive eruption generates a broad spectrum of pressure oscillations, from infrasonic to gravity waves. An infrasonic array, installed at 3.5 km from the Soufriere Hills Volcano has successfully detected and located, in real-time, the infrasound generated by several pyroclastic flows (PF) estimating mean flow speeds of 30-75 m/s. On July 29 and December 3, 2008, two differential pressure transducers, co-located with the array, recorded ultra long-period (ULP) oscillations at frequencies of 0.97 and 3.5 mHz, typical of atmospheric gravity waves, associated with explosive eruptions. The observation of gravity waves in the near-field (<6 km) at frequencies as low as about 1 mHz is unprecedented during volcanic eruptions.

  10. Asymptotic symmetries of colored gravity in three dimensions

    NASA Astrophysics Data System (ADS)

    Joung, Euihun; Kim, Jaewon; Kim, Jihun; Rey, Soo-Jong

    2018-03-01

    Three-dimensional colored gravity refers to nonabelian isospin extension of Einstein gravity. We investigate the asymptotic symmetry algebra of the SU( N)-colored gravity in (2+1)-dimensional anti-de Sitter spacetime. Formulated by the Chern-Simons theory with SU( N, N) × SU( N, N) gauge group, the theory contains graviton, SU( N) Chern-Simons gauge fields and massless spin-two multiplets in the SU( N) adjoint representation, thus extending diffeomorphism to colored, nonabelian counterpart. We identify the asymptotic symmetry as Poisson algebra of generators associated with the residual global symmetries of the nonabelian diffeomorphism set by appropriately chosen boundary conditions. The resulting asymptotic symmetry algebra is a nonlinear extension of \\widehat{su(N)} Kac-Moody algebra, supplemented by additional generators corresponding to the massless spin-two adjoint matter fields.

  11. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-09

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.

  12. Vertical structures in vibrated wormlike micellar solutions

    NASA Astrophysics Data System (ADS)

    Epstein, Tamir; Deegan, Robert

    2008-11-01

    Vertically vibrated shear thickening particulate suspensions can support a free-standing interfaces oriented parallel to gravity. We find that shear thickening worm-like micellar solutions also support such vertical interfaces. Above a threshold in acceleration, the solution spontaneously accumulates into a labyrinthine pattern characterized by a well-defined vertical edge. The formation of vertical structures is of interest because they are unique to shear-thickening fluids, and they indicate the existence of an unknown stress bearing mechanism.

  13. The Creation of the Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawking, Stephen

    2009-09-09

    Gravity and quantum theory cause the Universe to be spontaneously created out of nothing. Most of these universes are quite unlike our own but we select out a subset that are compatible with what we observe. Please note that Professor Hawking's talk will be broadcasted in the following rooms: TH auditorium (4-3-006), TE auditorium (30-7-018), 40-S2-A01, 40-S2-C01, BE Meyrin (6-2-024), BE Prévessin (864-1-D02).

  14. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate

    PubMed Central

    Wisdom, Katrina M.; Qu, Xiaopeng; Liu, Fangjie; Watson, Gregory S.; Chen, Chuan-Hua

    2013-01-01

    The self-cleaning function of superhydrophobic surfaces is conventionally attributed to the removal of contaminating particles by impacting or rolling water droplets, which implies the action of external forces such as gravity. Here, we demonstrate a unique self-cleaning mechanism whereby the contaminated superhydrophobic surface is exposed to condensing water vapor, and the contaminants are autonomously removed by the self-propelled jumping motion of the resulting liquid condensate, which partially covers or fully encloses the contaminating particles. The jumping motion off the superhydrophobic surface is powered by the surface energy released upon coalescence of the condensed water phase around the contaminants. The jumping-condensate mechanism is shown to spontaneously clean superhydrophobic cicada wings, where the contaminating particles cannot be removed by gravity, wing vibration, or wind flow. Our findings offer insights for the development of self-cleaning materials. PMID:23630277

  15. Gravity Fields Generation In The Universe By The Large Range of Scales Convection Systems In Planets, Stars, Black Holes and Galaxies Based On The "Convection Bang Hypothesis"

    NASA Astrophysics Data System (ADS)

    Gholibeigian, H.; Amirshahkarami, A.; Gholibeigian, K.

    2015-12-01

    In our vision it is believed that the Big Bang was Convection Bang (CB). When CB occurred, a gigantic large-scale forced convection system (LFCS) began to create space-time including gravitons and gluons in more than light speed. Then, simultaneously by a swirling wild wind, created inflation process including many quantum convection loops (QCL) in locations which had more density of temperature and energetic particles like gravitons. QCL including fundamental particles, grew and formed black holes (BHs) as the core of galaxies. LFCSs of heat and mass in planets, stars, BHs and galaxies generate gravity and electromagnetic fields and change the properties of matter and space-time around the systems. Mechanism: Samples: 1- Due to gravity fields of Sun and Moon, Earth's inner core is dislocated toward them and rotates around the Earth's center per day and generates LFCSs, Gholibeigian [AGU, 2012]. 2- Dislocated Sun's core due to gravity fields of planets/ Jupiter, rotates around the Sun's center per 25-35 days and generates LFCSs, Gholibeigian [EGU, 2014]. 3- If a planet/star falls into a BH, what happens? It means, its dislocated core rotates around its center in less than light speed and generates very fast LFCS and friction, while it is rotating/melting around/inward the center of BH. Observable Factors: 1- There is not logical relation between surface gravity fields of planets/Sun and their masses (general relativity); see Planetary Fact Sheet/Ratio to Earth Values-NASA: Earth: mass/gravity =1/1, Jupiter=317.8/2.36, Neptune=17.1/1.12, Saturn=95.2/0.916, Moon=0.0128/0.166, Sun=333000/28. 2- Convective systems in thunderstorms help bring ozone down to Earth [Brian-Kahn]. 3- In 12 surveyed BHs, produced gravity force & magnetic field strength were matched (unique LFCS source) [PhysOrg - June 4, 2014]. Justification: After BB/CB, gravitons were created without any other masses and curvature of space-time (general relativity), but by primary gigantic convection process.

  16. Long-Term Global Morphology of Gravity Wave Activity Using UARS Data

    NASA Technical Reports Server (NTRS)

    Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.

    1998-01-01

    Progress in research into the global morphology of gravity wave activity using UARS data is described for the period March-June, 1998. Highlights this quarter include further progress in the analysis and interpretation of CRISTA temperature variances; model-generated climatologies of mesospheric gravity wave activity using the HWM-93 wind and temperature model; and modeling of gravity wave detection from space-based platforms. Preliminary interpretations and recommended avenues for further analysis are also described.

  17. Ceiling Fires Studied to Simulate Low-Gravity Fires

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.

    2001-01-01

    A unique new way to study low-gravity flames in normal gravity has been developed. To study flame structure and extinction characteristics in low-stretch environments, a normal gravity low-stretch diffusion flame was generated using a cylindrical PMMA sample of varying large radii, as shown in the photograph. These experiments have demonstrated that low-gravity flame characteristics can be generated in normal gravity through the proper use of scaling. On the basis of this work, it is feasible to apply this concept toward the development of an Earth-bound method of evaluating material flammability in various gravitational environments from normal gravity to microgravity, including the effects of partial gravity low-stretch rates such as those found on the Moon (1/6g) or Mars (1/3g). During these experiments, the surface regression rates for PMMA were measured for the first time over the full range of flammability in air, from blowoff at high stretch, to quenching at low stretch, as plotted in the graph. The solid line drawn through the central portion of the data (3

  18. Gravitational waves during inflation from a 5D large-scale repulsive gravity model

    NASA Astrophysics Data System (ADS)

    Reyes, Luz M.; Moreno, Claudia; Madriz Aguilar, José Edgar; Bellini, Mauricio

    2012-10-01

    We investigate, in the transverse traceless (TT) gauge, the generation of the relic background of gravitational waves, generated during the early inflationary stage, on the framework of a large-scale repulsive gravity model. We calculate the spectrum of the tensor metric fluctuations of an effective 4D Schwarzschild-de Sitter metric on cosmological scales. This metric is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution, in the context of a non-compact Kaluza-Klein theory of gravity. We found that the spectrum is nearly scale invariant under certain conditions. One interesting aspect of this model is that it is possible to derive the dynamical field equations for the tensor metric fluctuations, valid not just at cosmological scales, but also at astrophysical scales, from the same theoretical model. The astrophysical and cosmological scales are determined by the gravity-antigravity radius, which is a natural length scale of the model, that indicates when gravity becomes repulsive in nature.

  19. Spontaneous Trait Inferences on Social Media.

    PubMed

    Levordashka, Ana; Utz, Sonja

    2017-01-01

    The present research investigates whether spontaneous trait inferences occur under conditions characteristic of social media and networking sites: nonextreme, ostensibly self-generated content, simultaneous presentation of multiple cues, and self-paced browsing. We used an established measure of trait inferences (false recognition paradigm) and a direct assessment of impressions. Without being asked to do so, participants spontaneously formed impressions of people whose status updates they saw. Our results suggest that trait inferences occurred from nonextreme self-generated content, which is commonly found in social media updates (Experiment 1) and when nine status updates from different people were presented in parallel (Experiment 2). Although inferences did occur during free browsing, the results suggest that participants did not necessarily associate the traits with the corresponding status update authors (Experiment 3). Overall, the findings suggest that spontaneous trait inferences occur on social media. We discuss implications for online communication and research on spontaneous trait inferences.

  20. The Role of GRAIL Orbit Determination in Preprocessing of Gravity Science Measurements

    NASA Technical Reports Server (NTRS)

    Kruizinga, Gerhard; Asmar, Sami; Fahnestock, Eugene; Harvey, Nate; Kahan, Daniel; Konopliv, Alex; Oudrhiri, Kamal; Paik, Meegyeong; Park, Ryan; Strekalov, Dmitry; hide

    2013-01-01

    The Gravity Recovery And Interior Laboratory (GRAIL) mission has constructed a lunar gravity field with unprecedented uniform accuracy on the farside and nearside of the Moon. GRAIL lunar gravity field determination begins with preprocessing of the gravity science measurements by applying corrections for time tag error, general relativity, measurement noise and biases. Gravity field determination requires the generation of spacecraft ephemerides of an accuracy not attainable with the pre-GRAIL lunar gravity fields. Therefore, a bootstrapping strategy was developed, iterating between science data preprocessing and lunar gravity field estimation in order to construct sufficiently accurate orbit ephemerides.This paper describes the GRAIL measurements, their dependence on the spacecraft ephemerides and the role of orbit determination in the bootstrapping strategy. Simulation results will be presented that validate the bootstrapping strategy followed by bootstrapping results for flight data, which have led to the latest GRAIL lunar gravity fields.

  1. Topographic Corona Gravity Survey Results

    NASA Technical Reports Server (NTRS)

    Comstock, R. L.; Smrekar, S. E.; Anderson, F. S.

    2001-01-01

    We present estimates for elastic and crustal thickness obtained from a gravity survey of Venusian topographic coronae, and characterize advantages and disadvantages for generating spectral admittance. Additional information is contained in the original extended abstract.

  2. In Situ Observations of PSCs Generated by Gravity Waves

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Bui, Paul; Mahoney, M. J.; Gandrud, Bruce; Hipskind, K. Stephen (Technical Monitor)

    2000-01-01

    During SOLVE, the bulk of the in-situ observations of PSCs are of large scale extended structures associated with synoptic scale cooling. The nature of these structures is also determined by layers of high relative NOy that have been stretched into thin layers by advective processes. Some of the in situ observations, however, are clearly correlated with gravity wave signatures. The first goal of this work is to examine these cases and evaluate gravity wave parameters. In particular, we are interested in the intrinsic periods of the waves and their temperature amplitude, which are key ingredients in the nucleation process. Secondly, we will examine some rudimentary properties of the particle size distributions and composition, comparing these with in situ observations of the more extended PSC features. Finally, we will attempt to ascertain the mechanism which generates the gravity waves.

  3. Inflation, quintessence, and the origin of mass

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2015-08-01

    In a unified picture both inflation and present dynamical dark energy arise from the same scalar field. The history of the Universe describes a crossover from a scale invariant "past fixed point" where all particles are massless, to a "future fixed point" for which spontaneous breaking of the exact scale symmetry generates the particle masses. The cosmological solution can be extrapolated to the infinite past in physical time - the universe has no beginning. This is seen most easily in a frame where particle masses and the Planck mass are field-dependent and increase with time. In this "freeze frame" the Universe shrinks and heats up during radiation and matter domination. In the equivalent, but singular Einstein frame cosmic history finds the familiar big bang description. The vicinity of the past fixed point corresponds to inflation. It ends at a first stage of the crossover. A simple model with no more free parameters than ΛCDM predicts for the primordial fluctuations a relation between the tensor amplitude r and the spectral index n, r = 8.19 (1 - n) - 0.137. The crossover is completed by a second stage where the beyond-standard-model sector undergoes the transition to the future fixed point. The resulting increase of neutrino masses stops a cosmological scaling solution, relating the present dark energy density to the present neutrino mass. At present our simple model seems compatible with all observational tests. We discuss how the fixed points can be rooted within quantum gravity in a crossover between ultraviolet and infrared fixed points. Then quantum properties of gravity could be tested both by very early and late cosmology.

  4. Modeling the small dark energy scale with a quintessential pseudoscalar boson

    NASA Astrophysics Data System (ADS)

    Kim, Jihn E.

    2014-03-01

    Democracy among the same type of particles is a useful paradigm in studying masses and interactions of particles with supersymmetry (SUSY) or without SUSY. This simple idea predicts the presence of massless particles. We attempt to use one of these massless pseudoscalar particles to generate the cosmological dark energy (DE) potential. To achieve the extremely shallow potential of DE, we require the pseudoscalar boson not couple to quantum chromodynamics (QCD) anomaly. Thus, we consider two pseudoscalars, one coupling to the QCD anomaly ( i.e., the QCD axion) and the other not coupling to the QCD anomaly. To obtain these two pseudoscalars, we introduce two approximate global U(1) symmetries to realize them as the pseudo-Goldstone bosons of the spontaneously broken U(1) symmetries. These global symmetries are dictated by a gravity-respecting discrete symmetry. Specifically, we consider an S 2( L) × S 2( R) × Z 10 R example and attempt to obtain the DE scale in terms of two observed fundamental mass scales, the grand unification scale M G and the electroweak scale υ ew.

  5. Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Hongshan, ZHU; Shengxia, DUAN; Lei, CHEN; Ahmed, ALSAEDI; Tasawar, HAYAT; Jiaxing, LI

    2017-11-01

    Fabrication of reusable adsorbents with satisfactory adsorption capacity and using environment-friendly preparation processes is required for the environment-related applications. In this study, acrylic acid (AA) was grafted onto bentonite (BT) to generate an AA-graft-BT (AA-g-BT) composite using a plasma-induced grafting technique considered to be an environment-friendly method. The as-prepared composite was characterized by scanning electron microscopy, x-ray powder diffraction, thermal gravity analysis, Fourier transform infrared spectroscopy and Barrett-Emmett-Teller analysis, demonstrating the successful grafting of AA onto BT. In addition, the removal of uranium(VI) (U(VI)) from contaminated aqueous solutions was examined using the as-prepared composite. The influencing factors, including contact time, pH value, ionic strength, temperature, and initial concentration, for the removal of U(VI) were investigated by batch experiments. The experimental process fitted best with the pseudo-second-order kinetic and the Langmuir models. Moreover, thermodynamic investigation revealed a spontaneous and endothermic process. Compared with previous adsorbents, AA-g-BT has potential practical applications in treating U(VI)-contaminated solutions.

  6. Treatment of ocean tide aliasing in the context of a next generation gravity field mission

    NASA Astrophysics Data System (ADS)

    Hauk, Markus; Pail, Roland

    2018-07-01

    Current temporal gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) suffer from temporal aliasing errors due to undersampling of signal to be recovered (e.g. hydrology), uncertainties in the de-aliasing models (usually atmosphere and ocean) and imperfect ocean tide models. Especially the latter will be one of the most limiting factors in determining high-resolution temporal gravity fields from future gravity missions such as GRACE Follow-On and Next-Generation Gravity Missions (NGGM). In this paper a method to co-parametrize ocean tide parameters of the eight main tidal constituents over time spans of several years is analysed and assessed. Numerical closed-loop simulations of low-low satellite-to-satellite-tracking missions for a single polar pair and a double pair Bender-type formation are performed, using time variable geophysical background models and noise assumptions for new generation instrument technology. Compared to the single pair mission, results show a reduction of tide model errors up to 70 per cent for dedicated tidal constituents due to an enhanced spatial and temporal sampling and error isotropy for the double pair constellation. Extending the observation period from 1 to 3 yr leads to a further reduction of tidal errors up to 60 per cent for certain constituents, and considering non-tidal mass changes during the estimation process leads to reductions of tidal errors between 20 and 80 per cent. As part of a two-step approach, the estimated tide model is used for de-aliasing during gravity field retrieval in a second iteration, resulting in more than 50 per cent reduction of ocean tide aliasing errors for a NGGM Bender-type formation.

  7. On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse

    PubMed Central

    2016-01-01

    Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon’s shadow cools part of the Earth’s surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550763

  8. On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse.

    PubMed

    Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Internal gravity waves are generated as adjustment radiation whenever a sudden change in forcing causes the atmosphere to depart from its large-scale balanced state. Such a forcing anomaly occurs during a solar eclipse, when the Moon's shadow cools part of the Earth's surface. The resulting atmospheric gravity waves are associated with pressure and temperature perturbations, which in principle are detectable both at the surface and aloft. In this study, surface pressure and temperature data from two UK sites at Reading and Lerwick are examined for eclipse-driven gravity wave perturbations during the 20 March 2015 solar eclipse over northwest Europe. Radiosonde wind data from the same two sites are also analysed using a moving parcel analysis method, to determine the periodicities of the waves aloft. On this occasion, the perturbations both at the surface and aloft are found not to be confidently attributable to eclipse-driven gravity waves. We conclude that the complex synoptic weather conditions over the UK at the time of this particular eclipse helped to mask any eclipse-driven gravity waves.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  9. The Creation of the Universe

    ScienceCinema

    Hawking, Stephen

    2018-02-05

    Gravity and quantum theory cause the Universe to be spontaneously created out of nothing. Most of these universes are quite unlike our own but we select out a subset that are compatible with what we observe. Please note that Professor Hawking's talk will be broadcasted in the following rooms: TH auditorium (4-3-006), TE auditorium (30-7-018), 40-S2-A01, 40-S2-C01, BE Meyrin (6-2-024), BE Prévessin (864-1-D02).

  10. Video of Miscible Fluid Experiment Conducted on NASA Low Gravity Airplane

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a video of dyed water being injected into glycerin in a 2.2 centimeter (cm) diameter test tube. The experiment was conducted on the KC-135 aircraft, a NASA plane that creates microgravity and 2g conditions as it maneuvers through multiple parabolas. The water is less dense and so it rises to the top of the glycerin. The goal of the experiment was to determine if a blob of a miscible fluid would spontaneously become spherical in a microgravity environment.

  11. Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements.

    PubMed

    Crevecoeur, F; McIntyre, J; Thonnard, J-L; Lefèvre, P

    2014-07-15

    Moving requires handling gravitational and inertial constraints pulling on our body and on the objects that we manipulate. Although previous work emphasized that the brain uses internal models of each type of mechanical load, little is known about their interaction during motor planning and execution. In this report, we examine visually guided reaching movements in the horizontal plane performed by naive participants exposed to changes in gravity during parabolic flight. This approach allowed us to isolate the effect of gravity because the environmental dynamics along the horizontal axis remained unchanged. We show that gravity has a direct effect on movement kinematics, with faster movements observed after transitions from normal gravity to hypergravity (1.8g), followed by significant movement slowing after the transition from hypergravity to zero gravity. We recorded finger forces applied on an object held in precision grip and found that the coupling between grip force and inertial loads displayed a similar effect, with an increase in grip force modulation gain under hypergravity followed by a reduction of modulation gain after entering the zero-gravity environment. We present a computational model to illustrate that these effects are compatible with the hypothesis that participants partially attribute changes in weight to changes in mass and scale incorrectly their motor commands with changes in gravity. These results highlight a rather direct internal mapping between the force generated during stationary holding against gravity and the estimation of inertial loads that limb and hand motor commands must overcome. Copyright © 2014 the American Physiological Society.

  12. Spontaneous Currents in Superconducting Systems with Strong Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Mironov, S.; Buzdin, A.

    2017-02-01

    We show that Rashba spin-orbit coupling at the interface between a superconductor and a ferromagnet should produce a spontaneous current in the atomic thickness region near the interface. This current is counterbalanced by the superconducting screening current flowing in the region of the width of the London penetration depth near the interface. Such a current-carrying state creates a magnetic field near the superconductor surface, generates a stray magnetic field outside the sample edges, changes the slope of the temperature dependence of the critical field Hc 3 , and may generate the spontaneous Abrikosov vortices near the interface.

  13. Impact of orbit design choices on the gravity field retrieval of Next Generation Gravity Missions - Insights on the ESA-ADDCON project

    NASA Astrophysics Data System (ADS)

    Daras, Ilias; Visser, Pieter; Sneeuw, Nico; van Dam, Tonie; Pail, Roland; Gruber, Thomas; Tabibi, Sajad; Chen, Qiang; Liu, Wei; Tourian, Mohammad; Engels, Johannes; Saemian, Peyman; Siemes, Christian; Haagmans, Roger

    2017-04-01

    Next Generation Gravity Missions (NGGMs) expected to be launched in the mid-term future have set high anticipations for an enhanced monitoring of mass transport in the Earth system, establishing their products applicable to new scientific fields and serving societal needs. The European Space Agency (ESA) has issued several studies on concepts of NGGMs. Following this tradition, the project "Additional Constellations & Scientific Analysis Studies of the Next Generation Gravity Mission" picks up where the previous study ESA-SC4MGV left off. One of the ESA-ADDCON project objectives is to investigate the impact of different orbit configurations and parameters on the gravity field retrieval. Given a two-pair Bender-type constellation, consisting of a polar and an inclined pair, choices for orbit design such as the altitude profile during mission lifetime, the length of retrieval period, the value of sub-cycles and the choice of a prograde over a retrograde orbit are investigated. Moreover, the problem of aliasing due to ocean tide model inaccuracies, as well as methods for mitigating their effect on gravity field solutions are investigated in the context of NGGMs. The performed simulations make use of the gravity field processing approach where low-resolution gravity field solutions are co-parameterized in short-term periods (e.g. daily) together with the long-term solutions (e.g. 11-day solution). This method proved to be beneficial for NGGMs (ESA-SC4MGV project) since the enhanced spatio-temporal sampling enables a self-de-aliasing of high-frequency atmospheric and oceanic signals, which may now be a part of the retrieved signal. The potential added value of having such signals for the first time in near real-time is assessed within the project. This paper demonstrates the preliminary results of the ESA-ADDCON project focusing on aspects of orbit design choices for NGGMs.

  14. Spontaneous Generation of Infectious Prion Disease in Transgenic Mice

    PubMed Central

    Castilla, Joaquín; Pintado, Belén; Gutiérrez-Adan, Alfonso; Andréoletti, Olivier; Aguilar-Calvo, Patricia; Arroba, Ana-Isabel; Parra-Arrondo, Beatriz; Ferrer, Isidro; Manzanares, Jorge; Espinosa, Juan-Carlos

    2013-01-01

    We generated transgenic mice expressing bovine cellular prion protein (PrPC) with a leucine substitution at codon 113 (113L). This protein is homologous to human protein with mutation 102L, and its genetic link with Gerstmann–Sträussler–Scheinker syndrome has been established. This mutation in bovine PrPC causes a fully penetrant, lethal, spongiform encephalopathy. This genetic disease was transmitted by intracerebral inoculation of brain homogenate from ill mice expressing mutant bovine PrP to mice expressing wild-type bovine PrP, which indicated de novo generation of infectious prions. Our findings demonstrate that a single amino acid change in the PrPC sequence can induce spontaneous generation of an infectious prion disease that differs from all others identified in hosts expressing the same PrPC sequence. These observations support the view that a variety of infectious prion strains might spontaneously emerge in hosts displaying random genetic PrPC mutations. PMID:24274622

  15. Duality and integrability: Electromagnetism, linearized gravity, and massless higher spin gauge fields as bi-Hamiltonian systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnich, Glenn; Troessaert, Cedric

    2009-04-15

    In the reduced phase space of electromagnetism, the generator of duality rotations in the usual Poisson bracket is shown to generate Maxwell's equations in a second, much simpler Poisson bracket. This gives rise to a hierarchy of bi-Hamiltonian evolution equations in the standard way. The result can be extended to linearized Yang-Mills theory, linearized gravity, and massless higher spin gauge fields.

  16. Strong gravity and structure of topological solitons

    NASA Astrophysics Data System (ADS)

    Rybakov, Yu. P.

    The unification of Skyrme and Faddeev chiral models describing baryons and leptons respectively as topological solitons is suggested within the framework of 16-spinor field ψ = ψ1 ⊕ ψ2 nonlinear model containing two 8-semispinors ψ1 and ψ2. Using Brioschi identity for 8-spinors and special structure of the Higgs potential V implying the spontaneous symmetry breaking, it is possible to realize topological soliton-like excitations of two kinds due to the choice of S2- or S3- manifolds as phase spaces. The interactions with electromagnetic, Yang--Mills and gravitational fields are exhibited through the extention of derivatives via gauge invariance principle. Specific inclusion in the Higgs potential of the Kretschmann gravitational invariant K = RμνσλRμνσλ/48 permits one to obtain the strong gravity behavior at small distances and guarantee the correspondence with Quantum Mechanics at large distances.

  17. Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2015-09-01

    In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces.

  18. Finite conformal quantum gravity and spacetime singularities

    NASA Astrophysics Data System (ADS)

    Modesto, Leonardo; Rachwał, Lesław

    2017-12-01

    We show that a class of finite quantum non-local gravitational theories is conformally invariant at classical as well as at quantum level. This is actually a range of conformal anomaly-free theories in the spontaneously broken phase of the Weyl symmetry. At classical level we show how the Weyl conformal invariance is able to tame all the spacetime singularities that plague not only Einstein gravity, but also local and weakly non-local higher derivative theories. The latter statement is proved by a singularity theorem that applies to a large class of weakly non-local theories. Therefore, we are entitled to look for a solution of the spacetime singularity puzzle in a missed symmetry of nature, namely the Weyl conformal symmetry. Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free black hole exact solutions in a class of conformally invariant theories.

  19. Gravity induced wave function collapse

    NASA Astrophysics Data System (ADS)

    Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.

    2017-11-01

    Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.

  20. Some solutions for one of the cosmological constant problems

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'Ichi

    2016-11-01

    We propose several covariant models which may solve one of the problems in the cosmological constant. One of the models can be regarded as an extension of sequestering model. Other models could be regarded as extensions of the covariant formulation of the unimodular gravity. The contributions to the vacuum energy from the quantum corrections from the matters are absorbed into a redefinition of a scalar field and the quantum corrections become irrelevant to the dynamics. In a class of the extended unimodular gravity models, we also consider models which are regarded as topological field theories. The models can be extended and not only the vacuum energy but also any quantum corrections to the gravitational action could become irrelevant for the dynamics. We find, however, that the BRS symmetry in the topological field theories is broken spontaneously and therefore, the models might not be consistent.

  1. Analysis of magnetic gradients to study gravitropism.

    PubMed

    Hasenstein, Karl H; John, Susan; Scherp, Peter; Povinelli, Daniel; Mopper, Susan

    2013-01-01

    Gravitropism typically is generated by dense particles that respond to gravity. Experimental stimulation by high-gradient magnetic fields provides a new approach to selectively manipulate the gravisensing system. The movement of corn, wheat, and potato starch grains in suspension was examined with videomicroscopy during parabolic flights that generated 20 to 25 s of weightlessness. During weightlessness, a magnetic gradient was generated by inserting a wedge into a uniform, external magnetic field that caused repulsion of starch grains. The resultant velocity of movement was compared with the velocity of sedimentation under 1 g conditions. The high-gradient magnetic fields repelled the starch grains and generated a force of at least 0.6 g. Different wedge shapes significantly affected starch velocity and directionality of movement. Magnetic gradients are able to move diamagnetic compounds under weightless or microgravity conditions and serve as directional stimulus during seed germination in low-gravity environments. Further work can determine whether gravity sensing is based on force or contact between amyloplasts and statocyte membrane system.

  2. 11. DETAIL VIEW OF GENERATOR NO. 1, GENERATOR ROOM, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF GENERATOR NO. 1, GENERATOR ROOM, SHOWING GRAVITY LUBRICATING OIL BOX ABOVE GENERATOR - Nine Mile Hydroelectric Development, Powerhouse, State Highway 291 along Spokane River, Nine Mile Falls, Spokane County, WA

  3. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury.

    PubMed

    Yoshida, Takeshi; Uchiyama, Akinori; Matsuura, Nariaki; Mashimo, Takashi; Fujino, Yuji

    2012-05-01

    We investigated whether potentially injurious transpulmonary pressure could be generated by strong spontaneous breathing and exacerbate lung injury even when plateau pressure is limited to <30 cm H2O. Prospective, randomized, animal study. University animal research laboratory. Thirty-two New Zealand White rabbits. Lavage-injured rabbits were randomly allocated to four groups to receive low or moderate tidal volume ventilation, each combined with weak or strong spontaneous breathing effort. Inspiratory pressure for low tidal volume ventilation was set at 10 cm H2O and tidal volume at 6 mL/kg. For moderate tidal volume ventilation, the values were 20 cm H2O and 7-9 mL/kg. The groups were: low tidal volume ventilation+spontaneous breathingweak, low tidal volume ventilation+spontaneous breathingstrong, moderate tidal volume ventilation+spontaneous breathingweak, and moderate tidal volume ventilation+spontaneous breathingstrong. Each group had the same settings for positive end-expiratory pressure of 8 cm H2O. Respiratory variables were measured every 60 mins. Distribution of lung aeration and alveolar collapse were histologically evaluated. Low tidal volume ventilation+spontaneous breathingstrong showed the most favorable oxygenation and compliance of respiratory system, and the best lung aeration. By contrast, in moderate tidal volume ventilation+spontaneous breathingstrong, the greatest atelectasis with numerous neutrophils was observed. While we applied settings to maintain plateau pressure at <30 cm H2O in all groups, in moderate tidal volume ventilation+spontaneous breathingstrong, transpulmonary pressure rose >33 cm H2O. Both minute ventilation and respiratory rate were higher in the strong spontaneous breathing groups. Even when plateau pressure is limited to <30 cm H2O, combined with increased respiratory rate and tidal volume, high transpulmonary pressure generated by strong spontaneous breathing effort can worsen lung injury. When spontaneous breathing is preserved during mechanical ventilation, transpulmonary pressure and tidal volume should be strictly controlled to prevent further lung injury.

  4. Hamiltonian structure of three-dimensional gravity in Vielbein formalism

    NASA Astrophysics Data System (ADS)

    Hajihashemi, Mahdi; Shirzad, Ahmad

    2018-01-01

    Considering Chern-Simons like gravity theories in three dimensions as first order systems, we analyze the Hamiltonian structure of three theories Topological massive gravity, New massive gravity, and Zwei-Dreibein Gravity. We show that these systems demonstrate a new feature of the constrained systems in which a new kind of constraints emerge due to factorization of determinant of the matrix of Poisson brackets of constraints. We find the desired number of degrees of freedom as well as the generating functional of local Lorentz transformations and diffeomorphism through canonical structure of the system. We also compare the Hamiltonian structure of linearized version of the considered models with the original ones.

  5. Spontaneous action potentials and neural coding in unmyelinated axons.

    PubMed

    O'Donnell, Cian; van Rossum, Mark C W

    2015-04-01

    The voltage-gated Na and K channels in neurons are responsible for action potential generation. Because ion channels open and close in a stochastic fashion, spontaneous (ectopic) action potentials can result even in the absence of stimulation. While spontaneous action potentials have been studied in detail in single-compartment models, studies on spatially extended processes have been limited. The simulations and analysis presented here show that spontaneous rate in unmyelinated axon depends nonmonotonically on the length of the axon, that the spontaneous activity has sub-Poisson statistics, and that neural coding can be hampered by the spontaneous spikes by reducing the probability of transmitting the first spike in a train.

  6. Synaptic vesicle pool‐specific modification of neurotransmitter release by intravesicular free radical generation

    PubMed Central

    Afuwape, Olusoji A. T.; Wasser, Catherine R.; Schikorski, Thomas

    2016-01-01

    Key points Synaptic transmission is mediated by the release of neurotransmitters from synaptic vesicles in response to stimulation or through the spontaneous fusion of a synaptic vesicle with the presynaptic plasma membrane.There is growing evidence that synaptic vesicles undergoing spontaneous fusion versus those fusing in response to stimuli are functionally distinct.In this study, we acutely probe the effects of intravesicular free radical generation on synaptic vesicles that fuse spontaneously or in response to stimuli.By targeting vesicles that preferentially release spontaneously, we can dissociate the effects of intravesicular free radical generation on spontaneous neurotransmission from evoked neurotransmission and vice versa.Taken together, these results further advance our knowledge of the synapse and the nature of the different synaptic vesicle pools mediating neurotransmission. Abstract Earlier studies suggest that spontaneous and evoked neurotransmitter release processes are maintained by synaptic vesicles which are segregated into functionally distinct pools. However, direct interrogation of the link between this putative synaptic vesicle pool heterogeneity and neurotransmission has been difficult. To examine this link, we tagged vesicles with horseradish peroxidase (HRP) – a haem‐containing plant enzyme – or antibodies against synaptotagmin‐1 (syt1). Filling recycling vesicles in hippocampal neurons with HRP and subsequent treatment with hydrogen peroxide (H2O2) modified the properties of neurotransmitter release depending on the route of HRP uptake. While strong depolarization‐induced uptake of HRP suppressed evoked release and augmented spontaneous release, HRP uptake during mild activity selectively impaired evoked release, whereas HRP uptake at rest solely potentiated spontaneous release. Expression of a luminal HRP‐tagged syt1 construct and subsequent H2O2 application resulted in a similar increase in spontaneous release and suppression as well as desynchronization of evoked release, recapitulating the canonical syt1 loss‐of‐function phenotype. An antibody targeting the luminal domain of syt1, on the other hand, showed that augmentation of spontaneous release and suppression of evoked release phenotypes are dissociable depending on whether the antibody uptake occurred at rest or during depolarization. Taken together, these findings indicate that vesicles that maintain spontaneous and evoked neurotransmitter release preserve their identity during recycling and syt1 function in suppression of spontaneous neurotransmission can be acutely dissociated from syt1 function to synchronize synaptic vesicle exocytosis upon stimulation. PMID:27723113

  7. Using gravity as a proxy for stress accumulation in complex fault systems

    NASA Astrophysics Data System (ADS)

    Hayes, Tyler Joseph

    The gravity signal contains information regarding changes in density at all depths and can be used as a proxy for the strain accumulation in fault networks. A general method for calculating the total, dilatational, and free-air gravity for fault systems with arbitrary geometry, slip motion, and number of fault segments is presented. The technique uses a Green's function approach for a fault buried within an elastic half-space with an underlying driver plate forcing the system. A stress-evolution time-dependent earthquake fault model was used to create simulated slip histories over the San Andreas Fault network in California. Using a sum of the gravity signals from each fault segment in the model, via coseismic gravity Green's functions, a time-dependent gravity model was created. The steady-state gravity from the long term plate motion generates a signal over five years with magnitudes of +/- ˜2 muGal; the current limit of portable instrument observations. Moderate to large events generate signal magnitudes in the range of ˜10 muGal to ˜80 muGal, well within the range of ground based observations. The complex fault network geometry of California significantly affects the spatial extent of the gravity signal from the three events studied. Statistical analysis of 55 000 years of simulated slip histories were used to investigate the use of the dilatational gravity signal as a proxy for precursory stress and strain changes. Results indicate that the precursory dilatational gravity signal is dependent upon the fault orientation with respect the tectonic loading plate velocity. This effect is interpreted as a consequence of preferential amplification of the shear stress or reduction of the normal stress, depending on the steady-state regime investigated. Finally, solutions for the corresponding gravity gradients of the coseismic dilatational gravity signals are developed for a vertical strike-slip fault. Gravity gradient solutions exhibit similar spatial distributions as those calculated for Coulomb stress changes, reflecting their physical relationship to the stress changes. The magnitude of the signals, on the order of 1 x 10-4 E, are beyond the resolution of typical exploration instruments at the present time. Keywords. numerical solutions; seismic cycle; gravity; gravity gradients; time variable gravity; earthquake interaction; forecasting; and prediction

  8. AUTOMATON AND SPONTANEOUS GENERATION: A PROBLEMATIC ASPECT IN THE ARISTOTELIAN THEORY OF REPRODUCTION.

    PubMed

    Soardi, Marzia

    2015-01-01

    In Book III of the De generatione animalium, Aristotle discusses about the problem of spontaneous generation, which will be object of interest for centuries, up to modern science. The aim of the paper is to examinate this topic trying to highlight what is the most remarkable problem in the Aristotelian theory: the ability of the matter of self-moving and self-reproducing and, connected to this, the relationship that exists in nature, in the Aristotelian biology, between a teleological based function and the presence of a necessary counterbalance in material form. In the last part of the paper the attention will also be focused on the connection between spontaneous generation and sexual reproduction, underlining, once again, the importance of the material aspects, alongside the teleological ones.

  9. Superphobicity/philicity Janus Fabrics with Switchable, Spontaneous, Directional Transport Ability to Water and Oil Fluids

    PubMed Central

    Zhou, Hua; Wang, Hongxia; Niu, Haitao; Lin, Tong

    2013-01-01

    Herein we demonstrate that switchable, spontaneous, directional-transport ability to both water and oil fluids can be created on fabric materials through wet-chemistry coating and successive UV irradiation treatment. When the fabric showed directional transport to a liquid, it prevented liquids of higher surface tension from penetration, but allowed liquids of lower surface tension to permeate, from either side. The directional transport ability can be switched from one fluid to another simply by heating the fabric at an elevated temperature and then re-irradiating the fabric with UV light for required period of time. By attaching liquid drops vertically upwards to a horizontally-laid fabric, we further demonstrated that this novel directional fluid transport was an automatic process driven by surface property alone, irrespective of gravity's effect. This novel fabric may be useful for development of “smart” textiles and functional membranes for various applications. PMID:24129357

  10. Superphobicity/philicity Janus Fabrics with Switchable, Spontaneous, Directional Transport Ability to Water and Oil Fluids

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Wang, Hongxia; Niu, Haitao; Lin, Tong

    2013-10-01

    Herein we demonstrate that switchable, spontaneous, directional-transport ability to both water and oil fluids can be created on fabric materials through wet-chemistry coating and successive UV irradiation treatment. When the fabric showed directional transport to a liquid, it prevented liquids of higher surface tension from penetration, but allowed liquids of lower surface tension to permeate, from either side. The directional transport ability can be switched from one fluid to another simply by heating the fabric at an elevated temperature and then re-irradiating the fabric with UV light for required period of time. By attaching liquid drops vertically upwards to a horizontally-laid fabric, we further demonstrated that this novel directional fluid transport was an automatic process driven by surface property alone, irrespective of gravity's effect. This novel fabric may be useful for development of ``smart'' textiles and functional membranes for various applications.

  11. Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost

    PubMed Central

    Wang, Shanlin; Zhang, Wenwen; Yu, Xinquan; Liang, Caihua; Zhang, Youfa

    2017-01-01

    Spontaneous movement of condensed matter provides a new insight to efficiently improve condensation heat transfer on superhydrophobic surface. However, very few reports have shown the jumping behaviors on the sprayable superhydrophobic coatings. Here, we developed a sprayable silica nano-porous coating assembled by fluorinated nano-chains to survey the condensates’ dynamics. The dewdrops were continuously removed by self- and/or trigger-propelling motion due to abundant nano-pores from random multilayer stacking of nano-chains. In comparison, the dewdrops just could be slipped under the gravity effect on lack of nano-pores coatings stacked by silica nano-spheres and nano-aggregates. More interestingly, the spontaneous jumping effect also occurred on micro-scale frost crystals under the defrosting process on nano-chains coating surfaces. Different from self-jumping of dewdrops motion, the propelling force of frost crystals were provided by a sudden increase of the pressure under the frost crystal. PMID:28074938

  12. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    PubMed Central

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  13. Convectively Generated Gravity Waves In The Tropical Stratosphere: Case Studies And Importance For The Circulation Of The Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Chan, Kwoklong R.; Gary, Bruce; Singh, Hanwant B. (Technical Monitor)

    1995-01-01

    The advent of high altitude aircraft measurements in the stratosphere over tropical convective systems has made it possible to observe the mesoscale disturbances in the temperature field that these systems excite. Such measurements show that these disturbances have horizontal scales comparable to those of the underlying anvils (about 50-100 km) with peak to peak theta surface variations of about 300-400 meters. Moreover, correlative wind measurements from the tropical phase of the Stratosphere-Troposphere Exchange Project (STEP) clearly show that these disturbances are gravity waves. We present two case studies of anvil-scale gravity waves over convective systems. Using steady and time-dependent linear models of gravity wave propagation in the stratosphere, we show: (1) that the underlying convective systems are indeed the source of the observed phenomena; and (2) that their generating mechanism can be crudely represented as flow over a time-dependent mountain. We will then discuss the effects gravity waves of the observed amplitudes have on the circulation of the middle atmosphere, particularly the quasi-biennial, and semiannual oscillations.

  14. Effect of 4-aminopyridine on gravity dependence and neural integrator function in patients with idiopathic downbeat nystagmus.

    PubMed

    Sander, T; Sprenger, A; Marti, S; Naumann, T; Straumann, D; Helmchen, C

    2011-04-01

    Downbeat nystagmus (DBN) is a frequent sign in patients with cerebellar degeneration. It consists of an upward drift of the eye that does not depend on vertical head position (spontaneous drift, SD), a gravity-dependent component (GD), and a gaze-evoked drift reflecting gaze-holding impairment (deficient neural integrator function). The potassium-channel blocker 4-aminopyridine (4-AP) is reported to reduce DBN in patients with cerebellar atrophy but with little or no effect in patients with idiopathic DBN. We prospectively studied the effect of 4-AP on all three components in a large (n = 24) group of the clinically frequent idiopathic DBN. DBN was reduced by 22-31% when the head was off the head erect position. In contrast, there was no effect on vertical gaze-evoked drift. This indicates the therapeutic efficacy of 4-AP not only in patients with cerebellar atrophy but also in idiopathic DBN patients. This beneficial effect, which might be missed when gravity-dependent head positions are not tested, was not related to an improvement of gaze-holding deficit. We suggest it may be related to the restored inhibition of the overacting otolith-ocular reflex.

  15. Override of spontaneous respiratory pattern generator reduces cardiovascular parasympathetic influence

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Vallurupalli, S.; Evans, J. M.; Bruce, E. N.; Knapp, C. F.

    1995-01-01

    We investigated the effects of voluntary control of breathing on autonomic function in cardiovascular regulation. Variability in heart rate was compared between 5 min of spontaneous and controlled breathing. During controlled breathing, for 5 min, subjects voluntarily reproduced their own spontaneous breathing pattern (both rate and volume on a breath-by-breath basis). With the use of this experimental design, we could unmask the effects of voluntary override of the spontaneous respiratory pattern generator on autonomic function in cardiovascular regulation without the confounding effects of altered respiratory pattern. Results from 10 subjects showed that during voluntary control of breathing, mean values of heart rate and blood pressure increased, whereas fractal and spectral powers in heart rate in the respiratory frequency region decreased. End-tidal PCO2 was similar during spontaneous and controlled breathing. These results indicate that the act of voluntary control of breathing decreases the influence of the vagal component, which is the principal parasympathetic influence in cardiovascular regulation.

  16. Observation of ground-state quantum beats in atomic spontaneous emission.

    PubMed

    Norris, D G; Orozco, L A; Barberis-Blostein, P; Carmichael, H J

    2010-09-17

    We report ground-state quantum beats in spontaneous emission from a continuously driven atomic ensemble. Beats are visible only in an intensity autocorrelation and evidence spontaneously generated coherence in radiative decay. Our measurement realizes a quantum eraser where a first photon detection prepares a superposition and a second erases the "which path" information in the intermediate state.

  17. Modeling Candle Flame Behavior In Variable Gravity

    NASA Technical Reports Server (NTRS)

    Alsairafi, A.; Tien, J. S.; Lee, S. T.; Dietrich, D. L.; Ross, H. D.

    2003-01-01

    The burning of a candle, as typical non-propagating diffusion flame, has been used by a number of researchers to study the effects of electric fields on flame, spontaneous flame oscillation and flickering phenomena, and flame extinction. In normal gravity, the heat released from combustion creates buoyant convection that draws oxygen into the flame. The strength of the buoyant flow depends on the gravitational level and it is expected that the flame shape, size and candle burning rate will vary with gravity. Experimentally, there exist studies of candle burning in enhanced gravity (i.e. higher than normal earth gravity, g(sub e)), and in microgravity in drop towers and space-based facilities. There are, however, no reported experimental data on candle burning in partial gravity (g < g(sub e)). In a previous numerical model of the candle flame, buoyant forces were neglected. The treatment of momentum equation was simplified using a potential flow approximation. Although the predicted flame characteristics agreed well with the experimental results, the model cannot be extended to cases with buoyant flows. In addition, because of the use of potential flow, no-slip boundary condition is not satisfied on the wick surface. So there is some uncertainty on the accuracy of the predicted flow field. In the present modeling effort, the full Navier-Stokes momentum equations with body force term is included. This enables us to study the effect of gravity on candle flames (with zero gravity as the limiting case). In addition, we consider radiation effects in more detail by solving the radiation transfer equation. In the previous study, flame radiation is treated as a simple loss term in the energy equation. Emphasis of the present model is on the gas-phase processes. Therefore, the detailed heat and mass transfer phenomena inside the porous wick are not treated. Instead, it is assumed that a thin layer of liquid fuel coated the entire wick surface during the burning process. This is the limiting case that the mass transfer process in the wick is much faster than the evaporation process at the wick surface.

  18. Quantum random number generator

    DOEpatents

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  19. Sensing Shallow Seafloor and Sediment Properties, Recent History

    DTIC Science & Technology

    2008-09-01

    instances, larger samplers, i.e. box corers, can be further subsampled with small push-in tubes , yielding relatively undisturbed specimens. Corers...sediment within the sampling tube 3 during retrieval. Generally, common gravity corers can retrieve up to 5m (in softer sediments) of soil, whereas... tube that can be generated. Vibro-corers are similar to the gravity corers but have a motorized unit added to the top of the assembly, generating an

  20. Long-term variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric gravity waves by using airglow images obtained at Shigarkai, Japan

    NASA Astrophysics Data System (ADS)

    Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.

    2016-12-01

    Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.

  1. Role of Gravity Waves in Determining Cirrus Cloud Properties

    NASA Technical Reports Server (NTRS)

    OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong

    2008-01-01

    Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).

  2. A machine learning methodology for the selection and classification of spontaneous spinal cord dorsum potentials allows disclosure of structured (non-random) changes in neuronal connectivity induced by nociceptive stimulation

    PubMed Central

    Martin, Mario; Contreras-Hernández, Enrique; Béjar, Javier; Esposito, Gennaro; Chávez, Diógenes; Glusman, Silvio; Cortés, Ulises; Rudomin, Pablo

    2015-01-01

    Previous studies aimed to disclose the functional organization of the neuronal networks involved in the generation of the spontaneous cord dorsum potentials (CDPs) generated in the lumbosacral spinal segments used predetermined templates to select specific classes of spontaneous CDPs. Since this procedure was time consuming and required continuous supervision, it was limited to the analysis of two specific types of CDPs (negative CDPs and negative positive CDPs), thus excluding potentials that may reflect activation of other neuronal networks of presumed functional relevance. We now present a novel procedure based in machine learning that allows the efficient and unbiased selection of a variety of spontaneous CDPs with different shapes and amplitudes. The reliability and performance of the present method is evaluated by analyzing the effects on the probabilities of generation of different classes of spontaneous CDPs induced by the intradermic injection of small amounts of capsaicin in the anesthetized cat, a procedure known to induce a state of central sensitization leading to allodynia and hyperalgesia. The results obtained with the selection method presently described allowed detection of spontaneous CDPs with specific shapes and amplitudes that are assumed to represent the activation of functionally coupled sets of dorsal horn neurones that acquire different, structured configurations in response to nociceptive stimuli. These changes are considered as responses tending to adequate transmission of sensory information to specific functional requirements as part of homeostatic adjustments. PMID:26379540

  3. Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Ran, Lingkun; Gao, Shouting

    2018-05-01

    A numerical experiment was performed using the Weather Research and Forecasting (WRF) model to analyze the generation and propagation of inertia-gravity waves during an orographic rainstorm that occurred in the Sichuan area on 17 August 2014. To examine the spatial and temporal structures of the inertia-gravity waves and identify the wave types, three wavenumber-frequency spectral analysis methods (Fourier analysis, cross-spectral analysis, and wavelet cross-spectrum analysis) were applied. During the storm, inertia-gravity waves appeared at heights of 10-14 km, with periods of 80-100 min and wavelengths of 40-50 km. These waves were generated over a mountain and propagated eastward at an average speed of 15-20 m s-1. Meanwhile, comparison between the reconstructed inertia-gravity waves and accumulated precipitation showed there was a mutual promotion process between them. The Richardson number and Scorer parameter were used to demonstrate that the eastward-moving inertia-gravity waves were trapped in an effective atmospheric ducting zone with favorable reflector and critical level conditions, which were the primary causes of the long lives of the waves. Finally, numerical experiments to test the sensitivity to terrain and diabatic heating were conducted, and the results suggested a cooperative effect of terrain and diabatic heating contributed to the propagation and enhancement of the waves.

  4. Lobe-cleft instability in the buoyant gravity current generated by estuarine outflow

    NASA Astrophysics Data System (ADS)

    Horner-Devine, Alexander R.; Chickadel, C. Chris

    2017-05-01

    Gravity currents represent a broad class of geophysical flows including turbidity currents, powder avalanches, pyroclastic flows, sea breeze fronts, haboobs, and river plumes. A defining feature in many gravity currents is the formation of three-dimensional lobes and clefts along the front and researchers have sought to understand these ubiquitous geophysical structures for decades. The prevailing explanation is based largely on early laboratory and numerical model experiments at much smaller scales, which concluded that lobes and clefts are generated due to hydrostatic instability exclusively in currents propagating over a nonslip boundary. Recent studies suggest that frontal dynamics change as the flow scale increases, but no measurements have been made that sufficiently resolve the flow structure in full-scale geophysical flows. Here we use thermal infrared and acoustic imaging of a river plume to reveal the three-dimensional structure of lobes and clefts formed in a geophysical gravity current front. The observed lobes and clefts are generated at the front in the absence of a nonslip boundary, contradicting the prevailing explanation. The observed flow structure is consistent with an alternative formation mechanism, which predicts that the lobe scale is inherited from subsurface vortex structures.

  5. Application of Foam-gel Technique to Control CO Exposure Generated During Spontaneous Combustion of Coal in Coal Mines.

    PubMed

    Ren, Xing W; Wang, Feng Z; Guo, Qing; Zuo, Zhao B; Fang, Qi S

    2015-01-01

    In China, 47.3% of state-owned coal mines are located in coal seams that are prone to spontaneous combustion. The spontaneous combustion of coal is the main cause of the generation of a large amount of carbon monoxide, which can cause serious health issues to miners. A new technique using foam-gel formation was developed to effectively control the spontaneous combustion of coal. The gel can capture more than 90% of the water in the grout and at the same time the foam can cover dangerous areas in the goaf by stacking and cooling of foam in all directions. In this study, a mechanism of foam-gel formation was introduced and the optimal proportions of additives were defined based on experiments of different foaming properties, gelling time and water loss rate as the main index parameters. The results of a field application in a coal mine promise that this new technique would effectively prevent coal oxidation in the goaf and reduce the generation of carbon monoxide.

  6. Lunar gravity derived from long-period satellite motion, a proposed method

    NASA Technical Reports Server (NTRS)

    Ferrari, A. J.

    1971-01-01

    A method was devised to determine the spherical harmonic coefficients of the lunar gravity field. The method consists of a two-step data reduction and estimation process. Pseudo-Doppler data were generated simulating two different lunar orbits. The analysis included the perturbing effects of the L1 lunar gravity field, the earth, the sun, and solar radiation pressure. Orbit determinations were performed on these data and long-period orbital elements were obtained. The Kepler element rates from these solutions were used to recover L1 lunar gravity coefficients. Overall results of the experiment show that lunar gravity coefficients can be accurately determined and that the method is dynamically consistent with long-period perturbation theory.

  7. Development of a network RTK positioning and gravity-surveying application with gravity correction using a smartphone.

    PubMed

    Kim, Jinsoo; Lee, Youngcheol; Cha, Sungyeoul; Choi, Chuluong; Lee, Seongkyu

    2013-07-12

    This paper proposes a smartphone-based network real-time kinematic (RTK) positioning and gravity-surveying application (app) that allows semi-real-time measurements using the built-in Bluetooth features of the smartphone and a third-generation or long-term evolution wireless device. The app was implemented on a single smartphone by integrating a global navigation satellite system (GNSS) controller, a laptop, and a field-note writing tool. The observation devices (i.e., a GNSS receiver and relative gravimeter) functioned independently of this system. The app included a gravity module, which converted the measured relative gravity reading into an absolute gravity value according to tides; meter height; instrument drift correction; and network adjustments. The semi-real-time features of this app allowed data to be shared easily with other researchers. Moreover, the proposed smartphone-based gravity-survey app was easily adaptable to various locations and rough terrain due to its compact size.

  8. Tectonic contrasts between Venus and the earth

    NASA Technical Reports Server (NTRS)

    Kaula, W. M.

    1984-01-01

    The long-wave features of the gravity field of Venus differ from those of the earth's field not only in their strong positive correlation with topography, but also in their gentler spectral slope. These properties are inconsistent with generation of the gravity field by plate tectonics or by processes at great depths; they are consistent with generation by a mantle convective system supporting the broad features in topography with an effective compensation depth of about 450 km.

  9. Dense Gravity Currents with Breaking Internal Waves

    NASA Astrophysics Data System (ADS)

    Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey

    2017-11-01

    Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.

  10. Multisensory Integration and Internal Models for Sensing Gravity Effects in Primates

    PubMed Central

    Lacquaniti, Francesco; La Scaleia, Barbara; Maffei, Vincenzo

    2014-01-01

    Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects. PMID:25061610

  11. Multisensory integration and internal models for sensing gravity effects in primates.

    PubMed

    Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka

    2014-01-01

    Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects.

  12. Infrared modification of gravity from conformal symmetry

    NASA Astrophysics Data System (ADS)

    Gegenberg, Jack; Rahmati, Shohreh; Seahra, Sanjeev S.

    2016-03-01

    We reconsider a gauge theory of gravity in which the gauge group is the conformal group SO(4,2), and the action is of the Yang-Mills form, quadratic in the curvature. The resulting gravitational theory exhibits local conformal symmetry and reduces to Weyl-squared gravity under certain conditions. When the theory is linearized about flat spacetime, we find that matter which couples to the generators of special conformal transformations reproduces Newton's inverse square law. Conversely, matter which couples to generators of translations induces a constant and possibly repulsive force far from the source, which may be relevant for explaining the late-time acceleration of the Universe. The coupling constant of the theory is dimensionless, which means that it is potentially renormalizable.

  13. Photonic crystal beads from gravity-driven microfluidics.

    PubMed

    Gu, Hongcheng; Rong, Fei; Tang, Baocheng; Zhao, Yuanjin; Fu, Degang; Gu, Zhongze

    2013-06-25

    This Letter reports a simple method for the mass production of 3D colloidal photonic crystal beads (PCBs) by using a gravity-driven microfluidic device and online droplet drying method. Compared to traditional methods, the droplet templates of the PCBs are generated by using the ultrastable gravity as the driving force for the microfluidics, thus the PCBs are formed with minimal polydispersity. Moreover, drying of the droplet templates is integrated into the production process, and the nanoparticles in the droplets self-assemble online. Overall, this process results in PCBs with good morphology, low polydispersity, brilliant structural colors, and narrow stop bands. PCBs could be bulk generated by this process for many practical applications, such as multiplex-encoded assays and the construction of novel optical materials.

  14. Multiple independent autonomous hydraulic oscillators driven by a common gravity head.

    PubMed

    Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi

    2015-06-15

    Self-switching microfluidic circuits that are able to perform biochemical experiments in a parallel and autonomous manner, similar to instruction-embedded electronics, are rarely implemented. Here, we present design principles and demonstrations for gravity-driven, integrated, microfluidic pulsatile flow circuits. With a common gravity head as the only driving force, these fluidic oscillator arrays realize a wide range of periods (0.4 s-2 h) and flow rates (0.10-63 μl min(-1)) with completely independent timing between the multiple oscillator sub-circuits connected in parallel. As a model application, we perform systematic, parallel analysis of endothelial cell elongation response to different fluidic shearing patterns generated by the autonomous microfluidic pulsed flow generation system.

  15. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization ofmore » further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.« less

  16. Effect of Loss on Multiplexed Single-Photon Sources (Open Access Publisher’s Version)

    DTIC Science & Technology

    2015-04-28

    lossy components on near- and long-term experimental goals, we simulate themultiplexed sources when used formany- photon state generation under various...efficient integer factorization and digital quantum simulation [7, 8], which relies critically on the development of a high-performance, on-demand photon ...SPDC) or spontaneous four-wave mixing: parametric processes which use a pump laser in a nonlinearmaterial to spontaneously generate photon pairs

  17. [Cellular mechanism of the generation of spontaneous activity in gastric muscle].

    PubMed

    Nakamura, Eri; Kito, Yoshihiko; Fukuta, Hiroyasu; Yanai, Yoshimasa; Hashitani, Hikaru; Yamamoto, Yoshimichi; Suzuki, Hikaru

    2004-03-01

    In gastric smooth muscles, interstitial cells of Cajal (ICC) might be the pacemaker cells of spontaneous activities since ICC are rich in mitochondria and are connected with smooth muscle cells via gap junctions. Several types of ICC are distributed widely in the stomach wall. A group of ICC distributed in the myenteric layer (ICC-MY) were the pacemaker cells of gastrointestinal smooth muscles. Pacemaker potentials were generated in ICC-MY, and the potentials were conducted to circular smooth muscles to trigger slow waves and also conducted to longitudinal muscles to form follower potentials. In circular muscle preparations, interstitial cells distributed within muscle bundles (ICC-IM) produced unitary potentials, which were conducted to circular muscles to form slow potentials by summation. In mutant mice lacking inositol trisphosphate (IP(3)) receptor, slow waves were absent in gastric smooth muscles. The generation of spontaneous activity was impaired by the inhibition of Ca(2+)-release from internal stores through IP(3) receptors, inhibition of mitochondrial Ca(2+)-handling with proton pump inhibitors, and inhibition of ATP-sensitive K(+)-channels at the mitochondrial inner membrane. These results suggested that mitochondrial Ca(2+)-handling causes the generation of spontaneous activity in pacemaker cells. Possible involvement of protein kinase C (PKC) in the Ca(2+) signaling system was also suggested.

  18. Treatment of ocean tide aliasing in the context of a next generation gravity field mission

    NASA Astrophysics Data System (ADS)

    Hauk, Markus; Pail, Roland

    2018-04-01

    Current temporal gravity field solutions from GRACE suffer from temporal aliasing errors due to under-sampling of signal to be recovered (e.g. hydrology), uncertainties in the de-aliasing models (usually atmosphere and ocean), and imperfect ocean tide models. Especially the latter will be one of the most limiting factors in determining high resolution temporal gravity fields from future gravity missions such as GRACE Follow-on and Next-Generation Gravity Missions (NGGM). In this paper a method to co-parameterize ocean tide parameters of the 8 main tidal constituents over time spans of several years is analysed and assessed. Numerical closed-loop simulations of low-low satellite-to-satellite-tracking missions for a single polar pair and a double pair Bender-type formation are performed, using time variable geophysical background models and noise assumptions for new generation instrument technology. Compared to the single pair mission, results show a reduction of tide model errors up to 70 per cent for dedicated tidal constituents due to an enhanced spatial and temporal sampling and error isotropy for the double pair constellation. Extending the observation period from one to three years leads to a further reduction of tidal errors up to 60 per cent for certain constituents, and considering non-tidal mass changes during the estimation process leads to reductions of tidal errors between 20 per cent and 80 per cent. As part of a two-step approach, the estimated tide model is used for de-aliasing during gravity field retrieval in a second iteration, resulting in more than 50 per cent reduction of ocean tide aliasing errors for a NGGM Bender-type formation.

  19. Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow

    NASA Astrophysics Data System (ADS)

    Alam, Meheboob; Arakeri, V. H.; Nott, P. R.; Goddard, J. D.; Herrmann, H. J.

    2005-01-01

    Linear stability theory and bifurcation analysis are used to investigate the role of gravity in shear-band formation in granular Couette flow, considering a kinetic-theory rheological model. We show that the only possible state, at low shear rates, corresponds to a "plug" near the bottom wall, in which the particles are densely packed and the shear rate is close to zero, and a uniformly sheared dilute region above it. The origin of such plugged states is shown to be tied to the spontaneous symmetry-breaking instabilities of the gravity-free uniform shear flow, leading to the formation of ordered bands of alternating dilute and dense regions in the transverse direction, via an infinite hierarchy of pitchfork bifurcations. Gravity plays the role of an "imperfection", thus destroying the "perfect" bifurcation structure of uniform shear. The present bifurcation problem admits universal unfolding of pitchfork bifurcations which subsequently leads to the formation of a sequence of a countably infinite number of "isolas", with the solution structures being a modulated version of their gravity-free counterpart. While the solution with a plug near the bottom wall looks remarkably similar to the shear-banding phenomenon in dense slow granular Couette flows, a "floating" plug near the top wall is also a solution of these equations at high shear rates. A two-dimensional linear stability analysis suggests that these floating plugged states are unstable to long-wave travelling disturbances.The unique solution having a bottom plug can also be unstable to long waves, but remains stable at sufficiently low shear rates. The implications and realizability of the present results are discussed in the light of shear-cell experiments under "microgravity" conditions.

  20. The gravitational wave stress–energy (pseudo)-tensor in modified gravity

    NASA Astrophysics Data System (ADS)

    Saffer, Alexander; Yunes, Nicolás; Yagi, Kent

    2018-03-01

    The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open up new tests of modified gravity theories in the strong-field and dynamical, extreme gravity regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy–momentum carried by such waves out of the system. We here study four different methods for finding the gravitational wave stress–energy pseudo-tensor in gravity theories with any combination of scalar, vector, or tensor degrees of freedom. These methods rely on the second variation of the action under short-wavelength averaging, the second perturbation of the field equations in the short-wavelength approximation, the construction of an energy complex leading to a Landau–Lifshitz tensor, and the use of Noether’s theorem in field theories about a flat background. We apply these methods in general relativity, Jordan–Fierz–Brans–Dicky theoy, and Einstein-Æther theory to find the gravitational wave stress–energy pseudo-tensor and calculate the rate at which energy and linear momentum is carried away from the system. The stress–energy tensor and the rate of linear momentum loss in Einstein-Æther theory are presented here for the first time. We find that all methods yield the same rate of energy loss, although the stress–energy pseudo-tensor can be functionally different. We also find that the Noether method yields a stress–energy tensor that is not symmetric or gauge-invariant, and symmetrization via the Belinfante procedure does not fix these problems because this procedure relies on Lorentz invariance, which is spontaneously broken in Einstein-Æther theory. The methods and results found here will be useful for the calculation of predictions in modified gravity theories that can then be contrasted with observations.

  1. Gravity Waves in the Southern Hemisphere Extratropical Winter in the 7-km GEOS-5 Nature Run

    NASA Astrophysics Data System (ADS)

    Holt, L. A.; Alexander, M. J.; Coy, L.; Putman, W.; Molod, A.; Pawson, S.

    2016-12-01

    This study investigates winter Southern Hemisphere extratropical gravity waves and their sources in a 7-km horizontal resolution global climate simulation, the GEOS-5 Nature Run (NR). Gravity waves are evaluated by comparing brightness temperature anomalies to those from the Atmospheric Infrared Sounder (AIRS). Gravity wave amplitudes, wavelengths, and propagation directions are also computed in the NR and AIRS. The NR shows good agreement with AIRS in terms of spatial patterns of gravity wave activity and propagation directions, but the NR amplitudes are smaller by about a factor of 5 and the wavelengths are about a factor of 2 longer than in AIRS. In addition to evaluating gravity wave characteristics, gravity wave sources in the NR are also investigated by relating diagnostics of tropospheric sources of gravity waves, such as precipitation, frontogenesis, and potential vorticity anomalies to absolute gravity wave momentum fluxes in the lower stratosphere. Strong precipitation events are the most strongly correlated with absolute momentum flux, supporting previous studies highlighting the importance of moist processes in the generation of Southern Hemisphere extratropical gravity waves. Additionally, gravity wave absolute momentum fluxes over land are compared to those over ocean, and the contribution of orographic and nonorographic gravity waves to the total absolute momentum flux is examined.

  2. Modeled Microgravity Inhibits Apoptosis in Peripheral Blood Lymphocytes

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Pellis, Neal R.

    2000-01-01

    Microgravity interferes with numerous lymphocyte functions (expression of cell surface molecules, locomotion, polyclonal and antigen-specific activation, and the protein kinase C activity in signal transduction). The latter suggests that gravity may also affect programmed cell death (PCD) in lymphocyte populations. To test this hypothesis, we investigated spontaneous, activation- and radiation-induced PCD in peripheral blood mononuclear cells (PBMC) exposed to modeled microgravity using a rotating cell culture system. The results showed significant inhibition of radiation- and activation-induced apoptosis in modeled microgravity and provide insights into the potential mechanisms of this phenomenon.

  3. Modeled microgravity inhibits apoptosis in peripheral blood lymphocytes

    NASA Technical Reports Server (NTRS)

    Risin, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Microgravity interferes with numerous lymphocyte functions (expression of cell surface molecules, locomotion, polyclonal and antigen-specific activation, and the protein kinase C activity in signal transduction). The latter suggests that gravity may also affect programmed cell death (PCD) in lymphocyte populations. To test this hypothesis, we investigated spontaneous, activation- and radiation-induced PCD in peripheral blood mononuclear cells exposed to modeled microgravity (MMG) using a rotating cell culture system. The results showed significant inhibition of radiation- and activation-induced apoptosis in MMG and provide insights into the potential mechanisms of this phenomenon.

  4. Inflation versus collapse in brane matter

    NASA Astrophysics Data System (ADS)

    Zheltukhin, A. A.

    2017-11-01

    Mapping of fundamental branes to their worldsheet (ws) multiplets originating from spontaneous breaking of the Poincaré symmetry is studied. The interaction Lagrangian for fields of the Nambu-Goldstone multiplet is shown to encode R2 gravity on the ws. The power law kp ˜ Tp 3-p 2(p+1) for the SO(D - p - 1) gauge coupling kp as the function of the p-brane tension Tp is assumed. It points to the presence of asymptotic freedom and confinement phases in brane matter. Their connection with collapse and inflation of the branes is discussed.

  5. Extremal Approaches to Estimating Spatial Interaction.

    DTIC Science & Technology

    Two recent theoretical approaches (that of Charnes, Raike, and Bettinger (1972) and that of A . G. Wilson (1967)) to the gravity model of spatial...relationships between the two methods are demonstrated. The two approaches jointly indicate a general method of generating new hypotheses of gravity flows. This

  6. Generating a Reduced Gravity Environment on Earth

    NASA Technical Reports Server (NTRS)

    Dungan, Larry K.; Cunningham, Tom; Poncia, Dina

    2010-01-01

    Since the 1950s several reduced gravity simulators have been designed and utilized in preparing humans for spaceflight and in reduced gravity system development. The Active Response Gravity Offload System (ARGOS) is the newest and most realistic gravity offload simulator. ARGOS provides three degrees of motion within the test area and is scalable for full building deployment. The inertia of the overhead system is eliminated by an active motor and control system. This presentation will discuss what ARGOS is, how it functions, and the unique challenges of interfacing to the human. Test data and video for human and robotic systems will be presented. A major variable in the human machine interaction is the interface of ARGOS to the human. These challenges along with design solutions will be discussed.

  7. An intuitive two-fluid picture of spontaneous 2D collisionless magnetic reconnection and whistler wave generation

    NASA Astrophysics Data System (ADS)

    Yoon, Young Dae; Bellan, Paul M.

    2018-05-01

    An intuitive and physical two-fluid picture of spontaneous 2D collisionless magnetic reconnection and whistler wave generation is presented in the framework of 3D electron-magnetohydrodynamics. In this regime, canonical circulation (Q =me∇×u +qeB ) flux tubes can be defined in analogy to magnetic flux tubes in ideal magnetohydrodynamics. Following the 3D behavior of these Q flux tubes provides a new perspective on collisionless reconnection—a perspective that has been hard to perceive via examinations of 2D projections. This shows that even in a 2D geometry with an ignorable coordinate, a 3D examination is essential for a full comprehension of the process. Intuitive answers are given to three main questions in collisionless reconnection: why is reconnection spontaneous, why do particles accelerate extremely fast, and why are whistler waves generated? Possible extensions to other regimes are discussed.

  8. The role of collective self-gravity in the nonlinear evolution of viscous overstability in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2017-09-01

    Observational evidence for the presence of axisymmetric periodic micro-structure on length scales of 100m - 200m in Saturn's A and B rings was revealed by several instruments onboard the Cassini mission to Saturn. The structure was seen in radio occultations performed by the Radio Science Subsystem (RSS) (Thomson et al. (2007)) and stellar occultations carried out with the Ultraviolet Imaging Spectrograph (UVIS) (Colwell et al. (2007)), and the Visual and Infrared Mapping Spectrometer (VIMS) (Hedman et al. (2014)). Up to date, this micro-structure is best explained by the viscous overstability, which arises as a spontaneous oscillatory instability in a dense ring, if certain conditions are met, leading to the formation of axisymmetric density waves with wavelengths on the order of 100m. We investigate the influence of collective self-gravity forces on the nonlinear, large scale evolution of the viscous overstability in Saturn's rings. To this end we numerically solve the nonlinear hydrodynamic model equations for a dense ring, including radial self-gravity and employing values for the transport coefficients (such as the ring's viscosity and heat conductivity) derived by salo et al. (2001). We concentrate on ring optical depths of order unity, which are appropriate to model Saturn's dense rings. Furthermore, local N-body simulations, incorporating vertical and radial collective self-gravity forces are performed. Direct particle-particle forces are omitted, which prevents small scale gravitational instabilities (self-gravity wakes) from forming, an approximation that allows us to study long radial scales of some 10 kilometers and to compare directly the hydrodynamic model and the N-body simulations. Our hydrodynamic model results, in the limit of vanishing self-gravity, compare very well with the studies of Latter & Ogilvie (2010) and Rein & Latter (2013). In contrast, for rings with non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains tend to settle close to the frequency minimum of the nonlinear dispersion relation, i.e. the saturation wavelengths decrease with increasing surface mass density of the ring. Good agreement between hydrodynamics and N-body simulations is found for disks with strong radial self-gravity, while the largest deviations occur in the limit of weak self-gravity. The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (100m-300m) agree reasonably well with the length scale of the axisymmetric periodic micro structure in Saturn's inner A ring and the B ring, as found by Cassini.

  9. Cosmic ray production in modified gravity

    NASA Astrophysics Data System (ADS)

    Arbuzova, E. V.; Dolgov, A. D.; Reverberi, L.

    2018-06-01

    This paper is a reply to the criticism of our work on particle production in modified gravity by Gorbunov and Tokareva. We show that their arguments against efficient particle production are invalid. F( R) theories can lead to an efficient generation of high energy cosmic rays in contracting systems.

  10. Study of Critical Heat Flux and Two-Phase Pressure Drop Under Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Abdollahian, Davood; Quintal, Joseph; Barez, Fred; Zahm, Jennifer; Lohr, Victor

    1996-01-01

    The design of the two-phase flow systems which are anticipated to be utilized in future spacecraft thermal management systems requires a knowledge of two-phase flow and heat transfer phenomena in reduced gravities. This program was funded by NASA headquarters in response to NRA-91-OSSA-17 and was managed by Lewis Research Center. The main objective of this program was to design and construct a two-phase test loop, and perform a series of normal gravity and aircraft trajectory experiments to study the effect of gravity on the Critical Heat Flux (CHF) and onset of instability. The test loop was packaged on two aircraft racks and was also instrumented to generate data for two-phase pressure drop. The normal gravity tests were performed with vertical up and downflow configurations to bound the effect of gravity on the test parameters. One set of aircraft trajectory tests was performed aboard the NASA DC-9 aircraft. These tests were mainly intended to evaluate the test loop and its operational performance under actual reduced gravity conditions, and to produce preliminary data for the test parameters. The test results were used to demonstrate the applicability of the normal gravity models for prediction of the two-phase friction pressure drop. It was shown that the two-phase friction multipliers for vertical upflow and reduced gravity conditions can be successfully predicted by the appropriate normal gravity models. Limited critical heat flux data showed that the measured CHF under reduced gravities are of the same order of magnitude as the test results with vertical upflow configuration. A simplified correlation was only successful in predicting the measured CHF for low flow rates. Instability tests with vertical upflow showed that flow becomes unstable and critical heat flux occurs at smaller powers when a parallel flow path exists. However, downflow tests and a single reduced gravity instability experiment indicated that the system actually became more stable with a parallel single-phase flow path. Several design modifications have been identified which will improve the system performance for generating reduced gravity data. The modified test loop can provide two-phase flow data for a range of operating conditions and can serve as a test bed for component evaluation.

  11. Study of two-phase flows in reduced gravity

    NASA Astrophysics Data System (ADS)

    Roy, Tirthankar

    Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies have been done in the past to understand the global structure of gas-liquid two-phase flows under reduced gravity conditions, using experimental setups aboard drop towers or aircrafts flying parabolic flights, detailed data on local structure of such two-phase flows are extremely rare. Hence experiments were carried out in a 304 mm inner diameter (ID) test facility on earth. Keeping in mind the detailed experimental data base that needs to be generated to evaluate two-fluid model along with IATE, ground based simulations provide the only economic path. Here the reduced gravity condition is simulated using two-liquids of similar densities (water and Therminol 59 RTM in the present case). Only adiabatic two-phase flows were concentrated on at this initial stage. Such a large diameter test section was chosen to study the development of drops to their full extent (it is to be noted that under reduced gravity conditions the stable bubble size in gas-liquid two-phase flows is much larger than that at normal gravity conditions). Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using state-of-the art multi-sensor conductivity probes. The results are presented and discussed. Also one-group as well as two-group, steady state, one-dimensional IATE was evaluated against data obtained here and by other researchers, and the results presented and discussed.

  12. Neuronal Activity in the Subthalamic Cerebrovasodilator Area under Partial-Gravity Conditions in Rats

    PubMed Central

    Zeredo, Jorge L.; Toda, Kazuo; Kumei, Yasuhiro

    2014-01-01

    The reduced-gravity environment in space is known to cause an upward shift in body fluids and thus require cardiovascular adaptations in astronauts. In this study, we recorded in rats the neuronal activity in the subthalamic cerebrovasodilator area (SVA), a key area that controls cerebral blood flow (CBF), in response to partial gravity. “Partial gravity” is the term that defines the reduced-gravity levels between 1 g (the unit gravity acceleration on Earth) and 0 g (complete weightlessness in space). Neuronal activity was recorded telemetrically through chronically implanted microelectrodes in freely moving rats. Graded levels of partial gravity from 0.4 g to 0.01 g were generated by customized parabolic-flight maneuvers. Electrophysiological signals in each partial-gravity phase were compared to those of the preceding 1 g level-flight. As a result, SVA neuronal activity was significantly inhibited by the partial-gravity levels of 0.15 g and lower, but not by 0.2 g and higher. Gravity levels between 0.2–0.15 g could represent a critical threshold for the inhibition of neurons in the rat SVA. The lunar gravity (0.16 g) might thus trigger neurogenic mechanisms of CBF control. This is the first study to examine brain electrophysiology with partial gravity as an experimental parameter. PMID:25370031

  13. Prevalence of parvovirus B19 specific antibody in pregnant women with spontaneous abortion.

    PubMed

    Rahbar, Nahid; Vali Zadeh, Saeid; Ghorbani, Raheb; Kheradmand, Pegah

    2015-01-01

    Human parvovirus B19 is a very common viral infection especially in school-aged children. The infection during pregnancy can affect the fetus due to lack of mother's immunity. Although, there is still no evidence of fetal teratogenic effects with parvovirus B19, but non-immune fetal hydrops and abortion may be caused by vertical transmission of the virus during pregnancy. This study was aimed to assess the prevalence of parvovirus B19-specific antibody (IgM) in pregnant women who had a spontaneous abortion. This cross-sectional study was carried out in all pregnant women who referred due to a spontaneous abortion. All demographic information such as age, occupation, and gestational age, last history of abortion, gravity, and presence of children below the age of six was recorded and a blood sample was provided for all the women. Then, the blood samples were tested to assay parvovirus B19-specific antibody (IgM) by EuroImmune ELISA kit. Among 94 pregnant women with the mean age of 28.4 years who had a spontaneous abortion, parvovirus B19 specific antibody (IgM) was detected in 17 participants (18.1%). Meanwhile, 14 women (14.9%) were suspected for presence of the antibody in their blood sample. There was no significant difference between the presence of antibody and age of pregnant women, occupation, gestational age, number of previous abortion, presence of children below the age of six and number of pregnancy. These findings revealed that a high percentage of pregnant women are probably non-immune against parvovirus B19, and also there might be a number of spontaneous abortions in which parvovirus infection caused fetal death.  However, more studies are needed to prove the absolute role of parvovirus B19 in these abortions.

  14. Towards a social functional account of laughter: Acoustic features convey reward, affiliation, and dominance.

    PubMed

    Wood, Adrienne; Martin, Jared; Niedenthal, Paula

    2017-01-01

    Recent work has identified the physical features of smiles that accomplish three tasks fundamental to human social living: rewarding behavior, establishing and managing affiliative bonds, and negotiating social status. The current work extends the social functional account to laughter. Participants (N = 762) rated the degree to which reward, affiliation, or dominance (between-subjects) was conveyed by 400 laughter samples acquired from a commercial sound effects website. Inclusion of a fourth rating dimension, spontaneity, allowed us to situate the current approach in the context of existing laughter research, which emphasizes the distinction between spontaneous and volitional laughter. We used 11 acoustic properties extracted from the laugh samples to predict participants' ratings. Actor sex moderated, and sometimes even reversed, the relation between acoustics and participants' judgments. Spontaneous laughter appears to serve the reward function in the current framework, as similar acoustic properties guided perceiver judgments of spontaneity and reward: reduced voicing and increased pitch, increased duration for female actors, and increased pitch slope, center of gravity, first formant, and noisiness for male actors. Affiliation ratings diverged from reward in their sex-dependent relationship to intensity and, for females, reduced pitch range and raised second formant. Dominance displayed the most distinct pattern of acoustic predictors, including increased pitch range, reduced second formant in females, and decreased pitch variability in males. We relate the current findings to existing findings on laughter and human and non-human vocalizations, concluding laughter can signal much more that felt or faked amusement.

  15. Towards a social functional account of laughter: Acoustic features convey reward, affiliation, and dominance

    PubMed Central

    Martin, Jared; Niedenthal, Paula

    2017-01-01

    Recent work has identified the physical features of smiles that accomplish three tasks fundamental to human social living: rewarding behavior, establishing and managing affiliative bonds, and negotiating social status. The current work extends the social functional account to laughter. Participants (N = 762) rated the degree to which reward, affiliation, or dominance (between-subjects) was conveyed by 400 laughter samples acquired from a commercial sound effects website. Inclusion of a fourth rating dimension, spontaneity, allowed us to situate the current approach in the context of existing laughter research, which emphasizes the distinction between spontaneous and volitional laughter. We used 11 acoustic properties extracted from the laugh samples to predict participants’ ratings. Actor sex moderated, and sometimes even reversed, the relation between acoustics and participants’ judgments. Spontaneous laughter appears to serve the reward function in the current framework, as similar acoustic properties guided perceiver judgments of spontaneity and reward: reduced voicing and increased pitch, increased duration for female actors, and increased pitch slope, center of gravity, first formant, and noisiness for male actors. Affiliation ratings diverged from reward in their sex-dependent relationship to intensity and, for females, reduced pitch range and raised second formant. Dominance displayed the most distinct pattern of acoustic predictors, including increased pitch range, reduced second formant in females, and decreased pitch variability in males. We relate the current findings to existing findings on laughter and human and non-human vocalizations, concluding laughter can signal much more that felt or faked amusement. PMID:28850589

  16. How absolute EIT reflects the dependence of unilateral lung aeration on hyper-gravity and weightlessness?

    PubMed

    Hahn, G; Just, A; Hellige, G; Dittmar, J; Quintel, M

    2013-09-01

    We studied the influence of three gravity levels (0, 1 and 1.8 g) on unilateral lung aeration in a left lateral position by the application of absolute electrical impedance tomography. The electrical resistivity of the lung tissue was considered to be a meaningful indicator for lung aeration since changes in resistivity have already been validated in other studies to be proportional to changes in lung volume. Twenty-two healthy volunteers were studied during parabolic flights with three phases of different gravity, each lasting ∼20-22 s. Spontaneous breathing at normal tidal volume VT and at increased VT was performed. During transition to hyper-gravity mean expiratory resistivities (±SD in Ωm) increased at normal VT in the upper (right) lung from 7.6 ± 1.5 to 8.0 ± 1.7 and decreased from 5.8 ± 1.2 to 5.7 ± 1.2 in the lower (left) lung. Inspiratory resistivity values are 8.3 ± 1.6 to 8.8 ± 1.8 (right) and 6.3 ± 1.3 to 6.0 ± 1.3 (left). At increased VT, the changes in resistivities at end-expiration were 7.7 ± 1.5 to 8.0 ± 1.7 (right) and 5.8 ± 1.2 to 5.7 ± 1.2 (left). Corresponding end-inspiratory values are 9.9 ± 1.9 to 10.0 ± 2.0 (right) and 8.6 ± 2.1 to 7.9 ± 2.0 (left). During weightlessness, the distortion in the lungs disappeared and both lungs showed a nearly identical aeration, which was between the levels displayed at normal gravity. The small increase in resistivity for the upper lung during transition to hyper-gravity from 1 to 1.8 g at increased VT suggests that the degressive part of the pressure-volume curve has already been reached at end-inspiration. The results for a left lateral position are in agreement with West's lung model which has been introduced for cranio-caudal gravity dependence in the lungs.

  17. Canonical gravity, diffeomorphisms and objective histories

    NASA Astrophysics Data System (ADS)

    Samuel, Joseph

    2000-11-01

    This paper discusses the implementation of diffeomorphism invariance in purely Hamiltonian formulations of general relativity. We observe that, if a constrained Hamiltonian formulation derives from a manifestly covariant Lagrangian, the diffeomorphism invariance of the Lagrangian results in the following properties of the constrained Hamiltonian theory: the diffeomorphisms are generated by constraints on the phase space so that: (a) the algebra of the generators reflects the algebra of the diffeomorphism group; (b) the Poisson brackets of the basic fields with the generators reflects the spacetime transformation properties of these basic fields. This suggests that in a purely Hamiltonian approach the requirement of diffeomorphism invariance should be interpreted to include (b) and not just (a) as one might naively suppose. Giving up (b) amounts to giving up objective histories, even at the classical level. This observation has implications for loop quantum gravity which are spelled out in a companion paper. We also describe an analogy between canonical gravity and relativistic particle dynamics to illustrate our main point.

  18. Mechanical energy transport. [during stellar turbulences

    NASA Technical Reports Server (NTRS)

    Stein, R. F.; Leibacher, J. W.

    1980-01-01

    The properties, generation, and dissipation mechanisms of acoustic, gravity and Alfven waves are described, whose restoring forces are pressure, buoyancy, and magnetic tension, respectively. For acoustic waves, generation by turbulent convective motions and by the Eddington Valve thermal overstability is discussed, considering the 'five-minute' oscillation; dissipation is possible either by radiation or shocks. Generation of gravity waves by penetrative convective motions and by shear arising from supergranule motions is reviewed, and dissipation due to wave breaking, interaction with the mean horizontal fluid flow, and very severe radiative damping is considered. Attention is given to Alfven wave generation by convective motions and thermal overstability, and to dissipation by mode coupling, wave decay, current dissipation, and particle collisions producing Joule or viscous heating.

  19. Sediment gravity flows triggered by remotely generated earthquake waves

    NASA Astrophysics Data System (ADS)

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan L.; Salmi, Marie S.

    2017-06-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011-2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  20. Sediment gravity flows triggered by remotely generated earthquake waves

    USGS Publications Warehouse

    Johnson, H. Paul; Gomberg, Joan S.; Hautala, Susan; Salmi, Marie

    2017-01-01

    Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

  1. Prosodic Contrasts in Ironic Speech

    ERIC Educational Resources Information Center

    Bryant, Gregory A.

    2010-01-01

    Prosodic features in spontaneous speech help disambiguate implied meaning not explicit in linguistic surface structure, but little research has examined how these signals manifest themselves in real conversations. Spontaneously produced verbal irony utterances generated between familiar speakers in conversational dyads were acoustically analyzed…

  2. Judging rolling wheels: Dynamic and kinematic aspects of rotation-translation coupling

    NASA Technical Reports Server (NTRS)

    Hecht, Heiko

    1993-01-01

    Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgements were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.

  3. Judging rolling wheels: dynamic and kinematic aspects of rotation-translation coupling.

    PubMed

    Hecht, H

    1993-01-01

    Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgments were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.

  4. Non-Abelian supertubes

    NASA Astrophysics Data System (ADS)

    Fernández-Melgarejo, José J.; Park, Minkyu; Shigemori, Masaki

    2017-12-01

    A supertube is a supersymmetric configuration in string theory which occurs when a pair of branes spontaneously polarizes and generates a new dipole charge extended along a closed curve. The dipole charge of a codimension-2 supertube is characterized by the U-duality monodromy as one goes around the supertube. For multiple codimension-2 supertubes, their monodromies do not commute in general. In this paper, we construct a supersymmetric solution of five-dimensional supergravity that describes two supertubes with such non-Abelian monodromies, in a certain perturbative expansion. In supergravity, the monodromies are realized as the multi-valuedness of the scalar fields, while in higher dimensions they correspond to non-geometric duality twists of the internal space. The supertubes in our solution carry NS5 and 5 2 2 dipole charges and exhibit the same monodromy structure as the SU(2) Seiberg-Witten geometry. The perturbative solution has AdS2 × S 2 asymptotics and vanishing four-dimensional angular momentum. We argue that this solution represents a microstate of four-dimensional black holes with a finite horizon and that it provides a clue for the gravity realization of a pure-Higgs branch state in the dual quiver quantum mechanics.

  5. Development of a Network RTK Positioning and Gravity-Surveying Application with Gravity Correction Using a Smartphone

    PubMed Central

    Kim, Jinsoo; Lee, Youngcheol; Cha, Sungyeoul; Choi, Chuluong; Lee, Seongkyu

    2013-01-01

    This paper proposes a smartphone-based network real-time kinematic (RTK) positioning and gravity-surveying application (app) that allows semi-real-time measurements using the built-in Bluetooth features of the smartphone and a third-generation or long-term evolution wireless device. The app was implemented on a single smartphone by integrating a global navigation satellite system (GNSS) controller, a laptop, and a field-note writing tool. The observation devices (i.e., a GNSS receiver and relative gravimeter) functioned independently of this system. The app included a gravity module, which converted the measured relative gravity reading into an absolute gravity value according to tides; meter height; instrument drift correction; and network adjustments. The semi-real-time features of this app allowed data to be shared easily with other researchers. Moreover, the proposed smartphone-based gravity-survey app was easily adaptable to various locations and rough terrain due to its compact size. PMID:23857258

  6. Lunar, Cislunar, Near/Farside Laser Retroreflectors for the Accurate: Positioning of Landers/Rovers/Hoppers/Orbiters, Commercial Georeferencing, Test of Relativistic Gravity, and Metrics of the Lunar Interior

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Currie, D.; Ciocci, E.; Contessa, S.; Delle Monache, G.; March, R.; Martini, M.; Mondaini, C.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Bianco, G.; Vittori, R.; Chandler, J.; Murphy, T.; Maiello, M.; Petrassi, M.; Lomastro, A.

    2017-10-01

    We developed next-generation lunar, cislunar, near/farside laser retroreflectors for the improved/accurate: Positioning of landers/rovers/hoppers/orbiters, commercial georeferencing, test of relativistic gravity, and metrics of the lunar interior.

  7. Laser Vacuum Furnace for Zone Refining

    NASA Technical Reports Server (NTRS)

    Griner, D. B.; Zurburg, F. W.; Penn, W. M.

    1986-01-01

    Laser beam scanned to produce moving melt zone. Experimental laser vacuum furnace scans crystalline wafer with high-power CO2-laser beam to generate precise melt zone with precise control of temperature gradients around zone. Intended for zone refining of silicon or other semiconductors in low gravity, apparatus used in normal gravity.

  8. OFO experimental techniques and preliminary conclusions - Is artificial gravity needed during prolonged weightlessness.

    NASA Technical Reports Server (NTRS)

    Gualtierotti, T.; Bracchi, F.

    1972-01-01

    The technique of single unit recording from body systems generating electrical pulses coherent with their basic function (CNS, muscles, sense organs) has been proved feasible during the OFO A orbital flight, an automatic physiological experiment. The results of recording 155 hours of orbital flight of pulses from the nerve fibres of four vestibular gravity sensors in two bull frogs indicate that the vestibular organ adjusts to zero g. As all the other biological changes observed during orbit are due to lack of exercise, it is concluded that artificial gravity might not be necessary during prolonged space missions or on low gravity celestial bodies.

  9. An electric current associated with gravity sensing in maize roots

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Leopold, A. C.

    1987-01-01

    The study of gravisensing would be greatly enhanced if physiological events associated with gravity sensing could be detected separately from subsequent growth processes. This report presents a means to discriminate sensing from the growth processes. By using a vibrating probe, we have found an electric current generated by the gravity sensing region of the root cap of maize (Zea mays cv Merit) in response to gravistimulation. On the upper surface of the root cap, the change from the endogenous current has a density of 0.55 microampere per square centimeter away from gravity. The onset of the current shift has a characteristic of lag of three to four minutes after gravistimulation, which corresponds to the presentation time for gravity sensing in this tissue. A description of the current provides some information about the sensing mechanism, as well as being a valuable means to detect gravity sensing independently of differential growth.

  10. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.

  11. What are the origins and relevance of spontaneous bladder contractions? ICI-RS 2017.

    PubMed

    Drake, Marcus J; Fry, Christopher H; Hashitani, Hikaru; Kirschner-Hermanns, Ruth; Rahnama'i, Mohammad S; Speich, John E; Tomoe, Hikaru; Kanai, Anthony J; McCloskey, Karen D

    2018-01-23

    Storage phase bladder activity is a counter-intuitive observation of spontaneous contractions. They are potentially an intrinsic feature of the smooth muscle, but interstitial cells in the mucosa and the detrusor itself, as well as other muscular elements in the mucosa may substantially influence them. They are identified in several models explaining lower urinary tract dysfunction. A consensus meeting at the International Consultation on Incontinence Research Society (ICI-RS) 2017 congress considered the origins and relevance of spontaneous bladder contractions by debating which cell type(s) modulate bladder spontaneous activity, whether the methodologies are sufficiently robust, and implications for healthy and abnormal lower urinary tract function. The identified research priorities reflect a wide range of unknown aspects. Cellular contributions to spontaneous contractions in detrusor smooth muscle are still uncertain. Accordingly, insight into the cellular physiology of the bladder wall, particularly smooth muscle cells, interstitial cells, and urothelium, remains important. Upstream influences, such as innervation, endocrine, and paracrine factors, are particularly important. The cellular interactions represent the key understanding to derive the integrative physiology of organ function, notably the nature of signalling between mucosa and detrusor layers. Indeed, it is still not clear to what extent spontaneous contractions generated in isolated preparations mirror their normal and pathological counterparts in the intact bladder. Improved models of how spontaneous contractions influence pressure generation and sensory nerve function are also needed. Deriving approaches to robust evaluation of spontaneous contractions and their influences for experimental and clinical use could yield considerable progress in functional urology. © 2018 Wiley Periodicals, Inc.

  12. Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free

    PubMed Central

    Bianconi, Ginestra; Rahmede, Christoph

    2015-01-01

    In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces. PMID:26356079

  13. Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph

    2015-09-10

    In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension d. We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the δ-faces of the d-dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the δ-faces.

  14. Beyond Einstein gravity

    NASA Astrophysics Data System (ADS)

    Grisa, Luca A.

    2008-07-01

    In this thesis, I studied three different models, that depart from Einstein's General Relativity at either long or short distances. The first third of the thesis will be devoted to bulk modifications of the braneworld model, known as Randall-Sundrum. First, I will show how the effective graviton spectrum on the brane world-volume contains a massive resonance state, when the brane is embedded in an asymmetric warped geometry. Alongside it, a zero-mode, which can be identified with the our-dimensional graviton of GR, is also present. Then I will discuss the effects that the presence of a Domain Wall localized on the brane has on the RS geometry. The DW both generates a deficit angle in the bulk and inflates with rate slightly larger than the known result in four dimensions. I will show how this departure from standard GR arises in the dual CFT within the framework of the AdS/CFT correnspondence. The conformal fields gravitationally coupled to the DW radiatively corrects the DW tension, and hence its Hubble rate. In the second part, I will discuss intersecting D-brane models, that describe at low energies a two dimensional chiral fermion theory localized at the intersection. The fermions are coupled to gauge fields in the bulk and chiral symmetry is dynamically broken. No Nambu-Goldstone boson, associated with spontaneously broken symmetries, appears in two dimensional field theories. I will show how the disappearance of the Nambu-Goldstone boson is obtained from the non-trivial dynamics of the gauge field in these models. The third and final part is about a class of models with a small Lorentz-violating deformation. The motivation to study these models lies in the attempt to theoretically justify the presence of the incredibly tiny cosmological constant, that recent observations have helped to identify. The idea is to introduce new interactions that would weaken the attractive gravitational force at large distance, but without modifying gravity at shorter range where the experiments proved GR to be correct. These requests tightly constraint the possible form of Lorentz-violating deformations. In general, it can be shown that a generic deformation generates a bounce in the cosmological evolution at late times.

  15. Some classes of gravitational shock waves from higher order theories of gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2017-02-01

    We study the gravitational shock wave generated by a massless high energy particle in the context of higher order gravities of the form F(R,R_{μν}R^{μν},R_{μναβ}R^{μν αβ}). In the case of F(R) gravity, we investigate the gravitational shock wave solutions corresponding to various cosmologically viable gravities, and as we demonstrate the solutions are rescaled versions of the Einstein-Hilbert gravity solution. Interestingly enough, other higher order gravities result to the general relativistic solution, except for some specific gravities of the form F(R_{μν}R^{μν}) and F(R,R_{μν}R^{μν}), which we study in detail. In addition, when realistic Gauss-Bonnet gravities of the form R+F(G) are considered, the gravitational shock wave solutions are identical to the general relativistic solution. Finally, the singularity structure of the gravitational shock waves solutions is studied, and it is shown that the effect of higher order gravities makes the singularities milder in comparison to the general relativistic solutions, and in some particular cases the singularities seem to be absent.

  16. Generation of an induced pluripotent stem cell line from chorionic villi of a Turner syndrome spontaneous abortion.

    PubMed

    Parveen, Shagufta; Panicker, M M; Gupta, Pawan Kumar

    2017-03-01

    A major cause of spontaneous abortions is chromosomal abnormality of foetal cells. We report the generation of an induced pluripotent stem cell line from the fibroblasts isolated from chorionic villi of an early spontaneously aborted foetus with Turner syndrome. The Turner syndrome villus induced pluripotent stem cell line is transgene free, retains the original XO karyotype, expresses pluripotency markers and undergoes trilineage differentiation. This pluripotent stem cell model of Turner syndrome should serve as a tool to study the developmental abnormalities of foetus and placenta that lead to early embryo lethality and profound symptoms like infertility in 45 XO survivors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Michigan Magnetic and Gravity Maps and Data: A Website for the Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.; Snyder, Stephen L.

    2009-01-01

    This web site provides the best available, public-domain, aeromagnetic and gravity data in the State of Michigan and merges these data into composite grids that are available for downloading. The magnetic grid is compiled from 25 separate magnetic surveys that have been knit together to form a single composite digital grid and map. The magnetic survey grids have been continued to 305 meters (1,000 feet) above ground and merged together to form the State compilation. A separate map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. In addition, a complete Bouguer gravity anomaly grid and map were generated from more than 20,000 gravity station measurements from 33 surveys. A table provides the facts about each gravity survey where known.

  18. Cartan gravity, matter fields, and the gauge principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westman, Hans F., E-mail: hwestman74@gmail.com; Zlosnik, Tom G., E-mail: t.zlosnik@imperial.ac.uk

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top ofmore » it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as open questions. -- Highlights: •Develops Cartan gravity to include matter fields. •Coupling to gravity is done using the standard gauge prescription. •Matter actions are manifestly polynomial in all field variables. •Standard equations recovered on-shell for scalar, spinor and Yang–Mills fields. •Unification of a U(1) field with gravity based on the orthogonal group SO(1,5)« less

  19. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  20. Leptogenesis from gravity waves in models of inflation.

    PubMed

    Alexander, Stephon H S; Peskin, Michael E; Sheikh-Jabbari, M M

    2006-03-03

    We present a new mechanism for creating the observed cosmic matter-antimatter asymmetry which satisfies all three Sakharov conditions from one common thread, gravitational waves. We generate lepton number through the gravitational anomaly in the lepton number current. The source term comes from elliptically polarized gravity waves that are produced during inflation if the inflaton field contains a CP-odd component. The amount of matter asymmetry generated in our model can be of realistic size for the parameters within the range of some inflationary scenarios and grand unified theories.

  1. Applications of acoustic-gravity waves numerical modeling to tsunami signals observed by gravimetry satellites in very low orbit

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.

    2016-12-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.

  2. Can neutrino decay-driven mock gravity save hot dark matter?

    NASA Technical Reports Server (NTRS)

    Splinter, Randall J.; Melott, Adrian L.

    1992-01-01

    The radiative decay of a 30 eV neutrino with a lifetime of order 10 exp 23-24 s has recently been shown to yield a satisfactory explanation of a wide range of problems in astrophysics. In this paper, it is investigated whether the photon flux generated by the radiative decay of a massive neutrino is capable of generating sufficient radiation pressure to cause a 'mock gravitational' collapse of primordial hydrogen clouds. It is shown that when using neutral hydrogen as a source of opacity for mock gravity the time scale for mock gravitational collapse is significantly larger than the expansion time scale. Thus, the model fails as a source of galactic seed perturbations. Furthermore, it is argued that nonlinear feedback mechanisms will be unable to increase the collapse rate of the cloud under mock gravity.

  3. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China).

    PubMed

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu

    2017-05-25

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.

  4. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China)

    PubMed Central

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu

    2017-01-01

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3–5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems. PMID:28587086

  5. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China)

    NASA Astrophysics Data System (ADS)

    Zhao, Q.

    2017-12-01

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.

  6. Nonseparable Werner states in spontaneous parametric down-conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caminati, Marco; De Martini, Francesco; Perris, Riccardo

    2006-03-15

    The multiphoton states generated by high-gain spontaneous parametric down-conversion (SPDC) in the presence of large losses are investigated theoretically and experimentally. The explicit form for the two-photon output state has been found to exhibit a Werner structure very resilient to losses for any value of the nonlinear gain parameter g. The theoretical results are found to be in agreement with experimental data obtained by 'entanglement witness' methods and by the quantum tomography of the state generated by a high-g SPDC.

  7. Quantum random number generation for loophole-free Bell tests

    NASA Astrophysics Data System (ADS)

    Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar

    2015-05-01

    We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.

  8. Weak gravity conjecture as a razor criterium for exotic D-brane instantons

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea

    2017-01-01

    We discuss implications of weak gravity conjecture (WGC) for exotic D-brane instantons. In particular, WGC leads to indirect stringent bounds on non-perturbative superpotentials generated by exotic instantons with many implications for phenomenology: R-parity violating processes, neutrino mass, μ-problem, neutron-antineutron transitions and collider physics.

  9. Installation Restoration Program Records Search for Des Moines Air National Guard Installation, Iowa

    DTIC Science & Technology

    1983-09-01

    installation. Low-lying drainageways on the site are underlain by soils of the Gravity series and of the Wabash -Gravity-Nodaway complex. These soils...Shop The electric shop is located in Facility No. 100. Wastes generated from this area include nickel- -- ’ cadmium batteries (24/year) and sulfuric

  10. Decoupling the Roles of Inertia and Gravity on Particle Dispersion

    NASA Technical Reports Server (NTRS)

    Groszmann, D. E.; Thompson, J. H.; Coppen, S. W.; Rogers, C. B.

    1999-01-01

    Inertial and gravitational forces determine a particle's motion in a turbulent flow field. Gravity plays the dominant role in this motion by pulling the particles through adjacent regions of fluid turbulence. To better understand and model how a particle's inertia effects its displacement, one must examine the dispersion in a turbulent flow in the absence of gravity. In this paper, we present the particle experiments planned for NASA's KC-135 Reduced-Gravity Aircraft, which generates microgravity conditions for about 20 seconds. We also predict the particle behavior using simulation and ground-based experiments. We will release particles with Stokes numbers of 0.1, 1, and 10 into an enclosed tank of near-isotropic, stationary, and homogenous turbulence. These particle Stoke numbers cover a broad range of flow regimes of interest. Two opposed grids oscillating back and forth generate the turbulent field in the tank with a range of turbulence scales that covers about three orders of magnitude and with turbulence intensities of about ten times the mean velocity. The motion of the particles will be tracked using a stereo image velocimetry technique.

  11. Simulations of gravitational stress on normovolemic and hypovolemic men and women.

    PubMed

    Zhang, Qingguang; Knapp, Charles F; Stenger, Michael B; Patwardhan, Abhijit R; Elayi, Samy C; Wang, Siqi; Kostas, Vladimir I; Evans, Joyce M

    2014-04-01

    Earth-based simulations of physiologic responses to space mission activities are needed to develop prospective countermeasures. To determine whether upright lower body positive pressure (LBPP) provides a suitable space mission simulation, we investigated the cardiovascular responses of normovolemic and hypovolemic men and women to supine and orthostatic stress induced by head-up tilt (HUT) and upright LBPP, representing standing in lunar, Martian, and Earth gravities. Six men and six women were tested in normovolemic and hypovolemic (furosemide, intravenous, 0.5 mg x kg(-1)) conditions. Continuous electrocardiogram, blood pressure, segmental bioimpedance, and stroke volume (echocardiography) were recorded supine and at lunar, Martian, and Earth gravities (10 degrees, 20 degrees, and 80 degrees HUT vs. 20%, 40%, and 100% bodyweight upright LBPP), respectively. Cardiovascular responses were assessed from mean values, spectral powers, and spontaneous baroreflex parameters. Hypovolemia reduced plasma volume by approximately 10% and stroke volume by approximately 25% at supine, and increasing orthostatic stress resulted in further reductions. Upright LBPP induced more plasma volume losses at simulated lunar and Martian gravities compared with HUT, while both techniques induced comparable central hypovolemia at each stress. Cardiovascular responses to orthostatic stress were comparable between HUT and upright LBPP in both normovolemic and hypovolemic conditions; however, hypovolemic blood pressure was greater during standing at 100% bodyweight compared to 80 degree HUT due to a greater increase of total peripheral resistance. The comparable cardiovascular response to HUT and upright LBPP support the use of upright LBPP as a potential model to simulate activity in lunar and Martian gravities.

  12. Healthy Birth Practice #5: Avoid Giving Birth on Your Back and Follow Your Body's Urge to Push.

    PubMed

    DiFranco, Joyce T; Curl, Marilyn

    2014-01-01

    Women in the United States are still giving birth in the supine position and are restricted in how long they can push and encouraged to push forcefully by their caregivers. Research does not support these activities. There is discussion about current research and suggestions on how to improve the quality of the birth experience. This article is an updated evidence-based review of the "Lamaze International Care Practices That Promote Normal Birth, Care Practice #5: Spontaneous Pushing in Upright or Gravity-Neutral Positions," published in The Journal of Perinatal Education, 16(3), 2007.

  13. Condensate cosmology in O'Raifeartaigh models

    NASA Astrophysics Data System (ADS)

    Barnard, James

    2011-08-01

    Flat directions charged under an R-symmetry are a generic feature of O'Raifeartaigh models. Non-topological solitons associated with this symmetry, R-balls, are likely to form through the fragmentation of a condensate, itself created by soft terms induced during inflation. In gravity mediated SUSY breaking R-balls decay to gravitinos, reheating the universe. For gauge mediation R-balls can provide a good dark matter candidate. Alternatively they can decay, either reheating or cooling the universe. Conserved R-symmetry permits decay to gravitinos or gauginos, whereas spontaneously broken R-symmetry results in decay to visible sector gauge bosons.

  14. Vacuum Decay via Lorentzian Wormholes

    NASA Astrophysics Data System (ADS)

    Rosales, J. L.

    We speculate about the space-time description due to the presence of Lorentzian worm-holes (handles in space-time joining two distant regions or other universes) in quantum gravity. The semiclassical rate of production of these Lorentzian wormholes in Reissner-Nordström space-times is calculated as a result of the spontaneous decay of vacuum due to a real tunneling configuration. In the magnetic case it only depends on the value of the field theoretical fine structure constant. We predict that the quantum probability corresponding to the nucleation of such geodesically complete space-times should be acutally negligible in our physical Universe.

  15. Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    2003-01-01

    In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.

  16. On the Hamiltonian formalism of the tetrad-gravity with fermions

    NASA Astrophysics Data System (ADS)

    Lagraa, M. H.; Lagraa, M.

    2018-06-01

    We extend the analysis of the Hamiltonian formalism of the d-dimensional tetrad-connection gravity to the fermionic field by fixing the non-dynamic part of the spatial connection to zero (Lagraa et al. in Class Quantum Gravity 34:115010, 2017). Although the reduced phase space is equipped with complicated Dirac brackets, the first-class constraints which generate the diffeomorphisms and the Lorentz transformations satisfy a closed algebra with structural constants analogous to that of the pure gravity. We also show the existence of a canonical transformation leading to a new reduced phase space equipped with Dirac brackets having a canonical form leading to the same algebra of the first-class constraints.

  17. Multigenerational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior Health (MICEHAB): An Investigation of a Long Duration, Partial Gravity, Autonomous Rodent Colony

    NASA Technical Reports Server (NTRS)

    Rodgers, Erica M.; Simon, Matthew A.; Antol, Jeffrey; Chai, Patrick R.; Jones, Christopher A.; Klovstad, Jordan J.; Neilan, James H.; Stillwagen, Frederic H.; Williams, Phillip A.; Bednara, Michael; hide

    2015-01-01

    The path from Earth to Mars requires exploration missions to be increasingly Earth-independent as the foundation is laid for a sustained human presence in the following decades. NASA pioneering of Mars will expand the boundaries of human exploration, as a sustainable presence on the surface requires humans to successfully reproduce in a partial gravity environment independent from Earth intervention. Before significant investment is made in capabilities leading to such pioneering efforts, the challenges of multigenerational mammalian reproduction in a partial gravity environment need be investigated. The Multi-generational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior health is designed to study these challenges. The proposed concept is a conceptual, long duration, autonomous habitat designed to house rodents in a partial gravity environment with the goal of understanding the effects of partial gravity on mammalian reproduction over multiple generations and how to effectively design such a facility to operate autonomously while keeping the rodents healthy in order to achieve multiple generations. All systems are designed to feed forward directly to full-scale human missions to Mars. This paper presents the baseline design concept formulated after considering challenges in the mission and vehicle architectures such as: vehicle automation, automated crew health management/medical care, unique automated waste disposal and hygiene, handling of deceased crew members, reliable long-duration crew support systems, and radiation protection. This concept was selected from an architectural trade space considering the balance between mission science return and robotic and autonomy capabilities. The baseline design is described in detail including: transportation and facility operation constraints, artificial gravity system design, habitat design, and a full-scale mock-up demonstration of autonomous rodent care facilities. The proposed concept has the potential to integrate into existing mission architectures in order to achieve exploration objectives, and to demonstrate and mature common capabilities that enable a range of destinations and missions.

  18. Spontaneous polyploidy, gynogenesis and androgenesis in second generation (F2 ) koi Cyprinus carpio × goldfish Carassius auratus hybrids.

    PubMed

    Delomas, T A; Gomelsky, B; Anil, A; Schneider, K J; Warner, J L

    2017-01-01

    The objective of this study was to characterize the genetics of second generation (F 2 ) koi Cyprinus carpio × goldfish Carassius auratus hybrids. Spermatozoa produced by a novel, fertile F 1 male were found to be diploid by flow-cytometric analysis. Backcross (F 1 female × C. carpio male and C. carpio female × F 1 male) juveniles were triploid, confirming that female and male F 1 hybrids both produced diploid gametes. The vast majority of surviving F 2 juveniles was diploid and small proportions were aneuploid (2·1n-2·3n and 3·1n-3·9n), triploid (3n) and tetraploid (4n). Microsatellite genotyping showed that F 2 diploids repeated either the complete maternal or the complete paternal genotype. Fish with the maternal genotype were female and fish with the paternal genotype were male. This demonstrates that F 2 diploids were the result of spontaneous gynogenesis and spontaneous androgenesis. Analysis of microsatellite inheritance and the sex ratio in F 2 crosses showed that spontaneous gynogenesis and androgenesis did not always occur in equal proportions. One cross was found to have an approximate equal number of androgenetic and gynogenetic offspring while in several other crosses spontaneous androgenesis was found to occur more frequently than spontaneous gynogenesis. © 2016 The Fisheries Society of the British Isles.

  19. Oregon Magnetic and Gravity Maps and Data: A Web Site for Distribution of Data

    USGS Publications Warehouse

    Roberts, Carter W.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each State. The results for the State of Oregon are presented here on this site. Files of aeromagnetic and gravity grids and images are available for these States for downloading. In Oregon, 49 magnetic surveys have been knit together to form a single digital grid and map. Also, a complete Bouguer gravity anomaly grid and map was generated from 40,665 gravity station measurements in and adjacent to Oregon. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  20. Imagery encoding and false recognition errors: Examining the role of imagery process and imagery content on source misattributions.

    PubMed

    Foley, Mary Ann; Foy, Jeffrey; Schlemmer, Emily; Belser-Ehrlich, Janna

    2010-11-01

    Imagery encoding effects on source-monitoring errors were explored using the Deese-Roediger-McDermott paradigm in two experiments. While viewing thematically related lists embedded in mixed picture/word presentations, participants were asked to generate images of objects or words (Experiment 1) or to simply name the items (Experiment 2). An encoding task intended to induce spontaneous images served as a control for the explicit imagery instruction conditions (Experiment 1). On the picture/word source-monitoring tests, participants were much more likely to report "seeing" a picture of an item presented as a word than the converse particularly when images were induced spontaneously. However, this picture misattribution error was reversed after generating images of words (Experiment 1) and was eliminated after simply labelling the items (Experiment 2). Thus source misattributions were sensitive to the processes giving rise to imagery experiences (spontaneous vs deliberate), the kinds of images generated (object vs word images), and the ways in which materials were presented (as pictures vs words).

  1. Hemispheric mechanisms controlling voluntary and spontaneous facial expressions.

    PubMed

    Gazzaniga, M S; Smylie, C S

    1990-01-01

    The capacity of each disconnected cerebral hemisphere to control a variety of facial postures was examined in three split-brain patients. The dynamics of facial posturing were analyzed in 30-msec optical disc frames that were generated off videotape recordings of each patient's response to lateralized stimuli. The results revealed that commands presented to the left hemisphere effecting postures of the lower facial muscles showed a marked asymmetry, with the right side of the face sometimes responding up to 180 msec before the left side of the face. Commands presented to the right hemisphere elicited a response only if the posture involved moving the upper facial muscles. Spontaneous postures filmed during free conversation were symmetrical. The results suggest that while either hemisphere can generate spontaneous facial expressions only the left hemisphere is efficient at generating voluntaly expressions. This contrasts sharply with the fact that both hemispheres can carry out a wide variety of other voluntary movements with the hand and foot.

  2. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can bemore » interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.« less

  3. A contrastive study on the influences of radial and three-dimensional satellite gravity gradiometry on the accuracy of the Earth's gravitational field recovery

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Hsu, Hou-Tse; Zhong, Min; Yun, Mei-Juan

    2012-10-01

    The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE), up to 250 degrees, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation, respectively. Firstly, the new analytical error model of the cumulative geoid height, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are established, respectively. In 250 degrees, the GOCE cumulative geoid height error measured by the radial gravity gradient Vzz is about 2½ times higher than that measured by the three-dimensional gravity gradient Vij. Secondly, the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij by numerical simulation, respectively. The study results show that when the measurement error of the gravity gradient is 3 × 10-12/s2, the cumulative geoid height errors using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are 12.319 cm and 9.295 cm at 250 degrees, respectively. The accuracy of the cumulative geoid height using the three-dimensional gravity gradient Vij is improved by 30%-40% on average compared with that using the radial gravity gradient Vzz in 250 degrees. Finally, by mutual verification of the analytical error model and numerical simulation, the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients, respectively. Therefore, it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10-13/s2-10-15/s2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.

  4. Separation of Non-metallic Inclusions from a Fe-Al-O Melt Using a Super-Gravity Field

    NASA Astrophysics Data System (ADS)

    Song, Gaoyang; Song, Bo; Guo, Zhancheng; Yang, Yuhou; Song, Mingming

    2018-02-01

    An innovative method for separating non-metallic inclusions from a high temperature melt using super gravity was systematically investigated. To explore the separation behavior of inclusion particles with densities less than that of metal liquid under a super-gravity field, a Fe-Al-O melt containing Al2O3 particles was treated with different gravity coefficients. Al2O3 particles migrated rapidly towards the reverse direction of the super gravity and gathered in the upper region of the sample. It was hard to find any inclusion particles with sizes greater than 2 μm in the middle and bottom areas. Additionally, the oxygen content in the middle region of the sample could be reduced to 0.0022 mass pct and the maximum removal rate of the oxygen content reached 61.4 pct. The convection in the melt along the direction of the super gravity was not generated by the super-gravity field, and the fluid velocity in the molten melt consisted only of the rotating tangential velocity. Moreover, the motion behavior of the Al2O3 particles was approximatively determined by Stokes' law along the direction of super gravity.

  5. 8-oxoguanine causes spontaneous de novo germline mutations in mice.

    PubMed

    Ohno, Mizuki; Sakumi, Kunihiko; Fukumura, Ryutaro; Furuichi, Masato; Iwasaki, Yuki; Hokama, Masaaki; Ikemura, Toshimichi; Tsuzuki, Teruhisa; Gondo, Yoichi; Nakabeppu, Yusaku

    2014-04-15

    Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10(-7) mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.

  6. BIonic system: Extraction of Lovelock gravity from a Born-Infeld-type theory

    NASA Astrophysics Data System (ADS)

    Naimi, Yaghoob; Sepehri, Alireza; Ghaffary, Tooraj; Ghaforyan, Hossein; Ebrahimzadeh, Majid

    It was shown that both Lovelock gravity and Born-Infeld (BI) electrodynamics can be obtained from low effective limit of string theory. Motivated by the mentioned unique origin of the gauge-gravity theories, we are going to find a close relation between them. In this research, we start from the Lagrangian of a BI-type nonlinear electrodynamics with an exponential form to extract the action of Lovelock gravity. We investigate the origin of Lovelock gravity in a system of branes which are connected with each other by different wormholes through a BIonic system. These wormholes are produced as due to the nonlinear electrodynamics which are emerged on the interacting branes. By approaching branes, wormholes dissolve into branes and Lovelock gravity is generated. Also, throats of some wormholes become smaller than their horizons and they transit to black holes. Generalizing calculations to M-theory, it is found that by compacting Mp-branes, Lovelock gravity changes to nonlinear electrodynamics and thus both of them have the same origin. This result is consistent with the prediction of BIonic model in string theory.

  7. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    NASA Technical Reports Server (NTRS)

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  8. Plumes in the mantle. [free air and isostatic gravity anomalies for geophysical interpretation

    NASA Technical Reports Server (NTRS)

    Khan, M. A.

    1973-01-01

    Free air and isostatic gravity anomalies for the purposes of geophysical interpretation are presented. Evidence for the existance of hotspots in the mantle is reviewed. The prosposed locations of these hotspots are not always associated with positive gravity anomalies. Theoretical analysis based on simplified flow models for the plumes indicates that unless the frictional viscosities are several orders of magnitude smaller than the present estimates of mantle viscosity or alternately, the vertical flows are reduced by about two orders of magnitude, the plume flow will generate implausibly high temperatures.

  9. Experimental study on line-of-sight (LOS) attitude control using control moment gyros under micro-gravity environment

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohisa; Hiraiwa, Kana; Yoshimura, Yasuhiro

    2018-02-01

    This paper presents the results of line-of-sight (LOS) attitude control using control moment gyros under a micro-gravity environment generated by parabolic flight. The W-Z parameters are used to describe the spacecraft attitude. In order to stabilize the current LOS to the target LOS, backstepping-based feedback control is considered using the W-Z parameters. Numerical simulations and experiments under a micro-gravity environment are carried out, and their results are compared in order to validate the proposed control methods.

  10. Superconducting gravity gradiometer and a test of inverse square law

    NASA Technical Reports Server (NTRS)

    Moody, M. V.; Paik, Ho Jung

    1989-01-01

    The equivalence principle prohibits the distinction of gravity from acceleration by a local measurement. However, by making a differential measurement of acceleration over a baseline, platform accelerations can be cancelled and gravity gradients detected. In an in-line superconducting gravity gradiometer, this differencing is accomplished with two spring-mass accelerometers in which the proof masses are confined to motion in a single degree of freedom and are coupled together by superconducting circuits. Platform motions appear as common mode accelerations and are cancelled by adjusting the ratio of two persistent currents in the sensing circuit. The sensing circuit is connected to a commercial SQUID amplifier to sense changes in the persistent currents generated by differential accelerations, i.e., gravity gradients. A three-axis gravity gradiometer is formed by mounting six accelerometers on the faces of a precision cube, with the accelerometers on opposite faces of the cube forming one of three in-line gradiometers. A dedicated satellite mission for mapping the earth's gravity field is an important one. Additional scientific goals are a test of the inverse square law to a part in 10(exp 10) at 100 km, and a test of the Lense-Thirring effect by detecting the relativistic gravity magnetic terms in the gravity gradient tensor for the earth.

  11. New Directions: Communication Development in Persons with Severe Disabilities.

    ERIC Educational Resources Information Center

    Goetz, Lori; Sailor, Wayne

    1988-01-01

    To produce spontaneous and generalized language use by severely disabled individuals, the language training context and content must be examined. Training methods can better approximate the conditions of natural language use when they involve: generation of spontaneous language responses to effect real-world changes, single performance "trials,"…

  12. Human Locomotion under Reduced Gravity Conditions: Biomechanical and Neurophysiological Considerations

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.

    2014-01-01

    Reduced gravity offers unique opportunities to study motor behavior. This paper aims at providing a review on current issues of the known tools and techniques used for hypogravity simulation and their effects on human locomotion. Walking and running rely on the limb oscillatory mechanics, and one way to change its dynamic properties is to modify the level of gravity. Gravity has a strong effect on the optimal rate of limb oscillations, optimal walking speed, and muscle activity patterns, and gait transitions occur smoothly and at slower speeds at lower gravity levels. Altered center of mass movements and interplay between stance and swing leg dynamics may challenge new forms of locomotion in a heterogravity environment. Furthermore, observations in the lack of gravity effects help to reveal the intrinsic properties of locomotor pattern generators and make evident facilitation of nonvoluntary limb stepping. In view of that, space neurosciences research has participated in the development of new technologies that can be used as an effective tool for gait rehabilitation. PMID:25247179

  13. Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.

    PubMed

    Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun

    2017-09-01

    Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.

  14. Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography—A case study for the Moon

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Kuhn, Michael

    2017-08-01

    Theoretically, spherical harmonic (SH) series expansions of the external gravitational potential are guaranteed to converge outside the Brillouin sphere enclosing all field-generating masses. Inside that sphere, the series may be convergent or may be divergent. The series convergence behavior is a highly unstable quantity that is little studied for high-resolution mass distributions. Here we shed light on the behavior of SH series expansions of the gravitational potential of the Moon. We present a set of systematic numerical experiments where the gravity field generated by the topographic masses is forward-modeled in spherical harmonics and with numerical integration techniques at various heights and different levels of resolution, increasing from harmonic degree 90 to 2160 ( 61 to 2.5 km scales). The numerical integration is free from any divergence issues and therefore suitable to reliably assess convergence versus divergence of the SH series. Our experiments provide unprecedented detailed insights into the divergence issue. We show that the SH gravity field of degree-180 topography is convergent anywhere in free space. When the resolution of the topographic mass model is increased to degree 360, divergence starts to affect very high degree gravity signals over regions deep inside the Brillouin sphere. For degree 2160 topography/gravity models, severe divergence (with several 1000 mGal amplitudes) prohibits accurate gravity modeling over most of the topography. As a key result, we formulate a new hypothesis to predict divergence: if the potential degree variances show a minimum, then the SH series expansions diverge somewhere inside the Brillouin sphere and modeling of the internal potential becomes relevant.

  15. Chilean Tsunami Rocks the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.

  16. Chemical and mineralogical characterization of highly and less reactive coal from Northern Natal and Venda-Pafuri coalfields in South Africa

    NASA Astrophysics Data System (ADS)

    Kataka, M. O.; Matiane, A. R.; Odhiambo, B. D. O.

    2018-01-01

    Spontaneous combustion of coal is a major hazard associated with the coal mining industry over centuries. It also a major cause of underground fires in South African collieries and in opencast operations, spoil heaps and stockpiles. Spontaneous combustion incidents are manifested in all major aspects of coal mining namely, underground mining, surface mining, including during sea-borne transportation, storage and waste disposal. Previous studies indicate that there are various factors (both intrinsic and extrinsic) that influence the spontaneous combustion of coals. This paper characterizes highly reactive coal from the Vryheid coalfields and less reactive coal from at Venda-Pafuri coalfield, to identify and delineate some intrinsic coal parameters that are considered to be most critical in terms of heat 'generation' and relationships between the two coals types by tracing their similarities and differences in their spontaneous combustion parameters. Various tests were carried out to characterize these coals in terms of their intrinsic properties, namely: ultimate, proximate, petrographic analysis and Glasser spontaneous tests. The ultimate and proximate analysis showed that spontaneous coal has high contents of carbon, oxygen, and volatile matter as compared to non-spontaneous coal, making it more susceptible to spontaneous combustion. Non-spontaneous coal has higher ash content than the spontaneous coal. Furthermore, the petrographic analysis showed that spontaneous coal has high total reactivity compared to the non-spontaneous coal. Results from Glasser spontaneous test indicate that spontaneous coal absorbs more oxygen than non-spontaneous coal, which explains why spontaneous coal is more susceptible to spontaneous combustion. High reactive coal has low values of critical self-heating temperature (CSHT), indicating that this coal has potential of spontaneous ignition.

  17. Sensory-driven and spontaneous gamma oscillations engage distinct cortical circuitry

    PubMed Central

    2015-01-01

    Gamma oscillations are a robust component of sensory responses but are also part of the background spontaneous activity of the brain. To determine whether the properties of gamma oscillations in cortex are specific to their mechanism of generation, we compared in mouse visual cortex in vivo the laminar geometry and single-neuron rhythmicity of oscillations produced during sensory representation with those occurring spontaneously in the absence of stimulation. In mouse visual cortex under anesthesia (isoflurane and xylazine), visual stimulation triggered oscillations mainly between 20 and 50 Hz, which, because of their similar functional significance to gamma oscillations in higher mammals, we define here as gamma range. Sensory representation in visual cortex specifically increased gamma oscillation amplitude in the supragranular (L2/3) and granular (L4) layers and strongly entrained putative excitatory and inhibitory neurons in infragranular layers, while spontaneous gamma oscillations were distributed evenly through the cortical depth and primarily entrained putative inhibitory neurons in the infragranular (L5/6) cortical layers. The difference in laminar distribution of gamma oscillations during the two different conditions may result from differences in the source of excitatory input to the cortex. In addition, modulation of superficial gamma oscillation amplitude did not result in a corresponding change in deep-layer oscillations, suggesting that superficial and deep layers of cortex may utilize independent but related networks for gamma generation. These results demonstrate that stimulus-driven gamma oscillations engage cortical circuitry in a manner distinct from spontaneous oscillations and suggest multiple networks for the generation of gamma oscillations in cortex. PMID:26719085

  18. Low Stretch PMMA Burning in Microgravity: Status of the Ground-Based Program and New ISS Glovebox Experiment SALSA

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; T'ien, J. S.; Armstrong, J. B.

    2001-01-01

    The objective of this ground-based program is to study low stretch diffusion flames burning PMMA as the solid fuel to determine the relationship between buoyant low stretch burning in normal gravity and forced flow low stretch burning in microgravity. The low stretch is generated in normal gravity by using the buoyant convection induced by burning the bottom of a large radius of curvature sample. Low stretch is also generated using the Combustion Tunnel drop tower rig (2.2 and 5.2 second facilities), which provides a forced convective low velocity flow past smaller radius of curvature samples. Lastly, an ISS glovebox investigation is being developed to study low stretch burning of PMMA spheres to obtain long duration testing needed to accurately assess the flammability and burning characteristics of the material in microgravity. A comparison of microgravity experiment results with normal gravity test results allows us to establish a direct link between a material's burning characteristics in normal gravity (easily measured) with its burning characteristics in extraterrestrial environments, including microgravity forced convective environments. Theoretical predictions and recent experimental results indicate that it should be possible to understand a material's burning characteristics in the low stretch environment of spacecraft (non-buoyant air movement induced by fans and crew disturbances) by understanding its burning characteristics in an equivalent Earth-based low stretch environment (induced by normal gravity buoyancy). Similarly, Earth-based stretch environments can be made equivalent to those in Lunar- and Martian-surface stretch environments (which would induce partial-gravity buoyancy).

  19. Constraining torsion with Gravity Probe B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao Yi; Guth, Alan H.; Cabi, Serkan

    2007-11-15

    It is well-entrenched folklore that all torsion gravity theories predict observationally negligible torsion in the solar system, since torsion (if it exists) couples only to the intrinsic spin of elementary particles, not to rotational angular momentum. We argue that this assumption has a logical loophole which can and should be tested experimentally, and consider nonstandard torsion theories in which torsion can be generated by macroscopic rotating objects. In the spirit of action=reaction, if a rotating mass like a planet can generate torsion, then a gyroscope would be expected to feel torsion. An experiment with a gyroscope (without nuclear spin) suchmore » as Gravity Probe B (GPB) can test theories where this is the case. Using symmetry arguments, we show that to lowest order, any torsion field around a uniformly rotating spherical mass is determined by seven dimensionless parameters. These parameters effectively generalize the parametrized post-Newtonian formalism and provide a concrete framework for further testing Einstein's general theory of relativity (GR). We construct a parametrized Lagrangian that includes both standard torsion-free GR and Hayashi-Shirafuji maximal torsion gravity as special cases. We demonstrate that classic solar system tests rule out the latter and constrain two observable parameters. We show that Gravity Probe B is an ideal experiment for further constraining nonstandard torsion theories, and work out the most general torsion-induced precession of its gyroscope in terms of our torsion parameters.« less

  20. Towards conformal loop quantum gravity

    NASA Astrophysics Data System (ADS)

    H-T Wang, Charles

    2006-03-01

    A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity.

  1. Towards consolidated science requirements for a next generation gravity field mission

    NASA Astrophysics Data System (ADS)

    Pail, R.; Braitenberg, C. F.; Eicker, A.; Floberghagen, R.; Forsberg, R.; Haagmans, R.; Horwath, M.; Kusche, J.; Labrecque, J. L.; Panet, I.; Rolstad Denby, C.; Schröter, J.; Wouters, B.

    2013-12-01

    As a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics), we target on the consolidation of science requirements for a next generation gravity field mission (beyond GRACE-FO). Several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+), and a consolidation within the different user groups is required, under the boundary condition of the technical feasibility of the mission concepts and before the background of double- and multi-pair formations. Therefore, this initiative shall concentrate on the consolidation of the science requirements, and should result in a document that can be used as a solid basis for further programmatic and technological developments. Based on limited number of realistic mission scenarios, a consolidated view on the science requirements within the international user communities shall be derived, research fields that could not be tackled by current gravity missions shall be identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return shall be evaluated. The final science requirements shall be agreed upon during a workshop which is planned for the second half of 2014. In this contribution, the mission scenarios will be discussed and first results of the consolidation process will be presented.

  2. Progress towards CSR RL06 GRACE gravity solutions

    NASA Astrophysics Data System (ADS)

    Save, Himanshu

    2017-04-01

    The GRACE project plans to re-processes the GRACE mission data in order to be consistent with the first gravity products released by the GRACE-FO project. The next generation Release-06 (RL06) gravity products from GRACE will include the improvements in GRACE Level-1 data products, background gravity models and the processing methodology. This paper will outline the planned improvements for CSR - RL06 and discuss the preliminary results. This paper will discuss the evolution of the quality of the GRACE solutions, especially over the past few years. We will also discuss the possible challenges we may face in connecting/extending the measurements of mass fluxes from the GRACE era to the GRACE-FO era due quality of the GRACE solutions from recent years.

  3. The earth's C21 and S21 gravity coefficients and the rotation of the core

    NASA Technical Reports Server (NTRS)

    Wahr, John M.

    1987-01-01

    Observational results for the earth's C21 and S21 gravity coefficients can be used to constrain the mean equatorial rotation of the core with respect to the mantle. Current satellite gravity solutions suggest the equatorial rotation rate is no larger than 1 x 10 to the -7th times the earth's diurnal spin rate, a limit more than one order of magnitude smaller than the polar rotation rate inferred from the westward drift of the earth's magnetic field. The next generation gravity solutions should improve this constraint by more than one order of magnitude. Implications for the fluid pressure at the core-mantle boundary and for the shape of that boundary are discussed.

  4. Dynamics of severe storms through the study of thermospheric-tropospheric coupling

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1979-01-01

    Atmospheric acoustic-gravity waves associated with severe local thunderstorms, tornadoes, and hurricanes can be studied through the coupling between the thermosphere and the troposphere. Reverse group ray tracing computations of acoustic-gravity waves, observed by an ionospheric Doppler sounder array, show that the wave sources are in the neighborhood of storm systems and the waves are excited prior to the storms. It is suggested that the overshooting and ensuing collapse of convective turrets may be responsible for generating the acoustic-gravity waves observed. The results of this study also show that the study of wave-wave resonant interactions may be a potential tool for investigating the dynamical behavior of severe storm systems using ionospheric observations of atmospheric acoustic-gravity waves associated with severe storms.

  5. Illinois, Indiana, and Ohio Magnetic and Gravity Maps and Data: A Website for Distribution of Data

    USGS Publications Warehouse

    Daniels, David L.; Kucks, Robert P.; Hill, Patricia L.

    2008-01-01

    This web site gives the results of a USGS project to acquire the best available, public-domain, aeromagnetic and gravity data in the United States and merge these data into uniform, composite grids for each state. The results for the three states, Illinois, Indiana, and Ohio are presented here in one site. Files of aeromagnetic and gravity grids and images are available for these states for downloading. In Illinois, Indiana, and Ohio, 19 magnetic surveys have been knit together to form a single digital grid and map. And, a complete Bouguer gravity anomaly grid and map was generated from 128,227 gravity station measurements in and adjacent to Illinois, Indiana, and Ohio. In addition, a map shows the location of the aeromagnetic surveys, color-coded to the survey flight-line spacing. This project was supported by the Mineral Resource Program of the USGS.

  6. Insights into the Earth System mass variability from CSR-RL05 GRACE gravity fields

    NASA Astrophysics Data System (ADS)

    Bettadpur, S.

    2012-04-01

    The next-generation Release-05 GRACE gravity field data products are the result of extensive effort applied to the improvements to the GRACE Level-1 (tracking) data products, and to improvements in the background gravity models and processing methodology. As a result, the squared-error upper-bound in RL05 fields is half or less than the squared-error upper-bound in RL04 fields. The CSR-RL05 field release consists of unconstrained gravity fields as well as a regularized gravity field time-series that can be used for several applications without any post-processing error reduction. This paper will describe the background and the nature of these improvements in the data products, and provide an error characterization. We will describe the insights these new series offer in measuring the mass flux due to diverse Hydrologic, Oceanographic and Cryospheric processes.

  7. History of Artificial Gravity. Chapter 3

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Bukley, Angie; Paloski, William

    2006-01-01

    This chapter reviews the past and current projects on artificial gravity during space missions. The idea of a rotating wheel-like space station providing artificial gravity goes back in the writings of Tsiolkovsky, Noordung, and Wernher von Braun. Its most famous fictional representation is in the film 2001: A Space Odyssey, which also depicts spin-generated artificial gravity aboard a space station and a spaceship bound for Jupiter. The O Neill-type space colony provides another classic illustration of this technique. A more realistic approach to rotating the space station is to provide astronauts with a smaller centrifuge contained within a spacecraft. The astronauts would go into it for a workout, and get their gravity therapeutic dose for a certain period of time, daily or a few times a week. This simpler concept is current being tested during ground-based studies in several laboratories around the world.

  8. Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear

    NASA Technical Reports Server (NTRS)

    Zhang, Minghua; Geller, Marvin A.

    1994-01-01

    The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.

  9. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centini, M.; Sciscione, L.; Sibilia, C.

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process.

  10. Metric dimensional reduction at singularities with implications to Quantum Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2014-08-15

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being justmore » non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained opens new ways for Quantum Gravity.« less

  11. Cartan gravity, matter fields, and the gauge principle

    NASA Astrophysics Data System (ADS)

    Westman, Hans F.; Zlosnik, Tom G.

    2013-07-01

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang-Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a 'contact vector' VA which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being 'rolled' on top of it, and (2) a gauge connection AμAB, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan's geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy-momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy-momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang-Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as open questions.

  12. Heart rate monitoring and control in altered gravity conditions.

    PubMed

    Di Rienzo, M; Parati, G; Rizzo, F; Meriggi, P; Merati, G; Faini, A; Castiglioni, P

    2007-01-01

    On the basis of indirect evidences it has been hypothesized that during space missions the almost complete absence of gravity might impair the baroreflex control of circulation. In the first part of this paper we report results obtained from a series of experiments carried out to directly verify this hypothesis during the 16-day STS 107 Shuttle flight. Spontaneous baroreflex sensitivity was assessed in four astronauts before flight (baseline) and at days 0-1, 6-7 and 12-13 during flight, both at rest and while performing moderate exercise. Our results indicate that at rest the baroreflex sensitivity significantly increased in the early flight phase, as compared to pre-flight values and tended to return to baseline in the mid-late phase of flight. During exercise, baroreflex sensitivity was lower than at rest, without any difference among pre-flight and in-flight values. These findings seem to exclude the hypothesis of an impairment of the baroreflex control of heart rate during exposure to microgravity, at least over a time window of 16 days. In the second part of the paper we propose a novel textile-based methodology for heart rate and other vital signs monitoring during gravity stress. The positive results obtained from its use during parachute jumps support the use of smart garments for the unobtrusive assessment of physiological parameters in extreme environments.

  13. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy

    2016-04-01

    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins are highly asymmetric and have several striking features such as the Macclesfield Bank, Xisha Trough, Reed Bank and Dangerous Grounds. Thin continental crust is predicted extending westwards from thin oceanic crust north of Macclesfield Bank into the Quiondongnan (QDN) basin and is interpreted as being generated ahead of westward propagating sea-floor spreading most in the Oligocene. Further south, highly thinned continental crust or possibly serpentinised exhumed mantle is predicted in the Phu Khanh Basin. Ahead of the failed propagating tip of seafloor spreading, offshore southern Vietnam, thinned continental crust is predicted for the Cuu Long and Nam Con Son Basins. Crustal thicknesses from gravity inversion confirms that the southern margin of the SCS consists of fragmented blocks of thinned continental crust separated by thinner regions of continental crust that have undergone higher degrees of stretching and thinning. The Reed Bank is predicted to have a crustal thickness of 20 to 25km, similar to that of Macclesfield Bank. The Dangerous Grounds, west of the Reed Bank, are also predicted to consist of continental crust. This region has been thinned to a higher degree than the Reed Bank, with continental crustal thickness ranging between 10 and 20km thick.

  14. Impaired insulin secretion in the spontaneous diabetes rats.

    PubMed

    Kimura, K; Toyota, T; Kakizaki, M; Kudo, M; Takebe, K; Goto, Y

    1982-08-01

    Dynamics of insulin and glucagon secretion were investigated by using a new model of spontaneous diabetes rats produced by the repetition of selective breeding in our laboratories. The perfusion experiments of the pancreas showed that the early phase of insulin secretion to continuous stimulation with glucose was specifically impaired, although the response of the early phase to arginine was preserved. The glucose-induced insulin secretion in the nineth generation (F8) which had a more remarkably impaired glucose tolerance was more reduced than in the sixth generation (F5). No significant difference of glucagon secretion in response to arginine or norepinephrine was noted between the diabetes rats and control ones. The present data indicate that the defective insulin secretion is a primary derangement in a diabetic state of the spontaneous diabetes rat. This defect in the early phase of glucose-induced insulin secretion suggests the specific impairment of the recognition of glucose by the pancreatic beta-cells. The spontaneous diabetes rats are very useful as a model of disease for investigating pathophysiology of non-insulin dependent diabetes mellitus.

  15. Thinking about craving: an experimental analysis of smokers' spontaneous self-reports of craving.

    PubMed

    Shadel, William G; Niaura, Raymond; Abrams, David B

    2004-06-01

    This study evaluated whether smokers generate spontaneous expressions of craving (i.e., expressions of an urge, craving, desire, want, or need) in response to cues designed to provoke a craving state. In a 2 (smoking deprivation: 1 and 12 h) x 2 (cue type: neutral, active) within-subjects design, smokers were asked to think aloud in an unstructured way (i.e., "describe everything you are thinking and feeling right now"). Results revealed a main effect for cue type on think-aloud craving responses: Smokers spontaneously generated a greater number of craving-related cognitions during active cue exposure compared with neutral cue exposure, both during both 1- and 12-h deprivation. This same pattern of effects was not found for a self-report assessment of craving, which was insensitive to cue-provoked changes in craving in the 1-h deprivation condition. These results suggest that smokers do spontaneously experience craving, independent of an explicit assessment of craving and that think-aloud methods may provide a novel assessment of craving that may be relatively more sensitive than self-report methods under some circumstances.

  16. Installation Restoration Program Records Search for 132 Tactical Fighter Wing, Iowa Air National Guard, Des Moines Municipal Airport.

    DTIC Science & Technology

    1983-09-01

    underlain by soils of the Gravity series and " of the Wabash -Gravity-Nodaway complex. These soils, primarily silty clay loams, are formed in fine...Electric Shop The electric shop is located in Facility No. 100. Wastes generated from this area include nickel- S cadmium batteries (24/year) and sulfuric

  17. Earthquake Potential of the St. Louis District

    DTIC Science & Technology

    1981-02-01

    The trends of the fault plane solutions strike northwest, northeast, and north-south indicating a complex generating mechanism . The focal depth for...thrust, strike-slip, oblique) is of prime importance in understanding seismic activity. Focal Mechanism Studies: A common method of obtaining regional... focal mechanisms , and to better understand magnitude-recurrence relations. Gravity and Magnetics: Gravity and magnetic contours may be used to

  18. ADCP measurements of gravity currents in the Chicago River, Illinois

    USGS Publications Warehouse

    Garcia, C.M.; Oberg, K.; Garcia, M.H.

    2007-01-01

    A unique set of observations of stratified flow phenomena in the Chicago River was made using an upward-looking acoustic Doppler current profiler (ADCP) during the period November 20, 2003 to February 1, 2004. Water density differences between the Chicago River and its North Branch (NB) seem to be responsible for the development of gravity currents. With the objective of characterizing the occurrence, frequency, and evolution of such currents, the ADCP was configured to continuously collect high-resolution water velocity and echo intensity profiles in the Chicago River at Columbus Drive. During the observation period, 28 gravity current events were identified, lasting a total of 77% of the time. Sixteen of these events were generated by underflows from the NB and 12 of these events were generated by overflows from the NB. On average, the duration of the underflow and overflow events was 52.3 and 42.1 h, respectively. A detailed analysis of one underflow event, which started on January 7, 2004, and lasted about 65h, was performed. This is the first time that ADCP technology has been used to continuously monitor gravity currents in a river. ?? 2007 ASCE.

  19. Consequences of metabolic inhibition in smooth muscle isolated from guinea-pig stomach.

    PubMed

    Nakayama, S; Chihara, S; Clark, J F; Huang, S M; Horiuchi, T; Tomita, T

    1997-11-15

    1. In smooth muscle isolated from the guinea-pig stomach, cyanide (CN) and iodoacetic acid (IAA) were applied to block oxidative phosphorylation and glycolysis, respectively. Effects of IAA on generation of spontaneous mechanical and electrical activities were systematically investigated by comparing those of CN. Spontaneous activity ceased in 10-20 min during applications of 1 mM IAA. On the other hand, application of 1 mM CN also reduced the spontaneous activity, but never terminated it. In the presence of CN the negativity of the resting membrane potential was slightly reduced. 2. When spontaneous activity ceased with IAA, the resting membrane potential was not significantly affected. Also, before ceasing, the amplitude and duration of the spontaneous electrical activity were significantly reduced. The amplitude of the electrotonic potential was, however, not changed by IAA. Further, glibenclamide did not prevent the effects of IAA. These results suggest that, unlike cardiac muscle, activation of metabolism-dependent K+ channels in stomach smooth muscle does not seem to play a major role in reducing and terminating spontaneous activity during metabolic inhibition. 3. Carbachol-induced contraction transiently increased, and subsequently decreased gradually during application of IAA. 4. After 50 min application of IAA, when there was no spontaneous activity, the concentrations of phosphocreatine (PCr) and ATP measured with 31P nuclear magnetic resonance decreased to 60 and 80% of the control, respectively, while inorganic phosphate (Pi) concentration paradoxically fell to below detectable levels. During subsequent prolonged application of IAA, high-energy phosphates steadily decreased. On the other hand, after 50 min CN application, [PCr] and [ATP] decreased to approximately 30 and 80% of the control, respectively, while [Pi] increased by 2.6-fold. 5. In the presence of either CN or IAA, spontaneous mechanical and electrical activities were reduced or eliminated, although amounts of high-energy phosphates sufficient to contract smooth muscle remained. It can be postulated that some mechanism(s) related to energy metabolism, but not including ATP-sensitive K+ channels, plays an important role in generating spontaneous activity in guinea-pig stomach smooth muscle. During metabolic inhibition the energy metabolism-dependent mechanism(s) would preserve high-energy phosphates, and consequently cell viability, by stopping spontaneous activity.

  20. Cytochalasin D does not inhibit gravitropism in roots

    NASA Technical Reports Server (NTRS)

    Staves, M. P.; Wayne, R.; Leopold, A. C.

    1997-01-01

    It is generally thought that sedimenting plastids are responsible for gravity sensing in higher plants. We directly tested the model generated by the current statolith hypothesis that the gravity sensing that leads to gravitropism results from an interaction between the plastids and actin microfilaments. We find that the primary roots of rice, corn, and cress undergo normal gravitropism and growth even when exposed to cytochalasin D, a disruptor of actin microfilaments. These results indicate that an interaction between amyloplasts and the actin cytoskeleton is not critical for gravity sensing in higher plants and weaken the current statolith hypothesis.

  1. Generating a Reduced Gravity Environment on Earth

    NASA Technical Reports Server (NTRS)

    Dungan, L. K.; Valle, P.; Shy, C.

    2015-01-01

    The Active Response Gravity Offload System (ARGOS) is designed to simulate reduced gravity environments, such as Lunar, Martian, or microgravity using a vertical lifting hoist and horizontal motion system. Three directions of motion are provided over a 41 ft x 24 ft x 25 ft tall area. ARGOS supplies a continuous offload of a portion of a person's weight during dynamic motions such as walking, running, and jumping. The ARGOS system tracks the person's motion in the horizontal directions to maintain a vertical offload force directly above the person or payload by measuring the deflection of the cable and adjusting accordingly.

  2. Refinement of Earth's gravity field with Topex GPS measurements

    NASA Technical Reports Server (NTRS)

    Wu, Sien-Chong; Wu, Jiun-Tsong

    1989-01-01

    The NASA Ocean Topography Experiment satellite TOPEX will carry a microwave altimeter accurate to a few centimeters for the measurement of ocean height. The capability can be fully exploited only if TOPEX altitude can be independently determined to 15 cm or better. This in turn requires an accurate gravity model. The gravity will be tuned with selected nine 10-day arcs of laser ranging, which will be the baseline tracking data type, collected in the first six months of TOPEX flight. TOPEX will also carry onboard an experimental Global Positioning System (GPS) flight receiver capable of simultaneously observing six GPS satellites above its horizon to demonstrate the capability of GPS carrier phase and P-code pseudorange for precise determination of the TOPEX orbit. It was found that subdecimeter orbit accuracy can be achieved with a mere two-hour arc of GPS tracking data, provided that simultaneous measurements are also made at six of more ground tracking sites. The precision GPS data from TOPEX are also valuable for refining the gravity model. An efficient technique is presented for gravity tuning using GPS measurements. Unlike conventional global gravity tuning, this technique solves for far fewer gravity parameters in each filter run. These gravity parameters yield local gravity anomalies which can later be combined with the solutions over other parts of the earth to generate a global gravity map. No supercomputing power will be needed for such combining. The approaches used in this study are described and preliminary results of a covariance analysis presented.

  3. Three-dimensional Myoblast Aggregates--Effects of Modeled Microgravity

    NASA Technical Reports Server (NTRS)

    Byerly, Diane; Sognier, M. A.; Marquette, M. L.

    2006-01-01

    The overall objective of these studies is to elucidate the molecular and cellular alterations that contribute to muscle atrophy in astronauts caused by exposure to microgravity conditions in space. To accomplish this, a three-dimensional model test system was developed using mouse myoblast cells (C2C12). Myoblast cells were grown as three-dimensional aggregates (without scaffolding or other solid support structures) in both modeled microgravity (Rotary Cell Culture System, Synthecon, Inc.) and at unit gravity in coated Petri dishes. Evaluation of H&E stained thin sections of the aggregates revealed the absence of any necrosis. Confocal microscopy evaluations of cells stained with the Live/Dead assay (Molecular Probes) confirmed that viable cells were present throughout the aggregates with an average of only three dead cells observed per aggregate. Preliminary results from gene array analysis (Affymetrix chip U74Av2) showed that approximately 14% of the genes were down regulated (decreased more than 3 fold) and 4% were upregulated in cells exposed to modeled microgravity for 12 hours compared to unit gravity controls. Additional studies using fluorescent phallacidin revealed a decrease in F-actin in the cells exposed to modeled microgravity compared to unit gravity. Myoblast cells grown as aggregates in modeled microgravity exhibited spontaneous differentiation into syncitia while no differentiation was seen in the unit gravity controls. These studies show that 1)the model test system developed is suitable for assessing cellular and molecular alterations in myoblasts; 2) gene expression alterations occur rapidly (within 12 hours) following exposure to modeled microgravity; and 3) modeled microgravity conditions stimulated myoblast cell differentiation. Achieving a greater understanding of the molecular alterations leading to muscle atrophy will eventually enable the development of cell-based countermeasures, which may be valuable for treatment of muscle diseases on Earth and future space explorations.

  4. Anamorphic quasiperiodic universes in modified and Einstein gravity with loop quantum gravity corrections

    NASA Astrophysics Data System (ADS)

    Amaral, Marcelo M.; Aschheim, Raymond; Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.; Woolridge, Daniel

    2017-09-01

    The goal of this work is to elaborate on new geometric methods of constructing exact and parametric quasiperiodic solutions for anamorphic cosmology models in modified gravity theories, MGTs, and general relativity, GR. There exist previously studied generic off-diagonal and diagonalizable cosmological metrics encoding gravitational and matter fields with quasicrystal like structures, QC, and holonomy corrections from loop quantum gravity, LQG. We apply the anholonomic frame deformation method, AFDM, in order to decouple the (modified) gravitational and matter field equations in general form. This allows us to find integral varieties of cosmological solutions determined by generating functions, effective sources, integration functions and constants. The coefficients of metrics and connections for such cosmological configurations depend, in general, on all spacetime coordinates and can be chosen to generate observable (quasi)-periodic/aperiodic/fractal/stochastic/(super) cluster/filament/polymer like (continuous, stochastic, fractal and/or discrete structures) in MGTs and/or GR. In this work, we study new classes of solutions for anamorphic cosmology with LQG holonomy corrections. Such solutions are characterized by nonlinear symmetries of generating functions for generic off-diagonal cosmological metrics and generalized connections, with possible nonholonomic constraints to Levi-Civita configurations and diagonalizable metrics depending only on a time like coordinate. We argue that anamorphic quasiperiodic cosmological models integrate the concept of quantum discrete spacetime, with certain gravitational QC-like vacuum and nonvacuum structures. And, that of a contracting universe that homogenizes, isotropizes and flattens without introducing initial conditions or multiverse problems.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vakili, Hajar; Rahvar, Sohrab; Kroupa, Pavel, E-mail: vakili@physics.sharif.edu

    Shell galaxies are understood to form through the collision of a dwarf galaxy with an elliptical galaxy. Shell structures and kinematics have been noted to be independent tools to measure the gravitational potential of the shell galaxies. We compare theoretically the formation of shells in Type I shell galaxies in different gravity theories in this work because this is so far missing in the literature. We include Newtonian plus dark halo gravity, and two non-Newtonian gravity models, MOG and MOND, in identical initial systems. We investigate the effect of dynamical friction, which by slowing down the dwarf galaxy in themore » dark halo models limits the range of shell radii to low values. Under the same initial conditions, shells appear on a shorter timescale and over a smaller range of distances in the presence of dark matter than in the corresponding non-Newtonian gravity models. If galaxies are embedded in a dark matter halo, then the merging time may be too rapid to allow multi-generation shell formation as required by observed systems because of the large dynamical friction effect. Starting from the same initial state, the observation of small bright shells in the dark halo model should be accompanied by large faint ones, while for the case of MOG, the next shell generation patterns iterate with a specific time delay. The first shell generation pattern shows a degeneracy with the age of the shells and in different theories, but the relative distance of the shells and the shell expansion velocity can break this degeneracy.« less

  6. Treatment of temporal aliasing effects in the context of next generation satellite gravimetry missions

    NASA Astrophysics Data System (ADS)

    Daras, Ilias; Pail, Roland

    2017-09-01

    Temporal aliasing effects have a large impact on the gravity field accuracy of current gravimetry missions and are also expected to dominate the error budget of Next Generation Gravimetry Missions (NGGMs). This paper focuses on aspects concerning their treatment in the context of Low-Low Satellite-to-Satellite Tracking NGGMs. Closed-loop full-scale simulations are performed for a two-pair Bender-type Satellite Formation Flight (SFF), by taking into account error models of new generation instrument technology. The enhanced spatial sampling and error isotropy enable a further reduction of temporal aliasing errors from the processing perspective. A parameterization technique is adopted where the functional model is augmented by low-resolution gravity field solutions coestimated at short time intervals, while the remaining higher-resolution gravity field solution is estimated at a longer time interval. Fine-tuning the parameterization choices leads to significant reduction of the temporal aliasing effects. The investigations reveal that the parameterization technique in case of a Bender-type SFF can successfully mitigate aliasing effects caused by undersampling of high-frequency atmospheric and oceanic signals, since their most significant variations can be captured by daily coestimated solutions. This amounts to a "self-dealiasing" method that differs significantly from the classical dealiasing approach used nowadays for Gravity Recovery and Climate Experiment processing, enabling NGGMs to retrieve the complete spectrum of Earth's nontidal geophysical processes, including, for the first time, high-frequency atmospheric and oceanic variations.

  7. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity

    NASA Astrophysics Data System (ADS)

    Bluhm, Robert; Fung, Shu-Hong; Kostelecký, V. Alan

    2008-03-01

    Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations above the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.

  8. Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field

    NASA Technical Reports Server (NTRS)

    Chang, Shinan; Herman, Cila; Iacona, Estelle

    2002-01-01

    The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.

  9. Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models

    NASA Technical Reports Server (NTRS)

    Carranza, Eric; Konopliv, Alex; Ryne, Mark

    1999-01-01

    The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.

  10. A surface spherical harmonic expansion of gravity anomalies on the ellipsoid

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.; Hirt, C.

    2015-10-01

    A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and rigorous transformation between solid spherical harmonic coefficients of the Earth's disturbing potential and surface spherical harmonic coefficients of gravity anomalies in ellipsoidal approximation with respect to a reference ellipsoid is derived. This transformation cannot rigorously be achieved by the Hotine-Jekeli transformation between spherical and ellipsoidal harmonic coefficients. The method derived here is used to create a surface spherical harmonic model of gravity anomalies with respect to the GRS80 ellipsoid from the EGM2008 global gravity model. Internal validation of the model shows a global RMS precision of 1 nGal. This is significantly more precise than previous solutions based on spherical approximation or approximations to order or , which are shown to be insufficient for the generation of surface spherical harmonic coefficients with respect to a geodetic reference ellipsoid. Numerical results of two applications of the new method (the computation of ellipsoidal corrections to gravimetric geoid computation, and area means of gravity anomalies in ellipsoidal approximation) are provided.

  11. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys to the new network, the regional compilation of Bouguer gravity data and a new updated Bouguer gravity anomaly map for northeastern Mexico.

  12. Forced-flow once-through boilers. [structural design criteria/aerospace environments

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Gray, V. H.; Gutierrez, O. A.

    1975-01-01

    A compilation and review of NASA-sponsored research on boilers for use in spacecraft electrical power generation systems is presented. Emphasis is on the heat-transfer and fluid-flow problems. In addition to space applications, much of the boiler technology is applicable to terrestrial and marine uses such as vehicular power, electrical power generation, vapor generation, and heating and cooling. Related research areas are discussed such as condensation, cavitation, line and boiler dynamics, the SNAP-8 project (Mercury-Rankine cycle), and conventional terrestrial boilers (either supercritical or gravity-assisted liquid-vapor separation types). The research effort was directed at developing the technology for once-through compact boilers with high heat fluxes to generate dry vapor stably, without utilizing gravity for phase separations. A background section that discusses, tutorially, the complex aspects of the boiling process is presented. Discussions of tests on alkali metals are interspersed with those on water and other fluids on a phenomenological basis.

  13. Magnetic attitude control torque generation of a gravity gradient stabilized satellite

    NASA Astrophysics Data System (ADS)

    Suhadis, N. M.; Salleh, M. B.; Rajendran, P.

    2018-05-01

    Magnetic torquer is used to generate a magnetic dipole moment onboard satellites whereby a control torque for attitude control purposes is generated when it couples with the geomagnetic field. This technique has been considered very attractive for satellites operated in Low Earth Orbit (LEO) as the strength of the geomagnetic field is relatively high below the altitude of 1000 km. This paper presents the algorithm used to generate required magnetic dipole moment by 3 magnetic torquers mounted onboard a gravity gradient stabilized satellite operated at an altitude of 540 km with nadir pointing mission. As the geomagnetic field cannot be altered and its magnitude and direction vary with respect to the orbit altitude and inclination, a comparison study of attitude control torque generation performance with various orbit inclination is performed where the structured control algorithm is simulated for 13°, 33° and 53° orbit inclinations to see how the variation of the satellite orbit affects the satellite's attitude control torque generation. Results from simulation show that the higher orbit inclination generates optimum magnetic attitude control torque for accurate nadir pointing mission.

  14. Newtonian self-gravitation in the neutral meson system

    NASA Astrophysics Data System (ADS)

    Großardt, André; Hiesmayr, Beatrix C.

    2015-03-01

    We derive the effect of the Schrödinger-Newton equation, which can be considered as a nonrelativistic limit of classical gravity, for a composite quantum system in the regime of high energies. Such meson-antimeson systems exhibit very unique properties, e.g., distinct masses due to strong and electroweak interactions. This raises an immediate question: what does one mean by mass in gravity for a state that is a superposition of mass eigenstates due to strong and electroweak interactions? We find conceptually different physical scenarios due to lacking of a clear physical guiding principle to explain which mass is the relevant one and due to the fact that it is not clear how the flavor wave function relates to the spatial wave function. There seems to be no principal contradiction. However, a nonlinear extension of the Schrödinger equation in this manner strongly depends on the relation between the flavor wave function and spatial wave function and its particular shape. In opposition to the continuous spontaneous localization collapse models we find a change in the oscillating behavior and not in the damping of the flavor oscillation.

  15. A Solution to the Cosmic Conundrum including Cosmological Constant and Dark Energy Problems

    NASA Astrophysics Data System (ADS)

    Singh, A.

    2009-12-01

    A comprehensive solution to the cosmic conundrum is presented that also resolves key paradoxes of quantum mechanics and relativity. A simple mathematical model, the Gravity Nullification model (GNM), is proposed that integrates the missing physics of the spontaneous relativistic conversion of mass to energy into the existing physics theories, specifically a simplified general theory of relativity. Mechanistic mathematical expressions are derived for a relativistic universe expansion, which predict both the observed linear Hubble expansion in the nearby universe and the accelerating expansion exhibited by the supernova observations. The integrated model addresses the key questions haunting physics and Big Bang cosmology. It also provides a fresh perspective on the misconceived birth and evolution of the universe, especially the creation and dissolution of matter. The proposed model eliminates singularities from existing models and the need for the incredible and unverifiable assumptions including the superluminous inflation scenario, multiple universes, multiple dimensions, Anthropic principle, and quantum gravity. GNM predicts the observed features of the universe without any explicit consideration of time as a governing parameter.

  16. An object-oriented model of the cardiopulmonary system with emphasis on the gravity effect.

    PubMed

    Chuong Ngo; Herranz, Silvia Briones; Misgeld, Berno; Vollmer, Thomas; Leonhardt, Steffen

    2016-08-01

    We introduce a novel comprehensive model of the cardiopulmonary system with emphasis on perfusion and ventilation distribution along the vertical thorax axis under the gravity effect. By using an object-oriented environment, the complex physiological system can be represented by a network of electrical, lumped-element compartments. The lungs are divided into three zones: upper, middle, and lower zone. Blood flow increases with the distance from the apex to the base of the lungs. The upper zone is characterized by a complete collapse of the pulmonary capillary vasculature; thus, there is no flow in this zone. The second zone has a "waterfall effect" where the blood flow is determined by the difference between the pulmonary-arterial and alveolar pressures. At resting position, the upper lobes of the lungs are more expanded than the middle and lower lobes. However, during spontaneous breathing, ventilation is nonuniform with more air entering the lower lobes than the middle and upper lobes. A simulative model of the complete system is developed which shows results in good agreement with the literature.

  17. How to detect when cells in space perceive gravity

    NASA Technical Reports Server (NTRS)

    Bjoerkman, Thomas

    1989-01-01

    It is useful to be able to measure when and whether cells detect gravity during spaceflights. For studying gravitational physiology, gravity perception is the response the experimentalist needs to measure. Also, for growing plants in space, plant cells may have a non-directional requirement for gravity as a development cue. The main goals of spaceflight experiments in which gravity perception would be measured are to determine the properties of the gravity receptor and how it is activated, and to determine fundamental characteristics of the signal generated. The main practical difficulty with measuring gravity sensing in space is that gravity sensing cannot be measured with certainty on earth. Almost all experiments measure gravitropic curvature. Reciprocity and intermittent stimulation are measurements which were made to some degree on earth using clinostatting, but which would provide clearer results if done with microgravity rather than clinostatting. These would be important uses of the space laboratory for determining the nature of gravity sensing in plants. Those techniques which do not use gravitropic curvature to measure gravity sensing are electrophysiological. The vibrating probe would be somewhat easier to adapt to space conditions than the intracellular microelectrode because it can be positioned with less precision. Ideally, a non-invasive technique would be best suited if an appropriate measure could be developed. Thus, the effect of microgravity on cultured cells is more likely to be by large-scale physical events than gravity sensing in the culture cells. It is not expected that it will be necessary to determine whether individual cultured cells perceive gravity unless cells grow abnormally even after the obvious microgravity effects on the culture as a whole can be ruled out as the cause.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasakura, Naoki

    The tensor model is discussed as theory of dynamical fuzzy spaces in order to formulate gravity on fuzzy spaces. The numerical analyses of the tensor models possessing Gaussian background solutions have shown that the low-lying long-wavelength fluctuations around the backgrounds are in remarkable agreement with the geometric fluctuations on flat spaces in the general relativity. It has also been shown that part of the orthogonal symmetry of the tensor model spontaneously broken by the backgrounds agrees with the local translation symmetry of the general relativity. Thus the tensor model provides an interesting model of simultaneous emergence of space, the generalmore » relativity, and its local translation symmetry.« less

  19. Gravity-induced encapsulation of liquids by destabilization of granular rafts

    NASA Astrophysics Data System (ADS)

    Abkarian, Manouk; Protière, Suzie; Aristoff, Jeffrey M.; Stone, Howard A.

    2013-05-01

    Droplets and bubbles coated by a protective armour of particles find numerous applications in encapsulation, stabilization of emulsions and foams, and flotation techniques. Here we study the role of a body force, such as in flotation, as a means of continuous encapsulation by particles. We use dense particles, which self-assemble into rafts, at oil-water interfaces. We show that these rafts can be spontaneously or controllably destabilized into armoured oil-in-water droplets, which highlights a possible role for common granular materials in environmental remediation. We further present a method for continuous production and discuss the generalization of our approach towards colloidal scales.

  20. Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale

    NASA Astrophysics Data System (ADS)

    Gorbunov, Dmitry S.; Sibiryakov, Sergei M.

    2005-09-01

    We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.

  1. Affine generalization of the Komar complex of general relativity

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.

    2001-02-01

    On the basis of the ``on shell'' Noether identities of the metric-affine gauge approach of gravity, an affine superpotential is derived which comprises the energy- and angular-momentum content of exact solutions. In the special case of general relativity (GR) or its teleparallel equivalent, the Komar or Freud complex, respectively, are recovered. Applying this to the spontaneously broken anti-de Sitter gauge model of McDowell and Mansouri with an induced Euler term automatically yields the correct mass and spin of the Kerr-AdS solution of GR with a (induced) cosmological constant without the factor two discrepancy of the Komar formula.

  2. Big Hydrophobic Capillary Fluidics; Basically Water Ping Pong in Space

    NASA Astrophysics Data System (ADS)

    Weislogel, Mark; Attari, Babak; Wollman, Andrew; Cardin, Karl; Geile, John; Lindner, Thomas

    2016-11-01

    Capillary surfaces can be enormous in environments where the effects of gravity are small. In this presentation we review a number of interesting examples from demonstrative experiments performed in drop towers and aboard the International Space Station. The topic then focuses on large length scale hydrophobic phenomena including puddle jumping, spontaneous particle ejections, and large drop rebounds akin to water ping pong in space. Unseen footage of NASA Astronaut Scott Kelly playing water ping pong in space will be shown. Quantitative and qualitative results are offered to assist in the design of experiments for ongoing research. NASA NNX12A047A.

  3. Tuning the cosmological constant, broken scale invariance, unitarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Förste, Stefan; Manz, Paul; Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn

    2016-06-10

    We study gravity coupled to a cosmological constant and a scale but not conformally invariant sector. In Minkowski vacuum, scale invariance is spontaneously broken. We consider small fluctuations around the Minkowski vacuum. At the linearised level we find that the trace of metric perturbations receives a positive or negative mass squared contribution. However, only for the Fierz-Pauli combination the theory is free of ghosts. The mass term for the trace of metric perturbations can be cancelled by explicitly breaking scale invariance. This reintroduces fine-tuning. Models based on four form field strength show similarities with explicit scale symmetry breaking due tomore » quantisation conditions.« less

  4. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space.

    PubMed

    Hoson, Takayuki

    2014-05-16

    The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms.

  5. Associative memory model with spontaneous neural activity

    NASA Astrophysics Data System (ADS)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  6. Spontaneous Polariton Currents in Periodic Lateral Chains.

    PubMed

    Nalitov, A V; Liew, T C H; Kavokin, A V; Altshuler, B L; Rubo, Y G

    2017-08-11

    We predict spontaneous generation of superfluid polariton currents in planar microcavities with lateral periodic modulation of both the potential and decay rate. A spontaneous breaking of spatial inversion symmetry of a polariton condensate emerges at a critical pumping, and the current direction is stochastically chosen. We analyze the stability of the current with respect to the fluctuations of the condensate. A peculiar spatial current domain structure emerges, where the current direction is switched at the domain walls, and the characteristic domain size and lifetime scale with the pumping power.

  7. Enhanced asymptotic symmetry algebra of (2 +1 ) -dimensional flat space

    NASA Astrophysics Data System (ADS)

    Detournay, Stéphane; Riegler, Max

    2017-02-01

    In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2 +1 ) -dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007), 10.1088/0264-9381/24/5/F01]. These new boundary conditions lead to an asymptotic symmetry algebra that is generated by a bms3 algebra and two affine u ^(1 ) current algebras. We then apply these boundary conditions to topologically massive gravity (TMG) and determine how the presence of the gravitational Chern-Simons term affects the central extensions of the asymptotic symmetry algebra. We furthermore determine the thermal entropy of solutions obeying our new boundary conditions for both Einstein gravity and TMG.

  8. Root gravitropism: a complex response to a simple stimulus?

    NASA Technical Reports Server (NTRS)

    Rosen, E.; Chen, R.; Masson, P. H.

    1999-01-01

    Roots avoid depleting their immediate environment of essential nutrients by continuous growth. Root growth is directed by environmental cues, including gravity. Gravity sensing occurs mainly in the columella cells of the root cap. Upon reorientation within the gravity field, the root-cap amyloplasts sediment, generating a physiological signal that promotes the development of a curvature at the root elongation zones. Recent molecular genetic studies in Arabidopsis have allowed the identification of genes that play important roles in root gravitropism. Among them, the ARG1 gene encodes a DnaJ-like protein involved in gravity signal transduction, whereas the AUX1 and AGR1 genes encode proteins involved in polar auxin transport. These studies have important implications for understanding the intra- and inter-cellular signaling processes that underlie root gravitropism.

  9. Calcium mobilizations in response to changes in the gravity vector in Arabidopsis seedlings

    PubMed Central

    Tatsumi, Hitoshi; Toyota, Masatsugu; Furuichi, Takuya; Sokabe, Masahiro

    2014-01-01

    Gravity influences the growth direction of higher plants. Changes in the gravity vector (gravistimulation) immediately promote the increase in the cytoplasmic free calcium ion concentration ([Ca2+]c) in Arabidopsis (Arabidopsis thaliana) seedlings. When the seedlings are gravistimulated by reorientation at 180°, a transient two peaked (biphasic) [Ca2+]c-increase arises in their hypocotyl and petioles. Parabolic flights (PFs) can generate a variety of gravity-stimuli, and enables us to measure gravity-induced [Ca2+]c-increases without specimen rotation, which demonstrate that Arabidopsis seedlings possess a rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes into Ca2+ signals on a sub-second timescale. Hypergravity by centrifugation (20 g or 300 g) also induces similar transient [Ca2+]c-increases. In this review, we propose models for possible cellular processes of the garavi-stimulus-induced [Ca2+]c-increase, and evaluate those by examining whether the model fits well with the kinetic parameters derived from the [Ca2+]c-increases obtained by applying gravistimulus with different amplitudes and time sequences. PMID:25763612

  10. Diffusion phenomenon at the interface of Cu-brass under a strong gravitational field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogata, Yudai; Tokuda, Makoto; Januszko, Kamila

    2015-03-28

    To investigate diffusion phenomenon at the interface between Cu and brass under a strong gravitational field generated by ultracentrifuge apparatus, we performed gravity experiments on samples prepared by electroplating with interfaces normal and parallel to the direction of gravity. For the parallel-mode sample, for which sedimentation cannot occur thorough the interface, the concentration change was significant within the lower gravity region; many pores were observed in this region. Many vacancies arising from crystal strain due to the strong gravitational field moved into the lower gravity region, and enhanced the atoms mobilities. For the two normal-mode samples, which have interface normalmore » to the direction of gravity, the composition gradient of the brass-on-Cu sample was steeper than that for Cu-on-brass. This showed that the atoms of denser Cu diffuse in the direction of gravity, whereas Zn atoms diffuse in the opposite direction by sedimentation. The interdiffusion coefficients became higher in the Cu-on-brass sample, and became lower in the brass-on-Cu sample. This rise may be related to the behavior of the vacancies.« less

  11. Gravitational Effects on Cellular Flame Structure

    NASA Technical Reports Server (NTRS)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  12. Calcium mobilizations in response to changes in the gravity vector in Arabidopsis seedlings: possible cellular mechanisms.

    PubMed

    Tatsumi, Hitoshi; Toyota, Masatsugu; Furuichi, Takuya; Sokabe, Masahiro

    2014-01-01

    Gravity influences the growth direction of higher plants. Changes in the gravity vector (gravistimulation) immediately promote the increase in the cytoplasmic free calcium ion concentration ([Ca(2+)]c) in Arabidopsis (Arabidopsis thaliana) seedlings. When the seedlings are gravistimulated by reorientation at 180°, a transient two peaked (biphasic) [Ca(2+)]c-increase arises in their hypocotyl and petioles. Parabolic flights (PFs) can generate a variety of gravity-stimuli, and enables us to measure gravity-induced [Ca(2+)]c-increases without specimen rotation, which demonstrate that Arabidopsis seedlings possess a rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes into Ca(2+) signals on a sub-second timescale. Hypergravity by centrifugation (20 g or 300 g) also induces similar transient [Ca(2+)]c-increases. In this review, we propose models for possible cellular processes of the garavi-stimulus-induced [Ca(2+)]c-increase, and evaluate those by examining whether the model fits well with the kinetic parameters derived from the [Ca(2+)]c-increases obtained by applying gravistimulus with different amplitudes and time sequences.

  13. Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization

    NASA Technical Reports Server (NTRS)

    Pinson, Robin; Lu, Ping

    2015-01-01

    This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.

  14. Analysis of the Effect of Electron Density Perturbations Generated by Gravity Waves on HF Communication Links

    NASA Astrophysics Data System (ADS)

    Fagre, M.; Elias, A. G.; Chum, J.; Cabrera, M. A.

    2017-12-01

    In the present work, ray tracing of high frequency (HF) signals in ionospheric disturbed conditions is analyzed, particularly in the presence of electron density perturbations generated by gravity waves (GWs). The three-dimensional numerical ray tracing code by Jones and Stephenson, based on Hamilton's equations, which is commonly used to study radio propagation through the ionosphere, is used. An electron density perturbation model is implemented to this code based upon the consideration of atmospheric GWs generated at a height of 150 km in the thermosphere and propagating up into the ionosphere. The motion of the neutral gas at these altitudes induces disturbances in the background plasma which affects HF signals propagation. To obtain a realistic model of GWs in order to analyze the propagation and dispersion characteristics, a GW ray tracing method with kinematic viscosity and thermal diffusivity was applied. The IRI-2012, HWM14 and NRLMSISE-00 models were incorporated to assess electron density, wind velocities, neutral temperature and total mass density needed for the ray tracing codes. Preliminary results of gravity wave effects on ground range and reflection height are presented for low-mid latitude ionosphere.

  15. Polysensory response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia.

    PubMed

    Huang, M H; Horackova, M; Negoescu, R M; Wolf, S; Armour, J A

    1996-09-01

    To determine the response characteristics of dorsal root ganglion neurones that may serve sensory functions during myocardial ischaemia. Extracellular recordings were made from 54 spontaneously active and 5 normally quiescent dorsal root ganglion neurones (T2-T5) in 22 anaesthetized open-chest dogs under control conditions and during epicardial mechanical or chemical stimulation and myocardial ischaemia. The activity of 78% of spontaneously active and all quiescent neurones with left ventricular sensory fields was modified by left ventricular ischaemia. Forty-six spontaneously active neurones (85%) were polysensory with respect to mechanical and chemical stimuli. The 5 quiescent neurones responded only to chemical stimuli. Spontaneously active neurones associated with left ventricular mechanosensory endings (37 neurones) generated four different activity patterns in response to similar mechanical stimuli (high or low pressure active, high-low pressure active, high-low pressure inactive). A fifth group generated activity which was not related to chamber dynamics. Adenosine, adenosine 5'-triphosphate, substance P and bradykinin modified 72, 61, 65 and 63% of the spontaneously active neurones, respectively. Maximum local mechanical or chemical stimuli enhanced activity to similar degrees, as did ischaemia. Each ischaemia-sensitive neurone displayed unique activity patterns in response to similar mechanical or chemical stimuli. Most myocardial ischemia-sensitive dorsal root ganglion neurones associated with epicardial neurites sense mechanical and multiple chemical stimuli, a small population sensing only mechanical or chemical stimuli. Activity patterns generated by these neurones depend on their primary sensory characteristics or those of other neurones that may converge on them, as well as the type and magnitude of the stimuli that impinge upon their sensory fields, both normally and during ischaemia.

  16. Proposed Spontaneous Generation of Magnetic Fields by Curved Layers of a Chiral Superconductor

    NASA Astrophysics Data System (ADS)

    Kvorning, T.; Hansson, T. H.; Quelle, A.; Smith, C. Morais

    2018-05-01

    We demonstrate that two-dimensional chiral superconductors on curved surfaces spontaneously develop magnetic flux. This geometric Meissner effect provides an unequivocal signature of chiral superconductivity, which could be observed in layered materials under stress. We also employ the effect to explain some puzzling questions related to the location of zero-energy Majorana modes.

  17. Combustion of PTFE: The effects of gravity on ultrafine particle generation

    NASA Technical Reports Server (NTRS)

    McKinnon, Thomas; Todd, Paul; Oberdorster, Gunter

    1996-01-01

    The objective of this project is to obtain an understanding of the effect of gravity on the toxicity of ultrafine particle and gas phase materials produced when fluorocarbon polymers are thermally degraded or burned. The motivation for the project is to provide a basic technical foundation on which policies for spacecraft health and safety with regard to fire and polymers can be formulated.

  18. Cognitive Sciences

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session MP4 includes short reports on: (1) Face Recognition in Microgravity: Is Gravity Direction Involved in the Inversion Effect?; (2) Motor Timing under Microgravity; (3) Perceived Self-Motion Assessed by Computer-Generated Animations: Complexity and Reliability; (4) Prolonged Weightlessness Reference Frames and Visual Symmetry Detection; (5) Mental Representation of Gravity During a Locomotor Task; and (6) Haptic Perception in Weightlessness: A Sense of Force or a Sense of Effort?

  19. Observation of the fluorescence spectrum for a driven cascade model system in atomic beam.

    PubMed

    Tian, Si-Cong; Wang, Chun-Liang; Tong, Cun-Zhu; Wang, Li-Jun; Wang, Hai-Hua; Yang, Xiu-Bin; Kang, Zhi-Hui; Gao, Jin-Yue

    2012-10-08

    We experimentally study the resonance fluorescence from an excited two-level atom when the atomic upper level is coupled by a nonresonant field to a higher-lying state in a rubidium atomic beam. The heights, widths and positions of the fluorescence peaks can be controlled by modifying the detuning of the auxiliary field. We explain the observed spectrum with the transition properties of the dressed states generated by the coupling of the two laser fields. We also attribute the line narrowing to the effects of Spontaneously Generated Coherence between the close-lying levels in the dressed state picture generated by the auxiliary field. And the corresponding spectrum can be viewed as the evidence of Spontaneously Generated Coherence. The experimental results agree well with calculations based on the density-matrix equations.

  20. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    NASA Astrophysics Data System (ADS)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  1. Seismicity and gravimetric studies of Cyrenaica platform and adjacent regions, northeastern Libya

    NASA Astrophysics Data System (ADS)

    Ben Suleman, abdunnur

    2013-04-01

    Cyrenaica, located in northeastern Libya, consists of two distinct tectonic provinces; the tectonically unstable northern Cyrenaica and the more stable Cyernaican platform to the south. This study represents detailed investigations that aim to focus on the structure and tectonic setting through a detailed Seismicity and gravity analysis. Seismicity of northeastern Libya is documented back to 262 A.D. when an earthquake destroyed the city of Ceryne. The same area was destroyed by an earthquake in 365 A.D, The city of Al-Maraj was heavily damaged in 1963 by an earthquake measuring 5,3 in the Richter scale. Data collected by the recently established Libyan National Seismograph Network confirms that northeastern Libya is seismically active with most of the activity concentrates on the northern part particularly in the city of Al-Maraj area. Seismic activity is also noticeable in the offshore area. Focal mechanism studies for a number of earthquakes recorded by the Libyan National Seismograph Network suggest that normal faulting is predominant. A gravity data base collected from a variety of sources was compiled to generate a Bouguer gravity anomaly map that represents the basic map used in the overall interpretations, as well as in generating more specialized gravity maps used in the detailed investigations. The Bouguer gravity map demonstrates that the northern inverted basins of Cyrenaica and the coastal plain of Al-Jabal Al-Akhdar show a raped northward increase in gravity values to up to 130 Mgal. In addition a series of steep faults that separates the unstable Al-Jabal Al-Akhdar from the more stable Cyrenaica platform as well as other faults within the platform were well delineated.

  2. Spontaneous Droplet Motion on a Periodically Compliant Substrate.

    PubMed

    Liu, Tianshu; Nadermann, Nichole; He, Zhenping; Strogatz, Steven H; Hui, Chung-Yuen; Jagota, Anand

    2017-05-23

    Droplet motion arises in many natural phenomena, ranging from the familiar gravity-driven slip and arrest of raindrops on windows to the directed transport of droplets for water harvesting by plants and animals under dry conditions. Deliberate transportation and manipulation of droplets are also important in many technological applications, including droplet-based microfluidic chemical reactors and for thermal management. Droplet motion usually requires gradients of surface energy or temperature or external vibration to overcome contact angle hysteresis. Here, we report a new phenomenon in which a drying droplet placed on a periodically compliant surface undergoes spontaneous, erratic motion in the absence of surface energy gradients and external stimuli such as vibration. By modeling the droplet as a mass-spring system on a substrate with periodically varying compliance, we show that the stability of equilibrium depends on the size of the droplet. Specifically, if the center of mass of the drop lies at a stable equilibrium point of the system, it will stay there until evaporation reduces its size and this fixed point becomes unstable; with any small perturbation, the droplet then moves to one of its neighboring fixed points.

  3. An Investigation of Spontaneous Lorentz Violation and Cosmic Inflation

    NASA Astrophysics Data System (ADS)

    Tam, Heywood

    2010-12-01

    In this thesis we re-examine two established ideas in theoretical physics: Lorentz invariance and cosmic inflation. In the first four chapters, we (i) propose a way to hide large extra dimensions by coupling standard model fields with Lorentz-violating tensor fields with expectation values along the extra dimensions; (ii) examine the stability of theories in which Lorentz invariance is spontaneously broken by fixed-norm 'aether' fields; (iii) investigate the phenomenological properties of the sigma-model aether theory; and (iv) explore the implications of an alternative theory of gravity in which the graviton arises from the Goldstone modes of a two-index symmetric aether field. In the final chapter, we examine the horizon and flatness problems using the canonical measure (developed by Gibbons, Hawking, and Stewart) on the space of solutions to Einstein's equations. We find that the flatness problem does not exist, while the homogeneity of our universe does represent a substantial fine-tuning. Based on the assumption of unitary evolution (Liouville's theorem), we further dispute the widely accepted claim that inflation makes our universe more natural.

  4. Rotation in a gravitational billiard

    NASA Astrophysics Data System (ADS)

    Peraza-Mues, G. G.; Carvente, Osvaldo; Moukarzel, Cristian F.

    Gravitational billiards composed of a viscoelastic frictional disk bouncing on a vibrating wedge have been studied previously, but only from the point of view of their translational behavior. In this work, the average rotational velocity of the disk is studied under various circumstances. First, an experimental realization is briefly presented, which shows sustained rotation when the wedge is tilted. Next, this phenomenon is scrutinized in close detail using a precise numerical implementation of frictional forces. We show that the bouncing disk acquires a spontaneous rotational velocity whenever the wedge angle is not bisected by the direction of gravity. Our molecular dynamics (MD) results are well reproduced by event-driven (ED) simulations. When the wedge aperture angle θW>π/2, the average tangential velocity Rω¯ of the disk scales with the typical wedge vibration velocity vb, and is in general a nonmonotonic function of the overall tilt angle θT of the wedge. The present work focuses on wedges with θW=2π/3, which are relevant for the problem of spontaneous rotation in vibrated disk packings. This study makes part of the PhD Thesis of G. G. Peraza-Mues.

  5. Electrical current nanogeneration driven by spontaneous nanofluidic oscillations.

    PubMed

    Gimenez, R; Mercuri, M; Berli, C L A; Bellino, M G

    2018-02-15

    Exploiting natural phenomena is a central route for providing electricity to sustainably drive wearable electronics. Here we report a nano-scale water-driven energy generator that produces tiny electrical currents from spontaneous wetting-drying oscillations in mesoporous thin films. The system was fabricated with a wormlike mesoporous silica film, which was packed in between Cu and silicon contacts. The nanogenerator runs autonomously when a water droplet is laid over the film close to the Cu electrode, as water infiltration into the film under the electrode produces a direct-current. Wetting-drying cycles, which are spontaneously triggered by water evaporation, are perfectly correlated to the generated electrical current. The autonomous water displacement through the film yields a sustained energy conversion until the droplet reservoir vanishes. This novel water-driven nanogenerator opens new alternatives for versatile, mobile and cost-effective self-powering of nanosystems and nanodevices.

  6. A modeling study of the effect of gravity on airflow distribution and particle deposition in the lung.

    PubMed

    Asgharian, Bahman; Price, Owen; Oberdörster, Gunter

    2006-06-01

    Inhalation of particles generated as a result of thermal degradation from fire or smoke, as may occur on spacecraft, is of major health concern to space-faring countries. Knowledge of lung airflow and particle transport under different gravity environments is required to addresses this concern by providing information on particle deposition. Gravity affects deposition of particles in the lung in two ways. First, the airflow distribution among airways is changed in different gravity environments. Second, particle losses by sedimentation are enhanced with increasing gravity. In this study, a model of airflow distribution in the lung that accounts for the influence of gravity was used for a mathematical description of particle deposition in the human lung to calculate lobar, regional, and local deposition of particles in different gravity environments. The lung geometry used in the mathematical model contained five lobes that allowed the assessment of lobar ventilation distribution and variation of particle deposition. At zero gravity, it was predicted that all lobes of the lung expanded and contracted uniformly, independent of body position. Increased gravity in the upright position increased the expansion of the upper lobes and decreased expansion of the lower lobes. Despite a slight increase in predicted deposition of ultrafine particles in the upper lobes with decreasing gravity, deposition of ultrafine particles was generally predicted to be unaffected by gravity. Increased gravity increased predicted deposition of fine and coarse particles in the tracheobronchial region, but that led to a reduction or even elimination of deposition in the alveolar region for coarse particles. The results from this study show that existing mathematical models of particle deposition at 1 G can be extended to different gravity environments by simply correcting for a gravity constant. Controlled studies in astronauts on future space missions are needed to validate these predictions.

  7. The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO

    NASA Astrophysics Data System (ADS)

    Hindley, N. P.; Wright, C. J.; Smith, N. D.; Mitchell, N. J.

    2015-07-01

    Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they advance our understanding of the nature and origins of waves in the southern stratosphere.

  8. Vestibulo-Cervico-Ocular Responses and Tracking Eye Movements after Prolonged Exposure to Microgravity

    NASA Technical Reports Server (NTRS)

    Kornilova, L. N.; Naumov, I. A.; Azarov, K. A.; Sagalovitch, S. V.; Reschke, Millard F.; Kozlovskaya, I. B.

    2007-01-01

    The vestibular function and tracking eye movements were investigated in 12 Russian crew members of ISS missions on days 1(2), 4(5-6), and 8(9-10) after prolonged exposure to microgravity (126 to 195 days). The spontaneous oculomotor activity, static torsional otolith-cervico-ocular reflex, dynamic vestibulo-cervico-ocular responses, vestibular reactivity, tracking eye movements, and gaze-holding were studied using videooculography (VOG) and electrooculography (EOG) for parallel eye movement recording. On post-flight days 1-2 (R+1-2) some cosmonauts demonstrated: - an increased spontaneous oculomotor activity (floating eye movements, spontaneous nystagmus of the typical and atypical form, square wave jerks, gaze nystagmus) with the head held in the vertical position; - suppressed otolith function (absent or reduced by one half amplitude of torsional compensatory eye counter-rolling) with the head inclined statically right- or leftward by 300; - increased vestibular reactivity (lowered threshold and increased intensity of the vestibular nystagmus) during head turns around the longitudinal body axis at 0.125 Hz; - a significant change in the accuracy, velocity, and temporal characteristics of the eye tracking. The pattern, depth, dynamics, and velocity of the vestibular function and tracking eye movements recovery varied with individual participants in the investigation. However, there were also regular responses during readaptation to the normal gravity: - suppression of the otolith function was typically accompanied by an exaggerated vestibular reactivity; - the structure of visual tracking (the accuracy of fixational eye rotations, smooth tracking, and gaze-holding) was disturbed (the appearance of correcting saccades, the transition of smooth tracking to saccadic tracking) only in those cosmonauts who, in parallel to an increased reactivity of the vestibular input, also had central changes in the oculomotor system (spontaneous nystagmus, gaze nystagmus).

  9. Internal wave emission from baroclinic jets: experimental results

    NASA Astrophysics Data System (ADS)

    Borcia, Ion D.; Rodda, Costanza; Harlander, Uwe

    2016-04-01

    Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating-annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modeling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Here we show first results from a small rotating annulus experiments and we will further present our new experimental facility to study wave emission from jets and fronts.

  10. Spontaneous generation of singularities in paraxial optical fields.

    PubMed

    Aiello, Andrea

    2016-04-01

    In nonrelativistic quantum mechanics, the spontaneous generation of singularities in smooth and finite wave functions is a well understood phenomenon also occurring for free particles. We use the familiar analogy between the two-dimensional Schrödinger equation and the optical paraxial wave equation to define a new class of square-integrable paraxial optical fields that develop a spatial singularity in the focal point of a weakly focusing thin lens. These fields are characterized by a single real parameter whose value determines the nature of the singularity. This novel field enhancement mechanism may stimulate fruitful research for diverse technological and scientific applications.

  11. Giant gain from spontaneously generated coherence in Y-type double quantum dot structure

    NASA Astrophysics Data System (ADS)

    Al-Nashy, B.; Razzaghi, Sonia; Al-Musawi, Muwaffaq Abdullah; Rasooli Saghai, H.; Al-Khursan, Amin H.

    A theoretical model was presented for linear susceptibility using density matrix theory for Y-configuration of double quantum dots (QDs) system including spontaneously generated coherence (SGC). Two SGC components are included for this system: V, and Λ subsystems. It is shown that at high V-component, the system have a giga gain. At low Λ-system component; it is possible to controls the light speed between superluminal and subluminal using one parameter by increasing SGC component of the V-system. This have applications in quantum information storage and spatially-varying temporal clock.

  12. Atmosphere-ionosphere coupling from convectively generated gravity waves

    NASA Astrophysics Data System (ADS)

    Azeem, Irfan; Barlage, Michael

    2018-04-01

    Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.

  13. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    PubMed

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

  14. Topological Defects and Structures in the Early Universe

    NASA Astrophysics Data System (ADS)

    Zhu, Yong

    1997-08-01

    This thesis discusses the topological defects generated in the early universe and their contributions to cosmic structure formation. First, we investigate non-Gaussian isocurvature perturbations generated by the evolution of Goldstone modes during inflation. If a global symmetry is broken before inflation, the resulting Goldstone modes are disordered during inflation in a precise and predictable way. After inflation these Goldstone modes order themselves in a self-similar way, much as Goldstone modes in field ordering scenarios based on the Kibble mechanism. For (Hi2/Mpl2)~10- 6, through their gravitational interaction these Goldstone modes generate density perturbations of approximately the right magnitude to explain the cosmic microwave background (CMB) anisotropy and seed the structure seen in the universe today. In such a model non-Gaussian perturbations result because to lowest order density perturbations are sourced by products of Gaussian fields. We explore the issue of phase dispersion and conclude that this non-Gaussian model predicts Doppler peaks in the CMB anisotropy. Topological defects generated from quantum fluctuations during inflation are studied in chapter four. We present a calculation of the power spectrum generated in a classically symmetry-breaking O(N) scalar field through inflationary quantum fluctuations, using the large-N limit. The effective potential of the theory in de Sitter space is obtained from a gap equation which is exact at large N. Quantum fluctuations restore the O(N) symmetry in de Sitter space, but for the finite values of N of interest, there is symmetry breaking and phase ordering after inflation, described by the classical nonlinear sigma model. The scalar field power spectrum is obtained as a function of the scalar field self-coupling. In the second part of the thesis, we investigate non-Abelian topological worm-holes, obtained when winding number one texture field is coupled to Einstein gravity with a conserved global charge. This topological wormhole has the same Euclidean action as axion wormholes and charged scalar wormholes. We find that free topological wormholes are spontaneously generated in the Euclidean space-time with finite density. It is then shown that wormholes with finite density might destroy any long range order in the global fields.

  15. Variations on holography from modifications of gravity in anti-de sitter

    NASA Astrophysics Data System (ADS)

    Apolo Velez, Luis Alberto

    In this thesis we study aspects of the AdS/CFT correspondence that result from modifications of gravity in the bulk and lead to novel features in the dual theories at the boundary. The variations on the holographic theme studied in this thesis are model-independent since we have not assumed a particular UV-completion of gravity. Our results can be applied to a wide class of models that include higher-spin theories and compactifications of string theory on AdS backgrounds. The modifications of the bulk physics studied in this thesis include massive gravitons, higher-derivative terms in the Einstein-Hilbert action, and new boundary conditions for gravity. We begin by showing that it is possible to construct duals with a massive graviton in the bulk by deforming the dual theory at the boundary. This procedure does not break the translation invariance of the dual theory and might be useful in the study of certain condensed matter systems. We then construct the most general class of parity-even tricritical gravities in three and four dimensions. These higher-derivative theories are not unitary and characterized by the logarithmic fall-off of their linearized perturbations. They are conjectured to be dual to rank-3 logarithmic conformal field theories. We will show that, at linear order in the equations of motion, it is possible to truncate the theory to a unitary subsector. We also show that tricritical gravities in three and four dimensions suffer from a linearization instability that forbids unitary truncations beyond linear order. Finally we consider the role of boundary conditions in the AdS3/CFT2 correspondence. We show that free boundary conditions that lead to enhanced asymptotic symmetry groups are dual to 2D theories of quantum gravity in either the conformal or lightcone gauges. In particular we match the generators of symmetries in the bulk and boundary theories and show that a proper identification of the generator of Virasoro transformations in the bulk leads to a vanishing total central charge. We also show that this identification is consistent with the constraint equations of 2D gravity.

  16. The PLC/IP3R/PKC Pathway is Required for Ethanol-enhanced GABA Release

    PubMed Central

    Kelm, M. Katherine; Weinberg, Richard J.; Criswell, Hugh E.; Breese, George R.

    2010-01-01

    Summary Research on the actions of ethanol at the GABAergic synapse has traditionally focused on postsynaptic mechanisms, but recent data demonstrate that ethanol also increases both evoked and spontaneous GABA release in many brain regions. Using whole-cell voltage-clamp recordings, we previously showed that ethanol increases spontaneous GABA release at the rat interneuron-Purkinje cell synapse. This presynaptic ethanol effect is dependent on calcium release from internal stores, possibly through activation of inositol 1,4,5-trisphosphate receptors (IP3Rs). After confirming that ethanol targets vesicular GABA release, in the present study we used electron microscopic immunohistochemistry to demonstrate that IP3Rs are located in presynaptic terminals of cerebellar interneurons. Activation of IP3Rs requires binding of IP3, generated through activation of phospholipase C (PLC). We find that the PLC antagonist edelfosine prevents ethanol from increasing spontaneous GABA release. Diacylglycerol generated by PLC and calcium released by activation of the IP3R activate protein kinase C (PKC). Ethanol-enhanced GABA release was blocked by two PKC antagonists, chelerythrine and calphostin C. When a membrane impermeable PKC antagonist, PKC (19-36), was delivered intracellularly to the postsynaptic neuron, ethanol continued to increase spontaneous GABA release. Overall, these results suggest that activation of the PLC/IP3R/PKC pathway is necessary for ethanol to increase spontaneous GABA release from presynaptic terminals onto Purkinje cells. PMID:20206640

  17. The generation of a zonal-wind oscillation by nonlinear interactions of internal gravity waves

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy

    2003-11-01

    Nonlinear interactions of internal gravity waves give rise to numerous large-scale phenomena that are observed in the atmosphere, for example the quasi-biennial oscillation (QBO). This is an oscillation in zonal wind direction which is observed in the equatorial stratosphere; it is characterized by alternating regimes of easterly and westerly shear that descend with time. In the past few decades, a number of theories have been developed to explain the mechanism by which the QBO is generated. These theories are all based on ``quasi-linear'' representations of wave-mean-flow interactions. In this presentation, a fully nonlinear numerical simulation of the QBO is described. A spectrum of gravity waves over a range of phase speeds is forced at the lower boundary of the computational domain and propagates upwards in a density-stratified shear flow. As a result of the absorption and reflection of the waves at their critical levels, regions of large shear develop in the background flow and propagate downwards with time.

  18. Gravity flow operated small electricity generator retrofit kit to flour mill industry.

    PubMed

    Shekara, Prithivi; Kumar V, Pavan; Hosamane, Gangadharappa Gundabhakthara

    2013-10-01

    Flour milling is a grinding process to produce flour from wheat through comprehensive stages of grinding and separation. The primary energy is required to provide power used in grinding of wheat. In wheat milling, tempering is the process of adding water to wheat before milling to toughen the bran and mellow the endosperm. Gravity flow of the wheat is utilized to rotate the dampener wheel with cups to add water. Low cost gravity flow operated small electricity generator retrofit kit for dampener was designed and developed to justify low cost energy production without expensive solutions. Results of statistical analysis indicated that there was significant difference in mean values for voltage, rpm and flow rate at the 95% probability level. The resulted maximum mechanical power and measured electrical power were 5.1 W and 4.9 W respectively at wheat flow rate of 1.6 Kg/s and dampener wheel rotational velocity of 4.4 rad/s.

  19. Interactions between Artificial Gravity, the Affected Physiological Systems, and Nutrition

    NASA Technical Reports Server (NTRS)

    Heer, Martina; Baecker, Nathalie; Zwart, Sara; Smith, Scott

    2006-01-01

    Malnutrition, either by insufficient supply of some nutrients or by overfeeding, has a profound effect on the health of an organism. Therefore, optimal nutrition is a necessity in normal gravity on Earth, in microgravity, and when applying artificial gravity to the human system. Reduced physical activity, such as observed in microgravity or bed rest, has an effect on many physiological systems, such as the cardiovascular, musculoskeletal, immune, and body fluids regulation systems. There is currently no countermeasure that is effective to counteract both the cardiovascular and musculoskeletal deconditioning when applied for a short duration (see Chapter 1). Artificial gravity therefore seems the simplest physiological approach to keep these systems intact. The application of intermittent daily dose of artificial gravity by means of centrifugation has often been proposed as a potential countermeasure against the physiological deconditioning induced by spaceflight. However, neither the optimal gravity level, nor its optimal duration of exposure have been enough studied to recommend a validated, effective, and efficient artificial gravity application. As discussed in previous chapters, artificial gravity has a very high potential to counteract any changes caused by reduced physical activity. The nutrient supply, which ideally should match the actual needs, will interact with these changes and therefore has also to be taken into account. This chapter reviews the potential interactions between these nutrients (energy intake, vitamins, minerals) and the other physiological systems affected by artificial gravity generated by an on-board short-radius centrifuge.

  20. Aerosol bolus dispersion in acinar airways—influence of gravity and airway asymmetry

    PubMed Central

    Ma, Baoshun

    2012-01-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery. PMID:22678957

  1. Aerosol bolus dispersion in acinar airways--influence of gravity and airway asymmetry.

    PubMed

    Ma, Baoshun; Darquenne, Chantal

    2012-08-01

    The aerosol bolus technique can be used to estimate the degree of convective mixing in the lung; however, contributions of different lung compartments to measured dispersion cannot be differentiated unambiguously. To estimate dispersion in the distal lung, we studied the effect of gravity and airway asymmetry on the dispersion of 1 μm-diameter particle boluses in three-dimensional computational models of the lung periphery, ranging from a single alveolar sac to four-generation (g4) structures of bifurcating airways that deformed homogeneously during breathing. Boluses were introduced at the beginning of a 2-s inhalation, immediately followed by a 3-s exhalation. Dispersion was estimated by the half-width of the exhaled bolus. Dispersion was significantly affected by the spatial orientation of the models in normal gravity and was less in zero gravity than in normal gravity. Dispersion was strongly correlated with model volume in both normal and zero gravity. Predicted pulmonary dispersion based on a symmetric g4 acinar model was 391 ml and 238 ml under normal and zero gravity, respectively. These results accounted for a significant amount of dispersion measured experimentally. In zero gravity, predicted dispersion in a highly asymmetric model accounted for ∼20% of that obtained in a symmetric model with comparable volume and number of alveolated branches, whereas normal gravity dispersions were comparable in both models. These results suggest that gravitational sedimentation and not geometrical asymmetry is the dominant factor in aerosol dispersion in the lung periphery.

  2. Search for Earthquake-Induced Prompt Gravity Signals in Gravimetric Data: Data Analysis and a New Observation Model

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Kame, N.; Watada, S.; Ohtani, M.; Araya, A.; Imanishi, Y.; Ando, M.; Kunugi, T.

    2017-12-01

    Seismic waves radiated from an earthquake rupture induces density perturbations of the medium, which in turn generates prompt gravity changes at all distances before the arrival of seismic waves. Detection of the gravity signal before the seismic one is a challenge in seismology. In this study, we searched for the prompt gravity changes from the 2011 Tohoku-Oki earthquake in data recorded by gravimeters, seismometers, and tiltmeters. Predicted changes from the currently used simplified model were not identified using band-pass filtering and multi-station stacking even though sufficient signal-to-noise ratios were achieved. Our data analysis raised discrepancy between the data and the theoretical model. To interpret the absence of signals in the data, we investigated the effect of self-gravity deformation on the measurement of gravitational acceleration, which has been ignored in the existing theory. We analytically calculated the displacement of the observation station induced by the prompt gravity changes in an infinite homogeneous medium, and showed that before the arrival of P waves each point in the medium moves at an acceleration identical to the applied gravity change, i.e., free-falls. As a result of the opposite inertial force, gravity sensors attached to the medium lose their sensitivity to the prompt gravity changes. This new observation model incorporated with the self-gravity effect explains the absence of such prompt signals in the acceleration data. We have shown the negative observability in acceleration, but there remains a possibility of detection of its spatial gradients or spatial strain. For a future detection experiment, we derived an analytical expression of the theoretical gravity gradients from a general seismic source described as a moment tensor.

  3. Two-dimensional Core-collapse Supernova Explosions Aided by General Relativity with Multidimensional Neutrino Transport

    NASA Astrophysics Data System (ADS)

    O’Connor, Evan P.; Couch, Sean M.

    2018-02-01

    We present results from simulations of core-collapse supernovae in FLASH using a newly implemented multidimensional neutrino transport scheme and a newly implemented general relativistic (GR) treatment of gravity. We use a two-moment method with an analytic closure (so-called M1 transport) for the neutrino transport. This transport is multienergy, multispecies, velocity dependent, and truly multidimensional, i.e., we do not assume the commonly used “ray-by-ray” approximation. Our GR gravity is implemented in our Newtonian hydrodynamics simulations via an effective relativistic potential that closely reproduces the GR structure of neutron stars and has been shown to match GR simulations of core collapse quite well. In axisymmetry, we simulate core-collapse supernovae with four different progenitor models in both Newtonian and GR gravity. We find that the more compact proto–neutron star structure realized in simulations with GR gravity gives higher neutrino luminosities and higher neutrino energies. These differences in turn give higher neutrino heating rates (upward of ∼20%–30% over the corresponding Newtonian gravity simulations) that increase the efficacy of the neutrino mechanism. Three of the four models successfully explode in the simulations assuming GREP gravity. In our Newtonian gravity simulations, two of the four models explode, but at times much later than observed in our GR gravity simulations. Our results, in both Newtonian and GR gravity, compare well with several other studies in the literature. These results conclusively show that the approximation of Newtonian gravity for simulating the core-collapse supernova central engine is not acceptable. We also simulate four additional models in GR gravity to highlight the growing disparity between parameterized 1D models of core-collapse supernovae and the current generation of 2D models.

  4. Effect of Gravity Waves from Small Islands in the Southern Ocean on the Southern Hemisphere Atmospheric Circulation

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Oman, L. D.

    2018-01-01

    The effect of small islands in the Southern Ocean on the atmospheric circulation in the Southern Hemisphere is considered with a series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model in which the gravity wave stress generated by these islands is increased to resemble observed values. The enhanced gravity wave drag leads to a 2 K warming of the springtime polar stratosphere, partially ameliorating biases in this region. Resolved wave drag declines in the stratospheric region in which the added orographic gravity waves deposit their momentum, such that changes in gravity waves are partially compensated by changes in resolved waves, though resolved wave drag increases further poleward. The orographic drag from these islands has impacts for surface climate, as biases in tropospheric jet position are also partially ameliorated. These results suggest that these small islands are likely contributing to the missing drag near 60 degrees S in the upper stratosphere evident in many data assimilation products.

  5. Action potential properties are gravity dependent

    NASA Astrophysics Data System (ADS)

    Meissner, Klaus; Hanke, Wolfgang

    2005-06-01

    The functional properties of neuronal tissue critically depend on cellular composition and intercellular comunication. A basic principle of such communication found in various types of neurons is the generation of action potentials (APs). These APs depend on the presence of voltage gated ion channels and propagate along cellular processes (e.g. axons) towards target neurons or other cells. It has already been shown that the properties of ion channels depend on gravity. To discover whether the properties of APs also depend on gravity, we examined the propagation of APs in earthworms (invertebrates) and isolated nerve fibres (i.e. bundles of axons) from earthworms under conditions of micro- and macro-gravity. In a second set of experiments we could verify our results on rat axons (vertebrates). Our experiments carried out during two parabolic flight campaigns revealed that microgravity slows AP propagation velocity and macrogravity accelerates the transmission of action potentials. The relevance for live-science related questions is considerable, taking into account that altered gravity conditions might affect AP velocity in man during space flight missions.

  6. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  7. Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity.

    PubMed

    Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen

    2012-05-07

    The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.

  8. Quantum Gravity Gradiometer Development for Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.; Yu, Nan; Kellogg, James R.; Thompson, Robert J.; Aveline, David C.; Maleki, Lute

    2006-01-01

    Funded by the Advanced Technology Component Program, we have completed the development of a laboratory-based quantum gravity gradiometer based on atom interferometer technology. This is our first step towards a new spaceborne gradiometer instrument, which can significantly contribute to global gravity mapping and monitoring important in the understanding of the solid earth, ice and oceans, and dynamic processes. In this paper, we will briefly review the principles and technical benefits of atom-wave interferometer-based inertial sensors in space. We will then describe the technical implementation of the laboratory setup and report its status. We will also discuss our implementation plan for the next generation instrument.

  9. Baryogenesis in Lorentz-violating gravity theories

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy; Solomon, Adam R.

    2017-10-01

    Lorentz-violating theories of gravity typically contain constrained vector fields. We show that the lowest-order coupling of such vectors to U (1)-symmetric scalars can naturally give rise to baryogenesis in a manner akin to the Affleck-Dine mechanism. We calculate the cosmology of this new mechanism, demonstrating that a net B - L can be generated in the early Universe, and that the resulting baryon-to-photon ratio matches that which is presently observed. We discuss constraints on the model using solar system and astrophysical tests of Lorentz violation in the gravity sector. Generic Lorentz-violating theories can give rise to the observed matter-antimatter asymmetry without violating any current bounds.

  10. Effects on in Vivo and in Vitro Exposure to Excess Gravity on Growth and Differentiation of Mammalian Embryos

    NASA Technical Reports Server (NTRS)

    Duke, J.

    1985-01-01

    Studies on the development of embryonic mouse tissues exposed to excess gravity in vitro and in vivo are discussed. Suppression is seen in limb buds cultured under 3G. Mouse palates were exposed to excess G in vitro, 13- and 14-day palates were exposed to 2.6G for 24 hours. For in vivo studies, a small animal centrifuge was constructed. When the centrifuge is operated at 40 and 45 rpm, the linear accelerations generated range from 1.8 to 3.5G. The effects of gravity on body weights and on reproduction is also presented.

  11. New insights into root gravitropic signalling

    PubMed Central

    Sato, Ethel Mendocilla; Hijazi, Hussein; Bennett, Malcolm J.; Vissenberg, Kris; Swarup, Ranjan

    2015-01-01

    An important feature of plants is the ability to adapt their growth towards or away from external stimuli such as light, water, temperature, and gravity. These responsive plant growth movements are called tropisms and they contribute to the plant’s survival and reproduction. Roots modulate their growth towards gravity to exploit the soil for water and nutrient uptake, and to provide anchorage. The physiological process of root gravitropism comprises gravity perception, signal transmission, growth response, and the re-establishment of normal growth. Gravity perception is best explained by the starch–statolith hypothesis that states that dense starch-filled amyloplasts or statoliths within columella cells sediment in the direction of gravity, resulting in the generation of a signal that causes asymmetric growth. Though little is known about the gravity receptor(s), the role of auxin linking gravity sensing to the response is well established. Auxin influx and efflux carriers facilitate creation of a differential auxin gradient between the upper and lower side of gravistimulated roots. This asymmetric auxin gradient causes differential growth responses in the graviresponding tissue of the elongation zone, leading to root curvature. Cell biological and mathematical modelling approaches suggest that the root gravitropic response begins within minutes of a gravity stimulus, triggering genomic and non-genomic responses. This review discusses recent advances in our understanding of root gravitropism in Arabidopsis thaliana and identifies current challenges and future perspectives. PMID:25547917

  12. Dynamics of Nearshore Sand Bars and Infra-gravity Waves: The Optimal Theory Point of View

    NASA Astrophysics Data System (ADS)

    Bouchette, F.; Mohammadi, B.

    2016-12-01

    It is well known that the dynamics of near-shore sand bars are partly controlled by the features (location of nodes, amplitude, length, period) of the so-called infra-gravity waves. Reciprocally, changes in the location, size and shape of near-shore sand bars can control wave/wave interactions which in their turn alter the infra-gravity content of the near-shore wave energy spectrum. The coupling infra-gravity / near-shore bar is thus definitely two ways. Regarding numerical modelling, several approaches have already been considered to analyze such coupled dynamics. Most of them are based on the following strategy: 1) define an energy spectrum including infra-gravity, 2) tentatively compute the radiation stresses driven by this energy spectrum, 3) compute sediment transport and changes in the seabottom elevation including sand bars, 4) loop on the computation of infra-gravity taking into account the morphological changes. In this work, we consider an alternative approach named Nearshore Optimal Theory, which is a kind of breakdown point of view for the modeling of near-shore hydro-morphodynamics and wave/ wave/ seabottom interactions. Optimal theory applied to near-shore hydro-morphodynamics arose with the design of solid coastal defense structures by shape optimization methods, and is being now extended in order to model dynamics of any near-shore system combining waves and sand. The basics are the following: the near-shore system state is through a functional J representative of the energy of the system in some way. This J is computed from a model embedding the physics to be studied only (here hydrodynamics forced by simple infra-gravity). Then the paradigm is to say that the system will evolve so that the energy J tends to minimize. No really matter the complexity of wave propagation nor wave/bottom interactions. As soon as J embeds the physics to be explored, the method does not require a comprehensive modeling. Near-shore Optimal Theory has already given promising results for the generation of near-shore sand bar from scratch and their growth when forced by fair-weather waves. Here, we use it to explore the coupling between a very simple infra-gravity content and the nucleation of near-shore sand-bars. It is shown that even a very poor infra-gravity content strongly improves the generation of sand bars.

  13. Can Gravity Probe B usefully constrain torsion gravity theories?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Eanna E.; Rosenthal, Eran

    2007-06-15

    In most theories of gravity involving torsion, the source for torsion is the intrinsic spin of matter. Since the spins of fermions are normally randomly oriented in macroscopic bodies, the amount of torsion generated by macroscopic bodies is normally negligible. However, in a recent paper, Mao et al. (arXiv:gr-qc/0608121) point out that there is a class of theories, including the Hayashi-Shirafuji (1979) theory, in which the angular momentum of macroscopic spinning bodies generates a significant amount of torsion. They further argue that, by the principle of action equals reaction, one would expect the angular momentum of test bodies to couplemore » to a background torsion field, and therefore the precession of the Gravity Probe B gyroscopes should be affected in these theories by the torsion generated by the Earth. We show that in fact the principle of action equals reaction does not apply to these theories, essentially because the torsion is not an independent dynamical degree of freedom. We examine in detail a generalization of the Hayashi-Shirafuji theory suggested by Mao et al. called Einstein-Hayashi-Shirafuji theory. There are a variety of different versions of this theory, depending on the precise form of the coupling to matter chosen for the torsion. We show that, for any coupling to matter that is compatible with the spin transport equation postulated by Mao et al., the theory has either ghosts or an ill-posed initial-value formulation. These theoretical problems can be avoided by specializing the parameters of the theory and in addition choosing the standard minimal coupling to matter of the torsion tensor. This yields a consistent theory, but one in which the action equals reaction principle is violated, and in which the angular momentum of the gyroscopes does not couple to the Earth's torsion field. Thus, the Einstein-Hayashi-Shirafuji theory does not predict a detectable torsion signal for Gravity Probe B. There may be other torsion theories which do.« less

  14. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  15. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  16. A new insight on magma generation environment beneath Jeju (Cheju) volcanic island

    NASA Astrophysics Data System (ADS)

    Shin, Y.; CHOI, K.; Koh, J.; Yun, S.; Nakamura, E.; Na, S.

    2011-12-01

    We present a Moho undulation model from gravity inversion that gives a new insight on the magma generation environment beneath Jeju (Cheju) volcanic island, Korea. The island is an intra-plate volcanic island located behind Ryukyu Trench, the collisional boundary between Eurasian plate and Philippine plate. Jeju island is a symmetrical shield volcano of oval shape (74 km by 32 km) whose peak is Hallasan (Mt. Halla: 1950m). The landform, which is closely related to the volcanism, can be divided topographically into the lava plateau, the shield-shaped Halla volcanic edifice and the monogenetic cinder cones, which numbers over 365. The basement rock mainly consists of Precambrian gneiss, Mesozoic granite and volcanic rocks. Unconsolidated sedimentary rock is found between basement rock and lava. The lava plateau is composed of voluminous basaltic lava flows, which extend to the coast region with a gentle slope. Based on volcanic stratigraphy, paleontology and geochronology, the Jeju basalts range from the early Pleistocene to Holocene in age. The mean density of the island is estimated to be very low, 2390 kg/cubic cm from gravity data analysis, which reflects the abundant unconsolidated pyroclastic sediments below the surface lava. The mean Moho depth is estimated to be 29.5 km from power spectral density of gravity anomaly, which means it has continental crust. It is noticeable that the gravity inversion indicates the island is developed above and along a swelled-up belt (ridge), several hundred meters higher than the surrounding area. The structure is also shows positive correlation with high magnetic anomaly distribution that could indicate existence of volcanic rocks. We interpret the Moho structure has a key to the magma generation: 1) the high gravity anomaly belt is formed by folding/buckling process under compressional environment, 2) it causes decrease of pressure beneath the lithosphere along the belt, and 3) it accelerates melting of basaltic magma in addition to the hot thermal structure widely distributed behind the collisional boundary.

  17. Mitochondrial Mutation Rate, Spectrum and Heteroplasmy in Caenorhabditis elegans Spontaneous Mutation Accumulation Lines of Differing Population Size.

    PubMed

    Konrad, Anke; Thompson, Owen; Waterston, Robert H; Moerman, Donald G; Keightley, Peter D; Bergthorsson, Ulfar; Katju, Vaishali

    2017-06-01

    Mitochondrial genomes of metazoans, given their elevated rates of evolution, have served as pivotal markers for phylogeographic studies and recent phylogenetic events. In order to determine the dynamics of spontaneous mitochondrial mutations in small populations in the absence and presence of selection, we evolved mutation accumulation (MA) lines of Caenorhabditis elegans in parallel over 409 consecutive generations at three varying population sizes of N = 1, 10, and 100 hermaphrodites. The N =1 populations should have a minimal influence of natural selection to provide the spontaneous mutation rate and the expected rate of neutral evolution, whereas larger population sizes should experience increasing intensity of selection. New mutations were identified by Illumina paired-end sequencing of 86 mtDNA genomes across 35 experimental lines and compared with published genomes of natural isolates. The spontaneous mitochondrial mutation rate was estimated at 1.05 × 10-7/site/generation. A strong G/C→A/T mutational bias was observed in both the MA lines and the natural isolates. This suggests that the low G + C content at synonymous sites is the product of mutation bias rather than selection as previously proposed. The mitochondrial effective population size per worm generation was estimated to be 62. Although it was previously concluded that heteroplasmy was rare in C. elegans, the vast majority of mutations in this study were heteroplasmic despite an experimental regime exceeding 400 generations. The frequencies of frameshift and nonsynonymous mutations were negatively correlated with population size, which suggests their deleterious effects on fitness and a potent role for selection in their eradication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Newtonian Gravity Reformulated

    NASA Astrophysics Data System (ADS)

    Dehnen, H.

    2018-01-01

    With reference to MOND we propose a reformulation of Newton's theory of gravity in the sense of the static electrodynamics introducing a "material" quantity in analogy to the dielectric "constant". We propose that this quantity is induced by vacuum polarizations generated by the gravitational field itself. Herewith the flat rotation curves of the spiral galaxies can be explained as well as the observed high velocities near the center of the galaxy should be reconsidered.

  19. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    DTIC Science & Technology

    2011-04-15

    synoptically warm condition and susequently affect ozone depletion (Hamill and Toon, 1991). The importance of gravity waves on climate and weather... troposphere to upper stratosphere can those GWs grow into significant strengths. Locations of high occurrence of convectively generated GWs are also...maximum comes in one month later. A close look at the vertical config- uration of the zonal wind reveals that tropospheric westerlies in the SH high

  20. Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond

    DOE PAGES

    Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.; ...

    2018-01-29

    Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less

  1. Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingyuan Linda; Sun, Shuo; Burek, Michael J.

    Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into themore » cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. Here, we also demonstrate the largest coupling strength ( g/2π = 4.9 ± 0.3 GHz) and cooperativity ( C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.« less

  2. The Implications of Reduced Ground Reaction Forces During Space Flight for Bone Strains

    NASA Technical Reports Server (NTRS)

    Peterman, Marc M.; Hamel, Andrew J.; Sharkey, Neil A.; Piazza, Stephen J.; Cavanagh, Peter R.

    1998-01-01

    The specific mechanisms regulating bone mass are not known, but most investigators agree that bone maintenance is largely dependent upon mechanical demand and the resultant local bone strains. During space flight, bone loss such as that reported by LeBlanc et al. may result from failure to effectively load the skeleton and generate sufficient localized bone strains. In microgravity, a gravity replacement system can be used to tether an exercising subject to a treadmill. It follows that the ability to prevent bone loss is critically dependent upon the external ground reaction forces (GRFs) and skeletal loads imparted by the tethering system. To our knowledge, the loads during orbital flight have been measured only once (on STS 81). Based on these data and data from ground based experiments, it appears likely that interventions designed to prevent bone loss in micro-gravity generate GRFs substantially less than body weight. It is unknown to what degree reductions in external GRFs will affect internal bone strain and thus the bone maintenance response. To better predict the efficacy of treadmill exercise in micro-gravity we used a unique cadaver model to measure localized bone strains under conditions representative of those that might be produced by a gravity replacement system in space.

  3. Artificial gravity reveals that economy of action determines the stability of sensorimotor coordination.

    PubMed

    Carson, Richard G; Oytam, Yalchin; Riek, Stephan

    2009-01-01

    When we move along in time with a piece of music, we synchronise the downward phase of our gesture with the beat. While it is easy to demonstrate this tendency, there is considerable debate as to its neural origins. It may have a structural basis, whereby the gravitational field acts as an orientation reference that biases the formulation of motor commands. Alternatively, it may be functional, and related to the economy with which motion assisted by gravity can be generated by the motor system. We used a robotic system to generate a mathematical model of the gravitational forces acting upon the hand, and then to reverse the effect of gravity, and invert the weight of the limb. In these circumstances, patterns of coordination in which the upward phase of rhythmic hand movements coincided with the beat of a metronome were more stable than those in which downward movements were made on the beat. When a normal gravitational force was present, movements made down-on-the-beat were more stable than those made up-on-the-beat. The ubiquitous tendency to make a downward movement on a musical beat arises not from the perception of gravity, but as a result of the economy of action that derives from its exploitation.

  4. Gravity Effects in Microgap Flow Boiling

    NASA Technical Reports Server (NTRS)

    Robinson, Franklin; Bar-Cohen, Avram

    2017-01-01

    Increasing integration density of electronic components has exacerbated the thermal management challenges facing electronic system developers. The high power, heat flux, and volumetric heat generation of emerging devices are driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which facilitates direct contact between the heat-generating device and coolant flow. Microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel between devices. While two phase microcoolers are used routinely in ground-based systems, the lack of acceptable models and correlations for microgravity operation has limited their use for spacecraft thermal management. Previous research has revealed that gravitational acceleration plays a diminishing role as the channel diameter shrinks, but there is considerable variation among the proposed gravity-insensitive channel dimensions and minimal research on rectangular ducts. Reliable criteria for achieving gravity-insensitive flow boiling performance would enable spaceflight systems to exploit this powerful thermal management technique and reduce development time and costs through reliance on ground-based testing. In the present effort, the authors have studied the effect of evaporator orientation on flow boiling performance of HFE7100 in a 218 m tall by 13.0 mm wide microgap cooler. Similar heat transfer coefficients and critical heat flux were achieved across five evaporator orientations, indicating that the effect of gravity was negligible.

  5. Upper bound on the Abelian gauge coupling from asymptotic safety

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Versteegen, Fleur

    2018-01-01

    We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.

  6. Super-Luminal Effects for Finsler Branes as a Way to Preserve the Paradigm of Relativity Theories

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2013-06-01

    Using Finsler brane solutions [see details and methods in: S. Vacaru, Class. Quant. Grav. 28:215001, 2011], we show that neutrinos may surpass the speed of light in vacuum which can be explained by trapping effects from gravity theories on eight dimensional (co) tangent bundles on Lorentzian manifolds to spacetimes in general and special relativity. In nonholonomic variables, the bulk gravity is described by Finsler modifications depending on velocity/momentum coordinates. Possible super-luminal phenomena are determined by the width of locally anisotropic brane (spacetime) and induced by generating functions and integration functions and constants in coefficients of metrics and nonlinear connections. We conclude that Finsler brane gravity trapping mechanism may explain neutrino super-luminal effects and almost preserve the paradigm of Einstein relativity as the standard one for particle physics and gravity.

  7. Investigation of the Ignition and Burning of Materials in Space Cabin Atmospheres. Part 2: Ignition of a Combustible Mixture by a Hot Body with the Effects of Gravity

    NASA Technical Reports Server (NTRS)

    Lew, H. G.

    1972-01-01

    The ignition of a combustible gas mixture by a hot cylinder under the effect of a gravity field for steady state conditions is examined. For this purpose a horizontal cylinder is considered with gravity as a parameter together with a finite chemical reacting flow generated by free convection with the additional effect of diffusion. Both mass transfer and zero mass transfer cases are considered. By defining an ignition criterion the surface temperature and species are obtained from the analysis as a function of the gravity field. It is supposed that at the point of ignition the heat evolved in the gas is sufficiently high to attain a sustained combustion without any energy from the hot cylinder.

  8. Comparison of Gait During Treadmill Exercise While Supine in Lower Body Negative Pressure (LBNP), Supine with Bungee Resistance and Upright in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James

    1994-01-01

    The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity.

  9. A precise extragalactic test of General Relativity.

    PubMed

    Collett, Thomas E; Oldham, Lindsay J; Smith, Russell J; Auger, Matthew W; Westfall, Kyle B; Bacon, David; Nichol, Robert C; Masters, Karen L; Koyama, Kazuya; van den Bosch, Remco

    2018-06-22

    Einstein's theory of gravity, General Relativity, has been precisely tested on Solar System scales, but the long-range nature of gravity is still poorly constrained. The nearby strong gravitational lens ESO 325-G004 provides a laboratory to probe the weak-field regime of gravity and measure the spatial curvature generated per unit mass, γ. By reconstructing the observed light profile of the lensed arcs and the observed spatially resolved stellar kinematics with a single self-consistent model, we conclude that γ = 0.97 ± 0.09 at 68% confidence. Our result is consistent with the prediction of 1 from General Relativity and provides a strong extragalactic constraint on the weak-field metric of gravity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Progress towards a space-borne quantum gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Kohel, James M.; Ramerez-Serrano, Jaime; Kellogg, James R.; Lim, Lawrence; Maleki, Lute

    2004-01-01

    Quantum interferometer gravity gradiometer for 3D mapping is a project for developing the technology of atom interferometer-based gravity sensor in space. The atom interferometer utilizes atomic particles as free fall test masses to measure inertial forces with unprecedented sensitivity and precision. It also allows measurements of the gravity gradient tensor components for 3D mapping of subsurface mass distribution. The overall approach is based on recent advances of laser cooling and manipulation of atoms in atomic and optical physics. Atom interferometers have been demonstrated in research laboratories for gravity and gravity gradient measurements. In this approach, atoms are first laser cooled to micro-kelvin temperatures. Then they are allowed to freefall in vacuum as true drag-free test masses. During the free fall, a sequence of laser pulses is used to split and recombine the atom waves to realize the interferometric measurements. We have demonstrated atom interferometer operation in the Phase I period, and we are implementing the second generation for a complete gradiometer demonstration unit in the laboratory. Along with this development, we are developing technologies at component levels that will be more suited for realization of a space instrument. We will present an update of these developments and discuss the future directions of the quantum gravity gradiometer project.

  11. Direct Numerical Simulations of Small-Scale Gravity Wave Instability Dynamics in Variable Stratification and Shear

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.

    2015-12-01

    Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.

  12. Meso-beta scale numerical simulation studies of terrain-induced jet streak mass/momentum perturbations

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.

    1994-01-01

    An in-depth analysis of observed gravity waves and their relationship to precipitation bands over the Montana mesonetwork during the 1981 CCOPE case study indicates that there were two episodes of coherent internal gravity waves. One of the fundamental unanswered questions from this research, however, concerns the dynamical processes which generated the observed waves, all of which originated from the region encompassing the borders of Montana, Idaho, and Wyoming. While geostrophic adjustment, shearing instability, and terrain where all implicated separately or in concert as possible wave generation mechanisms, the lack of upper-air data within the wave genesis region made it difficult to rigorously define the genesis processes from observations alone. In this report we employ a mesoscale numerical model to help diagnose the intricate early wave generation mechanisms during the first observed wave episode.

  13. Elucidating the role of AII amacrine cells in glutamatergic retinal waves.

    PubMed

    Firl, Alana; Ke, Jiang-Bin; Zhang, Lei; Fuerst, Peter G; Singer, Joshua H; Feller, Marla B

    2015-01-28

    Spontaneous retinal activity mediated by glutamatergic neurotransmission-so-called "Stage 3" retinal waves-drives anti-correlated spiking in ON and OFF RGCs during the second week of postnatal development of the mouse. In the mature retina, the activity of a retinal interneuron called the AII amacrine cell is responsible for anti-correlated spiking in ON and OFF α-RGCs. In mature AIIs, membrane hyperpolarization elicits bursting behavior. Here, we postulated that bursting in AIIs underlies the initiation of glutamatergic retinal waves. We tested this hypothesis by using two-photon calcium imaging of spontaneous activity in populations of retinal neurons and by making whole-cell recordings from individual AIIs and α-RGCs in in vitro preparations of mouse retina. We found that AIIs participated in retinal waves, and that their activity was correlated with that of ON α-RGCs and anti-correlated with that of OFF α-RGCs. Though immature AIIs lacked the complement of membrane conductances necessary to generate bursting, pharmacological activation of the M-current, a conductance that modulates bursting in mature AIIs, blocked retinal wave generation. Interestingly, blockade of the pacemaker conductance Ih, a conductance absent in AIIs but present in both ON and OFF cone bipolar cells, caused a dramatic loss of spatial coherence of spontaneous activity. We conclude that during glutamatergic waves, AIIs act to coordinate and propagate activity generated by BCs rather than to initiate spontaneous activity. Copyright © 2015 the authors 0270-6474/15/351675-12$15.00/0.

  14. Nonlinear characterization of a silicon integrated Bragg waveguide filter.

    PubMed

    Massara, Micol Previde; Menotti, Matteo; Bergamasco, Nicola; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Galli, Matteo; Bajoni, Daniele

    2018-03-01

    Bragg waveguides are promising optical filters for pump suppression in spontaneous four-wave mixing (FWM) photon sources. In this work, we investigate the generation of unwanted photon pairs in the filter itself. We do this by taking advantage of the relation between spontaneous and classical FWM, which allows for the precise characterization of the nonlinear response of the device. The pair generation rate estimated from the classical measurement is compared with the theoretical value calculated by means of a full quantum model of the filter, which also allows investigation of the spectral properties of the generated pairs. We find a good agreement between theory and experiment, confirming that stimulated FWM is a valuable approach to characterize the nonlinear response of an integrated filter, and that the pairs generated in a Bragg waveguide are not a serious issue for the operation of a fully integrated nonclassical source.

  15. The Next Century Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Swanson, Paul N.

    1991-01-01

    The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.

  16. Respiration in vitro: I. Spontaneous activity.

    PubMed

    Hamada, O; Garcia-Rill, E; Skinner, R D

    1992-01-01

    The present report describes respiratory-like activity recorded from intercostal muscles in the neonatal rat in vitro brain stem-spinal cord, rib-attached preparation. In this preparation from 1- to 4-day-old rats, spontaneous rhythmic and synchronized upward movements of the rib cage coincided with the recorded muscle activity. Spontaneous respiratory-like activity showed a frequency in the range of 0.05-0.2 Hz, with single-, double-, and mixed-burst patterns. Spontaneous activity declined over time, but increased in frequency as temperature increased. Multilevel recordings showed a cephalocaudal order of bursting of intercostal muscles. Brain stem transections at the prepontine level did not affect spontaneous frequency, whereas premedullary transections resulted in an increase in spontaneous respiratory frequency. High spinal transections eliminated spontaneous respiratory-like activity. These results suggest that there is a well-organized pontomedullary pattern generator for respiratory-like activity in this preparation, which can be modulated by temperature. The characteristics of these electromyographic (EMG) recordings allow comparison with previous in vitro studies of respiratory-like activity using nerve activity and in vivo studies using EMG activity. These results provide basic information on the spontaneous activity of this preparation as a prelude to the study of the effects of electrical stimulation of the spinal cord to induce respiratory-like activity, as described in the companion article.

  17. Generation of three-qubit Greenberger-Horne-Zeilinger states of superconducting qubits by using dressed states

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Chen, Ye-Hong; Shi, Zhi-Cheng; Shan, Wu-Jiang; Song, Jie; Xia, Yan

    2017-12-01

    Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger-Horne-Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.

  18. Self-organization and symmetry-breaking in two-dimensional plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bos, Wouter J. T.; Neffaa, Salah; Schneider, Kai

    The spontaneous self-organization of two-dimensional magnetized plasma is investigated within the framework of magnetohydrodynamics with a particular emphasis on the symmetry-breaking induced by the shape of the confining boundaries. This symmetry-breaking is quantified by the angular momentum, which is shown to be generated rapidly and spontaneously from initial conditions free from angular momentum as soon as the geometry lacks axisymmetry. This effect is illustrated by considering circular, square, and elliptical boundaries. It is shown that the generation of angular momentum in nonaxisymmetric geometries can be enhanced by increasing the magnetic pressure. The effect becomes stronger at higher Reynolds numbers. Themore » generation of magnetic angular momentum (or angular field), previously observed at low Reynolds numbers, becomes weaker at larger Reynolds numbers.« less

  19. Broadband photon pair generation in green fluorescent proteins through spontaneous four-wave mixing

    PubMed Central

    Shi, Siyuan; Thomas, Abu; Corzo, Neil V.; Kumar, Prem; Huang, Yuping; Lee, Kim Fook

    2016-01-01

    Recent studies in quantum biology suggest that quantum mechanics help us to explore quantum processes in biological system. Here, we demonstrate generation of photon pairs through spontaneous four-wave mixing process in naturally occurring fluorescent proteins. We develop a general empirical method for analyzing the relative strength of nonlinear optical interaction processes in five different organic fluorophores. Our results indicate that the generation of photon pairs in green fluorescent proteins is subject to less background noises than in other fluorophores, leading to a coincidence-to-accidental ratio ~145. As such proteins can be genetically engineered and fused to many biological cells, our experiment enables a new platform for quantum information processing in a biological environment such as biomimetic quantum networks and quantum sensors. PMID:27076032

  20. Intercomparison and Assessment of GRACE Temporal Gravity Solutions Performance

    NASA Astrophysics Data System (ADS)

    Choe, J.; Nerem, R. S.; Leuliette, E. W.

    2006-12-01

    The GRACE mission has been producing monthly estimates of changes in the Earth's gravity field since April 2002. Converting the raw GRACE range, accelerometer, and GPS measurements into estimates of the gravity field is a complex process, and therefore different analysis groups use various "recipes" resulting in different models of the time-varying gravity field. We have intercompared the solutions generated by a number of groups: Center for Space Research (CSR), Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), Centre National d'Etudes Spatiales (CNES) and GeoForschungsZentrum (GFZ), to determine the characteristics of each group's solutions as applied to different scientific applications. For different scales of gaussian smoothing, we have examined the power spectrum of each model, the pattern of seasonal gravity variations, the residuals from a seasonal fit, and results from locations in the Sahara desert and Atlantic Ocean where the signals are known to be small. We have also characterized the level of "striping" in each center's solutions. In addition, we have compared each center's solutions for changes in Greenland and Antarctic ice mass, global ocean mass, and hydrologic changes over the continents. Using these tests and evaluations, we have been able to characterize the performance of each center's gravity solutions.

  1. Promoting Spontaneous Second Harmonic Generation through Organogelation.

    PubMed

    Marco, A Belén; Aparicio, Fátima; Faour, Lara; Iliopoulos, Konstantinos; Morille, Yohann; Allain, Magali; Franco, Santiago; Andreu, Raquel; Sahraoui, Bouchta; Gindre, Denis; Canevet, David; Sallé, Marc

    2016-07-27

    An organogelator based on the Disperse Red nonlinear optical chromophore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for preprocessing, and this SHG activity appears to be stable over several months. These findings, based on an intrinsic structural approach, are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles' alignment.

  2. VLTI: First Light for the Second Generation

    NASA Astrophysics Data System (ADS)

    Woillez, J.; Gonté, F.; Abad, J. A.; Abadie, S.; Abuter, R.; Accardo, M.; Acuña, M.; Alonso, J.; Andolfato, L.; Avila, G.; Barriga, P. J.; Beltran, J.; Berger, J.-P.; Bollados, C.; Bourget, P.; Brast, R.; Bristow, P.; Caniguante, L.; Castillo, R.; Conzelmann, R.; Cortes, A.; Delplancke, F.; Dell Valle, D.; Derie, F.; Diaz, A.; Donoso, R.; Duhoux, Ph.; Dupuy, C.; Elao, C.; Egner, S.; Fuenteseca, E.; Fernandez, R.; Gaytan, D.; Glindemann, A.; Gonzales, J.; Guisard, S.; Hagenauer, P.; Haimerl, A.; Heinz, V.; Henriquez, J. P.; van der Heyden, P.; Hubin, N.; Huerta, R.; Jochum, L.; Kirchbauer, J.-P.; Leiva, A.; Lévêque, S.; Lizon, J.-P.; Luco, F.; Mardones, P.; Mellado, A.; Mérand, A.; Osorio, J.; Ott, J.; Pallanca, L.; Pavez, M.; Pasquini, L.; Percheron, I.; Pirard, J.-F.; Phan, D. T.; Pineda, J. C.; Pino, A.; Poupar, S.; Ramírez, A.; Reinero, C.; Riquelme, M.; Romero, J.; Rivinius, Th.; Rojas, C.; Rozas, F.; Salgado, F.; Schöller, M.; Schuhler, N.; Siclari, W.; Stephan, C.; Tamblay, R.; Tapia, M.; Tristram, K.; Valdes, G.; de Wit, W.-J.; Wright, A.; Zins, G.

    2015-12-01

    The Very Large Telescope Interferometer (VLTI) stopped operation on 4 March 2015 with the objective of upgrading its infrastructure in preparation for the second generation VLTI instruments GRAVITY and MATISSE. A brief account of the eight bustling months it took our interferometer to metamorphose into its second generation, under the supervision of the VLTI Facility Project, is presented.

  3. Self-generating oscillating pressure exercise device

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E. (Inventor)

    1994-01-01

    An exercise device, especially suitable for zero gravity workouts, has a collapsible chamber which generates negative pressure on the lower portion of a body situated therein. The negative pressure is generated by virtue of leg, hand and shoulder interaction which contracts and expands the chamber about the person and by virtue of air flow regulation by valve action.

  4. A Patch to MCNP5 for Multiplication Inference: Description and User Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Jr., Clell J.

    2014-05-05

    A patch to MCNP5 has been written to allow generation of multiple neutrons from a spontaneous-fission event and generate list-mode output. This report documents the implementation and usage of this patch.

  5. Tsunami generation and associated waves in the water column and seabed due to an asymmetric earthquake motion within an anisotropic substratum

    NASA Astrophysics Data System (ADS)

    Bagheri, Amirhossein; Greenhalgh, Stewart; Khojasteh, Ali; Rahimian, Mohammad; Attarnejad, Reza

    2016-10-01

    In this paper, closed-form integral expressions are derived to describe how surface gravity waves (tsunamis) are generated when general asymmetric ground displacement (due to earthquake rupturing), involving both horizontal and vertical components of motion, occurs at arbitrary depth within the interior of an anisotropic subsea solid beneath the ocean. In addition, we compute the resultant hydrodynamic pressure within the seawater and the elastic wavefield within the seabed at any position. The method of potential functions and an integral transform approach, accompanied by a special contour integration scheme, are adopted to handle the equations of motion and produce the numerical results. The formulation accounts for any number of possible acoustic-gravity modes and is valid for both shallow and deep water situations as well as for any focal depth of the earthquake source. Phase and group velocity dispersion curves are developed for surface gravity (tsunami mode), acoustic-gravity, Rayleigh, and Scholte waves. Several asymptotic cases which arise from the general analysis are discussed and compared to existing solutions. The role of effective parameters such as hypocenter location and frequency of excitation is examined and illustrated through several figures which show the propagation pattern in the vertical and horizontal directions. Attention is directed to the unexpected contribution from the horizontal ground motion. The results have important application in several fields such as tsunami hazard prediction, marine seismology, and offshore and coastal engineering. In a companion paper, we examine the effect of ocean stratification on the appearance and character of internal and surface gravity waves.

  6. Markovian Analysis of the Sequential Behavior of the Spontaneous Spinal Cord Dorsum Potentials Induced by Acute Nociceptive Stimulation in the Anesthetized Cat.

    PubMed

    Martin, Mario; Béjar, Javier; Esposito, Gennaro; Chávez, Diógenes; Contreras-Hernández, Enrique; Glusman, Silvio; Cortés, Ulises; Rudomín, Pablo

    2017-01-01

    In a previous study we developed a Machine Learning procedure for the automatic identification and classification of spontaneous cord dorsum potentials ( CDPs ). This study further supported the proposal that in the anesthetized cat, the spontaneous CDPs recorded from different lumbar spinal segments are generated by a distributed network of dorsal horn neurons with structured (non-random) patterns of functional connectivity and that these configurations can be changed to other non-random and stable configurations after the noceptive stimulation produced by the intradermic injection of capsaicin in the anesthetized cat. Here we present a study showing that the sequence of identified forms of the spontaneous CDPs follows a Markov chain of at least order one. That is, the system has memory in the sense that the spontaneous activation of dorsal horn neuronal ensembles producing the CDPs is not independent of the most recent activity. We used this markovian property to build a procedure to identify portions of signals as belonging to a specific functional state of connectivity among the neuronal networks involved in the generation of the CDPs . We have tested this procedure during acute nociceptive stimulation produced by the intradermic injection of capsaicin in intact as well as spinalized preparations. Altogether, our results indicate that CDP sequences cannot be generated by a renewal stochastic process. Moreover, it is possible to describe some functional features of activity in the cord dorsum by modeling the CDP sequences as generated by a Markov order one stochastic process. Finally, these Markov models make possible to determine the functional state which produced a CDP sequence. The proposed identification procedures appear to be useful for the analysis of the sequential behavior of the ongoing CDPs recorded from different spinal segments in response to a variety of experimental procedures including the changes produced by acute nociceptive stimulation. They are envisaged as a useful tool to examine alterations of the patterns of functional connectivity between dorsal horn neurons under normal and different pathological conditions, an issue of potential clinical concern.

  7. A Comparison of Optically Measured and Radar-Derived Horizontal Neutral Winds

    DTIC Science & Technology

    1990-01-01

    observations of large-scale gravity waves or3 traveling ionospheric disturbances by Testud [1970], Iunsucker [1982]. The contributions of the parallel...increase in Kp, in agreement with previous findings of excitation by auroral processes [ Testud , 1970; lHernandez and Roble, 1976b; lunsucker, 19821...and 0+ and H+ ions, J. Geophys. Res., 69, 2349-2355, 1964. Testud , J., Gravity waves generated during magnetic substorms, J. Atmos. Terr. Phys., 32

  8. Perimeter Security and Intruder Detection Using Gravity Gradiometry: A Feasibility Study

    DTIC Science & Technology

    2011-03-24

    design, build, and operate, and it is usually not feasible to integrate new technology into an already existing system. So far, however, the...gravitational gradients is not a new concept and has been applied across a variety of industries. The first device for gravity gradient measurement was the...which generates a new simulated GGI reading. The program loops for a set number of iterations, and then ends by calculating algorithm performance

  9. Methods and systems for determining angular orientation of a drill string

    DOEpatents

    Cobern, Martin E.

    2010-03-23

    Preferred methods and systems generate a control input based on a periodically-varying characteristic associated with the rotation of a drill string. The periodically varying characteristic can be correlated with the magnetic tool face and gravity tool face of a rotating component of the drill string, so that the control input can be used to initiate a response in the rotating component as a function of gravity tool face.

  10. On the generation and evolution of internal gravity waves

    NASA Technical Reports Server (NTRS)

    Lansing, F. S.; Maxworthy, T.

    1984-01-01

    The tidal generation and evolution of internal gravity waves is investigated experimentally and theoretically using a two-dimensional two-layer model. Time-dependent flow is created by moving a profile of maximum submerged depth 7.7 cm through a total stroke of 29 cm in water above a freon-kerosene mixture in an 8.6-m-long 30-cm-deep 20-cm-wide transparent channel, and the deformation of the fluid interface is recorded photographically. A theoretical model of the interface as a set of discrete vortices is constructed numerically; the rigid structures are represented by a source distribution; governing equations in Lagrangian form are obtained; and two integrodifferential equations relating baroclinic vorticity generation and source-density generation are derived. The experimental and computed results are shown in photographs and graphs, respectively, and found to be in good agreement at small Froude numbers. The reasons for small discrepancies in the position of the maximum interface displacement at large Froude numbers are examined.

  11. Effects of Gravity, Microgravity or Microgravity Simulation on Early Mammalian Development.

    PubMed

    Ruden, Douglas M; Bolnick, Alan; Awonuga, Awoniyi; Abdulhasan, Mohammed; Perez, Gloria; Puscheck, Elizabeth E; Rappolee, Daniel A

    2018-06-11

    Plant and animal life forms evolved mechanisms for sensing and responding to gravity on Earth where homeostatic needs require responses. The lack of gravity, such as in the International Space Station (ISS), causes acute, intra-generational changes in the quality of life. These include maintaining calcium levels in bone, maintaining muscle tone, and disturbances in the vestibular apparatus in the ears. These problems decrease work efficiency and quality of life of humans not only during microgravity exposures but also after return to higher gravity on Earth or destinations such as Mars or the Moon. It has been hypothesized that lack of gravity during mammalian development may cause prenatal, postnatal and transgenerational effects that conflict with the environment, especially if the developing organism and its progeny are returned, or introduced de novo, into the varied gravity environments mentioned above. Although chicken and frog pregastrulation development, and plant root development, have profound effects due to orientation of cues by gravity-sensing mechanisms and responses, mammalian development is not typically characterized as gravity-sensing. Although no effects of microgravity simulation (MGS) on mouse fertilization were observed in two reports, negative effects of MGS on early mammalian development after fertilization and before gastrulation are presented in four reports that vary with the modality of MGS. This review will analyze the positive and negative mammalian early developmental outcomes, and enzymatic and epigenetic mechanisms known to mediate developmental responses to simulated microgravity on Earth and microgravity during spaceflight experiments. We will update experimental techniques that have already been developed or need to be developed for zero gravity molecular, cellular, and developmental biology experiments.

  12. Spontaneous Ion Depletion and Accumulation Phenomena Induced by Imbibition through Permselective Medium

    NASA Astrophysics Data System (ADS)

    Lee, Hyomin; Jung, Yeonsu; Park, Sungmin; Kim, Ho-Young; Kim, Sung Jae

    2016-11-01

    Generally, an ion depletion region near a permselective medium is induced by predominant ion flux through the medium. External electric field or hydraulic pressure has been reported as the driving forces. Among these driving forces, an imbibition through the nanoporous medium was chosen as the mechanism to spontaneously generate the ion depletion region. The water-absorbing process leads to the predominant ion flux so that the spontaneous formation of the ion depletion zone is expected even if there are no additional driving forces except for the inherent capillary action. In this presentation, we derived the analytical solutions using perturbation method and asymptotic analysis for the spontaneous phenomenon. Using the analysis, we found that there is also spontaneous accumulation regime depending on the mobility of dissolved electrolytic species. Therefore, the rigorous analysis of the spontaneous ion depletion and accumulation phenomena would provide a key perspective for the control of ion transportation in nanofluidic system such as desalinator, preconcentrator, and energy harvesting device, etc. Samsung Research Funding Center of Samsung Electronics (SRFC-MA1301-02) and BK21 plus program of Creative Research Engineer Development IT, Seoul National University.

  13. Further investigation of the spontaneous and evoked activity of the primary neurons of statoreceptors (and other receptors) of the labyrinth of the bullfrog before, during and after an extended period of weightlessness, including alternative intervals of artificial gravity

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Vestibular neuron activity was examined by studying nerve stimulation and evoked response. A cooling element, applied to the nerve consisted of a silver hook through which a coolant fluid flowed. Temperature changes were recorded via microtermistors on an eight channel brush recorder, together with response. Diffusion of the cooling effect was measured, recovery time was assessed, and the nerve was then studied hystologically and ultrastructurally. Problems in frog preparation were discussed along with problems in maintaining healthy specimens and bacteria controlled aquaria.

  14. [Diagnostic and Therapeutic Approach of Chronic Spontaneous Urticaria: Recommendations in Portugal].

    PubMed

    Costa, Célia; Gonçalo, Margarida

    2016-11-01

    Chronic spontaneous urticaria is a complex disorder, of unclear etiology, easily diagnosed although often difficult to treat. It has a significant impact on the patients' quality of life and results in high direct and indirect costs. The diagnosis of chronic spontaneous urticaria is mainly clinical and a limited number of tests is recommended for differential diagnosis and/or for the investigation/exclusion of possible causes. In addition to the complete blood count and C-reactive protein, and/or erythrocyte sedimentation rate, additional tests must be selected according to clinical criteria. The aim of therapy is the complete clinical control of chronic spontaneous urticaria. Evolution should be documented by weekly symptom scoring - Weekly Urticaria Activity Score (UAS7) -, as well as the assessment of quality of life. The therapeutic approach is based on second-generation H1 antihistamines (anti-H1) administered continuously in the approved doses (first line), and, in the absence of a clinical response, up to four times the daily-approved dose (second line). First generation H1 antihistamines are not recommended. Approximately 30% of patients are not controlled with second line therapy, and it is recommended to add a third line therapy. Of the two options, omalizumab and cyclosporine, only omalizumab is approved for chronic spontaneous urticaria and has a better safety profile, thus being preferably recommended. In Portugal there are no national-based recommendations applicable to clinical practice. The elaboration of these recommendations is justified by the need to standardize both the diagnosis and the treatment approach of patients with chronic spontaneous urticaria in Portugal, and for the referral of patients to specialized centers, in the most severe cases.

  15. Interactive simulation system for artificial ventilation on the internet: virtual ventilator.

    PubMed

    Takeuchi, Akihiro; Abe, Tadashi; Hirose, Minoru; Kamioka, Koichi; Hamada, Atsushi; Ikeda, Noriaki

    2004-12-01

    To develop an interactive simulation system "virtual ventilator" that demonstrates the dynamics of pressure and flow in the respiratory system under the combination of spontaneous breathing, ventilation modes, and ventilator options. The simulation system was designed to be used by unexperienced health care professionals as a self-training tool. The system consists of a simulation controller and three modules: respiratory, spontaneous breath, and ventilator. The respiratory module models the respiratory system by three resistances representing the main airway, the right and left lungs, and two compliances also representing the right and left lungs. The spontaneous breath module generates inspiratory negative pressure produced by a patient. The ventilator module generates driving force of pressure or flow according to the combination of the ventilation mode and options. These forces are given to the respiratory module through the simulation controller. The simulation system was developed using HTML, VBScript (3000 lines, 100 kB) and ActiveX control (120 kB), and runs on Internet Explorer (5.5 or higher). The spontaneous breath is defined by a frequency, amplitude and inspiratory patterns in the spontaneous breath module. The user can construct a ventilation mode by setting a control variable, phase variables (trigger, limit, and cycle), and options. Available ventilation modes are: controlled mechanical ventilation (CMV), continuous positive airway pressure, synchronized intermittent mandatory ventilation (SIMV), pressure support ventilation (PSV), SIMV + PSV, pressure-controlled ventilation (PCV), pressure-regulated volume control (PRVC), proportional assisted ventilation, mandatory minute ventilation (MMV), bilevel positive airway pressure (BiPAP). The simulation system demonstrates in a graph and animation the airway pressure, flow, and volume of the respiratory system during mechanical ventilation both with and without spontaneous breathing. We developed a web application that demonstrated the respiratory mechanics and the basic theory of ventilation mode.

  16. Breaking Gravity Waves Over Large-Scale Topography

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Shapiro, M. A.

    2002-12-01

    The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.

  17. Local magnetic fields, uplift, gravity, and dilational strain changes in Southern California ( USA).

    USGS Publications Warehouse

    Johnston, M.J.S.

    1986-01-01

    Measurements of regional magnetic field near the San Andreas fault at Cajon, Palmdale and Tejon are strongly correlated with changes in gravity, areal strain, and uplift in these regions during the period 1977-1984. Because the inferred relationships between these parameters are in approximate agreement with those obtained from simple deformation models, the preferred explanation appeals to short-term strain episodes independently detected in each data set. Transfer functions from magnetic to strain, gravity, and uplift perturbations, obtained by least-square linear fits to the data, are -0.98 nT/ppm, -0.03 nT/mu Gal, and 9.1 nT/m respectively. Tectonomagnetic model calculations underestimate the observed changes and those reported previously for dam loading and volcano-magnetic observations. A less likely alternative explanation of the observed data appeals to a common source of meteorologically generated crustal or instrumental noise in the strain, gravity, magnetic, and uplift data.-from Author

  18. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  19. Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft

    NASA Astrophysics Data System (ADS)

    Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.

    2012-01-01

    For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.

  20. Development of gravity theory application in the internalregional inter-zone commodity movement distribution with the origin zone movement generation boundary

    NASA Astrophysics Data System (ADS)

    Akbardin, J.; Parikesit, D.; Riyanto, B.; TMulyono, A.

    2018-05-01

    Zones that produce land fishery commodity and its yields have characteristics that is limited in distribution capability because infrastructure conditions availability. High demand for fishery commodities caused to a growing distribution at inefficient distribution distance. The development of the gravity theory with the limitation of movement generation from the production zone can increase the interaction inter-zones by distribution distances effectively and efficiently with shorter movement distribution distances. Regression analysis method with multiple variable of transportation infrastructure condition based on service level and quantitative capacity is determined to estimate the 'mass' of movement generation that is formed. The resulting movement distribution (Tid) model has the equation Tid = 27.04 -0.49 tid. Based on barrier function of power model with calibration value β = 0.0496. In the way of development of the movement generation 'mass' boundary at production zone will shorten the distribution distance effectively with shorter distribution distances. Shorter distribution distances will increase the accessibility inter-zones to interact according to the magnitude of the movement generation 'mass'.

  1. GPS-TEC of the Ionospheric Disturbances as a Tool for Early Tsunami Warning

    NASA Astrophysics Data System (ADS)

    Kunitsyn, Viacheslav E.; Nesterov, Ivan A.; Shalimov, Sergey L.; Krysanov, Boris Yu.; Padokhin, Artem M.; Rekenthaler, Douglas

    2013-04-01

    Recently, the GPS measurements were used for retrieving the information on the various types of ionospheric responses to seismic events (earthquakes, seismic Rayleigh waves, and tsunami) which generate atmospheric waves propagating up to the ionospheric altitudes where the collisions between the neutrals and charge particles give rise to the motion of the ionospheric plasma. These experimental results can well be used in architecture of the future tsunami warning system. The point is an earlier (in comparison with seismological methods) detection of the ionospheric signal that can indicate the moment of tsunami generation. As an example we consider the two-dimensional distributions of the vertical total electron content (TEC) variations in the ionosphere both close to and far from the epicenter of the Japan undersea earthquake of March 11, 2011 using radio tomographic (RT) reconstruction of high-temporal-resolution (2-minute) data from the Japan and the US GPS networks. Near-zone TEC variations shows a diverging ionospheric perturbation with multi-component spectral composition emerging after the main shock. The initial phase of the disturbance can be used as an indicator of the tsunami generation and subsequently for the tsunami early warning. Far-zone TEC variations reveals distinct wave train associated with gravity waves generated by tsunami. According to observations tsunami arrives at Hawaii and further at the coast of Southern California with delay relative to the gravity waves. Therefore the gravity wave pattern can be used in the early tsunami warning. We support this scenario by the results of modeling with the parameters of the ocean surface perturbation corresponding to the considered earthquake. In addition it was observed in the modeling that at long distance from the source the gravity wave can pass ahead of the tsunami. The work was supported by the Russian Foundation for Basic Research (grants 11-05-01157 and 12-05-33065).

  2. Gauge Gravity and Electroweak Theory

    NASA Astrophysics Data System (ADS)

    Hestenes, David

    2008-09-01

    Reformulation of the Dirac equation in terms of the real Spacetime Algebra (STA) reveals hidden geometric structure, including a geometric role for the unit imaginary as generator of rotations in a spacelike plane. The STA and the real Dirac equation play essential roles in a new Gauge Theory Gravity (GTG) version of General Relativity (GR). Besides clarifying the conceptual foundations of GR and facilitating complex computations, GTG opens up new possibilities for a unified gauge theory of gravity and quantum mechanics, including spacetime geometry of electroweak interactions. The Weinberg-Salam model fits perfectly into this geometric framework, and a promising variant that replaces chiral states with Majorana states is formulated to incorporate zitterbewegung in electron states.

  3. The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots[OPEN

    PubMed Central

    Taniguchi, Masatoshi; Furutani, Masahiko; Nishimura, Takeshi; Nakamura, Moritaka; Fushita, Toyohito; Iijima, Kohta; Baba, Kenichiro; Toyota, Masatsugu

    2017-01-01

    During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1/LAZY1-LIKE1 (LZY1) and AtDRO3/AtNGR1/LZY2. We showed that LZY1, LZY2, and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella. PMID:28765510

  4. The Development Of Drosophila Melanogaster under Different Duration Space Flight and Subsequent Adaptation to Earth Gravity.

    PubMed

    Ogneva, Irina V; Belyakin, Stepan N; Sarantseva, Svetlana V

    2016-01-01

    In prospective human exploration of outer space, the need to preserve a species over several generations under changed gravity conditions may arise. This paper demonstrates our results in the creation of the third generation of fruit fly Drosophila melanogaster (third-stage larvae) during the 44.5-day space flight (Foton-M4 satellite (2014, Russia)), then the fourth generation on Earth and the fifth generation again in conditions of the 12-day space flight (2014, in the Russian Segment of the ISS). The species preserves fertility despite a number of changes in the level of expression and content of cytoskeletal proteins, which are the key components of the cleavage spindle and the contractile ring of cells. The results of transcriptome screening and space analysis of cytoskeletal proteins show that the exposure to weightless conditions leads to the increased transcription of metabolic genes, cuticle components and the decreased transcription of genes involved in morphogenesis, cell differentiation, cytoskeletal organization and genes associated with the plasma membrane. "Subsequent" exposure to the microgravity for 12 days resulted in an even more significant increase/decrease in the transcription of the same genes. On the contrary, the transition from the microgravity conditions to the gravity of Earth leads to the increased transcription of genes whose products are involved in the morphogenesis, cytoskeletal organization, motility of cells and transcription regulation, and to the decreased transcription of cuticle genes and proteolytic processes.

  5. The Development Of Drosophila Melanogaster under Different Duration Space Flight and Subsequent Adaptation to Earth Gravity

    PubMed Central

    Belyakin, Stepan N.; Sarantseva, Svetlana V.

    2016-01-01

    In prospective human exploration of outer space, the need to preserve a species over several generations under changed gravity conditions may arise. This paper demonstrates our results in the creation of the third generation of fruit fly Drosophila melanogaster (third-stage larvae) during the 44.5-day space flight (Foton-M4 satellite (2014, Russia)), then the fourth generation on Earth and the fifth generation again in conditions of the 12-day space flight (2014, in the Russian Segment of the ISS). The species preserves fertility despite a number of changes in the level of expression and content of cytoskeletal proteins, which are the key components of the cleavage spindle and the contractile ring of cells. The results of transcriptome screening and space analysis of cytoskeletal proteins show that the exposure to weightless conditions leads to the increased transcription of metabolic genes, cuticle components and the decreased transcription of genes involved in morphogenesis, cell differentiation, cytoskeletal organization and genes associated with the plasma membrane. “Subsequent” exposure to the microgravity for 12 days resulted in an even more significant increase/decrease in the transcription of the same genes. On the contrary, the transition from the microgravity conditions to the gravity of Earth leads to the increased transcription of genes whose products are involved in the morphogenesis, cytoskeletal organization, motility of cells and transcription regulation, and to the decreased transcription of cuticle genes and proteolytic processes. PMID:27861601

  6. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less

  7. Bipolarization and Poleward Flux Correlate during Xenopus Extract Spindle AssemblyV⃞

    PubMed Central

    Mitchison, T.J.; Maddox, P.; Groen, A.; Cameron, L.; Perlman, Z.; Ohi, R.; Desai, A.; Salmon, E.D.; Kapoor, T.M.

    2004-01-01

    We investigated the mechanism by which meiotic spindles become bipolar and the correlation between bipolarity and poleward flux, using Xenopus egg extracts. By speckle microscopy and computational alignment, we find that monopolar sperm asters do not show evidence for flux, partially contradicting previous work. We account for the discrepancy by describing spontaneous bipolarization of sperm asters that was missed previously. During spontaneous bipolarization, onset of flux correlated with onset of bipolarity, implying that antiparallel microtubule organization may be required for flux. Using a probe for TPX2 in addition to tubulin, we describe two pathways that lead to spontaneous bipolarization, new pole assembly near chromatin, and pole splitting. By inhibiting the Ran pathway with excess importin-alpha, we establish a role for chromatin-derived, antiparallel overlap bundles in generating the sliding force for flux, and we examine these bundles by electron microscopy. Our results highlight the importance of two processes, chromatin-initiated microtubule nucleation, and sliding forces generated between antiparallel microtubules, in self-organization of spindle bipolarity and poleward flux. PMID:15385629

  8. Observation of turnover of spontaneous polarization in ferroelectric layer of pentacene/poly-(vinylidene-trifluoroethylene) double-layer capacitor under photo illumination by optical second-harmonic generation measurement

    NASA Astrophysics Data System (ADS)

    Shi, Zhemin; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    The details of turnover process of spontaneous polarization and associated carrier motions in indium-tin oxide/poly-(vinylidene-trifluoroethylene)/pentacene/Au capacitor were analyzed by coupling displacement current measurement (DCM) and electric-field-induced optical second-harmonic generation (EFISHG) measurement. A model was set up from DCM results to depict the relationship between electric field in semiconductor layer and applied external voltage, proving that photo illumination effect on the spontaneous polarization process lied in variation of semiconductor conductivity. The EFISHG measurement directly and selectively probed the electric field distribution in semiconductor layer, modifying the model and revealing detailed carrier behaviors involving photo illumination effect, dipole reversal, and interfacial charging in the device. A further decrease of DCM current in the low voltage region under illumination was found as the result of illumination effect, and the result was argued based on the changing of the total capacitance of the double-layer capacitors.

  9. Unconventional Bose—Einstein Condensations from Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Wu, Cong-Jun; Ian, Mondragon-Shem; Zhou, Xiang-Fa

    2011-09-01

    According to the “no-node" theorem, the many-body ground state wavefunctions of conventional Bose—Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree—Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the “order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.

  10. The simulation of microgravity conditions on the ground.

    PubMed

    Albrecht-Buehler, G

    1992-10-01

    This chapter defines weightlessness as the condition where the acceleration of an object is independent of its mass. Applying this definition to the clinostat, it argues that the clinostat is very limited as a simulator of microgravity because it (a) generates centrifugal forces, (b) generates particle oscillations with mass-dependent amplitudes of speed and phase shifts relative to the clinorotation, (c) is unable to remove globally the scalar effects of gravity such as hydrostatic pressure, which are independent of the direction of gravity in the first place, and, (d) generates more convective mixing of the gaseous or liquid environment of the test object, rather than eliminating it, as would true weightlessness. It is proposed that attempts to simulate microgravity must accept the simulation of one aspect of microgravity at a time, and urges that the suppression of convective currents be a major feature of experimental methods that simulate microgravity.

  11. Generation of Artificial Acoustic-Gravity Waves and Traveling Ionospheric Disturbances in HF Heating Experiments

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.; Cohen, J. A.; Watkins, B. J.

    2015-10-01

    We report the results of our ionospheric HF heating experiments to generate artificial acoustic-gravity waves (AGW) and traveling ionospheric disturbances (TID), which were conducted at the High-frequency Active Auroral Research Program facility in Gakona, Alaska. Based on the data from UHF radar, GPS total electron content, and ionosonde measurements, we found that artificial AGW/TID can be generated in ionospheric modification experiments by sinusoidally modulating the power envelope of the transmitted O-mode HF heater waves. In this case, the modulation frequency needs to be set below the characteristic Brunt-Vaisala frequency at the relevant altitudes. We avoided potential contamination from naturally-occurring AGW/TID of auroral origin by conducting the experiments during geomagnetically quiet time period. We determine that these artificial AGW/TID propagate away from the edge of the heated region with a horizontal speed of approximately 160 m/s.

  12. Constellations of Next Generation Gravity Missions: Simulations regarding optimal orbits and mitigation of aliasing errors

    NASA Astrophysics Data System (ADS)

    Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.

    2017-12-01

    The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.

  13. Mass transport phenomena between bubbles and dissolved gases in liquids under reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Dewitt, Kenneth J.; Brockwell, Jonathan L.; Yung, Chain-Nan; Chai, An-Ti; Mcquillen, John B.; Sotos, Raymond G.; Neumann, Eric S.

    1988-01-01

    The experimental and analytical work that was done to establish justification and feasibility for a shuttle middeck experiment involving mass transfer between a gas bubble and a liquid is described. The experiment involves the observation and measurement of the dissolution of an isolated immobile gas bubble of specified size and composition in a thermostatted solvent liquid of known concentration in the reduced gravity environment of earth orbit. Methods to generate and deploy the bubble were successful both in normal gravity using mutually buoyant fluids and under reduced gravity conditions in the NASA Lear Jet. Initialization of the experiment with a bubble of a prescribed size and composition in a liquid of known concentration was accomplished using the concept of unstable equilibrium. Subsequent bubble dissolution or growth is obtained by a step increase or decrease in the liquid pressure. A numerical model was developed which simulates the bubble dynamics and can be used to determine molecular parameters by comparison with the experimental data. The primary objective of the experiment is the elimination of convective effects that occur in normal gravity.

  14. Nucleate pool boiling: High gravity to reduced gravity; liquid metals to cryogens

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1988-01-01

    Requirements for the proper functioning of equipment and personnel in reduced gravity associated with space platforms and future space station modules introduce unique problems in temperature control; power generation; energy dissipation; the storage, transfer, control and conditioning of fluids; and liquid-vapor separation. The phase change of boiling is significant in all of these. Although both pool and flow boiling would be involved, research results to date include only pool boiling because buoyancy effects are maximized for this case. The effective application of forced convection boiling heat transfer in the microgravity of space will require a well grounded and cogent understanding of the mechanisms involved. Experimental results are presented for pool boiling from a single geometrical configuration, a flat surface, covering a wide range of body forces from a/g = 20 to 1 to a/g = 0 to -1 for a cryogenic liquid, and from a/g = 20 to 1 for water and a liquid metal. Similarities in behavior are noted for these three fluids at the higher gravity levels, and may reasonably be expected to continue at reduced gravity levels.

  15. An enhanced trend surface analysis equation for regional-residual separation of gravity data

    NASA Astrophysics Data System (ADS)

    Obasi, A. I.; Onwuemesi, A. G.; Romanus, O. M.

    2016-12-01

    Trend surface analysis is a geological term for a mathematical technique which separates a given map set into a regional component and a local component. This work has extended the steps for the derivation of the constants in the trend surface analysis equation from the popularly known matrix and simultaneous form to a more simplified and easily achievable format. To achieve this, matrix inversion was applied to the existing equations and the outcome was tested for suitability using a large volume of gravity data set acquired from the Anambra Basin, south-eastern Nigeria. Tabulation of the field data set was done using the Microsoft Excel spread sheet, while gravity maps were generated from the data set using Oasis Montaj software. A comparison of the residual gravity map produced using the new equations with its software derived counterpart has shown that the former has a higher enhancing capacity than the latter. This equation has shown strong suitability for application in the separation of gravity data sets into their regional and residual components.

  16. Estimation of alluvial-fill thickness in the Mimbres ground-water basin, New Mexico, from interpretation of isostatic residual gravity anomalies

    USGS Publications Warehouse

    Heywood, Charles E.

    2002-01-01

    The geologic structure of the Mimbres ground-water basin in southwest New Mexico is characterized by north- and northwest-trending structural subbasins. Sedimentation of Miocene and Pliocene age has filled and obscured the boundaries of these subbasins and formed poten- tially productive aquifers of varied thickness. The location and depth of the subbasins can be esti- mated from analysis of isostatic residual gravity anomalies. Density contrasts of various basement lithologies generate complex regional gravity trends, which are convolved with the gravity signal from the Miocene and Pliocene alluvial fill. An iterative scheme was used to separate these regional gravity trends from the alluvial-fill grav- ity signal, which was inverted with estimated depth-density relations to compute the thickness of the alluvial fill at 1-kilometer spacing. The thickness estimates were constrained by explor- atory drill-hole information, interpreted seismic- refraction profiles, and location of bedrock lithol- ogy from surficial geologic mapping. The result- ing map of alluvial-fill thickness suggests large areas of thin alluvium that separate deep structural subbasins.

  17. Preliminary Gravity and Ground Magnetic Data in the Arbuckle Uplift near Sulphur, Oklahoma

    USGS Publications Warehouse

    Scheirer, Daniel S.; Aboud, Essam

    2008-01-01

    Improving knowledge of the geology and geophysics of the Arbuckle Uplift in south-central Oklahoma is a goal of the Framework Geology of Mid-Continent Carbonate Aquifers project sponsored by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program (NCGMP). In May 2007, we collected ground magnetic and gravity observations in the Hunton Anticline region of the Arbuckle Uplift, near Sulphur, Oklahoma. These observations complement prior gravity data collected for a project sponsored by the National Park Service and helicopter electromagnetic (HEM) and aeromagnetic data collected in March 2007 for the NCGMP project. This report describes the instrumentation and processing that was utilized in the May 2007 geophysical fieldwork, and it presents preliminary results as gravity anomaly maps and magnetic anomaly profiles. Digital tables of gravity and magnetic observations are provided as a supplement to this report. Future work will generate interpretive models of these anomalies and will involve joint analysis of these ground geophysical measurements with airborne and other geophysical and geological observations, with the goal of understanding the geological structures influencing the hydrologic properties of the Arbuckle-Simpson aquifer.

  18. Relationship between ionospheric plasma bubble occurrence and lightning strikes over the Amazon region

    NASA Astrophysics Data System (ADS)

    Sousasantos, Jonas; Sobral, José Humberto Andrade; Alam Kherani, Esfhan; Magalhães Fares Saba, Marcelo; Rodolfo de Campos, Diovane

    2018-03-01

    The vertical coupling between the troposphere and the ionosphere presents some remarkable features. Under intense tropospheric convection, gravity waves may be generated, and once they reach the ionosphere, these waves may seed instabilities and spread F and equatorial plasma bubble events may take place. Additionally, there is a close association between severe tropospheric convection and lightning strikes. In this work an investigation covering an equinox period (September-October) during the deep solar minimum (2009) presents the relation between lightning strike activity and spread F (equatorial plasma bubble) detected over a low-latitude Brazilian region. The results show a considerable correlation between these two phenomena. The common element in the center of this conformity seems to be the gravity waves. Once gravity waves and lightning strikes share the same source (intense tropospheric convection) and the effects of such gravity waves in the ionosphere include the seeding of instabilities according to the gravity waves magnitude, the monitoring of the lightning strike activity seems to offer some information about the subsequent development of spread F over the equatorial region.

  19. Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huterer, Dragan; Linder, Eric V.

    The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25percent relative to when general relativity is assumed, and determining the growth index to 8percent. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less

  20. Separating dark physics from physical darkness: Minimalist modified gravity versus dark energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huterer, Dragan; Linder, Eric V.

    The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parametrize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend themore » reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25% relative to when general relativity is assumed, and determining the growth index to 8%. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.« less

  1. Techniques for Liquid Rocket Combustion Spontaneous Stability and Rough Combustion Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. J.; Giacomoni, C.; Casiano, M. J.; Fischbach, S. R.

    2016-01-01

    This work presents techniques for liquid rocket engine combustion stability assessments with respect to spontaneous stability and rough combustion. Techniques covering empirical parameter extraction, which were established in prior works, are applied for three additional programs: the F-1 Gas Generator (F1GG) component test program, the RS-84 preburner component test program, and the Marshall Integrated Test Rig (MITR) program. Stability assessment parameters from these programs are compared against prior established spontaneous stability metrics and updates are identified. Also, a procedure for comparing measured with predicted mode shapes is presented, based on an extension of the Modal Assurance Criterion (MAC).

  2. Strong second harmonic generation in two-dimensional ferroelectric IV-monochalcogenides

    NASA Astrophysics Data System (ADS)

    Panday, Suman Raj; Fregoso, Benjamin M.

    2017-11-01

    The two-dimensional ferroelectrics GeS, GeSe, SnS and SnSe are expected to have large spontaneous in-plane electric polarization and enhanced shift-current response. Using density functional methods, we show that these materials also exhibit the largest effective second harmonic generation reported so far. It can reach magnitudes up to 10~nm~V-1 which is about an order of magnitude larger than that of prototypical GaAs. To rationalize this result we model the optical response with a simple one-dimensional two-band model along the spontaneous polarization direction. Within this model the second-harmonic generation tensor is proportional to the shift-current response tensor. The large shift current and second harmonic responses of GeS, GeSe, SnS and SnSe make them promising non-linear materials for optoelectronic applications.

  3. Moyal deformations of Clifford gauge theories of gravity

    NASA Astrophysics Data System (ADS)

    Castro, Carlos

    2016-12-01

    A Moyal deformation of a Clifford Cl(3, 1) Gauge Theory of (Conformal) Gravity is performed for canonical noncommutativity (constant Θμν parameters). In the very special case when one imposes certain constraints on the fields, there are no first-order contributions in the Θμν parameters to the Moyal deformations of Clifford gauge theories of gravity. However, when one does not impose constraints on the fields, there are first-order contributions in Θμν to the Moyal deformations in variance with the previous results obtained by other authors and based on different gauge groups. Despite that the generators of U(2, 2),SO(4, 2),SO(2, 3) can be expressed in terms of the Clifford algebra generators this does not imply that these algebras are isomorphic to the Clifford algebra. Therefore one should not expect identical results to those obtained by other authors. In particular, there are Moyal deformations of the Einstein-Hilbert gravitational action with a cosmological constant to first-order in Θμν. Finally, we provide a mechanism which furnishes a plausible cancellation of the huge vacuum energy density.

  4. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization

    PubMed Central

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-01-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the organization of spinal locomotor networks. PMID:22869012

  5. Aspirin attenuates spontaneous recurrent seizures in the chronically epileptic mice.

    PubMed

    Zhu, Kun; Hu, Ming; Yuan, Bo; Liu, Jian-Xin; Liu, Yong

    2017-08-01

    Neuroinflammatory processes are pathologic hallmarks of both experimental and human epilepsy, and could be implicated in the neuronal hyperexcitability. Aspirin represents one of the non-selective nonsteroidal anti-inflammatory drugs with fewer side effects in long-term application. This study was carried out to assess the anti-epileptic effects of aspirin when administered during the chronic stage of temporal lobe epilepsy [TLE] in mice. The alteration of hippocampal neurogenesis was also examined for raising a possible mechanism underlying the protective effect of anti-inflammatory treatment in the TLE. Two months after pilocarpine-induced status epilepticus, the chronically epileptic mice were treated with aspirin (20 mg, 60 mg or 80 mg/kg) once a day for 10 weeks. Spontaneous recurrent seizures were monitored by video camera for 2 weeks. To evaluate the profile of hippocampal neurogenesis, the newly generated cells in the dentate gyrus were labeled by the proliferation marker BrdU. The newborn neurons that extended axons to CA3 area were visualized by cholera toxin B subunit retrograde tracing. Administration of aspirin with a dosage of 60 mg or 80 mg/kg initiated at 2 months after pilocarpine-induced status epilepticus significantly reduced the frequency and duration of spontaneous recurrent seizures. Aspirin treatment also increased the number of newborn neurons with anatomic integration through improving the survival of the newly generated cells. Aspirin treatment during the chronic stage of TLE could attenuate the spontaneous recurrent seizures in mice. Promotion of hippocampal neurogenesis and inhibition of COX-PGE2 pathway might partly contribute to this anti-epileptic effect. Highlights • Aspirin attenuates spontaneous recurrent seizures of chronically epileptic mice • Aspirin increases neurogenesis of chronically epileptic hippocampus by improving the survival of newly generated cells • Promotion of hippocampal neurogenesis and inhibition of COX-PGE2 pathway might partly contribute to anti-epileptic effects of aspirin.

  6. Generation of Acoustic Self-bending and Bottle Beams by Phase Engineering

    DTIC Science & Technology

    2014-07-03

    projectile under the action of gravity . We synthesize an acoustic beam propagating along a free-form Bézier curve in air33 by employing a planar speaker...the axial radiation force can be negative, indicating the existence of a pulling force against the beam propagation direction as well as the gravity ...use Legendre transformations to construct the geometric wavefront from a preset beam trajectory. Assume that the geometric wavefront W corresponding to

  7. Acoustic and gravity waves in the neutral atmosphere and the ionosphere, generated by severe storms

    NASA Technical Reports Server (NTRS)

    Balachandran, N. K.

    1983-01-01

    Gravity waves in the neutral atmosphere and their propagation in the ionosphere and the study of infrasonic signals from thunder were investigated. Doppler shifts of the order of 0.1 Hz are determined and they provide high-resolution measurements of the movements in the ionosphere. By using an array of transmitters with different frequencies and at different locations, the horizontal and vertical propagation vectors of disturbances propagating through the ionosphere are determined.

  8. GRACE gravity model: assssment in terms of deep ocean currents from hydrography and from the ECCO ocean model

    NASA Technical Reports Server (NTRS)

    Zlotnicki, V.; Stammer, D.; Fukumori, I.

    2003-01-01

    Here we assess the new generation of gravity models, derived from GRACE data. The differences between a global geoid model (one from GRACE data and one the well-known EGM-96), minus a Mean Sea Surface derived from over a decade of altimetric data are compared to hydrographic data from the Levitus compilation and to the ECCO numerical ocean model, which assimilates altimetry and other data.

  9. The coupling to matter in massive, bi- and multi-gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noller, Johannes; Melville, Scott, E-mail: noller@physics.ox.ac.uk, E-mail: scott.melville@queens.ox.ac.uk

    2015-01-01

    In this paper we construct a family of ways in which matter can couple to one or more 'metrics'/spin-2 fields in the vielbein formulation. We do so subject to requiring the weak equivalence principle and the absence of ghosts from pure spin-2 interactions generated by the matter action. Results are presented for Massive, Bi- and Multi-Gravity theories and we give explicit expressions for the effective matter metric in all of these cases.

  10. Use of an otolith-deficient mutant in studies of fish behavior in microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.; Mizuno, R.; Eguchi, H.

    2003-10-01

    The mutant strain ( ha) of medaka ( Oryzias latipes) lack utricular otoliths as fry, and some never form otoliths for life. The cross (Fl generation) between the strain having good eyesight and another strain having ordinary eyesight augmented visual acuity of the Fl generation. Crossing the good eyesight strain and ha mutant produced fish having good eyesight and less sensitivity to gravity in the F2 population. Their tolerance to microgravity was tested by parabolic flight using an airplane. The fish exhibited less looping and no differences in degree of looping between light and dark conditions, suggesting that loss of eyesight (in darkness) is not a direct cause for looping behavior in microgravity. The ha embryos could not form utricular otoliths. They did form saccular otoliths, but with a delay. Fry of the mutant fish lacking the utricular otoliths are highly dependent on light upon hatching and exhibit a perfect dorsal-light response (DLR). As they grow, they eventually shift from being light-dependent to being gravity-dependent. Continuous treatment of the fry with altered light direction suppressed this shift to gravity dependence. Being less dependent on gravity, these fish can serve as models in studying the differences expected for the vestibular system of fish reared in microgravity. When these fish were exposed to microgravity (parabolic flights) of an airplane, they spent far less time looping than fish reared in an ordinary light regimen.

  11. Altered Astrocyte-Neuron Interactions and Epileptogenesis in Tuberous Sclerosis Complex Disorder

    DTIC Science & Technology

    2014-06-01

    Epileptogenesis in non-tuber neural tissue in TS may thus arise by an imbalance of decreased inhibitory and increased excitatory synaptic transmission...generation in TSC. Epileptogenesis in non-tuber neural tissue in TS may thus arise by an imbalance of decreased inhibitory and increased excitatory synaptic...synaptic damage induced by spontaneous seizures F) increased spine density on pyramidal neuron dendrites occurs before the onset of spontaneous seizures

  12. Status and Assessments of CSR GRACE Level-2 Data Products

    NASA Astrophysics Data System (ADS)

    Bettadpur, Srinivas; Kang, Zhigui; Nagel, Peter; Pastor, Rick; Poole, Steve; Ries, John; Save, Himanshu

    2015-04-01

    The joint NASA/DLR GRACE mission has successfully operated for more than 13 years, and has provided a remarkable record of global mass flux due to a large variety of geophysical and climate processes at various spatio-temporal scales. The University of Texas Center for Space Research (CSR) hosts the mission PI, and is responsible for delivery of operational (presently denoted as Release-05 or RL05) gravity field data products. In addition, CSR generates and distributes a variety of other gravity field data products, including products generated from the use of satellite laser ranging data. This poster will provide an overview of all these data products, their relative quality, potential applications, and future plans for their development and delivery.

  13. The harmonic development of the Earth tide generating potential due to the direct effect of the planets

    NASA Astrophysics Data System (ADS)

    Hartmann, Torsten; Wenzel, Hans-Georg

    1994-09-01

    The time-harmonic development of the Earth tide generating potential due to the direct effect of the planets Venus, Jupiter, Mars, Mercury and Saturn has been computed. The catalog of the fully normalized potential coefficients contains 1483 waves. It is based on the DE102 numerical ephemeris of the planets between years 1900 and 2200. Gravity tides due to the planets computed from the catalog at the surface of the Earth have an accuracy of about 0.027 pm/sq s (1 pm/sq s = 10(exp -12) m/sq s = 0.1 ngal) rms and 0.160 / 0.008 pm/sq s at maximum in time / frequency domain using the new benchmark tidal gravity series (Wenzel 1994).

  14. Topography of Earth's moon

    NASA Image and Video Library

    2014-10-07

    Topography of Earth's moon generated from data collected by the Lunar Orbiter Laser Altimeter, aboard NASA's Lunar Reconnaissance Orbiter, with the gravity anomalies bordering the Procellarum region superimposed in blue. The border structures are shown using gravity gradients calculated with data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission. These gravity anomalies are interpreted as ancient lava-flooded rift zones buried beneath the volcanic plains (or maria) on the nearside of the Moon. Launched as GRAIL A and GRAIL B in September 2011, the probes, renamed Ebb and Flow, operated in a nearly circular orbit near the poles of the moon at an altitude of about 34 miles (55 kilometers) until their mission ended in December 2012. The distance between the twin probes changed slightly as they flew over areas of greater and lesser gravity caused by visible features, such as mountains and craters, and by masses hidden beneath the lunar surface. The twin spacecraft flew in a nearly circular orbit until the end of the mission on Dec. 17, 2012, when the probes intentionally were sent into the moon's surface. NASA later named the impact site in honor of late astronaut Sally K. Ride, who was America's first woman in space and a member of the GRAIL mission team. GRAIL's prime and extended science missions generated the highest-resolution gravity field map of any celestial body. The map will provide a better understanding of how Earth and other rocky planets in the solar system formed and evolved. The GRAIL mission was managed by NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, for NASA's Science Mission Directorate in Washington. The mission was part of the Discovery Program managed at NASA's Marshall Space Flight Center in Huntsville, Alabama. GRAIL was built by Lockheed Martin Space Systems in Denver. For more information about GRAIL, please visit grail.nasa.gov. Credit: NASA/Colorado School of Mines/MIT/GSFC/Scientific Visualization Studio

  15. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  16. Dynamical response of the summer MLT to tropospheric global warming: Results from a mechanistic GCM with resolved gravity waves

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2009-04-01

    The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability of the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs is negligible, the main contribution to the EPF divergence at high latitudes of the MLT is due to mid- and high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of the Kuehlungsborn mechanistic general circulation model (KMCM) with high spatial resolution and Smagorinsky-type horizontal and vertical diffusion coefficients that are both scaled by the Richardson criterion. This model version allows for an explicit and self-consistent simulation of the gravity-wave drag in the MLT. A sensitivity experiment is conducted in which the main changes associated with tropospheric global warming are imposed by the differential heating, i.e., reduced static stability in the lower troposphere along with a reduced equator-to-pole temperature difference and enhanced latent heating in the intertropical convergence zone. These changes result in both a stronger Lorenz energy cycle and enhanced gravity-wave activity in the upper troposphere at middle latitudes. The altered gravity-wave sources result in the following remote effects in the summer MLT: downward shift of the residual circulation, as well as lower temperatures and reduced easterlies below the mesopause. These changes are consistent with enhanced turbulent diffusion and dissipation below the mesopause due to larger gravity-wave amplitudes.

  17. Development and Performance of an Atomic Interferometer Gravity Gradiometer for Earth Science

    NASA Astrophysics Data System (ADS)

    Luthcke, S. B.; Saif, B.; Sugarbaker, A.; Rowlands, D. D.; Loomis, B.

    2016-12-01

    The wealth of multi-disciplinary science achieved from the GRACE mission, the commitment to GRACE Follow On (GRACE-FO), and Resolution 2 from the International Union of Geodesy and Geophysics (IUGG, 2015), highlight the importance to implement a long-term satellite gravity observational constellation. Such a constellation would measure time variable gravity (TVG) with accuracies 50 times better than the first generation missions, at spatial and temporal resolutions to support regional and sub-basin scale multi-disciplinary science. Improved TVG measurements would achieve significant societal benefits including: forecasting of floods and droughts, improved estimates of climate impacts on water cycle and ice sheets, coastal vulnerability, land management, risk assessment of natural hazards, and water management. To meet the accuracy and resolution challenge of the next generation gravity observational system, NASA GSFC and AOSense are currently developing an Atomic Interferometer Gravity Gradiometer (AIGG). This technology is capable of achieving the desired accuracy and resolution with a single instrument, exploiting the advantages of the microgravity environment. The AIGG development is funded under NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), and includes the design, build, and testing of a high-performance, single-tensor-component gravity gradiometer for TVG recovery from a satellite in low Earth orbit. The sensitivity per shot is 10-5 Eötvös (E) with a flat spectral bandwidth from 0.3 mHz - 0.03 Hz. Numerical simulations show that a single space-based AIGG in a 326 km altitude polar orbit is capable of exceeding the IUGG target requirement for monthly TVG accuracy of 1 cm equivalent water height at 200 km resolution. We discuss the current status of the AIGG IIP development and estimated instrument performance, and we present results of simulated Earth TVG recovery of the space-based AIGG. We explore the accuracy, and spatial and temporal resolution of surface mass change observations from several space-based implementations of the AIGG instrument, including various orbit configurations and multi-satellite/multi-orbit configurations.

  18. Prospective memory: effects of divided attention on spontaneous retrieval.

    PubMed

    Harrison, Tyler L; Mullet, Hillary G; Whiffen, Katie N; Ousterhout, Hunter; Einstein, Gilles O

    2014-02-01

    We examined the effects of divided attention on the spontaneous retrieval of a prospective memory intention. Participants performed an ongoing lexical decision task with an embedded prospective memory demand, and also performed a divided-attention task during some segments of lexical decision trials. In all experiments, monitoring was highly discouraged, and we observed no evidence that participants engaged monitoring processes. In Experiment 1, performing a moderately demanding divided-attention task (a digit detection task) did not affect prospective memory performance. In Experiment 2, performing a more challenging divided-attention task (random number generation) impaired prospective memory. Experiment 3 showed that this impairment was eliminated when the prospective memory cue was perceptually salient. Taken together, the results indicate that spontaneous retrieval is not automatic and that challenging divided-attention tasks interfere with spontaneous retrieval and not with the execution of a retrieved intention.

  19. On the Possible Anticorrelation of Polar Mesospheric (Noctilucent) Clouds and Aurorae.

    DTIC Science & Technology

    1986-08-01

    that sudden aurorally induced heating may generate these waves. Testud (1970) made some numerical computations which show that heating can create...Nitrogen from 50-120 km, II. D-region ion chemistry and the winter anomaly. J. Geophys. Res., 87, 7206. Testud , J., 1970: Gravity waves generated during

  20. Do Non-Economic Quality of Life Factors Drive Immigration?

    ERIC Educational Resources Information Center

    Pacheco, Gail Anne; Rossouw, Stephanie; Lewer, Joshua

    2013-01-01

    This paper contributes to the immigration literature by generating two unique non-economic quality of life (QOL) indices and testing their role on recent migration patterns. Applying the generated QOL indices in conjunction with four independent welfare measures to an augmented gravity model of immigration, this paper finds an insignificant…

  1. High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system.

    PubMed

    Wang, Zhiping; Chen, Jinyu; Yu, Benli

    2017-02-20

    We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.

  2. Capillary Flow in Containers of Polygonal Section: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.; Rame, Enrique (Technical Monitor)

    2001-01-01

    An improved understanding of the large-length-scale capillary flows arising in a low-gravity environment is critical to that engineering community concerned with the design and analysis of spacecraft fluids management systems. Because a significant portion of liquid behavior in spacecraft is capillary dominated it is natural to consider designs that best exploit the spontaneous character of such flows. In the present work, a recently verified asymptotic analysis is extended to approximate spontaneous capillary flows in a large class of cylindrical containers of irregular polygonal section experiencing a step reduction in gravitational acceleration. Drop tower tests are conducted using partially-filled irregular triangular containers for comparison with the theoretical predictions. The degree to which the experimental data agree with the theory is a testament to the robustness of the basic analytical assumption of predominantly parallel flow. As a result, the closed form analytical expressions presented serve as simple, accurate tools for predicting bulk flow characteristics essential to practical low-g system design and analysis. Equations for predicting corner wetting rates, total container flow rates, and transient surfaces shapes are provided that are relevant also to terrestrial applications such as capillary flow in porous media.

  3. The physical state of finely dispersed soil-like systems with drilling sludge as an example

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Kol'Tsov, I. N.; Pepelov, I. L.; Kirichenko, A. V.; Sadovnikova, N. B.; Kinzhaev, R. R.

    2011-02-01

    The physical state and its dynamics were studied at the quantitative level for drilling sludge (finely dispersed waste of the oil industry). Using original methodological approaches, the main hydrophysical and technological properties of sludge samples were assessed for the first time, including the water retention curve, the specific surface, the water conductivity, the electrical conductivity, the porosity dynamics during shrinkage, the water yield, etc., which are used in the current models of water transfer and the behavior of these soil-like objects under real thermodynamic conditions. The technologically unfavorable phenomenon of the spontaneous swelling of sludge during the storage of drilling waste was theoretically explained. The water regime of the homogeneous 0.5-m thick drilling sludge layer under the free gravity outflow and permanent evaporation of water from the surface was analyzed using the HYDRUS-1D model. The high water retention capacity and the low water conductivity and water yield of sludge do not allow their drying to the three-phase state (with the entry of air) acceptable for terrestrial plants under humid climatic conditions, which explains the spontaneous transformation of sludge pits to only hydromorphic ecosystems.

  4. Nonresponse to 17-alpha hydroxyprogesterone caproate for recurrent spontaneous preterm birth prevention: clinical prediction and generation of a risk scoring system.

    PubMed

    Manuck, Tracy A; Stoddard, Gregory J; Fry, Rebecca C; Esplin, M Sean; Varner, Michael W

    2016-11-01

    Spontaneous preterm birth remains a leading cause of neonatal morbidity and mortality among nonanomalous neonates in the United States. Spontaneous preterm birth tends to recur at similar gestational ages. Intramuscular 17-alpha hydroxyprogesterone caproate reduces the risk of recurrent spontaneous preterm birth. Unfortunately, one-third of high-risk women will have a recurrent spontaneous preterm birth despite 17-alpha hydroxyprogesterone caproate therapy; the reasons for this variability in response are unknown. We hypothesized that clinical factors among women treated with 17-alpha hydroxyprogesterone caproate who suffer recurrent spontaneous preterm birth at a similar gestational age differ from women who deliver later, and that these associations could be used to generate a clinical scoring system to predict 17-alpha hydroxyprogesterone caproate response. Secondary analysis of a prospective, multicenter, randomized controlled trial enrolling women with ≥1 previous singleton spontaneous preterm birth <37 weeks' gestation. Participants received daily omega-3 supplementation or placebo for the prevention of recurrent preterm birth; all were provided 17-alpha hydroxyprogesterone caproate. Women were classified as a 17-alpha hydroxyprogesterone caproate responder or nonresponder by calculating the difference in delivery gestational age between the 17-alpha hydroxyprogesterone caproate-treated pregnancy and her earliest previous spontaneous preterm birth. Responders were women with pregnancy extending ≥3 weeks later compared with the delivery gestational age of their earliest previous preterm birth; nonresponders delivered earlier or within 3 weeks of the gestational age of their earliest previous preterm birth. A risk score for nonresponse to 17-alpha hydroxyprogesterone caproate was generated from regression models via the use of clinical predictors and was validated in an independent population. Data were analyzed with multivariable logistic regression. A total of 754 women met inclusion criteria; 159 (21%) were nonresponders. Responders delivered later on average (37.7±2.5 weeks) than nonresponders (31.5±5.3 weeks), P<.001. Among responders, 27% had a recurrent spontaneous preterm birth (vs 100% of nonresponders). Demographic characteristics were similar between responders and nonresponders. In a multivariable logistic regression model, independent risk factors for nonresponse to 17-alpha hydroxyprogesterone caproate were each additional week of gestation of the earliest previous preterm birth (odds ratio, 1.23; 95% confidence interval, 1.17-1.30, P<.001), placental abruption or significant vaginal bleeding (odds ratio, 5.60; 95% confidence interval, 2.46-12.71, P<.001), gonorrhea and/or chlamydia in the current pregnancy (odds ratio, 3.59; 95% confidence interval, 1.36-9.48, P=.010), carriage of a male fetus (odds ratio, 1.51; 95% confidence interval, 1.02-2.24, P=.040), and a penultimate preterm birth (odds ratio, 2.10; 95% confidence interval, 1.03-4.25, P=.041). These clinical factors were used to generate a risk score for nonresponse to 17-alpha hydroxyprogesterone caproate as follows: black +1, male fetus +1, penultimate preterm birth +2, gonorrhea/chlamydia +4, placental abruption +5, earliest previous preterm birth was 32-36 weeks +5. A total risk score >6 was 78% sensitive and 60% specific for predicting nonresponse to 17-alpha hydroxyprogesterone caproate (area under the curve=0.69). This scoring system was validated in an independent population of 287 women; in the validation set, a total risk score >6 performed similarly with a 65% sensitivity, 67% specificity and area under the curve of 0.66. Several clinical characteristics define women at risk for recurrent preterm birth at a similar gestational age despite 17-alpha hydroxyprogesterone caproate therapy and can be used to generate a clinical risk predictor score. These data should be refined and confirmed in other cohorts, and women at high risk for nonresponse should be targets for novel therapeutic intervention studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Tsunami-Generated Atmospheric Gravity Waves and Their Atmospheric and Ionospheric Effects: a Review and Some Recent Modeling Results

    NASA Astrophysics Data System (ADS)

    Hickey, M. P.

    2017-12-01

    Tsunamis propagate on the ocean surface at the shallow water phase speed which coincides with the phase speed of fast atmospheric gravity waves. The forcing frequency also corresponds with those of internal atmospheric gravity waves. Hence, the coupling and effective forcing of gravity waves due to tsunamis is particularly effective. The fast horizontal phase speeds of the resulting gravity waves allows them to propagate well into the thermosphere before viscous dissipation becomes strong, and the waves can achieve nonlinear amplitudes at these heights resulting in large amplitude traveling ionospheric disturbances (TIDs). Additionally, because the tsunami represents a moving source able to traverse large distances across the globe, the gravity waves and associated TIDs can be detected at large distances from the original tsunami (earthquake) source. Although it was during the mid 1970s when the tsunami source of gravity waves was first postulated, only relatively recently (over the last ten to fifteen years) has there has been a surge of interest in this research arena, driven largely by significant improvements in measurement technologies and computational capabilities. For example, the use of GPS measurements to derive total electron content has been a particularly powerful technique used to monitor the propagation and evolution of TIDs. Monitoring airglow variations driven by atmospheric gravity waves has also been a useful technique. The modeling of specific events and comparison with the observed gravity waves and/or TIDs has been quite revealing. In this talk I will review some of the most interesting aspects of this research and also discuss some interesting and outstanding issues that need to be addressed. New modeling results relevant to the Tohoku tsunami event will also be presented.

  6. High-Resolution Gravity and Time-Varying Gravity Field Recovery using GRACE and CHAMP

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    2002-01-01

    This progress report summarizes the research work conducted under NASA's Solid Earth and Natural Hazards Program 1998 (SENH98) entitled High Resolution Gravity and Time Varying Gravity Field Recovery Using GRACE (Gravity Recovery and Climate Experiment) and CHAMP (Challenging Mini-satellite Package for Geophysical Research and Applications), which included a no-cost extension time period. The investigation has conducted pilot studies to use the simulated GRACE and CHAMP data and other in situ and space geodetic observable, satellite altimeter data, and ocean mass variation data to study the dynamic processes of the Earth which affect climate change. Results from this investigation include: (1) a new method to use the energy approach for expressing gravity mission data as in situ measurements with the possibility to enhance the spatial resolution of the gravity signal; (2) the method was tested using CHAMP and validated with the development of a mean gravity field model using CHAMP data, (3) elaborate simulation to quantify errors of tides and atmosphere and to recover hydrological and oceanic signals using GRACE, results show that there are significant aliasing effect and errors being amplified in the GRACE resonant geopotential and it is not trivial to remove these errors, and (4) quantification of oceanic and ice sheet mass changes in a geophysical constraint study to assess their contributions to global sea level change, while the results improved significant over the use of previous studies using only the SLR (Satellite Laser Ranging)-determined zonal gravity change data, the constraint could be further improved with additional information on mantle rheology, PGR (Post-Glacial Rebound) and ice loading history. A list of relevant presentations and publications is attached, along with a summary of the SENH investigation generated in 2000.

  7. Optimal integration of gravity in trajectory planning of vertical pointing movements.

    PubMed

    Crevecoeur, Frédéric; Thonnard, Jean-Louis; Lefèvre, Philippe

    2009-08-01

    The planning and control of motor actions requires knowledge of the dynamics of the controlled limb to generate the appropriate muscular commands and achieve the desired goal. Such planning and control imply that the CNS must be able to deal with forces and constraints acting on the limb, such as the omnipresent force of gravity. The present study investigates the effect of hypergravity induced by parabolic flights on the trajectory of vertical pointing movements to test the hypothesis that motor commands are optimized with respect to the effect of gravity on the limb. Subjects performed vertical pointing movements in normal gravity and hypergravity. We use a model based on optimal control to identify the role played by gravity in the optimal arm trajectory with minimal motor costs. First, the simulations in normal gravity reproduce the asymmetry in the velocity profiles (the velocity reaches its maximum before half of the movement duration), which typically characterizes the vertical pointing movements performed on Earth, whereas the horizontal movements present symmetrical velocity profiles. Second, according to the simulations, the optimal trajectory in hypergravity should present an increase in the peak acceleration and peak velocity despite the increase in the arm weight. In agreement with these predictions, the subjects performed faster movements in hypergravity with significant increases in the peak acceleration and peak velocity, which were accompanied by a significant decrease in the movement duration. This suggests that movement kinematics change in response to an increase in gravity, which is consistent with the hypothesis that motor commands are optimized and the action of gravity on the limb is taken into account. The results provide evidence for an internal representation of gravity in the central planning process and further suggest that an adaptation to altered dynamics can be understood as a reoptimization process.

  8. Topographic gravity modeling for global Bouguer maps to degree 2160: Validation of spectral and spatial domain forward modeling techniques at the 10 microGal level

    NASA Astrophysics Data System (ADS)

    Hirt, Christian; Reußner, Elisabeth; Rexer, Moritz; Kuhn, Michael

    2016-09-01

    Over the past years, spectral techniques have become a standard to model Earth's global gravity field to 10 km scales, with the EGM2008 geopotential model being a prominent example. For some geophysical applications of EGM2008, particularly Bouguer gravity computation with spectral techniques, a topographic potential model of adequate resolution is required. However, current topographic potential models have not yet been successfully validated to degree 2160, and notable discrepancies between spectral modeling and Newtonian (numerical) integration well beyond the 10 mGal level have been reported. Here we accurately compute and validate gravity implied by a degree 2160 model of Earth's topographic masses. Our experiments are based on two key strategies, both of which require advanced computational resources. First, we construct a spectrally complete model of the gravity field which is generated by the degree 2160 Earth topography model. This involves expansion of the topographic potential to the 15th integer power of the topography and modeling of short-scale gravity signals to ultrahigh degree of 21,600, translating into unprecedented fine scales of 1 km. Second, we apply Newtonian integration in the space domain with high spatial resolution to reduce discretization errors. Our numerical study demonstrates excellent agreement (8 μGgal RMS) between gravity from both forward modeling techniques and provides insight into the convergence process associated with spectral modeling of gravity signals at very short scales (few km). As key conclusion, our work successfully validates the spectral domain forward modeling technique for degree 2160 topography and increases the confidence in new high-resolution global Bouguer gravity maps.

  9. Long-Term Observation of Small and Medium-Scale Gravity Waves over the Brazilian Equatorial Region

    NASA Astrophysics Data System (ADS)

    Essien, Patrick; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Paulino, Igo; Takahashi, Hisao; Campos, Jose Andre

    2016-07-01

    This paper reports the long term observations of small and medium-scale gravity waves over Brazilian equatorial region. Coordinated optical and radio measurements were made from OLAP at Sao Joao do Cariri (7.400S, 36.500W) to investigate the occurrences and properties and to characterize the regional mesospheric gravity wave field. All-sky imager measurements were made from the site. for almost 11 consecutive years (September 2000 to November 2010). Most of the waves propagated were characterized as small-scale gravity. The characteristics of the two waves events agreed well with previous gravity wave studies from Brazil and other sites. However, significant differences in the wave propagation headings indicate dissimilar source regions. The observed medium-scale gravity wave events constitute an important new dataset to study their mesospheric properties at equatorial latitudes. These data exhibited similar propagation headings to the short period events, suggesting they originated from the same source regions. It was also observed that some of the medium-scale were capable of propagating into the lower thermosphere where they may have acted directly as seeds for the Rayleigh-Taylor instability development. The wave events were primarily generated by meteorological processes since there was no correlation between the evolution of the wave events and solar cycle F10.7.

  10. Effects of imatinib mesylate on the spontaneous activity generated by the guinea-pig prostate.

    PubMed

    Lam, Michelle; Dey, Anupa; Lang, Richard J; Exintaris, Betty

    2013-08-01

    What's known on the subject? and what does the study add?: Several studies have examined the functional role of tyrosine kinase receptors in the generation of spontaneous activity in various segments of the gastrointestinal and urogenital tracts through the application of its inhibitor, imatinib mesylate (Glivec®), but results are fairly inconsistent. This is the first study detailing the effects of imatinib mesylate on the spontaneous activity in the young and ageing prostate gland. As spontaneous electrical activity underlies the spontaneous rhythmic prostatic contractions that occur at rest, elucidating the mechanisms involved in the regulation of the spontaneous electrical activity and the resultant phasic contractions could conceivably lead to the identification of better targets and the development of more specific therapeutic agents to treat prostate conditions. To investigate the effect of imatinib mesylate, a tyrosine kinase receptor inhibitor, in the generation of spontaneous electrical and contractile activity in the young and ageing guinea-pig prostate. Standard tension and intracellular recording were used to measure spontaneous contractions and slow waves, respectively from the guinea-pig prostate at varying concentrations of imatinib mesylate (1-50 μm). Imatinib mesylate (1-10 μm), did not significantly affect slow waves recorded in the prostate of both age groups but at 50 μm, the amplitude of slow waves from the ageing guinea-pig prostate was significantly reduced (P < 0.05, n = 5). In contrast, the amplitude of contractions across all concentrations in the young guinea-pig prostate was reduced to between 35% and 41% of control, while the frequency was reduced to 15.7% at 1 μm (n = 7), 49.8% at 5 μm (n = 10), 46.2% at 10 μm (n = 7) and 53.1% at 50 μm (n = 5). Similarly, imatinib mesylate attenuated the amplitude and slowed the frequency of contractions in ageing guinea-pigs to 5.15% and 3.3% at 1 μm (n = 6); 21.1% and 20.8% at 5 μm (n = 8); 58.4% and 8.8% at 10 μm (n = 11); 72.7% and 60% at 50 μm (n = 5). A significant reduction in contractions but persistence of slow waves suggests imatinib mesylate may affect the smooth muscle contractile mechanism. Imatinib mesylate also significantly reduced contractions in the prostates of younger guinea pigs more than older ones, which is consistent with the notion that the younger guinea-pig prostate is more reliant on the tyrosine-dependent pacemaker ability of interstitial cells of Cajal-like prostatic interstitial cells. © 2013 The Authors BJU International © 2013 BJU International.

  11. On the generation of internal wave modes by surface waves

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  12. Recalculation of regional and detailed gravity database from Slovak Republic and qualitative interpretation of new generation Bouguer anomaly map

    NASA Astrophysics Data System (ADS)

    Pasteka, Roman; Zahorec, Pavol; Mikuska, Jan; Szalaiova, Viktoria; Papco, Juraj; Krajnak, Martin; Kusnirak, David; Panisova, Jaroslava; Vajda, Peter; Bielik, Miroslav

    2014-05-01

    In this contribution results of the running project "Bouguer anomalies of new generation and the gravimetrical model of Western Carpathians (APVV-0194-10)" are presented. The existing homogenized regional database (212478 points) was enlarged by approximately 107 500 archive detailed gravity measurements. These added gravity values were measured since the year 1976 to the present, therefore they need to be unified and reprocessed. The improved positions of more than 8500 measured points were acquired by digitizing of archive maps (we recognized some local errors within particular data sets). Besides the local errors (due to the wrong positions, heights or gravity of measured points) we have found some areas of systematic errors probably due to the gravity measurement or processing errors. Some of them were confirmed and consequently corrected by field measurements within the frame of current project. Special attention is paid to the recalculation of the terrain corrections - we have used a new developed software as well as the latest version of digital terrain model of Slovakia DMR-3. Main improvement of the new terrain corrections evaluation algorithm is the possibility to calculate it in the real gravimeter position and involving of 3D polyhedral bodies approximation (accepting the spherical approximation of Earth's curvature). We have realized several tests by means of the introduction of non-standard distant relief effects introduction. A new complete Bouguer anomalies map was constructed and transformed by means of higher derivatives operators (tilt derivatives, TDX, theta-derivatives and the new TDXAS transformation), using the regularization approach. A new interesting regional lineament of probably neotectonic character was recognized in the new map of complete Bouguer anomalies and it was confirmed also by realized in-situ field measurements.

  13. Effects of gravity and blood volume shifts on cardiogenic oscillations in respired gas.

    PubMed

    Montmerle, Stéphanie; Linnarsson, Dag

    2005-09-01

    During the cardiac cycle, cardiogenic oscillations of expired gas (x) concentrations (COS([x])) are generated. At the same time, there are heart-synchronous cardiogenic oscillations of airway flow (COS(flow)), where inflow occurs during systole. We hypothesized that both phenomena, although primarily generated by the heartbeat, would react differently to the cephalad blood shift caused by inflation of an anti-gravity (anti-G) suit and to changes in gravity. Twelve seated subjects performed a rebreathing-breath-holding-expiration maneuver with a gas mixture containing O2 and He at normal (1 G) and moderately increased gravity (2 G); an anti-G suit was inflated to 85 mmHg in each condition. When the anti-G suit was inflated, COS(flow) amplitude increased (P = 0.0028) at 1 G to 186% of the control value without inflation (1-G control) and at 2 G to 203% of the control value without inflation (2-G control). In contrast, the amplitude of COS of the concentration of the blood-soluble gas O2 (COS([O2/He])), an index of the differences in pulmonary perfusion between lung units, declined to 75% of the 1-G control value and to 74% of the 2-G control value (P = 0.0030). There were no significant changes in COS(flow) or COS([O2/He]) amplitudes with gravity. We conclude that the heart-synchronous mechanical agitation of the lungs, as expressed by COS(flow), is highly dependent on peripheral-to-central blood shifts. In contrast, COS([blood-soluble gas]) appears relatively independent of this mechanical agitation and seems to be determined mainly by differences in intrapulmonary perfusion.

  14. Determination of angle of light deflection in higher-derivative gravity theories

    NASA Astrophysics Data System (ADS)

    Xu, Chenmei; Yang, Yisong

    2018-03-01

    Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.

  15. Radiation and the classical double copy for color charges

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Ridgway, Alexander K.

    2017-06-01

    We construct perturbative classical solutions of the Yang-Mills equations coupled to dynamical point particles carrying color charge. By applying a set of color to kinematics replacement rules first introduced by Bern, Carrasco and Johansson, these are shown to generate solutions of d -dimensional dilaton gravity, which we also explicitly construct. Agreement between the gravity result and the gauge theory double copy implies a correspondence between non-Abelian particles and gravitating sources with dilaton charge. When the color sources are highly relativistic, dilaton exchange decouples, and the solutions we obtain match those of pure gravity. We comment on possible implications of our findings to the calculation of gravitational waveforms in astrophysical black hole collisions, directly from computationally simpler gluon radiation in Yang-Mills theory.

  16. Analysis for Material Behavior of Sabot/Rods During Launch by Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kim, Jin Bong; Kim, Man Geun

    This study has been investigated to predict the deformation and states of stress and strain by axial and lateral acceleration during launch. Because a gun tube is not perfectly straight at its initial state while under gravity loading, the projectile deforms due to the change of contacts points with the flexible gun tube. Numerical simulations were used for gravity loading and the other type is initial shape and gravity loading. The ANSYS engineering analysis code was used to generate a parametric model of the projectile and conduct finite element analyses. Four types of nonlinear material and contact elements were incorporated into the model to account for the plastic deformation and contact between the penetrator, sabot, and tube.

  17. It is hard to learn how gravity and electromagnetism couple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu Yizen; Jacobs, David M.; Ng Yifung

    2010-09-15

    We construct the most general effective Lagrangian coupling gravity and electromagnetism up to mass dimension 6 by enumerating all possible nonminimal coupling terms respecting both diffeomorphism and gauge invariance. In all, there are only two unique terms after field redefinitions: one is known to arise from loop effects in QED, while the other is a parity-violating term which may be generated by weak interactions within the standard model of particle physics. We show that neither the cosmological propagation of light nor, contrary to earlier claims, solar system tests of general relativity are useful probes of these terms. These nonminimal couplingsmore » of gravity and electromagnetism may remain a mystery for the foreseeable future.« less

  18. Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5

    PubMed Central

    Liu, Yanwen; Yuan, Xiang; Zhang, Cheng; Jin, Zhao; Narayan, Awadhesh; Luo, Chen; Chen, Zhigang; Yang, Lei; Zou, Jin; Wu, Xing; Sanvito, Stefano; Xia, Zhengcai; Li, Liang; Wang, Zhong; Xiu, Faxian

    2016-01-01

    Dirac semimetals have attracted extensive attentions in recent years. It has been theoretically suggested that many-body interactions may drive exotic phase transitions, spontaneously generating a Dirac mass for the nominally massless Dirac electrons. So far, signature of interaction-driven transition has been lacking. In this work, we report high-magnetic-field transport measurements of the Dirac semimetal candidate ZrTe5. Owing to the large g factor in ZrTe5, the Zeeman splitting can be observed at magnetic field as low as 3 T. Most prominently, high pulsed magnetic field up to 60 T drives the system into the ultra-quantum limit, where we observe abrupt changes in the magnetoresistance, indicating field-induced phase transitions. This is interpreted as an interaction-induced spontaneous mass generation of the Dirac fermions, which bears resemblance to the dynamical mass generation of nucleons in high-energy physics. Our work establishes Dirac semimetals as ideal platforms for investigating emerging correlation effects in topological matters. PMID:27515493

  19. Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.

  20. The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots.

    PubMed

    Taniguchi, Masatoshi; Furutani, Masahiko; Nishimura, Takeshi; Nakamura, Moritaka; Fushita, Toyohito; Iijima, Kohta; Baba, Kenichiro; Tanaka, Hirokazu; Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo Terao

    2017-08-01

    During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1 / LAZY1-LIKE1 ( LZY1 ) and AtDRO3 / AtNGR1 / LZY2 We showed that LZY1 , LZY2 , and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella. © 2017 American Society of Plant Biologists. All rights reserved.

  1. Advances in Spacecraft Brine Water Recovery: Development of a Radial Vaned Capillary Drying Tray

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam J.; Pickering, Karen D.; Weislogel, Mark M.

    2014-01-01

    Technology improvements in the recovery of water from brine are critical to establishing closed-loop water recovery systems, enabling long-duration missions, and achieving a sustained human presence in space. A genre of 'in-place drying' brine water recovery concepts, collectively referred to herein as Brine Residual In-Containment, are under development. These brine water recovery concepts aim to increase the overall robustness and reliability of the brine recovery process by performing drying inside the container used for final disposal of the solid residual waste. Implementation of in-place drying techniques have been demonstrated for applications where gravity is present and phase separation occurs naturally by buoyancy-induced effects. In this work, a microgravity-compatible analogue of the gravity-driven phase separation process is considered by exploiting capillarity in the form of surface wetting, surface tension, and container geometry. The proposed design consists of a series of planar radial vanes aligned about a central slotted core. Preliminary testing of the fundamental geometry in a reduced gravity environment has shown the device to spontaneously fill and saturate rapidly, thereby creating a free surface from which evaporation and phase separation can occur similar to a terrestrial-like 'cylindrical pool' of fluid. Mathematical modeling and analysis of the design suggest predictable rates of filling and stability of fluid containment as a function of relevant system dimensions; e.g., number of vanes, vane length, width, and thickness. A description of the proposed capillary design solution is presented along with preliminary results from testing, modeling, and analysis of the system.

  2. Modeling slow-slip segmentation in Cascadia subduction zone constrained by tremor locations and gravity anomalies

    NASA Astrophysics Data System (ADS)

    Li, Duo; Liu, Yajing

    2017-04-01

    Along-strike segmentation of slow-slip events (SSEs) and nonvolcanic tremors in Cascadia may reflect heterogeneities of the subducting slab or overlying continental lithosphere. However, the nature behind this segmentation is not fully understood. We develop a 3-D model for episodic SSEs in northern and central Cascadia, incorporating both seismological and gravitational observations to constrain the heterogeneities in the megathrust fault properties. The 6 year automatically detected tremors are used to constrain the rate-state friction parameters. The effective normal stress at SSE depths is constrained by along-margin free-air and Bouguer gravity anomalies. The along-strike variation in the long-term plate convergence rate is also taken into consideration. Simulation results show five segments of ˜Mw6.0 SSEs spontaneously appear along the strike, correlated to the distribution of tremor epicenters. Modeled SSE recurrence intervals are equally comparable to GPS observations using both types of gravity anomaly constraints. However, the model constrained by free-air anomaly does a better job in reproducing the cumulative slip as well as more consistent surface displacements with GPS observations. The modeled along-strike segmentation represents the averaged slip release over many SSE cycles, rather than permanent barriers. Individual slow-slip events can still propagate across the boundaries, which may cause interactions between adjacent SSEs, as observed in time-dependent GPS inversions. In addition, the moment-duration scaling is sensitive to the selection of velocity criteria for determining when SSEs occur. Hence, the detection ability of the current GPS network should be considered in the interpretation of slow earthquake source parameter scaling relations.

  3. Advancements in Spacecraft Brine Water Recovery: Development of a Radial Vaned Capillary Drying Tray

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargusingh, Miriam J.; Pickerin, Karen D.; Weislogel, Mark M.

    2013-01-01

    Technology improvements in the recovery of water from brine are critical to establishing closedloop water recovery systems, enabling long duration missions, and achieving a sustained human presence in space. A genre of 'in-place drying' brine water recovery concepts, collectively referred to herein as Brine Residual In-Containment (BRIC), are under development which aim to increase the overall robustness and reliability of the brine recovery process by performing drying inside the container used for final disposal of the solid residual waste. Implementation of in-place drying techniques have been demonstrated for applications where gravity is present and phase separation occurs naturally by buoyancy induced effects. In this work, a microgravity compatible analogue of the gravity-driven phase separation process is considered by exploiting capillarity in the form of surface wetting, surface tension, and container geometry. The proposed design consists of a series of planar radial vanes aligned about a central slotted core. Preliminary testing of the fundamental geometry in a reduced gravity environment has shown the device to spontaneously fill and saturate rapidly creating a free surface from which evaporation and phase separation can occur similar to a 1-g like 'cylindrical pool' of fluid. Mathematical modeling and analysis of the design suggest predictable rates of filling and stability of fluid containment as a function of relevant system dimensions, e.g., number of vanes, vane length, width, and thickness. A description of the proposed capillary design solution is presented along with preliminary results from testing, modeling and analysis of the system.

  4. Experimental and Numerical Investigation of Internal Gravity Waves Excited by Turbulent Penetrative Convection in Water Around Its Density Maximum

    NASA Astrophysics Data System (ADS)

    Perrard, Stéphane; Le Bars, Michaël; Le Gal, Patrice

    This study is devoted to the experimental and numerical analysis of the excitation of gravity waves by turbulent convection. This situation is representative of many geophysical or astrophysical systems such as the convective bottom layer of the atmosphere that radiates internal waves in the stratosphere, or the interaction between the convective and the radiative zones in stars. In our experiments, we use water as a working fluid as it possesses the remarkable property of having a maximum density at 4 °C. Therefore, when establishing on a water layer a temperature gradient between 0 °C at the bottom and room temperature at the top, a turbulent convective region appears spontaneously under a stably stratified zone. In these conditions, gravity waves are excited by the convective fluid motions penetrating the stratified layer. Although this type of flow, called penetrative convection, has already been described, we present here the first velocity field measurement of wave emission and propagation. We show in particular that an intermediate layer that we call the buffer layer emerges between the convective and the stratified zones. In this buffer layer, the angle of propagation of the waves varies with the altitude since it is slaved to the Brunt-Väisälä frequency which evolves rapidly between the convective and the stratified layer. A minimum angle is reached at the end of the buffer layer. Then we observe that an angle of propagation is selected when the waves travel through the stratified layer. We expect this process of wave selection to take place in natural situations.

  5. The inevitable journey to being

    PubMed Central

    Russell, Michael J.; Nitschke, Wolfgang; Branscomb, Elbert

    2013-01-01

    Life is evolutionarily the most complex of the emergent symmetry-breaking, macroscopically organized dynamic structures in the Universe. Members of this cascading series of disequilibria-converting systems, or engines in Cottrell's terminology, become ever more complicated—more chemical and less physical—as each engine extracts, exploits and generates ever lower grades of energy and resources in the service of entropy generation. Each one of these engines emerges spontaneously from order created by a particular mother engine or engines, as the disequilibrated potential daughter is driven beyond a critical point. Exothermic serpentinization of ocean crust is life's mother engine. It drives alkaline hydrothermal convection and thereby the spontaneous production of precipitated submarine hydrothermal mounds. Here, the two chemical disequilibria directly causative in the emergence of life spontaneously arose across the mineral precipitate membranes separating the acidulous, nitrate-bearing CO2-rich, Hadean sea from the alkaline and CH4/H2-rich serpentinization-generated effluents. Essential redox gradients—involving hydrothermal CH4 and H2 as electron donors, CO2 and nitrate, nitrite, and ferric iron from the ambient ocean as acceptors—were imposed which functioned as the original ‘carbon-fixing engine’. At the same time, a post-critical-point (milli)voltage pH potential (proton concentration gradient) drove the condensation of orthophosphate to produce a high energy currency: ‘the pyrophosphatase engine’. PMID:23754808

  6. The inevitable journey to being.

    PubMed

    Russell, Michael J; Nitschke, Wolfgang; Branscomb, Elbert

    2013-07-19

    Life is evolutionarily the most complex of the emergent symmetry-breaking, macroscopically organized dynamic structures in the Universe. Members of this cascading series of disequilibria-converting systems, or engines in Cottrell's terminology, become ever more complicated-more chemical and less physical-as each engine extracts, exploits and generates ever lower grades of energy and resources in the service of entropy generation. Each one of these engines emerges spontaneously from order created by a particular mother engine or engines, as the disequilibrated potential daughter is driven beyond a critical point. Exothermic serpentinization of ocean crust is life's mother engine. It drives alkaline hydrothermal convection and thereby the spontaneous production of precipitated submarine hydrothermal mounds. Here, the two chemical disequilibria directly causative in the emergence of life spontaneously arose across the mineral precipitate membranes separating the acidulous, nitrate-bearing CO2-rich, Hadean sea from the alkaline and CH4/H2-rich serpentinization-generated effluents. Essential redox gradients-involving hydrothermal CH4 and H2 as electron donors, CO2 and nitrate, nitrite, and ferric iron from the ambient ocean as acceptors-were imposed which functioned as the original 'carbon-fixing engine'. At the same time, a post-critical-point (milli)voltage pH potential (proton concentration gradient) drove the condensation of orthophosphate to produce a high energy currency: 'the pyrophosphatase engine'.

  7. Study to perform preliminary experiments to evaluate particle generation and characterization techniques for zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Katz, U.

    1982-01-01

    Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.

  8. Profiles of gamma-ray and magnetic data from aerial surveys over the conterminous United States

    USGS Publications Warehouse

    Duval, Joseph S.; Riggle, Frederic E.

    1999-01-01

    This publication contains images for the conterminous U.S. generated from geophysical data, software for displaying and analyzing the images, and software for displaying and examining the profile data from the aerial surveys flown as part of the National Uranium Resource Evaluation (NURE) Program of the U.S. Department of Energy. The images included are of gamma-ray data (uranium, thorium, and potassium channels), Bouguer gravity data, isostatic residual gravity data, aeromagnetic anomalies, topography, and topography with bathymetry.

  9. Electronic materials processing and the microgravity environment

    NASA Technical Reports Server (NTRS)

    Witt, A. F.

    1988-01-01

    The nature and origin of deficiencies in bulk electronic materials for device fabrication are analyzed. It is found that gravity generated perturbations during their formation account largely for the introduction of critical chemical and crystalline defects and, moreover, are responsible for the still existing gap between theory and experiment and thus for excessive reliance on proprietary empiricism in processing technology. Exploration of the potential of reduced gravity environment for electronic materials processing is found to be not only desirable but mandatory.

  10. The algebra of supertraces for 2+1 super de Sitter gravity

    NASA Technical Reports Server (NTRS)

    Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.

    1993-01-01

    The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.

  11. Wave Structures in Thermospheric Density from Satellite Electrostatic Triaxial Accelerometer Measurements.

    DTIC Science & Technology

    1987-06-04

    Testud , J. (1970) Gravity waves generated diring magnetic substorms, .1. Atmos. Terr. Phys., 32:1793. .6 t9, "-€ according to their horizontal...auroral oval during polar substorms, J. Geophys. Res., 74:5721. 7. Testud , J. P., Amayenc, P., and Blanc, M. (1975) Middle and low latitude effects of...1730. 13. Bertin, F.J., Testud , J., Kersley, L., and Rees, P. R. (1978) The meteorological jet stream as a source of medium scale gravity waves in

  12. The Formation and Fate of Internal Waves in the South China Sea

    DTIC Science & Technology

    2015-11-05

    FOf’miiiiiiM and Fate at Internal Waves In the South •C:hln;~t Sea --- --------· . _.,.. --- -------Author(s) Name{s) (Firsi,MI,La$t), Code, Atfi(iation...Tswen-Yung (David) Tang7 Internal gravity waves , the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in...for man-made structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their

  13. Loop-corrected Virasoro symmetry of 4D quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, T.; Kapec, D.; Raclariu, A.

    Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .

  14. Loop-corrected Virasoro symmetry of 4D quantum gravity

    DOE PAGES

    He, T.; Kapec, D.; Raclariu, A.; ...

    2017-08-16

    Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .

  15. Meso-beta scale numerical simulation studies of terrain-induced jet streak mass/momentum perturbations

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.

    1995-01-01

    Mesoscale model simulations provide insight into the complex jet streak adjustments on 11-12 July 1981 that preceded the first of two significant gravity wave events to have been generated over the Rocky Mountains in Montana. Simulations employing a variety of terrain treatments indicate that prior to wave formation, geostrophic adjustment processes modified the structure of the mid-upper tropospheric jet streak by creating secondary jetlets to the southeast of the polar jet streak in proximity to the gravity wave generation region. This simulated restructuring of the mid-upper tropospheric jet streak is the result of a four stage process. During stage 1, the wind adjusts to the mass field as the jet streak exit region propagates into the inflection point between the upstream trough and downstream ridge in the height field. Stage 2 is initiated as the mass field is forced to adjust to the new ageostrophic wind field created during stage 1. Stage 3 is defined by a second geostrophic adjustment process occurring in a similar manner but to the south and east of the adjustment which occurs during stage 1. A low-level mesoscale jetlet is formed during stage 4 in response to the low-level pressure falls that are established during stage 3. The perturbation of this jetlet, caused by orographically-induced adiabatic and diabatic physical processes, is the likely mechanism responsible for the generation of the first and second episode of observed gravity waves. The dynamics responsible for this wave episode are discussed as differential surface sensible heating inducing an orographically-forced mountain-plains solenoid, resulting in the formation of additional mesoscale jetlets and internal gravity waves. Also discussed is how convective latent heating modifies the numerically simulated terrain-induced internal gravity waves, especially their amplitude and phase velocities, which provide better agreement with those wave characteristics observed in nature. Finally, the three-dimensional linear response of a zonally uniform barotropic flow in a vertically unbounded, continuously stratified, Boussinesq atmosphere which is perturbed from geostrophic equilibrium is investigated.

  16. Detailed study of spontaneous rotation generation in diverted H-mode plasma using the full-f gyrokinetic code XGC1

    NASA Astrophysics Data System (ADS)

    Seo, Janghoon; Chang, C. S.; Ku, S.; Kwon, J. M.; Yoon, E. S.

    2013-10-01

    The Full-f gyrokinetic code XGC1 is used to study the details of toroidal momentum generation in H-mode plasma. Diverted DIII-D geometry is used, with Monte Carlo neutral particles that are recycled at the limiter wall. Nonlinear Coulomb collisions conserve particle, momentum, and energy. Gyrokinetic ions and adiabatic electrons are used in the present simulation to include the effects from ion gyrokinetic turbulence and neoclassical physics, under self-consistent radial electric field generation. Ion orbit loss physics is automatically included. Simulations show a strong co-Ip flow in the H-mode layer at outside midplane, similarly to the experimental observation from DIII-D and ASDEX-U. The co-Ip flow in the edge propagates inward into core. It is found that the strong co-Ip flow generation is mostly from neoclassical physics. On the other hand, the inward momentum transport is from turbulence physics, consistently with the theory of residual stress from symmetry breaking. Therefore, interaction between the neoclassical and turbulence physics is a key factor in the spontaneous momentum generation.

  17. High Positive End-Expiratory Pressure Renders Spontaneous Effort Noninjurious.

    PubMed

    Morais, Caio C A; Koyama, Yukiko; Yoshida, Takeshi; Plens, Glauco M; Gomes, Susimeire; Lima, Cristhiano A S; Ramos, Ozires P S; Pereira, Sérgio M; Kawaguchi, Naomasa; Yamamoto, Hirofumi; Uchiyama, Akinori; Borges, João B; Vidal Melo, Marcos F; Tucci, Mauro R; Amato, Marcelo B P; Kavanagh, Brian P; Costa, Eduardo L V; Fujino, Yuji

    2018-05-15

    In acute respiratory distress syndrome (ARDS), atelectatic solid-like lung tissue impairs transmission of negative swings in pleural pressure (Ppl) that result from diaphragmatic contraction. The localization of more negative Ppl proportionally increases dependent lung stretch by drawing gas either from other lung regions (e.g., nondependent lung [pendelluft]) or from the ventilator. Lowering the level of spontaneous effort and/or converting solid-like to fluid-like lung might render spontaneous effort noninjurious. To determine whether spontaneous effort increases dependent lung injury, and whether such injury would be reduced by recruiting atelectatic solid-like lung with positive end-expiratory pressure (PEEP). Established models of severe ARDS (rabbit, pig) were used. Regional histology (rabbit), inflammation (positron emission tomography; pig), regional inspiratory Ppl (intrabronchial balloon manometry), and stretch (electrical impedance tomography; pig) were measured. Respiratory drive was evaluated in 11 patients with ARDS. Although injury during muscle paralysis was predominantly in nondependent and middle lung regions at low (vs. high) PEEP, strong inspiratory effort increased injury (indicated by positron emission tomography and histology) in dependent lung. Stronger effort (vs. muscle paralysis) caused local overstretch and greater tidal recruitment in dependent lung, where more negative Ppl was localized and greater stretch was generated. In contrast, high PEEP minimized lung injury by more uniformly distributing negative Ppl, and lowering the magnitude of spontaneous effort (i.e., deflection in esophageal pressure observed in rabbits, pigs, and patients). Strong effort increased dependent lung injury, where higher local lung stress and stretch was generated; effort-dependent lung injury was minimized by high PEEP in severe ARDS, which may offset need for paralysis.

  18. Macromolecular crystallization in microgravity generated by a superconducting magnet.

    PubMed

    Wakayama, N I; Yin, D C; Harata, K; Kiyoshi, T; Fujiwara, M; Tanimoto, Y

    2006-09-01

    About 30% of the protein crystals grown in space yield better X-ray diffraction data than the best crystals grown on the earth. The microgravity environments provided by the application of an upward magnetic force constitute excellent candidates for simulating the microgravity conditions in space. Here, we describe a method to control effective gravity and formation of protein crystals in various levels of effective gravity. Since 2002, the stable and long-time durable microgravity generated by a convenient type of superconducting magnet has been available for protein crystal growth. For the first time, protein crystals, orthorhombic lysozyme, were grown at microgravity on the earth, and it was proved that this microgravity improved the crystal quality effectively and reproducibly. The present method always accompanies a strong magnetic field, and the magnetic field itself seems to improve crystal quality. Microgravity is not always effective for improving crystal quality. When we applied this microgravity to the formation of cubic porcine insulin and tetragonal lysozyme crystals, we observed no dependence of effective gravity on crystal quality. Thus, this kind of test will be useful for selecting promising proteins prior to the space experiments. Finally, the microgravity generated by the magnet is compared with that in space, considering the cost, the quality of microgravity, experimental convenience, etc., and the future use of this microgravity for macromolecular crystal growth is discussed.

  19. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  20. Power laws for gravity and topography of Solar System bodies

    NASA Astrophysics Data System (ADS)

    Ermakov, A.; Park, R. S.; Bills, B. G.

    2017-12-01

    When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the power law can be found by rescaling the values known for other bodies. Third, an ensemble of synthetic shapes that follow the defined power law can be generated and gravity-from-shape can be found. The averaged power spectrum can be used as an a priori constraint for the gravity field and variance of power can be computed for individual degrees.

  1. GOCE, Satellite Gravimetry and Antarctic Mass Transports

    NASA Astrophysics Data System (ADS)

    Rummel, Reiner; Horwath, Martin; Yi, Weiyong; Albertella, Alberta; Bosch, Wolfgang; Haagmans, Roger

    2011-09-01

    In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth's gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.

  2. Synoptic-scale variability of arctic gravity wave activity during summer and potential impacts on the high latitude middle atmosphere

    NASA Astrophysics Data System (ADS)

    Gerrard, Andrew John

    Although the role of gravity waves in the global atmospheric circulation is generally understood, discussion of synoptic gravity wave activity, especially pertaining to high latitude summer environments, is lacking in the literature. Tropospherically generated gravity waves greatly contribute to the zonal drag necessary to induce meridional outflow and subsequent upwelling observed in the adiabatically cooled summer mesosphere, ultimately resulting in an environment conducive to mesospheric cloud formation. However, the very gravity wave activity responsible for this induced cooling is also believed to be a major source of variability on mesospheric clouds over shorter time scales, and this topic should be of considerable interest if such clouds are to be used as tracers of the global climate. It is therefore the purpose of this thesis to explore high latitude synoptic gravity wave activity and ultimately seek an understanding of the associated influence on overlaying summer mesospheric clouds. Another goal is to better understand and account for potential variability in high latitude middle and upper atmospheric measurements that can be directly associated with "weather conditions" at lower altitudes. These endeavors are addressed through Rayleigh/aerosol lidar data obtained from the ARCtic LIdar TEchnology (ARCLITE) facility located at Sondrestrom, Greenland (67°N, 310°E), global tropospheric and stratospheric analyses and forecasts, and the Gravity-wave Regional Or Global RAy Tracer (GROGRAT) model. In this study we are able to show that (a) the upper stratospheric gravity wave strength and the brightness of overlaying mesospheric clouds, as measured by representative field proxies, are negatively correlated over time scales of less than a day, (b) such upper stratospheric gravity wave variability is inversely related to mesospheric cloud variability on time scales of ˜1 to 4 hours, (c) gravity wave hindcasts faithfully reproduce experimental lidar observations taken over the month of August 1996, (d) the observed upper stratospheric gravity wave activity is shown to originate from regionalized, non-orographic sources in the troposphere, (e) such gravity wave activity can propagate through the middle atmosphere, potentially impacting overlaying mesospheric clouds, and (f) the forecasting of such upper stratospheric gravity wave activity, and therefore the corresponding mesospheric cloud activity, is feasible. In conclusion, the results herein provide additional evidence of gravity wave influence on mesospheric clouds, a step towards the forecasting of regional gravity wave activity, and ultimately a better understanding of synoptic gravity wave activity at high latitudes.

  3. Modulation of synaptic transmission from segmental afferents by spontaneous activity of dorsal horn spinal neurones in the cat.

    PubMed

    Manjarrez, E; Rojas-Piloni, J G; Jimenez, I; Rudomin, P

    2000-12-01

    We examined, in the anaesthetised cat, the influence of the neuronal ensembles producing spontaneous negative cord dorsum potentials (nCDPs) on segmental pathways mediating primary afferent depolarisation (PAD) of cutaneous and group I muscle afferents and on Ia monosynaptic activation of spinal motoneurones. The intraspinal distribution of the field potentials associated with the spontaneous nCDPs indicated that the neuronal ensembles involved in the generation of these potentials were located in the dorsal horn of lumbar segments, in the same region of termination of low-threshold cutaneous afferents. During the occurrence of spontaneous nCDPs, transmission from low-threshold cutaneous afferents to second order neurones in laminae III-VI, as well as transmission along pathways mediating PAD of cutaneous and Ib afferents, was facilitated. PAD of Ia afferents was instead inhibited. Monosynaptic reflexes of flexors and extensors were facilitated during the spontaneous nCDPs. The magnitude of the facilitation was proportional to the amplitude of the 'conditioning' spontaneous nCDPs. This led to a high positive correlation between amplitude fluctuations of spontaneous nCDPs and fluctuations of monosynaptic reflexes. Stimulation of low-threshold cutaneous afferents transiently reduced the probability of occurrence of spontaneous nCDPs as well as the fluctuations of monosynaptic reflexes. It is concluded that the spontaneous nCDPs were produced by the activation of a population of dorsal horn neurones that shared the same functional pathways and involved the same set of neurones as those responding monosynaptically to stimulation of large cutaneous afferents. The spontaneous activity of these neurones was probably the main cause of the fluctuations of the monosynaptic reflexes observed under anaesthesia and could provide a dynamic linkage between segmental sensory and motor pathways.

  4. Direct estimate of the spontaneous germ line mutation rate in African green monkeys.

    PubMed

    Pfeifer, Susanne P

    2017-12-01

    Here, I provide the first direct estimate of the spontaneous mutation rate in an Old World monkey, using a seven individual, three-generation pedigree of African green monkeys. Eight de novo mutations were identified within ∼1.5 Gbp of accessible genome, corresponding to an estimated point mutation rate of 0.94 × 10 -8 per site per generation, suggesting an effective population size of ∼12000 for the species. This estimation represents a significant improvement in our knowledge of the population genetics of the African green monkey, one of the most important nonhuman primate models in biomedical research. Furthermore, by comparing mutation rates in Old World monkeys with the only other direct estimates in primates to date-humans and chimpanzees-it is possible to uniquely address how mutation rates have evolved over longer time scales. While the estimated spontaneous mutation rate for African green monkeys is slightly lower than the rate of 1.2 × 10 -8 per base pair per generation reported in chimpanzees, it is similar to the lower range of rates of 0.96 × 10 -8 -1.28 × 10 -8 per base pair per generation recently estimated from whole genome pedigrees in humans. This result suggests a long-term constraint on mutation rate that is quite different from similar evidence pertaining to recombination rate evolution in primates. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Generation of Light with Multimode Time-Delayed Entanglement Using Storage in a Solid-State Spin-Wave Quantum Memory.

    PubMed

    Ferguson, Kate R; Beavan, Sarah E; Longdell, Jevon J; Sellars, Matthew J

    2016-07-08

    Here, we demonstrate generating and storing entanglement in a solid-state spin-wave quantum memory with on-demand readout using the process of rephased amplified spontaneous emission (RASE). Amplified spontaneous emission (ASE), resulting from an inverted ensemble of Pr^{3+} ions doped into a Y_{2}SiO_{5} crystal, generates entanglement between collective states of the praseodymium ensemble and the output light. The ensemble is then rephased using a four-level photon echo technique. Entanglement between the ASE and its echo is confirmed and the inseparability violation preserved when the RASE is stored as a spin wave for up to 5  μs. RASE is shown to be temporally multimode with almost perfect distinguishability between two temporal modes demonstrated. These results pave the way for the use of multimode solid-state quantum memories in scalable quantum networks.

  6. Quantum fluctuations of radiation in a ring Nd : YAG chip laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lariontsev, E G; Firsov, V V

    2015-07-31

    We report theoretical and experimental investigation of intensity fluctuations in a travelling-wave ring Nd : YAG chip laser, caused by the noise of spontaneous emission. In accordance with theory and experiment, quantum intensity fluctuations in the laser under study decrease dramatically with increasing pump over the threshold. As a result of the research performed, the factor β is found, which determines the ratio of the rate of spontaneous emission into the generated mode to the total rate of spontaneous emission into all modes. The effect of the relaxation rate from the lower laser level on quantum fluctuations of the radiationmore » intensity is found. (control of radiation parameters)« less

  7. Spontaneous density fluctuations in granular flow and traffic

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans J.

    It is known that spontaneous density waves appear in granular material flowing through pipes or hoppers. A similar phenomenon is known from traffic jams on highways. Using numerical simulations we show that several types of waves exist and find that the density fluctuations follow a power law spectrum. We also investigate one-dimensional traffic models. If positions and velocities are continuous variables the model shows self-organized criticality driven by the slowest car. Lattice gas and lattice Boltzmann models reproduce the experimentally observed effects. Density waves are spontaneously generated when the viscosity has a non-linear dependence on density or shear rate as it is the case in traffic or granular flow.

  8. MODTOHAFSD — A GUI based JAVA code for gravity analysis of strike limited sedimentary basins by means of growing bodies with exponential density contrast-depth variation: A space domain approach

    NASA Astrophysics Data System (ADS)

    Chakravarthi, V.; Sastry, S. Rajeswara; Ramamma, B.

    2013-07-01

    Based on the principles of modeling and inversion, two interpretation methods are developed in the space domain along with a GUI based JAVA code, MODTOHAFSD, to analyze the gravity anomalies of strike limited sedimentary basins using a prescribed exponential density contrast-depth function. A stack of vertical prisms all having equal widths, but each one possesses its own limited strike length and thickness, describes the structure of a sedimentary basin above the basement complex. The thicknesses of prisms represent the depths to the basement and are the unknown parameters to be estimated from the observed gravity anomalies. Forward modeling is realized in the space domain using a combination of analytical and numerical approaches. The algorithm estimates the initial depths of a sedimentary basin and improves them, iteratively, based on the differences between the observed and modeled gravity anomalies within the specified convergence criteria. The present code, works on Model-View-Controller (MVC) pattern, reads the Bouguer gravity anomalies, constructs/modifies regional gravity background in an interactive approach, estimates residual gravity anomalies and performs automatic modeling or inversion based on user specification for basement topography. Besides generating output in both ASCII and graphical forms, the code displays (i) the changes in the depth structure, (ii) nature of fit between the observed and modeled gravity anomalies, (iii) changes in misfit, and (iv) variation of density contrast with iteration in animated forms. The code is used to analyze both synthetic and real field gravity anomalies. The proposed technique yielded information that is consistent with the assumed parameters in case of synthetic structure and with available drilling depths in case of field example. The advantage of the code is that it can be used to analyze the gravity anomalies of sedimentary basins even when the profile along which the interpretation is intended fails to bisect the strike length.

  9. Too Fast to Measure: Network Adjustment of Rapidly Changing Gravity Fields

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Ferre, T. P. A.

    2014-12-01

    Measurements of spatially-variable gravity at the field scale are difficult; measurements of the time-varying field even more so. Every previous gravity survey using relative gravimeters—still the workhorse of gravity studies, despite their nearly 80 year history—has assumed a static gravity field during the course of a survey, which may last days to weeks. With recently-improved instrumentation, however, measurements of fields changing on the order of tens of nm/sec2 per day are now possible. In particular, the A-10 portable absolute gravimeter provides not only absolute control, but also the change in that control during the course of a survey. Using digitally-recording spring-based relative gravimeters (namely, the ZLS Burris meter and the Scintrex CG-5), with their more efficient data collection and lower drift than previous generations, many more data are collected in a day. We demonstrate a method for incorporating in the least-squares network adjustment of relative gravity data a relation between the rate of change of gravity, dg, and distance from an infiltration source, x. This relation accounts for the fact that gravity at stations adjacent to the infiltration source changes more rapidly than stations further away; if all measurements collected over several days are to be included in a single network-adjustment, consideration of this change is required. Two methods are used to simulate the dg(x) relation: a simple model where dg is a linear function of x, and a coupled-hydrogeophysical method where a groundwater flow model predicts the nonlinear spatial variation of dg. Then, the change in gravity between different, independently adjusted surveys is used to parameterize the groundwater model. Data from two recent field examples, an artificial recharge facility near Tucson, Arizona, USA, and from the 2014 Lower Colorado River pulse flow experiment, clearly show the need to account for gravity change during a survey; maximum rates of change for the two studies were up to 30 and 50 nm/sec2 per day, respectively.

  10. Circulation-based Modeling of Gravity Currents

    NASA Astrophysics Data System (ADS)

    Meiburg, E. H.; Borden, Z.

    2013-05-01

    Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related phenomena, J. Fluid Mech. 31, 209-248. Shin, J.O., Dalziel, S.B. and Linden, P.F. 2004 Gravity currents produced by lock exchange, J. Fluid Mech. 521, 1-34.

  11. Why does the universe expand?

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.

    2010-11-01

    The purpose of the paper is fivefold: (a) Argue that the question in the title can be presented in a meaningful manner and that it requires an answer. (b) Discuss the conventional answers and explain why they are unsatisfactory. (c) Suggest that a key ingredient in the answer could be the instability arising due to the ‘wrong’ sign in the Hilbert action for the kinetic energy term corresponding to expansion factor. (d) Describe how this idea connects up with another peculiar feature of our universe, viz. it spontaneously became more and more classical in the course of evolution. (e) Provide a speculative but plausible scenario, based on the thermodynamic perspective of gravity, in which one has the hope for relating the thermodynamic and cosmological arrows of time.

  12. Distinguishing How from Why the Mind Wanders: A Process-Occurrence Framework for Self-Generated Mental Activity

    ERIC Educational Resources Information Center

    Smallwood, Jonathan

    2013-01-01

    Cognition can unfold with little regard to the events taking place in the environment, and such self-generated mental activity poses a specific set of challenges for its scientific analysis in both cognitive science and neuroscience. One problem is that the spontaneous onset of self-generated mental activity makes it hard to distinguish the events…

  13. Inhibitory Control as a Core Process of Creative Problem Solving and Idea Generation from Childhood to Adulthood.

    PubMed

    Cassotti, Mathieu; Agogué, Marine; Camarda, Anaëlle; Houdé, Olivier; Borst, Grégoire

    2016-01-01

    Developmental cognitive neuroscience studies tend to show that the prefrontal brain regions (known to be involved in inhibitory control) are activated during the generation of creative ideas. In the present article, we discuss how a dual-process model of creativity-much like the ones proposed to account for decision making and reasoning-could broaden our understanding of the processes involved in creative ideas generation. When generating creative ideas, children, adolescents, and adults tend to follow "the path of least resistance" and propose solutions that are built on the most common and accessible knowledge within a specific domain, leading to fixation effect. In line with recent theory of typical cognitive development, we argue that the ability to resist the spontaneous activation of design heuristics, to privilege other types of reasoning, might be critical to generate creative ideas at all ages. In the present review, we demonstrate that inhibitory control at all ages can actually support creativity. Indeed, the ability to think of something truly new and original requires first inhibiting spontaneous solutions that come to mind quickly and unconsciously and then exploring new ideas using a generative type of reasoning. © 2016 Wiley Periodicals, Inc.

  14. Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viennot, David

    We show that the holonomy of a connection defined on a principal composite bundle is related by a non-Abelian Stokes theorem to the composition of the holonomies associated with the connections of the component bundles of the composite. We apply this formalism to describe the non-Abelian geometric phase (when the geometric phase generator does not commute with the dynamical phase generator). We find then an assumption to obtain a new kind of separation between the dynamical and the geometric phases. We also apply this formalism to the gauge theory of gravity in the presence of a Dirac spinor field inmore » order to decompose the holonomy of the Lorentz connection into holonomies of the linear connection and of the Cartan connection.« less

  15. Benefits from synergies and advanced technologies for an advanced-technology space station

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Ferebee, Melvin J., Jr.; Queijo, Manuel J.; Butterfield, Ansel J.

    1991-01-01

    A configuration for a second-generation advanced technology space station has been defined in a series of NASA-sponsored studies. Definitions of subsystems specifically addressed opportunities for beneficial synergistic interactions and those potential synergies and their benefits are identified. One of the more significant synergistic benefits involves the multi-function utilization of water within a large system that generates artificial gravity by rotation. In such a system, water not only provides the necessary crew life support, but also serves as counterrotator mass, as moveable ballast, and as a source for propellant gases. Additionally, the synergistic effects between advanced technology materials, operation at reduced artificial gravity, and lower cabin atmospheric pressure levels show beneficial interactions that can be quantified in terms of reduced mass to orbit.

  16. IMPACT OF GRAVITY LOADING ON POST-STROKE REACHING AND ITS RELATIONSHIP TO WEAKNESS

    PubMed Central

    Beer, Randall F.; Ellis, Michael D.; Holubar, Bradley G.; Dewald, Julius P.A.

    2010-01-01

    The ability to extend the elbow following stroke depends on the magnitude and direction of torques acting at the shoulder. The mechanisms underlying this link remain unclear. The purpose of this study was to evaluate whether the effects of shoulder loading on elbow function were related to weakness or its distribution in the paretic limb. Ten subjects with longstanding hemiparesis performed movements with the arm either passively supported against gravity by an air bearing, or by activation of shoulder muscles. Isometric maximum voluntary torques at the elbow and shoulder were measured using a load cell. The speed and range of elbow extension movements were negatively impacted by actively supporting the paretic limb against gravity. However, the effects of gravity loading were not related to proximal weakness or abnormalities in the elbow flexor–extensor strength balance. The findings support the existence of abnormal descending motor commands that constrain the ability of stroke survivors to generate elbow extension torque in combination with abduction torque at the shoulder. PMID:17486581

  17. Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction

    NASA Astrophysics Data System (ADS)

    Rovelli, Carlo; Speziale, Simone

    2003-03-01

    A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer can see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts, and give the conditions under which its action is unitary.

  18. Computer modeling describes gravity-related adaptation in cell cultures.

    PubMed

    Alexandrov, Ludmil B; Alexandrova, Stoyana; Usheva, Anny

    2009-12-16

    Questions about the changes of biological systems in response to hostile environmental factors are important but not easy to answer. Often, the traditional description with differential equations is difficult due to the overwhelming complexity of the living systems. Another way to describe complex systems is by simulating them with phenomenological models such as the well-known evolutionary agent-based model (EABM). Here we developed an EABM to simulate cell colonies as a multi-agent system that adapts to hyper-gravity in starvation conditions. In the model, the cell's heritable characteristics are generated and transferred randomly to offspring cells. After a qualitative validation of the model at normal gravity, we simulate cellular growth in hyper-gravity conditions. The obtained data are consistent with previously confirmed theoretical and experimental findings for bacterial behavior in environmental changes, including the experimental data from the microgravity Atlantis and the Hypergravity 3000 experiments. Our results demonstrate that it is possible to utilize an EABM with realistic qualitative description to examine the effects of hypergravity and starvation on complex cellular entities.

  19. Bioprocessing: Prospects for space electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.

  20. Impact of gravity loading on post-stroke reaching and its relationship to weakness.

    PubMed

    Beer, Randall F; Ellis, Michael D; Holubar, Bradley G; Dewald, Julius P A

    2007-08-01

    The ability to extend the elbow following stroke depends on the magnitude and direction of torques acting at the shoulder. The mechanisms underlying this link remain unclear. The purpose of this study was to evaluate whether the effects of shoulder loading on elbow function were related to weakness or its distribution in the paretic limb. Ten subjects with longstanding hemiparesis performed movements with the arm either passively supported against gravity by an air bearing, or by activation of shoulder muscles. Isometric maximum voluntary torques at the elbow and shoulder were measured using a load cell. The speed and range of elbow extension movements were negatively impacted by actively supporting the paretic limb against gravity. However, the effects of gravity loading were not related to proximal weakness or abnormalities in the elbow flexor-extensor strength balance. The findings support the existence of abnormal descending motor commands that constrain the ability of stroke survivors to generate elbow extension torque in combination with abduction torque at the shoulder.

Top