Science.gov

Sample records for spot friction welding

  1. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  2. Friction Stir Spot Welding of DP780 Carbon Steel

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Frederick, Alan; Grant, Glenn J.; Dahl, Michael E.

    2009-09-15

    Friction stir spot welds were made in uncoated and galvannneled DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1-10 s. Increasing tool rotation speed from 800 to 1600 rpm increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap-shear strengths exceeding 10.3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

  3. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Grant, Glenn J.; Carpenter, Joseph A.; Warren, C. D.; Smith, Mark T.

    2008-12-28

    Experiments are continuing to evaluate the feasibility of friction stir spot welding advanced high-strength steels including, DP780, martensitic hot-stamp boron steel, and TRIP steels. Spot weld lap-shear strengths can exceed those required by industry standards such as AWS D8.1.

  4. Friction Stir Spot Welding of DP780 Carbon Steel

    SciTech Connect

    Santella, Michael L; Hovanski, Yuri; Frederick, David Alan; Grant, Glenn J; Dahl, Michael E

    2010-01-01

    Friction stir spot welds were made in uncoated and galvannealed DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1 to 10 s. Increasing tool rotation speed from 800 to 1600 rev min{sup -1} increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap shear strengths exceeding 10 {center_dot} 3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

  5. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Santella, M. L.; Grant, Glenn J.

    2009-12-28

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  6. Friction Stir Spot Welding of 6061 Aluminum-to-Copper

    NASA Astrophysics Data System (ADS)

    Heideman, Robert J.

    Friction stir spot welding (FSSW) between 1.5mm thick 6061 Al on top and 1.5mm thick Cu at bottom was conducted. First, weld parameters and the weld macrostructure that were necessary to form good quality welds, as determined using lap shear weld strength, were identified. Tool rotation speed and tool pin length are key variables that control weld strength. To obtain high quality strong welds, a Cu ring extruded upward from the lower Cu sheet into the upper 6061 Al-sheet, which promoted bonding and interlocking between the sheets, and an Al-rich stir zone between Cu ring and weld keyhole were both necessary. Second, a technique where the tool remained in the sample after FSSW helped determine the material flow that takes place during high quality weld formation and the functions of the welding tool features. The tool threads cause 6061 Al from the upper sheet to move downward into the region near the threads. The tool shoulder causes a counter flow movement of 6061 Al that results in the formation of the Al-rich stir zone and also causes the upward extrusion of the lower Cu sheet. This technique also identified that a Cu-rich material forms on the tool tip, that this material sheds and rebuilds during subsequent welds, and that this material can form large Cu-rich particles that can completely fill the tool threads, impede proper material flow and lead to a low strength, poor quality weld. Third, to further understand welding parameters, weld temperatures, torque, and vertical forces were measured. Temperature data was collected using a tool holder that permitted wireless thermocouple data collection. Through these measurements, rotational plunge weld energy was recognized as important in determining if a quality weld formed, and weld plunge rate was identified as the welding parameter that significantly impacted rotational weld plunge energy. The final phase of research was to improve weld quality consistency. Through repetitive trials with a single tool

  7. Superplastic Forming of Aluminum Multisheet Structures Fabricated Using Friction Stir Welding and Refill Friction Stir Spot Welding

    SciTech Connect

    Grant, Glenn J.; Herling, Darrell R.; Arbegast, William J.; Allen, Casey D.; Degen, Cassandra M.

    2006-12-20

    Superplastically-formed structural panels are growing in their applications in aerospace, aircraft, automotive, and other industries. Generally, monolithic sheets are employed, limiting the size and complexity of the final part. However, more complex and larger final geometries are possible if individual sheet materials can be joined together through an appropriate joining technology, then SPF formed to final shape. The primary challenge in this type of SPF fabrication has been making a joint between the sheets that will survive the SPF forming event and display the correct amount of elongation in the joint relative to the base materials being formed. Friction Stir Welding is an ideal joining technology for SPF applications because the forming response of the weld metal at SPF conditions is adjustable by selecting different weld process parameters during initial joining. This allows the SPF deformation in the weld metal to be “tuned” to the deformation of the parent sheet to prevent early failure from occurring in either the weld metal or the parent sheet due to mismatched SPF flow stresses. Industrial application of the concept of matching flow stresses is currently being pursued on a program at the Pacific Northwest National Laboratory on room temperature formed friction stir welded tailor welded blanks for heavy truck applications. Flow stress matching and process parameter “tuning” is also important in the fabrication of SPF multisheet structural panels. These panels are fabricated by joining three sheets together with alternating welds top and bottom, so that each weld penetrates only two of the three sheets. This sheet pack is then sealed with a weld seam around the outside and hot gas is introduced between the sheets through a welded tube. Under SPF conditions the sheet pack inflates to produce an internally supported structure. In this paper we presents results on an investigation into using FSW and Refill Friction Stir Spot Welding to fabricated

  8. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Güler, Hande

    2014-10-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  9. Microstructures and Mechanical Properties of Friction Stir Spot Welded Aluminum Alloy AA2014

    NASA Astrophysics Data System (ADS)

    Babu, S.; Sankar, V. S.; Janaki Ram, G. D.; Venkitakrishnan, P. V.; Madhusudhan Reddy, G.; Prasad Rao, K.

    2013-01-01

    Friction stir spot welding (FSSW) is a relatively recent development, which can provide a superior alternative to resistance spot welding and riveting for fabrication of aluminum sheet metal structures. In the current work, FSSW experiments were conducted in 3-mm thick sheets of aluminum alloy 2014 in T4 and T6 conditions, with and without Alclad layers. The effects of tool geometry and welding process parameters on joint formation were investigated. A good correlation between process parameters, bond width, hook height, joint strength, and fracture mode was observed. The presence of Alclad layers and the base metal temper condition were found to have no major effect on joint formation and joint strength. Friction stir spot welds produced under optimum conditions were found to be superior to riveted joints in lap-shear and cross-tension tests. The prospects of FSSW in aluminum sheet metal fabrication are discussed.

  10. Numerical simulation of friction stir spot welding process for aluminum alloys

    NASA Astrophysics Data System (ADS)

    Kim, Dongun; Badarinarayan, Harsha; Ryu, Ill; Kim, Ji Hoon; Kim, Chongmin; Okamoto, Kazutaka; Wagoner, R. H.; Chung, Kwansoo

    2010-04-01

    Thermo-mechanical simulations of the Friction Stir Spot Welding (FSSW) processes were performed for AA5083-H18 and AA6022-T4, utilizing commercial Finite Element Method (FEM) and Finite Volume Method (FVM) codes, which are based on Lagrangian and Eulerian formulations, respectively. The Lagrangian explicit dynamic FEM code, PAM-CRASH, and the Eulerian Computational Fluid Dynamics (CFD) FVM code, STAR-CD, were utilized to understand the effect of pin geometry on weld strength and material flow under the unsteady state condition. Using FVM code, material flow patterns near the tool boundary were analyzed to explain weld strength difference between welds by a cylindrical pin and welds by a triangular pin, whereas the frictional energy concept using the FEM code had a limited capacity to explain the weld strength difference.

  11. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    SciTech Connect

    Shen, Junjun Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  12. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    NASA Astrophysics Data System (ADS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; dos Santos, Jorge F.

    2014-05-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  13. Thermal Modeling of Al-Al and Al-Steel Friction Stir Spot Welding

    NASA Astrophysics Data System (ADS)

    Jedrasiak, P.; Shercliff, H. R.; Reilly, A.; McShane, G. J.; Chen, Y. C.; Wang, L.; Robson, J.; Prangnell, P.

    2016-09-01

    This paper presents a finite element thermal model for similar and dissimilar alloy friction stir spot welding (FSSW). The model is calibrated and validated using instrumented lap joints in Al-Al and Al-Fe automotive sheet alloys. The model successfully predicts the thermal histories for a range of process conditions. The resulting temperature histories are used to predict the growth of intermetallic phases at the interface in Al-Fe welds. Temperature predictions were used to study the evolution of hardness of a precipitation-hardened aluminum alloy during post-weld aging after FSSW.

  14. Analysing the strength of friction stir spot welded joints of aluminium alloy by fuzzy logic

    NASA Astrophysics Data System (ADS)

    Vaira Vignesh, R.; Padmanaban, R.; Arivarasu, M.; Karthick, K. P.; Abirama Sundar, A.; Gokulachandran, J.

    2016-09-01

    Friction stir spot welding (FSSW) is a recent joining technique developed for spot welding of thin metal sheets. This process currently finds application in automotive, aerospace, marine and sheet metal industry. In this work, the effect of FSSW process parameters namely tool rotation speed, shoulder diameter and dwell time on Tensile shear failure load (TSFL) is investigated. Box-Behnken design is selected for conducting experiments. Fuzzy based soft computing is used to develop a model for TSFL of AA6061 joints fabricated by FSSW. The interaction of the process parameters on TSFL is also presented.

  15. Friction Stir Spot Welding of DP780 and Hot-Stamp Boron Steels

    SciTech Connect

    Santella, Michael L.; Frederick, Alan; Hovanski, Yuri; Grant, Glenn J.

    2008-05-16

    Friction stir spot welds were made in two high-strength steels: DP780, and a hot-stamp-boron steel with tensile strength of 1500 MPa. The spot welds were made at either 800 or 1600 rpm using either of two polycrystalline boron nitride tools. One stir tool, BN77, had the relatively common pin-tool shape. The second tool, BN46, had a convex rather than a concave shoulder profile and a much wider and shorter pin. The tools were plunged to preprogrammed depths either at a continuous rate (1-step schedule) or in two segments consisting of a relatively high rate followed by a slower rate. In all cases, the welds were completed in 4s. The range of lap-shear values were compared to values required for resistance spot welds on the same steels. The minimum value of 10.3 kN was exceeded for friction stir spot welding of DP780 using a 2-step schedule and either the BN77- or the BN46-type stir tool. The respective minimum value of 12 kN was also exceeded for the HSB steel using the 2-step process and the BN46 stir tool.

  16. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    2012-04-16

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

  17. Joint strength in high speed friction stir spot welded DP 980 steel

    SciTech Connect

    Saunders, Nathan; Miles, Michael; Hartman, Trent; Hovanski, Yuri; Hong, Sung Tae; Steel, Russell

    2014-05-01

    High speed friction stir spot welding was applied to 1.2 mm thick DP 980 steel sheets under different welding conditions, using PCBN tools. The range of vertical feed rates used during welding was 2.5 mm – 102 mm per minute, while the range of spindle speeds was 2500 – 6000 rpm. Extended testing was carried out for five different sets of welding conditions, until tool failure. These welding conditions resulted in vertical welding loads of 3.6 – 8.2 kN and lap shear tension failure loads of 8.9 – 11.1 kN. PCBN tools were shown, in the best case, to provide lap shear tension fracture loads at or above 9 kN for 900 spot welds, after which tool failure caused a rapid drop in joint strength. Joint strength was shown to be strongly correlated to bond area, which was measured from weld cross sections. Failure modes of the tested joints were a function of bond area and softening that occurred in the heat-affected zone.

  18. MODELING OF HIGH SPEED FRICTION STIR SPOT WELDING USING A LAGRANGIAN FINITE ELEMENT APPROACH

    SciTech Connect

    Miles, Michael; Karki, U.; Woodward, C.; Hovanski, Yuri

    2013-09-03

    Friction stir spot welding (FSSW) has been shown to be capable of joining steels of very high strength, while also being very flexible in terms of controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding (RSW) if tool life is sufficiently high, and if machine spindle loads are sufficiently low so that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work tool speeds of 3000 rpm and higher were employed, in order to generate heat more quickly and to reduce welding loads to acceptable levels. The FSSW process was modeled using a finite element approach with the Forge® software package. An updated Lagrangian scheme with explicit time integration was employed to model the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate [3]. The modeling approach can be described as two-dimensional, axisymmetric, but with an aspect of three dimensions in terms of thermal boundary conditions. Material flow was calculated from a velocity field which was two dimensional, but heat generated by friction was computed using a virtual rotational velocity component from the tool surface. An isotropic, viscoplastic Norton-Hoff law was used to model the evolution of material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures and the movement of the joint interface with reasonable accuracy for the welding of a dual phase 980 steel.

  19. Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.

    PubMed

    Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua

    2015-09-01

    Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.

  20. Friction stir spot welded joints of 409L stainless steels fabricated by a convex shoulder tool

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Abu Mowazzem; Hasan, Md. Tariqul; Hong, Sung-Tae; Miles, Michael; Cho, Hoon-Hwe; Han, Heung Nam

    2013-11-01

    Spot joints of ferritic 409L stainless steel are successfully fabricated by friction stir spot welding (FSSW) using a convex shoulder tool. The welding process, microstructure and failure of the FSSW joint are investigated experimentally. During the FSSW process, the Z-force history shows significant variations depending on the contact phenomena between the tool and the joined sheets, while the Z-torque history shows a rather steady increase without pronounced changes in the trend until the initiation of dwelling. Electron back-scatter diffraction suggests that both continuous dynamic recrystallization and recovery occurred in the stir zone during the FSSW process. Observation of the FSSW joint that failed under the given lap shear load shows that the cracks, which are the result of the interfaces between the upper and lower sheets, propagated into the weld along the interfacial surfaces, after which a necking/shear failure occurred. Finally, the rupture of the joint, which was initiated by the necking/shear failure, propagated along the circumference of the weld.

  1. Effect of Rotational Speed on Microstructure and Mechanical Properties of Refill Friction Stir Spot Welded 2024 Al Alloy

    NASA Astrophysics Data System (ADS)

    Li, Zhengwei; Gao, Shuangsheng; Ji, Shude; Yue, Yumei; Chai, Peng

    2016-04-01

    Refill friction stir spot welding (RFSSW) was successfully used to weld alclad 2024 aluminum alloy with different thicknesses. Effects of tool rotational speed on the weld formation, microstructure, and mechanical properties of the RFSSW welds were mainly discussed. Results show that keyhole is successfully refilled and welding defects such as flash, annular groove, and material adhesion can be observed. A bright contrast bonding ligament is found embedded in the weld and it is thicker in the center. Defects of hook, void, lack of mixing, and incomplete refilling can be found at the thermo-mechanically affected zone/stir zone (TMAZ/SZ) interface, which can be attributed to weak metallurgical bonding effect. With increasing the tool rotational speed, thickness of the bonding ligament decreases, grains in the SZ coarsen, hardness of the SZ decreases, and lap shear load of the welds decreases. When changing the rotating speed, impact strength shows rather complicated variation trend.

  2. Friction plug welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Riki (Inventor); Hibbard, Terry L. (Inventor)

    2001-01-01

    Friction plug welding (FPW) usage is advantageous for friction stir welding (FSW) hole close-outs and weld repairs in 2195 Al--Cu--Li fusion or friction stir welds. Current fusion welding methods of Al--Cu--Li have produced welds containing varied defects. These areas are found by non-destructive examination both after welding and after proof testing. Current techniques for repairing typically small (<0.25) defects weaken the weldment, rely heavily on welders' skill, and are costly. Friction plug welding repairs increase strength, ductility and resistance to cracking over initial weld quality, without requiring much time or operator skill. Friction plug welding while pulling the plug is advantageous because all hardware for performing the weld can be placed on one side of the workpiece.

  3. Influence of tool speeds on dissimilar friction stir spot welding characteristics of bulk metallic glass/Mg alloy

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Jung, Yoon-Chul; Lee, Jin-Kyu

    2012-08-01

    A small-scale joining technique of dissimilar friction stir spot welding (FSSW) between bulk metallic glass and Mg alloy sheet has been tried using an apparatus which was devised with a CNC milling machine to give a precise control of tool speeds. The influence of tool speeds on the joining characteristics during FSSW was investigated. As a result, it was found that the rotation speed and plunge speed of a tool during FSSW significantly influenced the welding performance of dissimilar FSSW between bulk metallic glasses and Mg alloy.

  4. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    SciTech Connect

    Miles, Michael; Karki, U.; Hovanski, Yuri

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.

  5. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Miles, M.; Karki, U.; Hovanski, Y.

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge® software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.

  6. Material Flow Tracking for Various Tool Geometries During the Friction Stir Spot Welding Process

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Ching; Liu, Ju-Jen; Chen, Jiun-Nan

    2013-12-01

    This study applied powder-tracing techniques to mount Cu and W powders on A6061-T6 aluminum sheets to investigate the material flow mechanism of friction stir spot welding (FSSW) using various geometric tools. The experimental results showed that the geometry of the tools plays a crucial role and determines the entrances of material flow during FSSW. It was believed that instantaneous voids were filled up with material flow in all directions for triangular pins, and the voids were located at the pin bottom for cylindrical pins. In accordance with the plastic rule of material flow, the pressure gradient is the necessary condition to cause material flow during FSSW; therefore, the transient constraint space (TCS) is required to generate pressure in this space. Enlargement of the TCS accompanies the evolution of the stir zone (SZ). A generated void causes a steep pressure gradient, which is regarded as the entrance of material flow. A tool with screw threads causes downward driving force, which determines the intermixing behavior between the upper and lower sheets, and also affects the size of the SZs.

  7. Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  8. Friction Stir Welding Development

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1998-01-01

    The research of this summer was a continuation of work started during the previous summer faculty fellowship period. The Friction Stir Welding process (FSW) patented by The Welding Institute (TWI), in Great Britain, has become a popular topic at the Marshall Space Flight Center over the past year. Last year it was considered a novel approach to welding but few people took it very seriously as a near term solution. However, due to continued problems with cracks in the new aluminum-lithium space shuttle external tank (ET), the friction stir process is being mobilized at full speed in an effort to mature this process for the potential manufacture of flight hardware. It is now the goal of NASA and Lockheed-Martin Corporation (LMC) to demonstrate a full-scale friction stir welding system capable of welding ET size barrel sections. The objectives this summer were: (1) Implementation and validation of the rotating dynamometer on the MSFC FSW system; (2) Collection of data for FSW process modeling efforts; (3) Specification development for FSW implementation on the vertical weld tool; (4) Controls and user interface development for the adjustable pin tool; and (5) Development of an instrumentation system for the planishing process. The projects started this summer will lead to a full scale friction stir welding system that is expected to produce a friction stir welded shuttle external tank type barrel section. The success of this could lead to the implementation of the friction stir process for manufacturing future shuttle external tanks.

  9. Friction stir welding tool

    DOEpatents

    Tolle; Charles R. , Clark; Denis E. , Barnes; Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  10. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  11. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  12. IR Spot Weld Inspect

    SciTech Connect

    Chen, Jian; Feng, Zhili

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, data analysis, weld quality database generation and weld quality prediction, etc.

  13. Friction Plug Weld Repair Geometric Innovations

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R.; Cantrell, Mark A.; McCool, A. (Technical Monitor)

    2000-01-01

    A viewgraph presentation outlines the fundamentals of friction plug welding. A process overview is given for friction push plug welding, including different uses and strengths of push plug welding. Details are given for friction pull plug welding, including welding parameters, details on observed defects, expected benefits, and test results.

  14. Effect of Dwell Time on Joint Interface Microstructure and Strength of Dissimilar Friction Stir Spot-Welded Al-5083 and St-12 Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Fereiduni, Eskandar; Movahedi, Mojtaba; Kokabi, Amir Hossein; Najafi, Hossein

    2017-04-01

    Joining of Al-5083 alloy sheet to St-12 steel sheet was performed using a new friction stir spot welding (FSSW) technique in which the tool pin tip did not enter lower steel sheet. Effect of dwell time on the microstructure and mechanical properties of the joints was studied by various methods including microhardness measurements, shear test, stereo and light microscopy as well as scanning and transmission electron microscopy (SEM and TEM). Results indicated that compared to the conventional FSSW process, stronger joints can be achieved by this FSSW technique. Cross-sectional observation of the failed specimens indicated the occurrence of final fracture from the circumference of the tool pin where the Al sheet thickness was decreased as a result of the tool pin penetration. However, microhardness measurements introduced these fracture locations as the hardest regions of the Al part of welds. In addition to the Al3Fe and Al5Fe2 intermetallic compounds reported in the literature to form at the interface of dissimilar Al/steel joints, a third layer of AlFe intermetallic compound was also identified adjacent to the steel side of welds. Enhancement of the dwell time from 5 to 15 seconds increased the intermetallic layer thickness from 1.7 to 3 µm and resulted in the formation of harder stirred zone. This consequently increased the strength of the weld.

  15. Effect of Dwell Time on Joint Interface Microstructure and Strength of Dissimilar Friction Stir Spot-Welded Al-5083 and St-12 Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Fereiduni, Eskandar; Movahedi, Mojtaba; Kokabi, Amir Hossein; Najafi, Hossein

    2017-01-01

    Joining of Al-5083 alloy sheet to St-12 steel sheet was performed using a new friction stir spot welding (FSSW) technique in which the tool pin tip did not enter lower steel sheet. Effect of dwell time on the microstructure and mechanical properties of the joints was studied by various methods including microhardness measurements, shear test, stereo and light microscopy as well as scanning and transmission electron microscopy (SEM and TEM). Results indicated that compared to the conventional FSSW process, stronger joints can be achieved by this FSSW technique. Cross-sectional observation of the failed specimens indicated the occurrence of final fracture from the circumference of the tool pin where the Al sheet thickness was decreased as a result of the tool pin penetration. However, microhardness measurements introduced these fracture locations as the hardest regions of the Al part of welds. In addition to the Al3Fe and Al5Fe2 intermetallic compounds reported in the literature to form at the interface of dissimilar Al/steel joints, a third layer of AlFe intermetallic compound was also identified adjacent to the steel side of welds. Enhancement of the dwell time from 5 to 15 seconds increased the intermetallic layer thickness from 1.7 to 3 µm and resulted in the formation of harder stirred zone. This consequently increased the strength of the weld.

  16. Versatile Friction Stir Welding/Friction Plug Welding System

    NASA Technical Reports Server (NTRS)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  17. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  18. Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding

    NASA Astrophysics Data System (ADS)

    Liu, Xin-bo; Qiao, Feng-bin; Guo, Li-jie; Qiu, Xiong-er

    2017-02-01

    Novel hybrid refill friction stir spot welding (RFSSW) assisted with ultrasonic oscillation was introduced to 5A06 aluminum alloy joints. The metallographic structure and mechanical properties of 5A06 aluminum alloy RFSSW joints formed without ultrasonic assistance and with lateral and longitudinal ultrasonic assistance were compared, and the ultrasonic-assisted RFSSW process parameters were optimized. The results show that compared with lateral ultrasonic oscillation, longitudinal ultrasonic oscillation strengthens the horizontal bonding ligament in the joint and has a stronger effect on the joint's shear strength. By contrast, lateral ultrasonic oscillation strengthens the vertical bonding ligament and is more effective in increasing the joint's tensile strength. The maximum shear strength of ultrasonic-assisted RFSSW 5A06 aluminum alloy joints is as high as 8761 N, and the maximum tensile strength is 3679 N when the joints are formed at a tool rotating speed of 2000 r/min, a welding time of 3.5 s, a penetration depth of 0.2 mm, and an axial pressure of 11 kN.

  19. Laser based spot weld characterization

    NASA Astrophysics Data System (ADS)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  20. Forming of aluminium alloy friction stir welds

    NASA Astrophysics Data System (ADS)

    Bruni, Carlo

    2016-10-01

    The present paper aims at investigating, through analytical models, numerical models and experiments, the effect of the warm deformation phase, realised with an in temperature upsetting, on the weld previously performed by friction stir lap welding on aluminium alloy blanks. The investigation allows to show the deformation zones after upsetting that determine the homogenisation of the weld section. The analytical model allows to relate the friction factor with the upsetting load. The presence on the weld of not elevated friction factor values determines the deformation and localisation levels very useful for the weld. Such methodology allows to improve the weld itself with the forming phase.

  1. Certification of a weld produced by friction stir welding

    DOEpatents

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  2. Fundamental Mechanisms Affecting Friction Welding under Vacuum

    DTIC Science & Technology

    1991-06-01

    and interior, is a large problem for arc welding where inert gases replace oxygen inside and spatter can damage surface and cloud optical devices...welded to the surface holding the patch in place. Inside or outside the station, studs can be friction welded to surfaces to attach insulation material...vacuum, surface contamination, material, weld force and weld speed on the integrity of the weld. The vacuum conditions are limited to 10 torr or less

  3. Friction Stir Welding and Processing

    SciTech Connect

    Hovanski, Yuri; Carsley, John; Clarke, Kester D.; Krajewski, Paul E.

    2015-05-01

    With nearly twenty years of international research and collaboration in friction stir welding (FSW) and processing industrial applications have spread into nearly every feasible market. Currently applications exist in aerospace, railway, automotive, personal computers, technology, marine, cutlery, construction, as well as several other markets. Implementation of FSW has demonstrated diverse opportunities ranging from enabling new materials to reducing the production costs of current welding technologies by enabling condensed packaging solutions for traditional fabrication and assembly. TMS has sponsored focused instruction and communication in this technology area for more than fifteen years, with leadership from the Shaping and Forming Committee, which organizes a biannual symposium each odd year at the annual meeting. A focused publication produced from each of these symposia now comprises eight volumes detailing the primary research and development activities in this area over the last two decades. The articles assembled herein focus on both recent developments and technology reviews of several key markets from international experts in this area.

  4. Wiping Metal Transfer in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Much evidence suggests that as the friction stir pin-tool moves along a weld seam the displacement of metal takes place by a wiping action at the surface of a plug of metal that rotates with the tool. The wiping model is explained and some consequences for the friction stir welding process are drawn.

  5. Gimbaled-shoulder friction stir welding tool

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Lawless, Kirby G. (Inventor)

    2010-01-01

    A gimbaled-shoulder friction stir welding tool includes a pin and first and second annular shoulders coupled to the pin. At least one of the annular shoulders is coupled to the pin for gimbaled motion with respect thereto as the tool is rotated by a friction stir welding apparatus.

  6. Spot-Welding Gun Is Easy To Use

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Nguyen, Francis H.

    1991-01-01

    Electrical-resistance spot-welding gun designed to produce more welds per unit time by decreasing technician's effort and fatigue. Vacuum cups on frame secure welding gun to workpiece while compressed air drives welding tip against workpiece to make spot resistance weld. When weld completed, vacuum in frame cups released so frame and gun moved to position of next spot weld.

  7. Friction Stir Welding of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  8. Laser Peening Effects on Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar

    2011-01-01

    Friction Stir Welding (FSW) is a welding technique that uses frictional heating combined with forging pressure to produce high strength bonds. It is attractive for aerospace applications. Although residual stresses in FSW are generally lower when compared to conventional fusion welds, recent work has shown that significant tensile residual stresses can be present in the weld after fabrication. Therefore, laser shock peening was investigated as a means of moderating the tensile residual stresses produced during welding. This slide presentation reviews the effect of Laser Peening on the weld, in tensile strength, strain, surface roughness, microhardness, surface wear/friction, and fatigue crack growth rates. The study concluded that the laser peening process can result in considerable improvement to crack initiaion, propagation and mechanical properties in FSW.

  9. Method and device for frictional welding

    DOEpatents

    Peacock, H.B.

    1991-01-01

    A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel`s recessed bottom. Also, the channel design limits distortion of the two members during the friction welding, process, further contributing to the complete seal that is obtained.

  10. Method and device for frictional welding

    DOEpatents

    Peacock, H.B.

    1992-10-13

    A method is described for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical canister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained. 5 figs.

  11. Method and device for frictional welding

    DOEpatents

    Peacock, Harold B.

    1992-01-01

    A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained.

  12. Recent Developments in Friction Stir Welding of Al-alloys

    NASA Astrophysics Data System (ADS)

    Çam, Gürel; Mistikoglu, Selcuk

    2014-06-01

    The diversity and never-ending desire for a better life standard result in a continuous development of the existing manufacturing technologies. In line with these developments in the existing production technologies the demand for more complex products increases, which also stimulates new approaches in production routes of such products, e.g., novel welding procedures. For instance, the friction stir welding (FSW) technology, developed for joining difficult-to-weld Al-alloys, has been implemented by industry in manufacturing of several products. There are also numerous attempts to apply this method to other materials beyond Al-alloys. However, the process has not yet been implemented by industry for joining these materials with the exception of some limited applications. The microstructures and mechanical properties of friction stir welded Al-alloys existing in the open literature will be discussed in detail in this review. The correlations between weld parameters used during FSW and the microstructures evolved in the weld region and thus mechanical properties of the joints produced will be highlighted. However, the modeling studies, material flow, texture formation and developments in tool design are out of the scope of this work as well as the other variants of this technology, such as friction stir spot welding (FSSW).

  13. Macrostructure of Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Aloor, S.; Nowak, B.; Vargas, R.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This paper will discuss two of the well know large scale features of friction stir welds: the "onion rings" seen in transverse sections, and the striations on the surface of the work piece. It will be shown that the surface features (sometimes called "tool marks") are the result of irregularities on the rotating shoulder of the pin tool and disappear when the shoulder is polished. The "onion ring" structure seen in transverse cross sections is formed by parts of the "carousel", the zone of material adjacent to and rotating with the pin tool, that are shed off in each rotation. The relation between the carousel and the "ring vortex", a rotational flow extending both in and out of the carousel and resembling a smoke-ring with the hole centered on the pin tool, will be discussed.

  14. Arc spot welding technique for underwater use

    SciTech Connect

    Koga, H.; Ide, Y.; Ogawa, Y.

    1995-12-31

    An arc spot welding equipment with special local cavity shroud was developed for underwater salvaging activity. Arc spot welding for lapped plates is an effective method to recover defects. This method in surface is so simple to use widely in the field of railways and chemical plants manufacturing. But there is some problems on the reliability of joint strength and bead shapes. A special arc spot nozzle to improve welding quality was developed. A small outlet of air jet at the bottom of the nozzle was created to maintain the swirl flow of shielding gas and certain rejection of excessive molten metal. This nozzle covers the welding part completely, then it also works as a local cavity shroud under water. This paper describes the design and function of the nozzle for CO{sub 2} arc spot welding system. A programmable controller manages the welding sequence of shielding gas flow, air jet flow, and arcing time. This welding gun is operated manually, but the operation is only to press the gun on the weld point. After that welding will proceed automatically, and arcing time is about three seconds. Whole time for welding which includes pre and post gas flow time is less than ten seconds for surface use, it is required some more additional pre drying process of welding point for underwater use to guarantee the high quality welding results. Fundamental analysis of welding conditions and the effects of air jet were considered.

  15. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  16. The Effect of Friction on Penetration in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Rapp, Steve

    2002-01-01

    "Friction stir butt welding," as it was originally termed by Wayne Thomas and Christopher Dawes, in the early 1990s, but now commonly called "friction stir welding," has made great progress as a new welding technique. Marshall Space Flight Center has been investigating the use of FSW for assembly of the Shuttle's external fuel tank since the late 1990s and hopes to have the process in use by the summer of 2002. In FSW, a cylindrical pin tool of hardened steel, is rotated and plunged into the abutting edges of the parts to be joined. The tool is plunged into the weldment to within about .050 in of the bottom to assure full penetration. As the tool moves along the joint, the tool shoulder helps produce frictional heating, causing the material to plasticize. The metal of the two abutting plates flows from the front of the tool to the back where it cools and coalesces to form a weld in the solid phase. One quarter inch thick plates of aluminum alloy 2219 were used in this study. Two samples, each consisting of two 4 in x 12 in plates, were friction stir welded. The anvil for one sample was coated with molybdenum sulfide, while for the other sample a sheet of roughened stainless steel was placed between the anvil and the sample. The retractable pin tool was used so that the depth of the pin tool penetration could be varied. As welding proceeded, the length of the pin tool was gradually increased from the starting point. The purpose of this investigation is to find out at what point, in the down ramp, penetration occurs. Differences in root structure of the friction stir weld due to differences in anvil friction will be observed. These observations will be analyzed using friction stir weld theory.

  17. Friction stir welding tool and process for welding dissimilar materials

    DOEpatents

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  18. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  19. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann; Burkholder, Jonathon

    2011-01-01

    NASA fs Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for External Tank. FPPW was easily selected as the primary process used to close out the termination hole on the Constellation Program fs ARES I Upper Stage circumferential Self ] Reacting Friction Stir Welds (SR ]FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR ]FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process fs limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  20. Microstructural Evolution in Friction Stir Welding of Ti-5111

    DTIC Science & Technology

    2010-08-01

    industry for aluminum alloys. FSW of steels is under continued development. 1.1.3.1 Friction Stir Welding of Metals Since the development of...or friction welding [Titanium handbook]. A potential welding technique for titanium that has shown promise for joining aluminum and steel is...combatants, this research examines an alternative joining technology, friction stir welding ( FSW ). Friction stir welding uses a non-consumable tool to

  1. A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding

    NASA Astrophysics Data System (ADS)

    Rao, Harish Mangebettu

    The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack

  2. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  3. Gimballed Shoulders for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Lawless, Kirby

    2008-01-01

    In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.

  4. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  5. Nondestructive Ultrasonic Inspection of Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    Tabatabaeipour, M.; Hettler, J.; Delrue, S.; Van Den Abeele, K.

    Friction Stir Welding (FSW) is a relatively new solid-state welding procedure developed at The Welding Institute (TWI-UK) and the technique is widely employed for welding aluminum alloys in various applications. In order to examine the quality of the welds and to detect a variety of welding flaws such as wormholes and root-flaws, it is required to develop a methodical inspection technique that can be used for the identification and localization of such defects. The most prevalent and risky defect in this type of welding is the barely visible root flaw with a length varying from 100-700 μm. Due to the extreme characteristics of the flaw, off-the-shelf ultrasonic weld inspection methods are not always able to readily detect this type of minute defect feature. Here, we propose a novel approach to characterize root flaws using an oblique incident ultrasonic C-scan backscattering analysis. The implementation consists of an immersion ultrasonic testing method in pulse echo (i.e. backscatter) mode with a 3.5 MHz transducer, and makes use of an empirical procedure to engender of a shear wave dominated excitation at the root surface, and to properly gate the received signal for root flaw examination. By scanning the surface above the welded component, a C-scan image displaying the backscatter response from the root surface of the nugget zone can be obtained which allows a simple interpretation of the root flaw status of the weld.

  6. Tool For Friction Stir Tack Welding of Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  7. Damage Tolerance Assessment of Friction Pull Plug Welds

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  8. Nuclear Fuel Plate Fabrication Employing Friction Welding

    SciTech Connect

    Douglas E. Burkes; Neil P. Hallinan; Curtis R. Clark

    2008-09-01

    This paper provides an overview of the friction bonding process, a novel modification of the more conventional friction stir welding process. The process has been modified to enable the fabrication of plate-type nuclear fuels for the conversion of research and test reactors currently operating using highly enriched uranium to low-enriched uranium. Discussions related to the specific modifications of the friction bonding process have been provided, in addition to challenges associated with these modifications. Progression of the process and solutions to the challenges are provided so that users of the friction stir welding process and those investigating fabrication of other laminar composites, where joining of one or more layers is essential, might draw from the authors’ experiences discussed in this paper.

  9. Tool Forces Developed During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Melendez, M.; Tang, W.; Schmidt, C.; McClure, J. C.; Nunes, A. C.; Murr, L. E.

    2003-01-01

    This paper will describe a technique for measuring the various forces and the torque that exist on the Friction Stir Welding pin tool. Results for various plunge depths, weld speeds, rotational speed, and tool configurations will be presented. Welds made on 6061 aluminum with typical welding conditions require a downward force of 2800 lbs. (12.5 kN) a longitudinal force in the direction of motion of 300 lbs (1.33 kN), a transverse force in the omega x v direction of 30 lbs (135 N). Aluminum 2195 under typical weld conditions requires a downward force of 3100 lbs. (1.38 kN), a longitudinal force of 920 lbs. (4.1 kN), and a transverse force of 45 lbs. (200 N) in the omega x v direction.

  10. Spot-Welding Gun With Pivoting Twin-Collet Assembly

    NASA Technical Reports Server (NTRS)

    Nguyen, Francis; Simpson, Gareth; Hoult, William S.

    1996-01-01

    Modified spot-welding gun includes pivoting twin-collet assembly that holds two spot-welding electrodes. Designed to weld highly conductive (30 percent gold) brazing-alloy foils to thin nickel alloy workpieces; also suitable for other spot-welding applications compatible with two-electrode configuration.

  11. Automated Spot Weld Inspection using Infrared Thermography

    SciTech Connect

    Chen, Jian; Zhang, Wei; Yu, Zhenzhen; Feng, Zhili

    2012-01-01

    An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

  12. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  13. Microstructure analysis in friction welding of copper and aluminum

    NASA Astrophysics Data System (ADS)

    Wibowo, A. G. Wahyu; Ismail, Rifky; Jamari, J.

    2016-04-01

    The Friction welding is a welding method with utilizing heat generated due to friction. Surfaces of two materials to be joined, one rotates the other being idle, is contacted by a pressure force. Friction on the second contact surface is done continuously so that the heat generated by the continuous friction will continue to rise. With the heat and the pressure force on the second surface to the second meeting of the material reaches its melting temperature then there is the process of welding. This paper examines the influence of the pressure force, rotational speed and contact time on friction welding of Aluminum (Al) and Copper (Cu) to the quality of welded joints. Friction welding process is performed on a friction welding machine that is equipped with the loading mechanism. The parameters used are the pressure force, rotational speed and friction time. Determination of the quality of welding is done by testing the tensile strength, hardness, and micro structure on the weld joint areas. The results showed that the friction welding quality is very good, this is evidenced by the results of a tensile strength test where the fault occurs outside the weld joint and increased violence in the weld joint. On the results visually cuts the welding area did not reveal any porosity so that it can be concluded that each metal contacts have melted perfectly and produce a connection with good quality.

  14. Guidelines for Friction Stir Welding

    DTIC Science & Technology

    2011-03-29

    19207-12479550 Rev. A, and AWS welding specifications provided by the COR 30 DAC for steel and aluminum and prepare draft guidelines, to be submitted...19207-12479550 Rev. A, and AWS welding specifications provided by the COR 30 DAC for steel and aluminum and prepare draft guidelines, to be...industrial standards (AWS and NASA) for FSW are specifically for aluminum alloys applied to aerospace applications. The third (ISO) does not specify

  15. Optimization of resistance spot welding parameters for microalloyed steel sheets

    NASA Astrophysics Data System (ADS)

    Viňáš, Ján; Kaščák, Ľuboš; Greš, Miroslav

    2016-11-01

    The paper presents the results of resistance spot welding of hot-dip galvanized microalloyed steel sheets used in car body production. The spot welds were made with various welding currents and welding time values, but with a constant pressing force of welding electrodes. The welding current and welding time are the dominant characteristics in spot welding that affect the quality of spot welds, as well as their dimensions and load-bearing capacity. The load-bearing capacity of welded joints was evaluated by tensile test according to STN 05 1122 standard and dimensions and inner defects were evaluated by metallographic analysis by light optical microscope. Thewelding parameters of investigated microalloyed steel sheets were optimized for resistance spot welding on the pneumatic welding machine BPK 20.

  16. Frictional properties of jointed welded tuff

    SciTech Connect

    Teufel, L.W.

    1981-07-01

    The results of the experiments on simulated joints in welded tuff from the Grouse Canyon Member of the Belted Range Tuff warrant the following conclusions: (1) The coefficient of friction of the joints is independent of normal stress at a given sliding velocity. (2) The coefficient of friction increases with both increasing time of stationary contact and decreasing sliding velocity. (3) Time and velocity dependence of friction is due to an increase in the real area of contact on the sliding surface, caused by asperity creep. (4) Joints in water-saturated tuff show a greater time and velocity dependence of friction than those in dehydrated tuff. (5) The enhanced time and velocity dependence of friction with water saturation is a result of increased creep at asperity contacts, which is in turn due to a reduction in the surface indentation hardness by hydrolytic weakening and/or stress corrosion cracking.

  17. Flow Patterns During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Guerra, M.; Schmidt, C.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Friction Stir Welding is a relatively new technique for welding that uses a cylindrical pin or nib inserted along the weld seam. The nib (usually threaded) and the shoulder in which it is mounted are rapidly rotated and advanced along the seam. Extreme deformation takes place leaving a fine equiaxed structure in the weld region., The flow of metal during Friction Stir Welding is investigated using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported by two processes. The first is a wiping of material from the advancing front side of the nib onto a zone of material that rotates and advances with the nib. The material undergoes a helical motion within the rotational zone that both rotates and advances and descends in the wash of the threads on the nib and rises on the outer part of the rotational zone. After one or more rotations, this material is sloughed off in its wake of the nib, primarily on the advancing side. The second process is an entrainment of material from the front retreating side of the nib that fills in between the sloughed off pieces from the advancing side.

  18. Friction Buttering: A New Technique for Dissimilar Welding

    NASA Astrophysics Data System (ADS)

    Karthik, G. M.; Mastanaiah, P.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-02-01

    This work offers a fresh perspective on buttering, a technique often considered for fusion welding of dissimilar metals. For the first time, buttering was attempted in solid state using friction deposition. Using this new "friction buttering" technique, fusion welding of two different dissimilar metal pairs (austenitic stainless steel/borated stainless steel and Al-Cu-Mg/Al-Zn-Mg-Cu) was successfully demonstrated. The results show that friction buttering can simplify a tough dissimilar welding problem into a routine fusion welding task.

  19. Metal Flow in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2006-01-01

    The plastic deformation field in Friction Stir Welding (FSW) is compared to that in metal cutting. A shear surface around the FSW tool analogous to the metal cutting shear plane is identified and comprises the basis of the "rotating plug" flow field model and the "wiping" model of tool interaction with weld metal. Within the context of these models: The FSW shear rate is estimated to be comparable to metal cutting shear rates. The effect of tool geometry on the FSW shear surface is discussed and related to published torque measurements. Various FS W structural features are explained, including a difference in structure of bimetallic welds when alloys on the advancing and retreating sides of the weld seam are exchanged. The joining mechanism and critical parameters of the FSW process are made clear.

  20. A Brief Introduction to the Theory of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and is already an important welding process for the aerospace industry, where welds of optimal quality are demanded. The structure of welds determines weld properties. The structure of friction stir welds is determined by the flow field in the weld metal in the vicinity of the weld tool. A simple kinematic model of the FSW flow field developed at Marshall Space Flight Center, which enables the basic features of FSW microstructure to be understood and related to weld process parameters and tool design, is explained.

  1. The Plunge Phase of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur; McClure, John; Avila, Ricardo

    2005-01-01

    Torque and plunge force during the initial plunge phase in Friction Stir Welding were measured for a 0.5 inch diameter pin entering a 2219 aluminum alloy plate. Weld structures were preserved for metallographic observation by making emergency stops at various plunge depths. The plunging pin tool is seen to be surrounded by a very fine grained layer of recrystallized metal extending substantially below the bottom of the pin, implying a shear interface in the metal below and not at the tool-metal interface. Torque and plunge force during the initial plunge phase in Friction Stir Welding are calculated from a straight forward model based on a concept to plastic flow in the vicinity of the plunging tool compatible with structural observations. The concept: a disk of weld metal seized to and rotating with the bottom of the pin is squeezed out laterally by the plunge force and extruded upwards in a hollow cylinder around the tool. As the shear surface separating rotating disk from stationary weld metal engulfs fresh metal, the fresh metal is subjected to severe shear deformation, which results in its recrystallization. Encouraging agreement between computations and measured torque and plunge force is obtained.

  2. In-process discontinuity detection during friction stir welding

    NASA Astrophysics Data System (ADS)

    Shrivastava, Amber

    The objective of this work is to develop a method for detecting the creation of discontinuities (e.g., voids) during friction stir welding. Friction stir welding is inherently cost-effective, however, the need for significant weld inspection can make the process cost-prohibitive. A new approach to weld inspection is required -- where an in-situ characterization of weld quality can be obtained, reducing the need for post-process inspection. Friction stir welds with discontinuity and without discontinuity were created. In this work, discontinuities are generated by reducing the friction stir tool rotation frequency and increasing the tool traverse speed in order to create "colder" welds. During the welds, forces are measured. Discontinuity sizes for welds are measured by computerized tomography. The relationship between the force transients and the discontinuity sizes indicate that the force measurement during friction stir welding can be effectively used for detecting discontinuities in friction stir welds. The normalized force transient data and normalized discontinuity size are correlated to develop a criterion for discontinuity detection. Additional welds are performed to validate the discontinuity detection method. The discontinuity sizes estimated by the force measurement based method are in good agreement with the discontinuity sizes measured by computerized tomography. These results show that the force measurement based discontinuity detection model method can be effectively used to detect discontinuities during friction stir welding.

  3. The simple spot-welding apparatus

    NASA Astrophysics Data System (ADS)

    Hiraoka, Takeshi

    1998-07-01

    A simple spot-welding apparatus has been developed for the fabrication of stable electrodes used in the measurement of transport properties in condensed matter physics. The apparatus is especially suited for the use of brittle and small sized samples of rare-earth intermetallic compounds (REICs). The spot welding is made by a sharp pulse (150 A and several μs), generated by the precise time generation IC in a capacitor discharge circuit, to avoid breaking the sample. Stable electrodes of six 15 μ Au wires can be made on a REIC sample with length less than 1 mm.

  4. Resistance spot welding of dispersion-strengthened nickel alloys

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1973-01-01

    To develop easily-applied production method for resistance spot welding use unrecrystallized sheet material, develop welding schedule that will produce a solid-state spot weld without recrystallizing sheet, and postheat to produce grain growth across weld line during recrystallization of sheet material.

  5. Application of friction welding in petroleum and chemical engineering

    SciTech Connect

    Dzhabarov, R.D.; Fataliev, N.S.; Tkachev, Yu.A.; Timofeev, V.I.; Abdullaev, V.G.

    1995-05-01

    Welding, as a technological process, is widely practiced in modern engineering. Resistance or arc welding is most common, but these techniques are increasingly giving way to friction welding which has several advantages, namely higher labor productivity and better quality, possibility of joining diverse and poorly weldable metals and alloys, dispensing with high-grade welding materials and highly skilled welders, ecological cleanness of the process, etc. The major criterion of efficient application of friction welding is its use in large-scale manufacture of a specific equipment, whereupon the cost of the machine is recovered in a short period. That is why friction welding with creation and fabrication of specific machines was adopted by the petroleum machinery manufacture (manufacture of geological prospecting and drill pipes, pump rods of the welded design, and gate valves of high-pressure Christmas trees). By applying friction welding for the manufacture of geological prospecting and drill pipes in place of resistance butt welding, accidents during drilling due to failure of the welded joints were prevented totally. Application of friction welding for making pump rods of the welded design (with welded nipples and heads) made it possible to save costly high-strength and corrosion-resistance alloy steel to the extent of 90%. Use of friction welding in the manufacture of high-pressure gate valves with welded flanges simplifies the valve-making technology and improves the reliability of the welded joints, even at temperatures as low as -60{degrees}C. In particular, cast gate valve bodies with friction-welded side flanges were tested before their breakdown. The welded joints of the branch pipes, even though they were sharpened to reduce wall thickness, did not fail, which shows high reliability of the gate valve bodies of the welded design.

  6. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  7. Initial Study of Friction Pull Plug Welding

    NASA Technical Reports Server (NTRS)

    Rich, Brian S.

    1999-01-01

    Pull plug friction welding is a new process being developed to conveniently eliminate defects from welded plate tank structures. The general idea is to drill a hole of precise, optimized dimensions and weld a plug into it, filling the hole perfectly. A conically-shaped plug is rotated at high angular velocity as it is brought into contact with the plate material in the hole. As the plug is pulled into the hole, friction rapidly raises the temperature to the point at which the plate material flows plastically. After a brief heating phase, the plug rotation is terminated. The plug is then pulled upon with a forging force, solidly welding the plug into the hole in the plate. Three aspects of this process were addressed in this study. The transient temperature distribution was analyzed based on slightly idealized boundary conditions for different plug geometries. Variations in hole geometry and ram speed were considered, and a program was created to calculate volumes of displaced material and empty space, as well as many other relevant dimensions. The relation between the axially applied forging force and the actual forging pressure between the plate and plug surfaces was determined for various configurations.

  8. Spot Welding With Nd Lasers

    NASA Astrophysics Data System (ADS)

    Nonhof, C. J.; Notenboom, G. J. A. M.

    1986-07-01

    The Nd laser has proved almost perfect for metal working and has been used to great advantage in the Philips Company. Experience over seven years shows increasing complexity in beam handling and the use of increasing higher powered lasers. Because of thermal lensing of the laser rod as a function of output power beam parameters as divergence angle and beam waist are seen to vary with output power. Above - 100 W one has to give due attention to this phenomenon and one has to use the proper laser resonator and focusing optics. In order to obtain the maximum benifit from laser welding one has to design products for this joining technique. Both weld geometry and the proper alloys should be chosen for reliable welding.

  9. Corrosion Behavior of Friction Stir Welded High Strength Aluminum Alloys

    DTIC Science & Technology

    2002-01-18

    Angelo Guinasso, " Stress Corrosion Susceptibility in 7050 -T751 Aluminum Following Friction Stir Welding", Proc. First Friction Stir Welding Symposium...potential of the nugget. Susceptibility to stress corrosion cracking (SCC) was evaluated using the slow strain rate (SSR) method described in ASTM Standards...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP015941 TITLE: Corrosion Behavior of Friction Stir Welded High Strength

  10. Mechanistic Models of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Stewart, Michael B.

    1998-01-01

    Friction stir welding is a welding process developed at The Welding Institute (TWI) in England. The method uses very large strain plastic deformation of the material to join two pieces of metal together. The material is deformed using a tool which is forced between the two pieces which rotates causing a bond. Beyond this, very little is actually known although many people working in the field are willing to speculate on the detailed mechanisms involved. Some measurements made using sacrificial thermocouples at the weld joint indicate that the maximum temperature during the weld process is on the order of 370C - well below the melting temperature of the material. However, at this temperature, the material properties are highly temperature dependent, and the yield stress is approximately an order of magnitude less at this temperature than it is at room temperature. As expected, there are many interpretations of the physical mechanisms occurring during the weld process. Although there is very little published concerned with FSW, some of the anecdotal theories will be described. One describes the primary mechanism as frictional heating at the front of the tool caused by slip between the tool and the material. At elevated temperatures, the weld material becomes soft and deforms around the tool but not essentially altered by the tool rotation, similar to an extrusion. As the material meets again at the rear of the tool, the temperatures and pressures are sufficient to cause the material to bond. All other structures seen are secondary and unimportant. Another theory examined last summer at NASA's Marshall Space Flight Center (MSFC) was that there was no slip between the tool and the material resulting in a rotating mass of plastic weld material traveling at a variety of angular velocities - the greatest at the tool surface diminishing to zero at the outer edge of the plastic mass surrounding the tool. This conceptual model was followed by simplified calculations which

  11. Infrared thermography for monitoring heat generation in a linear friction welding process of Ti6Al4V alloy

    NASA Astrophysics Data System (ADS)

    Maio, L.; Liberini, M.; Campanella, D.; Astarita, A.; Esposito, S.; Boccardi, S.; Meola, C.

    2017-03-01

    The increasing use of titanium alloys in a wider range of applications requires the development of new techniques and processes capable to decrease production costs and manufacturing times. In this regard welding and other joining techniques play an important role. Today, solid state friction joining processes, such as friction stir welding, friction spot welding, inertia friction welding, continuous-drive friction welding and linear friction welding (LFW), represent promising methods for part manufacturing. They allow for joining at temperature essentially below the melting point of the base materials being joined, without the addition of filler metal. However, the knowledge of temperature is essential to understand and model the phenomena involved in metal welding. A global measured value represents only a clue of the heat generation during the process; while, a deep understanding of welding thermal aspects requires temperature field measurement. This paper is focused on the use of infrared thermography applied to the linear friction welding process of Ti6Al4V alloy. The attention is concentrated on thermal field that develops on the outer wall of the two parts to be joined (i.e. heat generated in the friction zone), and on the maximum temperature that characterizes the process before and after the flash formation.

  12. Friction Stir Welding at MSFC: Kinematics

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2001-01-01

    In 1991 The Welding Institute of the United Kingdom patented the Friction Stir Welding (FSW) process. In FSW a rotating pin-tool is inserted into a weld seam and literally stirs the faying surfaces together as it moves up the seam. By April 2000 the American Welding Society International Welding and Fabricating Exposition featured several exhibits of commercial FSW processes and the 81st Annual Convention devoted a technical session to the process. The FSW process is of interest to Marshall Space Flight Center (MSFC) as a means of avoiding hot-cracking problems presented by the 2195 aluminum-lithium alloy, which is the primary constituent of the Lightweight Space Shuttle External Tank. The process has been under development at MSFC for External Tank applications since the early 1990's. Early development of the FSW process proceeded by cut-and-try empirical methods. A substantial and complex body of data resulted. A theoretical model was wanted to deal with the complexity and reduce the data to concepts serviceable for process diagnostics, optimization, parameter selection, etc. A first step in understanding the FSW process is to determine the kinematics, i.e., the flow field in the metal in the vicinity of the pin-tool. Given the kinematics, the dynamics, i.e., the forces, can be targeted. Given a completed model of the FSW process, attempts at rational design of tools and selection of process parameters can be made.

  13. Effect of friction stir welding parameters on defect formation

    NASA Astrophysics Data System (ADS)

    Tarasov, S. Yu.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.; Filippov, A. V.; Ivanov, A. N.

    2015-10-01

    Friction stir welding is a perspective method for manufacturing automotive parts, aviation and space technology. One of the major problems is the formation of welding defects and weld around the welding zone. The formation of defect is the main reason failure of the joint. A possible way to obtain defect-free welded joints is the selection of the correct welding parameters. Experimental results describing the effect of friction stir welding process parameters on the defects of welded joints on aluminum alloy AMg5M have been shown. The weld joint defects have been characterized using the non-destructive radioscopic and ultrasound phase array methods. It was shown how the type and size of defects determine the welded joint strength.

  14. FRICTION-STIR-LAP-WELDS OF AA6111 ALUMINUM ALLOY

    SciTech Connect

    Yadava, Manasij; Mishra, Rajiv S.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.

    2007-01-09

    Lap joints of 1 mm thick AA6111 aluminum sheets were made by friction stir welding, using robotic and conventional machines. Welds were made for advancing as well as retreating side loading. Thinning in welds was quantified. Lap shear test of welds was conducted in as-welded and paint-baked conditions. Conventional machine welds showed less thinning and better strength than robotic machine welds. Process forces in conventional machine welding were higher. Paint bake treatment improved the weld strength; but the improvement varied with process parameters. Advancing side loaded welds achieved higher strength than the retreating side loaded welds. Fracture location was found to occur on the loaded side of the weld and along the thinning defect.

  15. Friction Stir Weld Modeling at MSFC: Kinematics

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2000-01-01

    A "merry-go-round" computation model makes it easier to visualize how tracer experiments of varied sorts (chemical, shot, wire) are consistent with a "moving plug model" of flow around the friction stir welding pin-tool. The moving plug model comprises a twofold flow: 1. a primary rotation of a plug of metal with the tool, which moves metal around the tool by wiping it on and off the plug, and 2. a secondary, relatively slow circulation induced by the threads on the tool resembling a circular vortex ring around the tool.

  16. Process Model for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Adams, Glynn

    1996-01-01

    Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the

  17. Seam-Tracking for Friction Stir Welded Lap Joints

    NASA Astrophysics Data System (ADS)

    Fleming, Paul A.; Hendricks, Christopher E.; Cook, George E.; Wilkes, D. M.; Strauss, Alvin M.; Lammlein, David H.

    2010-11-01

    This article presents a method for automatic seam-tracking in friction stir welding (FSW) of lap joints. In this method, tracking is accomplished by weaving the FSW tool back-and-forth perpendicular to the direction of travel during welding and monitoring force and torque signals. Research demonstrates the ability of this method to automatically track weld seam positions. Additionally, tensile and S-bend test result comparisons demonstrate that weaving most likely does not reduce weld quality. Finally, benefits of this weave-based method to FSW of lap joints are discussed and methods for incorporating it into existing friction stir welding control algorithms (such as axial load control) are examined.

  18. Friction Stir Welding of Aluminum and Titanium Alloys

    DTIC Science & Technology

    2007-11-02

    What is this? Jata/US Air Force Typical FSW Tools W-Re tool in collet- style tool holder. Used for welding steels and Ti alloys 3-piece self...Friction Stir Welding of Aluminum and Titanium alloys NATO Advanced Research Workshop Metallic Materials with High Structural Efficiency Kyiv...valid OMB control number. 1. REPORT DATE 18 MAR 2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Friction Stir Welding of Aluminum

  19. Spot-Welding Gun With Adjustable Pneumatic Spring

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1990-01-01

    Proposed spot-welding gun equipped with pneumatic spring, which could be bellows or piston and cylinder, exerts force independent of position along stroke. Applies accurate controlled force to joint welded, without precise positioning at critical position within stroke.

  20. Material Flow During Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Guerra, M.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The flow of metal during Friction Stir Welding is clarified using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported in two distinct streams or currents. One stream is a wiping of material from the advancing front side of the nib onto a plug of material that rotates and advances with the nib. The material undergoes a helical motion within the plug that both rotates and advances with the plug and descends in the wash of the threads on the nib and rises on the outer part of the plug. After one or more rotations, this material is sloughed off the plug in the wake of the tool primarily on the advancing side. The second stream of material is an entrainment of material from the retreating side of the nib that fills in between the sloughed off pieces from the advancing side. These two processes produce material with different mechanical properties and the strength of a weld should depend on the relative importance of the processes.

  1. The Plunge Phase of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    McClure, John C.

    2005-01-01

    The many advantages of Friction Stir Welding have led to a relatively rapid acceptance in the often conservative welding community. Because the process is so different from traditional fusion welding, with which most investigators are most familiar, there remain many aspects of FSW for which there is no clear consensus. For example, the well known onion rings seen in transverse sections have been variously interpreted as grain size variations, variation in density of second phase particles and parts of the carousel of material rotating with the pin that have been shed from the carousel. Using Orientation Imaging Microscopy, Schneider has recently noted that the onion rings have a different orientation (and hence etch differently) than the surrounding material, and this orientation is consistent with slip plane orientations at the edge of the carousel. Likewise, the forces and torque exerted by the FSW tool on the work piece largely remain unaccounted for. Although these forces are routinely measured by investigators with commercial instrumented welders, they are rarely reported or even qualitatively analyzed. This paper will introduce a model based on a carousel or disk of material that rotates with the tool to estimate the torque and plunge force required to plunge a tool into the work piece. A stationary tool is modeled rather than the moving tool because effects such as thermal transients and metallurgical changes in the sample (primarily aging in aluminum) can be more easily accounted for. It is believed, however, that with some modifications the model should be applicable to a moving tool also.

  2. Metal Flow During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Guerra, M.; Schmidt, C.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The flow of metal during Friction Stir Welding is clarified using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported by two processes. The first is a wiping of material from the advancing front side of the nib onto a plug of material that rotates and advances with the nib. The material undergoes a helical motion within the plug that both rotates and advances with the plug and descends in the wash of the threads on the nib and rises on the outer part of the plug. After one or more rotations, this material is sloughed off the plug in its wake, primarily on the advancing side. The second process is an entrainment of material from the front retreating side of the nib that fills in between the sloughed off pieces from the advancing side. These two processes produce material with different mechanical properties and the strength of a weld should depend on the relative importance of the processes.

  3. Effect of weld schedule variation on the weldability and durability of AHSS spot weld joints

    NASA Astrophysics Data System (ADS)

    Weishaupt, Eric Raymond

    Tensile strength testing and high cycle fatigue testing of advanced high strength steel spot welded shear lap joints were performed for the various weld conditions. The materials used in this study were DP 980, DP 780 and TRIP 780. The microstructure and microhardness of the shear lap joints were examined in an effort to identify the effect of microstructural changes on the strength and fatigue durability of the spot weld specimens. The occurrence of interfacial failure was recorded for the differing weld processes. Several weld schedules were examined and used to produce shear lap spot weld joints, specifically varying the squeeze force and the average current. The weld force used to produce a spot weld does not have a significant effect on the fracture mode of the specimen given the average current is constant. The average current used to produce a spot weld has a significant effect on the fracture mode of the spot weld for several squeeze forces. Interfacial failure of spot welded TRIP 780 can be mitigated using a certain range of currents when welding. This appears to come as a tradeoff for sacrificing the strength of the joint. Higher values of weld strength were obtainable; however, welds that failed with higher strengths also experienced interfacial failure. A fracture mechanics approach to estimating the high cycle fatigue life of the shear lap specimen is also proposed and represents a conservative estimate of the shear lap specimen durability.

  4. Metallography of Battery Resistance Spot Welds

    NASA Technical Reports Server (NTRS)

    Martinez, J. E.; Johannes, L. B.; Gonzalez, D.; Yayathi, S.; Figuered, J. M.; Darcy, E. C.; Bilc, Z. M.

    2015-01-01

    Li-ion cells provide an energy dense solution for systems that require rechargeable electrical power. However, these cells can undergo thermal runaway, the point at which the cell becomes thermally unstable and results in hot gas, flame, electrolyte leakage, and in some cases explosion. The heat and fire associated with this type of event is generally violent and can subsequently cause damage to the surrounding system or present a dangerous risk to the personnel nearby. The space flight environment is especially sensitive to risks particularly when it involves potential for fire within the habitable volume of the International Space Station (ISS). In larger battery packs such as Robonaut 2 (R2), numerous Li-ion cells are placed in parallel-series configurations to obtain the required stack voltage and desired run-time or to meet specific power requirements. This raises a second and less obvious concern for batteries that undergo certification for space flight use: the joining quality at the resistance spot weld of battery cells to component wires/leads and battery tabs, bus bars or other electronic components and assemblies. Resistance spot welds undergo materials evaluation, visual inspection, conductivity (resistivity) testing, destructive peel testing, and metallurgical examination in accordance with applicable NASA Process Specifications. Welded components are cross-sectioned to ensure they are free of cracks or voids open to any exterior surface. Pore and voids contained within the weld zone but not open to an exterior surface, and are not determined to have sharp notch like characteristics, shall be acceptable. Depending on requirements, some battery cells are constructed of aluminum canisters while others are constructed of steel. Process specific weld schedules must be developed and certified for each possible joining combination. The aluminum canisters' positive terminals were particularly difficult to weld due to a bi-metal strip that comes ultrasonically

  5. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2001-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  6. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  7. Friction Stir Welding of Curved Plates

    NASA Technical Reports Server (NTRS)

    Sanchez, Nestor

    1999-01-01

    Friction stir welding (FSW) is a remarkable technology for making butt and lap joints in aluminum alloys. The process operates by passing a rotating tool between two closely butted plates. This process generates heat and the heated material is stirred from both sides of the plates to generate a high quality weld. Application of this technique has a very broad field for NASA. In particular, NASA is interested in using this welding process to manufacture tanks and curved elements. Therefore, this research has been oriented to the study the FSW of curved plates. The study has covered a number of topics that are important in the model development and to uncover the physical process involve in the welding itself. The materials used for the experimental welds were as close to each other as we could possibly find, aluminum 5454-0 and 5456-0 with properties listed at http://matweb.com. The application of FSW to curved plates needs to consider the behavior that we observed in this study. There is going to be larger force in the normal direction (Fz) as the curvature of the plate increases. A particular model needs to be derived for each material and thickness. A more complete study should also include parameters such as spin rate, tool velocity, and power used. The force in the direction of motion (Fx) needs to be reconsidered to make sure of its variability with respect to other parameters such as velocity, thickness, etc. It seems like the curvature does not play a role in this case. Variations in temperature were found with respect to the curvature. However, these changes seem to be smaller than the effect on Fz. The temperatures were all below the melting point. We understand now that the process of FSW produces a three dimensional flow of material that takes place during the weld. This flow needs to be study in a more detailed way to see in which directions the flow of material is stronger. It could be possible to model the flow using a 2-dimensional model in the

  8. Mechanism for Self-Reacted Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Bucher, Joseph

    2004-01-01

    A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.

  9. 2195 Aluminum-Copper-Lithium Friction Plug Welding Development

    NASA Technical Reports Server (NTRS)

    Takeshita, Rike P.; Hartley, Paula J.; Baker, Kent S.

    1997-01-01

    Technology developments and applications of friction plug welding is presented. This friction repair welding technology is being studied for implementation on the Space Transportation System's Super Light Weight External Tank. Single plug repairs will be used on a vast majority of weld defects, however, linear defects of up to several inches can be repaired by overlapping plug welds. Methods and results of tensile, bend, simulated service, surface crack tension and other tests at room and cryogenic temperatures is discussed. Attempts to implement Friction Plug Welding has led to both tool and process changes in an attempt to minimize expansive tooling and lengthy implementation times. Process control equipment and data storage methods intended for large scale production will also be addressed. Benefits include increased strength and toughness, decreased weld repair time, automated and highly reliable process, and a lower probability of having to re-repair defect locations.

  10. Friction stir welding process to repair voids in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  11. Low-temperature friction-stir welding of 2024 aluminum

    SciTech Connect

    Benavides, S.; Li, Y.; Murr, L.E.; Brown, D.; McClure, J.C.

    1999-09-10

    Solid-state, friction-stir welding (FSW) has been demonstrated to involve dynamic recrystallization producing ultra-fine, equiaxed grain structures to facilitate superplastic deformation as the welding or joining mechanism. Since the recrystallization temperature also decreases with increasing strain rate, the FSW process is somewhat complicated because the ambient temperature, the frictional heating fraction, and the adiabatic heating fraction (proportional to the product of strain and strain-rate) will all influence both the recrystallization and grain growth within the FSW zone. Significantly reducing the ambient temperature of the base metal or work pieces to be welded would be expected to reduce the residual weld-zone grain size. The practical consequences of this temperature reduction would be the achievement of low-temperature welding. This study compares the residual grain sizes and microstructures in 2024 Al friction-stir welded at room temperature ({approximately} 30 C) and low temperature ({minus} 30 C).

  12. Flow Trajectories in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1999-01-01

    In the Friction Stir Welding (FSW) process, a rotating, shouldered tool with a threaded pin is inserted under pressure along the seam of two pieces of metal which are tightly clamped together, and secured against a rigid anvil underneath. The rotating pin travels along the seam and through a combination of pressure and friction heating produces a zone of plastic deformation around the pin within the workpiece on either side of the seam. As the pin is moved in the direction of welding, the plasticised material moves around the tool and bonds together behind it. The elements of the material flow behavior are a combination of three elements. There is a rotational transport of material being carried around the tool, extrusion of material being forced around the pin on both sides into the cavity created behind it, and a lifting and dropping of material as it is stirred and mixed by the rotating action of the pin. It was assumed that rotational motion of the plastic zone is the primary mechanism for transport of material around the welding tool. A kinematic mathematical model was used to compute trajectories of material movement for various distributions of rotational slip within the plastic zone. These trajectories were then compared with the results of an experiment that produced radiographs of markers embedded in a workpiece that was welded with the FSW process. It was assumed that the copper wire markers retained their original length as the aluminum material flowed around them. The kinematic model included a constraint so that the displacements were such that the total length of the wire markers did not increase after deformation. There was good agreement between the calculated trajectories for the case of localized slip at the outer surface of the plastic deformation zone and the radiographs of the copper wire markers. The trajectories differed markedly from the radiograph traces when a distributed slip zone was assumed. It was concluded that the flow field could

  13. Friction pull plug welding: dual chamfered plate hole

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2001-01-01

    Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Early attempts with FPPW followed the matching plug/plate geometry precedence of the successful Friction Push Plug Welding program, however no defect free welds were achieved due to substantial plug necking and plug rotational stalling. The dual chamfered hole has eliminated plug rotational stalling, both upon initial plug/plate contact and during welding. Also, the necking of the heated plug metal under a tensile heating/forging load has been eliminated through the usage of the dual chamfered plate hole.

  14. Inspecting Friction Stir Welding using Electromagnetic Probes

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.

    2004-01-01

    A report describes the use of advanced electromagnetic probes to measure the dimensions, the spatial distribution of electrical conductivity, and related other properties of friction stir welds (FSWs) between parts made of the same or different aluminum alloy(s). The probes are of the type described in in another Tech Brief. To recapitulate: A probe of this type is essentially an eddy-current probe that includes a primary (driver) winding that meanders and multiple secondary (sensing) windings that meander along the primary winding. Electrical conductivity is commonly used as a measure of heat treatment and tempering of aluminum alloys, but prior to the development of these probes, the inadequate sensitivity and limited accuracy of electrical-conductivity probes precluded such use on FSWs between different aluminum alloys, and the resolution of those probes was inadequate for measurement of FSW dimensions with positions and metallurgical properties. In contrast, the present probes afford adequate accuracy and spatial resolution for the purposes of measuring the dimensions of FSW welds and correlating spatially varying electrical conductivities with metallurgical properties, including surface defects.

  15. Hybrid manufacturing processes for fusion welding and friction stir welding of aerospace grade aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gegesky, Megan Alexandra

    Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction to aerospace grade aluminum alloys as well as non-weldable alloys, is new. This is brought about by a lowered required clamping force required by adding a fusion weld before a friction stir processing technique. The changes in properties associated with joining techniques include: microstructural changes, changes in hardness, tensile strength, and corrosion resistance. This thesis illustrates these changes for the non-weldable AA2024-T351 and AA7075-T651 as well as the weldable alloy AA5052-H32. The microhardness, tensile strength and corrosion resistance of the four processing states: base material, fusion welded material, friction stir welded material, and friction stir processed fusion welded material is studied. The plausibility of this hybrid process for the three different materials is characterized, as well as plausible applications for this joining technique.

  16. Defect Detectability Improvement for Conventional Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hill, Chris

    2013-01-01

    This research was conducted to evaluate the effects of defect detectability via phased array ultrasound technology in conventional friction stir welds by comparing conventionally prepped post weld surfaces to a machined surface finish. A machined surface is hypothesized to improve defect detectability and increase material strength.

  17. Friction-Stir Welding of Aluminum For the Space Program

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S.; Smelser, Jerry W. (Technical Monitor)

    2002-01-01

    The Marshall Space Flight Center is developing and characterizing the friction stir welding process for the Space Shuttle and other space programs. This revolutionary process, invented and patented by The Weld Institute in England, offers tremendous advantages for joining aluminum for high performance applications. It is particularly suited for advanced aluminum-lithium alloys, such as 2195, the primary structural alloy used in the External Tank. The friction stir welding process joins metals with minimal heat input, resulting in high-strength joints with high ductility. It is a simple process to demonstrate using a common milling machine for sample parts, but relatively expensive to implement on large-scale hardware, due to the high cost of tooling needed to handle the high forging pressures characteristic of the process. Recent developments at the Marshall Space Flight Center have demonstrated friction stir welding on linear joints up to 5 meters (15 ft.), with material thickness ranging between 2.5 mm and 16.5 mm (0.100" to 0.650"). High efficiency weld joints have been produced in aluminum from the 2000, 5000, and 6000 series alloy systems. A "retractable pin tool" system was patented by MSFC that allows use of friction stir welding for joints with changing material thickness, and with less rigid tooling than previously considered. This presentation will describe the details of alloys welded to-date and technical advances under development at MSFC. These developments could have substantial benefit to industrial applications for welding aluminum.

  18. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    SciTech Connect

    Ellison, Chad M.; Perricone, Matthew J.; Faraone, Kevin M.; Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  19. Path Force Control for Friction Stir Welding Processes (Preprint)

    DTIC Science & Technology

    2009-02-01

    maintained, even in the presence of gaps, and wormhole generation during the welding process is eliminated by regulating the path force. 15. SUBJECT... wormhole generation during the welding process is eliminated by regulating the path force. INTRODUCTION Friction Stir Welding (FSW) is a new solid...the force in the direction of tool motion) is regulated. It will be seen that wormholes can be eliminated by regulating the path force

  20. Retractable Pin Tools for the Friction Stir Welding Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  1. Friction Stir Welding of Lightweight Vehicle Structures: Final Report

    SciTech Connect

    Sanella, M L

    2008-08-31

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, LLC and Ford Motor Company was to establish friction stir welding (FSW) and friction stir processing as viable options for use in construction of lightweight substructures for trucks and cars, including engine cradles, suspension sub frames, instrument panel supports, and intake manifolds.

  2. Heat Treatment of Friction-Stir-Welded 7050 Aluminum Plates

    NASA Technical Reports Server (NTRS)

    Petter, George E.; Figert, John D.; Rybicki, Daniel J.; Burns, Timothy

    2006-01-01

    A method of heat treatment has been developed to reverse some of the deleterious effects of friction stir welding of plates of aluminum alloy 7050. This alloy is considered unweldable by arc and high-energy-density beam fusion welding processes. The alloy can be friction stir welded, but as-welded workpieces exhibit low ductility, low tensile and yield strengths, and low resistance to stress corrosion cracking. Heat treatment according to the present method increases tensile and yield strengths, and minimizes or eliminates stress corrosion cracking. It also increases ductility. This method of heat treatment is a superior alternative to a specification-required heat treatment that caused the formation of large columnar grains, which are undesired. Workpieces subjected to the prior heat treatment exhibited elongations <2 percent, and standard three-point bend specimens shattered. The development of the present heat treatment method was guided partly by the principles that (1) by minimizing grain sizes and relieving deformation stresses, one can minimize or eliminate stress corrosion cracking and (2) the key to maximizing strength and eliminating residual stresses is to perform post-weld solution heating for as long a time as possible while incurring little or no development of large columnar grains in friction stir weld nuggets. It is necessary to perform some of the solution heat treatment (to soften the alloy and improve machine welding parameters) before welding. The following is an example of thickness- dependent pre- and post-weld heat treatments according to the present method: For plates 0.270 in. (approx.6.86 mm) thick milled from plates 4.5 in. (114.3 mm) thick, perform pre-weld solution heating at 890 F (477 C) for 1 hour, then cool in air. After friction stir welding, perform solution heating for 10 minutes, quench, hold at room temperature for 96 hours, then age at 250 F (121 C) for 5 hours followed by 325 F (163 C) for 27 hours.

  3. Langangian Particle Model of Friction Stir Welding

    SciTech Connect

    Tartakovsky, Alexandre M.

    2006-12-13

    Since its invention fifteen years ago, Friction Stir Welding (FSW) has found commercial application in the marine, aerospace, rail, and now automotive industries. Development of the FSW process for each new application, however, has remained largely empirical. Few detailed numerical modeling techniques have been developed that can explain and predict important features of the process physics. This is particularly true in the areas of material flow, mixing mechanisms, and void prediction. In this paper we present a novel modeling approach to simulate FSW processes that may have significant advantages over current traditional finite element or finite difference based methods. The proposed model is based on the Smoothed Particle Hydrodynamics (SPH) method. Unlike traditional grid-based methods, Lagrangian particle methods such as SPH can simulate the dynamics of interfaces, large material deformations, void formations and the material's strain and temperature history without employing complex tracking schemes. Two- and three-dimensional FSW simulations for different tool designs are presented. Preliminary numerical results are in qualitative agreement with experimental observations. Detailed comparisons between experimental measurements and larger scale FSW simulations are required to further validate and calibrate the SPH based FSW model.

  4. Thermo-Mechanical Processing in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy

    2003-01-01

    Friction stir welding is a solid-phase joining, or welding process that was invented in 1991 at The Welding Institute (TWI). The process is potentially capable of joining a wide variety of aluminum alloys that are traditionally difficult to fusion weld. The friction stir welding (FSW) process produces welds by moving a non-consumable rotating pin tool along a seam between work pieces that are firmly clamped to an anvil. At the start of the process, the rotating pin is plunged into the material to a pre-determined load. The required heat is produced by a combination of frictional and deformation heating. The shape of the tool shoulder and supporting anvil promotes a high hydrostatic pressure along the joint line as the tool shears and literally stirs the metal together. To produce a defect free weld, process variables (RPM, transverse speed, and downward force) and tool pin design must be chosen carefully. An accurate model of the material flow during the process is necessary to guide process variable selection. At MSFC a plastic slip line model of the process has been synthesized based on macroscopic images of the resulting weld material. Although this model appears to have captured the main features of the process, material specific interactions are not understood. The objective of the present research was to develop a basic understanding of the evolution of the microstructure to be able to relate it to the deformation process variables of strain, strain rate, and temperature.

  5. The Formability of Friction Stir Welds in Automotive Stamping Environments

    SciTech Connect

    Grant, Glenn J.; Davies, Richard W.; Stephens, Elizabeth V.; Wazny, Scott; Kaunitz, Leon; Waldron, Douglas J.

    2006-02-01

    Automobile body and truck cab structures are composed primarily of stampings formed from monolithic and constant gage blanks. Cost and weight penalties can arise when strength or other requirements in one small area of the part leads to the use of a material or gage that is overmatched to the needs of the rest of the stamping. Tailor Welded Blanks (TWBs) are hybrid sheet products composed of either different materials or different thickness sheets that are joined together, then subjected to a stamping operation to create a formed assembly. The strategy is employed generally to save weight and material costs in the formed assembly by placing higher strength or thicker sections only where needed. The forming or stamping process requires the joint to be severely deformed along with the parent sheets. Aluminum TWBs for automotive applications are particularly problematic because of the low formability of aluminum weld metal. Friction Stir Welding (FSW) is a process recently applied to Aluminum TWBs that has the potential to produce a higher quality weld. The current study presents data on the mechanical properties, formability, and FSW weld process parameter development for friction stir welded aluminum, Tailor Welded Blanks. Friction stir welded TWBs can be shown to have higher formability, higher ductility, and lower defect content than many competing joining processes, and they can be fabricated at speeds appropriate for automotive manufacturing.

  6. Tracing Material Flow Paths in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Sanders, Johnny; Schneider, Judy; Numes, Arthur, Jr.

    2005-01-01

    Heat and mechanical work are coupled in the friction stir welding process. The process variables are RPM, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the process variables plus the individual flow path taken by the particular filament of metal flowing around the tool and ending on flat point. The strain-temperature history determines the properties of a metal element on the weld cross-section. The strain-temperature history is carefully controlled in metal processes where direct control is feasible. Indirect estimates of the flow paths and the strain-temperature histories of filaments comprising friction stir welds can be made from a model, if the model is good enough. This paper describes marker studies of flow path geometries for various process parameters. Observed geometries are compared with geometries estimated from models.

  7. Unraveling the Processing Parameters in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is translated along a weld seam, literally stirring the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path or paths is required. In this study, various markers are used to trace the flow paths of the metal. X-ray radiographs record the segmentation and position of the wire. Several variations in the trajectories can be differentiated within the weld zone.

  8. Friction Stir Weld Restart+Reweld Repair Allowables

    NASA Technical Reports Server (NTRS)

    Clifton, Andrew

    2008-01-01

    A friction stir weld (FSW) repair method has been developed and successfully implemented on Al 2195 plate material for the Space Shuttle External Fuel Tank (ET). The method includes restarting the friction stir weld in the termination hole of the original weld followed by two reweld passes. Room temperature and cryogenic temperature mechanical properties exceeded minimum FSW design strength and compared well with the development data. Simulated service test results also compared closely to historical data for initial FSW, confirming no change to the critical flaw size or inspection requirements for the repaired weld. Testing of VPPA fusion/FSW intersection weld specimens exhibited acceptable strength and exceeded the minimum design value. Porosity, when present at the intersection was on the root side toe of the fusion weld, the "worst case" being 0.7 inch long. While such porosity may be removed by sanding, this "worst case" porosity condition was tested "as is" and demonstrated that porosity did not negatively affect the strength of the intersection weld. Large, 15-inch "wide panels" FSW repair welds were tested to demonstrate strength and evaluate residual stresses using photo stress analysis. All results exceeded design minimums, and photo stress analysis showed no significant stress gradients due to the presence of the restart and multi-pass FSW repair weld.

  9. Analysis of integrity and microstructure of linear friction welded Waspaloy

    SciTech Connect

    Chamanfar, A.; Jahazi, M.; Gholipour, J.; Wanjara, P.; Yue, S.

    2015-06-15

    Nickel-base superalloy, Waspaloy, was linear friction welded (LFWed) under different axial shortening conditions of 2.0, 3.4, and 4.6 mm. The tensile properties and microhardness of the weldments were investigated in the as-LFWed condition and compared with those in the post-weld heat treated (PWHTed) condition. Mechanical properties were related to microstructures following examination by optical microscopy, high resolution scanning electron microscopy, and electron backscatter diffraction (EBSD). Analyses of the EBSD results in terms of the misorientation angle distribution, which represents the stored energy, were performed. In the as-LFWed condition, the yield strength (YS) and ultimate tensile strength (UTS) increased with axial shortening due to greater expulsion of the softened interfacial material toward the periphery as flash. In contrast, with increasing axial shortening the total elongation initially remained constant and then decreased. This was also related to the expulsion of the softened interfacial material into the bifurcated flash. Extensive dissolution of the strengthening phase (γ′) in the weld area during linear friction welding (LFW) contributed to the lower YS and UTS in the as-welded condition compared to the PWHTed condition where the γ′ particles were recovered. After performing post-weld heat treatment (PWHT), the total elongation improved due to the relaxation of stored energy and grain growth in the thermomechanically affected zone (TMAZ). - Highlights: • Tensile property and microstructure in Waspaloy linear friction welds were studied. • Yield strength and ultimate tensile strength increased with axial shortening. • Elongation initially remained constant and then decreased with axial shortening. • Post-weld heat treat recovered dissolved γ′ particles and increased weld strength. • Stored energy relaxation during post-weld heat treatment improved weld elongation.

  10. Sparks begin to fly in nonconventional friction welding and surfacing

    SciTech Connect

    Irving, B.

    1993-05-01

    A technology with enormous potential for welding and surfacing is the linear or consumable-rod friction welding process. The jet engine manufacturers are interested in the process both for welding and surfacing of alloys and materials that would be difficult to handle by any other means. In most present engines, slots are provided in the disks in order to accept the turbine blades. So, when a blade becomes worn or damaged, it is removed and a replacement blade is inserted in its place. In the new BLISK or bladed disk design of engines, the blades will be integral parts of the engine. Linear friction welding could play a major role in the manufacture and repair of engines of BLISK design. The new design is expected to improve engine performance significantly. According to TWI, potential applications for linear friction welding include gears, turbine wheels, chain links, electrical bus bar components, such plastic automotive parts as bumpers, boot lids and floor pans, bimetallic chisel blades, and multiple joints in metals or plastics. This paper discusses some of the research done by various companies into the newer variations of friction welding.

  11. Recent developments in Micro Friction Stir Welding: A review

    NASA Astrophysics Data System (ADS)

    Sithole, Keydon; Vasudeva Rao, Veeredhi

    2016-02-01

    The advent of friction stir welding (FSW) in 1991 has been evolutionary in the joining of metals and related materials. Friction stir welding has enabled the joining of metals that could not be joined by other welding processes. Research has shown that dissimilar materials with very different properties, plastics, composites and even wood can be joined by FSW. Recent activities in the application of FSW has seen the development of micro friction stir welding (μFSW), which is the FSW of very thin sections of thickness 1000 μm (1 mm) or less. Micro friction stir welding further extends the applications of FSW to areas such as copper electrical contacts, tailor-welded blanks, wood. Though μFSW is relatively new development significant work has been done to date with interesting research findings being reported. This paper aims to review developments in μFSW to date. The focus of the paper will be on problems peculiar to μFSW due to downscaling to the micro scale and other practical considerations.

  12. Enabling high speed friction stir welding of aluminum tailor welded blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  13. Heat Control via Torque Control in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  14. The Formability of Friction Stir Welds in Automotive Stamping Environments

    SciTech Connect

    Grant, Glenn J.; Davies, Richard W.; Stephens, Elizabeth V.; wazny, scott; Kaunitz, Leon; Waldron, D.

    2005-04-01

    Automobile body and truck cab structures are composed primarily of stampings formed from monolithic and constant gage blanks. Cost and weight penalties can arrise when strength or other requirements in one small area of the part leads to the use of a material or gage that is overmatched to the needs of the rest of the stamping. Tailor Welded Blanks (TWBs) are hybrid sheet products composed of either different materials or different thickness sheets that are joined together, then subjected to a stamping operation to create a formed assembly. The strategy is employed generally to save weight and material costs in the formed assembly by placing higher strength or thicker sections only where needed. The forming or stamping process requires the joint to be severely deformed along with the parent sheets. Aluminum TWBs for automotive applications are particularly problematic because of the low formability of aluminum weld metal. Friction Stir Welding (FSW) is a process recently applied to Aluminum TWBs that has the potential to produce a higher quality weld. The current study presents data on the mechanical properties, formability, and FSW weld process parameter development for friction stir woined, aluminum, Tailor Welded Blanks. Friction stir welded TWBs can be shown to have higher formability, higher ductility, and lower defect content than many competing joining processes, and they can be fabricated at speeds appropriate for automotive manufacturing.

  15. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    SciTech Connect

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; Miles, Michael; Song, Guang-Ling; Wang, Yanli; Feng, Zhili

    2014-12-30

    We have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. Furthermore, the FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly prepared joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Moreover, examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints.

  16. Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Kolubaev, E. A.

    2015-02-01

    Special features of the microstructure of joints of aluminum-magnesium and aluminum-copper alloys produced by friction stir welding are analyzed. It is demonstrated that a layered structure with ultradisperse grains is produced by friction stir welding at the center of the weld joint. An analogy is drawn between the microstructures of joints produced by friction stir welding and surface layer produced by sliding friction.

  17. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  18. A theoretical study of the influence of technological friction stir welding parameters on weld structures

    NASA Astrophysics Data System (ADS)

    Astafurov, Sergey; Shilko, Evgeny; Kolubaev, Evgeny; Psakhie, Sergey

    2015-10-01

    Computer simulation by the movable cellular automaton method was performed to study the dynamics of friction stir welding of duralumin plates. It was shown that the ratio of the rotation rate to the translational velocity of the rotating tool has a great influence on the quality of the welded joint. A suitably chosen ratio of these parameters combined with an additional ultrasonic impact reduces considerably the porosity and the amount of microcracks in the weld.

  19. Investigation of Torsional Strength of the VT6 Weld Joint Produced by Linear Friction Welding

    NASA Astrophysics Data System (ADS)

    Suleimanova, G. R.; Kabirov, R. R.; Karavaeva, M. V.; Ershova, Yu. A.; Zhilyaev, A. P.

    2015-10-01

    Results of measurement of torsional strength of the weld joint of the VT6 titanium alloy produced by linear friction welding are presented. For a comparison, the same method was used to test monolithic specimens of the VT6 alloy. Torsional strength values of the weld joint (τUS = 861 MPa and φ = 110°) correspond to the strength of the monolithic material. In this case, the specimens fail along the base metal.

  20. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Nele, L.

    2016-01-01

    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  1. High-Speed Friction-Stir Welding To Enable Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current joining technologies for automotive aluminum alloys are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding has been traditionally applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum welded components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability utilizing a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  2. Texture and grain evolutions in a 2195 friction stire weld

    SciTech Connect

    Fonda, R. W.; Bingert, J. F.; Colligan, K. J.

    2004-01-01

    Variations in microstructure, crystallographic texture, and grain distributions were determined in a conventional transverse cross section of the deposited weld and in a planview cross section around the embedded welding tool in an Al 2195 friction stir weld that had been prepared to preserve a static representation of the dynamic deformation field surrounding the tool. These results reveal important new details about the development of grain structure and crystallographic texture around the FSW tool that cannot be determined from observations on the transverse cross section alone. Two orthogonal views of a friction stir weld were analyzed to determine the microstructure, crystallographic texture, and grain structure of the deposited weld and how these characteristics initially developed in the vicinity of the weld tool. The transverse cross section reveals many interesting features. There is a complex precipitation sequence across the different weld regions. The strengthening precipitates from the matrix become coarsened across the HAZ, then are gradually replaced by a separate precipitate distribution, which forms during cooling of the weld, in the TMAZ. A third precipitate distribution that includes the equilibrium T{sub B} phase is observed in the weld nugget and is responsible for the lower microhardness of that region. A coarsening of grains is observed in the TMAZ adjacent to the weld nugget, accompanied by an in-plane rotation of the grains towards <110>{parallel} welding direction. The latter observation suggests that this texture evolution is primarily in response to a simple-shear deformation field surrounding the tool. A plan-view section through the embedded FSW tool of this stop-action weld was prepared to reveal the initial development and evolution of the grain structure and crystallographic texture during friction stir welding. This analysis revealed bands of refined grains developing ahead of the fully refined region, likely reflecting different

  3. Microstructural issues in a friction-stir-welded aluminum alloy

    SciTech Connect

    Flores, O.V.; Kennedy, C.; Murr, L.E.; Brown, D.; Pappu, S.; Nowak, B.M.; McClure, J.C.

    1998-02-03

    Recent observations of microstructures associated with friction-stir welding (FSW) in a number of aluminum alloys have consistently demonstrated the actual weld zone to consist of a (dynamically) recrystallized grain structure resulting from the extreme, solid-state, plastic deformation characterizing the process. Because of solubilities associated with the various precipitates in 7075 and 6061 aluminum alloys, and the fact that the precipitates were either homogeneously distributed throughout both the original (unwelded) work-piece plates and the well zones (or formed varying densities of Widmanstaetten patterns within the original and recrystallized grains), it has been difficult to follow the stirring of stable, second-phase particles from the base metal (work-piece) into the weld zone. In the present investigation, a compositionally modified 1100 aluminum alloy (nominally 99.2% Al, 0.5% Fe, 0.15% Cu, 0.12% Si, 0.05 Mn, 0.04 Ti, balance in weight percent of Be and Mg), forming a stable microdendritic (second-phase), equiaxed, cell structure was friction-stir welded. These thermally stable, geometrically specific, precipitates in the base metal were compared with their disposition within the friction-stir-weld zone. In addition, as-cast plates of this alloy were cold-rolled 50% and friction-stir-welded in order to compare these two schedules (as-cast and 50% cold-rolled) in terms of residual hardness variations and related microstructural issues as well as the effect of prior deformation on the friction-stir welding process.

  4. Thermo-Mechanical Processing in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.; Nunes, A. C., Jr.

    2002-01-01

    In Friction Stir Welding (FSW) a rotating pin-tool inserted into a weld seam literally stirs the edges of the seam together. In this study, two flow paths are proposed that define the FWS zone. Studies using a longitudinal tungsten wire (0.0025 dia.) were used to visualize and document the material flow. The material flow path is described using a mathematical model.

  5. Feasibility of Underwater Friction Stir Welding of Hardenable Alloy Steel

    DTIC Science & Technology

    2010-12-01

    bead-on-plate FSW traverses, approximately 64 inches (1.6 m) in total length, on 0.25 inch (6.4 mm) thick plates of a hardenable alloy steel . The...base plate. Based on preliminary findings, FSW of hardenable alloy steel is a feasible process and should be further researched and refined. 15...v ABSTRACT The objective of this thesis is to determine whether friction stir welding ( FSW ) is a feasible welding process for steels in an

  6. Temporarily alloying titanium to facilitate friction stir welding

    SciTech Connect

    Hovanski, Yuri

    2009-05-01

    While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium.

  7. Near Net Manufacturing Using Thin Gage Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Jennifer; Potter, David; Holquin, Michael

    2006-01-01

    Friction Stir Welding (FSW) and near net spin forming of FSW aluminumn blanks were investigated for large-scale pressure vessel applications. With a specific focus on very thin gage 2xxx and 7xxx aluminum alloys, the program concentrated on the following: the criteria used for material selection, a potential manufacturing flow, and the effectiveness and associated risks of near net spin forming. Discussion will include the mechanical properties of the friction stir welds and the parent material from before and after the spin forming process. This effort was performed under a NASA Space Exploration initiative focused on increasing the affordability, reliability and performance of pressure vessels larger than 10 ft. diameter.

  8. Friction stir weld tools having fine grain structure

    DOEpatents

    Grant, Glenn J.; Frye, John G.; Kim, Jin Yong; Lavender, Curt A.; Weil, Kenneth Scott

    2016-03-15

    Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.

  9. The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.

    2010-01-01

    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.

  10. Micromechanical Simulation of Deformation of Friction Stir Welded Components

    NASA Astrophysics Data System (ADS)

    Sidle, B. C.; Dawson, P. R.; Boyce, D. E.

    2004-06-01

    A microstructure-based finite element formulation for the mechanical response of friction stir welded AL-6XN stainless steel is presented. The welding process generates regions of substantial variations in material state and properties that contribute to strong heterogeneities in the mechanical behavior of welded components We modeled the system with a multiscale elastoplastic formulation in which polycrystalline behavior is computed as the integrated responses of constituent crystals. Model validation is made through comparisons to post-test measurements of shape and hardness and to lattice strain measurements from in situ neutron diffraction experiments.

  11. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    NASA Astrophysics Data System (ADS)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  12. Effect of Shoulder Size on Weld Properties of Dissimilar Metal Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    Akinlabi, E. T.

    2012-07-01

    This article reports a research study that shows the effect of shoulder diameter size on the resulting weld properties of dissimilar friction stir welds between 5754 aluminum alloy (AA) and C11000 copper (Cu). Welds were produced using three different shoulder diameter tools: 15, 18, and 25 mm by varying the rotational speed between 600 and 1200 rpm and the traverse speed between 50 and 300 mm/min to achieve the best result. Each parameter combination was chosen to represent different heat input conditions (low, intermediates and high). The welds were characterized through microstructural evaluation, tensile testing, microhardness measurements, x-ray diffraction analysis, and electrical resistivity. Microstructural evaluation of the welds revealed that the welds produced consisted of all the friction stir welding (FSW) microstructure zones with organized flow lines comprising mixture layers of aluminum (Al) and copper (Cu) at the Stir Zones. The average Ultimate Tensile Strength (UTS) of the welds considered ranged from 178 to 208 MPa. Higher Vickers microhardness values were measured at the joint interfaces of all the welds because of the presence of intermetallic compounds in these regions. The x-ray diffraction analysis revealed the presence of Al4Cu9 and Al2Cu intermetallics at the interfacial regions, and low electrical resistivities were obtained at the joint interfaces. An optimized parameter setting for FSW of Al and Cu was obtained at the weld produced at 950 rpm and 50 mm/min with the 18-mm shoulder diameter tool.

  13. Pin Tool Geometry Effects in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Querin, J. A.; Rubisoff, H. A.; Schneider, J. A.

    2009-01-01

    In friction stir welding (FSW) there is significant evidence that material can take one of two different flow paths when being displaced from its original position in front of the pin tool to its final position in the wake of the weld. The geometry of the pin tool, along with the process parameters, plays an important role in dictating the path that the material takes. Each flow path will impart a different thermomechanical history on the material, consequently altering the material microstructure and subsequent weld properties. The intention of this research is to isolate the effect that different pin tool attributes have on the flow paths imparted on the FSWed material. Based on published weld tool geometries, a variety of weld tools were fabricated and used to join AA2219. Results from the tensile properties and microstructural characterization will be presented.

  14. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  15. A model of material flow during friction stir welding

    SciTech Connect

    Hamilton, Carter Dymek, Stanislaw; Blicharski, Marek

    2008-09-15

    Tin plated 6061-T6 aluminum extrusions were friction stir welded in a 90 deg. butt-weld configuration. A banded microstructure of interleaved layers of particle-rich and particle-poor material comprised the weld nugget. Scanning and transmission electron microscopy revealed the strong presence of tin within the particle-rich bands, but TEM foils taken from the TMAZ, HAZ and base material showed no indication of Sn-containing phases. Since tin is limited to the surface of the pre-weld extrusions, surface material flowed into the nugget region, forming the particle-rich bands. Similarly, the particle-poor bands with no tin originated from within the thickness of the extrusions. A model of material flow during friction stir welding is proposed for which the weld nugget forms as surface material extrudes from the retreating side into a plasticized zone surrounding the FSW pin. The extruded column buckles between the extrusion force driving the material into the zone and the drag force of the in-situ material resisting its entry. A banded microstructure of interleaved surface material and in-situ material, therefore, develops. The model successfully describes several of the experimentally observed weld characteristics, but the model is limited to specific conditions of material flow and assumptions regarding steady-state.

  16. Metal Cutting Theory and Friction Stir Welding Tool Design

    NASA Technical Reports Server (NTRS)

    Payton, Lewis N.

    2003-01-01

    Friction Stir Welding (FSW) is a relatively new industrial process that was invented at The Weld Institute (TWI, United Kingdom) and patented in 1992 under research funded by in part by the National Aeronautics and Space Administration (NASA). Often quoted advantages of the process include good strength and ductility along with minimization of residual stress and distortion. Less well advertised are the beneficial effects of this solid state welding process in the field of occupational and environmental safety. It produces superior weld products in difficult to weld materials without producing any toxic fumes or solid waste that must be controlled as hazardous waste. In fact, it reduces noise pollution in the workspace as well. In the early days of FSW, most welding was performed on modified machine tools, in particular on milling machines with modified milling cutters. In spite of the obvious milling heritage of the process, the techniques and lessons learned from almost 250 years of successful metalworking with milling machines have not been applied in the field of modern Friction Stir Welding. The goal of the current research was to study currently successful FSW tools and parameterize the process in such a way that the design of new tools for new materials could be accelerated. Along the way, several successful new tooling designs were developed for current issues at the Marshall Space Flight Center with accompanying patent disclosures

  17. Microstructural Characterizations with EDAX Analysis of Dissimilar Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    Ravikumar, S.; Rao, V. S.

    2013-10-01

    This paper reports the microstructural characteristics of dissimilar friction stir welds with AA7075T651 and AA6061T651. Dissimilar friction stir welds between AA7075T651 and AA6061T651 were produced by varying the rotational speeds between 800 and 1,000 rpm and the welding speeds between 90 and 110 mm/min. The welds were characterized through optical microscope and scanning electron microscope (SEM). Three different tool profiles (taper cylindrical threaded, taper square threaded and simple square) were used for this investigation and in that taper cylindrical threaded tool with process parameters 900 rpm and 100 mm/min were found to have maximum tensile strength of 205 MPa for the dissimilar butt joints. The SEM with energy-dispersive X-ray spectroscopy analysis reveals the metallurgical bonding achieved at the joint interfaces of the welds produced. The good mixing of both the materials joined was obtained at lower welding and higher rotational speed while the tunnel defect was found to be common in the welds produced irrespective of the tool pin profiles and process parameters due to insufficient axial load with 0° tilt angle.

  18. Al-to-Cu Friction Stir Lap Welding

    NASA Astrophysics Data System (ADS)

    Firouzdor, Vahid; Kou, Sindo

    2012-01-01

    Recently, friction stir welding (FSW) has been used frequently to join dissimilar metals, for instance, Al to Mg, Cu, and steel. The formation of brittle intermetallic compounds often severely limits the strength and ductility of the resultant welds. In the present study, Al-to-Cu lap FSW was studied by welding 6061 Al to commercially pure Cu. Conventional lap FSW was modified by butt welding a small piece of Al to the top of Cu, with a slight pin penetration into the bottom of Al. At travel speeds up to 127 mm/min (5 ipm), the modified welds were about twice the joint strength and five to nine times the ductility of the conventional lap welds. In the conventional lap welds, voids were present along the Al-Cu interface, and fracture occurred along the interface in tensile testing. No such voids were observed in the modified lap welds, and fracture occurred through Cu. Thus, as in the case of Al-to-Mg lap FSW recently studied by the authors, modified lap FSW significantly improved the weld quality in Al-to-Cu lap FSW. At the relatively high travel speed of 203 mm/min (8 ipm), however, modified lap FSW was no longer superior because of channel formation.

  19. Shielding conditions of local cavity for underwater arc spot welding

    SciTech Connect

    Ogawa, Y.; Koga, H.

    1996-12-01

    Arc spot welding to join lapped plates is an effective maintenance operation for emergent recovering technique of defects under water. The welding operation is easy and effective except for an excessive amount of weld metal for deep penetration. A special nozzle for CO{sub 2} arc spot welding was designed to maintain this defect. A large amount of swirl shielding gas flow is adopted to discharge the excessive weld metal and to reduce digging action of weld pool. An additional high speed air jet is supplied to reinforce these effects. Almost flat weld bead is obtained by using of this nozzle. The effect of swirl shielding flow and additional air jet on the pressure is studied. When an excessive axial gas flow is used, a pressure at the weld pool becomes high enough to press down the weld surface below original surface level of base plate, and some molten metal is splashed out. Then, it is difficult to get a sound weld geometry. A swirl gas flow is tried to reduce the static pressure on the weld pool. The pressure on the weld pool by the swirl flow becomes much lower compared to the case by axial flow. When the swirl flow is used, a flat bead can be obtained. But some molten metal which is blown out by the swirl gas is resolidified at the edge of the nozzle. The additional high speed air jet is required to blow out the splashed metal from the nozzle completely. It has a suction effect itself. The pressure on the weld pool is also decreased. But the interaction between the swirl flow and the additional jet shows a complicated manner. This paper discusses the interaction between main shielding gas flow and the additional air jet to guarantee the good shielding condition for underwater use.

  20. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    PubMed

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials.

  1. Friction Stir Process Mapping Methodology

    NASA Technical Reports Server (NTRS)

    Kooney, Alex; Bjorkman, Gerry; Russell, Carolyn; Smelser, Jerry (Technical Monitor)

    2002-01-01

    In FSW (friction stir welding), the weld process performance for a given weld joint configuration and tool setup is summarized on a 2-D plot of RPM vs. IPM. A process envelope is drawn within the map to identify the range of acceptable welds. The sweet spot is selected as the nominal weld schedule. The nominal weld schedule is characterized in the expected manufacturing environment. The nominal weld schedule in conjunction with process control ensures a consistent and predictable weld performance.

  2. Auto-Adjustable Tool for Self-Reacting and Conventional Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor)

    2002-01-01

    A friction stir welding dcvice that is configured to perform convention friction stir welding as well as self-reacting friction stir welding is described. A pin passes hrough an upper shoulder and can selectively attach 10 and detach from a lower shoulder in a preferred embodiment. A controller maintains thc discrete position of, and/or force applied by, the upper and lower shoulders during self-reacting friction stir welding, or maintains the pin at a desired depth and/or applied force during conventional friction stir welding.

  3. Space Shuttle ET Friction Stir Weld Machines

    NASA Technical Reports Server (NTRS)

    Thompson, Jack M.

    2003-01-01

    NASA and Lockheed-Martin approached the FSW machine vendor community with a specification for longitudinal barrel production FSW weld machines and a shorter travel process development machine in June of 2000. This specification was based on three years of FSW process development on the Space Shuttle External Tank alloys, AL2 195-T8M4 and AL22 19-T87. The primary motivations for changing the ET longitudinal welds from the existing variable polarity Plasma Arc plasma weld process included: (1) Significantly reduced weld defect rates and related reduction in cycle time and uncertainty; (2) Many fewer process variables to control (5 vs. 17); (3) Fewer manufacturing steps; (4) Lower residual stresses and distortion; (5) Improved weld strengths, particularly at cryogenic temperatures; (6) Fewer hazards to production personnel. General Tool was the successful bidder. The equipment is at this writing installed and welding flight hardware. This paper is a means of sharing with the rest of the FSW community the unique features developed to assure NASA/L-M of successful production welds.

  4. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    DTIC Science & Technology

    2013-08-01

    and around particle inclusions within the WZ. In the case of FSW aluminum to steel , the structure often seen is one of steel particles dispersed...the microstructure and mechanical performance of dissimilar FSWs between aluminum and steel , this study focuses on the characterization of the...MICROSTRUCTURAL CHARACTERIZATION OF FRICTION STIR WELDED ALUMINUM - STEEL JOINTS By ERIN ELIZABETH PATTERSON A thesis submitted in

  5. Study of Mechanical Properties and Characterization of Pipe Steel welded by Hybrid (Friction Stir Weld + Root Arc Weld) Approach

    SciTech Connect

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; Wasson, Andrew J; Fairchild, Doug P; Wang, Yanli; Feng, Zhili

    2015-01-01

    Friction stir welding (FSW) has recently attracted attention as an alternative construction process for gas/oil transportation applications due to advantages compared to fusion welding techniques. A significant advantage is the ability of FSW to weld the entire or nearly the entire wall thickness in a single pass, while fusion welding requires multiple passes. However, when FSW is applied to a pipe or tube geometry, an internal back support anvil is required to resist the plunging forces exerted during FSW. Unfortunately, it may not be convenient or economical to use internal backing support due to limited access for some applications. To overcome this issue, ExxonMobil recently developed a new concept, combining root arc welding and FSW. That is, a root arc weld is made prior to FSW that supports the normal loads associated with FSW. In the present work, mechanical properties of a FSW + root arc welded pipe steel are reported including microstructure and microhardness.

  6. FRICTION STIR LAP WELDING OF ALUMINUM - POLYMER USING SCRIBE TECHNOLOGY

    SciTech Connect

    Upadhyay, Piyush; Hovanski, Yuri; Fifield, Leonard S.; Simmons, Kevin L.

    2015-02-16

    Friction Stir Scribe (FSS) technology is a relatively new variant of Friction Stir Welding (FSW) which enables lap joining of dissimilar material with very different melting points and different high temperature flow behaviors. The cutter scribe attached at the tip of FSW tool pin effectively cuts the high melting point material such that a mechanically interlocking feature is created between the dissimilar materials. The geometric shape of this interlocking feature determines the shear strength attained by the lap joint. This work presents first use of scribe technology in joining polymers to aluminum alloy. Details of the several runs of scribe welding performed in lap joining of ~3.175mm thick polymers including HDPE, filled and unfilled Nylon 66 to 2mm thick AA5182 are presented. The effect of scribe geometry and length on weld interlocking features is presented along with lap shear strength evaluations.

  7. Joining of Dissimilar Metals By Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Firouzdor, Vahid

    The use of friction stir welding (FSW) as a new process for joining dissimilar metals has been studied frequently recently. The present study investigated dissimilar-metal FSW between Al and Mg alloys using the widely used alloys 6061 Al and AZ31B Mg. It focused on the issue of how the joint strength is affected by the welding conditions, including the positions of Al and Mg with respect to the welding tool, the tool travel speed and the tool rotation speed. In spite of studies conducted by many other investigators, understanding of this fundamental issue is still rather limited. Unlike those studies, the present study: (1) determined the heat input by torque and temperature measurements during welding and used it to explain the effect of the welding conditions on the joint strength, (2) used color metallography with Al, Mg, Al3Mg2 and Al12Mg17 shown in different colors to clearly revealed the effect of the welding conditions on the formation of intermetallic compounds and material flow, which are affected by the heat input and which in turn affect the joint strength, and (3) determined the windows for selecting the travel and rotation speeds to optimize the joint strength for various material positions. Furthermore, conventional lap FSW was modified and the joint strength and ductility of the resultant welds were both increased significantly. The modified lap FSW was applied subsequently to Al-to-Cu FSW. The intermetallic compounds in Al-Mg and Al-Cu welds were identified.

  8. Friction stir welding and processing of oxide dispersion strengthened (ODS) alloys

    SciTech Connect

    Ren, Weiju

    2014-11-11

    A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.

  9. Prolegomena to the Study of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2010-01-01

    The literature contains many approaches toward modeling of the friction stir welding (FSW) process with varying treatments of the weld metal properties. It is worthwhile to consider certain fundamental features of the process before attempting to interpret FSW phenomena: Because of the unique character of metal deformation (as opposed to, say, viscous deformation) a velocity "discontinuity" or shear surface occurs in FSW and determines much of the character of the welding mechanism. A shear surface may not always produce a sound bond. Balancing mechanical power input against conduction and convection heat losses yields a relation, a "temperature index", between spindle speed and travel speed to maintain constant weld temperature. But many process features are only weakly dependent upon temperature. Thus, unlike modeling of metal forming processes, it may be that modeling the FSW process independently of the material conditions has some merit.

  10. Friction Stir Welding of ODS and RAFM Steels

    SciTech Connect

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  11. Friction Stir Welding of ODS and RAFM Steels

    NASA Astrophysics Data System (ADS)

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; Tan, Lizhen; Sokolov, Mikhail A.

    2015-09-01

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this work, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW on grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.

  12. Friction Stir Welding of ODS and RAFM Steels

    DOE PAGES

    Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; ...

    2015-09-14

    Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW onmore » grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.« less

  13. Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld

    NASA Technical Reports Server (NTRS)

    Littell, Justin Anderson (Inventor)

    2016-01-01

    A friction pull plug is provided for use in forming a plug weld in a hole in a material. The friction pull plug includes a shank and a series of three frustoconical sections. The relative sizes of the sections assure that a central one of the sections defines the initial contact point between the hole's sides. The angle defined by the central one of the sections reduces or eliminates chatter as the plug is pulled into the hole.

  14. Weld-brazing of titanium. [resistance spot welding combined with brazing

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1973-01-01

    A joining process, designated weld-brazing, which combines resistance spot-welding and brazing has been developed at the NASA Langley Research Center. Resistance spot-welding is employed to position and aline the parts and to establish a suitable faying surface gap for brazing and contributes to the integrity of the joint. Brazing enhances the properties of the joint and reduces the stress concentrations normally associated with spotwelds. Ti-6Al-4V titanium alloy joints have been fabricated using 3003 aluminum braze both in a vaccum furnace and in a retort containing an inert gas environment.

  15. Controlling Force and Depth in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard

    2005-01-01

    Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).

  16. Tensile Strength and Hardness Correlations with Microscopy in Friction welded Aluminium to Copper

    NASA Astrophysics Data System (ADS)

    Satish, Rengarajan; Seshagiri Rao, Vaddi; Ananthapadmanaban, Dattaguru; Ravi, Balappa

    2016-01-01

    Aluminium and copper are good conductors of heat and electricity, copper being the better conductor, is a costly metal indeed. On the other hand, aluminium is cheap, easily available and also has a lower density than copper. Hence, worldwide efforts are being made to partially replace copper wire. Solid state welding should be used to join aluminium to copper. This is because the use of fusion welding results in brittle phases formed in the weld interface. One of the solid state welding techniques used for joining aluminium to copper is friction welding. In this paper, an attempt has been made to join aluminium to copper by friction welding by varying the friction welding parameters, namely friction pressure, upset pressure, burn-off length and speed of rotation of the workpiece. Nine different friction welding parameter combinations were used during welding in accordance with ASTM standards and results have been reported. Tensile strength and hardness tests were carried out for each parameter combination. Optimum friction welding parameter combination was identified with respect to tensile strength. Scanning Electron Microscopy and Electron dispersive spectroanalysis were obtained to identify modes of fracture and presence of intermetallic phases for each friction welding combination with the aim to narrow down friction welding parameters that give good properties on the whole.

  17. Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Nithin, Abeyram M.

    2016-05-01

    Friction taper plug welding a variant of friction welding is useful in welding of similar and dissimilar materials. It could be used for joining of composites to metals in sophisticated aerospace applications. In the present work numerical simulation of friction taper plug welding process is carried out using finite element based software. Graphite reinforced AA6063 is modelled using the software ANSYS 15.0 and temperature distribution is predicted. Effect of friction time on temperature distribution is numerically investigated. When the friction time is increased to 30 seconds, the tapered part of plug gets detached and fills the hole in the AA6063 plate perfectly.

  18. Characterization of the Micro Textures in a Friction Stir Weld

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2004-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. The Dynamically-Recrystallized-Zone (DXZ) of a polished and etched FSW cross-section exhibits contrasting bands (the "onion-ring" structure), the origins of which are unclear. An orientation image mapping (OIM) study suggests that the corresponding bands may correspond respectively to a "straight-through" current of metal bypassing the pin tool in a single rotation or less and a "maelstrom" current rotating a number of times around the pin tool.

  19. Developing Friction Stir Welding Process Model for ICME Application

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Ping

    2015-01-01

    A framework for developing a product involving manufacturing processes was developed with integrated computational materials engineering approach. The key component in the framework is a process modeling tool which includes a thermal model, a microstructure model, a thermo-mechanical, and a property model. Using friction stir welding (FSW) process as an example, development of the process modeling tool was introduced in detail. The thermal model and the microstructure model of FSW of steels were validated with the experiment data. The model can predict reasonable temperature and hardness distributions as observed in the experiment. The model was applied to predict residual stress and joint strength of a pipe girth weld.

  20. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  1. Predicting the forming limit of friction stir welded blanks

    NASA Astrophysics Data System (ADS)

    Ramulu, Perumalla Janaki; Narayanan, R. Ganesh

    2011-05-01

    Friction stir welded blanks (FSWB) are tailored blanks made by friction stir welding of sheets of different thicknesses and quality. In order to reduce the trial-and-error principles and costs, the computational simulation of stamping processes of FSW blanks is required for which a feasible methodology or theory to evaluate the forming characteristics has to be incorporated. In the present work, the validity of effective strain rate based necking criterion (ESRC) in both original and modified forms to predict the forming limit of FSW blanks made of AA6111, DP590 is analyzed. The FLC thus predicted is compared with FLC from thickness gradient based necking criterion and from literature. It is found from the validation done with literature results that a consistent and accurate forming limit prediction is obtained from modified ESRC when compared to original ESRC. The failure pattern prediction is also agreeing well with the literature results.

  2. Matrix phased array (MPA) imaging technology for resistance spot welds

    SciTech Connect

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  3. Matrix phased array (MPA) imaging technology for resistance spot welds

    NASA Astrophysics Data System (ADS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  4. Feasibility of Underwater Friction Stir Welding of HY-80 Steel

    DTIC Science & Technology

    2011-03-01

    FSW ) of high-strength; quench and temper low carbon steels that are susceptible to hydrogen-assisted cracking (HAC). The specific benefits of...is to determine the feasibility of underwater friction stir welding ( FSW ) of high-strength, quench and temper low carbon steels that are...Tungsten-Rhenium binder was used to conduct three bead-on-plate FSW traverses, approximately 40 inches in length on 0.25 inch HY-80 steel . The

  5. Effect of Pre- and Post-weld Heat Treatments on Linear Friction Welded Ti-5553

    NASA Astrophysics Data System (ADS)

    Wanjara, Priti; Dalgaard, Elvi; Gholipour, Javad; Cao, Xinjin; Cuddy, Jonathan; Jonas, John J.

    2014-10-01

    Linear friction welding allows solid-state joining of near-beta ( β) titanium alloy Ti-5553 (Ti-5Al-5V-5Mo-3Cr). In the as-welded condition, the weld zone (WZ) exhibits β grain refinement and marked softening as compared with Ti-5553 in the solution heat treated and aged condition. The softening of the weldment is attributed to the depletion of the strengthening alpha ( α) phase in the WZ and the adjacent thermo-mechanically affected zone (TMAZ). Specifically, in near- β titanium alloys, the strength of the material mainly depends on the shape, size, distribution, and fraction of the primary α and other decomposition products of the β phase. Hence, a combination of pre- and post-weld heat treatments were applied to determine the conditions that allow mitigating the α phase depletion in the WZ and TMAZ of the welds. The mechanical response of the welded samples to the heat treatments was determined by performing microhardness measurements and tensile testing at room temperature with an automated 3D deformation measurement system. It was found that though the joint efficiency in the as-welded condition was high (96 pct), strain localization and failure occurred in the TMAZ. The application of post-weld solution heat treatment with aging was effective in restoring α, increasing the joint efficiency (97 to 99 pct) and inducing strain localization and failure in the parent material region.

  6. Control of Structure in Conventional Friction Stir Welds Through a Kinematic Theory of Metal Flow

    DTIC Science & Technology

    2009-02-01

    suggested a “chaotic-dynamic mixing” in the material [2]. Later tracer studies, using steel shot [3], aluminum shims [4], copper foil [5], bi-metallic...35812 Keywords: friction stir welding, AA2219, material flow Abstract In friction stir welding ( FSW ), a rotating pin is translated along a...welding, by a shoulder on the pin. In conventional FSW , the weld metal rests on an “anvil”, which supports the heavy “plunge” load on the tool. In

  7. An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; Shi, Qingyu

    2016-09-01

    For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, the lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. The simulated temperature field is validated by the good agreement to the experimental measurements.

  8. Weld-brazing - a new joining process. [combination resistance spot welding and brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.

    1972-01-01

    A joining process designated weld brazing which combines resistance spot welding and brazing has been developed. Resistance spot welding is used to position and align the parts as well as to establish a suitable faying surface gap for brazing. Fabrication is then completed by capillary flow of the braze alloy into the joint. The process has been used successfully to fabricate Ti-6Al-4V titanium alloy joints using 3003 aluminum braze alloy. Test results obtained on single overlap and hat-stiffened structural specimens show that weld brazed joints are superior in tensile shear, stress rupture, fatigue, and buckling than joint fabricated by spotwelding or brazing. Another attractive feature of the process is that the brazed joints is hermetically sealed by the braze material.

  9. Auto-adjustable pin tool for friction stir welding

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor); Oelgoetz, Peter A. (Inventor)

    1999-01-01

    An auto-adjusting pin tool for friction stir welding is presented wherein the pin tool automatically adjusts for welding materials of varying thicknesses, and the pin can be incrementally withdrawn from the workpieces thus eliminating any crater or keyhole in the weld. The inventive apparatus is comprised of a welding head housing a motor connected to a controller instrument package and an arbor supported by bearings. The arbor forms an interior cylinder and is encircled by a stationary slip ring though which are ported hydraulic passageways into the interior cylinder of the arbor such that a piston housed therein may be moved axially. Coupled to the piston is a pin tool which is treaded on its lower end and which is moveably seated in, and extending through, a shoulder housing having concave lower face. When welding, the rotating treaded end of the pin enters and stirs the workpieces while the lower face of the shoulder housing compacts the workpieces. As the welding head traverses the shoulder housing the controller senses any rising pressure on the lower face of the shoulder housing and withdraws the arbor to keep the pressure constant. At the same time, the piston moves towards the workpieces thus extending the pin further from the shoulder. This keeps the pin at a proper depth in the workpieces regardless of their thicknesses. As the weld terminates this same operation can be used to incrementally withdraw the pin during the final part of the traverse, thus eliminating any keyhole or crater that would otherwise be created.

  10. Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels

    SciTech Connect

    Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

    2007-06-06

    It was desired to assemble thick-walled Al alloy 2219 pressure vessels by bobbin-tool friction-stir welding. To develop the welding-process, mechanical-property, and fitness-for-service information to support this effort, extensive friction-stir welding-parameter studies were conducted on 2.5 cm. and 3.8 cm. thick 2219 Al alloy plate. Starting conditions of the plate were the fully-heat-treated (-T62) and in the annealed (-O) conditions. The former condition was chosen with the intent of using the welds in either the 'as welded' condition or after a simple low-temperature aging treatment. Since preliminary stress-analyses showed that stresses in and near the welds would probably exceed the yield-strength of both 'as welded' and welded and aged weld-joints, a post-weld solution-treatment, quenching, and aging treatment was also examined. Once a suitable set of welding and post-weld heat-treatment parameters was established, the project divided into two parts. The first part concentrated on developing the necessary process information to be able to make defect-free friction-stir welds in 3.8 cm. thick Al alloy 2219 in the form of circumferential welds that would join two hemispherical forgings with a 102 cm. inside diameter. This necessitated going to a bobbin-tool welding-technique to simplify the tooling needed to react the large forces generated in friction-stir welding. The bobbin-tool technique was demonstrated on both flat-plates and plates that were bent to the curvature of the actual vessel. An additional issue was termination of the weld, i.e. closing out the hole left at the end of the weld by withdrawal of the friction-stir welding tool. This was accomplished by friction-plug welding a slightly-oversized Al alloy 2219 plug into the termination-hole, followed by machining the plug flush with both the inside and outside surfaces of the vessel. The second part of the project involved demonstrating that the welds were fit for the intended service. This

  11. Effect of Weld Tool Geometry on Friction Stir Welded Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Querin, Joseph A.; Schneider, Judy A.

    2008-01-01

    In this study, flat 0.250" thick Ti-6Al-4V panels were friction stir welded (FSWed) using weld tools with tapered pins. The five different pin geometries of the weld tools included: 0 degree (straight cylinder), 15 degree, 30 degree, 45 degree, and 60 degree angles on the frustum. All weld tools had a smooth 7 degree concave shoulder and were made from microwave sintered tungsten carbide. For each weld tool geometry, the FSW process parameters were optimized to eliminate internal defects. All the welds were produced in position control with a 2.5 degree lead angle using a butt joint configuration for the panels. The process parameters of spindle rpm and travel speed were varied, altering the hot working conditions imparted to the workpiece. Load cells on the FSWing machine allowed for the torque, the plunge force, and the plow force to be recorded during welding. Resulting mechanical properties were evaluated from tensile tests results of the FSWjoints. Variations in the material flow were investigated by use of microstructural analysis including optical microscopy (OM), scanning electron microscopy (SEM), and orientation image mapping (aIM).

  12. NDE of Friction Stir Welds in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.; Aldahir, Esma

    2002-01-01

    Friction Stir Welding (FSW) is a solid state joining process, which utilizes a cylindrical, shouldered pin tool with a radiused tip that is rotated and plunged into the weld joint. Frictional heating beneath the shoulder, and surrounding the pin tip causes the material to plasticize, intermix and consolidate into a weldment without melting the parent material. FSW in aluminum alloys has many advantages such as low distortion and shrinkage, excellent mechanical properties, and no porosity. However, the propensity of the FSW process to create detrimental defects does exist, and is dependent on FSW parameter limits and controls. Inspection processes for FSW must also be selected and implemented concurrent with the new weld process. This paper describes the efforts by Lockheed Martin and NASA to find proper NDE techniques for detecting and characterizing the anomalies that may be caused by operating outside the envelope of optimized FSW parameters. Potential defects are identified and the results of the exploration of numerous NDE techniques including visual, liquid penetrant, multiple ultrasonic methods, eddy current and conductivity are discussed.

  13. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    DOE PAGES

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; ...

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the sizemore » of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.« less

  14. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    SciTech Connect

    Mazumder, Baishakhi; Yu, Xinghua; Edmondson, Philip D.; Parish, Chad M.; Miller, Michael K; Meyer, H. M.; Feng, Zhili

    2015-12-08

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygenenriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  15. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    NASA Astrophysics Data System (ADS)

    Mazumder, B.; Yu, X.; Edmondson, P. D.; Parish, C. M.; Miller, M. K.; Meyer, H. M.; Feng, Z.

    2016-02-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  16. Preliminary Study of a Pull Plug Friction Weld

    NASA Technical Reports Server (NTRS)

    Buchanan, George R.

    1999-01-01

    A pull plug friction weld, simply defined, comprises inserting a rotating cone-shaped cylinder into a somewhat cone-shaped hole in a plate. The rotating plug makes contact with the edge of the plate and the resulting friction generates heat. The temperature of the plate material eventually reaches a magnitude that will cause the plate material at the edge of the hole to flow. This can be termed a temperature dependent plastic flow. The rotation of the plug is terminated, additional pressure is applied and the metal at the interface of the two materials cools and welding occurs. This preliminary study addresses only three aspects of a complete analysis that is multi-faceted. The transient temperature distribution for different pull plug configurations has been studied in some detail even though the initial conditions and boundary conditions may still be deemed tentative. The stress distribution within the pull plug caused by the heating pressure was studied along with a preliminary analysis of the thermoelastic stress distribution caused by friction heating. There are no definitive results for the stress analysis. Additional study will be required.

  17. Friction Stir Welded Thin Wall Cryogenic Tank Skins

    NASA Astrophysics Data System (ADS)

    Potter, David M.; Takeshita, Jennifer A.; Holguin, Michael J.

    2007-01-01

    A cryogenic propellant tank is the common element of trans-planetary transportation systems, in-space storage depots, lunar landers, in-space habitats/laboratories, ascent/descent, and launch vehicles. Lockheed Martin's (LM) cryogenic tank approach integrates Friction Stir Welding (FSW) with thin-gage aluminum monocoque structural design, common spin formed FSW domes and variable tank lengths to tailor the cryogenic tank from smaller stages, such as landers or ascent/descent stages, to very large on-orbit or In Space Resource Utilization (ISRU) storage systems. Thin gage corrosion resistant steel (CRES) construction combined with normal fusion welding as used on LM's Centaur has already been demonstrated to provide the highest cryogenic tank mass fraction (~.90) for large scale, cryogenic propellant storage. However, current fusion welding technology is limited by the alloys that are considered weldable and typically achieves only 50% of the parent material ultimate strength at the weld joint. Preliminary LM technology development indicates that in certain aluminum alloys, the FSW joint retains up to 100% of the parent material ultimate strength at LH2 temperatures. Combining FSW and aluminum monocoque tank design would create a large scale cryogenic tank with a mass fraction in excess of the current industry standard and therefore is ideal for affordable, reliable, high capacity propellant storage required for all facets of space exploration.

  18. HEAT INPUT AND POST WELD HEAT TREATMENT EFFECTS ON REDUCED-ACTIVATION FERRITIC/MARTENSITIC STEEL FRICTION STIR WELDS

    SciTech Connect

    Tang, Wei; Chen, Gaoqiang; Chen, Jian; Yu, Xinghua; Frederick, David Alan; Feng, Zhili

    2015-01-01

    Reduced-activation ferritic/martensitic (RAFM) steels are an important class of structural materials for fusion reactor internals developed in recent years because of their improved irradiation resistance. However, they can suffer from welding induced property degradations. In this paper, a solid phase joining technology friction stir welding (FSW) was adopted to join a RAFM steel Eurofer 97 and different FSW parameters/heat input were chosen to produce welds. FSW response parameters, joint microstructures and microhardness were investigated to reveal relationships among welding heat input, weld structure characterization and mechanical properties. In general, FSW heat input results in high hardness inside the stir zone mostly due to a martensitic transformation. It is possible to produce friction stir welds similar to but not with exactly the same base metal hardness when using low power input because of other hardening mechanisms. Further, post weld heat treatment (PWHT) is a very effective way to reduce FSW stir zone hardness values.

  19. Analysis of ripple formation in single crystal spot welds

    NASA Technical Reports Server (NTRS)

    Rappaz, M.; Corrigan, D.; Boatner, L. A.

    1997-01-01

    Stationary spot welds have been made at the (001) surface of Fe-l5%Ni-15%Cr single crystals using a Gas Tungsten Arc (GTA). On the top surface of the spot welds, very regular and concentric ripples were observed after solidification by differential interference color microscopy. Their height (typically 1--5 micrometers and spacing, typically approximately 60 micrometers) decreased with the radius of the pool. These ripples were successfully accounted for in terms of capillary-wave theory using the fundamental mode frequency f(sub 0) given by the first zero of the zero-order Bessel function. The spacing d between the ripples was then equated to v(sub s)/f(sub 0), where v(sub s) is the solidification rate. From the measured ripple spacing, the velocity of the pool was deduced as a function of the radius, and this velocity was in good agreement with the results of a heat-flow simulation.

  20. Investigation of Machine Design for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1996-01-01

    The process of joining two pieces of metal together has not significantly changed over the last few decades. The basic idea used is to bring the pieces together and apply enough heat to melt the metal at the interface. The molten metal mixes and after cooling forms a strong joint. This process is called the fusion process. The most significant difference between the many fusion processes is how the heat is generated and applied. The Welding Institute (TWI), in Great Britain, has recently patented an innovative application of mechanical friction. TWI designed a tool and process called Friction Stir Welding (FSW) that uses friction to heat the metal to within a few hundred degrees Fahrenheit of melting, just to the point of being plastic-like. The tool then stirs the plasticized metal together forming a joint that has been shown to be as good or better than an equivalent fusion joint. The FSW process is well suited for the joining of the aluminum alloys used in the aerospace industry. The relatively low melting point of aluminum eliminates the requirements for exotic materials for pin tool design. The FSW process has been successfully used to join alloys such as 7075 which were before considered "unweldable", and aluminum-lithium 2195 which exhibits many problems when fusion welded. The objective this summer was to investigate the design of a FSW system that could take this process from the laboratory to the manufacturing floor. In particular, it was the goal of my NASA colleague to develop a concept for applying the FSW process to the manufacturing of aluminum cryogenic oxygen and hydrogen tanks, of the sort used to make the Shuttle External Tank.

  1. Effects of Laser Peening, and Shot Peening, on Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Hackel, Lloyd; Rankin, Jon; Truong, Chanh; Walter, Matt

    2006-01-01

    A viewgraph presentation describing the effects of laser peening and shot peening on friction stir welding is shown. The topics include: 1) Background; 2) Friction Stir Welding (FSW); 3) Microstructure; 4) Laser & Shot Peening; 5) Residual Stresses; 6) Tensile Behavior; 7) Fatigue Life & Surface Roughness; 8) Crack Growth; and 9) Benefits.

  2. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    DTIC Science & Technology

    2014-04-11

    Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material...Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel The views, opinions and/or findings contained in this report are...Carpenter Custom 465 precipitation-hardened martensiticstainless steel , linear friction welding, process modeling REPORT DOCUMENTATION PAGE 11

  3. Friction Stir Welding of a Thick Al-Zn-Mg Alloy Plate

    NASA Astrophysics Data System (ADS)

    Buchibabu, V.; Reddy, G. M.; Kulkarni, D.; De, A.

    2016-03-01

    Al-Zn-Mg alloys are widely used as structural materials due to high strength-to-weight ratio and impact toughness. As fusion welds in these alloys commonly face hot cracking and macro porosity, friction stir welding is increasingly becoming the preferred recourse. We report here a detailed experimental study on friction stir welding of a specific Al-Zn-Mg alloy with its chemical compositions close to AA7039. The effect of tool rotational speed and welding speed on the weld profile, joint microstructure, and mechanical properties is studied extensively. The results show sound weld profiles and joint properties within the selected range of process conditions. Within the selected range of welding conditions, the welds made at a tool rotational speed of 350 rpm and welding speed of 3 mm/s have showed joint structure, tensile, and impact toughness properties fairly close to that of the base material.

  4. Oxide Evolution in ODS Steel Resulting From Friction Stir Welding

    DTIC Science & Technology

    2014-06-01

    Master’s Thesis 4 . TITLE AND SUBTITLE OXIDE EVOLUTION IN ODS STEEL RESULTING FROM FRICTION STIR WELDING 5. FUNDING NUMBERS 6 . AUTHOR(S...temperatures, from [5]. ........... 6   Figure 4 .  The phase diagram for aluminum and yttrium oxide, from [13]. ......................8  Figure 5...millimeters per minute. FSW Conditions RPM IPM MMPM Heat Index 400 7 175 2.3 300 4 100 3 200 2 50 4 400 4 100 4 300 2 50 6 400 2 50 8 500 1 25

  5. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    SciTech Connect

    Ren, Weiju; Feng, Zhili

    2007-08-01

    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  6. Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Russell, Carolyn

    2012-01-01

    Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.

  7. Thermal Performance Evaluation of Friction Stir Welded and Bolted Cold Plates with Al/Cu Interface

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Suresh, M.; Sibi Varshan, M.

    2015-05-01

    An attempt is made to design and fabricate a cold plate with aluminum-copper dissimilar interface joined by friction stir welding. Optimum welding conditions for obtaining sound-quality corner and T joints with an aluminum-copper interface were established. Welded cross sections of the friction stir welded cold plate were analyzed to understand the bonding characteristics. Computational fluid dynamics (CFD) was used to evaluate the fluid-flow characteristics and thermal resistance of friction stir welded cold plate and the resulted are compared with the conventional bolted cold plate configuration. For CFD modeling of a cold plate with a dissimilar interface, a new methodology is proposed. From the CFD analysis and experimental results, it is observed that friction stir welded cold plate offered better thermal performance compared to the bolted cold plate and it is due to the metallurgical bonding at the aluminum-copper interface with the dispersion of copper particles.

  8. Inertia Friction Welding of Dissimilar Superalloys Mar-M247 and LSHR

    NASA Astrophysics Data System (ADS)

    Senkov, Oleg N.; Mahaffey, David W.; Semiatin, S. Lee; Woodward, Christopher

    2014-11-01

    The solid state inertia friction welding (IFW) process was used for the first time to join two dissimilar Ni-based superalloys, LSHR, a powder metallurgy alloy, and Mar-M247, a directionally solidified alloy. Extensive studies of the microstructure, phase composition, re-distribution of the alloying elements between the welded alloys, microhardness, and welding defects were conducted at different distances from the weld interface, and the results were correlated with the loading and friction conditions during IFW. Possible reasons leading to the formation of the welding defects were discussed and directions for the further improvement of the quality of the IFW of these two dissimilar alloys were outlined.

  9. Friction Stir Welding of Large Scale Cryogenic Tanks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Ding, R. Jeffrey

    1998-01-01

    The Marshall Space Flight Center (MSFC) has established a facility for the joining of large-scale aluminum cryogenic propellant tanks using the friction stir welding process. Longitudinal welds, approximately five meters in length, have been made by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and travel system will be described in this presentation along with process controls and real-time data acquisition developed for this application. The approach to retrofitting other large welding tools at MSFC with the friction stir welding process will also be discussed.

  10. IR-based spot weld NDT in automotive applications

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  11. Investigation of influence of friction stir welding regimes on the features of mass transfer and temperature distribution in forming welds

    NASA Astrophysics Data System (ADS)

    Astafurov, S. V.; Shilko, E. V.; Kolubaev, E. A.; Psakhie, S. G.

    2015-10-01

    Computer simulation by the movable cellular automaton method was performed to study the influence of friction stir welding regimes on the features of intensive mass transfer and temperature distribution in forming welded joints. The calculation results showed that there is a range of optimal values of the ratio of the angular velocity to the welding speed which provides sufficient mass transfer to form a welded joint with a minimum volume content of defects. The use of the optimal FSW regimes allows to obtain joints without significant overheating of the welded materials.

  12. Microstructural Investigation of Friction-Stir-Welded 7005 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Xuesong; Lu, Yan; Zheng, Feiyan; Chen, Bin

    2015-11-01

    This paper is aimed to investigate the microstructure of 7005 aluminum sheets joined by friction-stir welding as well as their mechanical properties. Specimens with ten different sets of welding parameters were studied. Tensile test and fracture analysis determined that the joint of the best quality was obtained at the rotation speed of 1000 rpm matching with the travel speed of 200 mm/min, and the travel speed has more impact on the ultimate tensile strength. Optical microscope observation was applied to this high-quality specimen and gave evidence to explaining the formation of the onion ring structure. Electron back-scattered diffraction (EBSD) technique was employed to characterize the textures and revealed the evolution of microstructures during friction stir processing. The EBSD results showed that the grains maintain their original orientations at relatively low deformation while the orientations rotate under increasing strain. Accumulated rotation will turn the textures into mixed shear components, which finally results in grain refinement and contributes to the high quality of the joint.

  13. Study of mechanical joint strength of aluminum alloy 7075-T6 and dual phase steel 980 welded by friction bit joining and weld-bonding under corrosion medium

    DOE PAGES

    Lim, Yong Chae; Squires, Lile; Pan, Tsung-Yu; ...

    2014-12-30

    We have employed a unique solid-sate joining process, called friction bit joining (FBJ), to spot weld aluminum alloy (AA) 7075-T6 and dual phase (DP) 980 steel. Static joint strength was studied in the lap shear tension configuration. In addition, weld-bonding (adhesive + FBJ) joints were studied in order to evaluate the ability of adhesive to mitigate the impact of corrosion on joint properties. Accelerated laboratory cyclic corrosion tests were carried out for both FBJ only and weld-bonding joints. Furthermore, the FBJ only joints that emerged from corrosion testing had lap shear failure loads that were significantly lower than freshly preparedmore » joints. However, weld-bonding specimens retained more than 80% of the lap shear failure load of the freshly prepared weld-bonding specimens. Moreover, examination of joint cross sections confirmed that the presence of adhesive in the weld-bonding joints mitigated the effect of the corrosion environment, compared to FBJ only joints.« less

  14. Manual adjustable probe tool for friction stir welding

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter A. (Inventor); Ding, Jeff (Inventor)

    2000-01-01

    A friction stir welding tool is provided generally comprising three parts: a rotatable welding tool body (22) that has an outer threaded surface (32) and a probe (24) extending from a distal end of the body, a shoulder (26), which has a threaded inner surface (40) and a bore (36) at a distal end of the shoulder, and a jam nut (28), which has a threaded inner surface (42). The shoulder is threaded onto the tool body such that the probe extends from the shoulder through the bore by a preferred length. The jam nut is then threaded onto the tool body to secure the shoulder. The tool is operatively connected to a drive motor for rotating the tool body. The shoulder may include a knife edge projecting from the distal end (38) thereof adjacent the bore. The knife edge inhibits the weld material from migrating along the probe to intrude inside the shoulder, where it may prevent separation of the tool body and the shoulder when readjustment of the tool is necessary.

  15. Springback evaluation of friction stir welded TWB automotive sheets

    NASA Astrophysics Data System (ADS)

    Kim, Junehyung; Lee, Wonoh; Chung, Kyung-Hwan; Kim, Daeyong; Kim, Chongmin; Okamoto, Kazutaka; Wagoner, R. H.; Chung, Kwansoo

    2011-02-01

    Springback behavior of automotive friction stir welded TWB (tailor welded blank) sheets was experimentally investigated and the springback prediction capability of the constitutive law was numerically validated. Four automotive sheets, aluminum alloy 6111-T4, 5083-H18, 5083-O and dual-phase DP590 steel sheets, each having one or two different thicknesses, were considered. To represent mechanical properties, the modified Chaboche type combined isotropic-kinematic hardening law was utilized along with the non-quadratic orthogonal anisotropic yield function, Yld2000-2d, while the anisotropy of the weld zone was ignored for simplicity. For numerical simulations, mechanical properties previously characterized [1] were applied. For validation purposes, three springback tests including the unconstrained cylindrical bending, 2-D draw bending and OSU draw-bend tests were carried out. The numerical method performed reasonably well in analyzing all verification tests and it was confirmed that the springback of TWB as well as of base samples is significantly affected by the ratio of the yield stress with respect to Young's modulus and thickness.

  16. Weld Bead Size, Microstructure and Corrosion Behavior of Zirconium Alloys Joints Welded by Pulsed Laser Spot Welding

    NASA Astrophysics Data System (ADS)

    Cai, Chuang; Li, Liqun; Tao, Wang; Peng, Genchen; Wang, Xian

    2016-09-01

    Pulsed laser spot welding of intersection points of zirconium alloys straps was performed. Weld bead size, microstructure and the corrosion behavior of weld bead were investigated. With the increasing laser peak power or number of shots, the weld width of the beads increased, the protrusion decreased and the dimple increased with further increase in heat input. The fusion zone consisted of a mixture of αZr and residual βZr phases. After annealing treatment, βNb and Zr(Fe, Nb)2 second phase particles were precipitated inter- and intragranular of αZr grains adequately. The oxide thickness of annealed weld bead was about 3.90 μm, decreased by about 18.1% relative to the 4.76 μm of as-welded specimen corroded at 400 °C and 10.3 MPa for 20 days. The corrosion resistance of annealed specimen was better than that of as-welded specimen, since the second phase particles exerted better corrosion resistance, and the content of Nb in βZr and the fraction of βZr decreased after the annealing treatment.

  17. Counterrotating-Shoulder Mechanism for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2007-01-01

    A counterrotating-shoulder mechanism has been proposed as an alternative to the mechanism and fixtures used in conventional friction stir welding. The mechanism would internally react most or all of the forces and torques exerted on the workpiece, making it unnecessary to react the forces and torques through massive external fixtures. In conventional friction stir welding, a rotating pin tool is inserted into, and moved along, a weld seam. As the pin tool moves, it stirs together material from the opposite sides of the seam to form the weld. A large axial plunge force must be exerted upon the workpiece through and by the pin tool and a shoulder attached above the pin tool in order to maintain the pressure necessary for the process. The workpiece is secured on top of an anvil, which supports the workpiece against the axial plunge force and against the torque exerted by the pin tool and shoulder. The anvil and associated fixtures must be made heavy (and, therefore, are expensive) to keep the workpiece stationary. In addition, workpiece geometries must be limited to those that can be accommodated by the fixtures. The predecessor of the proposed counterrotating-shoulder mechanism is a second-generation, self-reacting tool, resembling a bobbin, that makes it possible to dispense with the heavy anvil. This tool consists essentially of a rotating pin tool with opposing shoulders. Although the opposing shoulders maintain the necessary pressure without need to externally apply or react a large plunge force, the torque exerted on the workpiece remains unreacted in the absence of a substantial external fixture. Depending on the RPM and the thickness of the workpiece, the torque can be large. The proposed mechanism (see figure) would include a spindle attached to a pin tool with a lower shoulder. The spindle would be coupled via splines to the upper one of three bevel gears in a differential drive. The middle bevel gear would be the power-input gear and would be coupled to the

  18. Radiographic detection of defects in friction stir welding on aluminum alloy AMg5M

    SciTech Connect

    Tarasov, Sergei Yu. Kolubaev, Evgeny A.; Rubtsov, Valery E.

    2014-11-14

    In order to reveal weld defects specific to friction stir welding we undertook radiographic inspection of AMg5M aluminum alloy welded joints. Weld defects in the form of voids have been revealed in the weld obtained under the non-optimal rotation and feed rate. Both shape and size of these defects have been confirmed by examining metallographically successive sections prepared in the weld plane as well as in the plane transversal to the tool feed direction. Linear defects have been also found in the sections that are not seen in the radiographic images. Both the preferable localization and origination of the defects have been analyzed.

  19. Fundamental Study of Material Flow in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Reynolds, Anthony P.

    1999-01-01

    The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied

  20. Finite element based simulation on friction stud welding of metal matrix composites to steel

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Tharmaraj, R.; Velu, P. Shenbaga; Kumar, R.

    2016-05-01

    Friction welding is a solid state joining technique used for joining similar and dissimilar materials with high integrity. This new technique is being successfully applied to the aerospace, automobile, and ship building industries, and is attracting more and more research interest. The quality of Friction Stud Welded joints depends on the frictional heat generated at the interface. Hence, thermal analysis on friction stud welding of stainless steel (AISI 304) and aluminium silicon carbide (AlSiC) combination is carried out in the present work. In this study, numerical simulation is carried out using ANSYS software and the temperature profiles are predicted at various increments of time. The developed numerical model is found to be adequate to predict temperature distribution of friction stud weld aluminium silicon carbide/stainless steel joints.

  1. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    NASA Astrophysics Data System (ADS)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  2. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Chamanfar, Ahmad; Jahazi, Mohammad; Cormier, Jonathan

    2015-04-01

    Inertia and linear friction welding are being increasingly used for near-net-shape manufacturing of high-value materials in aerospace and power generation gas turbines because of providing a better quality joint and offering many advantages over conventional fusion welding and mechanical joining techniques. In this paper, the published works up-to-date on inertia and linear friction welding of Ni-based superalloys are reviewed with the objective to make clarifications on discrepancies and uncertainties reported in literature regarding issues related to these two friction welding processes as well as microstructure, texture, and mechanical properties of the Ni-based superalloy weldments. Initially, the chemical composition and microstructure of Ni-based superalloys that contribute to the quality of the joint are reviewed briefly. Then, problems related to fusion welding of these alloys are addressed with due consideration of inertia and linear friction welding as alternative techniques. The fundamentals of inertia and linear friction welding processes are analyzed next with emphasis on the bonding mechanisms and evolution of temperature and strain rate across the weld interface. Microstructural features, texture development, residual stresses, and mechanical properties of similar and dissimilar polycrystalline and single crystal Ni-based superalloy weldments are discussed next. Then, application of inertia and linear friction welding for joining Ni-based superalloys and related advantages over fusion welding, mechanical joining, and machining are explained briefly. Finally, present scientific and technological challenges facing inertia and linear friction welding of Ni-based superalloys including those related to modeling of these processes are addressed.

  3. Tool for Two Types of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert

    2006-01-01

    A tool that would be useable in both conventional and self-reacting friction stir welding (FSW) has been proposed. The tool would embody both a prior tooling concept for self-reacting FSW and an auto-adjustable pin-tool (APT) capability developed previously as an augmentation for conventional FSW. Some definitions of terms are prerequisite to a meaningful description of the proposed tool. In conventional FSW, depicted in Figure 1, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a rotating pin that protrudes from the shoulder into the depth of the workpiece. The main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional FSW is augmented with an APT capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or force-control system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding (SR-FSW), there are two rotating shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft, back into the FSW machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. A tool for SRFSW embodying this concept was reported in "Mechanism for Self-Reacted Friction Stir Welding" (MFS-31914), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 53. In its outward appearance, the proposed tool (see Figure 2) would fit the above description of an SR

  4. Formation of Oxides in the Interior of Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Chen, Po; Nunes, Arthur C., Jr.

    2016-01-01

    In friction stir welding (FSWing) the actual solid state joining takes place between the faying surfaces which form the weld seam. Thus the seam trace is often investigated for clues when the strength of the weld is reduced. Aluminum and its alloys are known to form a native, protective oxide on the surface. If these native surface oxides are not sufficiently broken up during the FSW process, they are reported to remain in the FSW interior and weaken the bond strength. This type of weld defect has been referred to as a lazy "S", lazy "Z", joint line defect, kissing bond, or residual oxide defect. Usually these defects are mitigated by modification of the process parameters, such as increased tool rotation rate, which causes a finer breakup of the native oxide particles. This study proposes that there may be an alternative mechanism for formation of oxides found within the weld nugget. As the oxidation rate increases at elevated temperatures above 400ºC, it may be possible for enhanced oxidation to occur on the interior surfaces during the FSW process from entrained air entering the seam gap. Normally, FSWs of aluminum alloys are made without a purge gas and it is unknown how process parameters and initial fit up could affect a potential air path into the interior during the processing. In addition, variations in FSW parameters, such as the tool rotation, are known to have a strong influence on the FSW temperature which may affect the oxidation rate if internal surfaces are exposed to entrained air. A series of FSWs were made in 3 different thickness panels of AA2219 (0.95, 1.27 and 1.56 cm) at 2 different weld pitches. As the thickness of the panels increased, there was an increased tendency for a gap to form in advance of the weld tool. If sufficient air is able to enter the workpiece gap prior to consolidation, the weld temperature can increase the oxidation rate on the interior surfaces. These oxidation rates would also be accelerated in areas of localized

  5. Thermal analysis of friction welding process in relation to the welding of YSZ-alumina composite and 6061 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Uday, M. B.; Fauzi, M. N. Ahmad; Zuhailawati, H.; Ismail, A. B.

    2012-08-01

    The objective of this work is to establish an analytical data for heat generation by friction welding, based on different parameters of the contact condition between two dissimilar materials. The ceramic composite of Al2O3-YSZ and 6061 Al alloy, which is the example of joining materials by friction welding was used in the experiments. Alumina rods containing 0, 25 and 50 wt% yttria stabilized zirconia were produced by slip casting in Plaster of Paris molds and subsequently sintered at 1600 °C. The diameter of both the ceramic and metal rods was 16 mm. Rotational speeds for friction welding were between 630 and 2500 rpm. As a result, different data was evaluated for obtaining joint properties and operating conditions, and obtained results are useful in modeling the welding process and reliability joint under various conditions.

  6. Loading Considerations for Implementing Friction STIR Welding for Large Diameter Tank Fabrication

    NASA Technical Reports Server (NTRS)

    Adams, Glynn

    1998-01-01

    The main objectives of the research presented here are to determine the reaction loads associated with friction stir welding (FSW) and to determine the suitability of an existing welding fixture for implementing this welding process in the fabrication of large diameter tanks. Friction stir welding is a relatively new process which is being investigated as a method for joining aluminum alloys. The aluminum-lithium alloy, Al-Li 2195, which is being used to fabricate the super-light-weight shuttle external tank has proven difficult to join using fusion techniques. Therefore, FSW and its potential applicability to joining Al-Li 2195 are of particular interest to NASA.

  7. A Micro-Electrochemical Study of Friction Stir Welded Aluminum 6061-T6

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz M.

    2005-01-01

    The corrosion behavior of friction stir welded Aluminum alloy 606 1-T6 was studied using a micro-electrochemical cell. The micro-electrochemical cell has a measurement area of about 0.25 square mm which allows for measurement of corrosion properties at a very small scale. The corrosion and breakdown potentials were measured at many points inside and outside the weld along lines perpendicular to the weld. The breakdown potential is approximately equal inside and outside the weld; however, it is lower in the narrow border between the weld and base material. The results of electrochemical measurements were correlated to micro-structural analysis. The corrosion behavior of the friction stir welded samples was compared to tungsten inert gas (TIG) welded samples of the same material.

  8. A study on friction stir welding of 12mm thick aluminum alloy plates

    NASA Astrophysics Data System (ADS)

    Kumar, Deepati Anil; Biswas, Pankaj; Tikader, Sujoy; Mahapatra, M. M.; Mandal, N. R.

    2013-12-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  9. Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints

    SciTech Connect

    Elangovan, K.; Balasubramanian, V.

    2008-09-15

    This paper reports on studies of the influences of various post-weld heat treatment procedures on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Rolled plates of 6-mm thick AA6061 aluminum alloy were used to fabricate the joints. Solution treatment, an artificial aging treatment and a combination of both were given to the welded joints. Tensile properties such as yield strength, tensile strength, elongation and joint efficiency were evaluated. Microstructures of the welded joints were analyzed using optical microscopy and transmission electron microscopy. A simple artificial aging treatment was found to be more beneficial than other treatment methods to enhance the tensile properties of the friction stir-welded AA6061 aluminum alloy joints.

  10. Metal cutting analogy for establishing Friction Stir Welding process parameters

    NASA Astrophysics Data System (ADS)

    Stafford, Sylvester Allen

    A friction stir weld (FSW) is a solid state joining operation whose processing parameters are currently determined by lengthy trial and error methods. To implement FSWing rapidly in various applications will require an approach for predicting process parameters based on the physics of the process. Based on hot working conditions for metals, a kinematic model has been proposed for calculating the shear strain and shear strain rates during the FSW process, validation of the proposed model with direct measuring is difficult however. Since the shear strain and shear strain rates predicted for the FSW process, are similar to those predicted in metal cutting, validation of the FSW algorithms with microstructural studies of metal chips may be possible leading to the ability to predict FSW processing parameters.

  11. Validation of a Model of Linear Friction Welding of Ti6Al4V by Considering Welds of Different Sizes

    NASA Astrophysics Data System (ADS)

    Schroeder, F.; Ward, R. Mark; Turner, R. P.; Walpole, A. R.; Attallah, M. M.; Gebelin, J.-C.; Reed, R. C.

    2015-10-01

    A model for the linear friction welding of the alloy Ti6Al4V was tested experimentally. Instrumented welds were carried out on rectilinear geometries of various dimensions, and the thermal profiles, upset rates, in-plane forces and subsequent micro hardness were measured for comparison. In particular the effects of weld size perpendicular and parallel to the oscillation were investigated, including a case in which the two sides of the weld had different sizes. The predictions of the model were found to be in good agreement with the experimental results, which provides confirmation that the model is useful for the purposes of design.

  12. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Experimental data has shown that the mass of plug heat sink remaining above the top of the plate surface after a weld is completed (the plug heat sink) affects the bonding at the plug top. A minimized heat sink ensures complete bonding of the plug to the plate at the plug top. However, with a minimal heat sink three major problems can arise, the entire plug could be pulled through the plate hole, the central portion of the plug could be separated along grain boundaries, or the plug top hat can be separated from the body. The Chamfered Heat Sink Pull Plug Design allows for complete bonding along the ISL interface through an outside diameter minimal mass heat sink, while maintaining enough central mass in the plug to prevent plug pull through, central separation, and plug top hat separation.

  13. Laser Welded versus Resistance Spot Welded Bone Implants: Analysis of the Thermal Increase and Strength

    PubMed Central

    Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir

    2014-01-01

    Introduction. The first aim of this “ex vivo split mouth” study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Materials and Methods. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. Results. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Conclusion. Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength. PMID:25110731

  14. Summary of Results of Tests Made by Aluminum Research Laboratories of Spot-welded Joints and Structural Elements

    NASA Technical Reports Server (NTRS)

    HARTMANN E C; Stickley, G W

    1942-01-01

    Available information concerning spot welding as a means of joining aluminum-alloy parts has been summarized and comparisons have been made of the relative merits of spot-welded and riveted aluminum-alloy structural elements. The results indicated that spot welding was as satisfactory as riveting insofar as resistance to static loads is concerned. Spot welds showed slightly lower resistance to impact loads but definitely lower resistance to repeated loads than rivets.

  15. Influence of Processing Parameters on the Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.; Nunes, A. C., Jr.

    2006-01-01

    Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.

  16. Effect of Welding Speeds on Mechanical Properties of Level Compensation Friction Stir Welded 6061-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Wen, Quan; Yue, Yumei; Ji, Shude; Li, Zhengwei; Gao, Shuangsheng

    2016-04-01

    In order to eliminate the flash, arc corrugation and concave in weld zone, level compensation friction stir welding (LCFSW) was put forward and successfully applied to weld 6061-T6 aluminum alloy with varied welding speed at a constant tool rotational speed of 1,800 rpm in the present study. The glossy joint with equal thickness of base material can be attained, and the shoulder affected zone (SAZ) was obviously reduced. The results of transverse tensile test indicate that the tensile strength and elongation reach the maximum values of 248 MPa and 7.1% when the welding speed is 600 mm/min. The microhardness of weld nugget (WN) is lower than that of base material. The tensile fracture position locates at the heat affected zone (HAZ) of the advancing side (AS), where the microhardness is the minimum. The fracture surface morphology represents the typical ductile fracture.

  17. Friction Stir Welding of Thick Section Aluminum for Military Vehicle Applications

    DTIC Science & Technology

    2012-12-01

    production-level, single-pass friction stir welding ( FSW ) parameters for thicknesses ranging from 0.5 to 1.6 inches in aluminum alloys 5083, 5059, and 2139...developing thick section aluminum Friction Stir Welding ( FSW ) for use in aluminum military vehicle applications. The primary objective of this...this demonstration article represents a significant step forward in the acceptance of FSW technology as a viable joining method for aluminum hulled

  18. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  19. The metallurgical and mechanical properties of ODS alloy MA 956 friction welds

    SciTech Connect

    Shinozaki, K.; Kang, C.Y.; Kim, Y.C.; Nakao, Y.; Aritoshi, M.; North, T.H.

    1997-08-01

    The metallurgical and mechanical properties of friction welded MA 956 oxide dispersion strengthened (ODS) iron-based superalloy material were investigated. The mechanical properties of friction welded joints were evaluated using a combination of room temperature and elevated temperature tensile testing and creep rupture testing. The microstructural features and particle characteristics were examined using optical and transmission electron microscopy. The distribution of residual stress in completed joints was analyzed using FEM analysis. The room temperature and elevated temperature tensile strengths of friction welded joints were similar to those of as-received MA 956 base material and, in all cases, failure occurred away from the weld interface. However, the creep rupture properties of friction welded joints were much poorer than those of as-received MA 956 base material. The friction welding operation created low-aspect-ratio, fully recrystallized grains at the joint centerline and substantially altered the oxide particle chemistry, dimensions and shape in the joint region. It is speculated that the coarse, irregularly shaped particles in regions immediately adjacent to the weld interface were produced as a result of a strain-induced agglomeration of small-diameter yttria dispersoids with larger-diameter alumina and Ti(C,N) particles.

  20. Nondestructive, in-process inspection of inertia friction welding : an investigation into a new sensing technique.

    SciTech Connect

    Hartman, D. A.; Cola, M. J.; Dave, V. R.; Dozhier, N. G.; Carpenter, R. W.

    2002-01-01

    This paper investigates the capabilities of a new sensor for in-process monitoring of quality during friction welding. The non-contact sensor is composed of microphones that are mounted in an aluminum ring which surrounds the weld joint. The sensor collects the acoustical energy (in the form of sound pressure) that is emitted during the plastic deformation and phase transformations (if applicable) in friction welding processes. The focus in this preliminary investigation is to search for and identify features within the acoustical emission that are indicative of bond quality. Bar-to-bar inertia friction welding (one form of friction welding) of copper to 304L stainless steel is used in this proof-of-concept study. This material combination exhibits only marginal weldability and is ideally suited for validating the capabilities of this new sensing technique. A probabilistic neural network is employed in this work to analyze the acoustical emission's frequency spectrum in an attempt to classify acceptable, conditional, and unacceptable welds. Our preliminary findings indicate that quality-based process features do exist within the frequency spectrum of the acoustical signature. The results from this analysis are presented. Future work in improving the sensing and interpretation of the data is discussed in an effort to develop a robust method of quality-based, in-process monitoring of friction welds.

  1. Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys

    SciTech Connect

    Chen, Y.C.; Feng, J.C.; Liu, H.J.

    2009-06-15

    Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys was characterized by transmission electron microscopy. In the weld nugget zone and the thermo-mechanically affected zone some metastable precipitates overaged to equilibrium phase while others solutionized into the aluminum solid solution. In the heat-affected zone the precipitates coarsened.

  2. Influence of vibrational treatment on thermomechanical response of material under conditions identical to friction stir welding

    SciTech Connect

    Konovalenko, Ivan S.; Konovalenko, Igor S. Kolubaev, Evgeniy A.; Dmitriev, Andrey I.; Psakhie, Sergey G.

    2015-10-27

    A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.

  3. Influence of vibrational treatment on thermomechanical response of material under conditions identical to friction stir welding

    NASA Astrophysics Data System (ADS)

    Konovalenko, Ivan S.; Konovalenko, Igor S.; Dmitriev, Andrey I.; Psakhie, Sergey G.; Kolubaev, Evgeniy A.

    2015-10-01

    A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.

  4. A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding

    NASA Astrophysics Data System (ADS)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei; Huang, YongAn

    2017-09-01

    Our study aims at developing an effective quality monitoring system in small scale resistance spot welding of titanium alloy. The measured electrical signals were interpreted in combination with the nugget development. Features were extracted from the dynamic resistance and electrode voltage curve. A higher welding current generally indicated a lower overall dynamic resistance level. A larger electrode voltage peak and higher change rate of electrode voltage could be detected under a smaller electrode force or higher welding current condition. Variation of the extracted features and weld quality was found more sensitive to the change of welding current than electrode force. Different neural network model were proposed for weld quality prediction. The back propagation neural network was more proper in failure load estimation. The probabilistic neural network model was more appropriate to be applied in quality level classification. A real-time and on-line weld quality monitoring system may be developed by taking advantages of both methods.

  5. Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.

  6. Hydrogen Regional Infrastructure Program In Pennsylvania Potential Applications of Friction Stir Welding to the Hydrogen Economy

    SciTech Connect

    Brendlinger, Jennifer

    2009-07-17

    Friction Stir Welding (FSW) is a solid-state welding technique developed by The Welding Institute (TWI) of Cambridge, UK in the early 1990’s. The process uses a non-consumable rotating tool to develop frictional heat and plastically deform workpieces to be joined, resulting in a solid-state weld on the trailing side of the advancing tool. Since the materials to be joined are not melted, FSW results in a finer grain structure and therefore enhanced properties, relative to fusion welds. And unlike fusion welding, a relatively small number of key process parameters exist for FSW: tool rotational speed, linear weld velocity and force perpendicular to the joining surface. FSW is more energy efficient than fusion welding and can be accomplished in one or two passes, versus many more passes required of fusion welding thicker workpieces. Reduced post-weld workpiece distortion is another factor that helps to reduce the cost of FSW relative to fusion welding. Two primary areas have been identified for potential impact on the hydrogen economy: FSW of metallic pipes for hydrogen transmission and FSW of aluminum pressure vessels for hydrogen storage. Both areas have been under active development and are explored in this paper.

  7. Joining of 14YWT and F82H by Friction Stir Welding

    SciTech Connect

    Hoelzer, David T; Unocic, Kinga A; Sokolov, Mikhail A; Feng, Zhili

    2013-01-01

    The feasibility of using friction stir welding (FSW) to join specimens of the advanced oxide dispersion strengthened (ODS) 14YWT nanostructured ferritic alloy (NFA) and a plate of F82H tempered martensitic steel (TMS) was investigated. The sample used in the FSW experiment consisted of spot welding four specimens 14YWT prepared from prior tested dual notch fracture toughness bend bars in a corresponding slot that was machined in the F82H plate. The FSW run was successfully performed on the sample using a polycrystalline boron nitride tool (PCBN) that resulted in joints showing good bonding between butt joints of 14YWT specimens and 14YWT specimens and F82H plate. The joints were characterized by light microscopy and SEM analysis and were observed to be relatively narrow in width. The ultra-fine grain size associated with 14YWT increased by a factor of up to 3 while that of F82H was refined by a considerable amount in the thermomechanically affected zones (TMAZ) due to FSW. In addition, porosity was observed in the TMAZ of 14YWT on the advancing side of the FSW joint and at the interface between F82H and 14YWT. Vickers hardness (VH) measurements showed a decrease of ~120 VH from ~500 VH (~20% decrease) for 14YWT and an increase of ~220 VH from ~220 VH (~100% increase) for F82H in the FSW zones. Further refinements in the FSW process will be required to minimize defects including porosity.

  8. Weld Growth Mechanisms and Failure Behavior of Three-Sheet Resistance Spot Welds Made of 5052 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yan, Fuyu; Luo, Zhen; Chao, Y. J.; Ao, Sansan; Cui, Xuetuan

    2015-06-01

    This paper investigates the weld nugget formation in three-sheet aluminum alloy resistance spot welding. The nugget formation process in three equal thickness sheets and three unequal thickness sheets of 5052 aluminum alloy were studied. The results showed that the nugget was initially formed at the workpiece/workpiece interfaces (i.e., both upper interface and lower interface). The two small nuggets then grew along the radial direction and axial direction (welding direction) as the welding time increased. Eventually, the two nuggets fused into one large nugget. During the welding process, the Peltier effect between the Cu-Al caused the shift of the nugget in the welding direction. In addition, the mechanical strength and fracture mode of the weld nuggets at the upper and lower interfaces were also studied using tensile shear specimen configuration. Three failure modes were identified, namely interfacial, mixed, and pullout. The critical welding time and critical nugget diameter corresponding to the transitions of these modes were investigated. Finally, an empirical failure load formula for three-sheet weld similar to two-sheet spot weld was developed.

  9. Investigation of Fatigue Crack Propagation in Spot-Welded Joints Based on Fracture Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Hassanifard, S.; Bonab, M. A. Mohtadi; Jabbari, Gh.

    2013-01-01

    In this paper, fatigue crack propagation life of resistance spot welds in tensile-shear specimens is investigated based on the calculation of stress intensity factors and J-integral using three-dimensional finite element method. For comparison, experimental works on 5083-O aluminum alloy spot-welded joints have been carried out to verify the numerical predictions of fatigue crack propagation of welded joints. A lot of analyses have been performed to obtain stress intensity factors and J-integral in tensile-shear specimens of spot-welded joints by using commercial software ANSYS. These gathered data have been formulated by using statistical software SPSS. The results of fatigue propagation life and predicted fatigue crack path revealed very good agreement with the experimental fatigue test data and photograph of cross-section of the fatigued spot-weld specimens.

  10. Effect of cooling rate on microstructure of friction-stir welded AA1100 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yi, D.; Mironov, S.; Sato, Y. S.; Kokawa, H.

    2016-06-01

    In this work, the microstructural changes occurring during cooling of friction-stir welded aluminum alloy AA1100 were evaluated. To this end, friction-stir welding (FSW) was performed in a wide range of cooling rates of 20-62 K/s and the evolved microstructures were studied by using electron backscatter diffraction. Below 0.6 Tm (Tm being the melting point), the stir zone material was found to experience no significant changes during cooling. At higher FSW temperatures, however, notable changes occurred in the welded material, including grain growth, sharpening of texture, reduction of the fraction of high-angle boundaries and material softening.

  11. Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

    PubMed

    Afshari, Aliakbar; Zeidler-Erdely, Patti C; McKinney, Walter; Chen, Bean T; Jackson, Mark; Schwegler-Berry, Diane; Friend, Sherri; Cumpston, Amy; Cumpston, Jared L; Leonard, H Donny; Meighan, Terence G; Frazer, David G; Antonini, James M

    2014-10-01

    Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.

  12. Fully Coupled Thermomechanical Finite Element Analysis of Material Evolution During Friction-Stir Welding of AA5083

    DTIC Science & Technology

    2009-09-03

    clamped welding plates and the associated material and heat transport during a friction-stir welding ( FSW ) process are studied computationally using...cylindrical shoulder) with the clamped welding plates and the associated material and heat transport during a friction-stir welding ( FSW ) process are...computational approach, the analysis is applied to the case of FSW of AA5083 (a solid–solution strengthened and strainhardened/ stabilized Al–Mg wrought alloy

  13. Thermomechanical conditions and stresses on the friction stir welding tool

    NASA Astrophysics Data System (ADS)

    Atthipalli, Gowtam

    Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total

  14. Laser Ablation Cleaning of Self-Reacting Friction Stir Weld Seam Surfaces: A Preliminary Evaluation

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Russell, C. K.; Brooke, S. A.; Parry, Q.; Lowrey, N. M.

    2014-01-01

    Anodized aluminum panels were cleaned by three lasers at three separate sites with a view to determining whether more economical laser cleaning might supplant current manual cleaning methods for preparation of surfaces to be welded by the self-reacting friction stir process. Uncleaned panels yielded welds exhibiting residual oxide defect (ROD) and failing at very low stresses along the trace of the weld seam. Manually cleaned panels yielded welds without ROD; these welds failed at nominal stress levels along an angled fracture surface not following the weld seam trace. Laser cleaned panels yielded welds failing at intermediate stress levels. The inadequacy of the laser cleaning processes leaves questions: Was the anodized aluminum test too stringent to represent actual cleaning requirements? Were the wrong laser cleaning techniques/parameters used for the study? Is the laser cleaning mechanism inadequate for effective preweld surface cleaning?

  15. Dissimilar Al/steel friction stir welding lap joints for automotive applications

    NASA Astrophysics Data System (ADS)

    Campanella, D.; Spena, P. Russo; Buffa, G.; Fratini, L.

    2016-10-01

    A widespread usage of aluminum alloys for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Dissimilar welding of aluminum alloys and steel grades poses some issues concerning the formation of brittle intermetallic compounds, difference in physical and chemical properties of the parent metals, and poor wetting behavior of aluminum. Friction stir welding is considered to be a reasonable solution to obtain sound aluminum/steel joints. A study on the join quality of dissimilar lap joints of steel and aluminum alloy sheets after friction stir welding is proposed here. A low carbon steel is joined with AA6016 aluminum alloy to study preliminarily the feasibility to assembly car-body parts. The joints, welded with tool rotation and feed rate varying in a wide range, have been studied from a visual examination and microstructural point of view. Optical microscopy has been used to characterize the microstructure of the examined sheets in as-received and welded conditions. Micro-hardness measurements have been carried out to quantitatively analyze the local hardness of the welded joints. Set welding process parameters are identified to assemble without the presence of macroscopic defects the examined steel and aluminum welded parts.

  16. Formability of Friction Stir-Welded Blanks with Different Thickness Ratios

    NASA Astrophysics Data System (ADS)

    Kolahgar, Sina; Ghaffarpour, Morteza; Habibi, Niloufar; Kokabi, Amir Hossein; Akbarzadeh, Abbas

    2016-05-01

    Welded sheets with different thicknesses are one of the interesting types of tailor-welded blanks (TWBs) that are widely used in metal-forming industries. In the present work, the formability behavior of different 1100-aluminum TWBs was studied. In this regard, the TWBs were made with different thickness ratios by using friction stir welding (FSW) at different welding rotational speeds ( ω). The thickness ratios of 1.0, 1.3, and 1.7 were investigated where the thinner sheets had 1.5 mm thick for all conditions; i.e., the volume of welded material increased when the thickness ratio increased. Macrostructural observations, mechanical investigations, and sheet-forming limit tests were conducted. The results indicate that increasing ω leads to increasing the weld nugget size up to a maximum level and welding became impossible at higher ω. Furthermore, increasing heat input during FSW, the ultimate tensile strength of welds reduced in comparison with the initial cold-worked base metal. However, the ductility improved by increasing the heat input, which produced the sound welds. Formability studies of the friction stir-welded blanks with equal thicknesses have shown that the forming ratio improves up to 2.8 times the base metal. Forming limit curves also illustrate that increasing the thickness ratio of TWB causes the formability ratio to decrease steadily. Thus, when the thickness ratio becomes 1.7, the formability of TWB decreases approximately to the thinnest base metal.

  17. Fatigue Behavior of Friction Stir-Welded Joints Repaired by Grinding

    NASA Astrophysics Data System (ADS)

    Vidal, C.; Infante, V.

    2014-04-01

    Fatigue is undoubtedly the most important design criterion in aeronautic structures. Although friction stir-welded joints are characterized by a high mechanical performance, they can enclose some defects, especially in their root. These defects along with the relatively low residual stresses of the friction stir-welding thermomechanical cycle can turn into primary sources of crack initiation. In this context, this article deals with the fatigue behavior of friction stir-welded joints subjected to surface smoothing by grinding improvement technique. The 4-mm-thick aluminum alloy 2024-T351 was used in this study. The fatigue strength of the base material, joints in the as-welded condition, and the sound and defective friction stir-welded joints improved by grinding were investigated in detail. The tests were carried out with a constant amplitude loading and with a stress ratio of R = 0. The fatigue results show that an improvement in fatigue behavior was obtained in the joints repaired by superficial grinding technique. The weld grinding technique is better especially for lower loads and increases the high cycle fatigue strength. The fatigue strength of the improved welded joints was higher than that of the base material.

  18. Multiple pass and multiple layer friction stir welding and material enhancement processes

    DOEpatents

    Feng, Zhili [Knoxville, TN; David, Stan A [Knoxville, TN; Frederick, David Alan [Harriman, TN

    2010-07-27

    Processes for friction stir welding, typically for comparatively thick plate materials using multiple passes and multiple layers of a friction stir welding tool. In some embodiments a first portion of a fabrication preform and a second portion of the fabrication preform are placed adjacent to each other to form a joint, and there may be a groove adjacent the joint. The joint is welded and then, where a groove exists, a filler may be disposed in the groove, and the seams between the filler and the first and second portions of the fabrication preform may be friction stir welded. In some embodiments two portions of a fabrication preform are abutted to form a joint, where the joint may, for example, be a lap joint, a bevel joint or a butt joint. In some embodiments a plurality of passes of a friction stir welding tool may be used, with some passes welding from one side of a fabrication preform and other passes welding from the other side of the fabrication preform.

  19. Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints

    NASA Astrophysics Data System (ADS)

    Babu, S.; Elangovan, K.; Balasubramanian, V.; Balasubramanian, M.

    2009-04-01

    AA2219 aluminium alloy (Al-Cu-Mn alloy) has gathered wide acceptance in the fabrication of lightweight structures requiring a high strength-to-weight ratio and good corrosion resistance. In contrast to the fusion welding processes that are routinely used for joining structural aluminium alloys, the friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force etc., and the tool pin profile play a major role in determining the joint strength. An attempt has been made here to develop a mathematical model to predict the tensile strength of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters. A central composite design with four factors and five levels has been used to minimize the number of experimental conditions. The response surface method (RSM) has been used to develop the model. The developed mathematical model has been optimized using the Hooke and Jeeves search technique to maximize the tensile strength of the friction stir welded AA2219 aluminium alloy joints.

  20. Temperature comparison of initial, middle and final point of polypropylene friction stir welded

    NASA Astrophysics Data System (ADS)

    Kusharjanta, Bambang; Raharjo, Wahyu P.; Triyono

    2016-03-01

    Friction Stir Welding is known as a new solid state joining process. This process is applied in thermoplastic polymers material recently. One of member thermoplastic polymer is polypropylene. Polypropylene sheet 6 mm thick was friction stir welded with a cone cut steel pin. Tool rotation, travelling speed, and plunge depth, as welding parameters were 620 rpm, 7.3 mm/minutes and 0.02 mm respectively. Temperature at the initial, middle, and final point of advance side working piece were measured and compared. Measurement were done by thermocouple and recorded by data acquisition. Based on this research, it is concluded that temperature at the initial, middle and final point of friction stir welding process are different. The highest temperature peak reach at the middle point on the advance side which affects face bending strength.

  1. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    NASA Astrophysics Data System (ADS)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) –Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  2. Robust design of spot welds in automotive structures: A decision-making methodology

    NASA Astrophysics Data System (ADS)

    Ouisse, M.; Cogan, S.

    2010-05-01

    Automotive structures include thousands of spot welds whose design must allow the assembled vehicle to satisfy a wide variety of performance constraints including static, dynamic and crash criteria. The objective of a standard optimization strategy is to reduce the number of spot welds as much as possible while satisfying all the design objectives. However, a classical optimization of the spot weld distribution using an exhaustive search approach is simply not feasible due to the very high order of the design space and the subsequently prohibitive calculation costs. Moreover, even if this calculation could be done, the result would not necessarily be very informative with respect to the design robustness to manufacturing uncertainties (location of welds and defective welds) and to the degradation of spot welds due to fatigue effects over the lifetime of the vehicle. In this paper, a decision-making methodology is presented which allows some aspects of the robustness issues to be integrated into the spot weld design process. The starting point is a given distribution of spot welds on the structure, which is based on both engineering know-how and preliminary critical numerical results, in particular criteria such as crash behavior. An over-populated spot weld distribution is then built in order to satisfy the remaining design criteria, such as static torsion angle and modal behavior. Then, an efficient optimization procedure based on energy considerations is used to eliminate redundant spot welds while preserving as far as possible the nominal structural behavior. The resulting sub-optimal solution is then used to provide a decision indicator for defining effective quality control procedures (e.g. visual post-assembly inspection of a small number of critical spot welds) as well as designing redundancy into critical zones. The final part of the paper is related to comparing the robustness of competing designs. Some decision-making indicators are presented to help the

  3. Mechanical Properties, Microstructure and Crystallographic Texture of Magnesium AZ91-D Alloy Welded by Friction Stir Welding (FSW)

    NASA Astrophysics Data System (ADS)

    Kouadri-Henni, A.; Barrallier, L.

    2014-10-01

    The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding. The results led to a better understanding of the relationship between this process and the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures appeared from a base metal without texture in two zones: the thermo-mechanically affected and stir-welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the thermo-mechanically affected zone (TMAZ), which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ.

  4. Friction-Stir Welding of Large Scale Cryogenic Fuel Tanks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S., III; Venable, Richard A.

    1998-01-01

    The Marshall Space Flight Center has established a facility for the joining of large-scale aluminum-lithium alloy 2195 cryogenic fuel tanks using the friction-stir welding process. Longitudinal welds, approximately five meters in length, were made possible by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and the spindle travel system will be described in this paper. Process controls and real-time data acquisition will also be described, and were critical elements contributing to successful weld operation.

  5. Self-Reacting Friction Stir Welding for Aluminum Complex Curvature Applications

    NASA Technical Reports Server (NTRS)

    Brown, Randy J.; Martin, W.; Schneider, J.; Hartley, P. J.; Russell, Carolyn; Lawless, Kirby; Jones, Chip

    2003-01-01

    This viewgraph representation provides an overview of sucessful research conducted by Lockheed Martin and NASA to develop an advanced self-reacting friction stir technology for complex curvature aluminum alloys. The research included weld process development for 0.320 inch Al 2219, sucessful transfer from the 'lab' scale to the production scale tool and weld quality exceeding strenght goals. This process will enable development and implementation of large scale complex geometry hardware fabrication. Topics covered include: weld process development, weld process transfer, and intermediate hardware fabrication.

  6. Ultrasonic-assisted friction stir welding on V95AT1 (7075) aluminum alloy

    NASA Astrophysics Data System (ADS)

    Tarasov, S. Yu.; Rubtsov, V. Ye.; Kolubaev, E. A.; Ivanov, A. N.; Fortuna, S. V.; Eliseev, A. A.

    2015-10-01

    Ultrasonic-assisted friction stir butt welding on aluminum alloy V95AT1 (7075) has been carried out. Samples have been characterized using metallography, microhardness and XRD. As shown, ultrasonic treatment during welding provides extra plasticizing of metal and better stirring efficiency. The latter serves for elimination of defects, such as root flaw and grain refining in the stir zone. The stress state in the welded joint is characterized by tensile stress in the direction of the weld seam centerline and compression in the transversal direction. The ultrasonic treatment was shown to increase the compression stress and relieve the tensile one.

  7. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Rajakumar, S.; Balasubramanian, V.

    2012-06-01

    AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.

  8. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    SciTech Connect

    Klimenov, V. A.; Kurgan, K. A.; Chumaevskii, A. V.; Gnyusov, S. F.

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  9. Effects of Post-Weld Heat Treatment on the Mechanical Properties of Similar- and Dissimilar-Alloy Friction Stir Welded Blanks

    SciTech Connect

    Zadpoor, Amir Abbas; Sinke, Jos

    2011-01-17

    Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.

  10. Friction-Stir Welding - Heavy Inclusions in Bi-metallic welds of Al 2219/2195

    NASA Technical Reports Server (NTRS)

    Rietz, Ward W., Jr.

    2008-01-01

    Heavy Inclusions (HI) were detected for the first time by radiographic examination in aluminum alloy 2219forging/2195plate (advancing/retreating side) Friction Sir Welds (FSW) for the Space Shuttle External Tank (ET) Program. Radiographic HI indications appear as either small (approx.0.005"-0.025") individual particles or clusters of small particles. Initial work was performed to verify that the HI was not foreign material or caused by FSW pin tool debris. That and subsequent elemental analysis determined that the HI were large agglomerations of Al2Cu (theta phase), which is the strengthening precipitate in Al2219. A literature search on that subject determined that the agglomeration of phase has also been found in Al2219 bead on plate FSW [Ref. 1]. Since this was detected in ET space flight hardware, an investigative study of the effect of agglomerated theta phase particles in FSW Al2219f/2195p was performed. Numerous panels of various lengths were welded per ET weld procedures and radiographically inspected to determine if any HI was detected. Areas that had HI were sampled for room temperature and cyclic cryogenic (-423F) tensile testing and determined no significant adverse affect on mechanical properties when compared to test specimens without HI and historical data. Fracture surface examination using the Scanning Electron Microscope (SEM) revealed smaller phase agglomerations undetectable by radiographic inspection dispersed throughout the Al2219f/2195p FSW. This indicates that phase agglomeration is inherent to the Al2219f/2195p FSW process and only rarely creates agglomerations large enough to be detected by radiography. HI has not been observed in FSW of plate to plate material for either Al2219 or AL2195.

  11. Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates

    NASA Astrophysics Data System (ADS)

    Nia, Ali Alavi; Shirazi, Ali

    2016-07-01

    Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the material, which leads to local changes in the mechanical properties of the weld. In this study, the effects of various welding parameters such as the rotational and traverse speeds of the tool on the microstructural and mechanical properties of copper plates were investigated; additionally, Charpy tests were performed on copper plates for the first time. Also, the effect of the number of welding passes on the aforementioned properties has not been investigated in previous studies. The results indicated that better welds with superior properties are produced when less heat is transferred to the workpiece during the welding process. It was also found that although the properties of the stir zone improved with an increasing number of weld passes, the properties of its weakest zone, the heat-affected zone, deteriorated.

  12. The Concept of Electrically Assisted Friction Stir Welding (EAFSW) and Application to the Processing of Various Metals

    DTIC Science & Technology

    2008-09-01

    TZM) 2617 5.2 Good for Al, some success with mild steel , bronze & Ti- 6-4 Steel (SS, tool, mild) -1540 10-70 Good for aluminum alloys Tantalum 2996...lbs. This compares with forces of about 1000 lbs or so for conventional FSW welds in aluminum . With optimization of parameters, a higher weld speed...welding ( FSW ). Since 1991, friction stir welding provides an alternative to arc welding as a metal joining method in numerous applications. In FSW

  13. Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe

    DOE PAGES

    Ronevich, Joseph Allen; Somerday, Brian P.; Feng, Zhili

    2016-11-17

    Friction stir welded steel pipelines were tested in high pressure hydrogen gas to examine the effects of hydrogen accelerated fatigue crack growth. Fatigue crack growth rate (da/dN) vs. stress-intensity factor range (ΔK) relationships were measured for an X52 friction stir welded pipe tested in 21 MPa hydrogen gas at a frequency of 1 Hz and R = 0.5. Tests were performed on three regions: base metal (BM), center of friction stir weld (FSW), and 15 mm off-center of the weld. For all three material regions, tests in hydrogen exhibited accelerated fatigue crack growth rates that exceeded an order of magnitudemore » compared to companion tests in air. Among tests in hydrogen, fatigue crack growth rates were modestly higher in the FSW than the BM and 15 mm off-center tests. Select regions of the fracture surfaces associated with specified ΔK levels were examined which revealed intergranular fracture in the BM and 15 mm off-center specimens but an absence of intergranular features in the FSW specimens. In conclusion, the X52 friction stir weld and base metal tested in hydrogen exhibited fatigue crack growth rate relationships that are comparable to those for conventional arc welded steel pipeline of similar strength found in the literature.« less

  14. Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe

    SciTech Connect

    Ronevich, Joseph Allen; Somerday, Brian P.; Feng, Zhili

    2016-11-17

    Friction stir welded steel pipelines were tested in high pressure hydrogen gas to examine the effects of hydrogen accelerated fatigue crack growth. Fatigue crack growth rate (da/dN) vs. stress-intensity factor range (ΔK) relationships were measured for an X52 friction stir welded pipe tested in 21 MPa hydrogen gas at a frequency of 1 Hz and R = 0.5. Tests were performed on three regions: base metal (BM), center of friction stir weld (FSW), and 15 mm off-center of the weld. For all three material regions, tests in hydrogen exhibited accelerated fatigue crack growth rates that exceeded an order of magnitude compared to companion tests in air. Among tests in hydrogen, fatigue crack growth rates were modestly higher in the FSW than the BM and 15 mm off-center tests. Select regions of the fracture surfaces associated with specified ΔK levels were examined which revealed intergranular fracture in the BM and 15 mm off-center specimens but an absence of intergranular features in the FSW specimens. In conclusion, the X52 friction stir weld and base metal tested in hydrogen exhibited fatigue crack growth rate relationships that are comparable to those for conventional arc welded steel pipeline of similar strength found in the literature.

  15. Mechanical properties and structure of friction stir welds of rolled Zr-modified AA5083 alloy

    NASA Astrophysics Data System (ADS)

    Malopheyev, S.; Mironov, S.; Kaibyshev, R.

    2016-11-01

    Microstructure and mechanical properties of friction stir welds of Zr-modified AA5083 aluminum sheets were studied. The sheets were produced by cold or hot rolling with a total reduction of 80%. In both rolled conditions, the average high angle boundary spacing was 17-18 µm. The density of free dislocations was ˜5.6 × 1013 and ˜3.5 × 1014 m-2 in hot rolled and cold rolled conditions, respectively. The volume fraction of incoherent Al6Mn dispersoids with an average diameter of ˜25 nm was measured to be ˜0.076%. Defect-free welds were produced by double-side friction stir welding (FSW). Friction stir welding led to the formation of fully recrystallized microstructures with the average grain size about 2.5 µm and low dislocation density in the stir zone in both conditions. The average size and volume fraction of Al6Mn particles increased to ˜25 nm and ˜0.1%, respectively. The joint efficiency of the friction stir welds for ultimate tensile strength was found to be 74 and 94% in the cold-rolled and hot-rolled preprocessed material conditions. The relatively low weld strength was attributed to the elimination of dislocation substructure strengthening during FSW.

  16. Effect of welding parameters on the mechanical and microstructural properties of friction stir welded AA- 2014 joints

    NASA Astrophysics Data System (ADS)

    Khan, R.; Bhatty, M. B.; Iqbal, F.; Zaigham, H.; Salam, I.

    2016-08-01

    In this study, the effect of processing parameters on the mechanical and microstructural properties of aluminum AA2014-T6 joints produced by friction stir welding was analyzed. Friction stir welding was carried out on a milling machine. Different samples were produced by varying the tool rotational rates (700, 1000 rpm) and travel speeds (45-105 mm/min). Tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyze the microstructural evolution of the material, the welds’ cross-sections were observed under optical microscope. The results shows that the resulting microstructure is free of defects and tensile strength of the welded joints is upto 75% of the base metal strength.

  17. Control of Structure in Conventional Friction Stir Welds through a Kinematic Theory of Metal Flow

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.A.; Schneider, J.A.; Nunes, A.C.

    2009-01-01

    In friction stir welding (FSW), a rotating pin is translated along a weld seam so as to stir the sides of the seam together. Metal is prevented from flowing up the pin, which would result in plowing/cutting instead of welding, by a shoulder on the pin. In conventional FSW, the weld metal rests on an "anvil", which supports the heavy "plunge" load on the tool. In this study, both embedded tungsten wires along and copper plating on the faying surfaces were used to trace the flow of AA2219 weld metal around the C-FSW tool. The effect of tool rotational speed, travel speed, plunge load, and pin thread pitch on the resulting weld metal flow was evaluated. Plan, longitudinal, and transverse section x-ray radiographs were examined to trace the metal flow paths. The results are interpreted in terms of a kinematic theory of metal flow in FSW.

  18. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Heat Transfer Modeling and Thermal History Analysis

    NASA Astrophysics Data System (ADS)

    Pan, Yi; Lados, Diana A.

    2017-02-01

    Friction stir welding (FSW) is a technique that can be used for materials joining and local microstructural refinement. Owing to the solid-state character of the process, FSW has significant advantages over traditional fusion welding, including reduced part distortion and overheating. In this study, a novel heat transfer model was developed to predict weld temperature distributions and quantify peak temperatures under various combinations of processing parameters for different wrought and cast Al alloys. Specifically, an analytical analysis was first developed to characterize and predict heat generation rate within the weld nugget, and then a two-dimensional (2D) numerical simulation was performed to evaluate the temperature distribution in the weld cross-section and top-view planes. A further three-dimensional (3D) simulation was developed based on the heat generation analysis. The model was validated by measuring actual temperatures near the weld nugget using thermocouples, and good agreement was obtained for all studied materials and conditions.

  19. Influence of the Tool Shoulder Contact Conditions on the Material Flow During Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Doude, Haley R.; Schneider, Judy A.; Nunes, Arthur C.

    2014-09-01

    Friction stir welding (FSWing) is a solid-state joining process of special interest in joining alloys that are traditionally difficult to fusion weld. In order to optimize the process, various numeric modeling approaches have been pursued. Of importance to furthering modeling efforts is a better understanding of the contact conditions between the workpiece and the weld tool. Both theoretical and experimental studies indicate the contact conditions between the workpiece and weld tool are unknown, possibly varying during the FSW process. To provide insight into the contact conditions, this study characterizes the material flow in the FSW nugget by embedding a lead (Pb) wire that melted at the FSWing temperature of aluminum alloy 2195. The Pb trace provided evidence of changes in material flow characteristics which were attributed to changes in the contact conditions between the weld tool and workpiece, as driven by temperature, as the tool travels the length of a weld seam.

  20. Stir Friction Welding Used in Ares I Upper Stage Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are subjected to confidence panel tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  1. Stir Friction Welding Used in Ares I Upper Stage Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  2. Stir Friction Welding Used in Ares I Upper Stage Fabrication

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the preparation and placement of a confidence ring for friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are manufactured and subjected to confidence tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  3. MECHANICAL PROPERTIES AND MICROSTRUCTURAL CHARACTERIZATION OF A MULTILAYERED MULTIPASS FRICTION STIR WELD IN STEEL

    SciTech Connect

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; Qiao, Dongxiao; Wang, Yanli; Zhang, Wei; Feng, Zhili

    2013-01-01

    Multilayered multipass friction stir welding (MM-FSW) makes it possible to use FSW to fabricate thick-section structures. In this work, MM-FSW was demonstrated on a high strength low alloy steel; ASTM A572 Grade 50. Three steel plates with thicknesses of 0.18", 0.18", 0.24" respectively were stacked and friction stir welded together to form a 0.6" thick welded structure. The welded plate was sectioned into rectangular bars transverse to the weld direction for tensile testing to evaluate mechanical properties. Digital image correlation (DIC) was employed to map the local strain fields during tensile testing. The initial failure was found to occur simultaneously at the bottom and middle layers away from the weld zone. The top layer failed last in the base metal. The failure locations were consistent among different samples tested. Also, Charpy V-notch impact tests were conducted for weld metal, heat affected zone, and the base metal at each layer as a function of temperature. The weld microstructures were characterized using optical and electron microscopy and micro-hardness mapping.

  4. Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Yaduwanshi, D. K.; Bag, S.; Pal, S.

    2014-10-01

    The controlled energy input into the system by introducing an extra heat source to enhance the material flow along with reduction of the plunging force remains a potential area of considerate for the development of hybrid friction stir welding (FSW) process. Hence, the effect of preheating on the weld joint properties is evaluated using plasma-assisted friction stir welding (P-FSW) process for joining aluminum alloy. A comparative study of mechanical and macro-microstructural characterizations of weld joint by FSW and P-FSW has been performed. Transverse tensile strength of weld joint is approximately 95% of base metal produced by P-FSW and is 8% more than conventional FSW welds. The effect of preheating enhances material flow and dissolution of fine oxide particles by plasma arc results in increase of strength and marginal modification of deformation behavior. The preheating brings uniformly distributed hardness in weld zone and the magnitude is higher in the advancing side with overall increase in average hardness value. Grain sizes are much finer due to the pinning effect of Al2O3 particles that retarded grain growth following recrystallization during P-FSW and thus led to more pronounced reduction in grain size and relatively brittle fracture during tensile loading of welded joint. Overall, the influence of preheating acts quite homogeneously throughout the structure as compared to conventional FSW. However, the results reveal that the development of P-FSW is still in initial stage and needs to improve in various aspects.

  5. Microstructural Characteristics and Mechanical Properties of 7050-T7451 Aluminum Alloy Friction Stir-Welded Joints

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Wang, T.; Zhou, W. L.; Li, Z. Y.; Huang, Y. X.; Feng, J. C.

    2016-06-01

    The ultra-high-strength Al-Zn-Mg-Cu alloy, 7050-T7451, was friction stir welded at a constant tool rotation speed of 600 rpm. Defect-free welds were successfully obtained at a welding speed of 100 mm/min, but lack-of-penetration defect was formed at a welding speed of 400 mm/min. The as-received material was mainly composed of coarse-deformed grains with some fine recrystallized grains. Fine equiaxed, dynamic, recrystallized grains were developed in the stir zone, and elongated grains were formed in the thermomechanically affected zone with dynamic recovered subgrains. Grain sizes in different regions of friction stir-welded joints varied depending on the welding speed. The sizes and distributions of precipitates changed in different regions of the joint, and wider precipitation free zone was developed in the heat-affected zone compared to that in the base material. Hardness of the heat-affected zone was obviously lower than that of the base material, and the softening region width was related to the welding speed. The tensile strength of the defect-free joints increased with the increasing welding speed, while the lack-of-penetration defect greatly reduced the tensile strength. The tensile fracture path was significantly influenced by the position and orientation of lack-of-penetration defect.

  6. Effect of Initial Microstructure on the Microstructural Evolution and Joint Efficiency of a WE43 Alloy During Friction Stir Welding

    DTIC Science & Technology

    2013-04-01

    microstructure during friction stir welding ( FSW ). The overall kinetics of microstructural evolution is location sensitive and the effect of the...determining the spatial and temporal evolution of the microstructure during friction stir welding ( FSW ). The overall kinetics of microstructural...strength, contributing factors and evolution path as a function of alloy chemistry during FSW . The thermal stability of the precipitates strongly

  7. Fatigue Performance of Friction-Stir-Welded Al-Mg-Sc Alloy

    NASA Astrophysics Data System (ADS)

    Zhemchuzhnikova, Daria; Mironov, Sergey; Kaibyshev, Rustam

    2017-01-01

    Fatigue behavior of a friction-stir-welded Al-Mg-Sc alloy was examined in cast and hot-rolled conditions. In both cases, the joints failed in the base material region and therefore the joint efficiency was 100 pct. The specimens machined entirely from the stir zone demonstrated fatigue strength superior to that of the base material in both preprocessed tempers. It was shown that the excellent fatigue performance of friction-stir joints was attributable to the ultra-fine-grained microstructure, the low dislocation density evolved in the stir zone, and the preservation of Al3Sc coherent dispersoids during welding. The formation of such structure hinders the initiation and growth of fatigue microcracks that provides superior fatigue performance of friction-stir welds.

  8. Microstructure of friction stir welded joints of 2017A aluminium alloy sheets.

    PubMed

    Mroczka, K; Dutkiewicz, J; Pietras, A

    2010-03-01

    The present study examines a friction stir welded 2017A aluminium alloy. Transmission electron microscope investigations of the weld nugget revealed the average grain size of 5 microm, moderate density of dislocations as well as the presence of nanometric precipitates located mostly in grains interiors. Scanning electron microscope observations of fractures showed the presence of ductile fracture in the region of the weld nugget with brittle precipitates in the lower part. The microhardness analysis performed on the cross-section of the joints showed fairly small changes; however, after the artificial ageing process an increase in hardness was observed. The change of the joint hardness subject to the ageing process indicates partial supersaturation in the material during friction stir welding and higher precipitation hardening of the joint.

  9. Structure and Hardness of 01570 Aluminum Alloy Friction Stir Welds Processed Under Different Conditions

    NASA Astrophysics Data System (ADS)

    Il'yasov, R. R.; Avtokratova, E. V.; Markushev, M. V.; Predko, P. Yu.; Konkevich, V. Yu.

    2015-10-01

    Structure and hardness of the 01570 aluminum alloy joints processed by friction stir welding at various speeds are investigated. It is shown that increasing the traverse tool speed lowers the probability of macrodefect formation in the nugget zone; however, this can lead to anomalous grain growth in the zone of contact with the tool shoulder. Typical "onion-like" structure of the weld consisting of rings that differ by optical contrast is formed for all examined welding regimes. It is demonstrated that this contrast is caused by the difference in the grain sizes in the rings rather than by their chemical or phase composition. Mechanisms of transformation of the alloy structure during friction stir welding are discussed.

  10. High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui

    2017-02-01

    In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.

  11. High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui

    2017-03-01

    In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.

  12. Microstructure Evolution during Friction Stir Welding of Mill-Annealed Ti-6Al-4V (Preprint)

    DTIC Science & Technology

    2011-05-01

    maximum temperature for the 800 rpm weld. It is noteworthy that during FSW of aluminum alloys, heat loss to the tool as a percentage of heat generated...Approved for public release; distribution unlimited. Pilchak et al. – DRAFT – Page 2 of 44 1. Introduction Friction stir welding ( FSW ), invented in...of its high success for joining aluminum alloys [2-4]. The process features a non-consumable rotating tool with a probe that is plunged into the

  13. Phased Array Ultrasound: Initial Development of PAUT Inspection of Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Rairigh, Ryan

    2008-01-01

    This slide presentation reviews the development of Phased Array Ultrasound (PAUT) as a non-destructive examination method for Self Reacting Friction Stir Welds (SR-FSW). PAUT is the only NDE method which has been shown to detect detrimental levels of Residual Oxide Defect (ROD), which can result in significant decrease in weld strength. The presentation reviews the PAUT process, and shows the results in comparison with x-ray radiography.

  14. Impact resistance and hardness modelling of Aluminium alloy welds using square-headed friction-stir welding tool

    NASA Astrophysics Data System (ADS)

    Sudhakar, U.; Srinivas, J., Dr.

    2016-02-01

    This paper proposes modelling and optimization issues relating to friction-stir welding process of aluminium alloys. A specially prepared SS tool of square headed pin profile with cylindrical shoulder is used with a vertical milling machine. Effects of process variables including tool rotation and tool velocity on the weld performance are studied in terms of impact strength and hardness. Three different rotational motions and three welding speeds (feeds) of tool are considered at constant axial load (depth of cut) condition and altogether nine experiments are conducted on a vertical milling machine with specially prepared fixture. Each weld sample is then tested for its impact strength (IS) and hardness independently. A model is developed to correlate the relations between the hardness/impact strength with tool rotation and weld speed using neural networks. The optimized process conditions are predicted to improvise the impact strength and hardness of the weld. Further, the morphology of the weld is studied using SEM to know the material flow characteristics.

  15. A Study on Tooling and Its Effect on Heat Generation and Mechanical Properties of Welded Joints in Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Tikader, Sujoy; Biswas, Pankaj; Puri, Asit Baran

    2016-06-01

    Friction stir welding (FSW) has been the most attracting solid state welding process as it serves numerous advantages like good mechanical, metallurgical properties etc. Non weldable aluminium alloys like 5XXX, 7XXX series can be simply joined by this process. In this present study a mathematical model has been developed and experiments were successfully performed to evaluate mechanical properties of FSW on similar aluminium alloys i.e. AA1100 for different process parameters and mainly two kind of tool geometry (straight cylindrical and conical or cylindrical tapered shaped pin with flat shoulder). Tensile strength and micro hardness for different process parameters are reported of the welded plate sample. It was noticed that in FSW of similar alloy with tool made of SS-310 tool steel, friction is the major contributor for the heat generation. It was seen that tool geometry, tool rotational speed, plunging force by the tool and traverse speed have significant effect on tensile strength and hardness of friction stir welded joints.

  16. Fatigue Crack Growth in Friction Stir Welded Ti-5111

    DTIC Science & Technology

    2009-02-01

    base plate [3-9]. The FSW weld nugget region in aluminum alloys, steels , and titanium alloys typically consists of very fine equiaxed grains...Unlike FSW aluminum alloys and FSW steels where the transition from base plate microstructure to weld nugget microstructure is gradual and is comprised...through the FSW weld nugget regions also have been reported for FSW HSLA-65 steel and FSW aluminum alloys [3,7,8]. To verify the presence of residual

  17. Simple Models and Methods for Estimating the UltrasonicReflectivity of Spot Welds

    SciTech Connect

    Davis, William B.

    2006-10-15

    This paper describes models and methods for estimating theacoustic reflectivity of the welded interfaces between spot-welded sheetsfrom normal-incidence pulse-echo ultrasound signals. The simple geometryof the problem allows an abstraction that does not resort to complex waveequations. Instead, a reflectivity model predicts the timing andamplitude of the echoes arriving at the probe. This reflectivity model isnested in a signal processing model; recovering reflectivity firstrequires deconvolution to recover discrete impulses from the probesignal, then processing these with the reflectivity model. Reflectivitymaps of spot welds generated with this model show promise for predictingweld quality.

  18. Failure analysis of blistered gold plating on spot welded electrical relays

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold; O'Donnell, Tim

    1989-01-01

    Gold-plated stainless-steel sideplates, part of a JPL Galileo spacecraft electronic-relay assembly, exhibited blistering after resistance spot welding. Unacceptable relays had heavy nonuniform gold electrodeposited layers with thicknesses 4.5-11.5 microns. SEM and metallographic investigations indicated much higher heat input generated during the resistance spot welding in unacceptable relays. The attributes of acceptable welded relays are contrasted with unacceptable relays; the possible mechanism of laminar formation of polymeric material in the gold plating is discussed; and some recommendations are provided to prevent similar problems.

  19. Numerical Simulation of the Friction Stir Welding Process Using Coupled Eulerian Lagrangian Method

    NASA Astrophysics Data System (ADS)

    Iordache, M.; Badulescu, C.; Iacomi, D.; Nitu, E.; Ciuca, C.

    2016-08-01

    Friction Stir Welding (FSW) is a solid state joining process that relies on frictional heating and plastic deformation realized at the interaction between a non-consumable welding tool that rotates on the contact surfaces of the combined parts. The experiments are often time consuming and costly. To overcome these problems, numerical analysis has frequently been used in last years. Several simplified numerical models were designed to elucidate various aspects of the complex thermo-mechanical phenomena associated with FSW. This research investigates a thermo-mechanical finite element model based on Coupled Eulerian Lagrangian method to simulate the friction stir welding of the AA 6082-T6 alloy. Abaqus/cae software is used in order to simulate the welding stage of the Friction Stir Welding process. This paper presents the steps of the numerical simulation using the finite elements method, in order to evaluate the boundary conditions of the model and the geometry of the tools by using the Coupled Eulerian Lagrangian method.

  20. Characterization of Properties in Friction Welded Stainless Steel and Copper Materials

    NASA Astrophysics Data System (ADS)

    Sahin, Mumin; Çıl, Ender; Misirli, Cenk

    2013-03-01

    The aim of this study is to investigate the metallurgical and mechanical properties of friction welded stainless steel-copper joints. One of the manufacturing methods used to produce parts made from different materials is the friction welding method. Application of classical welding techniques to such materials is difficult because of they have different thermal properties. Stainless steel-copper joints are inevitable for certain applications due to unique performances such as higher electric conductivity, heat conductivity, corrosion resistance, and mechanical properties. In the present study, austenitic stainless steel and copper parts were joined by friction welding. Tensile, fatigue, and notch-impact tests were applied to friction welded specimens, and the results were compared with those for the original materials. Microstructure, energy dispersive x-ray, and x-ray diffraction (XRD) analysis and hardness variations were conducted on the joints. Results showed that various intermetallic phases such as FeCu4 and Cu2NiZn occurred at the interface. It was found from the microstructure and XRD analysis that intermetallic phases formed in the interface which further caused a decrease in the strength of the joints. However, hardness of the copper increased slightly, whereas the hardness of steel decreases slightly on the horizontal distance from the center.

  1. Stability of Y–Ti–O precipitates in friction stir welded nanostructured ferritic alloys

    DOE PAGES

    Yu, Xinghua; Mazumder, B.; Miller, M. K.; ...

    2015-01-19

    Nanostructured ferritic alloys, which have complex microstructures which consist of ultrafine ferritic grains with a dispersion of stable oxide particles and nanoclusters, are promising materials for fuel cladding and structural applications in the next generation nuclear reactor. This paper evaluates microstructure of friction stir welded nanostructured ferritic alloys using electron microscopy and atom probe tomography techniques. Atom probe tomography results revealed that nanoclusters are coarsened and inhomogeneously distributed in the stir zone and thermomechanically affected zone. Three hypotheses on coarsening of nanoclusters are presented. Finally, the hardness difference in different regions of friction stir weld has been explained.

  2. Friction stir welding of F82H steel for fusion applications

    NASA Astrophysics Data System (ADS)

    Noh, Sanghoon; Ando, Masami; Tanigawa, Hiroyasu; Fujii, Hidetoshi; Kimura, Akihiko

    2016-09-01

    In the present study, friction stir welding was employed to join F82H steels and develop a potential joining technique for a reduced activation ferritic/martensitic steel. The microstructures and mechanical properties on the joint region were investigated to evaluate the applicability of friction stir welding. F82H steel sheets were successfully butt-joined with various welding parameters. In welding conditions, 100 rpm and 100 mm/min, the stirred zone represented a comparable hardness distribution with a base metal. Stirred zone induced by 100 rpm reserved uniformly distributed precipitates and very fine ferritic grains, whereas the base metal showed a typical tempered martensite with precipitates on the prior austenite grain boundary and lath boundary. Although the tensile strength was decreased at 550 °C, the stirred zone treated at 100 rpm showed comparable tensile behavior with base metal up to 500 °C. Therefore, friction stir welding is considered a potential welding method to preserve the precipitates of F82H steel.

  3. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint

    SciTech Connect

    Hu, Z.L.; Wang, X.S.; Pang, Q.; Huang, F.; Qin, X.P.; Hua, L.

    2015-01-15

    Friction stir welding is an efficient manufacturing method for joining aluminum alloy and can dramatically reduce grain size conferring excellent plastic deformation properties. Consequently, friction stir welding is used to manufacture tailor welded blanks to optimize weight or performance in the final component. In the study, the microstructural evolution and mechanical properties of friction stir welding joint during plastic forming and subsequent heat treatment were investigated. The microstructural characteristics of the friction stir welding joints were studied by Electron Backscattered Diffraction and Transmission Electron Microscopy. The mechanical properties were evaluated by tensile and microhardness tests. It is found that the tensile and yield strengths of friction stir welding joints are significantly improved after severe plastic deformation due to the grain refinement. Following heat treatment, the strength of the friction stir welding joints significantly decrease due to the obvious abnormal grain growth. Careful attention must be given to the processing route of any friction stir welding joint intended for plastic forming, especially the annealing between forming passes. Severe plastic deforming of the friction stir welding joint leads to a high level of stored energy/dislocation density, which causes the abnormal grain growth during subsequent heat treatment, and consequently reduce the mechanical properties of the friction stir welding joint. - Highlights: • Great changes are observed in the microstructure of FSW joint after postprocessing. • Postprocessing shows great effect on the microstructure stability of FSW joint. • The weld shows more significant decrease in strength than the BM due to the AGG. • Attention must be given to the processing route of FSW joint for plastic forming.

  4. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    SciTech Connect

    Shen, Z.; Chen, Y.; Haghshenas, M.; Nguyen, T.; Galloway, J.; Gerlich, A.P.

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  5. The Role of Friction Stir Welding in Nuclear Fuel Plate Fabrication

    SciTech Connect

    D Burkes; P Medvedev; M Chapple; A Amritkar; P Wells; I Charit

    2009-02-01

    The friction bonding process combines desirable attributes of both friction stir welding and friction stir processing. The development of the process is spurred on by the need to fabricate thin, high density, reduced enrichment fuel plates for nuclear research reactors. The work seeks to convert research and test reactors currently operating on highly enriched uranium fuel to operate on low enriched uranium fuel without significant loss in reactor performance, safety characteristics, or significant increase in cost. In doing so, the threat of global nuclear material proliferation will be reduced. Feasibility studies performed on the process show that this is a viable option for mass production of plate-type nuclear fuel. Adapting the friction stir weld process for nuclear fuel fabrication has resulted in the development of several unique ideas and observations. Preliminary results of this adaptation and process model development are discussed.

  6. An Effective Approach Based on Response Surface Methodology for Predicting Friction Welding Parameters

    NASA Astrophysics Data System (ADS)

    Celik, Sare; Deniz Karaoglan, Aslan; Ersozlu, Ismail

    2016-03-01

    The joining of dissimilar metals is one of the most essential necessities of industries. Manufacturing by the joint of alloy steel and normal carbon steel is used in production, because it decreases raw material cost. The friction welding process parameters such as friction pressure, friction time, upset pressure, upset time and rotating speed play the major roles in determining the strength and microstructure of the joints. In this study, response surface methodology (RSM), which is a well-known design of experiments approach, is used for modeling the mathematical relation between the responses (tensile strength and maximum temperature), and the friction welding parameters with minimum number of experiments. The results show that RSM is an effective method for this type of problems for developing models and prediction.

  7. Use of Friction Stir Welding and Friction Stir Processing for Advanced Nuclear Fuels and Materials Joining Applications

    SciTech Connect

    J. I. Cole; J. F. Jue

    2006-06-01

    Application of the latest developments in materials technology may greatly aid in the successful pursuit of next generation reactor and transmutation technologies. One such area where significant progress is needed is joining of advanced fuels and materials. Rotary friction welding, also referred to as friction stir welding (FSW), has shown great promise as a method for joining traditionally difficult to join materials such as aluminum alloys. This relatively new technology, first developed in 1991, has more recently been applied to higher melting temperature alloys such as steels, nickel-based and titanium alloys. An overview of the FSW technology is provided and two specific nuclear fuels and materials applications where the technique may be used to overcome limitations of conventional joining technologies are highlighted.

  8. Effect of Welding Current on the Structure and Properties of Resistance Spot Welded Dissimilar (Austenitic Stainless Steel and Low Carbon Steel) Metal Joints

    NASA Astrophysics Data System (ADS)

    Shawon, M. R. A.; Gulshan, F.; Kurny, A. S. W.

    2015-04-01

    1.5 mm thick sheet metal coupons of austenitic stainless steel and plain low carbon steel were welded by resistance spot welding technique. The effects of welding current in the range 3-9 kA on the structure and mechanical properties of welded joint were investigated. The structure was studied by macroscopic, microscopic and scanning electron microscopy techniques. Mechanical properties were determined by tensile testing and microhardness measurements. Asymmetrical shape weld nugget was found to have formed in the welded joint which increased in size with an increase in welding current. The fusion zone showed cast structure with coarse columnar grain and dendritic with excess delta ferrite in austenitic matrix. Microhardness of the weld nugget was maximum because of martensite formation. An increase in welding current also increased tensile strength of the weld coupon. An attempt has also been made to relate the mode of fracture with the welding current.

  9. Solid-state and fusion resistance spot welding of TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1973-01-01

    By using specially processed TD-NiCr sheet in both 0.4-mm (0.015-in.) and 1.6-mm (0.062-in.) thicknesses and carefully selected welding procedures, solid state resistance spot welds were produced which, after postheating at 1200 C, were indistinguishable from the parent material. Stress-rupture shear tests of single-spot lap joints in 0.4-mm (0.015-in.) thick sheet showed that these welds were as strong as the parent material. Similar results were obtained in tensile-shear tests at room temperature and 1100 C and in fatigue tests. Conventional fusion spot welds in commercial sheet were unsatisfactory because of poor stress-rupture shear properties resulting from metallurgical damage to the parent material.

  10. A Combined Experimental and Analytical Modeling Approach to Understanding Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Stewart, Michael B.; Adams, Glynn P.; Romine, Peter

    1998-01-01

    In the Friction Stir Welding (FSW) process a rotating pin tool joins the sides of a seam by stirring them together. This solid state welding process avoids problems with melting and hot-shortness presented by some difficult-to weld high-performance light alloys. The details of the plastic flow during the process are not well understood and are currently a subject of research. Two candidate models of the FSW process, the Mixed Zone (MZ) and the Single Slip Surface (S3) model are presented and their predictions compared to experimental data.

  11. Friction Stir Welding: Standards and Specifications in Today's U.S. Manufacturing and Fabrication

    NASA Technical Reports Server (NTRS)

    Ding, Robert Jeffrey

    2008-01-01

    New welding and technology advancements are reflected in the friction stir welding (FSW) specifications used in the manufacturing sector. A lack of publicly available specifications as one of the reasons that the FSW process has not propagate through the manufacturing sectors. FSW specifications are an integral supporting document to the legal agreement written between two entities for deliverable items. Understanding the process and supporting specifications is essential for a successful FSW manufacturing operation. This viewgraph presentation provides an overview of current FSW standards in the industry and discusses elements common to weld specifications.

  12. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    NASA Astrophysics Data System (ADS)

    Al-Sarraf, Z.; Lucas, M.

    2012-08-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  13. A Rotating Plug Model of Friction Stir Welding Heat Transfer

    NASA Technical Reports Server (NTRS)

    Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.

    2006-01-01

    A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.

  14. Localized corrosion and stress corrosion cracking resistance of friction stir welded aluminum alloy 5454

    SciTech Connect

    Frankel, G.S.; Xia, Z.

    1999-02-01

    The susceptibility of welded and unwelded samples of Al 5454 (UNS A95454) in the -O and -H34 tempers to pitting corrosion and stress corrosion cracking (SCC) in chloride solutions was studied. Welded samples were fabricated using the relatively new friction stir welding (FSW) process as well as a standard gas-tungsten arc welding process for comparison. Pitting corrosion was assessed through potentiodynamic polarization experiments. U-bend and slow strain rate tests were used to determine SCC resistance. The FSW samples exhibited superior resistance to pitting corrosion compared to the base metal and arc-welded samples. U-bend tests indicated adequate SCC resistance for the FSW samples. However, the FSW samples exhibited discontinuities that probably were associated with remnant boundaries of the original plates. These defects resulted in intermittent increased susceptibility to pitting and, particularly for Al 5454-H34 samples, poor mechanical properties in general.

  15. Stability of the grain structure in 2219-O aluminum alloy friction stir welds during solution treatment

    SciTech Connect

    Chen, Y.C. . E-mail: armstrong@hit.edu.cn; Feng, J.C.; Liu, H.J.

    2007-02-15

    The stability of the grain structure in 2219-O aluminum alloy friction stir welds during solution treatment has been investigated. Experimental results show that the solution treatment causes drastic grain growth, Grain growth initiates at the surface and the bottom of the weld and then extends to the weld centre within several minutes. The solution treatment temperature and the welding heat input have a significant effect on grain growth. The higher the solution temperature, or the higher the welding heat input, the greater the grain growth. The instability of the grains is attributed to an imbalance between thermodynamic driving forces for grain growth and the pinning forces impeding grain boundary migration during solution treatment.

  16. Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Thick 5083 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Imam, Murshid; Sun, Yufeng; Fujii, Hidetoshi; Ma, Ninshu; Tsutsumi, Seiichiro; Murakawa, Hidekazu

    2017-01-01

    Joining thick sections of aluminum alloys by friction stir welding (FSW) in a single pass needs to overcome many challenges before it comes to full-scale industrial use. Important parameters controlling the structure-properties relationships both across weld cross-section and through thickness direction were investigated through mechanical testing, electron backscatter diffraction technique, transmission electron microscopy, and occurrence of serrated plastic flow. The evolution of the properties in the weld cross-section shows that the presence of undissolved and fragmented Al_6MnFe particles cause discrepancies in establishing the Hall-Petch relationship, and derive the strengthening from the Orowan strengthening mechanism. A `stop action' friction stir weld has been prepared to understand the role of geometrical features of the tool probe in the development of the final microstructure after complete weld. Sectioning through the `stop action' weld with the probe in situ displays the individual effect of thread and flat on the grain structure formation. The material at the thread surface experiences more severe deformation than the material at flat surface. Both the high-angle boundaries and mean grain size are found to be higher at the thread surface. The strain hardening capacity, stress serration amplitude, and frequency are observed to be higher in the stir zone than other weld regions.

  17. Emission of nanoparticles during friction stir welding (FSW) of aluminium alloys.

    PubMed

    Gomes, J F; Miranda, R M; Santos, T J; Carvalho, P A

    2014-01-01

    Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.

  18. Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties

    NASA Astrophysics Data System (ADS)

    Sanders, D. G.; Edwards, P.; Cantrell, A. M.; Gangwar, K.; Ramulu, M.

    2015-05-01

    Friction stir welding (FSW) has been refined to create butt welds from two sheets of Ti-6Al-4V alloy to have an ultra-fine grain size. Weld specimen testing was completed for three different FSW process conditions: As welded, stress relieved, stress relieved and machined, and for the un-welded base material. The investigation includes macrostructure, microstructure, microhardness, tensile property testing, notched bar impact testing, and fracture toughness evaluations. All experiments were conducted in accordance with industry standard testing specifications. The microstructure in the weld nugget was found to consist of refined and distorted grains of alpha in a matrix of transformed beta containing acicular alpha. The enhanced fracture toughness of the welds is a result of increased hardness, which is attributed to an increase in alpha phase, increase in transformed beta in acicular alpha, and grain refinement during the weld process. The noted general trend in mechanical properties from as welded, to stress relieved, to stress relieved and machined conditions exhibited a decrease in ultimate tensile strength, and yield strength with a small increase in ductility and a significant increase in fracture toughness.

  19. Constitutive model of friction stir weld with consideration of its inhomogeneous mechanical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing

    2016-03-01

    In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.

  20. The Effect of Surface Irregularities on Wing Drag. I. Rivets and Spot Welds. 1; Rivets and Spot Welds

    NASA Technical Reports Server (NTRS)

    Hood, Manley J.

    1938-01-01

    Tests have been conducted in the NACA 8-foot high-speed wind tunnel to determine the effect of exposed rivet heads and spot welds on wing drag. Most of the tests were made with an airfoil of 5-foot chord. The air speed was varied from 80 to 500 miles per hour and the lift coefficient from 0 to 0.30. The increases in the drag of the 5-foot airfoil varied from 6%, due to countersunk rivets, to 27%, due to 3/32-inch brazier-head rivets, with the rivets in a representative arrangement. The drag increases caused by protruding rivet heads were roughly proportional to the height of the heads. With the front row of rivets well forward, changes in spanwise pitch had negligible effects on drag unless the pitch was more than 2.5% of the chord. Data are presented for evaluating the drag reduction attained by removing rivets from the forward part of the wing surface; for example, it is shown that over 70% of the rivet drag is caused by the rivets on the forward 30% of the airfoil in a typical case.

  1. Friction Stir Weld Application and Tooling Design for the Multi-purpose Crew Vehicle Stage Adapter

    NASA Technical Reports Server (NTRS)

    Alcorn, John

    2013-01-01

    The Multi-Purpose Crew Vehicle (MPCV), commonly known as the Orion capsule, is planned to be the United States' next manned spacecraft for missions beyond low earth orbit. Following the cancellation of the Constellation program and creation of SLS (Space Launch System), the need arose for the MPCV to utilize the Delta IV Heavy rocket for a test launch scheduled for 2014 instead of the previously planned Ares I rocket. As a result, an adapter (MSA) must be used in conjunction with the MPCV to account for the variation in diameter of the launch vehicles; 5.5 meters down to 5.0 meters. Prior to ight article fabrication, a path nder (test article) will be fabricated to ne tune the associated manufacturing processes. The adapter will be comprised of an aluminum frustum (partial cone) that employs isogrid technology and circumferential rings on each end. The frustum will be fabricated by friction stir welding (FSW) three individual panels together on a Vertical Weld Tool (VWT) at NASA Marshall Space Flight Center. Subsequently, each circumferential ring will be friction stir welded to the frustum using a Robotic Weld Tool (RWT). The irregular geometry and large mass of the MSA require that extensive tooling preparation be put into support structures for the friction stir weld. The tooling on the VWT will be comprised of a set of conveyors mounted on pre-existing stanchions so that the MSA will have the ability to be rotated after each of the three friction stir welds. The tooling requirements to friction stir weld the rings with the RWT are somewhat more demanding. To support the mass of the MSA and resist the load of the weld tool, a system of mandrels will be mounted to stanchions and assembled in a circle. The goal of the paper will be to explain the design, fabrication, and assembly of the tooling, to explain the use of friction stir welding on the MSA path nder, and also to discuss the lessons learned and modi cations made in preparation for ight article fabrication

  2. Influences of post weld heat treatment on tensile properties of friction stir welded AA2519-T87 aluminium alloy joints

    NASA Astrophysics Data System (ADS)

    Sabari, S. Sree; Balasubramanian, V.; Malarvizhi, S.; Reddy, G. Madusudhan

    2015-12-01

    AA 2519-T87 is an aluminium alloy that principally contains Cu as an alloying element and is a new grade of Al-Cu alloy system. This material is a potential candidate for light combat military vehicles. Fusion welding of this alloy leads to hot cracking, porosity and alloy segregation in the weld metal region. Friction stir welding (FSW) is a solid state joining process which can overcome the above mentioned problems. However, the FSW of age hardenable aluminium alloys results in poor tensile properties in the as-welded condition (AW). Hence, post weld heat treatment (PWHT) is used to enhance deteriorated tensile properties of FSW joints. In this work, the effect of PWHT, namely artificial ageing (AA) and solution treatment (ST) followed by ageing (STA) on the microstructure, tensile properties and microhardness were systematically investigated. The microstructural features of the weld joints were characterised using an optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength and microhardness of the joints were correlated with the grain size, precipitate size, shape and its distribution. From the investigation, it was found that STA treatment is beneficial in enhancing the tensile strength of the FSW joints of AA2519-T87 alloy and this is mainly due to the presence of fine and densely distributed precipitates in the stir zone.

  3. On the development of nugget growth model for resistance spot welding

    SciTech Connect

    Zhou, Kang E-mail: melcai@ust.hk; Cai, Lilong E-mail: melcai@ust.hk

    2014-04-28

    In this paper, we developed a general mathematical model to estimate the nugget growth process based on the heat energy delivered into the welds by the resistance spot welding. According to the principles of thermodynamics and heat transfer, and the effect of electrode force during the welding process, the shape of the nugget can be estimated. Then, a mathematical model between heat energy absorbed and nugget diameter can be obtained theoretically. It is shown in this paper that the nugget diameter can be precisely described by piecewise fractal polynomial functions. Experiments were conducted with different welding operation conditions, such as welding currents, workpiece thickness, and widths, to validate the model and the theoretical analysis. All the experiments confirmed that the proposed model can predict the nugget diameters with high accuracy based on the input heat energy to the welds.

  4. Process Development and Microstructural Characterization on Friction Plug Welded 2195 and 2219 Alloys

    NASA Technical Reports Server (NTRS)

    Li, Z. X.; Cantrell, M. A.; Brown, R. J.; McCool, A. (Technical Monitor)

    2000-01-01

    This document is a viewgraph presentation about Friction Plug Welding (FPW). It reviews the process of FPW, showing pictures which review the process. It also reviews the microstructural characterization using Transmission Electron Microscopy. There are several charts which are included for further information.

  5. Characterization of Plastic flow and Resulting Micro-Textures in a Friction Stir Weld

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.; Nunes, A. C., Jr.

    2003-01-01

    The mechanically affected zone of a friction stir weld (FSW) cross section exhibits two distinct microstructural regions, possibly the residues of two distinct currents of metal in the FSW flow process. In this study the respective textures of these microstructural regions are investigated using orientation image mapping (OIM).

  6. Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding

    SciTech Connect

    Fortuna, S. V. Ivanov, K. V. Eliseev, A. A.; Tarasov, S. Yu. Ivanov, A. N. Rubtsov, V. E. Kolubaev, E. A.

    2015-10-27

    This paper deals with structure and properties of aluminum alloy 7475 and its joints obtained by friction stir welding including under ultrasonic action. Microhardness measurements show that ultrasonic action increases strength properties of the joints. Optical and transmission electron microscopy reveals that this effect is related to the precipitation of tertiary coherent S-and T-phase particles.

  7. Evolution of the microstructure of a VT6 alloy during friction stir welding

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu.

    2015-04-01

    The evolution of the microstructure of a VT6 alloy during friction stir welding (FSW) is studied. The β-α phase transformation that takes place after FSW is found to obey the Burgers orientation relationship. The granular structure and the crystallographic texture of the high-temperature β phase are reconstructed. The mechanisms of structural evolution during FSW are discussed.

  8. Nondestructive Inspection Techniques for Friction Stir Weld Verification on the Space Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Suits, Michael W.; Leak, Jeffery; Bryson, Craig

    2003-01-01

    Friction Stir Welding (FSW) has gained wide acceptance as a reliable joining process for aerospace hardware as witnessed by its recent incorporation into the Delta Launch vehicle cryotanks. This paper describes the development of nondestructive evaluation methods and techniques used to verify the FSW process for NASA's Space Shuttle.

  9. Structural State of a Weld Formed in Aluminum Alloy by Friction Stir Welding and Treated by Ultrasound

    NASA Astrophysics Data System (ADS)

    Klimenov, V. A.; Abzaev, Yu. A.; Potekaev, A. I.; Vlasov, V. A.; Klopotov, A. A.; Zaitsev, K. V.; Chumaevskii, A. V.; Porobova, S. A.; Grinkevich, L. S.; Tazin, I. D.; Tazin, D. I.

    2016-11-01

    The experimental data on structural state of an aluminum alloy, AlMg6, in the weld zone formed by friction stir welding are analyzed in order to evaluate the effect of its subsequent ultrasonic treatment. It is found that the crystal lattice transits into a low-stability state as a result of combined heat-induced and severe shear deformation. This transition is accompanied by considerable structural-phase changes that are manifested as an increased lattice parameter of the solid solution. This increase is caused by both high values of internal stresses and increased concentration of Mg atoms in the solid solution due to essential dissolution of the β-Al2Mg3 particles with the content of manganese higher than that in the matrix. This is accompanied by high-intensity diffusion and relaxation processes due to the low-stability state of crystal lattice (inhomogeneous stresses) in the weld zone.

  10. Friction Stir Welding of Stainless Steel to Al Alloy: Effect of Thermal Condition on Weld Nugget Microstructure

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Gupta, R. K.; Husain, M. M.

    2014-02-01

    Joining of dissimilar materials is always a global challenge. Sometimes it is unavoidable to execute multifarious activities by a single component. In the present investigation, 6061 aluminum alloy and 304 stainless steel were joined by friction stir welding (FSW) at different tool rotational rates. Welded joints were characterized in optical and scanning electron microscopes. Reaction products in the stirring zone (SZ) were confirmed through X-ray diffraction. Joint strength was evaluated by tensile testing. It was found that the increment in average heat input and temperature at the weld nugget (WN) facilitated iron enrichment near the interface. Enhancement in the concentration of iron shifted the nature of intermetallics from the Fe2Al5 to Fe-rich end of the Fe-Al binary phase diagram. The peak microhardness and ultimate tensile strength were found to be maxima at the intermediate tool rotational rate, where Fe3Al and FeAl2 appeared along with Fe2Al5.

  11. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    NASA Astrophysics Data System (ADS)

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-05-01

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225×60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  12. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    SciTech Connect

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-05-04

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225x60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  13. Lack of Penetration in Friction Stir Welds: Effects on Mechanical Properties and NDE Feasibility

    NASA Technical Reports Server (NTRS)

    Kinchen, David G.; Adams, Glynn P.

    2000-01-01

    This presentation reviews the issue of lack of penetration (LOP) in Friction Stir Welding and the feasibility of using non-destructive tests to detect . Friction Stir Welding takes place in the solid phase below the melting point of the materials to be joined. It thus gives the ability to join materials which are difficult to fusion weld, for example 2000 and 7000 aluminium alloys. This process though can result in a lack of penetration, due to an incomplete penetration of the DXZ. This is frequently referred to as a "kissing bond", which requires micro examination to detect. The presentation then discusses the surface crack tension tests. It then reviews the simulated service test and results. It then discusses the feasibility of using non-destructive examination to detect LOP, the forms of test which can be used, and the results the tests.

  14. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    NASA Astrophysics Data System (ADS)

    Han, Wentuo; Kimura, Akihiko; Tsuda, Naoto; Serizawa, Hisashi; Chen, Dongsheng; Je, Hwanil; Fujii, Hidetoshi; Ha, Yoosung; Morisada, Yoshiaki; Noto, Hiroyuki

    2014-12-01

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX).

  15. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects

    NASA Astrophysics Data System (ADS)

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-04-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

  16. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects

    PubMed Central

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-01-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk. PMID:27877329

  17. Thermal Management in Friction-Stir Welding of Precipitation-Hardening Aluminum Alloys

    SciTech Connect

    Upadhyay, Piyush; Reynolds, Anthony

    2015-05-25

    Process design and implementation in FSW is mostly dependent on empirical information gathered through experience. Basic science of friction stir welding and processing can only be complete when fundamental interrelationships between process control parameters and response variables and resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters like tool rotation and translation rate and forge axis force have complicated and interactive relationships to the process response variables such as peak temperature, time at temperature etc. Of primary influence to the other process response parameters are temperature and its gradient at the deformation and heat affected zones. Through review of pertinent works in the literature and some experimental results from boundary condition work performed in precipitation hardening aluminum alloys this paper will partially elucidate the nature and effects of temperature transients caused by variation of thermal boundaries in Friction Stir Welding.

  18. Investigating the Effects of Pin Tool Design on Friction Stir Welded Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Rubisoff, H. A.; Querin, J. A.; Schneider, Judy A.; Magee, D.

    2009-01-01

    Friction stir welding (FSWing), a solid state joining technique, uses a non-consumable rotating pin tool to thermomechanically join materials. Heating of the weldment caused by friction and deformation is a function of the interaction between the pin tool and the work piece. Therefore, the geometry of the pin tool is in part responsible for the resulting microstructure and mechanical properties. In this study microwave sintered tungsten carbide (WC) pin tools with tapers and flats were used to FSW Ti-6Al-4V. Transverse sections of welds were mechanically tested, and the microstructure was characterized using optical microscopy (OM) and scanning election microscopy (SEM). X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) were used to characterize the texture within the welds produced from the different pin tool designs.

  19. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects.

    PubMed

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-04-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

  20. Microstructure and anisotropic mechanical behavior of friction stir welded AA2024 alloy sheets

    SciTech Connect

    Zhang, Zhihan; Li, Wenya; Li, Jinglong; Chao, Y.J.; Vairis, A.

    2015-09-15

    The anisotropic mechanical properties of friction stir welded (FSW) AA2024-T3 alloy joints were investigated based on the uniaxial tensile tests. The joint microstructure was examined by using electron back-scattered diffraction and transmission electron microscope. Results show that the evident anisotropic failure and yielding are present in the FSW joints. With the increase of loading angle from 0° to 90° the ultimate tensile strength and elongation of the specimens consistently decrease, or at first decrease and then increase, depending on the FSW process parameters. The specimen cut from the weld direction, i.e. a loading angle of 0°, exhibits the highest strength and elongation. - Highlights: • Microstructure and anisotropy of friction stir welded joints were studied. • The evident anisotropic failure and yielding are present in joints. • The lowest yield stress and UTS are at 45° and 60° loadings, respectively. • Rotation speed heavily impact on the anisotropy of joints.

  1. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  2. Linear friction weld process monitoring of fixture cassette deformations using empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Bakker, O. J.; Gibson, C.; Wilson, P.; Lohse, N.; Popov, A. A.

    2015-10-01

    Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments.

  3. Microstructure and Mechanical Properties of Friction Stir Welded 5083 and 7075 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Kalemba-Rec, I.; Hamilton, C.; Kopyściański, M.; Miara, D.; Krasnowski, K.

    2017-02-01

    Through microscopy, mechanical testing, and numerical modeling, the microstructure and mechanical performance of friction stir welded aluminum alloys 7075-T651 and 5083-H111 were characterized. In particular, the influence of the weld configuration, i.e., the locations of the 7075 and 5083 alloys alternately on the advancing and retreating sides, on material flow, microstructure, and mechanical properties was considered. Thermographic data in conjunction with a process simulation demonstrated that the weld configuration significantly impacts heat generation during friction stir welding. The microstructure in the stir zone was a clear visualization of the material flow and was characterized by a vortex-like structure with alternating bands of the alloys being joined. These bands differed in elemental content and grain size. The microstructure became more complex when greater heat generation (higher temperatures) occurred. The weld configuration strongly influenced the material flow, but did not impact the tensile properties (such as yield strength, tensile strength, and elongation). The configuration of 5083 on the advancing side and 7075 on the retreating side produced the most uniform material flow. The joint efficiencies of all tested welds were above 100%.

  4. Mechanical and microstructural characterization of single and double pass Aluminum AA6061 friction stir weld joints

    NASA Astrophysics Data System (ADS)

    Othman, N. H.; Shah, L. H.; Ishak, M.

    2015-12-01

    This study focuses on the effect of single pass (SP), double sided pass (DSP) and normal double pass (NDP) method on friction stir welding of aluminum AA6061. Two pieces of AA6061 alloy with thickness of 6 mm were friction stir welded by using conventional milling machine. The rotational speeds that were used in this study were 800 rpm, 1000 rpm and 1200 rpm, respectively. The welding speed is fixed to 100 mm/min. Microstructure observation of welded area was studied by using optical microscope. Tensile test and Vickers hardness test were used to evaluate the mechanical properties of this specimen. Mechanical property analysis results indicate that at low rotational speeds, defects such as surface lack of fill and tunneling in the welded area can be observed. Vickers hardness of specimens however did not vary much when rotational speed is varied. Welded specimens using single pass method shows higher tensile strength and hardness value compared to both double pass methods up to 180.61 MPa. Moreover, DSP showed better tensile test and hardness test compared to NDP method. The optimum parameters were found to be single pass method with 1200 rpm of rotational speed. Therefore economically sound to only perform SP method to obtain maximum tensile strength for AA6061 FSW with thickness of 6 mm.

  5. Microstructure and Mechanical Properties of Friction Stir Welded 5083 and 7075 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Kalemba-Rec, I.; Hamilton, C.; Kopyściański, M.; Miara, D.; Krasnowski, K.

    2017-03-01

    Through microscopy, mechanical testing, and numerical modeling, the microstructure and mechanical performance of friction stir welded aluminum alloys 7075-T651 and 5083-H111 were characterized. In particular, the influence of the weld configuration, i.e., the locations of the 7075 and 5083 alloys alternately on the advancing and retreating sides, on material flow, microstructure, and mechanical properties was considered. Thermographic data in conjunction with a process simulation demonstrated that the weld configuration significantly impacts heat generation during friction stir welding. The microstructure in the stir zone was a clear visualization of the material flow and was characterized by a vortex-like structure with alternating bands of the alloys being joined. These bands differed in elemental content and grain size. The microstructure became more complex when greater heat generation (higher temperatures) occurred. The weld configuration strongly influenced the material flow, but did not impact the tensile properties (such as yield strength, tensile strength, and elongation). The configuration of 5083 on the advancing side and 7075 on the retreating side produced the most uniform material flow. The joint efficiencies of all tested welds were above 100%.

  6. Investigation into the Influence of Post-Weld Heat Treatment on the Friction Stir Welded AA6061 Al-Alloy Plates with Different Temper Conditions

    NASA Astrophysics Data System (ADS)

    İpekoğlu, Güven; Erim, Seçil; Çam, Gürel

    2014-02-01

    In this study, the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of friction stir butt-joined AA6061 Al-alloy plates both in O and T6-temper conditions was investigated by detailed microstructural investigations and microhardness measurements, in combination with transverse tensile testing. It was determined that the PWHT might result in abnormal grain growth (AGG) in the weld zone particularly in the joints produced in O-temper condition depending on the weld parameters used during friction stir welding. The PWHT generally led to an improvement in the mechanical properties even if AGG took place. Thus, the post-weld heat-treated joints exhibited mechanical properties much higher than those of respective as-welded plates and comparable to those of the respective base plates.

  7. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    SciTech Connect

    Khodabakhshi, F.; Kazeminezhad, M. Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

  8. Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes.

    PubMed

    Dong, Lixin; Tao, Xinyong; Zhang, Li; Zhang, Xiaobin; Nelson, Bradley J

    2007-01-01

    With the continuing development of bottom-up nanotechnology fabrication processes, spot welding can play a role similar to its macro counterpart for the interconnection of nano building blocks for the assembly of nanoelectronics and nanoelectromechanical systems (NEMS). Spot welding using single-crystalline copper-filled carbon nanotubes (CNTs) is investigated experimentally using nanorobotic manipulation inside a transmission electron microscope (TEM). Controlled melting and flowing of copper inside nanotube shells are realized by applying bias voltages between 1.5 and 2.5 V. The average mass flow rate of the copper was found to be 120 ag/s according to TEM video imaging (measured visually at approximately 11.6 nm/s through the CNT). Successful soldering of a copper-filled CNT onto another CNT shows promise for nano spot welding and thermal dip-pen lithography.

  9. Friction Plug Welding of 2195 Al-Cu-Li for Manned Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Takeshita, Riki P.; Hartley, Paula J.; Baker, Kent S.

    1998-01-01

    Friction Plug Welding (FPW) is currently being studied for use on the Space Transportation System's Super Light weight External Tank. This process has demonstrated the potential to solve on of Al-Li 2195's most challenging aspects repair welding. The current weld repair process is successful, but is labor intensive and inconsistent. Technology advances in FPW and tooling designs will be presented. The results of plug welding optimization, production implementation, considerations and cost benefit analysis are discussed. Among the tests to be discussed are tensile, surface crack tension, simulated service, liquid oxygen compatibility results and methods of repairing plug repairs. Tool design, computerized process control equipment and database record retention and analyses may also be addressed.

  10. Evaluation of Surface Residual Stresses in Friction Stir Welds Due to Laser and Shot Peening

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Rivero, Iris V.; Lyons, Jed

    2007-01-01

    The effects of laser, and shot peening on the residual stresses in Friction Stir Welds (FSW) has been investigated. The surface residual stresses were measured at five different locations across the weld in order to produce an adequate residual stress profile. The residual stresses before and after sectioning the coupon from the welded plate were also measured, and the effect of coupon size on the residual stress relaxation was determined and characterized. Measurements indicate that residual stresses were not uniform along the welded plate, and large variation in stress magnitude could be exhibited at various locations along the FSW plate. Sectioning resulted in significant residual stress relaxation in the longitudinal direction attributed to the large change in dimensions in this direction. Overall, Laser and shot peening resulted in a significant reduction in tensile residual stresses at the surface of the specimens.

  11. Three-Dimensional Visualization of Material Flow During Friction Stir Welding of Steel and Aluminum

    NASA Astrophysics Data System (ADS)

    Morisada, Yoshiaki; Imaizumi, Takuya; Fujii, Hidetoshi; Matsushita, Muneo; Ikeda, Rinsei

    2014-11-01

    Material flow is a key phenomenon to obtain sound joints by friction stir welding (FSW), and it is highly dependent of the welded material. It is well known that the optimal FSW condition depends on the welded material. However, the material flow during FSW has not been totally clarified in spite of many researches. Especially, the material flow of steel during FSW is still unclear. It seems difficult to understand the material flow by the traditional method such as the tracer method or observation of the microstructure in the stir zone. Therefore, in this study, the material flow of steel was three dimensionally visualized by x-ray radiography using two pairs of x-ray transmission real-time imaging systems, and was then compared with the material flow of aluminum. The result revealed the effect of the welded material on the material flow during FSW.

  12. Impact of friction stir welding on the microstructure of ODS steel

    NASA Astrophysics Data System (ADS)

    Dawson, H.; Serrano, M.; Cater, S.; Iqbal, N.; Almásy, L.; Tian, Q.; Jimenez-Melero, E.

    2017-04-01

    We have assessed the impact of the welding parameters on the nano-sized oxide dispersion and the grain size in the matrix of an ODS steel after friction stir welding. Our results, based on combined small angle neutron scattering and electron microscopy, reveal a decrease in the volume fraction of the particles smaller than 80 nm in the welds, mainly due to particle agglomeration. The increase in tool rotation speed or decrease in transverse speed leads to a higher reduction in nano-sized particle fraction, and additionally to the occurrence of particle melting. The dependence of the average grain size in the matrix on the particle volume fraction follows a Zener pinning-type relationship. This result points to the principal role that the particles have in pinning grain boundary movement, and consequently in controlling the grain size during welding.

  13. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  14. Modeling of Residual Stresses and Property Distributions in Friction Stir Welds of Aluminum Alloy 6061-T6

    SciTech Connect

    Feng, Zhili; David, Stan A; Wang, Xun-Li; Sklad, Philip S

    2007-01-01

    An integrated thermal-metallurgical-mechanical model is used to analyze and provide insights into the formation of the residual stress and the changes in microstructure and property of Al6061-T6 friction stir welds. The simulations were conducted by means of a three-dimensional finite element model that accounts for the phenomena of frictional heating, weld microstructure and strength changes due to dissolution and reprecipitation of the hardening precipitate particles, and the mechanical workpiece/tool contact during the friction stir welding (FSW) process. The model predictions were confirmed by experimental measurement data from previous studies. For the friction stir welds investigated, it was found that the residual stress distribution is strongly dependent on the welding process parameters and the degree of material softening caused by welding. The recovery of material strength from natural aging does not increase the residual stress in the weld. The failure of friction stir weld under tensile load is controlled by the combination of the reduction in strength and the residual stresses in the heat affected zone (HAZ).

  15. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2005-01-01

    The average strength of a pull plug weld is increased and weak bonding eliminated by providing a dual included angle at the top one third of the pull plug. Plugs using the included angle of the present invention had consistent high strength, no weak bonds and were substantially defect free. The dual angle of the pull plug body increases the heat and pressure of the weld in the region of the top one third of the plug. This allows the plug to form a tight high quality solid state bond. The dual angle was found to be successful in elimination of defects on both small and large plugs.

  16. Inspection of Spot Welds Using a Portable Ultrasonic Phased-Array System

    SciTech Connect

    Reverdy, F.; Hopkins, D.

    2005-04-09

    Results were presented last year to demonstrate the feasibility of using an ultrasonic phased array to inspect spot welds. Analysis of the signals in the Fourier domain allows identification of satisfactory, undersized and defective welds. Signal- and image-processing techniques have been implemented with the goal of extracting the dimensions of the weld nugget. The results presented here were obtained using a portable phased-array controller. Toward developing a fully portable system, a housing for the probe is under development with an integrated mechanical scanning system.

  17. Comparison of Metallurgical and Ultrasonic Inspections of Galvanized Steel Resistance Spot Welds

    SciTech Connect

    Potter, Timothy J.; Ghaffari, Bita; Mozurkewich, George

    2006-03-06

    Metallurgical examination of galvanized steel resistance spot welds was used to gauge the capabilities of two ultrasonic, non-destructive, scanning techniques. One method utilized the amplitude of the echo from the weld faying surface, while the other used the spectral content of the echo train to map the fused area. The specimens were subsequently sectioned and etched, to distinguish the fused, zinc-brazed, and non-fused areas. The spectral maps better matched the metallurgical maps, while the interface-amplitude method consistently overestimated the weld size.

  18. Microstructural Evolution in Friction Stir Welding of Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.; Querin, J.; Magee, D.; Schneider, J.

    2008-01-01

    Friction stir welding (FSW) is a thermo-mechanical process that utilizes a nonconsumable rotating pin tool to consolidate a weld joint. In the conventional FSW process, the pin tool is responsible for generating both the heat required to soften the material and the forces necessary to deform and combine the weld seam. As such, the geometry of the pin tool is important to the quality of the weld and the process parameters required to produce the weld. Because the geometry of the pin tool is limitless, a reduced set of pin tools was formed to systematically study their effect on the weldment with respect to mechanical properties and resultant microstructure. In this study 0deg, 15deg, 30deg, 45deg, and 60deg tapered, microwave sintered, tungsten carbide (WC) pin tools were used to FSW Ti-6Al-4V. Transverse sections of the weld were used to test for mechanical properties and to document the microstructure using optical microscopy. X-ray diffraction (XRD) was also used to characterize the microstructure in the welds. FSW results for the 45deg and 60deg pin tools are reported in this paper.

  19. Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yau, Y. H.; Hussain, A.; Lalwani, R. K.; Chan, H. K.; Hakimi, N.

    2013-08-01

    Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy Al2024-T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three different configurations were affixed on the welding samples to measure the temperatures: in the first configuration, four thermocouples were placed at equivalent positions along one side of the welding direction; the second configuration involved two equivalent thermocouple locations on either side of the welding path; while the third configuration had all the thermocouples on one side of the layout but with unequal gaps from the welding line. A three-dimensional, non-linear ANSYS computational model, based on an approach applied to Al2024-T3 for the first time, was used to simulate the welding temperature profiles obtained experimentally. The experimental thermal profiles on the whole were found to be in agreement with those calculated by the ANSYS model. The broad agreement between the two kinds of profiles validates the basis for derivation of the simulation model and provides an approach for the FSW simulation in Al2024-T3 and is potentially more useful than models derived previously.

  20. Experimental Study of Stationary Shoulder Friction Stir Welded 7N01-T4 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ji, S. D.; Meng, X. C.; Li, Z. W.; Ma, L.; Gao, S. S.

    2016-03-01

    Stationary shoulder friction stir welding (SSFSW) was successfully used to weld 7N01-T4 aluminum alloy with the thickness of 4 mm. Effects of welding speed on formations, microstructures, and mechanical properties of SSFSW joint were investigated in detail. Under a constant rotational velocity of 2000 rpm, defect-free joints with smooth surface and small flashes are attained using welding speeds of 20 and 30 mm/min. Macrostructure of nugget zone in cross section presents kettle shape. For 7N01-T4 aluminum alloy with low thermal conductivity, decreasing welding speed is beneficial to surface formation of joint. With the increase of welding speed, mechanical properties of joints firstly increase and then decrease. When the welding speed is 30 mm/min, the tensile strength and elongation of joint reach the maximum values of 379 MPa and 7.9%, equivalent to 84.2 and 52% of base material, respectively. Fracture surface morphology exhibits typical ductile fracture. In addition, the minimum hardness value of joint appears in the heat affected zone.

  1. Microstructural and Residual Stress Development due to Inertia Friction Welding in Ti-6246

    NASA Astrophysics Data System (ADS)

    Attallah, Moataz M.; Preuss, Michael; Boonchareon, Chatri; Steuwer, Axel; Daniels, John E.; Hughes, Darren J.; Dungey, Christopher; Baxter, Gavin J.

    2012-09-01

    A thorough investigation has been performed to assess the microstructural properties, mechanical properties (hardness and elastic modulus), and residual stress development in Ti-6Al-2Sn-4Zr-6Mo (Ti-6246) inertia friction welds in the as-welded and postweld heat-treated conditions. It was evident that the thermomechanical deformation in the weld region occurred above the β transus, forming dynamically recrystallized β grains and precipitating acicular α within the β grains, which resulted in a localized hardness increase. In the heat-affected zone, a ghost microstructure of the base metal formed because of the absence of sufficient time for diffusion, resulting in Mo segregation in the prior primary α plates. Energy-dispersive synchrotron X-ray diffraction and neutron diffraction were used to assess the residual stress development in the three principal directions. The variation in the unstrained lattice parameters across the weld regions was established by imposing a stress balance on the axial stress component in the radial direction. It was found that the maximum stresses occurred in the hoop direction, with significantly lower stresses present in the radial and axial directions. The maximum tensile hoop stresses were located at ~4 mm from the weld centerline and not at the dynamically recrystallized β-rich weld zone. This was associated with the α → β phase transformation and the subsequent acicular α precipitation within the region surrounding the weld centerline.

  2. Effect of Spot and Stud Welding on ESR 4340 Steel Armor.

    DTIC Science & Technology

    1978-02-01

    ESR ) 4340 steel armor. MATERIALS The armor used in this program was commercially produced ESR 4340 steeL in thicknesses of...N — AO—AO5k 025 ARMY MATERIALS AND MECHANICS RESEARCH CENTER WATERTO——ETC F/S 13/5 EFFECT OF SPOT AND STUD WELDING ON ESR 14314 0 STEEL ARMOR. (U...5 lAD I ~ EFFECT OF SPOT~AND STUD WELDING ON ESR 434O~ STEEL ARMOR~ ~~ - /, ‘ , ~ . ~~~ — ~ — ~~~ — , ~~~~~~ ——-...—- ( -~~/ ~~~ - ‘~/ ~~~ ‘ .

  3. Characterization of Multilayered Multipass Friction Stir Weld on ASTM A572 G50 Steel

    SciTech Connect

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; Yu, Xinghua; Qiao, Dongxiao; Wang, Yanli; Zhang, Wei; Feng, Zhili

    2014-01-01

    A multilayered multipass friction stir weld (MM-FSW) on ASTM A572 Grade 50 steel was characterized to understand its potential application for thick-section structures. The 15-mm-thick section was fabricated by stacking up three steel plates and then friction stir welding the plates together in a total of 5 passes. The unique butt/lap joint configuration encountered in the multilayer weld was examined to understand the effect of tool rotation direction on the joint quality especially the formation of hooking defect. Charpy V-notch impact toughness tests showed generally higher impact toughness energy for the stir zone than the base metal with a ductile fracture mode. The microhardness value was measured from 195 to 220 HV in the stir zone, while the base metal showed an average value of 170 HV. The microstructure in the stir zone and the adjacent heat affected zone was quantified using Optical and Scanning Electron Microscopy (SEM) including Electron Backscatter Diffraction (EBSD). The increased toughness and hardness were correlated with the refined microstructure in stir zone, resulting from severe plastic deformation and subsequent dynamic recrystallization during friction stir welding.

  4. Characterization of Multilayered Multipass Friction Stir Weld on ASTM A572 G50 Steel

    DOE PAGES

    Lim, Yong Chae; Sanderson, Samuel; Mahoney, Murray; ...

    2014-01-01

    A multilayered multipass friction stir weld (MM-FSW) on ASTM A572 Grade 50 steel was characterized to understand its potential application for thick-section structures. The 15-mm-thick section was fabricated by stacking up three steel plates and then friction stir welding the plates together in a total of 5 passes. The unique butt/lap joint configuration encountered in the multilayer weld was examined to understand the effect of tool rotation direction on the joint quality especially the formation of hooking defect. Charpy V-notch impact toughness tests showed generally higher impact toughness energy for the stir zone than the base metal with a ductilemore » fracture mode. The microhardness value was measured from 195 to 220 HV in the stir zone, while the base metal showed an average value of 170 HV. The microstructure in the stir zone and the adjacent heat affected zone was quantified using Optical and Scanning Electron Microscopy (SEM) including Electron Backscatter Diffraction (EBSD). The increased toughness and hardness were correlated with the refined microstructure in stir zone, resulting from severe plastic deformation and subsequent dynamic recrystallization during friction stir welding.« less

  5. Synchrotron X-ray CT characterization of friction-welded joints in tial turbocharger components

    NASA Astrophysics Data System (ADS)

    Sun, J. G.; Kropf, A. J.; Vissers, D. R.; Sun, W. M.; Katsoudas, J.; Yang, N.; Fei, D.

    2012-05-01

    Titanium aluminide (TiAl) is an advanced intermetallic material and is being investigated for application in turbocharger components for diesel engines. A TiAl turbocharger rotor consists of a cast TiAl turbine wheel and a Ti-alloy shaft that are joined by friction welding. Although friction welding is an established industrial process, it is still challenging to join dissimilar materials especially for brittle intermetallics. These joints are therefore required to be inspected using a nondestructive evaluation (NDE) method. In this study, synchrotron X-ray computed tomography (CT) developed at the Advanced Photon Source at Argonne National Laboratory was used for NDE characterization of friction-welded joint in three TiAl turbocharger rotors. The filtered synchrotron X-ray source has high peak energies to penetrate thick metallic materials, and the detector (imager) has high spatial resolutions to resolve small flaws. The CT inspections revealed detailed 3D crack distributions within poorly welded joints. The crack detection sensitivity and resolution was calibrated and found to be correlated well with destructive examination.

  6. Developing an Empirical Relationship to Predict Tensile Strength of Friction Stir Welded AA2219 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Elangovan, K.; Balasubramanian, V.; Babu, S.

    2008-12-01

    AA2219 aluminum alloy (Al-Cu-Mn alloy) has gathered wide acceptance in the fabrication of lightweight structures requiring a high strength-to-weight ratio and good corrosion resistance. Friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a nonconsumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force, etc., and tool pin profile play a major role in deciding the joint strength. An attempt has been made to develop an empirical relationship between FSW variables to predict tensile strength of the friction stir welded AA2219 aluminum alloy. To obtain the desired strength, it is essential to have a complete control over the relevant process parameters to maximize the tensile strength on which the quality of a weldment is based. Therefore, it is very important to select and control the welding process parameter for obtaining maximum strength. To achieve this various prediction methods such as response surface method (RSM), analysis of variance (ANOVA), Student’s t-test, coefficient of determination, etc., can be applied to define the desired output variables through developing mathematical models to specify the relationship between the output parameters and input variables. Four factors, five levels central composite design have been used to minimize number of experimental conditions. The developed mathematical relationship can be effectively used to predict the tensile strength of FSW joints of AA2219 aluminum alloy at 95% confidence level.

  7. An investigation into friction stir welding of copper niobium nanolamellar composites

    NASA Astrophysics Data System (ADS)

    Cobb, Josef Benjamin

    The workpiece materials used in this study are CuNb nano-layered composites (NLC) which are produced in bulk form by accumulative roll bonding (ARB). CuNb NLC panels are of interest because of their increase in strength and radiation damage tolerance when compared to either of their bulk constituents. These increased properties stem from the bi-metal interface, and the nanometer length-scale of the layers. However to be commercially viable, methods to successfully join the ARB NLC which retain the layered structure panels are needed. Friction stir welding is investigated in this study as a possible joining method that can join the material while maintaining its layered structure and hence its properties. Mechanical properties of the weld were measured at a macro level using tensile testing, and at a local level via nano-indentation. The post weld layer structure was analyzed to provide insight into the flow paths. The grain orientation of the resulting weld nugget was also analyzed using electron backscatter diffraction and transmission Kikuchi diffraction. Results from this study show that the nano-layered structure can be maintained in the CuNb NLC by control of the friction stir welding parameters. The resulting microstructure is dependent on the strain experienced during the joining process. A variation in layer thickness reduction is correlated with increasing shear strain. Above a critical level of shear strain, the NLC microstructure was observed to fragment into equiaxed grains with a higher hardness than the NLC panels. Results from this study are also used to further the understanding of the material flow and hot working conditions experienced during the friction stir welding process.

  8. Structure and Properties of Thick-Walled Joints of Alloy 1570s Prepared by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Velichko, O. V.; Ivanov, S. Yu.; Karkhin, V. A.; Lopota, V. A.; Makhin, I. D.

    2016-09-01

    The microstructure and mechanical properties of thick-walled joints of Al - Mg - Sc alloy 1570S, prepared by friction stir welding are studied. Joint microstructural and mechanical inhomogeneity are revealed.

  9. Effects of Different R ratios on Fatigue Crack Growth in Laser Peened Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Hackel, Lloyd; Forth, Scott

    2007-01-01

    The influence of laser peening on the fatigue crack growth behavior of friction stir welded (FSW) Aluminum Alloy (AA) 7075-T7351 sheets was investigated. The surface modification resulting from the peening process on the fatigue crack growth of FSW was assessed for two different R ratios. The investigation indicated a significant decrease in fatigue crack growth rates resulting from using laser shock peening compared with unpeened, welded and unwelded specimens. The slower fatigue crack growth rate was attributed to the compressive residual stresses induced by the peening.

  10. Redistribution Mechanisms and Quantification of Homogeneity in Friction Stir Welding and Processing of an Aluminum Silicon Alloy

    DTIC Science & Technology

    2012-09-01

    wide range of particle-containing materials. Materials such as Nickel Aluminum Bronze (NAB), high yield (HY) Steels , and AA5083 are common in many...REDISTRIBUTION MECHANISMS AND QUANTIFICATION OF HOMOGENEITY IN FRICTION STIR WELDING AND PROCESSING OF AN ALUMINUM SILICON ALLOY by Jeffrey C. Woertz...Homogeneity in Friction Stir Welding and Processing of an Aluminum Silicon Alloy 5. FUNDING NUMBERS 6. AUTHOR(S) Jeffrey C. Woertz 7

  11. In-situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminum alloy

    SciTech Connect

    Woo, Wan Chuck; Feng, Zhili; Wang, Xun-Li; Brown, D. W.; Clausen, B; An, Ke; Choo, Hahn; Hubbard, Camden R; David, Stan A

    2007-01-01

    The evolution of temperature and thermal stresses during friction stir welding of Al6061-T6 was investigated by means of in-situ, time-resolved neutron diffraction technique. A method is developed to deconvolute the temperature and stress from the lattice spacing changes measured by neutron diffraction. The deep penetration capability of neutrons made it possible for the first time to obtain the temperature and thermal stresses inside a friction stir weld.

  12. In-situ neutron diffraction measurements of temperature and stresses during friction stir welding of 6061-T6 aluminum alloy

    SciTech Connect

    Feng, Zhili; Wang, Xun-Li; David, Stan A; Choo, Hahn; Hubbard, Camden R; Woo, Wan Chuck; Brown, D. W.; Clausen, B; An, Ke

    2007-01-01

    The evolution of temperature and thermal stresses during friction stir welding of Al6061-T6 was investigated by means of in situ, time resolved neutron diffraction technique. A method was developed to deconvolute the temperature and stress from the lattice spacing changes measured by neutron diffraction. The deep penetration capability of neutrons made it possible for the first time to obtain the temperature and thermal stresses inside a friction stir weld.

  13. Origins of Line Defects in Self-Reacting Friction Stir Welds and Their Impact on Weld Quality

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2016-01-01

    Friction stir welding (FSWing) is a solid state joining technique which reduces the occurrence of typical defects formed in fusion welds, especially of highly alloyed metals. Although the process is robust for aluminum alloys, occasional reductions in the strength of FSWs have been observed. Shortly after the NASA-MSFC implemented a variation of FSW called self-reacting (SR), low strength properties were observed. At that time, this reduction in strength was attributed to a line defect. At that time, the limited data suggested that the line defect was related to the accumulation of native oxides that form on the weld lands and faying surfaces. Through a series of improved cleaning methods, tool redesign, and process parameter modifications, the reduction in the strength of the SR-FSWs was eliminated. As more data has been collected, the occasional reduction in the strength of SR-FSW still occurs. These occasional reductions indicate a need to reexamine the underlying causes. This study builds off a series of self reacting (SR)-FSWs that were made in 3 different thickness panels of AA2219 (0.95, 1.27 and 1.56 cm) at 2 different weld pitches. A bead on plate SR-FSW was also made in the 1.56 cm thick panel to understand the contribution of the former faying surfaces. Copper tracer studies were used to understand the flow lines associated with the weld tool used. The quality of the SR-FSWs was evaluated from tensile testing at room temperature. Reductions in the tensile strength were observed in some weldments, primarily at higher weld pitch or tool rotations. This study explores possible correlations between line defects and the reduction of strength in SR-FSWs. Results from this study will assist in a better understand of the mechanisms responsible for reduced tensile strength and provide methodology for minimizing their occurrence.

  14. Friction Stir Welding of Al-Cu Bilayer Sheet by Tapered Threaded Pin: Microstructure, Material Flow, and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, M.; Kokabi, A. H.; Loureiro, A.

    2015-06-01

    The fracture behavior and intermetallic formation are investigated after friction stir welding of Al-Cu bilayer sheets performed by tapered threaded pin. To do so, temperature, axial load, and torque measurements during welding, and also SEM and XRD analyses and tensile tests on the welds are carried out. These observations show that during welding from Cu side, higher axial load and temperature lead to formation of different kinds of Al-Cu intermetallics such as Al2Cu, AlCu, and Al4Cu9. Also, existence of Al(Cu)-Al2Cu eutectic structures, demonstrates liquation during welding. The presence of these intermetallics leads to highly brittle fracture and low strength of the joints. In samples welded from Al side, lower axial load and temperature are developed during welding and no intermetallic compound is observed which results in higher strength and ductility of the joints in comparison with those welded from Cu side.

  15. Influences of process parameters on tensile strength of friction stir welded cast A319 aluminium alloy joints

    NASA Astrophysics Data System (ADS)

    Jayaraman, M.; Sivasubramanian, R.; Balasubramanian, V.; Babu, S.

    2009-04-01

    Fusion welding of cast A319 (Al-Si-Cu) alloy will lead to many problems including porosity, micro-fissuring, and hot cracking. Friction Stir Welding (FSW) can be used to weld A319 alloy without these defects. In this investigation, an attempt has been made to study the effect of FSW process parameters on the tensile strength of A319 alloy welded joints. Joints were made using different combinations of tool rotation speed, welding speed, and axial force, each at four levels. The quality of weld zone was analyzed using macrostructure and microstructure analysis. Tensile strength of the joints were evaluated and correlated with the weld zone microstructure. The joint fabricated with a 1200 rpm tool rotation speed, 40 mm/min welding speed, and 4 kN axial force showed superior tensile strength compared with the other joints.

  16. Ultrasonic Spot and Torsion Welding of Aluminum to Titanium Alloys: Process, Properties and Interfacial Microstructure

    NASA Astrophysics Data System (ADS)

    Balle, Frank; Magin, Jens

    Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.

  17. A new measurement method for the dynamic resistance signal during the resistance spot welding process

    NASA Astrophysics Data System (ADS)

    Wang, Lijing; Hou, Yanyan; Zhang, Hongjie; Zhao, Jian; Xi, Tao; Qi, Xiangyang; Li, Yafeng

    2016-09-01

    To measure the dynamic resistance signal during the resistance spot welding process, some original work was carried out and a new measurement method was developed. Compared with the traditional method, using the instantaneous electrode voltage and welding current at peak current point in each half cycle, the resistance curve from the newly proposed method can provide more details of the dynamic resistance changes over time. To test the specific performance of the proposed method, a series of welding experiments were carried out and the tensile shear strengths of the weld samples were measured. Then, the measurement error of the proposed method was evaluated. Several features were extracted from the dynamic resistance curves. The correlations between the extracted features and weld strength were analyzed and the results show that these features are closely related to the weld strength and they can be used for welding quality monitoring. Moreover, the dynamic resistance curve from the newly proposed method can also be used to monitor some abnormal welding conditions.

  18. Metallurgical Effects of Shunting Current on Resistance Spot-Welded Joints of AA2219 Sheets

    NASA Astrophysics Data System (ADS)

    Jafari Vardanjani, M.; Araee, A.; Senkara, J.; Jakubowski, J.; Godek, J.

    2016-08-01

    Shunting effect is the loss of electrical current via the secondary circuit provided due to the existence of previous nugget in a series of welding spots. This phenomenon influences on metallurgical aspects of resistance spot-welded (RSW) joints in terms of quality and performance. In this paper RSW joints of AA2219 sheets with 1 mm thickness are investigated metallurgically for shunted and single spots. An electro-thermal finite element analysis is performed on the RSW process of shunted spot and temperature distribution and variation are obtained. These predictions are then compared with experimental micrographs. Three values of 5 mm, 20 mm, and infinite (i.e., single spot) are assumed for welding distance. Numerical and experimental results are matching each other in terms of nugget and HAZ geometry as increasing distance raised nugget size and symmetry of HAZ. In addition, important effect of shunting current on nugget thickness, microstructure, and Copper segregation on HAZ grain boundaries were discovered. A quantitative analysis is also performed about the influence of welding distance on important properties including ratio of nugget thickness and diameter ( r t), ratio of HAZ area on shunted and free side of nugget ( r HA), and ratio of equivalent segregated and total amount of Copper, measured in sample ( r Cu) on HAZ. Increasing distance from 5 mm to infinite, indicated a gain of 111.04, -45.55, and -75.15% in r t, r HA, and r Cu, respectively, while obtained ratios for 20 mm welding distance was suitable compared to single spot.

  19. Metallurgical and Corrosion Characterization of POST Weld Heat Treated Duplex Stainless Steel (uns S31803) Joints by Friction Welding Process

    NASA Astrophysics Data System (ADS)

    Asif M., Mohammed; Shrikrishna, Kulkarni Anup; Sathiya, P.

    2016-02-01

    The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080∘C, 1150∘C and 1200∘C with 15min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080∘C followed by water quench and at 1150∘C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov-Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100∘C and that for oil quenching was around 1140∘C. The pit depths were found to be in the range of 100nm and width of 1.5-2μm.

  20. Three Dimensional Numerical Simulation and Characterization of Crack Growth in the Weld Region of a Friction Stir Welded Structure

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.

    2013-01-01

    Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures

  1. Microstructure and Residual Stress Distributions Under the Influence of Welding Speed in Friction Stir Welded 2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Moghadam, Danial Ghahremani; Farhangdoost, Khalil; Nejad, Reza Masoudi

    2016-06-01

    Friction stir welding was conducted on 8-mm-thick plates made of AA2024-T351 aluminum alloy at tool traverse speeds between 8 and 31.5 mm/minutes and tool rotational speed between 400 and 800 rpm. Metallographic analyses and mechanical tests including hardness, tensile, residual stress, and fracture toughness tests were carried out to evaluate the microstructural and mechanical properties of the joints as a function of the process parameters. The finite element simulation of the FSW process was also performed using a thermal model. The hardness test results show that the increase in rotational speed or decrease in traverse speed of the tool would cause a decrease in weld zone hardness. The best tensile properties are obtained at rotational/traverse speed ratio between 20 and 32. Also, the longitudinal residual stress profiles were evaluated by employing X-ray diffraction method. The numerical and experimental results showed that the increase in a traverse or rotational speed would increase the residual stress of the weld zone. From the fracture toughness results, it was found that the welding process decreases the joints fracture toughness 18 to 49 pct with respect to the base metal.

  2. A theoretical study of electrical and thermal response in resistance spot welding

    SciTech Connect

    Na, S.J.; Park, S.W.

    1996-08-01

    The effect of contact resistance including constriction and contamination resistance has been a major hurdle for the thermoelectrical analysis of the resistance spot welding process. In this paper, a simple model was suggested and used for calculating the electrical and thermal response of the resistance spot welding process to investigate the influence of contacting forces on the formation of weld nuggets. The electrode surface of the contact interface was assumed to be axisymmetric and its microasperities to have a trapezoidal cross-section. These microasperities were considered as the one-dimensional contact resistance elements in the finite element formulation. The contamination film was assumed to be a nonconducting oxide layer, which is very brittle, so that it is broken to some number of pieces when a contacting pressure is being applied. The crushed films were assumed to be distributed at regular intervals and to conserve their size and number during the welding process. The simulation results revealed that the proposed model can be successfully used to predict the effect of the contact resistance on the electrical and thermal response of the resistance spot welding process.

  3. Identifying Combination of Friction Stir Welding Parameters to Maximize Strength of Lap Joints of AA2014-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Rajendrana, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P.

    2017-01-01

    AA2014 aluminum alloy (Al-Cu alloy) has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW) parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE), analysis of variance (ANOVA), response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.

  4. Effect of friction stir welding on microstructure and corrosion behavior of LF6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Ghauri, Faizan Ali; Farooq, A.; Ahmad, A.; Deen, K. M.

    2017-03-01

    The LF6 aluminum alloy plates were joined by friction stir welding method. The tool rotational (1180 rpm) and transverse speed (0.56 mm s‑1) were kept constant during welding of 4 mm thick plates. The microstructural features, hardness and tensile properties of the welded samples were determined to evaluate the structural integrity in comparison with the base metal. The electrochemical behavior of base metal (BM), thermo-mechanically affected zone (TMAZ) and weld nugget zone (WNZ) was also investigated by potentiodynamic polarization and electrochemical impedance spectroscopy in 3.5% NaCl solution. The microstructural study revealed significant grain refinement and agglomeration of β (Mg2Al3) intermetallic precipitates in the WNZ. The relatively higher hardness and a decrease in the ductility (3%) also assured the formation of precipitates β precipitates in the WNZ welded samples. The fracture surface of welded sample also revealed the existence of β precipitates within the elongated dimples which may be considered as the crack initiation sites. The relatively lower corrosion rate (23.68 mpy) and higher charge transfer resistance (403 Ω cm2) of BM compared to WNZ could be associated with the galvanic dissolution of Al-matrix through competitive charge transfer and relaxation (adsorption/desorption of intermediate species) processes specifically at the vicinity of the β precipitates.

  5. Microstructure Evolution during Friction Stir Welding of Mill-Annealed Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Pilchak, A. L.; Tang, W.; Sahiner, H.; Reynolds, A. P.; Williams, J. C.

    2011-03-01

    In this study, mill-annealed Ti-6Al-4V plates were successfully friction stir welded over a wide range of processing parameters using a tungsten-1 pct La2O3 tool. Two K-type thermocouples embedded in the tool indicated that approximately 25 pct of the heat generated during welding was transferred out of the workpiece and into the tool. The thermocouple data, combined with observations of the microstructure, indicated that the stir zone of all welds exceeded the β transus. The microstructure and texture of two representative welds made just above and high above the β transus were investigated with scanning electron microscopy and electron backscatter diffraction (EBSD). The β phase orientations were reconstructed with a fully automated technique from the as-collected α phase data through knowledge of the Burgers orientation relationship. The results suggest that the fine β grains in the stir zone are formed from the base material ahead of the advancing tool by dissolution of secondary and primary α phase, and there is no further recrystallization. These grains subsequently deform by slip and rotate toward the orientations that are most stable with respect to the shear deformation induced by the tool. In the highest temperature weld, diffusion tool wear in the form of periodically spaced bands provided an internal marker of the tool/workpiece interface during welding. The flow patterns evident within the tungsten-enriched bands suggest that flow is considerably more chaotic on the advancing side than in the central stir zone.

  6. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  7. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  8. The microstructure of aluminum A5083 butt joint by friction stir welding

    SciTech Connect

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.; Ishak, M.

    2015-05-15

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.

  9. The microstructure of aluminum A5083 butt joint by friction stir welding

    NASA Astrophysics Data System (ADS)

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.; Ishak, M.

    2015-05-01

    This study presents the microstructure of the aluminum A5083 butt joint surface after it has been joined by friction stir welding (FSW) process. The FSW process is a unique welding method because it will not change the chemical properties of the welded metals. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm plate of aluminum A5083 butt joint. For the experiment, variables of travel speed and tool rotational speed based on capability of machine were used to run FSW process. The concentrated heat from the tool to the aluminum plate changes the plate form from solid to plastic state. Two aluminum plates is merged to become one plate during plastic state and return to solid when concentrated heat is gradually further away. After that, the surface and cross section of the welded aluminum were investigated with a microscope by 400 x multiplication zoom. The welding defect in the FSW aluminum was identified. Then, the result was compared to the American Welding Society (AWS) FSW standard to decide whether the plate can be accepted or rejected.

  10. Intergranular corrosion following friction stir welding of aluminum alloy 7075-T651

    SciTech Connect

    Lumsden, J.B.; Mahoney, M.W.; Pollock, G.; Rhodes, C.G.

    1999-12-01

    Friction stir welding (FSW), a relatively new solid-state joining process, is used to join Al alloys of all compositions, including alloys essentially considered unweldable. This study focused on microstructures in FSW Al alloy 7075-T651 (AA 7075-T651 [UNS 97075-T651]), an alloy not commonly fusion welded, and the resultant corrosion susceptibility. Although the heat input associated with FSW was relatively low and the time at temperature was short compared to fusion welding, localized microstructures, chemical segregation, and precipitate distributions were created that generally are not present in parent metal AA 7075-T651. Typically, in the weld and heat affected zone (HAZ), the times at peak temperature were short, cooling was relatively rapid, and peak temperatures were {lt} {approx}500 C. Accordingly, a corresponding microstructural gradient developed from the weld nugget into the unaffected parent metal with the precipitate distribution in and around grain boundaries reflecting this temperature excursion. Some of these microstructures, when exposed to a corrosive environment, showed selective grain boundary attack and a decrease in the pitting potential relative to the parent metal. A characterization of the microstructure and localized chemistry differences within the weld zones suggested that the decrease in corrosion resistance correlated with a depletion of Cu within the grain boundaries and precipitate-free zones. These results provided evidence that the lowered resistance to intergranular corrosion following FSW of AA 7075-T651 was caused by a difference in pitting potentials.

  11. Liquation Cracking in Arc and Friction-Stir Welding of Mg-Zn Alloys

    NASA Astrophysics Data System (ADS)

    Wagner, Dustin C.; Chai, Xiao; Tang, Xin; Kou, Sindo

    2015-01-01

    As compared to Al alloys, which are known to be susceptible to liquation ( i.e., liquid formation) and liquation-induced cracking, most Mg alloys have a lower eutectic temperature and thus are likely to be even more susceptible. The present study was conducted to study liquation and liquation cracking in Mg alloys during arc welding and friction-stir welding (FSW). Binary Mg-Zn alloys were selected as a model material in view of their very low eutectic temperature of 613 K (340 °C). Mg-Zn alloys with 2, 4, and 6 wt pct of Zn were cast and welded in the as-cast condition by both gas-tungsten arc welding (GTAW) and FSW. A simple test for liquation cracking was developed, which avoided interference by solidification cracking in the nearby fusion zone. Liquation and liquation cracking in GTAW were found to be in the decreasing order of Mg-6Zn, Mg-4Zn, and Mg-2Zn. Liquation cracking occurred in FSW of Mg-6Zn but not Mg-4Zn or Mg-2Zn. Instead of a continuous ribbon-like flash connected to the weld edge, small chips, and powder covered the weld surface of Mg-6Zn. The results from GTAW and FSW were discussed in light of the binary Mg-Zn phase diagram and the curves of temperature vs fraction solid during solidification.

  12. Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.

    2014-01-01

    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.

  13. Vertical Compensation Friction Stir Welding of 6061-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Meng, Xiangchen; Xing, Jingwei; Ma, Lin; Gao, Shuangsheng

    2016-09-01

    Vertical compensation friction stir welding (VCFSW) was proposed in order to solve the adverse effect caused by a big gap at the interface between two welded workpieces. VCFSW was successfully applied to weld 6061-T6 aluminum alloy with the thickness of 4 mm, while 2024-T4 aluminum alloy was selected as a rational compensation material. The results show that VCFSW is difficult to get a sound joint when the width of strip is no less than 1.5 mm. Decreasing the welding speed is beneficial to break compensation strip into pieces and then get higher quality joint. When the width of strip is 1 mm, the tensile strength and elongation of joint at the welding speed of 50 mm/min and rotational velocity of 1,800 rpm reach the maximum values of 203 MPa and 5.2%, respectively. Moreover, the addition of 2024-T4 alloy plays a strengthening effect on weld zone (WZ) of VCFSW joint. The fracture surface morphology of joint consisting of amounts of dimples exhibits ductile fracture.

  14. Low Cycle and Thermo-Mechanical Fatigue of Friction Welded Dissimilar Superalloys Joint

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Motoki; Sano, Atsushi; Tran, Tra Hung; Okazaki, Masakazu; Sekihara, Masaru

    The high temperature strengths of the dissimilar friction welded superalloys joint between the cast polycrystalline Mar-M247 and the forged IN718 alloys have been investigated under low cycle and thermo-mechanical fatigue loadings, in comparison with those of the base metals. The experiments showed that the lives of the dissimilar joints were significantly influenced by the test conditions and loading modes. Not only the lives themselves but also the failure positions and mechanisms were sensitive to the loading mode. The fracture behaviors depending on the loading modes and test conditions were discussed, based on the macroscopic elastic follow-up mechanism and the microstructural inhomogeneity in the friction weld joint.

  15. Friction Stir Welding of SiC/Aluminum Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1999-01-01

    Friction Stir Welding (FSW) is a new solid state process for joining metals by plasticizing and consolidating materials around the bond line using thermal energy producing from frictional forces. A feasibility study for FSW of Metal Matrix Composites (MMC) was investigated using aluminum 6092 alloy reinforced with 17% SiC particulates. FSW process consists of a special rotating pin tool that is positioned to plunge into the MMC surface at the bond line. As the tool rotates and move forward along the bond line, the material at the bond line is heated up and forced to flow around the rotating tip to consolidate on the tip's backside to form a solid state joint. FSW has the potential for producing sound welds with MMC because the processing temperature occurs well below the melting point of the metal matrix; thereby eliminating the reinforcement-to-matrix solidification defects, reducing the undesirable chemical reactions and porosity problems.

  16. Effects of Laser and Shot Peening on Fatigue Crack Growth in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Forman, Royce; Lyons, Jed

    2006-01-01

    The effects of laser, and shot peening on the fatigue life of Friction Stir Welds (FSW) have been investigated. The surface roughness resulting from various peening techniques was assessed, and the fracture surfaces microstructure was characterized. Laser peening resulted in an increase in fatigue life approximately 60%, while shot peening resulted in 10% increase when compared to the unpeened material. The surface roughness of shot peening was significantly higher compared to the base material, while specimens processed with laser peening were relatively smooth.

  17. Friction Stir Welding of HT9 Ferritic-Martensitic Steel: An Assessment of Microstructure and Properties

    DTIC Science & Technology

    2013-06-01

    development. While high speed steel or WC-Co tools can be used for aluminum and copper alloys, FSW of steel generally requires even more refractory... steel and the microstructure produced by FSW is much more critical than in aluminum alloys. The αγδ phase transformations can cause complex, multi...thesis explores the processing-microstructure-property relationships in friction stir welded ( FSW ) HT9A ferritic-martensitic steel . HT9 has previously

  18. Microstructural Investigation and Evaluation of Mechanical Properties in Friction Stir Welded Joints

    DTIC Science & Technology

    2011-08-01

    collegiate lecturer. 175 1. Introduction/Background Aluminum is becoming an increasingly desirable structural metal for replacing steel due to...is needed. Friction stir welding ( FSW ) is a solid-state joining technique developed in 1991 (1) and currently used extensively in aluminum alloys...Typical Aluminum FSW Tool 176 are a result of dynamic recrystallization and are very dependent on the stir parameters. Hirata et al. (3) showed that

  19. Fabrication of Aluminum Foam/Dense Steel Composite by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Koyama, Shinji; Hasegawa, Makoto; Utsunomiya, Takao

    2010-09-01

    Aluminum foam/dense steel composites were fabricated by friction stir welding (FSW). It is expected that both mixing a blowing agent into aluminum and bonding the aluminum precursor to steel can be conducted simultaneously by FSW. It was shown that although heat treatment of the precursor evolved a brittle intermetallic compound layer, the bonding strength of the interface consisting of the intermetallic compound layer was relatively high compared with the fracture strength of the aluminum foam itself.

  20. The "Lazy S" Feature in Friction Stir Welding of AA2099 Aluminum -Lithium Alloy

    DTIC Science & Technology

    2007-12-01

    stiffness and strength , and so these materials are attractive for selected aerospace structures . Friction Stir Welding (FSW) of Al-Li alloys may...process, FSW uses a combination of extruding and forging at temperatures well below the melting point of the material to form a high- strength bond ...deformation. The randomness of grain size and structure throughout the stir nugget is the same and supports the presence of a shear texture. The

  1. Finite Element Based Thermal Modeling of Friction Welding of Dissimilar Materials

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Nagaraj, P.; Selvaraj, R. Meby

    Friction welding is a solid state joining process of joining either similar or dissimilar materials. Joining of ceramic/metal joints by friction welding has opened up new possibilities in many engineering applications. In the present work, thermal modeling of friction welding process has been carried out. Using Finite Element Approach (FEA), analytical solutions were arrived for different ceramic/metal combinations. The temperature distributions of cylindrical surfaces of the alumina and the metals are found by means of 1D heat transfer assumption considering the effect of convection. In the thermal analysis, interfacial temperature and thermal conductivity of the material play a significant role. Based on the obtained temperature distribution the graphs are plotted between the length of the joint and the temperatures. Thus the knowledge of the temperature joint distribution could be helpful in predicting the thermal cycle of the process, microstructure evolution and residual stress formation. Thus the obtained graph helps to study and predict the temperature distribution of both the materials.

  2. Partially degradable friction-welded pure iron-stainless steel 316L bone pin.

    PubMed

    Nasution, A K; Murni, N S; Sing, N B; Idris, M H; Hermawan, H

    2015-01-01

    This article describes the development of a partially degradable metal bone pin, proposed to minimize the occurrence of bone refracture by avoiding the creation of holes in the bone after pin removal procedure. The pin was made by friction welding and composed of two parts: the degradable part that remains in the bone and the nondegradable part that will be removed as usual. Rods of stainless steel 316L (nondegradable) and pure iron (degradable) were friction welded at the optimum parameters: forging pressure = 33.2 kPa, friction time = 25 s, burn-off length = 15 mm, and heat input = 4.58 J/s. The optimum tensile strength and elongation was registered at 666 MPa and 13%, respectively. A spiral defect formation was identified as the cause for the ductile fracture of the weld joint. A 40-µm wide intermetallic zone was identified along the fusion line having a distinct composition of Cr, Ni, and Mo. The corrosion rate of the pin gradually decreased from the undeformed zone of pure iron to the undeformed zone of stainless steel 316L. All metallurgical zones of the pin showed no toxic effect toward normal human osteoblast cells, confirming the ppb level of released Cr and Ni detected in the cell media were tolerable.

  3. Al-to-Mg Friction Stir Welding: Effect of Material Position, Travel Speed, and Rotation Speed

    NASA Astrophysics Data System (ADS)

    Firouzdor, Vahid; Kou, Sindo

    2010-11-01

    Because joining dissimilar metals is often difficult by fusion joining, interest has been growing rapidly in using friction stir welding (FSW), which is considered a revolutionary solid-state welding process, as a new way to join dissimilar metals such as Al alloys to Mg alloys, Cu, and steels. Butt FSW of Al to Mg alloys has been studied frequently recently, but the basic issue of how the welding conditions affect the resultant joint strength still is not well understood. Using the widely used alloys 6061 Al and AZ31 Mg, the current study investigated the effect of the welding conditions, including the positions of Al and Mg with respect to the welding tool, the tool travel speed, and the tool rotation speed on the weld strength. Unlike previous studies, the current study (1) determined the heat input by both torque and temperature measurements during FSW, (2) used color metallography with Al, Mg, Al3Mg2, and Al12Mg17 all shown in different colors to reveal clearly the formation of intermetallic compounds and material flow in the stir zone, which are known to affect the joint strength significantly, and (3) determined the windows for travel and rotation speeds to optimize the joint strength for various material positions. The current study demonstrated clearly that the welding conditions affect the heat input, which in turn affects (1) the formation of intermetallics and even liquid and (2) material flow. Thus, the effect of welding conditions in Al-to-Mg butt FSW on the joint strength now can be explained.

  4. A study of the friction stir welding process by experimental investigation and numerical simulation

    NASA Astrophysics Data System (ADS)

    Long, Tianzhong

    2005-12-01

    In this study, 2-D and 3-D models based on a commercial computational fluid dynamics (CFD) code (FLUENT) and suitable user defined viscosity law are used to capture many of the trends observed in FSW. The fully thermo-mechanically coupled 2 D CFD model can run in a few hours on a PC based system. The low computational cost for 2-D model enables rapid assessment of the effects of various material properties and the criticality of inclusion or exclusion of some property details. The effects of varying material properties and process parameters, on the trends in x-axis forces and potential weld defect formation (via material flow pattern) are studied and compared with the experimental observations. It was found that the minimum x-force that occurs in the median RPM range is strongly influenced by the cutoff temperature in the viscosity law. The bifurcation of material flow in the weld path also occurs when the maximum temperature ahead of the pin surpasses the cutoff temperature. Aluminum alloys AA2219, AA5083, AA6061, and AA7050 were welded using constant welding speed and linearly increased RPM. The grain sizes in the welds were measured and the applied torque and x-force during friction stir welding process were recorded. The correlations of the grain size, the applied torque and x-force were studied using simulation and the experimental methods. The 2D and 3D CFD model simulation results compare well with experimental measurements. Based on the 2D model results, the material's simulated thermo-mechanical history was also studied. The model predicts that the material in the weld region experiences a high temperature after the deformation is complete. This thermo-mechanical history indicates that metallurgical transformations may continue after the end of deformation and that the grain size in the weld cannot be adequately described using a Zener-Holloman parameter approach or by invoking the continuous dynamic recrystallization process.

  5. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  6. Investigation of Friction Stir Welding of Al Metal Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    2003-01-01

    The innovative process of Friction Stir Welding (FSW) has generated tremendous interest since its inception about a decade or so ago since the first patent in 1991 by TWI of Cambridge, England. This interest has been seen in many recent international conferences and publications on the subject and relevant published literature. Still the process needs both intensive basic study of deformation mechanisms during this FSW process and analysis and feasibility study to evaluate production methods that will yield high quality strong welds from the stirring action of the appropriate pin tool into the weld plate materials. Development of production processes is a complex task that involves effects of material thickness, materials weldability, pin tool design, pin height, and pin shoulder diameter and related control conditions. The frictional heating with rotational speeds of the pin tool as it plunges into the material and the ensuing plastic flow arising during the traverse of the welding faying surfaces provide the known special advantages of the FSW process in the area of this new advanced joining technology.

  7. Development of Inspection for Friction Stir Welds for Rocket Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.

    2012-01-01

    During development of the Ares I weld processes nondestructive and destructive testing were used to identify and characterize defects that occurred. These defects were named and character noted. This catalogue of defects and characteristics was then used to develop inspection methods for Self Reacting Friction Stir Welds (SR ]FSW) and Conventional Friction Stir Welds (C ]FSW). Dye penetrant, eddy current, x ]radiography, single element ultrasonic, and phased array ultrasonic (PAUT) inspection procedures were developed to target the expected defects. Once the method procedure was developed a comparison was performed to allow for selection of the best inspection method. Tests of the effectiveness of the inspection were performed on purposely fabricated flawed specimens and electrodischarge machined notches. The initial test results prompted a revisit of the PAUT procedure and a redesign of the inspection. Subsequent testing showed that a multi ]angle PAUT inspection resulted in better detection capability. A discussion of the most effective orientations of the PAUT transducer will be presented. Also, the implementation of the inspection on production hardware will be presented. In some cases the weld tool is used as the transducer manipulator and in some cases a portable scanner is used

  8. Effect of Welding Parameters on the Microstructure and Strength of Friction Stir Weld Joints in Twin Roll Cast EN AW Al-Mn1Cu Plates

    NASA Astrophysics Data System (ADS)

    Birol, Yucel; Kasman, Sefika

    2013-10-01

    Twin roll cast EN AW Al-Mn1Cu plates were butt welded with the friction stir welding process which employed a non-consumable tool, tilted by 1.5° and 3° with respect to the plate normal, rotated in a clockwise direction at 400 and 800 rpm, while traversing at a fixed rate of 80 mm/min along the weld line. Microstructural observations and microhardness tests were performed on sections perpendicular to the tool traverse direction. Tensile tests were carried out at room temperature on samples cut perpendicular to the weld line. The ultimate tensile strength of the welded EN AW Al-Mn1Cu plates improved with increasing tool rotation speed and decreasing tool tilt angle. This marked improvement in ultimate tensile strength is attributed to the increase in the heat input owing to an increased frictional heat generation. There appears to be a perfect correlation between the ultimate tensile strength and the size of the weld zone. The fracture surfaces of the base plate and the welded plates are distinctly different. The former is dominated by dimples typical of ductile fractures. A vast majority of the intermetallic particles inside the weld zones are too small to generate dimples during a tensile test. The fracture surface of the welded plates is thus characterized by occasional dimples that are elongated in the same direction suggesting a tensile tearing mechanism.

  9. Automatic welding quality classification for the spot welding based on the Hopfield associative memory neural network and Chernoff face description of the electrode displacement signal features

    NASA Astrophysics Data System (ADS)

    Zhang, Hongjie; Hou, Yanyan; Zhao, Jian; Wang, Lijing; Xi, Tao; Li, Yafeng

    2017-02-01

    To develop an automatic welding quality classification method for the spot welding based on the Chernoff face image created by the electrode displacement signal features, an effective pattern feature extraction method was proposed by which the Chernoff face images were converted to binary ones, and each binary image could be characterized by a binary matrix. According to expression categories on the Chernoff face images, welding quality was classified into five levels and each level just corresponded to a kind of expression. The Hopfield associative memory neural network was used to build a welding quality classifier in which the pattern feature matrices of some weld samples with different welding quality levels were remembered as the stable states. When the pattern feature matrix of a test weld is input into the classifier, it can be converged to the most similar stable state through associative memory, thus, welding quality corresponding to this finally locked stable state can represent the welding quality of the test weld. The classification performance test results show that the proposed method significantly improves the applicability and efficiency of the Chernoff faces technique for spot welding quality evaluation and it is feasible, effective and reliable.

  10. Texture Development in a Friction Stir Lap-Welded AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Naik, B. S.; Chen, D. L.; Cao, X.; Wanjara, P.

    2014-09-01

    The present study was aimed at characterizing the microstructure, texture, hardness, and tensile properties of an AZ31B-H24 Mg alloy that was friction stir lap welded (FSLWed) at varying tool rotational rates and welding speeds. Friction stir lap welding (FSLW) resulted in the presence of recrystallized grains and an associated hardness drop in the stir zone (SZ). Microstructural investigation showed that both the AZ31B-H24 Mg base metal (BM) and SZ contained β-Mg17Al12 and Al8Mn5 second phase particles. The AZ31B-H24 BM contained a type of basal texture (0001)<110> with the (0001) plane nearly parallel to the rolled sheet surface and <110> directions aligned in the rolling direction. FSLW resulted in the formation of another type of basal texture (0001)<100> in the SZ, where the basal planes (0001) became slightly tilted toward the transverse direction, and the prismatic planes (100) and pyramidal planes (101) exhibited a 30 deg + ( n - 1) × 60 deg rotation ( n = 1, 2, 3, …) with respect to the rolled sheet normal direction, due to the shear plastic flow near the pin surface that occurred from the intense local stirring. With increasing tool rotational rate and decreasing welding speed, the maximum intensity of the basal poles (0001) in the SZ decreased due to a higher degree of dynamic recrystallization that led to a weaker or more random texture. The tool rotational rate and welding speed had a strong effect on the failure load of FSLWed joints. A combination of relatively high welding speed (20 mm/s) and low tool rotational rate (1000 rpm) was observed to be capable of achieving a high failure load. This was attributed to the relatively small recrystallized grains and high intensity of the basal poles in the SZ arising from the low heat input as well as the presence of a small hooking defect.

  11. A local model for the thermomechanical conditions in friction stir welding

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Hattel, J.

    2005-01-01

    The conditions under which the deposition process in friction stir welding is successful are not fully understood. However, it is known that only under specific thermomechanical conditions does a weld formation occur. If these conditions are not present, void formation will occur leading to a faulty weld. The objective of the present work is to analyse the primary conditions under which the cavity behind the tool is filled. For this, a fully coupled thermomechanical three-dimensional FE model has been developed in ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation and the Johnson-Cook material law. The model accounts for the compressibility by including the elastic response of the aluminium matrix. The contact forces are modelled by Coulomb's Law of friction, making the contact condition highly solution dependent. Furthermore, separation between the workpiece and the tool is allowed. This is often neglected in other models. Once non-recoverable separation is estimated by the model, a void develops. This is suggested as a preliminary criterion for evaluating the success of the deposition process. Of special interest is the contact condition along the tool/matrix interface, which controls the efficiency of the deposition process. In most models presented previously in the literature, the material flow at the tool interface is prescribed as boundary conditions. In all other contact models, the material is forced to keep contact with the tool. Therefore, the models are unable to predict when the suitable thermomechanical conditions and welding parameters are present. In the present work, the quasi-stationary thermomechanical state in the workpiece is established by modelling the dwell and weld periods. The different thermomechanical states in the colder, stiffer far-field matrix and the hotter, softer near-field matrix (under the tool) result in contact at the tool/matrix interface, thus, no void formation is observed. The steady-state model results

  12. Numerical Simulation of Tension Properties for Al-Cu Alloy Friction Stir-Welded Joints with GTN Damage Model

    NASA Astrophysics Data System (ADS)

    Sun, Guo-Qin; Sun, Feng-Yang; Cao, Fang-Li; Chen, Shu-Jun; Barkey, Mark E.

    2015-11-01

    The numerical simulation of tensile fracture behavior on Al-Cu alloy friction stir-welded joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. The parameters of the GTN model were studied in each region of the friction stir-welded joint by means of inverse identification. Based on the obtained parameters, the finite element model of the welded joint was built to predict the fracture behavior and tension properties. Good agreement can be found between the numerical and experimental results in the location of the tensile fracture and the mechanical properties.

  13. Microstructure Refinement After the Addition of Titanium Particles in AZ31 Magnesium Alloy Resistance Spot Welds

    NASA Astrophysics Data System (ADS)

    Xiao, L.; Liu, L.; Esmaeili, S.; Zhou, Y.

    2012-02-01

    Microstructural evolution of AZ31 magnesium alloy welds without and with the addition of titanium powders during resistance spot welding was studied using optical microscopy, scanning electron microscopy, and transmission electron microscopy (TEM). The fusion zone of AZ31 magnesium alloy welds could be divided into columnar dendritic zone (CDZ) and equiaxed dendritic zone (EDZ). The well-developed CDZ in the vicinity of the fusion boundary was clearly restricted and the coarse EDZ in the central region was efficiently refined by adding titanium powders into the molten pool, compared with the as-received alloy welds. A microstructural analysis showed that these titanium particles of approximately 8 µm diameter acted as inoculants and promoted the nucleation of α-Mg grains and the formation of equiaxed dendritic grains during resistance spot welding. Tensile-shear testing was applied to evaluate the effect of titanium addition on the mechanical properties of welds. It was found that both strength and ductility of magnesium alloy welds were increased after the titanium addition. A TEM examination showed the existence of an orientation matching relationship between the added Ti particles and Mg matrix, i.e., [ {0 1bar{1}0} ]_{{Mg}} // [ { 1bar{2} 1bar{3}} ]_{{Ti}} {{and}} ( {000 2} )_{{Mg}} // ( 10bar{1}0)_{{Ti}} in some grains of Ti polycrystal particles. This local crystallographic matching could promote heterogeneous nucleation of the Mg matrix during welding. The diameter of the added Ti inoculant should be larger than 1.8 µm to make it a potent inoculant.

  14. Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite

    SciTech Connect

    Fernandez, G.J.; Murr, L.E

    2004-03-15

    Tool wear for threaded steel pin tools declines with decreasing rotation speed and increasing traverse or weld speeds for the friction-stir welding (FSW) of Al 359+20% SiC metal-matrix composite (MMC). Less than 10% tool wear occurs when the threaded tool erodes to a self-optimized shape resembling a pseudo-hour glass at weld traverse distances in excess of 3 m. There is only a 7% reduction in the SiC mean particle size in the weld zone for self-optimized pin tools with no threads as compared with a 25% variation for threaded tools wearing significantly at the start of welding. The weld zone becomes more homogeneous for efficient welding with self-optimized tools, and there is a reduction in the weld zone grain size due to dynamic recrystallization, which facilitates the solid-state flow. Transmission electron microscopy shows little difference in the dislocation density from the base material to the weld zone, but there is a propensity of dislocation loops in the weld zone. The weld zone is observed to harden by as much as 30%, in contrast to the base material, as a consequence of the recrystallized grain size reduction and the SiC particles distributed therein.

  15. Investigation of Friction Stir Welding and Laser Engineered Net Shaping of Metal Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    2002-01-01

    The improvement in weld quality by the friction stir welding (FSW) process invented by TWI of Cambridge, England, patented in 1991, has prompted investigation of this process for advanced structural materials including Al metal matrix composite (Al-MMC) materials. Such materials can have high specific stiffness and other potential beneficial properties for the extreme environments in space. Developments of discontinuous reinforced Al-MMCs have found potential space applications and the future for such applications is quite promising. The space industry has recognized advantages of the FSW process over conventional welding processes such as the absence of a melt zone, reduced distortion, elimination of the need for shielding gases, and ease of automation. The process has been well proven for aluminum alloys, and work is being carried out for ferrous materials, magnesium alloys and copper alloys. Development work in the FSW welding process for joining of Al-MMCs is relatively recent and some of this and related work can be found in referenced research publications. NASA engineers have undertaken to spear head this research development work for FSW process investigation of Al-MMCs. Some of the reported related work has pointed out the difficulty in fusion welding of particulate reinforced MMCs where liquid Al will react with SiC to precipitate aluminum carbide (Al4C3). Advantages of no such reaction and no need for joint preparation for the FSW process is anticipated in the welding of Al-MMCs. The FSW process has been best described as a combination of extrusion and forging of metals. This is carried out as the pin tool rotates and is slowly plunged into the bond line of the joint as the pin tool's shoulder is in intimate contact with the work piece. The material is friction-stirred into a quality weld. Al-MMCs, 4 in. x 12 in. plates of 0.25 in. (6.35mm) thickness, procured from MMCC, Inc. were butt welded using FSW process at Marshall Space Flight Center (MSFC) using

  16. The Evolution of Friction Stir Welding Theory at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C.

    2012-01-01

    From 1995 to the present the friction stir welding (FSW) process has been under study at Marshall Space Flight Center (MSFC). This is an account of the progressive emergence of a set of conceptual tools beginning with the discovery of the shear surface, wiping metal transfer, and the invention of a kinematic model and making possible a treatment of both metallurgical structure formation and process dynamics in friction stir welding from a unified point of view. It is generally observed that the bulk of the deformation of weld metal around the FSW pin takes place in a very narrow, almost discontinuous zone with high deformation rates characteristic of metal cutting. By 1999 it was realized that this zone could be treated as a shear surface like that in simple metal cutting models. At the shear surface the seam is drawn out and compressed and pressure and flow conditions determine whether or not a sound weld is produced. The discovery of the shear surface was followed by the synthesis of a simple 3- flow kinematic model of the FSW process. Relative to the tool the flow components are: (1) an approaching translational flow at weld speed V, (2) a rotating cylindrical plug flow with the angular velocity of the tool , and (3) a relatively slow ring vortex flow (like a smoke ring) encircling the tool and driven by shoulder scrolls and pin threads. The rotating plug flow picks up an element of weld metal, rotates it around with the tool, and deposits it behind the tool ( wiping metal transfer ); it forms plan section loops in tracers cut through by the tool. Radially inward flow from the ring vortex component retains metal longer in the rotating plug and outward flow expels metal earlier; this interaction forms the looping weld seam trace and the tongue and groove bimetallic weld contour. The radial components of the translational and ring vortex flows introduce parent metal intrusions into the small grained nugget material close to the tool shoulder; if this feature is

  17. Effect of Process Variables on the Inertia Friction Welding of Superalloys LSHR and Mar-M247

    NASA Astrophysics Data System (ADS)

    Mahaffey, D. W.; Senkov, O. N.; Shivpuri, R.; Semiatin, S. L.

    2016-08-01

    The effect of inertia friction welding process parameters on microstructure evolution, weld plane quality, and the tensile behavior of welds between dissimilar nickel-base superalloys was established. For this purpose, the fine-grain, powder metallurgy alloy LSHR was joined to coarse-grain cast Mar-M247 using a fixed level of initial kinetic energy, but different combinations of the flywheel moment of inertia and initial rotation speed. It was found that welds made with the largest moment of inertia resulted in a sound bond with the best microstructure and room-temperature tensile strength equal to or greater than that of the parent materials. A relationship between the moment of inertia and weld process efficiency was established. The post-weld tensile behavior was interpreted in the context of observed microstructure gradients and weld-line defects.

  18. Effect of Welding Parameters on Microstructure, Thermal, and Mechanical Properties of Friction-Stir Welded Joints of AA7075-T6 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Lotfi, Amir Hossein; Nourouzi, Salman

    2014-06-01

    A high-strength Al-Zn-Mg-Cu alloy AA7075-T6 was friction-stir welded with various process parameter combinations incorporating the design of the experiment to investigate the effect of welding parameters on the microstructure and mechanical properties. A three-factors, five-level central composition design (CCD) has been used to minimize the number of experimental conditions. The friction-stir welding parameters have significant influence on the heat input and temperature profile, which in turn regulates the microstructural and mechanical properties of the joints. The weld thermal cycles and transverse distribution of microhardness of the weld joints were measured, and the tensile properties were tested. The fracture surfaces of tensile specimens were observed by a scanning electron microscope (SEM), and the formation of friction-stir processing zone has been analyzed macroscopically. Also, an equation was derived to predict the final microhardness and tensile properties of the joints, and statistical tools are used to develop the relationships. The results show that the peak temperature during welding of all the joints was up to 713 K (440 °C), which indicates the key role of the tool shoulder diameter in deciding the maximum temperature. From this investigation, it was found that the joint fabricated at a rotational speed of 1050 rpm, welding speed of 100 mm/min, and shoulder diameter of 14 mm exhibited higher mechanical properties compared to the other fabricated joints.

  19. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  20. System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor); Romine, Peter L. (Inventor); Oelgoetz, Peter A. (Inventor)

    2002-01-01

    A control is provided for a friction stir welding apparatus comprising a pin tool which includes a shoulder and a rotating pin extending outwardly from the shoulder of the pin tool and which, in use, is plunged into a workpiece formed contacting workpiece members to stir weld the members together. The control system controls the penetration of the pin tool into the workpiece members which are mounted on a support anvil. The control system includes a pin length controller for controlling pin length relative to the shoulder and for producing a corresponding pin length signal. A pin force sensor senses the force being exerted on the pin during welding and produces a corresponding actual pin force signal. A probe controller controls a probe extending outwardly from the pin, senses a parameter related to the distance between the probe and the supporting anvil and produces a corresponding probe signal. A workpiece standoff sensor senses the standoff distance between the workpiece and the standoff sensor and produces a corresponding standoff signal. A control unit receives the various signals, together with a weld schedule, and, based on these signals and the weld schedule, controls the pin length controller so as to control pin penetration into the workpiece.

  1. Friction Stir Welding of Age-Hardenable Aluminum Alloys: A Parametric Approach Using RSM Based GRA Coupled With PCA

    NASA Astrophysics Data System (ADS)

    Vijayan, D.; Rao, V. S.

    2014-04-01

    Age-hardenable aluminum alloys, primarily used in the aerospace, automobile and marine industries (2×××, 6××× and 7×××), can be welded using solid-state welding techniques. Friction stir welding is an emerging solid-state welding technique used to join both similar and dissimilar materials. The strength of a friction stir welded joint depends on the joining process parameters. Therefore, a combination of the statistical techniques of a response surface methodology based on a grey relational analysis coupled to a principal component analysis was proposed to select the process parameters suitable for joining AA 2024 and AA 6061 aluminum alloys via friction stir welding. The significant process parameters, such as rotational speed, welding speed, axial load and pin shapes (PS) were considered during the statistical experiment. The results indicate that the square PS plays a vital role and yields an ultimate tensile strength of 141 MPa for an elongation of 12 % versus cylinder and taper pin profiles. The root cause for joint strength loss and fracture mode was analyzed using scanning electron microscopy. Severe material flow during macro defects, such as pin holes and porosity, degrades the joint strength by approximately 44 % for AA 2024 and 51 % for AA 6061 fabricated FS-welded aluminum alloys relative to the base material. The results of this approach are useful for accurately controlling the response and optimize the process parameters.

  2. Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in Oxide Dispersion Strengthened (ODS) Steel MA956

    SciTech Connect

    Brewer, Luke N.; Bennett, Martin S.; Baker, B. W.; Payzant, E. Andrew; Kolbus, Lindsay M.

    2015-09-08

    This article characterizes the residual stresses generated by friction stir welding of oxide dispersion strengthened steel MA956 over a series of welding conditions. A plate of MA956 steel was friction stir welded at three conditions: 500 rpm/25 millimeters per minute (mmpm), 400 rpm/50 mmpm and 400 rpm/100 mmpm. The residual stresses across these welds were measured using both x-ray and neutron diffraction techniques. Longitudinal residual stresses up to eighty percent of the yield strength were observed for the 400 rpm/100 mmpm condition. Increasing the traverse rate while holding the rotational speed fixed increased the residual stress levels in the stir zone and at the stir zone-thermomechanically affected zone interface. The stress profiles displayed the characteristic M shape, and the asymmetry between advancing and retreating stress peaks was limited, occurring mainly on the root side of the weld. The large magnitude of the stresses was maintained throughout the thickness of the plates.

  3. Ultrasonic spot welding of dissimilar materials: characterization of welded joints and parametric optimization

    NASA Astrophysics Data System (ADS)

    Satpathy, M. P.; Sahoo, S. K.

    2016-02-01

    Material joining is one of the key manufacturing processes used to assemble metallic and non-metallic parts for several applications. But the industries are facing many difficulties in joining of thin sheets of dissimilar metals by the conventional welding process because of their differences in chemical composition, physical and mechanical properties. Thus, ultrasonic welding is a solid state joining process used for joining of small elements in microelectronics industries. In this process, acoustic horn and booster are the important assets. The accuracy and strength of the welding depend mainly on their geometry. This proposed work deals with the design and modelling of an acoustic stepped sonotrode with booster using finite element analysis (FEA). From this analysis, the actual length of the horn is obtained by gradually decreasing its theoretical length. The quality of the weld is reckoned by its weld strength and the combinations of different process parameters. These are examined using the principal components coupled with grey relational analysis approach which is showing good agreement between the predicted values with experimental results. Fractographic examination of weld zone and hardness are also used to explore the weld quality.

  4. Effects of Fusion Zone Size on Failure Modes and Performance of Advanced High Strength Steel Spot Welds

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2006-04-28

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using the limit load based analytical model and the micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied using statistical data analysis tools. The results in this study show that the conventional weld size of 4 t can not produce nugget pullout mode for both the DP800 and TRIP800 materials. The results also suggest that performance based spot weld acceptance criteria should be developed for different AHSS spot welds.

  5. Microstructure and Tensile-Shear Properties of Resistance Spot Welded 22MnMoB Hot-Stamping Annealed Steel

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Xuetuan; Luo, Zhen; Ao, Sansan

    2017-01-01

    The present paper deals with the joining of 22MnMoB hot-stamping annealed steel carried out by the spot welding process. Microstructural characterization, microhardness testing and tensile-shear testing were conducted. The effects of the welding parameters, including the electrode tip diameter, welding current, welding time and electrode force upon the tensile-shear properties of the welded joints, were investigated. The results showed that a weld size of 9.6 mm was required to ensure pullout failure for the 1.8 -mm-thick hot-stamping annealed steel sheet. The welding current had the largest influence upon the tensile-shear properties of the 22MnMoB steel welded joint. The bulk resistance should play an important role in the nugget formation. In pullout failure mode, failure was initiated at the heat-affected zone, where softening occurs owing to the tempering of martensite.

  6. Friction Stir Welded AZ31 Magnesium Alloy: Microstructure, Texture, and Tensile Properties

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. H.; Chen, D. L.; Bhole, S. D.; Cao, X.; Wanjara, P.

    2013-01-01

    This study was aimed at characterizing the microstructure, texture and tensile properties of a friction stir welded AZ31B-H24 Mg alloy with varying tool rotational rates and welding speeds. Friction stir welding (FSW) resulted in the presence of recrystallized grains and the relevant drop in hardness in the stir zone (SZ). The base alloy contained a strong crystallographic texture with basal planes (0002) largely parallel to the rolling sheet surface and < {11bar{2}0} rangle directions aligned in the rolling direction (RD). After FSW the basal planes in the SZ were slightly tilted toward the TD determined from the sheet normal direction (or top surface) and also slightly inclined toward the RD determined from the transverse direction (or cross section) due to the intense shear plastic flow near the pin surface. The prismatic planes (10bar{1}0) and pyramidal planes (10bar{1}1) formed fiber textures. After FSW both the strength and ductility of the AZ31B-H24 Mg alloy decreased with a joint efficiency in-between about 75 and 82 pct due to the changes in both grain structure and texture, which also weakened the strain rate dependence of tensile properties. The welding speed and rotational rate exhibited a stronger effect on the YS than the UTS. Despite the lower ductility, strain-hardening exponent and hardening capacity, a higher YS was obtained at a higher welding speed and lower rotational rate mainly due to the smaller recrystallized grains in the SZ arising from the lower heat input.

  7. Recent Developments for Ultrasonic-Assisted Friction Stir Welding: Joining, Testing, Corrosion - an Overview

    NASA Astrophysics Data System (ADS)

    Thomä, M.; Wagner, G.; Straß, B.; Conrad, C.; Wolter, B.; Benfer, S.; Fürbeth, W.

    2016-03-01

    Due to the steadily increasing demand on innovative manufacturing processes, modern lightweight construction concepts become more and more important. Especially joints of dissimilar metals offer a variety of advantages due to their high potential for lightweight construction. The focus of the investigations was Al/Mg-joints. Friction Stir Welding (FSW) is an efficient process to realize high strength joints between these materials in ductile condition. Furthermore, for a simultaneous transmission of power ultrasound during the FSW-process (US-FSW) a positive effect on the achievable tensile strength of the Al/Mg-joints was proven. In the present work the industrial used die cast alloys EN AC-48000 (AlSi12CuNiMg) and AZ80 (MgAl8Zn) were joined by a machining center modified especially for Ultrasound Supported Friction Stir Welding. The appearing welding zone and the formation of intermetallic phases under the influence of power ultrasound were examined in particular. In order to identify optimal process parameters extensive preliminary process analyzes have been carried out. Following this, an ultrasound-induced more intensive stirring of the joining zone and as a result of this a considerably modified intermetallic zone was detected. At the same time an increase of the tensile strength of about 25% for US-FSW-joints and for fatigue an up to three times higher number of cycles to failure in comparison to a conventional welding process was observed. Moreover, detailed corrosion analyzes have shown that especially the welding zone was influenced by the corrosive attack. To expand and deepen the knowledge of the US-FSW-process further material combinations such as Ti/Steel and Al/Steel will be considered in future.

  8. Microstructure and Mechanical Properties of Resistance Spot Welding Joints of Carbonitrided Low-Carbon Steels

    NASA Astrophysics Data System (ADS)

    Taweejun, Nipon; Poapongsakorn, Piyamon; Kanchanomai, Chaosuan

    2017-04-01

    Carbonitrided low-carbon steels are resistance welded in various engineering components. However, there are no reports on the microstructure and mechanical properties of their resistance spot welding (RSW) joints. Therefore, various carbonitridings were performed on the low-carbon steel sheets, and then various RSWs were applied to these carbonitrided sheets. The metallurgical and mechanical properties of the welding joint were investigated and discussed. The peak load and failure energy increased with the increases of welding current and fusion zone (FZ) size. At 11 kA welding current, the carbonitrided steel joint had the failure energy of 16 J, i.e., approximately 84 pct of untreated steel joint. FZ of carbonitrided steel joint consisted of ferrite, Widmanstatten ferrite, and untempered martensite, i.e., the solid-state transformation products, while the microstructure at the outer surfaces consisted of untempered martensite and retained austenite. The surface hardening of carbonitrided steel after RSW could be maintained, i.e., approximately 810 HV. The results can be applied to carbonitriding and RSW to achieve a good welding joint.

  9. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  10. Modeling the Material Flow and Heat Transfer in Reverse Dual-Rotation Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Shi, L.; Wu, C. S.; Liu, H. J.

    2014-08-01

    Reverse dual-rotation friction stir welding (RDR-FSW) is a novel modification of conventional friction stir welding (FSW) process. During the RDR-FSW process, the tool pin and the assisted shoulder are separated and rotate with opposite direction independently, so that there are two material flows with reverse direction. The material flow and heat transfer in RDR-FSW have significant effects on the microstructure and properties of the weld joint. A 3D model is developed to quantitatively analyze the effects of the separated tool pin and the assisted shoulder which rotate in reverse direction on the material flow and heat transfer during RDR-FSW process. Numerical simulation is conducted to predict the temperature profile, material flow field, streamlines, strain rate, and viscosity distributions near the tool. The calculated results show that as the rotation speed of the tool pin increases, the temperature near the tool gets higher, the zone with higher temperature expands, and approximately symmetric temperature distribution is obtained near the tool. Along the workpiece thickness direction, the calculated material flow velocity and its layer thickness near the tool get lowered because the effect of the shoulder is weakened as the distance away from the top surface increases. The model is validated by comparing the predicted values of peak temperature at some typical locations with the experimentally measured ones.

  11. Error Estimation And Accurate Mapping Based ALE Formulation For 3D Simulation Of Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Guerdoux, Simon; Fourment, Lionel

    2007-05-01

    An Arbitrary Lagrangian Eulerian (ALE) formulation is developed to simulate the different stages of the Friction Stir Welding (FSW) process with the FORGE3® F.E. software. A splitting method is utilized: a) the material velocity/pressure and temperature fields are calculated, b) the mesh velocity is derived from the domain boundary evolution and an adaptive refinement criterion provided by error estimation, c) P1 and P0 variables are remapped. Different velocity computation and remap techniques have been investigated, providing significant improvement with respect to more standard approaches. The proposed ALE formulation is applied to FSW simulation. Steady state welding, but also transient phases are simulated, showing good robustness and accuracy of the developed formulation. Friction parameters are identified for an Eulerian steady state simulation by comparison with experimental results. Void formation can be simulated. Simulations of the transient plunge and welding phases help to better understand the deposition process that occurs at the trailing edge of the probe. Flexibility and robustness of the model finally allows investigating the influence of new tooling designs on the deposition process.

  12. Microhardness and Strain Field Characterization of Self-Reacting Friction Stir and Plug Welds of Dissimilar Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Horton, Karla Renee

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.

  13. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    NASA Technical Reports Server (NTRS)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  14. Friction-Stir-Welded and Spin-Formed End Domes for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Hales, S. J.; Tayon, W. A.; Domack, M. S.

    2012-01-01

    Manufacturing of single-piece end domes for cryogenic tanks employing spin forming of tailored, friction-stir-welded blanks of Al-Li alloy 2195 plate offers cost and reliability benefits. The introduction of plastic deformation into a friction stir weld is a unique feature of the proposed manufacturing route. This investigation addressed abnormal grain growth [AGG] within the friction stir weldments during postfabrication processing of a prototype dome. The phenomenon of AGG was observed during the solution heat treatment [SHT] phase of T8 tempering and is a major concern for meeting specifications. Such abrupt microstructural transitions can be detrimental to notch-sensitive mechanical properties, such as ductility and/or fracture toughness. If the issue of AGG cannot be resolved, then the acceptance of this approach as a viable manufacturing route may be in jeopardy. The innovative approach adopted in this investigation was the insertion of a stand-alone, Intermediate Annealing Treatment [IAT] between the spin forming and T8 processing operations. A simple, recovery annealing step was deemed to be the most readily-scalable solution when fabricating thin-walled, ellipsoidal domes. The research effort culminated in the development of an effective IAT, which resulted in a significant decrease in AGG following SHT. The processing philosophy adopted in designing the IAT is outlined and the microstructural reasons for success are discussed. The analytical results presented are consistent with promoting continuous grain growth during the IAT, thereby suppressing AGG during the SHT.

  15. In-process tool force and rotation variation to control sheet thickness change in friction stir welding of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Buffa, Gianluca; Fratini, Livan; Simoncini, Michela; Forcellese, Archimede

    2016-10-01

    Two different in-process control strategies, developed in order to produce sound joints in AZ31 magnesium alloy by Friction Stir Welding on sheet blanks with a non-uniform thickness, are presented and compared. To this purpose, sheets with dip or hump were machined and welded by either changing the rotational speed or the tool plunging in order to keep constant the vertical force occurring during welding. The mechanical strength of the joints was measured in the zones where the sheets before welding were characterised by different thicknesses. The sheets welded by the two different strategies are characterized by very similar ultimate tensile strength values. Finally, the results showed that the two approaches permit to successfully weld sheets with non-uniform thickness with a reduced loss in the mechanical strength.

  16. Characteristics of Friction Welding Between Solid Bar of 6061 Al Alloy and Pipe of Al-Si12CuNi Al Cast Alloy

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Sakaguchi, H.; Kusaka, M.; Kaizu, K.; Takahashi, T.

    2015-11-01

    This paper describes the characteristics of friction welding between a solid bar of 6061 Al alloy and a pipe of Al-Si12CuNi (AC8A) Al cast alloy. When the joint was made by a continuous drive friction welding machine (conventional method), the AC8A portion of the joint showed heavy deformation and the AA6061 showed minimal deformation. In particular, the joint could not be successfully made with following conditions, because AC8A pipe side crushed due to insufficient friction heat or high pressure: a short friction time such as 0.3 s, high friction pressure such as 100 MPa, or high forge pressure such as 150 MPa. The heavy deformation of AC8A side was caused by increasing friction torque during braking. To prevent braking deformation until rotation stops, a joint was made by a continuous drive friction welding machine that has an electromagnetic clutch. When the clutch was released, the relative speed between both specimens simultaneously decreased to zero. When the joint was made with friction pressure of 25 MPa, friction time of 0.3 s, and forge pressure of 125 MPa, the joining could be successfully achieved and that had approximately 16% efficiency. In addition, when the joint was made with friction pressure of 25 MPa, friction time of 0.7 s, and forge pressure of 125 MPa, it had approximately 54% efficiency. However, all joints showed the fracture between the traveled weld interface and the AC8A side, because the weld interface traveled in the longitudinal direction of AC8A side from the first contacted position of both weld faying surfaces. Hence, it was clarified that the friction welding between a solid bar of AA6061 and a cast pipe of AC8A was not desirable since the traveling phenomena of the weld interface were caused by the combination of the shapes of the friction welding specimens.

  17. Real-time measuring system design and application of thermal expansion displacement during resistance spot welding process

    NASA Astrophysics Data System (ADS)

    Li, YongBing; Xu, Jun; Chen, GuanLong; Lin, ZhongQin

    2005-12-01

    Resistance spot welding (RSW) technology is the most important joining method in auto-body manufacturing. Quality of spot weld not only determines reliability and safety of cars, but also has an important influence on assembly variation of auto-body. Many welding quality parameters, such as welding current, electric resistance, electrode pressure, and thermal expansion displacement, had been proposed to monitoring and controlling spot weld quality, in which thermal expansion displacement was thought as a very promising method. But the measurement of dynamic displacement encounters many difficulties in measuring precision, measuring speed and sensor installation, which limit the usage of this method. This paper introduced a kind of laser displacement sensor made in OMRON to overcome the limitations of displacement measuring precision and measuring speed, and at the same time designed an ingenious fixture to mount the sensor to welding gun. Calibration experiments showed that the fixture reduced vibration introduced by pneumatic welding gun and interference between sensor and welding gun, and have a good linearity with standard clearance gauge. Based on this measuring system, dynamic thermal expansion displacement during RSW process was real-time monitored. Analysis found thermal expansion displacement can be used to real-time distinguish weld quality, such as small nugget, splash.

  18. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  19. Evaluation of joint interface of friction stir welding between dissimilar metals using HTS-SQUID gradiometer

    NASA Astrophysics Data System (ADS)

    Mashiko, Y.; Hatsukade, Y.; Yasui, T.; Takenaka, H.; Todaka, Y.; Fukumoto, M.; Tanaka, S.

    2010-11-01

    In this study, we investigated conductive properties of joint interfaces of friction stir welding (FSW) between dissimilar metals, stainless steel SUS304 and aluminum A6063, using a SQUID nondestructive evaluation (NDE) system. With current injection method, the current maps above the FSW specimens jointed under various conditions were measured by a HTS-SQUID gradiometer. The conductivities of the joint interfaces, which were estimated from the current maps, differed between the joint conditions. By destructive tests using optical microscope, large voids were observed on the joint interfaces with low welding speed that generated excess heating. In case of one specimen, which was welded with welding speed of 500 and 200 mm/min, the conductivity of the former was higher than that of the latter, although the inside voids in the respective regions were not much different. From these results, it is suggested that the current maps were influenced not only by the conductivity of the joint interface but also by inside voids. By hardness test on the SUS boards near the interfaces, only the SUS jointed with 200 mm/min was about half softer than its matrix.

  20. Deformation Characterization of Friction-Stir-Welded Tubes by Hydraulic Bulge Testing

    NASA Astrophysics Data System (ADS)

    Pang, Q.; Hu, Z. L.; Pan, X.; Zuo, X. Q.

    2014-10-01

    In this article, the large-diameter thin-walled aluminum alloy tubes were produced using a hybrid process combining friction-stir welding (FSW) and spinning. For this novel process, rolled aluminum alloy sheets with a thickness about 2-3 times the wall thickness of target tube, were FSW to form cylinders, and then the cylinders were subjected to spinning to get thin-walled aluminum alloy tubes. Both experimental and simulation study were conducted to investigate the deformation characterization of the FSW tube during hydraulic bulge testing, and the stress and strain states and thickness distribution of the FSW tube were investigated. It was found that the common defects of FSW tube can be significantly improved by specific welding devices. The ductility of the tube is considerably improved with nearly two times higher bulge ratio than as-spun tube after annealing treatment at 300°C. But the annealed tube still shows a high nonuniform wall thickness distribution due to the inhomogeneous deformation characteristics. With increasing deformation of the tube, the gap between the hoop and axial stress for the weld and base metal (BM) decreases. However, the hoop and axial stress of the weld are always greater than those of the BM at the same pressure.

  1. Friction Stir Lap Welding of Magnesium Alloy to Steel: A Preliminary Investigation

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri; Grant, Glenn J.

    2010-12-01

    An initial study was made to evaluate the feasibility of joining Magnesium alloy AZ31 sheet to galvanized steel sheet in lap configuration using friction stir welding (FSW). Two different automotive sheet steels were used for comparative evaluation of the dissimilar joining potential; a 0.8mm thick, electro galvanized (EG) mild steel, and a 1.5mm thick hot dipped galvanized (HDG) high-strength, low-alloy steel (HSLA). These steels were joined to 2.33mm thick AZ31B magnesium sheet. A single FSW tool design was used for both dissimilar welds, and process parameters were kept the same. Average peak load for the AZ31-1.5 mm steel weld joint in lap shear mode was found to be 6.3 ± 1.0 kN. For the AZ31-0.8 mm steel weld, joint strength was 5.1 ± 1.5 kN. Microstructural investigation indicates melting of the Zn coating at the interface and subsequent alloying with the Mg sheet resulting in formation of solidified Zn-Mg alloy layer at AZ31/steel interface.

  2. An Evaluation of Creep Behaviour in Friction Stir Welded MA754 Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jiye; Yuan, Wei; Mishra, Rajiv S.; Charit, Indrajit

    2014-09-01

    Effect of friction stir welding (FSW) on microstructure and creep properties of oxide dispersion strengthened (ODS) alloy MA754 were investigated. Fine-grained microstructure developed in the weld zone. TEM results showed some degree of particle agglomeration as a result of intense material flow. Creep tests of the FSW material were carried out at 973 and 1073 K. Power law creep behaviour was observed with stress exponent values of 6.9 and 6.3 at 973 and 1073 K, respectively. The results were compared to those of the as-received material. Creep resistance of FSW material was lower than that of as-received material associated with significantly reduced threshold stress. Post-weld annealing was carried out at 1598 K for 1 h. The heat treatment resulted in a coarse-grained microstructure and enhanced the creep resistance of the welded material. The creep data were compared with those of ODS Ni-Cr alloys in literature. The analysis shows the threshold stress of ODS alloys to be grain size- and temperature-dependent.

  3. Numerical modelling of thermal phenomenon in friction stir welding of aluminum plates

    NASA Astrophysics Data System (ADS)

    Vaira Vignesh, R.; Padmanaban, R.; Arivarasu, M.; Thirumalini, S.; Gokulachandran, J.; Sai Ram, Mutyala Sesha Satya

    2016-09-01

    Friction stir welding (FSW) is a solid state welding process with potential to join materials that are non weldable by conventional fusion welding techniques. The study of heat transfer in FSW aids in the identification of defects like flash, inadequate heat input, poor material flow and mixing etc. In this paper, transient temperature distribution during FSW of aluminum alloy AA6061-T6 was simulated using finite element modelling. The model was used to predict the peak temperature and analyse the thermal history during FSW. The effect of process parameters namely tool rotation speed, tool traverse speed (welding speed), shoulder diameter and pin diameter of tool on the temperature distribution was investigated using two level factorial design. The model results were validated using the experimental results from the published literature. It was found that peak temperature was directly proportional to tool rotation speed and shoulder diameter and inversely proportional to tool traverse speed. The effect of pin diameter on peak temperature was found to be trivial.

  4. Numerical Simulation of the Inertia Friction Welding Process of Dissimilar Materials

    NASA Astrophysics Data System (ADS)

    El-Hadek, Medhat A.

    2014-12-01

    Three-dimensional axisymmetric finite element analyses have been performed to analyze the coupled thermo-mechanical oscillatory transient problem of friction welding of two dissimilar hollow cylinders. The analysis included the effect of conduction and convection heat transfer implementing three independent variables specifically the welding time, the rotational velocity, and the thrust pressure. Experimental evaluation of the non-linear copper and Aluminum 6061 stress-strain responses, the thermal conductivities, and the specific heat coefficients were conducted using an environmental-controlled compartment for at least four different temperatures. These results were incorporated in the finite element model calculating a real joint transient temperature distribution and a full field view of the residual stresses in weldment. Variables of angular rotational velocity of (200, 400, and 600 rpm), thrust pressure of (10E5, 10E6, and 10E7 Pa), and total welding time of (1, 2, and 4 seconds) were used in the model simulation. The optimum welding conditions were selected using Taguchi method. Finally, the deformation shape predicted by the finite element simulations was compared to the deformations obtained by the experimental results.

  5. A Numerical Simulation for Dissimilar Aluminum Alloys Joined by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Hamilton, Carter; Kopyściański, Mateusz; Węglowska, Aleksandra; Dymek, Stanisław; Pietras, Adam

    2016-09-01

    Dissimilar aluminum alloy sheets of 2017A-T451 and 7075-T651 (6 mm thickness) were friction stir welded in a butt weld configuration. A numerical simulation of the joining process was developed to visualize the material flow patterns and temperature distribution and to correlate the microstructure to the hardness behavior. Due to the complementary downward flow of surface material into the workpiece thickness and upward flow of mid-plane and bottom-plane material, the weld nugget is composed of alternating layers of 7075 and 2017A. These layers have unique temperature histories depending on the material's initial location within the cross section; therefore, they also have distinctive precipitate distributions. Supersaturated surface material flows into the process zone and forms a core in which GP zones reprecipitate upon cooling. Mid-plane and bottom-plane material flow toward the workpiece surface and encompass the surface material core. Within this region, the weld temperatures overage the equilibrium θ phase in 2017A, decreasing the hardness, and at the same time, dissolve the equilibrium η/ T phase in the 7075, leading to reprecipitation of GP zones upon cooling and a hardness recovery.

  6. A Phenomenological Model for Tool Wear in Friction Stir Welding of Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Prater, Tracie J.; Strauss, Alvin M.; Cook, George E.; Gibson, Brian T.; Cox, Chase D.

    2013-08-01

    Friction stir welding (FSW) of metal matrix composites (MMCs) is advantageous because the solid-state nature of the process precludes formation of deleterious intermetallic phases which accompany melting. FSW of MMCs is complicated by rapid and severe wear of the welding tool, a consequence of contact between the tool and the much harder abrasive reinforcement which gives the workpiece material its enhanced strength. The current article demonstrates that Nunes's rotating plug model of material flow in FSW, which has been successfully applied in many other contexts, can also help us understand wear in FSW of MMCs. An equation for predicting the amount of wear in this application is developed and compared with experimental data. This phenomenological model explains the relationship between wear and FSW process parameters documented in previous studies.

  7. Evaluation of the Mechanical Performance of Self-Piercing Rivets in Friction Stir Welded Structures

    SciTech Connect

    Stephens, Elizabeth V.; Grant, Glenn J.; Davies, Richard W.; Wazny, Scott; Kaunitz, Leon; Fulbright, Brian; Waldron, D.

    2005-04-01

    This paper presents the coupon performance data of friction stir welded tailor welded blanks (TWBs) joined to a monolithic aluminum sheet by self-piercing rivets (SPRs). Uniaxial tensile tests were performed to characterize the joint strength and the total energy absorption capability of the TWB/monolithic joint assemblies. Cyclic fatigue tests were also conducted to characterize the fatigue behavior and failure mechanisms of the jointed assemblies. It was found that the static and fatigue strength of the TWB/monolithic assembly was approximately 30 percent less in all loading configurations tested in comparison to a common monolithic sheet SPR assembly. The total energy absorbed by the TWB/monolithic sheet assemblies was also found to be 30 percent less than the monolithic sheet assemblies in cross tension loading. In lap shear loading, the total energy absorbed was comparable.

  8. Microstructural Evolution During Friction Stir Welding of Mild Steel and Ni-Based Alloy 625

    NASA Astrophysics Data System (ADS)

    Fernandez, Johnnatan Rodriguez; Ramirez, Antonio J.

    2017-01-01

    Microstructure evolution during friction stir welding (FSW) of mild steel and Ni-based alloy 625 was studied. Regarding the Ni-based alloy, the welding process led to grain refinement caused by discontinuous and continuous dynamic recrystallization, where bulging of the pre-existing grains and subgrain rotation were the primary mechanisms of recrystallization. In the steel, discontinuous dynamic recrystallization was identified as the recovery process experienced by the austenite. Simple shear textures were observed in the regions affected by the deformation of both materials. Although the allotropic transformation obscured the deformation history, the thermo-mechanically affected zone was identified in the steel by simple shear texture components. A new methodology for the study of texture evolution based on rotations of the slip systems using pole figures is presented as an approximation to describe the texture evolution in FSW.

  9. Friction Stir Welding Development at National Aeronautics and Space Administration-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents an over-view of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including very thin and very thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  10. Friction Stir Welding Development at NASA-Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Carter, Robert W.; Ding, Robert J.; Lawless, Kirby G.; Nunes, Arthur C., Jr.; Russell, Carolyn K.; Shah, Sandeep R.

    2001-01-01

    This paper presents an overview of friction stir welding (FSW) process development and applications at Marshall Space Flight Center (MSFC). FSW process development started as a laboratory curiosity but soon found support from many users. The FSW process advanced very quickly and has found many applications both within and outside the aerospace industry. It is currently being adapted for joining key elements of the Space Shuttle External Tank for improved producibility and reliability. FSW process modeling is done to better understand and improve the process. Special tools have been developed to weld variable thickness materials including thin and thick materials. FSW is now being applied to higher temperature materials such as copper and to advanced materials such as metal matrix composites. FSW technology is being successfully transferred from MSFC laboratory to shop floors of many commercial companies.

  11. The hardness effect of friction stir welding by MILKO 37 milling machine

    NASA Astrophysics Data System (ADS)

    Jasri, M. A. H. M.; Afendi, M.; Ismail, A.; Ishak, M.

    2015-05-01

    This study investigates the mechanical properties of aluminium A5083 in terms of hardness after it has been welded by friction stir welding (FSW) process. In this study, MILKO 37 milling machine was modified to run FSW process on 4 mm aluminium A5083 plate butt joint. In the experiments, variables of travel speed and tool rotational speed based on capability of machine were used. From previous researches, the tool geometry design is one of the major parameters for FSW process. Therefore, tool geometry design was initially determined based on trial and error. The tool geometry chosen was solid cylinder as the effect toward the FSW process was minimal. The design shows that the pin length should be 80-95 % of plate thickness and the pin probe diameter shape is cylinder flat base. The tool's material chosen was a high carbon steel grade A709 with hardening process using standard ASTM A709 GR 50/type 1.

  12. Microstructural Evolution During Friction Stir Welding of Mild Steel and Ni-Based Alloy 625

    NASA Astrophysics Data System (ADS)

    Fernandez, Johnnatan Rodriguez; Ramirez, Antonio J.

    2017-03-01

    Microstructure evolution during friction stir welding (FSW) of mild steel and Ni-based alloy 625 was studied. Regarding the Ni-based alloy, the welding process led to grain refinement caused by discontinuous and continuous dynamic recrystallization, where bulging of the pre-existing grains and subgrain rotation were the primary mechanisms of recrystallization. In the steel, discontinuous dynamic recrystallization was identified as the recovery process experienced by the austenite. Simple shear textures were observed in the regions affected by the deformation of both materials. Although the allotropic transformation obscured the deformation history, the thermo-mechanically affected zone was identified in the steel by simple shear texture components. A new methodology for the study of texture evolution based on rotations of the slip systems using pole figures is presented as an approximation to describe the texture evolution in FSW.

  13. Thermal Management in Friction-Stir Welding of Precipitation-Hardened Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Upadhyay, Piyush; Reynolds, Anthony P.

    2015-05-01

    Process design and implementation in friction-stir welding (FSW) is mostly dependent on empirical information. Basic science of FSW and processing can only be complete when fundamental interrelationships between the process control parameters and response variables and the resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters such as tool rotation, translation rates, and forge axis force have complicated and interactive relationships to process-response variables such as peak temperature and time at temperature. Of primary influence on the other process-response parameters are temperature and its gradient in the deformation and heat-affected zones. Through a review of pertinent works in the literature and results from boundary condition experiments performed in precipitation-hardening aluminum alloys, this article partially elucidates the nature and effects of temperature transients caused by variation of thermal boundaries in FSW.

  14. Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel

    PubMed Central

    Sriram, Krishnan; Jefferson, Amy M.; Lin, Gary X.; Afshari, Aliakbar; Zeidler-Erdely, Patti C.; Meighan, Terence G.; McKinney, Walter; Jackson, Mark; Cumpston, Amy; Cumpston, Jared L.; Leonard, Howard D.; Frazer, David G.; Antonini, James M.

    2015-01-01

    Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson’s disease (PD). Some applications in manufacturing industry employ a variant welding technology known as “weld-bonding” that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague–Dawley rats were exposed (25 mg/m3 targeted concentration; 4 h/day × 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood–brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings

  15. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Maleki, E.

    2015-12-01

    Friction stir welding (FSW) is a relatively new solid-state joining technique that is widely adopted in manufacturing and industry fields to join different metallic alloys that are hard to weld by conventional fusion welding. Friction stir welding is a very complex process comprising several highly coupled physical phenomena. The complex geometry of some kinds of joints makes it difficult to develop an overall governing equations system for theoretical behavior analyse of the friction stir welded joints. Weld quality is predominantly affected by welding effective parameters, and the experiments are often time consuming and costly. On the other hand, employing artificial intelligence (AI) systems such as artificial neural networks (ANNs) as an efficient approach to solve the science and engineering problems is considerable. In present study modeling of FSW effective parameters by ANNs is investigated. To train the networks, experimental test results on thirty AA-7075-T6 specimens are considered, and the networks are developed based on back propagation (BP) algorithm. ANNs testing are carried out using different experimental data that they are not used during networks training. In this paper, rotational speed of tool, welding speed, axial force, shoulder diameter, pin diameter and tool hardness are regarded as inputs of the ANNs. Yield strength, tensile strength, notch-tensile strength and hardness of welding zone are gathered as outputs of neural networks. According to the obtained results, predicted values for the hardness of welding zone, yield strength, tensile strength and notch-tensile strength have the least mean relative error (MRE), respectively. Comparison of the predicted and the experimental results confirms that the networks are adjusted carefully, and the ANN can be used for modeling of FSW effective parameters.

  16. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    NASA Astrophysics Data System (ADS)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  17. Mechanical Property Analysis in the Retracted Pin-Tool (RPT) Region of Friction Stir Welded (FSW) Aluminum Lithium 2195

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Oelgoetz, Peter A.

    1999-01-01

    The "Auto-Adjustable Pin Tool for Friction Stir Welding", was developed at The Marshall Space Flight Center to address process deficiencies unique to the FSW process. The auto-adjustable pin tool, also called the retractable pin-tool (R.PT) automatically withdraws the welding probe of the pin-tool into the pin-tool's shoulder. The primary function of the auto-adjustable pin-tool is to allow for keyhole closeout, necessary for circumferential welding and localized weld repair, and, automated pin-length adjustment for the welding of tapered material thickness. An overview of the RPT hardware is presented. The paper follows with studies conducted using the RPT. The RPT was used to simulate two capabilities; welding tapered material thickness and closing out the keyhole in a circumferential weld. The retracted pin-tool regions in aluminum- lithium 2195 friction stir weldments were studied through mechanical property testing and metallurgical sectioning. Correlation's can be =de between retractable pin-tool programmed parameters, process parameters, microstructure, and resulting weld quality.

  18. Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321

    DTIC Science & Technology

    2011-01-01

    durable structures are: (a) FSW is 111being used in a serial production of aluminum alloy-based 112ferryboat deck structures in Finland; (b) Al-Mg-Si-based...material is circa 160 MPa (i.e., around 40% lower 218than that in the base metal). 219The FSW tool used was made of tool steel , had a 25 mm- 220diameter...the literature revealed that high-cycle fatigue data associated with friction stir-welded ( FSW ) joints of AA5083-H321 (a solid-solution-strengthened

  19. Friction Stir Weld Tooling Development for Application on the 2195 Al-Cu-Li Space Transportation System External Tank

    NASA Technical Reports Server (NTRS)

    Loftus, Zachary; Arbegast, W. J.; Hartley, P. J.

    1998-01-01

    Friction Stir Welding (FSW) is a new and innovative solid-state joining process which can be applied to difficult-to- weld aluminum alloys. However, the large forces involved with the process have posed a production tooling challenge. Lockheed Martin Michoud Space Systems has overcome many of these challenges on the Super Lightweight External Tank (ET) program. Utilizing Aluminum-Copper-Lithium alloy 2195 in the form of plate and extrusions, investigations of FSW process parameters have been completed. Major loading mechanisms are discussed in conjunction with deflection measurements. Since the ET program is a cryogenic application, a brief comparison of cryogenic material properties with room temperature material properties is offered for both FSW and fusion welds. Finally, a new approach to controlling the FSW process from a load perspective is introduced. Emphasis will be put on tooling development, as well as the impact of tooling design and philosophy on Friction Stir Weld success probability.

  20. Grain structure and dislocation density measurements in a friction stir welded aluminum alloy using x-ray peak profile analysis

    SciTech Connect

    Woo, Wan Chuck; Balogh, Levente; Ungar, Prof Tomas; Choo, Hahn; Feng, Zhili

    2008-01-01

    The dislocation density and grain structure of a friction stir welded 6061-T6 aluminum alloy was determined as a function of distance from the weld centerline using high-resolution micro-beam x-ray diffraction. The results of the x-ray peak profile analysis show that the dislocation density is about 1.2 x 10^14 m-2 inside and 4.8 x 10^14 m-2 outside of the weld region. The average subgrain size is about 180 nm in both regions. Compared to the base material, the dislocation density was significantly decreased in the dynamic recrystallized zone of the friction stir welds, which is a good correlation with the TEM observations. The influence of the dislocation density on the strain hardening behavior during tensile deformation is also discussed.

  1. Site-Dependent Tension Properties of Inertia Friction-Welded Joints Made From Dissimilar Ni-based Superalloys

    NASA Astrophysics Data System (ADS)

    Senkov, O. N.; Mahaffey, D. W.; Semiatin, S. L.; Woodward, C.

    2015-03-01

    Microstructure, tensile properties, and fracture behavior of the inertia friction weld joints of dissimilar superalloys, cast Mar-M247 and wrought LSHR, were studied to assess the weld quality. Tensile tests were conducted at 23 and 704 °C on the samples containing different areas of the weld interface of the same welded material. The stress-strain curves were registered at different axial distances from the weld interface. In all tested samples, plastic deformation was localized on Mar-M247 side, outside the heat-affected zone (HAZ), and the resistance to plastic deformation of Mar-M247 increased with a decrease in the distance from the weld interface inside HAZ. Only elastic deformation occurred on the LSHR side. Fracture occurred on the Mar-M247 side, outside HAZ, or at the weld interface. In the latter case, welding defects in the form of clusters of nanometer-sized oxide and carbide particles were observed at the fracture surfaces. These results revealed that the IFW process is capable of producing the weld joints between Mar-M247 and LSHR with the fracture strength higher than that of Mar-M247. However, optimization of the IFW processing parameters is required to minimize clustering of oxide/carbide particles at the weld interface in this alloy pair.

  2. Study on nondestructive inspection using HTS-SQUID for friction stir welding between dissimilar metals

    NASA Astrophysics Data System (ADS)

    Hatsukade, Y.; Takahashi, T.; Yasui, T.; Tsubaki, M.; Fukumono, M.; Tanaka, S.

    2007-10-01

    We have developed an SQUID-NDI technique for evaluation of friction stir welding (FSW) between aluminum alloy A6063 and stainless steel SUS304 from the electric conductivities in board specimens bonded by FSW. A SQUID-NDI system employing an HTS-SQUID gradiometer was constructed to measure current distribution in the FSW specimens by applying voltage to the specimen. By measuring field gradients dBz/dy and dBz/dx above the FSW specimens made with various FSW conditions and then converting them to current vector Jx and Jy, conductivities of FSW areas were estimated. Due to the difference in the FSW conditions, the conductivity distributions varied dramatically. From these results, it was suggested that the conductivities in FSW areas should be varied due to the temperature heated by the friction between the milling tool and the materials.

  3. Three-Dimensional Numerical Model Considering Phase Transformation in Friction Stir Welding of Steel

    NASA Astrophysics Data System (ADS)

    Cho, Hoon-Hwe; Kim, Dong-Wan; Hong, Sung-Tae; Jeong, Yong-Ha; Lee, Keunho; Cho, Yi-Gil; Kang, Suk Hoon; Han, Heung Nam

    2015-12-01

    A three-dimensional (3D) thermo-mechanical model is developed considering the phase transformation occurring during the friction stir welding (FSW) of steel, and the simulated result is compared with both the measured temperature distribution during FSW and the microstructural changes after FSW. The austenite grain size (AGS) decreases significantly because of the frictional heat and severe plastic deformation generated during FSW, and the decreased AGS accelerates the diffusional phase transformation during FSW. The ferrite phase, one of the diffusional phases, is developed mainly in mild steel, whereas the bainite phase transformation occurs significantly in high-strength steel with large hardenability. Additionally, transformation-induced heat is observed mainly in the stir zone during FSW. The measured temperature distribution and phase fraction agree fairly well with the predicted data.

  4. Numerical simulation of friction stir welding (FSW): Prediction of the heat affect zone using a softening model

    NASA Astrophysics Data System (ADS)

    Paulo, R. M. F.; Carlone, P.; Valente, R. A. F.; Teixeira-Dias, F.; Palazzo, G. S.

    2016-10-01

    In this work a numerical model is proposed to simulate Friction Stir Welding (FSW) process in AA2024-T3 plates. This model included a softening model that account for the temperature history and the hardness distribution on a welded plate can thus be predicted. The validation of the model was performed using experimental measurements of the hardness in the plate cross-section. There is an acceptable prediction of the material softening in the Heat Affected Zone (HAZ) using the adopted model.

  5. Microstructure and Fatigue Behavior of Friction Stir-welded Noncombustive Mg-9Al-Zn-Ca Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Li, Z. Y.; Nakata, K.; Feng, J. C.; Huang, Y. X.; Liao, J. S.

    2016-06-01

    Microstructure and fatigue behavior of friction stir-welded noncombustive Mg-9Al-Zn-Ca magnesium alloy were investigated. The as-received hot-extruded material consisted of equiaxed α-Mg grains with β-Mg17Al12 and Al2Ca compounds distributed along the grain boundaries. Friction stir welding produced much refined α-Mg grains accompanied by the dissolution of the eutectic β-Mg17Al12 phase, while Al2Ca phase was dispersed homogenously into the Mg matrix. Friction stir welding produced slightly increased hardness and tensile strength in the defect-free welds compared with the base material due to microstructural refinement and uniform distribution of intermetallic compounds. The load-controlled uniaxial tensile high-cycle fatigue tests indicated that fatigue strength of 90 MPa was obtained for the friction stir-welded joint with fatigue crack initiated basically near the specimen's surface and at the retreating side of the joint. Crack propagation was characterized by cleavage and fatigue striations.

  6. Microstructure, crystallographic texture and mechanical properties of friction stir welded AA2017A

    SciTech Connect

    Ahmed, M.M.Z.; Wynne, B.P.; Rainforth, W.M.; Threadgill, P.L.

    2012-02-15

    In this study a thick section (20 mm) friction stir welded AA2017A-T451 has been characterized in terms of microstructure, crystallographic texture and mechanical properties. For microstructural analysis both optical and scanning electron microscopes have been used. A detailed crystallographic texture analysis has been carried out using the electron back scattering diffraction technique. Crystallographic texture has been examined in both shoulder and probe affected regions of the weld NG. An entirely weak texture is observed at the shoulder affected region which is mainly explained by the effect of the sequential multi pass deformation experienced by both tool probe and tool shoulder. The texture in the probe dominated region at the AS side of the weld is relatively weak but still assembles the simple shear texture of FCC metals with B/B{sup Macron} and C components existing across the whole map. However, the texture is stronger at the RS than at the AS of the weld, mainly dominated byB/B{sup Macron} components and with C component almost absent across the map. An alternating bands between (B) components and (B{sup Macron }) component are observed only at the AS side of the weld. - Highlights: Black-Right-Pointing-Pointer Detailed investigation of microstructure and crystallographic texture. Black-Right-Pointing-Pointer The grain size is varied from the top to the bottom of the NG. Black-Right-Pointing-Pointer An entirely weak texture is observed at the shoulder affected region. Black-Right-Pointing-Pointer The texture in the probe affected region is dominated by simple shear texture.

  7. Friction Stir Weld Inspection Through Conductivity Imaging Using Shaped Field MWM(TM)-Arrays

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil; Grundy, David; Zilberstein, Vladimir; Kinchen, David G.; McCool, Alex (Technical Monitor)

    2002-01-01

    Friction Stir Welds (FSW) of A1 2195-T8 and A1 2219-T8, provided by Lockheed Martin Michoud Operations, were inspected for lack-of-penetration (LOP) defects using a custom designed MWM-Array, a multi-element eddy-current sensor. MWM electrical conductivity mapping demonstrated high sensitivity to LOP as small as 0.75 mm (0.03 in.), as confirmed by metallographic data that characterized the extent of LOP defects. High sensitivity and high spatial resolution was achieved via a 37-element custom designed MWM-Array allowing LOP detection using the normalized longitudinal component of the MWM measured conductivity. This permitted both LOP detection and correlation of MWM conductivity features with the LOP defect size, as changes in conductivity were apparently associated with metallurgical features within the near-surface layer of the LOP defect zone. MWM conductivity mapping reveals information similar to macroetching as the MWM-Array is sensitive to small changes in conductivity due to changes in microstructure associated with material thermal processing, in this case welding. The electrical conductivity measured on the root side of FSWs varies across the weld due to microstructural differences introduced by the FSW process, as well as those caused by planar flaws. Weld metal, i.e., dynamically recrystallized zone (DXZ), thermomechanically affected zone (TMZ), heat-affected zone (HAZ), and parent metal (PM) are all evident in the conductivity maps. While prior efforts had met with limited success for NDE of dissimilar alloy, A12219 to A12195 FSW, the new custom designed multi-element MWM-Array achieved detection of all LOP defects even in dissimilar metal welds.

  8. Friction Stir Weld Inspection Through Conductivity Imaging Using Shaped Field MWM(Registered Trademark) - Arrays

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil; Grundy, David; Zilberstein, Vladimir; Kinchen, David G.; McCool, Alex (Technical Monitor)

    2002-01-01

    Friction Stir Welds (FSW) of Al 2195-T8 and Al 2219-T8, provided by Lockheed Martin Michoud Operations, were inspected for lack-of-penetration (LOP) defects using a custom designed MWM-Array, a multi-element eddy-current sensor. MWM (registered trademark) electrical conductivity mapping demonstrated high sensitivity to LOP as small as 0.75 mm (0.03 in.), as confirmed by metallographic data that characterized the extent of LOP defects. High sensitivity and high spatial resolution was achieved via a 37-element custom designed MWM-Array allowing LOP detection using the normalized longitudinal component of the MWM measured conductivity. This permitted both LOP detection and correlation of MWM conductivity features with the LOP defect size, as changes in conductivity were apparently associated with metallurgical features within the near-surface layer of the LOP defect zone. MWM conductivity mapping reveals information similar to macro-etching as the MWM-Array is sensitive to small changes in conductivity due to changes in microstructure associated with material thermal processing, in this case welding. The electrical conductivity measured on the root side of FSWs varies across the weld due to microstructural differences introduced by the FSW process, as well as those caused by planar flaws. Weld metal, i.e., dynamically recrystallized zone (DXZ), thermomechanically affected zone (TMZ), heat-affected zone (HAZ), and parent metal (PM) are all evident in the conductivity maps. While prior efforts had met with limited success for NDE (Nondestructive Evaluation) of dissimilar alloy, Al2219 to Al2195 FSW, the new custom designed multi-element MWM-Array achieved detection of all LOP defects even in dissimilar metal welds.

  9. Properties of the joints of sheets of 1565ch alloy in combination with other aluminum alloys that were performed by friction welding with mixing

    NASA Astrophysics Data System (ADS)

    Drits, A. M.; Ovchinnikov, V. V.

    2016-06-01

    The structure and properties of the butt-welded joints of a 1565ch M aluminum alloy with AMg5, AMg6, AV (60661), and 7021 alloys that were performed by friction welding with mixing are studied. The mechanical properties of these joints and their fracture zones are determined as functions of a combination of the alloys to be joined. These alloys are found to have good weldability under friction welding with mixing.

  10. Effect of the Metal Transport on the Mechanical Properties of Al-2Si Alloys Processed through Friction Stir Welding Processes

    NASA Astrophysics Data System (ADS)

    Shailesh Rao, A.; Naik, Yuvaraja

    2017-03-01

    In this study, Al-2Si alloys were joined using friction stir welding with various process parameters. The process parameters considered here were rotational speeds from 600 to 1200 rpm, feed rate from 50 to 150 mm/min with three equal increments. In this study, the mushy state metal movements during the processes are discussed. The experimental observation and results indicate that the flaw formations, surface roughness of the weld, and hardness value depend on the metal movement and are explained in this study. The microstructure of the weld zone was studied finally.

  11. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys.

    PubMed

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-12-01

    Conventional fusion welding of brass (Cu-Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints.

  12. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys

    PubMed Central

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-01-01

    Conventional fusion welding of brass (Cu–Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints. PMID:26793745

  13. Laser Peening and Shot Peening Effects on Fatigue Life and Surface Roughness of Friction Stir Welded 7075-T7351 Aluminum

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Lyons, Jed; Forman, Royce

    2006-01-01

    The effects of laser peening, shot peening, and a combination of both on the fatigue life of Friction Stir Welds (FSW) was investigated. The fatigue samples consisted of dog bone specimens and the loading was applied in a direction perpendicular to the weld direction. Several laser peening conditions with different intensities, durations, and peening order were tested to obtain the optimum peening parameters. The surface roughness resulting from various peening techniques was assessed and characterized. The results indicate a significant increase in fatigue life using laser peening compared to shot peened versus their native welded specimens.

  14. Friction Stir Welding of GR-Cop 84 for Combustion Chamber Liners

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn K.; Carter, Robert; Ellis, David L.; Goudy, Richard

    2004-01-01

    GRCop-84 is a copper-chromium-niobium alloy developed by the Glenn Research Center for liquid rocket engine combustion chamber liners. GRCop-84 exhibits superior properties over conventional copper-base alloys in a liquid hydrogen-oxygen operating environment. The Next Generation Launch Technology program has funded a program to demonstrate scale-up production capabilities of GR-Cop 84 to levels suitable for main combustion chamber production for the prototype rocket engine. This paper describes a novel method of manufacturing the main combustion chamber liner. The process consists of several steps: extrude the GR-Cop 84 powder into billets, roll the billets into plates, bump form the plates into cylinder halves and friction stir weld the halves into a cylinder. The cylinder is then metal spun formed to near net liner dimensions followed by finish machining to the final configuration. This paper describes the friction stir weld process development including tooling and non-destructive inspection techniques, culminating in the successful production of a liner preform completed through spin forming.

  15. Processing, Microstructure, and Residual Stress Effects on Strength and Fatigue Crack Growth Properties in Friction Stir Welding: A Review

    NASA Astrophysics Data System (ADS)

    Biro, Andrew L.; Chenelle, Brendan F.; Lados, Diana A.

    2012-12-01

    The purpose of this review is to provide a comprehensive overview of friction stir welding (FSW), as well as to introduce current research and applications involving this relatively new process. FSW is a new, efficient way of joining metal alloys that are considered unsuitable for welding via conventional fusion joining methods, and is capable of welding dissimilar metals with ease. This process also has the benefit of being solid-state, which mitigates the need for liquid filler metals that are common with conventional fusion welding techniques. This review will examine different facets of the FSW process, exploring the resulting static and dynamic properties and factors that influence these properties including weld zone boundaries, grain refinement, residual stress, and addition of reinforcing particles. Highlights of current research in this area and applications of this process in various industries will also be presented and discussed.

  16. A Combined Experimental/Computational Analysis of the Butt-Friction-Stir-Welded AA2139-T8 Joints

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.; Yen, C.-F.

    2016-07-01

    Combined experimental and computational investigations are carried out of the mechanical properties of materials residing in different weld zones of friction stir-welded (FSW) joints of thick plates of AA2139-T8. The experimental portion of the work comprised (a) identification of the weld zones within the FSW joints, through the use of optical-microscopy characterization of a transverse section; (b) validation of the weld zones identified in (a) via the generation of a micro-hardness field over the same transverse section; (c) extracting and subsequently testing miniature tensile specimens from different weld zones; and (d) extracting and testing a larger-size tensile specimen spanning transversely the FSW weld. The computational portion of the work comprised (i) validation of the mechanical properties, as determined experimentally using the miniature tensile specimens, of the material residing within different zones of the FSW joint; and (ii) clarification of the benefits yielded by the knowledge of the local material properties within the FSW joint. These benefits arise from the fact that (a) joint mechanical properties are generally inferior to those of the base metal; (b) the width of the weld in thick metallic-armor is often comparable to the armor thickness, and therefore may represent a significant portion of the armor exposed-surface area; and (c) modeling of the weld-material structural response under loading requires the availability of high-fidelity/validated material constitutive models, and the development of such models requires knowledge of the local weld-material mechanical properties.

  17. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  18. DIRECT IMAGE PROCESSING OF CORRODING SURFACES APPLIED TO FRICTION STIR WELDING.

    SciTech Connect

    ISAACS,H.S.ET AL.

    2003-10-12

    An in situ process for visually locating corrosion is presented. The process visually displays image differences obtained by subtracting one digitized image from another. The difference image shows only where changes have taken place during period between the recording of the two images. Changes are due to both corrosion attack of the surface and concentration changes of dissolved corrosion products in solution. Indicators added to the solution assist by decorating sites of corrosion as diffusion and convection of the dissolved products increase the size of the affected region. A study of the initial stages of corrosion of a friction stir welded Al alloy 7075 has been performed using this imaging technique. Pitting potential measurements suggest that there was an initial increased sensitivity to corrosion. The difference image technique demonstrated that it was due to a reformation of the passive film that occurs with Zn containing Al alloys which occurs preferentially along flow protected regions. The most susceptible region of the weld was found to be where both limited deformation and thermal transients are produced during welding.

  19. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Yavari, R.; Snipes, J. S.; Ramaswami, S.; Yen, C.-F.; Cheeseman, B. A.

    2014-06-01

    An Arbitrary Lagrangian-Eulerian finite-element analysis is combined with thermo-mechanical material constitutive models for Carpenter Custom 465 precipitation-hardened martensitic stainless steel to develop a linear friction welding (LFW) process model for this material. The main effort was directed toward developing reliable material constitutive models for Carpenter Custom 465 and toward improving functional relations and parameterization of the workpiece/workpiece contact-interaction models. The LFW process model is then used to predict thermo-mechanical response of Carpenter Custom 465 during LFW. Specifically, temporal evolutions and spatial distribution of temperature within, and expulsion of the workpiece material from, the weld region are examined as a function of the basic LFW process parameters, i.e., (a) contact-pressure history, (b) reciprocation frequency, and (c) reciprocation amplitude. Examination of the results obtained clearly revealed the presence of three zones within the weld, i.e., (a) Contact-interface region, (b) Thermo-mechanically affected zone, and (c) heat-affected zone. While there are no publicly available reports related to Carpenter Custom 465 LFW behavior, to allow an experiment/computation comparison, these findings are consistent with the results of our ongoing companion experimental investigation.

  20. A 3D numerical simulation of different phases of friction stir welding

    NASA Astrophysics Data System (ADS)

    Guerdoux, S.; Fourment, L.

    2009-10-01

    An adaptive arbitrary Lagrangian-Eulerian formulation is developed to compute the material flow and the temperature evolution during the three phases of the friction stir welding (FSW) process. It follows a splitting approach: after the calculations of the velocity/pressure and temperature fields, the mesh velocity is derived from the domain boundary evolution and from an adaptive refinement criterion provided by error estimation, and finally state variables are remapped. In this way, the unilateral contact conditions between the plate and the tool are accurately taken into account, so allowing one to model various instabilities that may occur during the process, such as the role played by the plunge depth of the tool on the formations of flashes, the possible appearance of non-steady voids or tunnel holes and the influence of the threads on the material flow, the temperature field and the welding efforts. This formulation is implemented in the 3D Forge3 FE software with automatic remeshing. The non-steady phases of FSW can so be simulated, as well as the steady welding phase. The study of different process conditions shows that the main phenomena taking place during FSW can be simulated with the right sensitivities.

  1. ELECTRIC WELDING EQUIPMENT AND AUTOMATION OF WELDING IN CONSTRUCTION,

    DTIC Science & Technology

    WELDING , *ARC WELDING , AUTOMATION, CONSTRUCTION, INDUSTRIES, POWER EQUIPMENT, GENERATORS, POWER TRANSFORMERS, RESISTANCE WELDING , SPOT WELDING , MACHINES, AUTOMATIC, STRUCTURES, WIRING DIAGRAMS, USSR.

  2. Finite volume modeling of laser assisted friction stir welding of 2017A-T451 aluminum alloy for enhanced sustainability of welded joints

    NASA Astrophysics Data System (ADS)

    Mimouni, Oussama; Badji, Riad; Hadji, Mohamed; Kouadri-Henni, Afia

    2016-10-01

    This study focuses on a new welding modification friction stir welding, using a preheating during the welding phase. This method utilizes laser energy to pre-heat the workpiece to a localized area at the front of the FSW tool, thereby reducing the temperature gradient over a localized area in advance of the tool. The amount of heat generated during welding determines the quality of the weld. Therefore the understanding of the temperature distribution is required to determine the optimal method of welding parameters. In this study, a two-dimensional model of an aluminum alloy plate coupled to a circular laser source is developed, using FLUENT software that is based on the finite volume method, also the geometry of the pin of the FSW tool was modified in several configurations to highlight the effect of the geometry of the tool on the temperature distribution in the welded plate. The model developed can be used to better understand the process, predict process performance and to determine the optimal parameters of the process.

  3. Development of Microstructure and Crystallographic Texture in a Double-Sided Friction Stir Welded Microalloyed Steel

    NASA Astrophysics Data System (ADS)

    Rahimi, S.; Wynne, B. P.; Baker, T. N.

    2017-01-01

    The evolution of microstructure and crystallographic texture has been investigated in double-sided friction stir welded microalloyed steel, using electron backscatter diffraction (EBSD). The microstructure analyses show that the center of stirred zone reached a temperature between Ac1 and Ac3 during FSW, resulting in a dual-phase austenitic/ ferritic microstructure. The temperatures in the thermo-mechanically affected zone and the overlapped area between the first and second weld pass did not exceed the Ac1. The shear generated by the rotation probe occurs in austenitic/ferritic phase field where the austenite portion of the microstructure is transformed to a bainitic ferrite, on cooling. Analysis of crystallographic textures with regard to shear flow lines generated by the probe tool shows the dominance of simple shear components across the whole weld. The austenite texture at Ac1 - Ac3 is dominated by the B { {1bar{1}2} }< 110rangle and bar{B} { {bar{1}1bar{2}} }< bar{1}bar{1}0rangle simple shear texture components, where the bainite phase textures formed on cooling were inherited from the shear textures of the austenite phase with relatively strong variant selection. The ferrite portion of the stirred zone and the ferrites in the thermo-mechanically affected zones and the overlapped area underwent shear deformation with textures dominated by the D1 { {bar{1}bar{1}2} }< 111rangle and D2 { {11bar{2}} }< 111rangle simple shear texture components. The formation of ultrafine equiaxed ferrite with submicron grain size has been observed in the overlapped area between the first and second weld pass. This is due to continuous dynamic strain-induced recrystallization as a result of simultaneous severe shear deformation and drastic undercooling.

  4. Analysis of Acoustic Emission Signals During Laser Spot Welding of SS304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Lee, Seounghwan; Ahn, Suneung; Park, Changsoon

    2014-03-01

    In this article, an in-process monitoring scheme for a pulsed Nd:YAG laser spot welding (LSW) is presented. Acoustic emission (AE) was selected for the feedback signal, and the AE data during LSW were sampled and analyzed for varying process conditions such as laser power and pulse duration. In the analysis, possible AE generation sources such as melting and solidification mechanism during welding were investigated using both the time- and frequency-domain signal processings. The results, which show close relationships between LSW and AE signals, were adopted in the feature (input) selection of a back-propagation artificial neural network, to predict the weldability of stainless steel sheets. Processed outputs agree well with LSW experimental data, which confirms the usefulness of the proposed scheme.

  5. Ultrasonic Spot Welding of AZ31B to Galvanized Mild Steel

    SciTech Connect

    Pan, Dr. Tsung-Yu; Franklin, Teresa; Pan, Professor Jwo; Brown, Elliot; Santella, Michael L

    2010-01-01

    Ultrasonic spot welds were made between sheets of 0.8-mm-thick hot-dip-galvanized mild steel and 1.6-mm-thick AZ31B-H24. Lap-shear strengths of 3.0-4.2 kN were achieved with weld times of 0.3-1.2 s. Failure to achieve strong bonding of joints where the Zn coating was removed from the steel surface indicate that Zn is essential to the bonding mechanism. Microstructure characterization and microchemical analysis indicated temperatures at the AZ31-steel interfaces reached at least 344 C in less than 0.3 s. The elevated temperature conditions promoted annealing of the AZ31-H24 metal and chemical reactions between it and the Zn coating.

  6. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.

    PubMed

    Yan, Xiao-Jun; Yang, Da-Zhi

    2006-04-01

    The purpose of this study was to investigate corrosion resistance of a laser spot-welded joint of NiTi alloy wires using potentiodynamic tests in Hank's solution at different PH values and the PH 7.4 NaCl solution for different Cl- concentrations. Scanning electron microscope observations were carried out before and after potentiodynamic tests. The composition of a laser spot-welded joint and base metal were characterized by using an electron probe microanalyzer. The results of potentiodynamic tests showed that corrosion resistance of a laser spot-welded joint of NiTi alloy wire was better than that of base metal, which exhibited a little higher breakdown potential and passive range, and a little lower passive current density. Corrosion resistances of a laser spot-welded joint and base metal decreased with increasing of the Cl- concentration and PH value. The improvement of corrosion resistance of the laser spot-welded joint was due to the decrease of the surface defects and the increase of the Ti/Ni ratio.

  7. Friction Stir Welding of Metal Matrix Composites for use in aerospace structures

    NASA Astrophysics Data System (ADS)

    Prater, Tracie

    2014-01-01

    Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as the Orion Crew Exploration Vehicle. A current focus of FSW research is to extend the process to new materials which are difficult to weld using conventional fusion techniques. Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramics and have a very high strength to weight ratio, a property which makes them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Since FSW occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This work characterizes the effect of process parameters (spindle speed, traverse rate, and length of joint) on the wear process. Based on the results of these experiments, a phenomenological model of the wear process was constructed based on the rotating plug model for FSW. The effectiveness of harder tool materials (such as Tungsten Carbide, high speed steel, and tools with diamond coatings) to combat abrasive wear is explored. In-process force, torque, and

  8. Fabrication of thick multilayered steel structure using A516 Grade 70 by multipass friction stir welding

    DOE PAGES

    Lim, Y. C.; Sanderson, S.; Mahoney, M.; ...

    2016-04-06

    Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the basemore » metal were found in the weld zones of friction stir welded A516 Grade 70 steel.« less

  9. Fabrication of thick multilayered steel structure using A516 Grade 70 by multipass friction stir welding

    SciTech Connect

    Lim, Y. C.; Sanderson, S.; Mahoney, M.; Wang, Y.; Chen, J.; David, S. A.; Feng, Z.

    2016-04-06

    Here, we fabricated a thick-sectioned multilayered steel structure by multipass friction stir welding on A516 Grade 70 steel. Tensile strength of the multilayered samples was comparable to that of the base metal. Failure was located in the base metal when a defect-free sample was tested. Charpy impact toughness was higher in the stir zone and heat affected zone than in the base metal. For higher microhardness values were found in the stir zone and heat affected zone than the base metal due to grain refinement and modification of the microstructures. As a result, improved mechanical properties compared to the base metal were found in the weld zones of friction stir welded A516 Grade 70 steel.

  10. Interfacial and Mechanical Behavior of AA5456 Filling Friction-Stir-Welded Lap Joints Using Similar and Dissimilar Pins

    NASA Astrophysics Data System (ADS)

    Behmand, Saleh Alaei; Mirsalehi, Seyyed Ehsan; Omidvar, Hamid; Safarkhanian, Mohammad Ali

    2016-10-01

    In this article, filling friction stir welding (FFSW) of the remaining exit holes of AA5456 alloy friction-stir-welded lap joints was studied. For this purpose, the influences of different rotating speeds, holding times, and pin materials, AA5456 and AA2024, on the metallurgical structure and joint strength were investigated. The observations showed that defect-free lap joints are successfully obtainable by this method using similar and dissimilar consumable pins. The results indicated that the higher rotating speed and holding time adversely affect the weld performance. The best result was achieved for 30 seconds holding time, 500 rpm rotating speed, and AA2024 consumable pin. In this condition, a lap shear strength of 10 pct higher than that of the nonfilled joint, equivalent to about 94 pct of the original defect-free FSW joint, was obtained, whereas the GTAW filled joint showed only approximately 87 pct of the continuous FSW joint strength.

  11. Corrosion behavior of the friction-stir-welded joints of 2A14-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Qin, Hai-long; Zhang, Hua; Sun, Da-tong; Zhuang, Qian-yu

    2015-06-01

    The corrosion behavior of friction-stir-welded 2A14-T6 aluminum alloy was investigated by immersion testing in immersion exfoliation corrosion (EXCO) solution. Electrochemical measurements (open circuit potential, potentiodynamic polarization curves, and electrochemical impedance spectroscopy), scanning electron microscopy, and energy dispersive spectroscopy were employed for analyzing the corrosion mechanism. The results show that, compared to the base material, the corrosion resistance of the friction-stir welds is greatly improved, and the weld nugget has the highest corrosion resistance. The pitting susceptibility originates from the edge of Al-Cu-Fe-Mn-Si phase particles as the cathode compared to the matrix due to their high self-corrosion potential. No corrosion activity is observed around the θ phase (Al2Cu) after 2 h of immersion in EXCO solution.

  12. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    SciTech Connect

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtained when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.

  13. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE PAGES

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  14. Investigation of Microstructure and Microhardness in Self-Reacting Friction Stir Welded AA2014-T6 and AA2219-T87

    NASA Technical Reports Server (NTRS)

    Horton, K. Renee; McGill, Preston; Barkey, Mark

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. This work reports on the microstructure and microhardness of SR-FSW between two dissimilar aluminum alloys. Specifically, the study examines the cross section of the weld joint formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side. The microstructural analysis shows an irregularly displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the weld nugget region. There are sharp variations in the microhardness across the weld. These variations are described in the paper and mechanisms for their formation are discussed.

  15. The Effects of Laser Peening and Shot Peening on Mechanical Properties in Friction Stir Welded 7075-T7351 Aluminum

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar

    2006-01-01

    Peening techniques like laser peening and shot peening were used to modify the surface of friction stir welded 7075-T7351 Aluminum Alloy specimens. The tensile coupons were machined such as the loading was applied in a direction perpendicular to the weld direction. The peening effects on the global and local mechanical properties through the different regions of the weld were characterized and assessed. The surface hardness levels resulting from various peening techniques were also investigated for both sides of the welds. Shot peening resulted in an increase to surface hardness levels, but no improvement was noticed on the mechanical properties. In contrast, mechanical properties were improved by laser peening when compared to the unpeened material.

  16. The Microstructure and Gamma Prime Distributions in Inertia Friction Welded Joint of P/M Superalloy FGH96

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Shen, Wenfei; Zhang, Liwen; Xia, Yingnan; Li, Ruiqin

    2017-03-01

    A gamma prime (γ') precipitation ( 35% in volume)-hardened powder metallurgy (P/M) superalloy FGH96 was welded using inertia friction welding (IFW). The microstructure and γ' distributions in the joints in two conditions, hot isostatic pressed state and solution-treated and aged state, were characterized. The recrystallization of grains, the dissolution and re-precipitation of γ' in the joints were discussed in terms of the temperature evolutions which were calculated by finite element model analysis. Regardless of the initial states, fully recrystallized fine grain structure formed at welded zone. Meanwhile, very fine γ' precipitations were re-precipitated at the welded zone. These recrystallized grain structure and fine re-precipitated γ' resulted in increasing hardness of IFW joint while making the hardness dependent on the microstructure and γ' precipitation.

  17. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  18. Influence of tool shape on lattice rearrangement under loading conditions reproducing friction stir welding

    SciTech Connect

    Konovalenko, Ivan S.; Konovalenko, Igor S.

    2015-10-27

    Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving tool from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.

  19. Influence of tool shape on lattice rearrangement under loading conditions reproducing friction stir welding

    NASA Astrophysics Data System (ADS)

    Konovalenko, Ivan S.; Konovalenko, Igor S.

    2015-10-01

    Metal behavior under loading conditions that reproduce friction stir welding was studied on the atomic scale. Calculations were conducted based on molecular dynamics simulation with potentials calculated within the embedded atom method. The loading of the interface between two crystallites, whose structure corresponded to aluminum alloy 2024, was simulated by the motion of a cone-shaped tool along the interface with constant angular and translational velocities. The motion of the rotating tool causes fracture of the workpiece crystal structure with subsequent mixing of surface atoms of the interfacing crystallites. It is shown that the resistance force acting on the moving tool from the workpiece and the process of structural defect formation in the workpiece depend on the tool shape.

  20. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Weld Quality Evaluation and Effects of Processing Parameters on Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Pan, Yi; Lados, Diana A.

    2017-01-01

    Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.