Sample records for spr sensor based

  1. A Localized Surface Plasmon Resonance Sensor Using Double-Metal-Complex Nanostructures and a Review of Recent Approaches

    PubMed Central

    Ahn, Heesang; Song, Hyerin; Kim, Kyujung

    2017-01-01

    From active developments and applications of various devices to acquire outside and inside information and to operate based on feedback from that information, the sensor market is growing rapidly. In accordance to this trend, the surface plasmon resonance (SPR) sensor, an optical sensor, has been actively developed for high-sensitivity real-time detection. In this study, the fundamentals of SPR sensors and recent approaches for enhancing sensing performance are reported. In the section on the fundamentals of SPR sensors, a brief description of surface plasmon phenomena, SPR, SPR-based sensing applications, and several configuration types of SPR sensors are introduced. In addition, advanced nanotechnology- and nanofabrication-based techniques for improving the sensing performance of SPR sensors are proposed: (1) localized SPR (LSPR) using nanostructures or nanoparticles; (2) long-range SPR (LRSPR); and (3) double-metal-layer SPR sensors for additional performance improvements. Consequently, a high-sensitivity, high-biocompatibility SPR sensor method is suggested. Moreover, we briefly describe issues (miniaturization and communication technology integration) for future SPR sensors. PMID:29301238

  2. Graphene-Based Long-Period Fiber Grating Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing

    PubMed Central

    Wei, Wei; Nong, Jinpeng; Zhang, Guiwen; Tang, Linlong; Jiang, Xiao; Chen, Na; Luo, Suqin; Lan, Guilian; Zhu, Yong

    2016-01-01

    A graphene-based long-period fiber grating (LPFG) surface plasmon resonance (SPR) sensor is proposed. A monolayer of graphene is coated onto the Ag film surface of the LPFG SPR sensor, which increases the intensity of the evanescent field on the surface of the fiber and thereby enhances the interaction between the SPR wave and molecules. Such features significantly improve the sensitivity of the sensor. The experimental results demonstrate that the sensitivity of the graphene-based LPFG SPR sensor can reach 0.344 nm%−1 for methane, which is improved 2.96 and 1.31 times with respect to the traditional LPFG sensor and Ag-coated LPFG SPR sensor, respectively. Meanwhile, the graphene-based LPFG SPR sensor exhibits excellent response characteristics and repeatability. Such a SPR sensing scheme offers a promising platform to achieve high sensitivity for gas-sensing applications. PMID:28025483

  3. Indium oxide based fiber optic SPR sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Sarika; Sharma, Navneet K., E-mail: navneetk.sharma@jiit.ac.in

    2016-05-06

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  4. Surface Plasmon Resonance Sensors on Raman and Fluorescence Spectroscopy

    PubMed Central

    Wang, Jiangcai; Lin, Weihua; Cao, En; Xu, Xuefeng; Liang, Wenjie; Zhang, Xiaofang

    2017-01-01

    The performance of chemical reactions has been enhanced immensely with surface plasmon resonance (SPR)-based sensors. In this review, the principle and application of SPR sensors are introduced and summarized thoroughly. We introduce the mechanism of the SPR sensors and present a thorough summary about the optical design, including the substrate and excitation modes of the surface plasmons. Additionally, the applications based on SPR sensors are described by the Raman and fluorescence spectroscopy in plasmon-driven surface catalytic reactions and the measurement of refractive index sensing, especially. PMID:29212139

  5. Microfluidic Surface Plasmon Resonance Sensors: From Principles to Point-of-Care Applications

    PubMed Central

    Wang, Da-Shin; Fan, Shih-Kang

    2016-01-01

    Surface plasmon resonance (SPR) is a label-free, highly-sensitive, and real-time sensing technique. Conventional SPR sensors, which involve a planar thin gold film, have been widely exploited in biosensing; various miniaturized formats have been devised for portability purposes. Another type of SPR sensor which utilizes localized SPR (LSPR), is based on metal nanostructures with surface plasmon modes at the structural interface. The resonance condition is sensitive to the refractive index change of the local medium. The principles of these two types of SPR sensors are reviewed and their integration with microfluidic platforms is described. Further applications of microfluidic SPR sensors to point-of-care (POC) diagnostics are discussed. PMID:27472340

  6. Theoretical study of surface plasmon resonance sensors based on 2D bimetallic alloy grating

    NASA Astrophysics Data System (ADS)

    Dhibi, Abdelhak; Khemiri, Mehdi; Oumezzine, Mohamed

    2016-11-01

    A surface plasmon resonance (SPR) sensor based on 2D alloy grating with a high performance is proposed. The grating consists of homogeneous alloys of formula MxAg1-x, where M is gold, copper, platinum and palladium. Compared to the SPR sensors based a pure metal, the sensor based on angular interrogation with silver exhibits a sharper (i.e. larger depth-to-width ratio) reflectivity dip, which provides a big detection accuracy, whereas the sensor based on gold exhibits the broadest dips and the highest sensitivity. The detection accuracy of SPR sensor based a metal alloy is enhanced by the increase of silver composition. In addition, the composition of silver which is around 0.8 improves the sensitivity and the quality of SPR sensor of pure metal. Numerical simulations based on rigorous coupled wave analysis (RCWA) show that the sensor based on a metal alloy not only has a high sensitivity and a high detection accuracy, but also exhibits a good linearity and a good quality.

  7. Biomimetic self-templating optical structures fabricated by genetically engineered M13 bacteriophage.

    PubMed

    Kim, Won-Geun; Song, Hyerin; Kim, Chuntae; Moon, Jong-Sik; Kim, Kyujung; Lee, Seung-Wuk; Oh, Jin-Woo

    2016-11-15

    Here, we describe a highly sensitive and selective surface plasmon resonance sensor system by utilizing self-assembly of genetically engineered M13 bacteriophage. About 2700 copies of genetically expressed peptide copies give superior selectivity and sensitivity to M13 phage-based SPR sensor. Furthermore, the sensitivity of the M13 phage-based SPR sensor was enhanced due to the aligning of receptor matrix in specific direction. Incorporation of specific binding peptide (His Pro Gln: HPQ) gives M13 bacteriophage high selectivity for the streptavidin. Our M13 phage-based SPR sensor takes advantage of simplicity of self-assembly compared with relatively complex photolithography techniques or chemical conjugations. Additionally, designed structure which is composed of functionalized M13 bacteriophage can simultaneously improve the sensitivity and selectivity of SPR sensor evidently. By taking advantages of the genetic engineering and self-assembly, we propose the simple method for fabricating novel M13 phage-based SPR sensor system which has a high sensitivity and high selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Nanoporous gold film based SPR sensors for trace chemical detection

    NASA Astrophysics Data System (ADS)

    Wang, Li; Gong, Xiaoqing; Wan, Xiumei; Lu, Dan-feng; Qi, Zhi-mei

    2017-02-01

    Thin films of nanoporous gold (NPG) have both localized and propagating surface plasmon resonance (SPR) effects. The propagating SPR effect of NPG film combined with its huge internal surface area makes it applicable as an evanescent wave sensor with high sensitivity. In this work, NPG films with controlled thicknesses were fabricated on glass substrates by sputtering deposition of AuAg films followed by dealloying in nitric acid. By using of the NPG films as the sensing layer, a broadband wavelength-interrogated SPR sensor was prepared for chemical and biological detection. The propagating SPR absorption band in the visible-near infrared region was clearly observed upon exposure of the NPG film to air, and this band was detected to move to longer wavelengths in response to adsorption of molecules within the NPG film. Simulations based on Fresnel equations combined with Bruggeman approximation were carried out for optimizing the propagating SPR property of NPG film. The sensor's performance was investigated using both bisphenol A (BPA) and lead (II) ions as analytes. According to the experimental results, the detection limits of the sensor are 5 nmol·L-1 for BPA and 1 nmol·L-1 for lead (II) ions. The work demonstrated the outstanding applicability of the NPG film based SPR sensor for sensitive environmental monitoring.

  9. An In-situ Real-Time Optical Fiber Sensor Based on Surface Plasmon Resonance for Monitoring the Growth of TiO2 Thin Films

    PubMed Central

    Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang

    2013-01-01

    An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings. PMID:23881144

  10. An in-situ real-time optical fiber sensor based on surface plasmon resonance for monitoring the growth of TiO2 thin films.

    PubMed

    Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang

    2013-07-23

    An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.

  11. Side-hole fiber sensor based on surface plasmon resonance.

    PubMed

    Wang, Anna; Docherty, Andrew; Kuhlmey, Boris T; Cox, Felicity M; Large, Maryanne C J

    2009-12-15

    Surface plasmon resonance (SPR) is demonstrated in a microstructured optical fiber sensor for the first time (to our knowledge). SPR features were observed at 560 and 620 nm when sample fluids of refractive indices n=1.38 and n=1.41, respectively, were applied to the sensor. This study also identifies a new approach to improve the resolution of fiber SPR sensors.

  12. Plasmonic Fiber Optic Refractometric Sensors: From Conventional Architectures to Recent Design Trends

    PubMed Central

    Klantsataya, Elizaveta; Jia, Peipei; Ebendorff-Heidepriem, Heike; Monro, Tanya M.; François, Alexandre

    2016-01-01

    Surface Plasmon Resonance (SPR) fiber sensor research has grown since the first demonstration over 20 year ago into a rich and diverse field with a wide range of optical fiber architectures, plasmonic coatings, and excitation and interrogation methods. Yet, the large diversity of SPR fiber sensor designs has made it difficult to understand the advantages of each approach. Here, we review SPR fiber sensor architectures, covering the latest developments from optical fiber geometries to plasmonic coatings. By developing a systematic approach to fiber-based SPR designs, we identify and discuss future research opportunities based on a performance comparison of the different approaches for sensing applications. PMID:28025532

  13. Chalcogenide fiber-optic SPR chemical sensor with MoS2 monolayer, polymer clad, and polythiophene layer in NIR using selective ray launching

    NASA Astrophysics Data System (ADS)

    Sharma, Anuj K.; Kaur, Baljinder

    2018-07-01

    Surface plasmon resonance (SPR) based chalcogenide fiber-optic sensor with polymer clad and MoS2 monolayer is simulated and analyzed in near infrared (NIR) for detection of mixture of alcohols (ethanol and methanol) dissolved in water solution. The proposed fiber optic sensor is analyzed under angular interrogation method, which is based on selective ray (on-axis) launching of monochromatic light into the fiber core at varying angle followed by measuring the loss of power (in dB) after passing through the SPR probe region. The performance of the sensor is analyzed in terms of its figure of merit (FOM). The sensor's specificity towards alcohols along with considerably larger FOM is achieved by utilizing a polythiophene (PT) layer. The results indicate that longer NIR wavelength (λ) provides superior sensing performance. The sensor's performance is better for larger volume fraction of methanol in the water solution. The proposed fiber optic SPR sensor has the capability of providing much greater FOM compared with the previously-reported SPR sensors.

  14. Experimental results for characterization of a tapered plastic optical fiber sensor based on SPR

    NASA Astrophysics Data System (ADS)

    Cennamo, N.; Galatus, R.; Zeni, L.

    2015-05-01

    The experimental results obtained with two different Plastic Optical Fiber (POF) geometries, tapered and not-tapered, for a sensor based on Surface Plasmon Resonance (SPR) are presented. SPR is used for determining the refractive index variations at the interface between a gold layer and a dielectric medium (aqueous medium). In this work SPR sensors in POF configurations, useful for bio-sensing applications, have been realized for the optimization of the sensitivity and experimentally tested. The results show as the sensitivity increases with the tapered POF configuration, when the refractive index of aqueous medium increases.

  15. Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing

    NASA Astrophysics Data System (ADS)

    Dai, Yanqiu; Xu, Huimei; Wang, Haoyu; Lu, Yonghua; Wang, Pei

    2018-06-01

    We experimentally demonstrated a high sensitivity of surface plasmon resonance (SPR) sensor with silver rectangular grating coupling. The reflection spectra of the silver gratings indicated that surface plasmon resonance can be excited by either positive or negative order diffraction of the grating, depending on the period of the gratings. Comparing to prism-coupled SPR sensor, the sensitivities are higher for negative order diffraction coupling in bigger coupling angle, but much smaller for positive order diffraction coupling of the gratings. High sensitivity of 254.13 degree/RIU is experimentally realized by grating-based SPR sensor in the negative diffraction excitation mode. Our work paves the way for compact and sensitive SPR sensor in the applications of biochemical and gas sensing.

  16. Development of SPR temperature sensor using Au/TiO2 on hetero-core optical fiber

    NASA Astrophysics Data System (ADS)

    Kitagawa, Sho; Yamazaki, Hiroshi; Hosoki, Ai; Nishiyama, Michiko; Watanabe, Kazuhiro

    2016-03-01

    This paper describes a novel temperature sensor based on a hetero-core structured fiber optic surface plasmon resonance (SPR) sensor with multi-layer thin film of gold (Au) and titanium dioxide (TiO2). Temperature condition is an essential parameter in chemical plants for avoiding fire accident and controlling qualities of chemical substances. Several fiber optic temperature sensors have been developed for some advantages such as immunity to electromagnetic interference, corrosion resistance and no electrical leakage. The proposed hetero-core fiber optic SPR sensor detects temperature condition by measuring slight refractive index changes of TiO2 which has a large thermo-optic coefficient. We experimentally confirmed that the SPR resonant wavelength in the hetero-core SPR sensor with coating an Au film which slightly depended on temperature changes in the range from 20 °C to 80 °C. In addition, it was experimentally shown that the proposed SPR temperature sensor with multi-layer film of Au and TiO2 had the SPR resonant wavelength shift of 1.6 nm due to temperature change from -10 °C to 50 °C. As a result, a series of experiments successfully demonstrated that the proposed sensor was able to detect temperature directly depending on the thermo-optic effect of TiO2.

  17. Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array.

    PubMed

    Luo, Qiaohui; Yu, Neng; Shi, Chunfei; Wang, Xiaoping; Wu, Jianmin

    2016-12-01

    A surface plasmon resonance (SPR) sensor combined with nanoscale molecularly imprinted polymer (MIP) film as recognition element was developed for selective detection of the antibiotic ciprofloxacin (CIP). The MIP film on SPR sensor chip was prepared by in situ photo-initiated polymerization method which has the advantages of short polymerization time, controllable thickness and good uniformity. The surface wettability and thickness of MIP film on SPR sensor chip were characterized by static contact angle measurement and stylus profiler. The MIP-SPR sensor exhibited high selectivity, sensitivity and good stability for ciprofloxacin. The imprinting factors of the MIP-SPR sensor to ciprofloxacin and its structural analogue ofloxacin were 2.63 and 3.80, which is much higher than those to azithromycin, dopamine and penicillin. The SPR response had good linear relation with CIP concentration over the range 10 -11 -10 -7 molL -1 . The MIP-SPR sensor also showed good repeatability and stability during cyclic detections. On the basis of the photo-initiated polymerization method, a surface plasmon resonance imaging (SPRi) chip modified with three types of MIP sensing spots was fabricated. The MIPs-SPRi sensor shows different response patterns to ciprofloxacin and azithromycin, revealing the ability to recognize different antibiotic molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Development of far- and deep-ultraviolet surface plasmon resonance (SPR) sensor using aluminum thin film

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Tanaka, Yoshito Y.; Ryoki, Takayuki; Watari, Koji; Goto, Takeyoshi; Kikawada, Masakazu; Inami, Wataru; Kawata, Yoshimasa; Ozaki, Yukihiro

    2016-09-01

    We investigated the surface plasmon resonance (SPR) of aluminum (Al) thin films with varying refractive index of the environment near the films in the far‒ultraviolet (FUV, <= 200 nm) and deep‒ultraviolet (DUV, <= 300 nm) regions. By using our original FUV‒DUV spectrometer which adopts an attenuated total reflectance (ATR) system, the measurable wavelength range was down to the 180 nm, and the environment near the Al surface could be controlled. In addition, this spectrometer was equipped with a variable incident angle apparatus, which enabled us to measure the FUV‒DUV reflectance spectra (170-450 nm) with various incident angles ranging from 45° to 85°. Based on the obtained spectra, the dispersion relation of Al‒SPR in the FUV and DUV regions was obtained. In the presence of various liquids (HFIP, water, alcohols etc.) on the Al film, the angle and wavelength of the SPR became larger and longer, respectively, compared with those in the air (i.e., with no materials on the film). These shifts correspond well with the results of simulations performed according to the Fresnel equations, and can be used in the application of SPR sensors. FUV‒DUV‒SPR sensors (in particular, FUV‒SPR sensors) with tunable incident light wavelength have three experimental advantages compared with conventional visible‒SPR sensors, as discussed based on the Fresnel equations, i.e., higher sensitivity, more narrowly limited surface measurement, and better material selectivity.

  19. Dual-angle technique for simultaneous measurement of refractive index and temperature based on a surface plasmon resonance sensor.

    PubMed

    Luo, Wei; Chen, Sheng; Chen, Lei; Li, Hualong; Miao, Pengcheng; Gao, Huiyi; Hu, Zelin; Li, Miao

    2017-05-29

    We describe a theoretical model to analyze temperature effects on the Kretschmann surface plasmon resonance (SPR) sensor, and describe a new double-incident angle technique to simultaneously measure changes in refractive index (RI) and temperature. The method uses the observation that output signals obtained from two different incident angles each have a linear dependence on RI and temperature, and are independent. A proof-of-concept experiment using different NaCl concentration solutions as analytes demonstrates the ability of the technique. The optical design is as simple and robust as conventional SPR detection, but provides a way to discriminate between RI-induced and temperature-induced SPR changes. This technique facilitates a way for traditional SPR sensors to detect RI in different temperature environments, and may lead to better design and fabrication of SPR sensors against temperature variation.

  20. Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Zhang, Yang; Zhou, Wenjun; Albert, Jacques

    2014-02-01

    A fiber twist sensor based on the surface plasmon resonance (SPR) effect of an Au-coated tilted fiber Bragg grating (TFBG) is proposed. The SPR response to the twist effect on an Au-coated TFBG (immersing in distilled water) is studied theoretically and experimentally. The results show that the transmission power around the wavelength of SPR changes with the twist angle. For the twist ranging from 0° to 180° in clockwise or anti-clockwise directions, the proposed sensor shows sensitivities of 0.037 dBm/° (S-polarized) and 0.039 dBm/° (P-polarized), which are almost 7.5 times higher than that of the current similar existing twist sensor.

  1. Comparison of different photoresist buffer layers in SPR sensors based on D-shaped POF and gold film

    NASA Astrophysics Data System (ADS)

    Cennamo, Nunzio; Pesavento, Maria; De Maria, Letizia; Galatus, Ramona; Mattiello, Francesco; Zeni, Luigi

    2017-04-01

    A comparative analysis of two optical fiber sensing platforms is presented. The sensors are based on surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) with a photoresist buffer layer between the exposed POF core and the thin gold film. We show how the sensor's performances change when the photoresist layer changes. The photoresist layers proposed in this analysis are SU-8 3005 and S1813. The experimental results are congruent with the numerical studies and it is instrumental for chemical and bio-chemical applications. Usually, the photoresist layer is required in order to increase the performance of the SPR-POF sensor.

  2. Towards an Electronic Dog Nose: Surface Plasmon Resonance Immunosensor for Security and Safety

    PubMed Central

    Onodera, Takeshi; Toko, Kiyoshi

    2014-01-01

    This review describes an “electronic dog nose” based on a surface plasmon resonance (SPR) sensor and an antigen–antibody interaction for security and safety. We have concentrated on developing appropriate sensor surfaces for the SPR sensor for practical use. The review covers different surface fabrications, which all include variations of a self-assembled monolayer containing oligo(ethylene glycol), dendrimer, and hydrophilic polymer. We have carried out detection of explosives using the sensor surfaces. For the SPR sensor to detect explosives, the vapor or particles of the target substances have to be dissolved in a liquid. Therefore, we also review the development of sampling processes for explosives, and a protocol for the measurement of explosives on the SPR sensor in the field. Additionally, sensing elements, which have the potential to be applied for the electronic dog nose, are described. PMID:25198004

  3. Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing

    NASA Astrophysics Data System (ADS)

    Antohe, Iulia; Spasic, Dragana; Delport, Filip; Li, Jiaqi; Lammertyn, Jeroen

    2017-05-01

    Merging surface plasmon resonance (SPR) to fiber optic (FO) technology has brought remarkable achievements in the field by offering attractive advantages over the conventional prism-based SPR platforms, such as simplicity, cost-effectiveness and miniaturization. However, the performance of the existing FO-SPR instruments mainly depends on the device surface condition and in particular on the structural aspect of the thin gold (Au) plasmonic film deposited on the FO substrate. In this work, a simple cost-effective colloidal lithography technique (CLT) was adapted and applied for the first time to the micrometer-sized FO substrate, to design end reflection-type FO-SPR sensors with periodic arrays of Au triangularly-shaped nanostructures on the Au mirror FO tip distal end. The nanopatterned FO-SPR sensor tips were afterwards subjected to refractometric measurements in a sucrose dilution series and subsequently compared with their non-patterned counterparts. It was observed that the spectral dips of the nanopatterned FO-SPR sensor tips were shifted towards longer wavelengths after CLT patterning. Moreover, the sensor sensitivity was improved with up to 25% compared to the conventional non-patterned FO-SPR devices. The obtained results represent important steps in the development of a new generation of FO-SPR sensors with improved performance, which can ultimately be used in various applications, ranging from food analysis and environmental monitoring, to health control and medical diagnosis.

  4. Novel graphene-oxide-coated SPR interfaces for biosensing applications

    NASA Astrophysics Data System (ADS)

    Volkov, V. S.; Stebunov, Yu. V.; Yakubovsky, D. I.; Fedyanin, D. Yu.; Arsenin, A. V.

    2017-09-01

    Carbon allotropes-based nanomaterials possess unique physical and chemical properties including high surface area, the possibility of pi-stacking interaction with a wide range of biological objects, rich availability of oxygen-containing functional groups in graphene-oxide (GO), and excellent optical properties, which make them an ideal candidate for use as a universal immobilization platform in SPR biosensing. Here, we propose a new surface plasmon resonance (SPR) biosensing interface for sensitive and selective detection of small molecules. This interface is based on the GO linking layers deposited on the gold/copper surface of SPR sensor chips. To estimate the binding capacity of GO layers, modification of carboxyl groups to N-Hydroxysuccinimide esters was performed in the flow cell of SPR instrument. For comparison, the same procedure was applied to commercial sensor chips based on linking layers of carboxymethylated dextran.

  5. Surface plasmon resonance-based highly sensitive optical touch sensor with a hybrid noise rejection scheme.

    PubMed

    Sumriddetchkajorn, Sarun; Chaitavon, Kosom

    2006-01-01

    A surface plasmon resonance (SPR)-based optical touch sensor structure is proposed that provides high switch sensitivity and requires a weak activating force. Our proposed SPR-based optical touch sensor is arranged in a compact Kretschmann-Raether configuration in which the prism acting as our sensor head is coated with a metal nanofilm. Our optical-based noise rejection scheme relies on wavelength filtering, spatial filtering, and high reflectivity of the metal nanofilm, whereas our electrical-based noise reduction is obtained by means of an electrical signal filtering process. In our experimental proof of concept, a visible laser diode at a 655 nm centered wavelength and a prism made from BK7 with a 50 nm thick gold layer on the touching surface are used, showing a 7.85 dB optical contrast ratio for the first touch. An estimated weak mechanical force of <0.1 N is also observed that sufficiently activates the desired electrical load. It is tested for 51 operations without sensor malfunction under typical and very high illumination of 342 and 3000 lx, respectively. In this case, a measured average optical contrast of 0.80 dB is obtained with a +/-0.47 dB fluctuation, implying that the refractive index change in a small 3.2% of the overall active area is enough for our SPR-based optical touch sensor to function properly. Increasing optical contrast in our SPR-based optical touch sensor can be accomplished by using a higher polarization-extinction ratio and a narrower-bandwidth optical beam. A controlled environment and gold-coated surface using the thin-film sputtering technique can help improve the reliability and the durability of our SPR-based optical touch sensor. Other key features include ease of implementation, prevention of a light beam becoming incident on the user, and the ability to accept both strong and weak activating forces.

  6. Wavelength-Scanning SPR Imaging Sensors Based on an Acousto-Optic Tunable Filter and a White Light Laser

    PubMed Central

    Zeng, Youjun; Wang, Lei; Wu, Shu-Yuen; He, Jianan; Qu, Junle; Li, Xuejin; Ho, Ho-Pui; Gu, Dayong; Gao, Bruce Zhi; Shao, Yonghong

    2017-01-01

    A fast surface plasmon resonance (SPR) imaging biosensor system based on wavelength interrogation using an acousto-optic tunable filter (AOTF) and a white light laser is presented. The system combines the merits of a wide-dynamic detection range and high sensitivity offered by the spectral approach with multiplexed high-throughput data collection and a two-dimensional (2D) biosensor array. The key feature is the use of AOTF to realize wavelength scan from a white laser source and thus to achieve fast tracking of the SPR dip movement caused by target molecules binding to the sensor surface. Experimental results show that the system is capable of completing a SPR dip measurement within 0.35 s. To the best of our knowledge, this is the fastest time ever reported in the literature for imaging spectral interrogation. Based on a spectral window with a width of approximately 100 nm, a dynamic detection range and resolution of 4.63 × 10−2 refractive index unit (RIU) and 1.27 × 10−6 RIU achieved in a 2D-array sensor is reported here. The spectral SPR imaging sensor scheme has the capability of performing fast high-throughput detection of biomolecular interactions from 2D sensor arrays. The design has no mechanical moving parts, thus making the scheme completely solid-state. PMID:28067766

  7. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.

    PubMed

    Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio

    2007-04-01

    This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response time of no more than ca. 10 min. Figure A single-step multi-sandwich immunoassay step increases SPR sensor signal by ca. 12 times affording a low detection limit for benzaldehyde of 5 ppt.

  8. Label-Free Quantitative Immunoassay of Fibrinogen in Alzheimer Disease Patient Plasma Using Fiber Optical Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Kim, Jisoo; Kim, SeJin; Nguyen, Tan Tai; Lee, Renee; Li, Tiehua; Yun, Changhyun; Ham, Youngeun; An, Seong Soo A.; Ju, Heongkyu

    2016-05-01

    We present a real-time quantitative immunoassay to detect fibrinogen in the blood plasma of Alzheimer's disease patients using multimode fiber optical sensors in which surface plasmon resonance (SPR) was employed. Nanometer-thick bimetals including silver and aluminum were coated onto the core surface of the clad-free part (5 cm long) of the fiber for SPR excitation at the He-Ne laser wavelength of 632.8 nm. The histidine-tagged peptide was then coated on the metal surface to immobilize the fibrinogen antibody for the selective capture of fibrinogen among the proteins in the patient blood plasma. The SPR fiber optical sensor enabled quantitative detection of concentrations of fibrinogen from the different human patient blood at a detection limit of ˜20 ng/ml. We also observed a correlation in the fibrinogen concentration measurement between enzyme-linked immunosorbent assay and our SPR fiber-based sensors. This suggests that the presented SPR fiber-based sensors that do not rely on the use of labels such as fluorophores can be used for a real-time quantitative assay of a specific protein such as fibrinogen in a human blood that is known to contain many other kinds of proteins together.

  9. Fiber optic humidity sensor using water vapor condensation.

    PubMed

    Limodehi, Hamid E; Légaré, François

    2017-06-26

    The rate of vapor condensation on a solid surface depends on the ambient relative humidity (RH). Also, surface plasmon resonance (SPR) on a metal layer is sensitive to the refractive index change of its adjacent dielectric. The SPR effect appears as soon as a small amount of moisture forms on the sensor, resulting in a decrease in the amount of light transmitted due to plasmonic loss. Using this concept, we developed a fiber optic humidity sensor based on SPR. It can measure the ambient RH over a dynamic range from 10% to 85% with an accuracy of 3%.

  10. Detection of trinitrotoluene (TNT) extracted from soil using a surface plasmon resonance (SPR)-based sensor platform

    NASA Astrophysics Data System (ADS)

    Strong, Anita A.; Stimpson, Donald I.; Bartholomew, Dwight U.; Jenkins, Thomas F.; Elkind, Jerome L.

    1999-08-01

    An antibody-based competition assay has been developed using a surface plasmon resonance (SPR) sensor platform for the detection of trinitrotoluene (TNT) in soil extract solutions. The objective of this work is to develop a sensor-based assay technology to use in the field for real- time detection of land mines. This immunoassay combines very simple bio-film attachment procedures and a low-cost SPR sensor design to detect TNT in soil extracts. The active bio-surface is a coating of bovine serum albumin that has been decorated with trinitrobenzene groups. A blind study on extracts from a large soil matrix was recently performed and result from this study will be presented. Potential interferant studied included 2,4-dinitrophenol, 2,4- dinitrotoluene, ammonium nitrate, and 2,4- dichlorophenoxyacetic acid. Cross-reactivity with dinitrotoluene will be discussed. Also, plans to reach sensitivity levels of 1ppb TNT in soil will be described.

  11. LUSH-based SPR sensor for the detection of alcohols and pheromone

    NASA Astrophysics Data System (ADS)

    Lau, Hui-Chong; Lee, Yeon-Kyung; Kwon, Jae-Young; Sohn, Young-Soo; Lim, Jeong Ok

    2013-05-01

    Protein is a widely used sensing substrate in the biosensing technology. In the study conducted here, we used odorant binding protein, LUSH from Drosophila as a biosensing substrate in a miniaturized surface plasmon resonance (SPR) sensor. LUSH contains the specific alcohols binding sites, which mediates the detection of alcohols and pheromone. We first modified the surface of the gold sensor chip using the self assembled monolayer in the chloroform solution. The saturated concentration was determined prior to the detection of alcohols and pheromone at various concentrations. The results showed that the LUSH was saturated at 1000 μg/ml on the gold sensor chip. The detection response of LUSH was significant at higher concentration of alcohols. LUSH detected ethanol at concentration >=50% propanol was detected at >=25% whereas pheromone was detected at >=1.25 μg/μl. The results provide some fundamental information on the potential use of LUSH-based SPR as a simple and easy protein-based sensor in the near future.

  12. Square array photonic crystal fiber-based surface plasmon resonance refractive index sensor

    NASA Astrophysics Data System (ADS)

    Liu, Min; Yang, Xu; Zhao, Bingyue; Hou, Jingyun; Shum, Ping

    2017-12-01

    Based on surface plasmon resonance (SPR), a novel refractive index (RI) sensor comprising a square photonic crystal fiber (PCF) is proposed to realize the detection of the annular analyte. Instead of hexagon structure, four large air-holes in a square array are introduced to enhance the sensitivity by allowing two polarization directions of the core mode to be more sensitive. The gold is used as the only plasmonic material. The design purpose is to reduce the difficulty in gold deposition and enhance the RI sensitivity. The guiding properties and the effects of the parameters on the performance of the sensor are numerically investigated by the Finite Element Method (FEM). By optimizing the structure, the sensor can exhibit remarkable sensitivity up to 7250 nm/RIU and resolution of 1.0638 × 10-5 RIU with only one plasmonic material, which is very competitive compared with the other reported externally coated and single-layer coated PCF-based SPR (PCF-SPR) sensors, to our best knowledge.

  13. Refractive index sensing characteristics of carbon nanotube-deposited photonic crystal fiber SPR sensor

    NASA Astrophysics Data System (ADS)

    Jing, Jian-Ying; Wang, Qi; Wang, Bo-Tao

    2018-07-01

    In this paper, the carbon nanotubes (CNTs)-deposited Au film photonic crystal fiber (PCF) surface plasmon resonance (SPR) sensor (CNTs/Au-PCF sensor) and CNTs-deposited Ag film PCF SPR sensor (CNTs/Ag-PCF sensor) were developed and utilized to conduct a series of experiments for the refractive index sensing characteristics study of the CNTs-deposited SPR sensors. The PCF, spliced between two sections of multimode fibers (MMFs), was coated with a metal (Au or Ag) film and then deposited with CNTs for further sensing. CNTs coating can enhance the confined electric field intensity surrounding the sensing layer, making the SPR sensor more sensitive to the changes in the ambient medium. Compared with conventional Au film PCF SPR sensor (Au-PCF sensor), the sensitivity of CNTs/Au-PCF sensor increases by 1016.09 nm/RIU. Compared with conventional Ag film PCF SPR sensor (Ag-PCF sensor), the sensitivity of CNTs/Ag-PCF sensor increases by 709.22 nm/RIU. Therefore, we find that CNTs have a more significant effect on the Au-PCF sensor than the Ag-PCF sensor. The experimental measurements results agreed well with the simulation results. Furthermore, CNTs have high surface-to-volume ratio and extremely excellent biocompatibility. Bovine serum albumin (BSA) was employed as the target analyte to evaluate the feasibility of the CNTs/Au-PCF sensor for the detection of biomolecules, and the sensor exhibits higher sensitivity (8.18 nm/(mg/mL)), lower limit of detection (LOD) (2.5 μg/mL), and faster response time (8 s) than the Au-PCF sensor. Such CNTs-deposited SPR sensors with high sensitivities and fast response present highly promising potential for application in the field of biochemistry.

  14. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection.

    PubMed

    Osman, Bilgen; Uzun, Lokman; Beşirli, Necati; Denizli, Adil

    2013-10-01

    In this study, we prepared surface plasmon resonance (SPR) sensor using the molecular imprinting technique for myoglobin detection in human serum. For this purpose, we synthesized myoglobin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-l-tryptophan methyl ester) [poly(HEMA-MATrp)] nanofilm on the surface of SPR sensor. We also synthesized non-imprinted poly(HEMA-MATrp) nanofilm without myoglobin for the control experiments. The SPR sensor was characterized with contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry. We investigated the effectiveness of the sensor using the SPR system. We evaluated the ability of SPR sensor to sense myoglobin with myoglobin solutions (pH7.4, phosphate buffer) in different concentration range and in the serum taken from a patient with acute myocardial infarction. We found that the Langmuir adsorption model was the most suitable for the sensor system. The detection limit was 87.6 ng/mL. In order to show the selectivity of the SPR sensor, we investigated the competitive detection of myoglobin, lysozyme, cytochrome c and bovine serum albumin. The results showed that the SPR sensor has high selectivity and sensitivity for myoglobin. Copyright © 2013. Published by Elsevier B.V.

  15. Development of phase detection schemes based on surface plasmon resonance using interferometry.

    PubMed

    Kashif, Muhammad; Bakar, Ahmad Ashrif A; Arsad, Norhana; Shaari, Sahbudin

    2014-08-28

    Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.

  16. Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry

    PubMed Central

    Kashif, Muhammad; Bakar, Ahmad Ashrif A.; Arsad, Norhana; Shaari, Sahbudin

    2014-01-01

    Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors. PMID:25171117

  17. Graphene enhanced optical fiber SPR sensor for liquid concentration measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Xue; Li, Xuegang; Cheng, TongLei; Li, Shuguang; An, Guowen

    2018-07-01

    A high sensitivity optical fiber Surface Plasmon Resonance (SPR) sensor which based on coreless optical fiber, silver film and graphene, has been designed and implemented for liquid concentration detection. In this paper, Graphene is firstly verified that it can be used to enhance the evanescent field of traditional optical fiber and thus increasing sensitivity in experiment. The sensitivity of proposed sensor is 6.417 nm/%, which is higher than that of the traditional optical fiber SPR sensor according to the comparative experiments. In addition, the proposed sensor is extremely easy to make and the silver film could be protected from oxidation and damage due to the existence of graphene. Moreover, the sensor has pretty small size, immunity to electromagnetic interference, quick response speed and thus can suitable a variety of severe environments and real-time measurement.

  18. Figure of Merit Enhancement of a Surface Plasmon Resonance Sensor Using a Low-Refractive-Index Porous Silica Film

    PubMed Central

    Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang

    2017-01-01

    In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development. PMID:28796155

  19. Figure of Merit Enhancement of a Surface Plasmon Resonance Sensor Using a Low-Refractive-Index Porous Silica Film.

    PubMed

    Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang

    2017-08-10

    In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development.

  20. Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index.

    PubMed

    Liu, Bing-Hong; Jiang, Yong-Xiang; Zhu, Xiao-Song; Tang, Xiao-Li; Shi, Yi-Wei

    2013-12-30

    A new kind of surface plasmon resonance (SPR) sensor based on silver-coated hollow fiber (HF) structure for the detection of liquids with high refractive index (RI) is presented. Liquid sensed medium with high RI is filled in the hollow core of the HF and its RI can be detected by measuring the transmission spectra of the HF SPR sensor. The designed sensors with different silver thicknesses are fabricated and the transmission spectra for filled liquids with different RI are measured to investigate the performances of the sensors. Theoretical analysis is also carried out to evaluate the performance. The simulation results agree well with the experimental results. Factors that might affect sensitivity and detection accuracy of the sensor are discussed. The highest sensitivity achieved is 6,607 nm/RIU, which is comparable to the sensitivities of the other reported fiber SPR sensors.

  1. A Whole-Cell Surface Plasmon Resonance Sensor Based on a Leucine Auxotroph of Escherichia coli Displaying a Gold-Binding Protein: Usefulness for Diagnosis of Maple Syrup Urine Disease.

    PubMed

    Woo, Min-Ah; Park, Jung Hun; Cho, Daeyeon; Sim, Sang Jun; Kim, Moon Il; Park, Hyun Gyu

    2016-03-01

    We developed a whole-cell surface plasmon resonance (SPR) sensor based on a leucine auxotroph of Escherichia coli displaying a gold-binding protein (GBP) in response to cell growth and applied this sensor to the diagnosis of maple syrup urine disease, which is represented by the elevated leucine level in blood. The leucine auxotroph was genetically engineered to grow displaying GBP in a proportion to the concentration of target amino acid leucine. The GBP expressed on the surface of the auxotrophs directly bound to the golden surface of an SPR chip without the need for any additional treatment or reagents, which consequently produced SPR signals used to determine leucine levels in a test sample. Gold nanoparticles (GNPs) were further applied to the SPR system, which significantly enhanced the signal intensity up to 10-fold by specifically binding to GBP expressed on the cell surface. Finally, the diagnostic utility of our system was demonstrated by its employment in reliably determining different statuses of maple syrup urine disease based on a known cutoff level of leucine. This new approach based on an amino acid-auxotrophic E. coli strain expressing a GBP that binds to an SPR sensor holds great promise for detection of other metabolic diseases of newborn babies including homocystinuria and phenylketonuria, which are also associated with abnormal levels of amino acids.

  2. Theoretical investigation on multilayer nanocomposite-based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shojaie, Ehsan; Madanipour, Khosro; Gharibzadeh, Azadeh; Abbasi, Shabnam

    2017-06-01

    In this work, a multilayer nanocomposite based fiber optic SPR sensor is considered and especially designed for CO2 gas detection. This proposed fiber sensor consists of fiber core, gold-silver alloy and the absorber layers. The investigation is based on the evaluation of the transmitted-power derived under the transfer matrix method and the multiple-reflection in the sensing area. In terms of sensitivity, the sensor performance is studied theoretically under various conditions related to the metal layer and its gold and silver nanoparticles to form a single alloy film. Effect of additional parameters such as the ratio of the alloy composition and the thickness of the alloy film on the performance of the SPR sensor is studied, as well. Finally, a four-layer structure is introduced to detect carbon dioxide gas. It contains core fiber, gold-silver alloy layer, an absorbent layer of carbon dioxide gas (KOH) and measurement environment. Lower price and size are the main advantages of using such a sensor in compare with commercial (NDIR) gas sensor. Theoretical results show by increasing the metal layer thickness the sensitivity of sensor is increased, and by increasing the ratio of the gold in alloy the sensitivity is decreased.

  3. SPR based immunosensor for detection of Legionella pneumophila in water samples

    NASA Astrophysics Data System (ADS)

    Enrico, De Lorenzis; Manera, Maria G.; Montagna, Giovanni; Cimaglia, Fabio; Chiesa, Maurizio; Poltronieri, Palmiro; Santino, Angelo; Rella, Roberto

    2013-05-01

    Detection of legionellae by water sampling is an important factor in epidemiological investigations of Legionnaires' disease and its prevention. To avoid labor-intensive problems with conventional methods, an alternative, highly sensitive and simple method is proposed for detecting L. pneumophila in aqueous samples. A compact Surface Plasmon Resonance (SPR) instrumentation prototype, provided with proper microfluidics tools, is built. The developed immunosensor is capable of dynamically following the binding between antigens and the corresponding antibody molecules immobilized on the SPR sensor surface. A proper immobilization strategy is used in this work that makes use of an important efficient step aimed at the orientation of antibodies onto the sensor surface. The feasibility of the integration of SPR-based biosensing setups with microfluidic technologies, resulting in a low-cost and portable biosensor is demonstrated.

  4. Nanoparticles based fiber optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Sharma, Navneet K.

    2018-05-01

    Localized surface plasmon resonance based fiber optic sensor using platinum nanoparticles is proposed and theoretically analyzed. Increase in thickness of nanoparticles layer increases the sensitivity of sensor. 50 nm thick platinum nanoparticles layer based sensor reveals highest sensitivity.

  5. The wavelength-tunable tapered surface plasmon resonance fiber sensor based on separated input-output channels

    NASA Astrophysics Data System (ADS)

    Chen, Shimeng; Liu, Yun; Gao, Xiaotong; Liu, Xiuxin; Peng, Wei

    2014-11-01

    We present a wavelength-tunable tapered optics fiber surface Plasmon resonance (SPR) sensor by polishing the end faces of multimode fibers(MMF).Two hard plastic clad optical fibers joint closely and are used as the light input and output channels. Their end faces are polished to produce two oblique planes, which are coated with gold film to be the sensing surface and the front mirror. The presence of the tapered geometry formed by the two oblique planes in the orthogonal directions makes it possible to adjust incident angle through changing the tilt angles of the two end faces, so as to achieve tuning the SPR coupling wavelength-angle pair. Compared with previous researches based a tapered optic fiber probe, we report the approach theoretically increase the signal noise ratio (SNR) by separating incident and emergent light propagating in the different coordinate fiber. Since fabricating the sensing surface and the front mirror on the two fibers to replace one single fiber tip, there is more incident light can reach the sensing surface and satisfy SPR effective. In addition, this improvement in structure has advantages of large grinding and sensing area, which can lead to high sensitivity and simple manufacture process of the sensor. Experimental measurement demonstrates the sensor has a favorable SPR resonanceabsorption and the ability of measuring refractive index (RI) of aqueous solution. This novel tapered SPR sensor has the potential to be applied to the biological sensing field.

  6. A Simple Small Size and Low Cost Sensor Based on Surface Plasmon Resonance for Selective Detection of Fe(III)

    PubMed Central

    Cennamo, Nunzio; Alberti, Giancarla; Pesavento, Maria; D'Agostino, Girolamo; Quattrini, Federico; Biesuz, Raffaela; Zeni, Luigi

    2014-01-01

    A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests. PMID:24608007

  7. A simple small size and low cost sensor based on surface plasmon resonance for selective detection of Fe(III).

    PubMed

    Cennamo, Nunzio; Alberti, Giancarla; Pesavento, Maria; D'Agostino, Girolamo; Quattrini, Federico; Biesuz, Raffaela; Zeni, Luigi

    2014-03-07

    A simple, small size, and low cost sensor based on a Deferoxamine Self Assembled Monolayer (DFO-SAM) and Surface Plasmon Resonance (SPR) transduction, in connection with a Plastic Optical Fiber (POF), has been developed for the selective detection of Fe(III). DFO-SAM sensors based on appropriate electrochemical techniques can be frequently found in the scientific literature. In this work, we present the first example of a DFO-SAM sensor based on SPR in an optical fiber. The SPR sensing platform was realized by removing the cladding of a plastic optical fiber along half the circumference, spin coating a buffer of Microposit S1813 photoresist on the exposed core, and finally sputtering a thin gold film. The hydroxamate siderophore deferoxamine (DFO), having high binding affinity for Fe(III), is then used in its immobilized form, as self-assembled monolayer on the gold layer surface of the POF sensor. The results showed that the DFO-SAM-POF-sensor was able to sense the formation of the Fe(III)/DFO complex in the range of concentrations between 1 μm and 50 μm with a linearity range from 0 to 30 μm of Fe(III). The selectivity of the sensor was also proved by interference tests.

  8. Polyglycerol based coatings to reduce non-specific protein adsorption in sample vials and on SPR sensors.

    PubMed

    Becherer, Tobias; Grunewald, Christian; Engelschalt, Vivienne; Multhaup, Gerhard; Risse, Thomas; Haag, Rainer

    2015-03-31

    Coatings based on dendritic polyglycerol (dPG) were investigated for their use to control nonspecific protein adsorption in an assay targeted to analyze concentrations of a specific protein. We demonstrate that coating of the sample vial with dPG can significantly increase the recovery of an antibody after incubation. First, we determine the concentration dependent loss of an antibody due to nonspecific adsorption to glass via quartz crystal microbalance (QCM). Complementary to the QCM measurements, we applied the same antibody as analyte in an surface plasmon resonance (SPR) assay to determine the loss of analyte due to nonspecific adsorption to the sample vial. For this purpose, we used two different coatings based on dPG. For the first coating, which served as a matrix for the SPR sensor, carboxyl groups were incorporated into dPG as well as a dithiolane moiety enabling covalent immobilization to the gold sensor surface. This SPR-matrix exhibited excellent protein resistant properties and allowed the immobilization of amyloid peptides via amide bond formation. The second coating which was intended to prevent nonspecific adsorption to glass vials comprised a silyl moiety that allowed covalent grafting to glass. For demonstrating the impact of the vial coating on the accuracy of an SPR assay, we immobilized amyloid beta (Aβ) 1-40 and used an anti-Aβ 1-40 antibody as analyte. Alternate injection of analyte into the flow cell of the SPR device from uncoated and coated vials, respectively gave us the relative signal loss (1-RUuncoated/RUcoated) caused by the nonspecific adsorption. We found that the relative signal loss increases with decreasing analyte concentration. The SPR data correlate well with concentration dependent non-specific adsorption experiments of the analyte to glass surfaces performed with QCM. Our measurements show that rendering both the sample vial and the sensor surface is crucial for accurate results in protein assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer.

    PubMed

    Yonzon, Chanda Ranjit; Jeoung, Eunhee; Zou, Shengli; Schatz, George C; Mrksich, Milan; Van Duyne, Richard P

    2004-10-06

    A comparative analysis of the properties of two optical biosensor platforms: (1) the propagating surface plasmon resonance (SPR) sensor based on a planar, thin film gold surface and (2) the localized surface plasmon resonance (LSPR) sensor based on surface confined Ag nanoparticles fabricated by nanosphere lithography (NSL) are presented. The binding of Concanavalin A (ConA) to mannose-functionalized self-assembled monolayers (SAMs) was chosen to highlight the similarities and differences between the responses of the real-time angle shift SPR and wavelength shift LSPR biosensors. During the association phase in the real-time binding studies, both SPR and LSPR sensors exhibited qualitatively similar signal vs time curves. However, in the dissociation phase, the SPR sensor showed an approximately 5 times greater loss of signal than the LSPR sensor. A comprehensive set of nonspecific binding studies demonstrated that this signal difference was not the consequence of greater nonspecific binding to the LSPR sensor but rather a systematic function of the Ag nanoparticle's nanoscale structure. Ag nanoparticles with larger aspect ratios showed larger dissociation phase responses than those with smaller aspect ratios. A theoretical analysis based on finite element electrodynamics demonstrates that this results from the characteristic decay length of the electromagnetic fields surrounding Ag nanoparticles being of comparable dimensions to the ConA molecules. Finally, an elementary (2 x 1) multiplexed version of an LSPR carbohydrate sensing chip to probe the simultaneous binding of ConA to mannose and galactose-functionalized SAMs has been demonstrated.

  10. Fundamental characteristics of a dual-colour fibre optic SPR sensor

    NASA Astrophysics Data System (ADS)

    Suzuki, Hitoshi; Sugimoto, Mitsunori; Matsui, Yoshikazu; Kondoh, Jun

    2006-06-01

    In this paper, we present the fundamental characteristics of a novel dual-colour optical fibre surface plasmon resonance (SPR) sensor for a portable low-cost sensing system. The principle of the proposed SPR sensor is based on the differential reflectance method. Light from two light-emitting diodes (LEDs), which are flashing alternately with different wavelengths, is fed to a sensor via two optical couplers. The reflected light is detected by a photodiode. Changes of reflectance at two wavelengths are proportional to the refractive index change of the medium of interest. Taking the difference in reflectance at two wavelengths improves the sensitivity almost twofold. Measuring ethanol solutions with different refractive indices reveals that the sensor has a linear response to the refractive index change from 1.333 to 1.3616. By measuring the stability in the time response we estimate that the limit of detection (LOD) of the refractive index is 5.2 × 10-4.

  11. Groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Li, Shuguang; Liu, Qiang; Feng, Xinxing; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun

    2018-07-01

    A groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance (SPR) is proposed and analyzed by the finite element method (FEM). Numerical results show that the average sensitivity is 15,933 nm/refractive index unit (RIU) with the refractive index of analyte ranging from 1.40 to 1.43 and the maximum sensitivity is 28,600 nm/RIU and the resolution of the sensor is 3.50 × 10-8 RIU. The groove micro-structure optical fiber refractive index sensor do some changes on the D-shaped fiber sensor, compared with conventional D-shaped fiber sensor, it has a higher sensitivity and it is easier to produce than the traditional SPR sensor.

  12. Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk.

    PubMed

    Homola, Jirí; Dostálek, Jakub; Chen, Shengfu; Rasooly, Avraham; Jiang, Shaoyi; Yee, Sinclair S

    2002-05-05

    This work evaluates a newly developed wavelength modulation-based SPR biosensor for the detection of staphylococcal enterotoxin B (SEB) in milk. Two modes of operation of the SPR biosensor are described: direct detection of SEB and sandwich assay. In the sandwich assay detection mode, secondary antibodies are bound to the already captured toxin to amplify sensor response. Samples including SEB in buffer and SEB in milk were analyzed in this work. The SPR biosensor has been shown to be capable of directly detecting concentrations of SEB in buffer as low as 5 ng/ml. In sandwich detection mode, the lowest detection limit was determined to be 0.5 ng/ml for both buffer and milk samples. The reported wavelength modulation-based SPR sensor provides a generic platform which can be tailored for detection of various foodborne pathogens and agents for food analysis and testing.

  13. Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide.

    PubMed

    Lee, Dong-Jin; Yim, Hae-Dong; Lee, Seung-Gol; O, Beom-Hoan

    2011-10-10

    We propose a tiny surface plasmon resonance (SPR) sensor integrated on a silicon waveguide based on vertical coupling into a finite thickness metal-insulator-metal (f-MIM) plasmonic waveguide structure acting as a Fabry-Perot resonator. The resonant characteristics of vertically coupled f-MIM plasmonic waveguides are theoretically investigated and optimized. Numerical results show that the SPR sensor with a footprint of ~0.0375 μm2 and a sensitivity of ~635 nm/RIU can be designed at a 1.55 μm transmission wavelength.

  14. Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer

    NASA Astrophysics Data System (ADS)

    Pandey, Ankit Kumar; Sharma, Anuj K.

    2018-02-01

    A calcium fluoride (CaF2) prism based plasmonic biosensor with graphene layer is proposed in near infrared region (NIR) of operation. The stacking of multilayer graphene is considered with dielectric interlayer sandwiched between two graphene layers. Excellent optical properties of CaF2 glass and enhanced field at the graphene-analyte interface are intended to be exploited for proposed sensor structure in NIR spectral region. Performance parameters in terms of field enhancement at interface and figure of merit (FOM) are analyzed and compared with those of conventional SPR based sensor. It is demonstrated that the same sensor probe can also be used for gas sensing with nearly 3.5-4 times enhancement in FOM, compared with conventional sensor. The results show that CaF2 based SPR sensor provides much better sensitivity than that based on other glasses.

  15. Configuration-controlled Au nanocluster arrays on inverse micelle nano-patterns: versatile platforms for SERS and SPR sensors

    NASA Astrophysics Data System (ADS)

    Jang, Yoon Hee; Chung, Kyungwha; Quan, Li Na; Špačková, Barbora; Šípová, Hana; Moon, Seyoung; Cho, Won Joon; Shin, Hae-Young; Jang, Yu Jin; Lee, Ji-Eun; Kochuveedu, Saji Thomas; Yoon, Min Ji; Kim, Jihyeon; Yoon, Seokhyun; Kim, Jin Kon; Kim, Donghyun; Homola, Jiří; Kim, Dong Ha

    2013-11-01

    Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated.Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated. Electronic supplementary information (ESI) available: TEM image and UV-vis absorption spectrum of citrate-capped Au NPs, AFM images of Au NC arrays on the PS-b-P4VP (41k-24k) template, ImageJ-analyzed results of PS-b-P4VP (41k-24k)-templated Au NC arrays, calculated %-surface coverage values, SEM images of Au NC arrays on the PS-b-P2VP (172k-42k) template for SPR biosensing, corresponding ImageJ-analyzed images by varying the Au NP deposition time and results of image analysis. See DOI: 10.1039/c3nr03860b

  16. Rational Design of Peptide-Functionalized Surface Plasmon Resonance Sensor for Specific Detection of TNT Explosive.

    PubMed

    Wang, Jin; Muto, Masaki; Yatabe, Rui; Onodera, Takeshi; Tanaka, Masayoshi; Okochi, Mina; Toko, Kiyoshi

    2017-09-30

    In this study, a rationally-designed 2,4,6-trinitrotoluene (TNT) binding peptide derived from an amino acid sequence of the complementarity-determining region (CDR) of an anti-TNT monoclonal antibody was used for TNT detection based on a maleimide-functionalized surface plasmon resonance (SPR) sensor. By antigen-docking simulation and screening, the TNT binding candidate peptides were obtained as TNTHCDR1 derived from the heavy chain of CDR1, TNTHCDR2 derived from CDR2, and TNTHCDR3 from CDR3 of an anti-TNT antibody. The binding events between candidate peptides and TNT were evaluated using the SPR sensor by direct determination based on the 3-aminopropyltriethoxysilane (APTES) surface. The TNT binding peptide was directly immobilized on the maleimide-functionalized sensor chip surface from N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS). The results demonstrated that peptide TNTHCDR3 was identified and selected as a TNT binding peptide among the other two candidate peptides. Five kinds of TNT analogues were also investigated to testify the selectivity of TNT binding peptide TNTHCDR3. Furthermore, the results indicated that the APTES-GMBS-based SPR sensor chip procedure featured a great potential application for the direct detection of TNT.

  17. Rational Design of Peptide-Functionalized Surface Plasmon Resonance Sensor for Specific Detection of TNT Explosive

    PubMed Central

    Wang, Jin; Muto, Masaki; Yatabe, Rui; Onodera, Takeshi; Okochi, Mina; Toko, Kiyoshi

    2017-01-01

    In this study, a rationally-designed 2,4,6-trinitrotoluene (TNT) binding peptide derived from an amino acid sequence of the complementarity-determining region (CDR) of an anti-TNT monoclonal antibody was used for TNT detection based on a maleimide-functionalized surface plasmon resonance (SPR) sensor. By antigen-docking simulation and screening, the TNT binding candidate peptides were obtained as TNTHCDR1 derived from the heavy chain of CDR1, TNTHCDR2 derived from CDR2, and TNTHCDR3 from CDR3 of an anti-TNT antibody. The binding events between candidate peptides and TNT were evaluated using the SPR sensor by direct determination based on the 3-aminopropyltriethoxysilane (APTES) surface. The TNT binding peptide was directly immobilized on the maleimide-functionalized sensor chip surface from N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS). The results demonstrated that peptide TNTHCDR3 was identified and selected as a TNT binding peptide among the other two candidate peptides. Five kinds of TNT analogues were also investigated to testify the selectivity of TNT binding peptide TNTHCDR3. Furthermore, the results indicated that the APTES-GMBS-based SPR sensor chip procedure featured a great potential application for the direct detection of TNT. PMID:28973962

  18. Nanohole-based SPR Instruments with Improved Spectral Resolution Quantify a Broad Range of Antibody-Ligand Binding Kinetics

    PubMed Central

    Im, Hyungsoon; Sutherland, Jamie N.; Maynard, Jennifer A.; Oh, Sang-Hyun

    2012-01-01

    We demonstrate an affordable low-noise SPR instrument based on extraordinary optical transmission (EOT) in metallic nanohole arrays and quantify a broad range of antibody-ligand binding kinetics with equilibrium dissociation constants ranging from 200 pM to 40 nM. This nanohole-based SPR instrument is straightforward to construct, align, and operate, since it is built around a standard microscope and a portable fiber-optic spectrometer. The measured refractive index resolution of this platform is 3.1 × 10−6 without on-chip cooling, which is among the lowest reported for SPR sensors based on EOT. This is accomplished via rapid full-spectrum acquisition in 10 milliseconds followed by frame averaging of the EOT spectra, which is made possible by the production of template-stripped gold nanohole arrays with homogeneous optical properties over centimeter-sized areas. Sequential SPR measurements are performed using a 12-channel microfluidic flow cell after optimizing surface modification protocols and antibody injection conditions to minimize mass-transport artifacts. The immobilization of a model ligand, the protective antigen of anthrax on the gold surface, is monitored in real-time with a signal-to-noise ratio of ~860. Subsequently, real-time binding kinetic curves were measured quantitatively between the antigen and a panel of small, 25 kDa single-chain antibodies at concentrations down to 1 nM. These results indicate that nanohole-based SPR instruments have potential for quantitative antibody screening and as a general-purpose platform for integrating SPR sensors with other bioanalytical tools. PMID:22235895

  19. Investigation of a fiber optic surface plasmon spectroscopy in conjunction with conductivity as an in situ method for simultaneously monitoring changes in dissolved organic carbon and salinity in coastal waters.

    PubMed

    Kim, Yoon-Chang; Cramer, Jeffrey A; Booksh, Karl S

    2011-10-21

    A combination surface plasmon resonance (SPR) and conductivity sensor array was developed and implemented to demonstrate the ability to differentiate among changes in dissolved organic carbon (DOC) and salinity in coastal water. The array is capable of achieving sufficient spatial and temporal data density to better understand the cycling and fate of terrestrial DOC in coastal areas. DOC is the second largest source of bioreactive carbon in the environment and plays a key role in mediating microbial activity and generation of atmospheric CO(2). In the coastal areas, the salinity is also an important property in many applications, such as leak detection for landfill liners, saltwater intrusion to drinking water, marine environment monitoring, and seasonal climate prediction. Conductivity sensors are the industry standard for determining salinity in ocean systems. However, both conductivity and refractive index sensors, such as SPR spectroscopy based sensors, respond to salinity and DOC levels. To demonstrate the capability of the SPR sensor and a conductivity sensor to collect complimentary data useful in discrimination of salinity and DOC in coastal zone water, conductivity, SPR, and temperature data were collected during passage from the Juan de Fuca ridge area returning to the University of Washington docks.

  20. Study on the SPR responses of various DNA probe concentrations by parallel scan spectral SPR imaging

    NASA Astrophysics Data System (ADS)

    Ma, Suihua; Liu, Le; Lu, Weiping; Zhang, Yaou; He, Yonghong; Guo, Jihua

    2008-12-01

    SPR sensors have become a high sensitive and label free method for characterizing and quantifying chemical and biochemical interactions. However, the relations between the SPR refractive index response and the property (such as concentrations) of biochemical probes are still lacking. In this paper, an experimental study on the SPR responses of varies concentrations of Legionella pneumophila mip DNA probes is presented. We developed a novel two-dimensional SPR sensing technique-parallel scan spectral SPR imaging-to detect an array of mip gene probes. This technique offers quantitative refractive index information with a high sensing throughput. By detecting mip DNA probes with different concentrations, we obtained the relations between the SPR refractive index response and the concentrations of mip DNA probes. These results are valuable for design and developing SPR based mip gene biochips.

  1. Real-time assessment of surface interactions with titanium passivation layer by surface plasmon resonance

    PubMed Central

    Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki

    2011-01-01

    The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862

  2. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  3. Comparison of sensor structures for the signal amplification of surface plasmon resonance immunoassay using enzyme precipitation

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Tsung; Thierry, Benjamin

    2015-12-01

    Surface plasmon resonance (SPR) biosensing has been successfully applied for the label-free detection of a broad range of bioanalytes ranging from bacteria, cell, exosome, protein and nucleic acids. When it comes to the detection of small molecules or analytes found at low concentration, amplification schemes are desirable to enhance binding signals and in turn increase sensitivity. A number of SPR signal amplification schemes have been developed and validated; however, little effort has been devoted to understanding the effect of the SPR sensor structures on the amplification of binding signals and therefore on the overall sensing performance. The physical phenomenon of long-range SPR (LRSPR) relies on the propagation of coupled surface plasmonic waves on the opposite sides of a nanoscale-thick noble metal film suspended between two dielectrics with similar refractive indices. Importantly, as compared with commonly used conventional SPR (cSPR), LRSPR is not only characterized by a longer penetration depth of the plasmonic waves in the analyzed medium but also by a greater sensitivity to bulk refractive index changes. In this work, an immunoassay signal amplification platform based on horseradish peroxidase (HRP) catalyzed precipitation was utilized to investigate the sensing performance with regards to cSPR and LRSPR. The enzymatic precipitation of 3, 3'-diaminobenzidine tetrahydrochloride (DAB)/H2O2 was used to amplify SPR signals. The structure-function relationship of cSPR and LRSPR sensors is presented for both standard refractometric measurements and the enzymatic precipitation scheme. Experimental data shows that despite its inherent higher sensitivity to bulk refractive index changes and higher figure of merit, LRSPR was characterized by a lower angular sensitivity in the model enzymatic amplification scheme used here.

  4. Design and mechanisms of antifouling materials for surface plasmon resonance sensors.

    PubMed

    Liu, Boshi; Liu, Xia; Shi, Se; Huang, Renliang; Su, Rongxin; Qi, Wei; He, Zhimin

    2016-08-01

    Surface plasmon resonance (SPR) biosensors have many possible applications, but are limited by sensor chip surface fouling, which blocks immobilization and specific binding by the recognizer elements. Therefore, there is a pressing need for the development of antifouling surfaces. In this paper, the mechanisms of antifouling materials were firstly discussed, including both theories (hydration and steric hindrance) and factors influencing antifouling effects (molecular structures and self-assembled monolayer (SAM) architectures, surface charges, molecular hydrophilicity, and grafting thickness and density). Then, the most recent advances in antifouling materials applied on SPR biosensors were systematically reviewed, together with the grafting strategies, antifouling capacity, as well as their merits and demerits. These materials included, but not limited to, zwitterionic compounds, polyethylene glycol-based, and polysaccharide-based materials. Finally, the prospective research directions in the development of SPR antifouling materials were discussed. Surface plasmon resonance (SPR) is a powerful tool in monitoring biomolecular interactions. The principle of SPR biosensors is the conversion of refractive index change caused by molecular binding into resonant spectral shifts. However, the fouling on the surface of SPR gold chips is ubiquitous and troublesome. It limits the application of SPR biosensors by blocking recognition element immobilization and specific binding. Hence, we write this paper to review the antifouling mechanisms and the recent advances of the design of antifouling materials that can improve the accuracy and sensitivity of SPR biosensors. To our knowledge, this is the first review focusing on the antifouling materials that were applied or had potential to be applied on SPR biosensors. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Smart textile plasmonic fiber dew sensors.

    PubMed

    Esmaeilzadeh, Hamid; Rivard, Maxime; Arzi, Ezatollah; Légaré, François; Hassani, Alireza

    2015-06-01

    We propose a novel Surface Plasmon Resonance (SPR)-based sensor that detects dew formation in optical fiber-based smart textiles. The proposed SPR sensor facilitates the observation of two phenomena: condensation of moisture and evaporation of water molecules in air. This sensor detects dew formation in less than 0.25 s, and determines dew point temperature with an accuracy of 4%. It can be used to monitor water layer depth changes during dew formation and evaporation in the range of a plasmon depth probe, i.e., 250 nm, with a resolution of 7 nm. Further, it facilitates estimation of the relative humidity of a medium over a dynamic range of 30% to 70% by measuring the evaporation time via the plasmon depth probe.

  6. [Research on symmetrical optical waveguide based surface plasmon resonance sensing with spectral interrogation].

    PubMed

    Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong

    2015-02-01

    Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.

  7. Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels.

    PubMed

    Ashiba, Hiroki; Sugiyama, Yuki; Wang, Xiaomin; Shirato, Haruko; Higo-Moriguchi, Kyoko; Taniguchi, Koki; Ohki, Yoshimichi; Fujimaki, Makoto

    2017-07-15

    A highly sensitive biosensor to detect norovirus in environment is desired to prevent the spread of infection. In this study, we investigated a design of surface plasmon resonance (SPR)-assisted fluoroimmunosensor to increase its sensitivity and performed detection of norovirus virus-like particles (VLPs). A quantum dot fluorescent dye was employed because of its large Stokes shift. The sensor design was optimized for the CdSe-ZnS-based quantum dots. The optimal design was applied to a simple SPR-assisted fluoroimmunosensor that uses a sensor chip equipped with a V-shaped trench. Excitation efficiency of the quantum dots, degree of electric field enhancement by SPR, and intensity of autofluorescence of a substrate of the sensor chip were theoretically and experimentally evaluated to maximize the signal-to-noise ratio. As the result, an excitation wavelength of 390nm was selected to excite SPR on an Al film of the sensor chip. The sandwich assay of norovirus VLPs was performed using the designed sensor. Minimum detectable concentration of 0.01ng/mL, which corresponds to 100 virus-like particles included in the detection region of the V-trench, was demonstrated. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Surface scattering plasmon resonance fibre sensors: demonstration of rapid influenza A virus detection

    NASA Astrophysics Data System (ADS)

    Franςois, A.; Boehm, J.; Oh, S. Y.; Kok, T.; Monro, T. M.

    2011-06-01

    The management of threats such as pandemics and explosives, and of health and the environment requires the rapid deployment of highly sensitive detection tools. Sensors based on Surface Plasmon Resonance (SPR) allow rapid, labelfree, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light to the surface plasmon. Although SPR is not intrinsically a radiative process, under certain conditions the surface plasmon can itself couple to the local photon states, and emit light as first described byKretschmann. Here we show that by collecting and characterising this re-emitted light, it is possible to realise new SPR sensing architectures that are more compact, versatile and robust than existing approaches. This approach addresses existing practical limitations associated with current SPR technologies, including bulk, cost and calibration. It is applicable to a range of SPR geometries, including optical fibres, planar waveguides and prism configurations, and is in principle capable of detecting multiple analytes simultaneously. Moreover, this technique allows to combine SPR sensing and fluorescence sensing into a single platform which has never been demonstrated before and consequently use these two methods for a more reliable diagnostic. As an example, this approach has been used to demonstrate the rapid detection of the seasonal influenza virus.

  9. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2012-01-01

    A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single microchip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.

  10. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Amarie, Dragos (Inventor); Glazier, James A. (Inventor)

    2011-01-01

    A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multichannel sensor for detecting the presence of several targets with a single microchip sensor is described. A multichannel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.

  11. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Glazier, James A. (Inventor); Dragnea, Bogdan (Inventor); Amarie, Dragos (Inventor)

    2010-01-01

    A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single microchip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.

  12. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Amarie, Dragos (Inventor); Glazier, James A. (Inventor); Dragnea, Bogdan (Inventor)

    2010-01-01

    A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single micro-chip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.

  13. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2011-01-01

    A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single micro-chip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.

  14. Data analysis and calibration for a bulk-refractive-index-compensated surface plasmon resonance affinity sensor

    NASA Astrophysics Data System (ADS)

    Chinowsky, Timothy M.; Yee, Sinclair S.

    2002-02-01

    Surface plasmon resonance (SPR) affinity sensing, the problem of bulk refractive index (RI) interference in SPR sensing, and a sensor developed to overcome this problem are briefly reviewed. The sensor uses a design based on Texas Instruments' Spreeta SPR sensor to simultaneously measure both bulk and surface RI. The bulk RI measurement is then used to compensate the surface measurement and remove the effects of bulk RI interference. To achieve accurate compensation, robust data analysis and calibration techniques are necessary. Simple linear data analysis techniques derived from measurements of the sensor response were found to provide a versatile, low noise method for extracting measurements of bulk and surface refractive index from the raw sensor data. Automatic calibration using RI gradients was used to correct the linear estimates, enabling the sensor to produce accurate data even when the sensor has a complicated nonlinear response which varies with time. The calibration procedure is described, and the factors influencing calibration accuracy are discussed. Data analysis and calibration principles are illustrated with an experiment in which sucrose and detergent solutions are used to produce changes in bulk and surface RI, respectively.

  15. Quality assessment of SPR sensor chips; case study on L1 chips.

    PubMed

    Olaru, Andreea; Gheorghiu, Mihaela; David, Sorin; Polonschii, Cristina; Gheorghiu, Eugen

    2013-07-15

    Surface quality of the Surface Plasmon Resonance (SPR) chips is a major limiting issue in most SPR analyses, even more for supported lipid membranes experiments, where both the organization of the lipid matrix and the subsequent incorporation of the target molecule depend on the surface quality. A novel quantitative method to characterize the quality of SPR sensors chips is described for L1 chips subject to formation of lipid films, injection of membrane disrupting compounds, followed by appropriate regeneration procedures. The method consists in analysis of the SPR reflectivity curves for several standard solutions (e.g. PBS, HEPES or deionized water). This analysis reveals the decline of sensor surface as a function of the number of experimental cycles (consisting in biosensing assay and regeneration step) and enables active control of surface regeneration for enhanced reproducibility. We demonstrate that quantitative evaluation of the changes in reflectivity curves (shape of the SPR dip) and of the slope of the calibration curve provides a rapid and effective procedure for surface quality assessment. Whereas the method was tested on L1 SPR sensors chips, we stress on its amenability to assess the quality of other types of SPR chips, as well. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A Molecularly Imprinted Polymer on a Plasmonic Plastic Optical Fiber to Detect Perfluorinated Compounds in Water.

    PubMed

    Cennamo, Nunzio; D'Agostino, Girolamo; Porto, Gianni; Biasiolo, Adriano; Perri, Chiara; Arcadio, Francesco; Zeni, Luigi

    2018-06-05

    A novel Molecularly Imprinted Polymer (MIP) able to bind perfluorinated compounds, combined with a surface plasmon resonance (SPR) optical fiber platform, is presented. The new MIP receptor has been deposited on a D-shaped plastic optical fiber (POF) covered with a photoresist buffer layer and a thin gold film. The experimental results have shown that the developed SPR-POF-MIP sensor makes it possible to selectively detect the above compounds. In this work, we present the results obtained with perfluorooctanoate (PFOA) compound, and they hold true when obtained with a perfluorinated alkylated substances (PFAs) mixture sample. The sensor's response is the same for PFOA, perfluorooctanesulfonate (PFOS) or PFA contaminants in the C₄⁻C 11 range. We have also tested a sensor based on a non-imprinted polymer (NIP) on the same SPR in a D-shaped POF platform. The limit of detection (LOD) of the developed chemical sensor was 0.13 ppb. It is similar to the one obtained by the configuration based on a specific antibody for PFOA/PFOS exploiting the same SPR-POF platform, already reported in literature. The advantage of an MIP receptor is that it presents a better stability out of the native environment, very good reproducibility, low cost and, furthermore, it can be directly deposited on the gold layer, without modifying the metal surface by functionalizing procedures.

  17. Highly sensitive and selective surface plasmon resonance sensor for detection of sub-ppb levels of benzo[a]pyrene by indirect competitive immunoreaction method.

    PubMed

    Miura, Norio; Sasaki, Makoto; Gobi, K Vengatajalabathy; Kataoka, Chiwa; Shoyama, Yukihiro

    2003-07-01

    A surface plasmon resonance (SPR)-immunosensor for detection of benzo[a]pyrene (BaP) is developed by using a model BaP-hapten compound, BaP-bovine serum albumin conjugate (BaP-BSA), and an anti-BaP-BSA monoclonal antibody. BaP-BSA conjugate is immobilized on a gold thin-film sensor chip by means of simple physical adsorption. The number of BaP-hapten units in BaP-BSA conjugate is estimated to be 28 from the difference in molecular weight (MW) between BaP-BSA conjugate and BSA based on the results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) measurement. Anti-BaP-BSA antibody on contact with the BaP-BSA conjugate immobilized sensor chip causes an increase in the incident angle of the sensor chip. Binding of anti-BaP-BSA antibody with surface-immobilized BaP-BSA conjugate is inhibited by the presence of BaP in analyte solution, because of the inhibition effect of BaP. The SPR immunosensor for BaP functioning with the indirect competitive immunoreaction of anti-BaP-BSA antibody between the analyte (BaP) in testing solution and the BaP-BSA conjugate immobilized on the sensor chip provides a rapid determination (response time: ca. 15 min) of BaP in the concentration range of 0.01-1000 ppb. The antibody anchored to the sensor chip by antigen-antibody binding is removed on treatment with a pepsin solution (pH 2.0) for few minutes. The SPR sensor chip is found to be reusable for more than 20 times with a little decrease (<7%) in the sensor response. Detection of BaP by direct competitive immunoreactions is also carried out by enzyme-linked immunosorbent assay (ELISA). The concentration of BaP could be determined as low as 0.01 ppb and 2 ppb using the SPR sensor and the ELISA method, respectively. The SPR sensor is found to detect BaP selectively in the presence of 2-hydroxybiphenyl (HBP); the incident angle shift of the SPR sensor for BaP is found to be same irrespective to the presence or the absence of a same concentration (as much as 30 ppb) of HBP together.

  18. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber.

    PubMed

    Rossi, Stefano; Gazzola, Enrico; Capaldo, Pietro; Borile, Giulia; Romanato, Filippo

    2018-05-18

    Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30⁻50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration.

  19. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber

    PubMed Central

    Rossi, Stefano; Gazzola, Enrico; Capaldo, Pietro; Borile, Giulia; Romanato, Filippo

    2018-01-01

    Surface Plasmon Resonance (SPR)-based sensors have the advantage of being label-free, enzyme-free and real-time. However, their spreading in multidisciplinary research is still mostly limited to prism-coupled devices. Plasmonic gratings, combined with a simple and cost-effective instrumentation, have been poorly developed compared to prism-coupled system mainly due to their lower sensitivity. Here we describe the optimization and signal enhancement of a sensing platform based on phase-interrogation method, which entails the exploitation of a nanostructured sensor. This technique is particularly suitable for integration of the plasmonic sensor in a lab-on-a-chip platform and can be used in a microfluidic chamber to ease the sensing procedures and limit the injected volume. The careful optimization of most suitable experimental parameters by numerical simulations leads to a 30–50% enhancement of SPR response, opening new possibilities for applications in the biomedical research field while maintaining the ease and versatility of the configuration. PMID:29783711

  20. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    PubMed

    Abdi, Mahnaz M; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md

    2011-01-01

    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  1. Nanostructured plasmonic interferometers for ultrasensitive label-free biosensing

    NASA Astrophysics Data System (ADS)

    Gao, Yongkang

    Optical biosensors that utilize surface plasmon resonance (SPR) technique to analyze the biomolecular interactions have been extensively explored in the last two decades and have become the gold standard for label-free biosensing. These powerful sensing tools allow fast, highly-sensitive monitoring of the interaction between biomolecules in real time, without the need for laborious fluorescent labeling, and have found widely ranging applications from biomedical diagnostics and drug discovery, to environmental sensing and food safety monitoring. However, the prism-coupling SPR geometry is complex and bulky, and has severely limited the integration of this technique into low-cost portable biomedical devices for point-of-care diagnostics and personal healthcare applications. Also, the complex prism-coupling scheme prevents the use of high numerical aperture (NA) optics to increase the spatial resolution for multi-channel, high-throughput detection in SPR imaging mode. This dissertation is focused on the design and fabrication of a promising new class of nanopatterned interferometric SPR sensors that integrate the strengths of miniaturized nanoplasmonic architectures with sensitive optical interferometry techniques to achieve bold advances in SPR biosensing. The nanosensor chips developed provide superior sensing performance comparable to conventional SPR systems, but employing a far simpler collinear optical transmission geometry, which largely facilitates system integration, miniaturization, and low-cost production. Moreover, the fabricated nanostructure-based SPR sensors feature a very small sensor footprint, allowing massive multiplexing on a chip for high-throughput detection. The successful transformation of SPR technique from bulky prism-coupling setup into this low-cost compact plasmonic platform would have a far-reaching impact on point-of-care diagnostic tools and also lead to advances in high-throughput sensing applications in proteomics, immunology, drug discovery, and fundamental cell biology research.

  2. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.

    PubMed

    Patching, Simon G

    2014-01-01

    Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Surface Plasmon Resonance Investigations of Bioselective Element Based on the Recombinant Protein A for Immunoglobulin Detection

    NASA Astrophysics Data System (ADS)

    Bakhmachuk, A.; Gorbatiuk, O.; Rachkov, A.; Dons'koi, B.; Khristosenko, R.; Ushenin, I.; Peshkova, V.; Soldatkin, A.

    2017-02-01

    The developed surface plasmon resonance (SPR) biosensor based on the recombinant Staphylococcal protein A with an additional cysteine residue (SPA-Cys) used as a biorecognition component showed a good selectivity and sensitivity for the immunoglobulin detection. The developed biosensor with SPA-Cys-based bioselective element can also be used as a first step of immunosensor creation. The successful immobilization of SPA-Cys on the nanolayer gold sensor surface of the SPR spectrometer was performed. The efficiency of blocking nonspecific sorption sites on the sensor surface with milk proteins, gelatin, BSA, and HSA was studied, and a rather high efficiency of using gelatin was confirmed. The SPR biosensor selectively interacted with IgG and did not interact with the control proteins. The linear dependence of the sensor response on the IgG concentration in the range from 2 to 10 μg/ml was shown. Using the calibration curve, the IgG concentration was measured in the model samples. The determined concentrations are in good agreement ( r 2 = 0.97) with the given concentration of IgG.

  4. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor.

    PubMed

    Shao, Yu; Wang, Ying; Cao, Shaoqing; Huang, Yijian; Zhang, Longfei; Zhang, Feng; Liao, Changrui; Wang, Yiping

    2018-06-25

    A surface plasmon resonance (SPR) sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA) is demonstrated for relative humidity (RH) sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  5. Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range.

    PubMed

    DiPippo, William; Lee, Bong Jae; Park, Keunhan

    2010-08-30

    This paper reports the design analysis of a microfabricatable mid-infrared (mid-IR) surface plasmon resonance (SPR) sensor platform. The proposed platform has periodic heavily doped profiles implanted into intrinsic silicon and a thin gold layer deposited on top, making a physically flat grating SPR coupler. A rigorous coupled-wave analysis was conducted to prove the design feasibility, characterize the sensor's performance, and determine geometric parameters of the heavily doped profiles. Finite element analysis (FEA) was also employed to compute the electromagnetic field distributions at the plasmon resonance. Obtained results reveal that the proposed structure can excite the SPR on the normal incidence of mid-IR light, resulting in a large probing depth that will facilitate the study of larger analytes. Furthermore, the whole structure can be microfabricated with well-established batch protocols, providing tunability in the SPR excitation wavelength for specific biosensing needs with a low manufacturing cost. When the SPR sensor is to be used in a Fourier-transform infrared (FTIR) spectroscopy platform, its detection sensitivity and limit of detection are estimated to be 3022 nm/RIU and ~70 pg/mm(2), respectively, at a sample layer thickness of 100 nm. The design analysis performed in the present study will allow the fabrication of a tunable, disposable mid-IR SPR sensor that combines advantages of conventional prism and metallic grating SPR sensors.

  6. Visual and surface plasmon resonance sensor for zirconium based on zirconium-induced aggregation of adenosine triphosphate-stabilized gold nanoparticles.

    PubMed

    Qi, Wenjing; Zhao, Jianming; Zhang, Wei; Liu, Zhongyuan; Xu, Min; Anjum, Saima; Majeed, Saadat; Xu, Guobao

    2013-07-17

    Owing to its high affinity with phosphate, Zr(IV) can induce the aggregation of adenosine 5'-triphosphate (ATP)-stabilized AuNPs, leading to the change of surface plasmon resonance (SPR) absorption spectra and color of ATP-stabilized AuNP solutions. Based on these phenomena, visual and SPR sensors for Zr(IV) have been developed for the first time. The A(660 nm)/A(518 nm) values of ATP-stabilized AuNPs in SPR absorption spectra increase linearly with the concentrations of Zr(IV) from 0.5 μM to 100 μM (r=0.9971) with a detection limit of 95 nM. A visual Zr(IV) detection is achieved with a detection limit of 30 μM. The sensor shows excellent selectivity against other metal ions, such as Cu(2+), Fe(3+), Cd(2+), and Pb(2+). The recoveries for the detection of 5 μM, 10 μM, 25 μM and 75 μM Zr(IV) in lake water samples are 96.0%, 97.0%, 95.6% and 102.4%, respectively. The recoveries of the proposed SPR method are comparable with those of ICP-OES method. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Development of cell-based quantitative evaluation method for cell cycle-arrest type cancer drugs for apoptosis by high precision surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Ona, Toshihiro; Nishijima, Hiroshi; Kosaihira, Atsushi; Shibata, Junko

    2008-04-01

    In vitro rapid and quantitative cell-based assay is demanded to verify the efficacy prediction of cancer drugs since a cancer patient may have unconventional aspects of tumor development. Here, we show the rapid and non-label quantitative verifying method and instrumentation of apoptosis for cell cycle-arrest type cancer drugs (Roscovitine and D-allose) by reaction analysis of living liver cancer cells cultured on a sensor chip with a newly developed high precision (50 ndeg s -1 average fluctuation) surface plasmon resonance (SPR) sensor. The time-course cell reaction as the SPR angle change rate for 10 min from 30 min cell culture with a drug was significantly related to cell viability. By the simultaneous detection of differential SPR angle change and fluorescence by specific probes using the new instrument, the SPR angle was related to the nano-order potential decrease in inner mitochondrial membrane potential. The results obtained are universally valid for the cell cycle-arrest type cancer drugs, which mediate apoptosis through different cell-signaling pathways, by a liver cancer cell line of Hep G2 (P<0.001). This system towards the application to evaluate personal therapeutic potentials of drugs using cancer cells from patients in clinical use.

  8. Sensitivity enhancement of a surface plasmon resonance sensor using porous metamaterial layers

    NASA Astrophysics Data System (ADS)

    Cherifi, Abdellatif; Bouhafs, Benamar

    2017-12-01

    In this work, the surface plasmon resonance (SPR) device with two porous left handed metamaterial (LHM) layers separated by an insulator gap, is investigated. The effect of the insulator gap thickness and its refractive index (RI) on the angular response of the device is analyzed. The results show that the sensitivity of the SPR sensor is enhanced compared to the standard SPR sensors. Here, the multilayer structure is probed with 738 nm-wavelength, and electromagnetic properties of active porous LHM layers are described from the effective medium theory (EMT). Furthermore, in the increase of the porosity from 0 to 0.6, the designed nanocavity exhibits a fundamental SPR mode long-range (LR) type and it can be of interest in high-performance SPR sensing.

  9. Phase-Sensitive Surface Plasmon Resonance Sensors: Recent Progress and Future Prospects

    PubMed Central

    Deng, Shijie; Wang, Peng; Yu, Xinglong

    2017-01-01

    Surface plasmon resonance (SPR) is an optical sensing technique that is capable of performing real-time, label-free and high-sensitivity monitoring of molecular interactions. SPR biosensors can be divided according to their operating principles into angle-, wavelength-, intensity- and phase-interrogated devices. With their complex optical configurations, phase-interrogated SPR sensors generally provide higher sensitivity and throughput, and have thus recently emerged as prominent biosensing devices. To date, several methods have been developed for SPR phase interrogation, including heterodyne detection, polarimetry, shear interferometry, spatial phase modulation interferometry and temporal phase modulation interferometry. This paper summarizes the fundamentals of phase-sensitive SPR sensing, reviews the available methods for phase interrogation of these sensors, and discusses the future prospects for and trends in the development of this technology. PMID:29206182

  10. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    NASA Astrophysics Data System (ADS)

    Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong

    2017-06-01

    Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  11. Developments in SPR Fragment Screening.

    PubMed

    Chavanieu, Alain; Pugnière, Martine

    2016-01-01

    Fragment-based approaches have played an increasing role alongside high-throughput screening in drug discovery for 15 years. The label-free biosensor technology based on surface plasmon resonance (SPR) is now sensitive and informative enough to serve during primary screens and validation steps. In this review, the authors discuss the role of SPR in fragment screening. After a brief description of the underlying principles of the technique and main device developments, they evaluate the advantages and adaptations of SPR for fragment-based drug discovery. SPR can also be applied to challenging targets such as membrane receptors and enzymes. The high-level of immobilization of the protein target and its stability are key points for a relevant screening that can be optimized using oriented immobilized proteins and regenerable sensors. Furthermore, to decrease the rate of false negatives, a selectivity test may be performed in parallel on the main target bearing the binding site mutated or blocked with a low-off-rate ligand. Fragment-based drug design, integrated in a rational workflow led by SPR, will thus have a predominant role for the next wave of drug discovery which could be greatly enhanced by new improvements in SPR devices.

  12. A novel optical-fiber based surface plasmon resonance sensing architecture and its application to gastric cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Francois, Alexandre; Boehm, Jonathan; Penno, Megan; Hoffmann, Peter; Monro, Tanya M.

    2011-05-01

    The management of threats such as pandemics and explosives, and of health and the environment requires the rapid deployment of highly sensitive detection tools. Sensors based on Surface Plasmon Resonance (SPR) allow rapid, labelfree, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light to the surface plasmon. Although SPR is not intrinsically a radiative process, under certain conditions the surface plasmon can itself couple to the local photon states, and emit light. Here we show for the first time that by collecting and characterising this re-emitted light, it is possible to realise new SPR sensing architectures that are more compact, versatile and robust than existing approaches. It is applicable to a range of SPR geometries, including optical fibres. As an example, this approach has been used to demonstrate the detection of a protein identified as a being a biomarker for cancer.

  13. Rapid and Highly Sensitive Detection of Dopamine Using Conjugated Oxaborole-Based Polymer and Glycopolymer Systems.

    PubMed

    Jiang, Keren; Wang, Yinan; Thakur, Garima; Kotsuchibashi, Yohei; Naicker, Selvaraj; Narain, Ravin; Thundat, Thomas

    2017-05-10

    A conjugated polymer interface consisting of an oxaborole containing polymer and a glycopolymer was used for achieving very high selectivity in dopamine (DA) detection. The optimum binding affinity between the polymers promotes the selectivity to DA through a displacement mechanism while remaining unaffected by other structurally related analogs and saccharide derivatives. Real-time detection of DA with very high selectivity and sensitivity has been demonstrated by immobilizing the polymer conjugates on surface plasmon resonance (SPR) and microcantilever (MCL) sensor platforms. Using the conjugated polymer sensing layer, the SPR biosensor was capable of detecting DA in the concentration range of 1 × 10 -9 to 1 × 10 -4 mol L -1 , whereas the MCL sensor showed a limit of detection (LOD) of 5 × 10 -11 mol L -1 . We find that the sensing mechanism is based on DA-induced reversible swelling of the conjugated polymer layer and this allows regeneration and reuse of the sensor multiple times. Also, we conclude that SPR is a suitable sensor platform for DA in-line detection at clinical level considering the detection time and stability, whereas MCL can achieve a much lower LOD.

  14. Theoretical study of modulated multi-layer SPR device for improved refractive index sensing

    NASA Astrophysics Data System (ADS)

    Mohapatra, Saswat; Moirangthem, Rakesh S.

    2018-02-01

    In the present work, a theoretical investigation of Surface Plasmon Resonance (SPR) properties of a multilayer film (Au-SiO2-Au) coated on a glass prism is being carried out. In this multilayer structure, each interface corresponds to multiple SPR modes. To obtain the maximum reflection dips in the SPR modes, the thickness of SiO2 layer is optimized by varying it from 100-600 nm. Our calculation also reveals that SPR mode corresponding to Au-ambient interface is very sensitive to the changes in the surrounding medium, least affecting other SPR modes. The sensing performance of the proposed nano-plasmonic sensor is theoretically calculated using bulk refractive index sensing. Such multilayer SPR sensing device has advantages over conventional SPR devices in terms of their bulk sensitivity and self-referencing, claiming itself as a potential candidate for the development of highly sensitive biological sensor.

  15. Detection of adulteration in diesel and petrol by kerosene using SPR based fiber optic technique

    NASA Astrophysics Data System (ADS)

    Verma, Rajneesh K.; Suwalka, Payal; Yadav, Jatin

    2018-07-01

    In this paper we focused on the experimental investigations for fabricating a surface plasmon resonance (SPR) based fiber optic sensor for the detection of the extent of adulteration in petrochemicals: petrol and diesel by kerosene. Primarily it is observed that the refractive index of the petrol and diesel changes if we mix kerosene in it. The variation in refractive index is linear in nature. Utilizing the phenomenon of surface plasmon resonance in Krestchmann configuration on optical fiber, the percentage of adulteration in petrol and diesel is detected. The detection level of adulteration is quantified systematically for both the petrol and diesel. The study carried out here explores the possibility of utilizing SPR technique for the detection of the level of adulteration in petrochemicals. The suitability of the optical fiber for remote sensing and its immunity towards electromagnetic interaction makes this probe very useful for such endeavor. High sensitivity, easy construction and its portability, makes this study important in the development of SPR based optical fiber sensors for petrochemical industries. Apart from this various aspects of environment polluting hazardous/toxic gases as an emission product of automobile fuels has also been discussed.

  16. Development of low cost and accurate homemade sensor system based on Surface Plasmon Resonance (SPR)

    NASA Astrophysics Data System (ADS)

    Laksono, F. D.; Supardianningsih; Arifin, M.; Abraha, K.

    2018-04-01

    In this paper, we developed homemade and computerized sensor system based on Surface Plasmon Resonance (SPR). The developed systems consist of mechanical system instrument, laser power sensor, and user interface. The mechanical system development that uses anti-backlash gear design was successfully able to enhance the angular resolution angle of incidence laser up to 0.01°. In this system, the laser detector acquisition system and stepper motor controller utilizing Arduino Uno which is easy to program, flexible, and low cost, was used. Furthermore, we employed LabView’s user interface as the virtual instrument for facilitating the sample measurement and for transforming the data recording directly into the digital form. The test results using gold-deposited half-cylinder prism showed the Total Internal Reflection (TIR) angle of 41,34°± 0,01° and SPR angle of 44,20°± 0,01°, respectively. The result demonstrated that the developed system managed to reduce the measurement duration and data recording errors caused by human error. Also, the test results also concluded that the system’s measurement is repeatable and accurate.

  17. Surface Plasmon Resonance-Based Fiber Optic Sensors Utilizing Molecular Imprinting

    PubMed Central

    Gupta, Banshi D.; Shrivastav, Anand M.; Usha, Sruthi P.

    2016-01-01

    Molecular imprinting is earning worldwide attention from researchers in the field of sensing and diagnostic applications, due to its properties of inevitable specific affinity for the template molecule. The fabrication of complementary template imprints allows this technique to achieve high selectivity for the analyte to be sensed. Sensors incorporating this technique along with surface plasmon or localized surface plasmon resonance (SPR/LSPR) provide highly sensitive real time detection with quick response times. Unfolding these techniques with optical fiber provide the additional advantages of miniaturized probes with ease of handling, online monitoring and remote sensing. In this review a summary of optical fiber sensors using the combined approaches of molecularly imprinted polymer (MIP) and the SPR/LSPR technique is discussed. An overview of the fundamentals of SPR/LSPR implementation on optical fiber is provided. The review also covers the molecular imprinting technology (MIT) with its elementary study, synthesis procedures and its applications for chemical and biological anlayte detection with different sensing methods. In conclusion, we explore the advantages, challenges and the future perspectives of developing highly sensitive and selective methods for the detection of analytes utilizing MIT with the SPR/LSPR phenomenon on optical fiber platforms. PMID:27589746

  18. An SPR based sensor for allergens detection.

    PubMed

    Ashley, J; Piekarska, M; Segers, C; Trinh, L; Rodgers, T; Willey, R; Tothill, I E

    2017-02-15

    A simple, sensitive and label-free optical sensor method was developed for allergens analysis using α-casein as the biomarker for cow's milk detection, to be used directly in final rinse samples of cleaning in place systems (CIP) of food manufacturers. A Surface Plasmon Resonance (SPR) sensor chip consisting of four sensing arrays enabling the measurement of samples and control binding events simultaneously on the sensor surface was employed in this work. SPR offers several advantages in terms of label free detection, real time measurements and superior sensitivity when compared to ELISA based techniques. The gold sensor chip was used to immobilise α-casein-polyclonal antibody using EDC/NHS coupling procedure. The performance of the assay and the sensor was first optimised and characterised in pure buffer conditions giving a detection limit of 58ngmL -1 as a direct binding assay. The assay sensitivity can be further improved by using sandwich assay format and amplified with nanoparticles. However, at this stage this is not required as the detection limit achieved exceeded the required allergens detection levels of 2µgmL -1 for α-S1-casein. The sensor demonstrated good selectivity towards the α-casein as the target analyte and adequate recoveries from CIP final rinse wash samples. The sensor would be useful tool for monitoring allergen levels after cleaning procedures, providing additional data that may better inform upon wider food allergen risk management decision(s) that are made by food manufacturer. In particular, this sensor could potentially help validate or optimise cleaning practices for a given food manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Gallium arsenide based surface plasmon resonance for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta

    2015-07-01

    The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.

  20. Nanorod mediated surface plasmon resonance sensor based on effective medium theory

    USDA-ARS?s Scientific Manuscript database

    A novel nanorod mediated surface plasmon resonance (SPR) sensor was investigated for enhancing sensitivity of the sensor. The theoretical model containing an anisotropic layer of nanorod was investigated using four-layer Fresnel equations and effective medium theory. The properties of the nanorod me...

  1. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor.

    PubMed

    Taylor, Allen D; Ladd, Jon; Yu, Qiuming; Chen, Shengfu; Homola, Jirí; Jiang, Shaoyi

    2006-12-15

    We report the quantitative and simultaneous detection of four species of bacteria, Escherichia coli O157:H7, Salmonella choleraesuis serotype typhimurium, Listeria monocytogenes, and Campylobacter jejuni, using an eight-channel surface plasmon resonance (SPR) sensor based on wavelength division multiplexing. Detection curves showing SPR response versus analyte concentration were established for each species of bacteria in buffer at pH 7.4, apple juice at native pH 3.7, and apple juice at an adjusted pH of 7.4, as well as for a mixture containing all four species of bacteria in buffer. Control experiments were performed to show the non-fouling characteristics of the sensor surface as well as the specificity of the amplification antibodies used in this study. The limit of detection (LOD) for each of the four species of bacteria in the tested matrices ranges from 3.4 x 10(3) to 1.2 x 10(5) cfu/ml. Detection curves in buffer of an individual species of bacteria in a mixture of all four species of bacteria correlated well with detection curves of the individual species of bacteria alone. SPR responses were higher for bacteria in apple juice at pH 7.4 than in apple juice at pH 3.7. This difference in sensor response could be partly attributed to the pH dependence of antibody-antigen binding.

  2. Optimal Conditions for the Asymmetric Polymerase Chain Reaction for Detecting Food Pathogenic Bacteria Using a Personal SPR Sensor.

    PubMed

    Nagai, Haruka; Tomioka, Kanji; Okumura, Shiro

    2018-06-26

    We have been developing quick and simple system for detecting food-poisoning bacteria using a combination of an asymmetric PCR and a portable surface plasmon resonance (SPR) sensor. The system would be suitable for point-of-care detection of food-poisoning bacteria in the field of food industry. In this study, we established a novel method for quantifying the amplified forward (F) and reverse (R) chains of Staphylococcus aureus separately by high-performance liquid chromatography (HPLC). The concentration of single-stranded DNA amplicon excessively amplified, which is crucial for the system, could be calculated as the difference between those of the F- and R-chains. For the R-chain, a correction based on the F-chain concentration in the sample was used to obtain a more accurate value, because the determination of the R-chain concentration was affected by that of the coexisting F-chain. The concentration values were also determined by fluorescence imaging for electrophoresis gels of amplicons with FITC- or Cy5-conjugated primers, and they were in good agreement with the values by the HPLC. The measured concentration of the single-strand F-chain correlated well with the value of the SPR response against the probe that was a complementary sequence of the F-chain, immobilized on the sensor chip of the SPR sensor.

  3. Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection.

    PubMed

    Ashley, Jon; D'Aurelio, Roberta; Piekarska, Monika; Temblay, Jeff; Pleasants, Mike; Trinh, Linda; Rodgers, Thomas L; Tothill, Ibtisam E

    2018-03-27

    A sensitive and label-free surface plasmon resonance (SPR) based sensor was developed in this work for the detection of milk allergens. β-lactoglobulin (BLG) protein was used as the biomarker for cow milk detection. This is to be used directly in final rinse samples of cleaning in-place (CIP) systems of food manufacturers. The affinity assay was optimised and characterised before a standard curve was performed in pure buffer conditions, giving a detection limit of 0.164 µg mL -1 as a direct binding assay. The detection limit can be further enhanced through the use of a sandwich assay and amplification with nanomaterials. However, this was not required here, as the detection limit achieved exceeded the required allergen detection levels of 2 µg mL -1 for β-lactoglobulin. The binding affinities of the polyclonal antibody for BLG, expressed by the dissociation constant (K D ), were equal to 2.59 × 10 -9 M. The developed SPR-based sensor offers several advantages in terms of label-free detection, real-time measurements, potential on-line system and superior sensitivity when compared to ELISA-based techniques. The method is novel for this application and could be applied to wider food allergen risk management decision(s) in food manufacturing.

  4. Surface plasmon resonance imaging system with Mach-Zehnder phase-shift interferometry for DNA micro-array hybridization

    NASA Astrophysics Data System (ADS)

    Hsiu, Feng-Ming; Chen, Shean-Jen; Tsai, Chien-Hung; Tsou, Chia-Yuan; Su, Y.-D.; Lin, G.-Y.; Huang, K.-T.; Chyou, Jin-Jung; Ku, Wei-Chih; Chiu, S.-K.; Tzeng, C.-M.

    2002-09-01

    Surface plasmon resonance (SPR) imaging system is presented as a novel technique based on modified Mach-Zehnder phase-shifting interferometry (PSI) for biomolecular interaction analysis (BIA), which measures the spatial phase variation of a resonantly reflected light in biomolecular interaction. In this technique, the micro-array SPR biosensors with over a thousand probe NDA spots can be detected simultaneously. Owing to the feasible and swift measurements, the micro-array SPR biosensors can be extensively applied to the nonspecific adsorption of protein, the membrane/protein interactions, and DNA hybridization. The detection sensitivity of the SPR PSI imaging system is improved to about 1 pg/mm2 for each spot over the conventional SPR imaging systems. The SPR PSI imaging system and its SPR sensors have been successfully used to observe slightly index change in consequence of argon gas flow through the nitrogen in real time, with high sensitivity, and at high-throughout screening rates.

  5. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications

    PubMed Central

    Nguyen, Hoang Hiep; Park, Jeho; Kang, Sebyung; Kim, Moonil

    2015-01-01

    Surface plasmon resonance (SPR) is a label-free detection method which has emerged during the last two decades as a suitable and reliable platform in clinical analysis for biomolecular interactions. The technique makes it possible to measure interactions in real-time with high sensitivity and without the need of labels. This review article discusses a wide range of applications in optical-based sensors using either surface plasmon resonance (SPR) or surface plasmon resonance imaging (SPRI). Here we summarize the principles, provide examples, and illustrate the utility of SPR and SPRI through example applications from the biomedical, proteomics, genomics and bioengineering fields. In addition, SPR signal amplification strategies and surface functionalization are covered in the review. PMID:25951336

  6. Plasmon-Enhanced Optical Sensors: A Review

    PubMed Central

    Li, Ming; Cushing, Scott K

    2014-01-01

    Surface plasmon resonance (SPR) has found extensive applications in chemi-sensors and biosensors. Plasmons play different roles in different types of optical sensors. SPR transduces a signal in a colorimetric sensor through shifts in the spectral position and intensity in response to external stimuli. SPR can also concentrate the incident electromagnetic field in a nanostructure, modulating fluorescence emission and enabling plasmon-enhanced fluorescence to be used for ultrasensitive detection. Furthermore, plasmons have been extensively used for amplifying a Raman signal in a surface-enhanced Raman scattering sensor. This paper presents a review of recent research progress in plasmon-enhanced optical sensing, giving an emphasis on the physical basis of plasmon-enhanced sensors and how these principles guide the design of sensors. In particular, this paper discusses the design strategies for nanomaterials and nanostructures to plasmonically enhance optical sensing signals, also highlighting the applications of plasmon-enhanced optical sensors in health care, homeland security, food safety and environmental monitoring. PMID:25365823

  7. Self-assembled PEG monolayer based SPR immunosensor for label-free detection of insulin.

    PubMed

    Gobi, K Vengatajalabathy; Iwasaka, Hiroyuki; Miura, Norio

    2007-02-15

    A simple and rapid continuous-flow immunosensor based on surface plasmon resonance (SPR) has been developed for detection of insulin as low as 1 ng ml-1 (ppb) with a response time of less than 5 min. At first, a heterobifunctional oligo(ethyleneglycol)-dithiocarboxylic acid derivative (OEG-DCA) containing dithiol and carboxyl end groups was used to functionalize the thin Au-film of SPR chip. Insulin was covalently bound to the Au-thiolate monolayer of OEG-DCA for activating the sensor surface to immunoaffinity interactions. An on-line competitive immunosensing principle is examined for detection of insulin, in which the direct affinity binding of anti-insulin antibody to the insulin on sensor surface is examined in the presence and absence of various concentrations of insulin. Immunoreaction of anti-insulin antibody with the sensor surface was optimized with reference to antibody concentration, sample analysis time and flow-rate to provide the desired detection limit and determination range. With the immunosensor developed, the lowest detectable concentration of insulin is 1 ng ml-1 and the determination range covers a wide concentration of 1-300 ng ml-1. The developed OEG-monolayer based sensor chip exhibited high resistance to non-specific adsorption of proteins, and an uninterrupted highly sensitive detection of insulin from insulin-impregnated serum samples has been demonstrated. After an immunoreaction cycle, active sensor surface was regenerated simply by a brief flow of an acidic buffer (glycine.HCl; pH 2.0) for less than 1 min. A same sensor chip was found reusable for more than 25 cycles without an appreciable change in the original sensor activity.

  8. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers

    PubMed Central

    Wei, Yong; Su, Yudong; Liu, Chunlan; Nie, Xiangfei; Liu, Zhihai; Zhang, Yu; Zhang, Yonghui

    2017-01-01

    By combining a polymer-clad optic fiber and a vitreous-clad optic fiber, we proposed and fabricated a novel optic fiber surface plasmon resonance (SPR) sensor to conduct two-channel sensing at the same detection area. The traditional optic fiber SPR sensor has many disadvantages; for example, removing the cladding requires corrosion, operating it is dangerous, adjusting the dynamic response range is hard, and producing different resonance wavelengths in the sensing area to realize a multi-channel measurement is difficult. Therefore, in this paper, we skillfully used bare fiber grinding technology and reverse symmetry welding technology to remove the cladding in a multi-mode fiber and expose the evanescent field. On the basis of investigating the effect of the grinding angle on the dynamic range change of the SPR resonance valley wavelength and sensitivity, we combined polymer-clad fiber and vitreous-clad fiber by a smart design structure to realize at a single point a two-channel measurement fiber SPR sensor. In this paper, we obtained a beautiful spectral curve from a multi-mode fiber two-channel SPR sensor. In the detection range of the refractive rate between 1.333 RIU and 1.385 RIU, the resonance valley wavelength of channel Ⅰ shifted from 622 nm to 724 nm with a mean average sensitivity of 1961 nm/RIU and the resonance valley wavelength of channel Ⅱ shifted from 741 nm to 976 nm with a mean average sensitivity of 4519 nm/RIU. PMID:29232841

  9. Two-Channel SPR Sensor Combined Application of Polymer- and Vitreous-Clad Optic Fibers.

    PubMed

    Wei, Yong; Su, Yudong; Liu, Chunlan; Nie, Xiangfei; Liu, Zhihai; Zhang, Yu; Zhang, Yonghui

    2017-12-09

    By combining a polymer-clad optic fiber and a vitreous-clad optic fiber, we proposed and fabricated a novel optic fiber surface plasmon resonance (SPR) sensor to conduct two-channel sensing at the same detection area. The traditional optic fiber SPR sensor has many disadvantages; for example, removing the cladding requires corrosion, operating it is dangerous, adjusting the dynamic response range is hard, and producing different resonance wavelengths in the sensing area to realize a multi-channel measurement is difficult. Therefore, in this paper, we skillfully used bare fiber grinding technology and reverse symmetry welding technology to remove the cladding in a multi-mode fiber and expose the evanescent field. On the basis of investigating the effect of the grinding angle on the dynamic range change of the SPR resonance valley wavelength and sensitivity, we combined polymer-clad fiber and vitreous-clad fiber by a smart design structure to realize at a single point a two-channel measurement fiber SPR sensor. In this paper, we obtained a beautiful spectral curve from a multi-mode fiber two-channel SPR sensor. In the detection range of the refractive rate between 1.333 RIU and 1.385 RIU, the resonance valley wavelength of channel Ⅰ shifted from 622 nm to 724 nm with a mean average sensitivity of 1961 nm/RIU and the resonance valley wavelength of channel Ⅱ shifted from 741 nm to 976 nm with a mean average sensitivity of 4519 nm/RIU.

  10. Selective Amplification of SPR Biosensor Signal for Recognition of rpoB Gene Fragments by Use of Gold Nanoparticles Modified by Thiolated DNA

    NASA Astrophysics Data System (ADS)

    Matsishin, M.; Rachkov, A.; Lopatynskyi, A.; Chegel, V.; Soldatkin, A.; El'skaya, A.

    2017-04-01

    An experimental approach for improving the sensitivity of the surface plasmon resonance (SPR) DNA hybridization sensor using gold nanoparticles (GNPs), modified by specific oligonucleotides, was elaborated. An influence of the ionic strength on the aggregation stability of unmodified GNPs and GNPs modified by the thiolated oligonucleotides was investigated by monitoring a value of light extinction at 520 nm that can be considered as a measure of a quantity of the non-aggregated GNPs. While the unmodified GNPs started to aggregate in 0.2 × saline-sodium citrate (SSC), GNPs modified by the negatively charged oligonucleotides were more stable at increasing ionic strength up to 0.5 × SSC. A bioselective element of the SPR DNA hybridization sensor was formed by immobilization on the gold sensor surface of the thiolated oligonucleotides P2, the sequence of which is a fragment of the rpoB gene of Mycobacterium tuberculosis. The injections into the measuring flow cell of the SPR spectrometer of various concentrations of GNPs modified by the complementary oligonucleotides T2-18m caused the pronounced concentration-dependent sequence-specific sensor responses. The magnitude of the sensor responses was much higher than in the case of the free standing complementary oligonucleotides. According to the obtained experimental data, the usage of GNPs modified by specific oligonucleotides can amplify the sensor response of the SPR DNA hybridization sensor in 1200 times.

  11. Surface plasmon resonance sensing: from purified biomolecules to intact cells.

    PubMed

    Su, Yu-Wen; Wang, Wei

    2018-04-12

    Surface plasmon resonance (SPR) has become a well-recognized label-free technique for measuring the binding kinetics between biomolecules since the invention of the first SPR-based immunosensor in 1980s. The most popular and traditional format for SPR analysis is to monitor the real-time optical signals when a solution containing ligand molecules is flowing over a sensor substrate functionalized with purified receptor molecules. In recent years, rapid development of several kinds of SPR imaging techniques have allowed for mapping the dynamic distribution of local mass density within single living cells with high spatial and temporal resolutions and reliable sensitivity. Such capability immediately enabled one to investigate the interaction between important biomolecules and intact cells in a label-free, quantitative, and single cell manner, leading to an exciting new trend of cell-based SPR bioanalysis. In this Trend Article, we first describe the principle and technical features of two types of SPR imaging techniques based on prism and objective, respectively. Then we survey the intact cell-based applications in both fundamental cell biology and drug discovery. We conclude the article with comments and perspectives on the future developments. Graphical abstract Recent developments in surface plasmon resonance (SPR) imaging techniques allow for label-free mapping the mass-distribution within single living cells, leading to great expansions in biomolecular interactions studies from homogeneous substrates functionalized with purified biomolecules to heterogeneous substrates containing individual living cells.

  12. Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing

    PubMed Central

    Dhawan, Anuj; Canva, Michael; Vo-Dinh, Tuan

    2011-01-01

    We present a novel surface plasmon resonance (SPR) configuration based on narrow groove (sub-15 nm) plasmonic nano-gratings such that normally incident radiation can be coupled into surface plasmons without the use of prism-coupling based total internal reflection, as in the classical Kretschmann configuration. This eliminates the angular dependence requirements of SPR-based sensing and allows development of robust miniaturized SPR sensors. Simulations based on Rigorous Coupled Wave Analysis (RCWA) were carried out to numerically calculate the reflectance - from different gold and silver nano-grating structures - as a function of the localized refractive index of the media around the SPR nano-gratings as well as the incident radiation wavelength and angle of incidence. Our calculations indicate substantially higher differential reflectance signals, on localized change of refractive index in the narrow groove plasmonic gratings, as compared to those obtained from conventional SPR-based sensing systems. Furthermore, these calculations allow determination of the optimal nano-grating geometric parameters - i. e. nanoline periodicity, spacing between the nanolines, as well as the height of the nanolines in the nano-grating - for highest sensitivity to localized change of refractive index, as would occur due to binding of a biomolecule target to a functionalized nano-grating surface. PMID:21263620

  13. Plasmonic fiber-optic vector magnetometer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaochuan; Guo, Tuan; Zhang, Xuejun; Xu, Jian; Xie, Wenping; Nie, Ming; Wu, Qiang; Guan, Bai-Ou; Albert, Jacques

    2016-03-01

    A compact fiber-optic vector magnetometer based on directional scattering between polarized plasmon waves and ferro-magnetic nanoparticles is demonstrated. The sensor configuration reported in this work uses a short section of tilted fiber Bragg grating (TFBG) coated with a nanometer scale gold film and packaged with a magnetic fluid (Fe3O4) inside a capillary. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with a broader absorption of the surface plasmon resonance (SPR). The wavelength of the SPR attenuation in transmission shows high sensitivity to slight perturbations by magnetic fields, due to the strong directional scattering between the SPR attenuated cladding modes and the magnetic fluid near the fiber surface. Both the orientation (2 nm/deg) and the intensity (1.8 nm/mT) of magnetic fields can be determined unambiguously from the TFBG spectrum. Temperature cross sensitivity can be referenced out by monitoring the wavelength of the core mode resonance simultaneously.

  14. Optimization of SPR signals: Monitoring the physical structures and refractive indices of prisms

    NASA Astrophysics Data System (ADS)

    Maisarah Mukhtar, Wan; Halim, Razman Mohd; Hassan, Hazirah

    2017-11-01

    Surface plasmon resonance (SPR) can only be achieved if sufficient energy is provided at the boundary between metal and dielectric. An employment of prism as a light coupler by using Kretschmann configuration is one of the alternative for the production of adequate energy to be generated as surface plasmon polaritons (SPP). This work is carried out to investigate the effect of physical structure of the prism and its refractive index to the excitation of SPPs. A 50nm gold thin metal film with dielectric constant of ɛ=-12.45i+1.3 was deposited on the hypotenuse surface of the prisms. The physical structures of the prisms were varied such as triangular, conical, hemispherical and half cylindrical. These prisms were classified into two types of refractive indices (RI), namely n=1.51(type BK7) and n=1.77(type SF11). Based on SPR curve analyses, we discovered that strong SPR signals which consist of 82.98% photons were excited as SPPs can be obtained by using type-BK7 prism with physical structures of hemispherical or half cylindrical. From the view of selectivity ability as sensors, the usage of type-SF11 prisms (half cylindrical and hemispherical) able to enhance this impressive feature in which sharp SPR curves with small FWHM values were obtained. In conclusion, apart from properties of thin film materials, the physical structure of prisms and their RI values play crucial roles to obtain optimum SPR signal. High sensitivity SPR sensor can be established with the appointment of type-BK7 prisms (hemispherical or half cylindrical shape) as light couplers.

  15. Surface plasmon resonance sensor for femtomolar detection of testosterone with water-compatible macroporous molecularly imprinted film.

    PubMed

    Zhang, Qingwen; Jing, Lijing; Zhang, Jinling; Ren, Yamin; Wang, Yang; Wang, Yi; Wei, Tianxin; Liedberg, Bo

    2014-10-15

    A novel water-compatible macroporous molecularly imprinted film (MIF) has been developed for rapid, sensitive, and label-free detection of small molecule testosterone in urine. The MIF was synthesized by photo copolymerization of monomers (methacrylic acid [MAA] and 2-hydroxyethyl methacrylate [HEMA]), cross-linker (ethylene glycol dimethacrylate, EGDMA), and polystyrene nanoparticles (PS NPs) in combination with template testosterone molecules. The PS NPs and template molecules were subsequently removed to form an MIF with macroporous structures and the specific recognition sites of testosterone. Incubation of artificial urine and human urine on the MIF and the non-imprinted film (NIF), respectively, indicated undetectable nonspecific adsorption. Accordingly, the MIF was applied on a surface plasmon resonance (SPR) sensor for the detection of testosterone in phosphate-buffered saline (PBS) and artificial urine with a limit of detection (LOD) down to 10(-15)g/ml. To the best of our knowledge, the LOD is considered as one of the lowest among the SPR sensors for the detection of small molecules. The control experiments performed with analogue molecules such as progesterone and estradiol demonstrated the good selectivity of this MIF for sensing testosterone. Furthermore, this MIF-based SPR sensor shows high stability and reproducibility over 8months of storage at room temperature, which is more robust than protein-based biosensors. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Surface plasmon optical sensor with enhanced sensitivity using top ZnO thin film

    NASA Astrophysics Data System (ADS)

    Bao, Ming; Li, Ge; Jiang, Dongmei; Cheng, Wenjuan; Ma, Xueming

    2012-05-01

    Surface plasmon resonance (SPR) is one of the most sensitive label-free detection methods and has been used in a wide range of chemical and biochemical sensing. Upon using a 200 nm top layer of dielectric film with a high value of the real part ɛ' of the dielectric function, on top of an SPR sensor in the Kretschmann configuration, the sensitivity is improved. The refractive index effect of dielectric film on sensitivity is usually ignored. Dielectric films with different refractive indices were prepared by radio frequency magnetron (RF) sputtering and measured with spectroscopic ellipsometry (SE). The imaginary part ɛ'' of the top nanolayer permittivity needs to be small enough in order to reduce the losses and get sharper dips. The stability of the sensor is also improved because the nanolayer is protecting the Ag film from interacting with the environment. The response curves of the Ag/ZnO chips were obtained by using SPR sensor. Theoretical analysis of the sensitivity of the SPR sensors with different ZnO film refractive indices is presented and studied. Both experimental and simulation results show that the Ag/ZnO films exhibit an enhanced SPR over the pure Ag film with a narrower full width at half maximum (FWHM). It shows that the top ZnO layer is effective in enhancing the surface plasmon resonance and thus its sensitivity.

  17. Design and analysis of surface plasmon resonance (SPR) sensor to check the quality of food from adulteration

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Raghuwanshi, Sanjeev Kumar

    2018-02-01

    In recent years, food safety issues caused by contamination of chemical substances or microbial species have raised a major area of concern to mankind. The conventional chromatography-based methods for detection of chemical are based on human-observation and slow for real-time monitoring. The surface plasmon resonance (SPR) sensors offers the capability of detection of very low concentrations of adulterated chemical and biological agents for real-time by monitoring. Thus, adulterant agent in food gives change in refractive index of pure food result in corresponding phase change. These changes can be detected at the output and can be related to the concentration of the chemical species present at the point.

  18. Influence of magnesium fluoride (MgF2) layer on a conventional surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Mohapatra, Saswat; Moirangthem, Rakesh S.

    2018-05-01

    In this work, a numerical study of Surface Plasmon Resonance (SPR) sensor has been done by using Magnesium Fluoride (MgF2) layer on a conventional Kretschmann configuration. The prism was coated with smooth gold thin film of thickness 50 nm followed by MgF2 layer. To obtain the maximum reflection dips in the SPR modes, the thickness of MgF2 layer is optimized by varying it from 200-800 nm. Our calculations also reveal that SPR modes corresponding to gold-MgF2 layer are very sensitive to the changes in the surrounding medium as compared to the traditional SPR device. The sensing performance of the proposed nano-plasmonic sensor is theoretically calculated using bulk refractive index sensing. Such bilayer device (gold-MgF2) is expected to take an important role on the field of chemical and biological sensing.

  19. Highly sensitive refractive index sensor based on a TiO2 nanowire array.

    PubMed

    Li, Qiu-Shun; Xiang, Dong; Chang, Zhi-Min; Shi, Jian-Guo; Ma, Yao-Hong; Cai, Lei; Feng, Dong; Dong, Wen-Fei

    2017-03-01

    We propose a novel, highly sensitive refractive index (RI) sensor by means of combining the Kretschmann prism with a TiO2 nanowire array and do not use a metallic layer in the Kretschmann configuration. Its RI sensing performance was investigated through measuring different concentrations of sodium chloride solution. Experimental results showed that, with increasing RI of liquid, the resonant wavelength in the reflectance spectrum redshifted gradually in the visible light range. There was a very good linear relationship between resonant wavelength and RI in the range of 1.3330 to 1.3546. More importantly, in contrast to the surface plasmon resonance (SPR) sensor, the interferometric sensors showed higher sensitivity to the external RI. In the case of the transverse magnetic mode, the RI sensitivity is up to 320,700.93 a.u./RIU (refractive index unit) by expression of light intensity, which is 9.55 times that of the SPR sensor. As for the transverse electric mode, it achieves 4371.76 nm/RIU by expression of the resonant wavelength, which is increased by a factor of 1.4 in comparison with the SPR sensor. Moreover, the experimental results have favorable repeatability. A TiO2 nanowire array sensor has also other advantages, such as easy manufacturing, low cost, and in situ determination, etc. To our knowledge, this fact is reported for the first time. It has great potential applications in the field of biological and chemical sensing.

  20. Fabrication of a Quartz-Crystal-Microbalance/Surface-Plasmon-Resonance Hybrid Sensor and Its Use for Detection of Polymer Thin-Film Deposition and Evaluation of Moisture Sorption Phenomena

    NASA Astrophysics Data System (ADS)

    Shinbo, Kazunari; Ishikawa, Hiroshi; Baba, Akira; Ohdaira, Yasuo; Kato, Keizo; Kaneko, Futao

    2012-03-01

    We fabricated a hybrid sensor utilizing quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) spectroscopy. We confirmed its effectiveness by observing QCM frequency shifts and SPR wavelength changes for two processes: deposition of various transparent polymer thin films and moisture sorption. For thin-film deposition, the relationship between the QCM frequency and SPR wavelength was found to depend on the refractive index of the film material. For moisture sorption, the direction of SPR wavelength shift depended on the film thickness. This was estimated to be caused by film swelling and decrease in refractive index induced by moisture.

  1. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan.

    PubMed

    Verma, Roli; Gupta, Banshi D

    2015-01-01

    Optical fibre surface plasmon resonance (SPR) based sensor for the detection of heavy metal ions in the drinking water is designed. Silver (Ag) metal and indium tin oxide (ITO) are used for the fabrication of the SPR probe which is further modified with the coating of pyrrole and chitosan composite. The sensor works on the wavelength interrogation technique and is capable of detecting trace amounts of Cd(2+), Pb(2+), and Hg(2+) heavy metal ions in contaminated water. Four types of sensing probes are fabricated and characterised for heavy metal ions out of these pyrrole/chitosan/ITO/Ag coated probe is found to be highly sensitive among all other probes. Further, the cadmium ions bind strongly to the sensing surface than other ions and due to this the sensor is highly sensitive for Cd(2+) ions. The sensor's performance is best for the low concentrations of heavy metal ions and its sensitivity decreases with the increasing concentration of heavy metal ions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance.

    PubMed

    Zhu, Zongda; Liu, Lu; Liu, Zhihai; Zhang, Yu; Zhang, Yaxun

    2017-05-15

    We propose and demonstrate a novel optical-fiber micro-displacement sensor based on surface plasmon resonance (SPR) by fabricating a Kretschmann configuration on graded-index multimode fiber (GIMMF). We employ a single-mode fiber to change the radial position of the incident beam as the displacement. In the GIMMF, the angle between the light beam and fiber axis, which is closely related to the resonance angle, is changed by the displacement; thus, the resonance wavelength of the fiber SPR shifts. This micro-displacement fiber sensor has a wide detection range of 0-25 μm, a high sensitivity with maximum up to 10.32 nm/μm, and a nanometer resolution with minimum to 2 nm, which transcends almost all of other optical-fiber micro-displacement sensors. In addition, we also research that increasing the fiber polishing angle or medium refractive index can improve the sensitivity. This micro-displacement sensor will have a great significance in many industrial applications and provide a neoteric, rapid, and accurate optical measurement method in micro-displacement.

  3. Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO.

    PubMed

    Zhou, Chen; Zou, Haimin; Li, Ming; Sun, Chengjun; Ren, Dongxia; Li, Yongxin

    2018-06-05

    A fiber optic surface plasmon resonance (FOSPR) sensor was developed for detection of Escherichia coli O157:H7 (E. coli O157:H7) in water and juice, based on antimicrobial peptides (AMP), Magainin I, as recognition elements and silver nanoparticles-reduced graphene oxide (AgNPs-rGO) nanocomposites assisted signal amplification. The uniform AgNPs-rGO was fixed on the surface of optical fiber and covered with gold film. Not only was the SPR response greatly enhanced, but also the AgNPs was prevented from being oxidized. The FOSPR showed a sensitivity of about 1.5 times higher than that fabricated only with gold film. In the assay, Magainin I, immobilized on the surface of gold film, could specifically capture E. coli O157:H7, resulting in the wavelength shift of the SPR absorption peak. Under the optimized conditions, the SPR resonance wavelength exhibited a good linear relationship with natural logarithm of the target bacteria concentration in the range of 1.0 × 10 3 to 5.0 × 10 7 cfu/mL with the detection limit of 5.0 × 10 2 cfu/mL (S/N = 3). The FOSPR sensor showed good specificity for E. coli O157:H7 detection compared to other bacteria similar to the target bacterial species. Furthermore, the FOSPR sensor was successfully applied to the detection of E. coli O157:H7 in water, fruit and vegetable juice with the satisfactory recoveries of 88-110%. This assay for E. coli O157:H7 detection possesses high sensitivity, good selectivity, reproducibility and stability. In addition, the AMP based SPR biosensing methodology could be extended to detect a wide variety of foodborne pathogens. Therefore, the versatile method might become a potential alternative tool in food analysis and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Immunosensors for quantifying cyclooxygenase 2 pain biomarkers.

    PubMed

    Noah, Naumih M; Mwilu, Samuel K; Sadik, Omowunmi A; Fatah, Alim A; Arcilesi, Richard D

    2011-07-15

    Cyclooxygenase 2 (COX-2) is a key enzyme in pain biomarkers, inflammation and cancer cell proliferation. Thus biosensors that can quantify pain mediators based on biochemical mechanism are imperative. Biomolecular recognition and affinity of antigenic COX-2 with the antibody were investigated using surface plasmon resonance (SPR) and ultra-sensitive portable capillary (UPAC) fluorescence sensors. Polyclonal goat anti-COX-2 (human) antibodies were covalently immobilized on gold SPR surface and direct recognition for the COX-2 antigen assessed. The UPAC sensor utilized an indirect sandwich design involving covalently attached goat anti-COX-2 as the capture antibody and rabbit anti-COX-2 (human) antibody as the secondary antibody. UPAC fluorescence signals were directly proportional to COX-2 at a linear range of 7.46×10⁻⁴-7.46×10¹ ng/ml with detection limit of 1.02×10⁻⁴ ng/ml. With SPR a linear range was 3.64×10⁻⁴-3.64×10² ng/ml was recorded and a detection limit of 1.35×10⁻⁴ ng/ml. Validation was achieved in simulated blood samples with percent recoveries of 81.39% and 87.23% for SPR and UPAC respectively. The developed sensors have the potential to provide objective characterization of pain biomarkers for clinical diagnoses. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Detection of Salmonella enteritidis Using a Miniature Optical Surface Plasmon Resonance Biosensor

    NASA Astrophysics Data System (ADS)

    Son, J. R.; Kim, G.; Kothapalli, A.; Morgan, M. T.; Ess, D.

    2007-04-01

    The frequent outbreaks of foodborne illness demand rapid detection of foodborne pathogens. Unfortunately, conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Surface plasmon resonance (SPR) sensors have been widely adapted as an analysis tool for the study of various biological binding reactions. SPR biosensors could detect antibody-antigen bindings on the sensor surface by measuring either a resonance angle or refractive index value. In this study, the feasibility of a miniature SPR sensor (Spreeta, TI, USA) for detection of Salmonella enteritidis has been evaluated. Anti-Salmonella antibodies were immobilized on the gold sensor surface by using neutravidin. Salmonella could be detected by the Spreeta biosensor at concentrations down to 105 cfu/ml.

  6. Biotinylated lipid bilayer disks as model membranes for biosensor analyses.

    PubMed

    Lundquist, Anna; Hansen, Søren B; Nordström, Helena; Danielson, U Helena; Edwards, Katarina

    2010-10-15

    The aim of this study was to investigate the potential of polyethylene glycol (PEG)-stabilized lipid bilayer disks as model membranes for surface plasmon resonance (SPR)-based biosensor analyses. Nanosized bilayer disks that included 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)(2000)] (DSPE-PEG(2000)-biotin) were prepared and structurally characterized by cryo-transmission electron microscopy (cryo-TEM) imaging. The biotinylated disks were immobilized via streptavidin to three different types of sensor chips (CM3, CM4, and CM5) varying in their degree of carboxymethylation and thickness of the dextran matrix. The bilayer disks were found to interact with and bind stably to the streptavidin-coated sensor surfaces. As a first step toward the use of these bilayer disks as model membranes in SPR-based studies of membrane proteins, initial investigations were carried out with cyclooxygenases 1 and 2 (COX 1 and COX 2). Bilayer disks were preincubated with the respective protein and thereafter allowed to interact with the sensor surface. The signal resulting from the interaction was, in both cases, significantly enhanced as compared with the signal obtained when disks alone were injected over the surface. The results of the study suggest that bilayer disks constitute a new and promising type of model membranes for SPR-based biosensor studies. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors

    NASA Astrophysics Data System (ADS)

    Lee, Joong-Sung; Huynh, Trung; Lee, Su-Yong; Lee, Kwang-Geol; Lee, Jinhyoung; Tame, Mark; Rockstuhl, Carsten; Lee, Changhyoup

    2017-09-01

    We investigate the use of twin-mode quantum states of light with symmetric statistical features in their photon number for improving intensity-sensitive surface plasmon resonance (SPR) sensors. For this purpose, one of the modes is sent into a prism setup where the Kretschmann configuration is employed as a sensing platform and the analyte to be measured influences the SPR excitation conditions. This influence modifies the output state of light that is subsequently analyzed by an intensity-difference measurement scheme. We show that quantum noise reduction is achieved not only as a result of the sub-Poissonian statistical nature of a single mode, but also as a result of the nonclassical correlation of the photon number between the two modes. When combined with the high sensitivity of the SPR sensor, we show that the use of twin-mode quantum states of light notably enhances the estimation precision of the refractive index of an analyte. With this we are able to identify a clear strategy to further boost the performance of SPR sensors, which are already a mature technology in biochemical and medical sensing applications.

  8. Tuning the field distribution and fabrication of an Al@ZnO core-shell nanostructure for a SPR-based fiber optic phenyl hydrazine sensor.

    PubMed

    Tabassum, Rana; Kaur, Parvinder; Gupta, Banshi D

    2016-05-27

    We report the fabrication and characterization of a surface plasmon resonance (SPR)-based fiber optic sensor that uses coatings of silver and aluminum (Al)-zinc oxide (ZnO) core-shell nanostructure (Al@ZnO) for the detection of phenyl hydrazine (Ph-Hyd). To optimize the volume fraction (f) of Al in ZnO and the thickness of the core-shell nanostructure layer (d), the electric field intensity along the normal to the multilayer system is simulated using the two-dimensional multilayer matrix method. The Al@ZnO core-shell nanostructure is prepared using the laser ablation technique. Various probes are fabricated with different values of f and an optimized thickness of core-shell nanostructure for the characterization of the Ph-Hyd sensor. The performance of the Ph-Hyd sensor is evaluated in terms of sensitivity. It is found that the Ag/Al@ZnO nanostructure core-shell-coated SPR probe with f = 0.25 and d = 0.040 μm possesses the maximum sensitivity towards Ph-Hyd. These results are in agreement with the simulated ones obtained using electric field intensity. In addition, the performance of the proposed probe is compared with that of probes coated with (i) Al@ZnO nanocomposite, (ii) Al nanoparticles and (iii) ZnO nanoparticles. It is found that the probe coated with an Al@ZnO core-shell nanostructure shows the largest resonance wavelength shift. The detailed mechanism of the sensing (involving chemical reactions) is presented. The sensor also manifests optimum performance at pH 7.

  9. Detection of glycoprotein using fiber optic surface plasmon resonance sensors with boronic acid

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhang, Yang; Liu, Zigeng; Qian, Siyu; Gu, Yiying; Jing, Zhenguo; Sun, Changsen; Peng, Wei

    2017-04-01

    In this paper, we present a tilted fiber Bragg gratings (TFBG) based surface Plasmon resonance (SPR) label-free sensors with boronic acid derivative (ABA-PBA) as receptor molecule to detect glycoprotein with high sensitivity and selectivity. Tilted fiber Bragg gratings (TFBG) as a near infrared wavelengths detecting element can be able to excite a number of cladding modes whose properties can be detected accurately by measuring the variation of transmitted spectra. A 10° TFBG coated by 50nm gold film was manufactured to stimulate surface plasmon resonance on the surface of the sensor. The sensor was loaded with boronic acid derivative as the recognition molecule which has been widely used in various areas for the recognition matrix of diol-containing biomolecules. The proposed TFBG-SPR sensors exhibit good selectivity and repeatability with the protein concentration sensitivity up to 2.867dB/ (mg/ml) and the limit of detection was 2*10-5g/ml.

  10. Interfacial preparation and optical transmission surface plasmon resonance of Janus metamaterials membrane

    NASA Astrophysics Data System (ADS)

    Du, Yixuan; Zhang, Xiaowei; Li, Yunbo

    2018-01-01

    Janus metamaterials membrane had been fabricated using self-assembly strategy at the oil/water interface with thiol-terminated polymers. Janus metamaterials membrane exhibits a characteristic surface plasmon absorption band, in which the peak position is sensitive to the addition of polymer. The optical transmission surface plasmon resonance (T-SPR) peak has a blue shift at the visible region with addition of thiol-terminated polystyrene (PS-SH). With thiol-terminated poly (ethylene glycol) (PEG-SH) attachment onto the surface side of gold nanoparticles (AuNPs), the T-SPR band has a successive blue shift. One surprising thing is that it has a flat terrace on T-SPR band from 580 to 740 nm. In addition, The T-SPR of Janus metamaterials membrane dramatically changed with the addition PS-SH when the PEG-SH was capped on the opposite side. The morphologies of AuNPs membrane and Janus metamaterials membrane support the above mentioned result of SPR. In virtue of tunable SPR band, the Janus metamaterials membrane has great potential application in science-based design of optical sensing sensors and surface-enhanced optic sensitive detection.

  11. Ultrasensitive Detection of Single-Walled Carbon Nanotubes Using Surface Plasmon Resonance.

    PubMed

    Jang, Daeho; Na, Wonhwi; Kang, Minwook; Kim, Namjoon; Shin, Sehyun

    2016-01-05

    Because single-walled carbon nanotubes (SWNTs) are known to be a potentially dangerous material, inducing cancers and other diseases, any possible leakage of SWNTs through an aquatic medium such as drinking water will result in a major public threat. To solve this problem, for the present study, a highly sensitive, quantitative detection method of SWNTs in an aqueous solution was developed using surface plasmon resonance (SPR) spectroscopy. For a highly sensitive and specific detection, a strong affinity conjugation with biotin-streptavidin was adopted on an SPR sensing mechanism. During the pretreatment process, the SWNT surface was functionalized and hydrophilized using a thymine-chain based biotinylated single-strand DNA linker (B-ssDNA) and bovine serum albumin (BSA). The pretreated SWNTs were captured on a sensing film, the surface of which was immobilized with streptavidin on biotinylated gold film. The captured SWNTs were measured in real-time using SPR spectroscopy. Specific binding with SWNTs was verified through several validation experiments. The present method using an SPR sensor is capable of detecting SWNTs of as low as 100 fg/mL, which is the lowest level reported thus far for carbon-nanotube detection. In addition, the SPR sensor showed a linear characteristic within the range of 100 pg/mL to 200 ng/mL. These findings imply that the present SPR sensing method can detect an extremely low level of SWNTs in an aquatic environment with high sensitivity and high specificity, and thus any potential leakage of SWNTs into an aquatic environment can be precisely monitored within a couple of hours.

  12. Flexible and disposable plasmonic refractive index sensor using nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Mohapatra, Saswat; Moirangthem, Rakesh S.

    2018-03-01

    Nanostructure based plasmonic sensors are highly demanding in various areas due to their label-free and real-time detection capability. In this work, we developed an inexpensive flexible plasmonic sensor using optical disc nanograting via soft UV-nanoimprint lithography (UV-NIL). The polydimethylsiloxane (PDMS) stamp was used to transfer the nanograting structure from digital versatile discs (DVDs) to flexible and transparent polyethylene terephthalate (PET) substrate. Further, the plasmonic sensing substrate was obtained after coating a gold thin film on the top of the imprinted sample. The surface plasmon resonance (SPR) modes excited on gold coated nanograting structure appeared as a dip in the reflectance spectra measured at normal incident of white light in ambient air medium. Electromagnetic simulation based on finite element method (FEM) was used to understand and analyze the excited SPR modes and it is a very close agreement with the experimental results. The bulk refractive index (RI) sensing was performed by the sensor chip using water-glycerol mixture with different concentrations. Experimentally, the bulk RI sensitivity was found to be 797+/-17 nm/RIU.

  13. Manipulation of surface plasmon resonance of a graphene-based Au aperture antenna in visible and near-infrared regions

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; An, Yashuai; Tao, Zhi; Deng, Luogen

    2018-03-01

    Behaviors of surface plasmon resonance (SPR) of a graphene-based Au aperture antenna are investigated in visible and near-infrared (vis-NIR) regions. Compared with the SPR wavelength of a traditional Au aperture antenna, the SPR wavelength of the graphene-based Au aperture antenna shows a remarkable blue shift due to the redistribution of the electric field in the proposed structure. The electric field of the graphene-based Au aperture antenna is highly localized on the surface of the graphene in the aperture and redistributed to be a standing wave. Moreover, the SPR of a graphene-based Au aperture antenna is sensitive to the thickness and the refractive index of the dielectric layer, the graphene Fermi energy, the refractive index of the environment and the polarization direction of the incident light. Finally, we find the wavelength, intensity and phase of the reflected light of the graphene-based Au aperture antenna array can be actively modulated by varying the graphene Fermi energy. The proposed structure provides a promising platform for realizing a tunable optical filter, a highly sensitive refractive index sensor, and other actively tunable optical and optoelectronic devices.

  14. Theoretical modeling of a coupled plasmon waveguide resonance sensor based on multimode optical fiber

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Xue, Meng; Jiang, Junfeng; Wang, Tao; Chang, Pengxiang; Liu, Tiegen

    2018-03-01

    A coupled plasmon waveguide resonance (CPWR) sensor based on metal/dielectric-coated step index multimode optical fiber is proposed. Theoretical simulations using the four-layer Fresnel equations based on a bi-dimensional optical fiber model were implemented on four structures: Ag-ZnO, Au-ZnO, Ag-TiO2 and Au-TiO2. By controlling the thickness of dielectric layer, we managed to manipulate the CPWR resonance wavelengths. When a CPWR resonance dip is in the short wavelength region, it is insensitive to the change of surrounding refractive index (SRI) and can be used as a reference to improve the sensing accuracy of surface plasmon resonance (SPR) mode. With the increase of the thickness of the dielectric layer, the CPWR resonance dips shift to longer wavelength and the corresponding sensitivities increase. When the 1st CPWR resonance wavelength is near 1550 nm and SRI is around 1.333, the sensitivities of four structures reach 1360.61 nm/RIU, 1375.76 nm/RIU, 1048.48 nm/RIU and 1015.15 nm/RIU, respectively. The values are close to that of the conventional SPR optical fiber sensor while the spectral bandwidths of the optical fiber CPWR sensors are narrower.

  15. Surface Plasmon Resonance Based Sensitive Immunosensor for Benzaldehyde Detection

    NASA Astrophysics Data System (ADS)

    Onodera, Takeshi; Shimizu, Takuzo; Miura, Norio; Matsumoto, Kiyoshi; Toko, Kiyoshi

    Fragrant compounds used to add flavor to beverages remain in the manufacturing line after the beverage manufacturing process. Line cleanliness before the next manufacturing cycle is difficult to estimate by sensory analysis, making excessive washing necessary. A new measurement system to determine line cleanliness is desired. In this study, we attempted to detect benzaldehyde (Bz) using an anti-Bz monoclonal antibody (Bz-Ab) and a surface plasmon resonance (SPR) sensor. We fabricated two types of sensor chips using self-assembled monolayers (SAMs) and investigated which sensor surface exhibited higher sensitivity. In addition, anti-Bz antibody conjugated with horseradish peroxidase (HRP-Bz-Ab) was used to enhance the SPR signal. A detection limit of ca. 9ng/mL (ppb) was achieved using an immobilized 4-carboxybenzaldehyde sensor surface using SAMs containing ethylene glycol. When the HRP-Bz-Ab concentration was reduced to 30ng/mL, a detection limit of ca. 4ng/mL (ppb) was achieved for Bz.

  16. Development of graphene oxide/poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) thin film-based electrochemical surface plasmon resonance immunosensor for detection of human immunoglobulin G

    NASA Astrophysics Data System (ADS)

    Pothipor, Chammari; Lertvachirapaiboon, Chutiparn; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao; Ounnunkad, Kontad; Baba, Akira

    2018-02-01

    An electrochemically synthesized graphene oxide (GO)/poly(3,4-ethylenedioxythiophene) (PEDOT)/poly(styrene sulfonate) (PSS) thin film-based electrochemical surface plasmon resonance (EC-SPR) sensor chip was developed and employed for the detection of human immunoglobulin G (IgG). GO introduced the carboxylic group on the film surface, which also allowed electrochemical control, for the immobilization of the anti-IgG antibody via covalent bonding through amide coupling reaction. The SPR sensitivity of the detection was improved under the control by applying an electrochemical potential, by which the sensitivity was increased by the increment in applied potential. Among the open-circuit and different applied potentials in the range of -1.0 to 0.50 V, the EC-SPR immunosensor at an applied potential of 0.50 V exhibited the highest sensitivity of 6.08 × 10-3 mL µg-1 cm-2 and linearity in the human IgG concentration range of 1.0 to 10 µg mL-1 with a relatively low detection limit of 0.35 µg mL-1. The proposed sensor chip is promising for immunosensing at the physiological level.

  17. Plasmon waveguide resonance sensor using an Au-MgF2 structure.

    PubMed

    Zhou, Yanfei; Zhang, Pengfei; He, Yonghong; Xu, Zihao; Liu, Le; Ji, Yanhong; Ma, Hui

    2014-10-01

    We report an Au − MgF(2) plasmon waveguide resonance (PWR) sensor in this work. The characteristics of this sensing structure are compared with a surface plasmon resonance (SPR) structure theoretically and experimentally. The transverse-magnetic-polarized PWR sensor has a refractive index resolution of 9.3 × 10(-7) RIU, which is 6 times smaller than that of SPR at the incident light wavelength of 633 nm, and the transverse-electric-polarized PWR sensor has a refractive index resolution of 3.0 × 10(-6) RIU. This high-resolution sensor is easy to build and is less sensitive to film coating deviations.

  18. Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing.

    PubMed

    Arora, Pankaj; Talker, Eliran; Mazurski, Noa; Levy, Uriel

    2018-06-13

    We demonstrate numerically and experimentally the enhancement of Surface Plasmon Resonance (SPR) sensing via dispersion engineering of the plasmonic response using plasmonic nanograting. Following their design and optimization, the plasmonic nanograting structures are fabricated using e-beam lithography and lift-off process and integrated into conventional prism based Kretschmann configuration. The presence of absorptive nanograting near the metal film, provides strong field enhancement with localization and allows to control the dispersion relation which was originally dictated by a conventional SPR structure. This contributes to the enhancement in Q factor which is found to be 3-4 times higher as compared to the conventional Kretschmann configuration. The influence of the incident angle on resonance wavelength is also demonstrated both numerically and experimentally, where, only a negligible wavelength shift is observed with increasing the incident angles for plasmonic nanograting configuration. This surprising feature may be helpful for studying and utilizing light-matter interaction between plasmons and narrow linewidth media (e.g. Rb atom or molecule) having nonlocalities in their susceptibility-momentum relation. Finally, we analyze the role of plasmonic nanograting in enhancing the performance of an SPR sensor. Our results indicate that the integrated SPR-nanograting device shows a great promise as a sensor for various types of analytes.

  19. SPR based hybrid electro-optic biosensor for β-lactam antibiotics determination in water

    NASA Astrophysics Data System (ADS)

    Galatus, Ramona; Feier, Bogdan; Cristea, Cecilia; Cennamo, Nunzio; Zeni, Luigi

    2017-09-01

    The present work aims to provide a hybrid platform capable of complementary and sensitive detection of β-lactam antibiotics, ampicillin in particular. The use of an aptamer specific to ampicillin assures good selectivity and sensitivity for the detection of ampicillin from different matrice. This new approach is dedicated for a portable, remote sensing platform based on low-cost, small size and low-power consumption solution. The simple experimental hybrid platform integrates the results from the D-shape surface plasmon resonance plastic optical fiber (SPR-POF) and from the electrochemical (bio)sensor, for the analysis of ampicillin, delivering sensitive and reliable results. The SPR-POF already used in many previous applications is embedded in a new experimental setup with fluorescent fibers emitters, for broadband wavelength analysis, low-power consumption and low-heating capabilities of the sensing platform.

  20. Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight

    NASA Astrophysics Data System (ADS)

    Yuan, Yufeng; Yu, Xiantong; Ouyang, Qingling; Shao, Yonghong; Song, Jun; Qu, Junle; Yong, Ken-Tye

    2018-04-01

    This study proposed a novel highly anisotropic surface plasmon resonance (SPR) biosensor employing emerging 2D black phosphorus (BP) and graphene atomic layers. Light absorption and energy loss were well balanced by optimizing gold film thickness and number of BP layers to generate the strongest SPR excitation. The proposed SPR biosensor was designed by the phase-modulation approach and is more sensitive to biomolecule bindings, providing 3 orders of magnitude higher sensitivity than the red-shift in SPR angle. Our results show the optimized configuration was 48 nm Au film coated with 4-layer BP crystal to produce the sharpest phase variation (up to 89.8975°), and lowest minimum reflectivity (1.9119  ×  10-7). Detection sensitivity up to 7.4914  ×  104 degree/refractive index unit is almost 4.5 times enhanced compared to monolayer graphene-based SPR sensors with 48 nm Au film. The anisotropic BP layers act as a polarizer, so the proposed SPR biosensor would exhibit optically tunable detection sensitivity, making it a promising candidate for exploring highly anisotropic platforms in biosensing.

  1. UV-SPR biosensor for biomolecular interaction studies

    NASA Astrophysics Data System (ADS)

    Geiss, F. A.; Fossati, S.; Khan, I.; Gisbert Quilis, N.; Knoll, W.; Dostalek, J.

    2017-05-01

    UV surface plasmon resonance (SPR) for direct in situ detection of protein binding events is reported. A crossed relief aluminum grating was employed for diffraction coupling to surface plasmons as an alternative to more commonly used attenuated total reflection method. Wavelength interrogation of SPR was carried out by using transmission measurements in order to probe odorant-binding protein 14 (OBP14) of the honey bee (Apis mellifera). The native oxide layer on the top of an aluminum grating sensor chip allows for covalent coupling of protein molecules by using regular silane-based linkers. The probing of bound OBP14 protein at UV with confined field of surface plasmons holds potential for further studies of interaction with recently developed artificial fluorescent odorants.

  2. A laser scanning confocal imaging-surface plasmon resonance system application in real time detection of antibody-antigen interaction

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; Yang, L. Q.; Liu, W. M.

    2011-12-01

    The laser scanning confocal microscope (LSCM) offers several advantages over conventional optical microscopy, but most LSCM work is qualitative analysis and it is very hard to achieve quantitative detection directly with the changing of the fluorescent intensity. A new real time sensor system for the antibody-antigen interaction detection was built integrating with a LSCM and a wavelength-dependent surface plasmon resonance (SPR) sensor. The system was applied to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibody in real time. The fluorescence images changing is well with that of SPR wavelengths in real time, and the trend of the resonance wavelength shift with the concentrations of antibody is similar to that of the fluorescent intensity changing. The results show that SPR makes up the short of quantificational analysis with LSCM with the high spatial resolution. The sensor system shows the merits of the of the LSCM and SPR synergetic application, which are of great importance for practical application in biosensor and life science for interesting local interaction.

  3. Multi-channel fiber optic dew and humidity sensor

    NASA Astrophysics Data System (ADS)

    Limodehi, Hamid E.; Mozafari, Morteza; Amiri, Hesam; Légaré, François

    2018-03-01

    In this article, we introduce a multi-channel fiber optic dew and humidity sensor which works using a novel method based on relation between surface plasmon resonance (SPR) and water vapor condensation. The proposed sensor can instantly detect moisture or dew formation through its fiber optic channels, separately situated in different places. It enables to simultaneously measure the ambient Relative Humidity (RH) and dew point temperature of several environments with accuracy of 5%.

  4. In silico designed nanoMIP based optical sensor for endotoxins monitoring.

    PubMed

    Abdin, M J; Altintas, Z; Tothill, I E

    2015-05-15

    Molecular modelling was used to select specific monomers suitable for the design of molecularly imprinted polymers (MIPs) with high affinity towards endotoxins. MIPs were synthesised using solid-phase photopolymerisation with endotoxins from Escherichia coli 0111:B4 as the template. This technique also allowed the endotoxin template to be reused successfully. Particle size of ~190-220 nm was achieved with low polydispersity index, which confirms the quality of the produced MIPs. For the development of the optical sensor, SPR-2 biosensor system was used by functionalising the gold sensor chip with the MIP nanoparticles using EDC/NHS coupling procedure. The affinity based-endotoxin assay can detect endotoxins in the concentration range of 15.6-500 ng mL(-1). MIP surfaces were regenerated showing stability of the method for subsequent analysis and dissociation constants were calculated as 3.24-5.24×10(-8) M. The developed SPR sensor with the novel endotoxins nanoMIP showed the potential of the technology for endotoxins capture, detection and risk management and also the importance of computational modelling to design the artificial affinity ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Surface plasmon resonance spectroscopy sensor and methods for using same

    DOEpatents

    Anderson, Brian Benjamin; Nave, Stanley Eugene

    2002-01-01

    A surface plasmon resonance ("SPR") probe with a detachable sensor head and system and methods for using the same in various applications is described. The SPR probe couples fiber optic cables directly to an SPR substrate that has a generally planar input surface and a generally curved reflecting surface, such as a substrate formed as a hemisphere. Forming the SPR probe in this manner allows the probe to be miniaturized and operate without the need for high precision, expensive and bulky collimating or focusing optics. Additionally, the curved reflecting surface of the substrate can be coated with one or multiple patches of sensing medium to allow the probe to detect for multiple analytes of interest or to provide multiple readings for comparison and higher precision. Specific applications for the probe are disclosed, including extremely high sensitive relative humidity and dewpoint detection for, e.g., moisture-sensitive environment such as volatile chemical reactions. The SPR probe disclosed operates with a large dynamic range and provides extremely high quality spectra despite being robust enough for field deployment and readily manufacturable.

  6. A novel double-layer molecularly imprinted polymer film based surface plasmon resonance for determination of testosterone in aqueous media

    NASA Astrophysics Data System (ADS)

    Tan, Yuan; Jing, Lijing; Ding, Yonghong; Wei, Tianxin

    2015-07-01

    This work aimed to prepare a novel double-layer structure molecularly imprinted polymer film (MIF) on the surface plasmon resonance (SPR) sensor chips for detection of testosterone in aqueous media. The film was synthesized by in-situ UV photo polymerization. Firstly, the modification of gold surface of SPR chip was performed by 1-dodecanethiol. Then double-layer MIF was generated on the 1-dodecanethiol modified gold surface. The non-modified and imprinted surfaces were characterized by atomic force microscopy (AFM), fourier transform infrared (FTIR) spectroscopy and contact angle measurements. Analysis of SPR spectroscopy showed that the imprinted sensing film displayed good selectivity for testosterone compared to other analogues and the non-imprinted polymer film (NIF). Within the concentrations range of 1 × 10-12-1 × 10-8 mol/L, the coupling angle changes of SPR were linear with the negative logarithm of testosterone concentrations (R2 = 0.993). Based on a signal/noise ratio of three, the detection limit was estimated to be 10-12 mol/L. Finally, the developed MIF was successfully applied to the seawater detection of testosterone. The results in the experiments suggested that a combination of SPR sensing with MIF was a promising alternative method for detection of testosterone in aqueous media.

  7. Detection of Metallothionein in Javanese Medaka (Oryzias javanicus), Using a scFv-Immobilized Protein Chip

    PubMed Central

    Lee, Euiyeon; Jeon, Hyunjin; Kang, Chungwon; Woo, Seonock; Yum, Seungshic; Kwon, Youngeun

    2018-01-01

    Environmental pollution by various industrial chemicals and biological agents poses serious risks to human health. Especially, marine contamination by potentially toxic elements (PTEs) has become a global concern in recent years. Many efforts have been undertaken to monitor the PTE contamination of the aquatic environment. However, there are few approaches available to assess the PTE exposure of aquatic organisms. In this research, we developed a strategy to evaluate the heavy metal exposure of marine organisms, by measuring the expression levels of metallothionein protein derived from Oryzias javanicus (OjaMT). OjaMT is a biomarker of heavy metal exposure because the expression level increases upon heavy metal exposure. The developed assay is based on a real-time, label-free surface plasmon resonance (SPR) measurement. Anti-OjaMT antibody and anti-OjaMT single-chain fragment of variable region (scFv) were used as detection probes. Two types of SPR sensor chips were fabricated, by immobilizing antibody or Cys3-tagged scFv (scFv-Cys3) in a controlled orientation and were tested for in situ label-free OjaMT detection. Compared to the antibody-presenting sensor chips, the scFv-presenting sensor chips showed improved performance, displaying enhanced sensitivity and enabling semi-quantitative detection. The portable SPR system combined with scFv-immobilized sensor chips is expected to provide an excellent point-of-care testing system that can monitor target biomarkers in real time. PMID:29614840

  8. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    PubMed

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-03

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed.

  9. Smaller to larger biomolecule detection using a lab-built surface plasmon resonance based instrument

    NASA Astrophysics Data System (ADS)

    Lukose, J.; Kulal, V.; Chidangil, S.; Sinha, R. K.

    2016-10-01

    We have developed a low-cost surface plasmon resonance (SPR) instrument based on the Kretschmann configuration for biosensing applications. The fabricated instrument is capable of operating in both angular and intensity interrogation schemes. The proposed sensor has proved enormously versatile by detecting a range of analytes with low to high molecular weights. The refractive index based sensor has been used for detecting the variation in the concentration of the aqueous solution of glucose and glycerine. Real time immobilization of protein molecules, bovine serum albumin on a gold (Au) film surface, has also been detected using the SPR imaging technique. Alkanethiol functionalization of the Au surface was performed, and bovine serum albumin was immobilized onto the carboxyl functionalized surface using amine reactive cross linker chemistry. In future, the present approach can also be utilized for the selective detection of a wide range of target biomolecules with the help of specific capture probes, as well as for monitoring protein-drug interactions.

  10. Plasmonic rainbow rings induced by white radial polarization.

    PubMed

    Lan, Tzu-Hsiang; Chung, Yi-Kuan; Li, Jie-En; Tien, Chung-Hao

    2012-04-01

    This Letter presents a scheme to embed both angular/spectral surface plasmon resonance (SPR) in a unique far-field rainbow feature by tightly focusing (effective NA=1.45) a polychromatic radially polarized beam on an Au (20 nm)/SiO2 (500 nm)/Au (20 nm) sandwich structure. Without the need for angular or spectral scanning, the virtual spectral probe snapshots a wide operation range (n=1-1.42; λ=400-700 nm) of SPR excitation in a locally nanosized region. Combined with the high-speed spectral analysis, a proof-of-concept scenario was given by monitoring the NaCl liquid concentration change in real time. The proposed scheme will certainly has a promising impact on the development of objective-based SPR sensor and biometric studies due to its rapidity and versatility.

  11. Investigation of graphene-on-metal substrates for SPR-based sensor using finite-difference time domain.

    PubMed

    Said, Fairus Atida; Menon, Pulliyaseri Susthitha; Rajendran, Venkatachalam; Shaari, Sahbudin; Majlis, Burhanuddin Y

    2017-12-01

    In this study, the authors investigated the effects of a single layer graphene as a coating layer on top of metal thin films such as silver, gold, aluminum and copper using finite-difference time domain method. To enhance the resolution of surface plasmon resonance (SPR) sensor, it is necessary to increase the SPR reflectivity and decrease the full-width-half maximum (FWHM) of the SPR curve so that there is minimum uncertainty in the determination of the resonance dip. Numerical data was verified with analytical and experimental data where all the data were in good agreement with resonance angle differing in <10% due to noise present in components such as humidity and temperature. In further analysis, reflectivity and FWHM were compared among four types of metal with various thin film thicknesses where graphene was applied on top of the metal layers, and data was compared against pure conventional metal thin films. A 60 nm-thick Au thin film results in higher performance with reflectivity of 92.4% and FWHM of 0.88° whereas single layer graphene-on-60 nm-thick Au gave reflectivity of 91.7% and FWHM of 1.32°. However, a graphene-on-40 nm-thick Ag also gave good performance with narrower FWHM of 0.88° and reflection spectra of 89.2%.

  12. Terahertz surface plasmon resonance sensor for material sensing

    NASA Astrophysics Data System (ADS)

    Hailu, Daniel M.; Alqarni, Sondos; Cui, Bo; Saeedkia, Daryoosh

    2013-10-01

    This paper presents the use of Terahertz (THz) SPR near-field sensor to characterize materials such as PMMA and those used in organic light emitting diode (OLED). The SPR device contains 2D periodic circular or square hole array in 500 nm Al on an 5 mm-thick intrinsic silicon, and was fabricated by photolithography and wet etching. For THz spectrum measurement, the SPR device with and without thin (PMMA) film on it is placed at the focus of the THz beam in transmission THz Time Domain Spectroscopy (TDS), where the spectrum is obtained from the Fourier-transformed sample and reference THz pulses. The transmission is obtained from the ratio between the sample spectrum and reference spectrum, whereas the phase change is the phase difference between the two spectra. To avoid overlap with water absorption lines, the optimal SPR device design has a period of 320 μm and square holes of 150 μm side length. The theoretical SPR frequencies in the THz range are determined for the metal-silicon modes and metal-air modes (0.9375 THz for mode (0, 1) at the metal-air interface). The measurement results confirmed the theoretical SPR frequencies for metal-silicon mode and demonstrate a shift to 0.9211 THz due to 2 μm of PMMA layer on the surface.

  13. Target-triggering multiple-cycle signal amplification strategy for ultrasensitive detection of DNA based on QCM and SPR.

    PubMed

    Song, Weiling; Yin, Wenshuo; Sun, Wenbo; Guo, Xiaoyan; He, Peng; Yang, Xiaoyan; Zhang, Xiaoru

    2018-04-24

    Detection of ultralow concentrations of nucleic acid sequences is a central challenge in the early diagnosis of genetic diseases. Herein, we developed a target-triggering cascade multiple cycle amplification for ultrasensitive DNA detection using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). It was based on the exonuclease Ⅲ (Exo Ⅲ)-assisted signal amplification and the hybridization chain reaction (HCR). The streptavidin-coated Au-NPs (Au-NPs-SA) were assembled on the HCR products as recognition element. Upon sensing of target DNA, the duplex DNA probe triggered the Exo Ⅲ cleavage process, accompanied by generating a new secondary target DNA and releasing target DNA. The released target DNA and the secondary target DNA were recycled. Simultaneously, numerous single strands were liberated and acted as the trigger of HCR to generate further signal amplification, resulting in the immobilization of abundant Au-NPs-SA on the gold substrate. The QCM sensor results were found to be comparable to that achieved using a SPR sensor platform. This method exhibited a high sensitivity toward target DNA with a detection limit of 0.70 fM. The high sensitivity and specificity make this method a great potential for detecting DNA with trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. An SPR biosensor for the detection of microcystins in drinking water.

    PubMed

    Herranz, Sonia; Bocková, Markéta; Marazuela, María Dolores; Homola, Jiří; Moreno-Bondi, María Cruz

    2010-11-01

    A surface plasmon resonance (SPR) biosensor for the detection of microcystins (MCs) in drinking water has been developed. Several assay formats have been evaluated. The selected format is based on a competitive inhibition assay, in which microcystin-LR (MCLR) has been covalently immobilized onto the surface of an SPR chip functionalized with a self-assembled monolayer. The influence of several factors affecting sensor performance, such as the nature and concentration of the antibody, the composition of the carrier buffer, and the blocking and regeneration solutions, has been evaluated. The optimized SPR biosensor provides an IC(50) 0.67 ± 0.09 µg L(-1), a detection limit of 73 ± 8 ng L(-1), and a dynamic range from 0.2 to 2.0 µg L(-1) for MCLR. Cross-reactivity to other related MCs, such as microcystin-RR (88%) and microcystin-YR (94%), has also been measured. The SPR biosensor can perform four simultaneous determinations in 60 min, and each SPR chip can be reused for at least 40 assay-regeneration cycles without significant binding capacity loss. The biosensor has been successfully applied to the direct analysis of MCLR in drinking water samples, below the provisional guideline value of 1 µg L(-1) established by the World Health Organization for drinking water.

  15. Development of flexible plasmonic plastic sensor using nanograting textured laminating film

    NASA Astrophysics Data System (ADS)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    2017-02-01

    The work presented in this paper describes the development of a cost-effective, flexible plasmonic plastic sensor using gold-coated nanograting nanoimprinted on a laminating plastic. The fabrication of plasmonic plastic sensor involved the transfer of nanograting pattern from polydimethylsiloxane (PDMS) polymer stamp to laminating plastic via thermal nanoimprint lithography, and subsequent gold film deposition. Gold-coated nanograting sample acted as a plasmonic chip, which exhibited surface plasmon resonance (SPR) mode in reflectance spectra under the white light illumination. The theoretical calculation was performed to study and analyze the excited SPR mode on the plasmonic chip. Further, the bulk refractive index sensitivity was demonstrated with respect to changing surrounding dielectric medium giving a value about 800  ±  27 nm/RIU (refractive index unit). In addition, the surface binding sensitivity upon adsorption of bovine serum albumin protein on the sensor surface was approximately 4.605 nm/(ng/mm2).We believe that our proposed low-cost plastic based plasmonic sensing device could be a potential candidate for the label-free and high-throughput screening of biological molecules.

  16. Wafer-scale plasmonic and photonic crystal sensors

    NASA Astrophysics Data System (ADS)

    George, M. C.; Liu, J.-N.; Farhang, A.; Williamson, B.; Black, M.; Wangensteen, T.; Fraser, J.; Petrova, R.; Cunningham, B. T.

    2015-08-01

    200 mm diameter wafer-scale fabrication, metrology, and optical modeling results are reviewed for surface plasmon resonance (SPR) sensors based on 2-D metallic nano-dome and nano-hole arrays (NHA's) as well as 1-D photonic crystal sensors based on a leaky-waveguide mode resonance effect, with potential applications in label free sensing, surface enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). Potential markets include micro-arrays for medical diagnostics, forensic testing, environmental monitoring, and food safety. 1-D and 2-D nanostructures were fabricated on glass, fused silica, and silicon wafers using optical lithography and semiconductor processing techniques. Wafer-scale optical metrology results are compared to FDTD modeling and presented along with application-based performance results, including label-free plasmonic and photonic crystal sensing of both surface binding kinetics and bulk refractive index changes. In addition, SEFS and SERS results are presented for 1-D photonic crystal and 2-D metallic nano-array structures. Normal incidence transmittance results for a 550 nm pitch NHA showed good bulk refractive index sensitivity, however an intensity-based design with 665 nm pitch was chosen for use as a compact, label-free sensor at both 650 and 632.8 nm wavelengths. The optimized NHA sensor gives an SPR shift of about 480 nm per refractive index unit when detecting a series of 0-40% glucose solutions, but according to modeling shows about 10 times greater surface sensitivity when operating at 532 nm. Narrow-band photonic crystal resonance sensors showed quality factors over 200, with reasonable wafer-uniformity in terms of both resonance position and peak height.

  17. Improved Biomolecular Thin-Film Sensor based on Plasmon Waveguide Resonance

    NASA Astrophysics Data System (ADS)

    Byard, Courtney; Aslan, Mustafa; Mendes, Sergio

    2009-05-01

    The design, fabrication, and characterization of a plasmon waveguide resonance (PWR) sensor are presented. Glass substrates are coated with a 35 nm gold film using electron beam evaporation, and then covered with a 143 nm aluminum oxide waveguide using an atomic layer deposition process, creating a smooth, highly transparent dielectric film. When probed in the Kretschmann configuration, the structure allows for an efficient conversion of an incident optical beam into a surface wave, which is mainly confined in the dielectric layer and exhibits a deep and narrow angular resonance. The performance (reflectance vs. incidence angle in TE polarization) is modeled using a transfer-matrix approach implemented into a Mathematica code. Our simulations and experimental data are compared with that of surface plasmon resonance (SPR) sensor using the same criteria. We show that the resolution of PWR is approximately ten times better than SPR, opening opportunities for more sensitive studies in various applications including research in protein interactions, pharmaceutical drug development, and food analysis.

  18. Label-free surface plasmon sensing towards cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Goutham

    The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.

  19. [Detection of the level of antibodies against bovine leucosis virus in the cow milk by immune sensor].

    PubMed

    Pyrohova, L V; Starodub, M F; Nahaeva, L I

    2005-01-01

    An immune sensor based on the surface plasmon resonance (SPR) was developed for express diagnostics of bovine leucosis. Sensor used for detection of the level of antibodies against bovine leukaemia virus (BLV) in the milk serum. It was shown that immune sensor analysis is more sensitive, rapid and simple in comparison with the traditional AGID test. It was stated that the developed immune sensor may be used for performance of screening of bovine leucosis at the farms and the minimal dilution of the milk serum should be 1:20.

  20. Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion.

    PubMed

    Zainudin, Afiq Azri; Fen, Yap Wing; Yusof, Nor Azah; Al-Rekabi, Sura Hmoud; Mahdi, Mohd Adzir; Omar, Nur Alia Sheh

    2018-02-15

    In this study, the combination of novel valinomycin doped chitosan-graphene oxide (C-GO-V) thin film and surface plasmon resonance (SPR) system for potassium ion (K + ) detection has been developed. The novel C-GO-V thin film was deposited on the gold surface using spin coating technique. The system was used to monitor SPR signal for K + in solution with and without C-GO-V thin film. The K + can be detected by measuring the SPR signal when C-GO-V thin film is exposed to K + in solution. The sensor produces a linear response for K + ion up to 100ppm with sensitivity and detection limit of 0.00948°ppm -1 and 0.001ppm, respectively. These results indicate that the C-GO-V film is high potential as a sensor element for K + that has been proved by the SPR measurement. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Determination of glucose in interstitial fluid by surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Huang, Fuxiang; Liu, Jin; Yu, Haixia; Zhang, Zengfu; Li, Dachao; Xu, Kexin

    2008-02-01

    The concentration of glucose in interstitial fluid determined by using the surface plasmon resonance (SPR) biosensor with chemical bonding D-Galactose/D-Glucose Binding Protein (GGBP) is proposed in this paper. D-Galactose/D-Glucose Binding Protein (GGBP), a kind of protein which has the ability to absorb the glucose specifically, is immobilized on the gold film of the SPR sensor to improve the sensitivity of glucose detecting. The GGBPs mutated at different points have different association abilities with glucose, which bring different measurement range and precision. So the selection of proteins is a critical problem of the determination of glucose by using SPR biosensor. Using different mutated GGBPs, the samples with different concentrations of glucose are measured in the experiment, and the prediction error and precision are discussed. Furthermore, the light intensity of sensor is instable, so the baseline of SPR responses is tracked and adjusted accordingly using the methods - fixing points and fixing areas' ratio. The experiment results show that GGBPs mutated at different points have its corresponding working curves and different measurement precision. In conclusion, the study is significant for the application of SPR biosensor to the minimally invasive diabetes testing and other detection of human body components.

  2. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor.

    PubMed

    Manera, Maria Grazia; Ferreiro-Vila, Elías; Garcia-Martin, José Miguel; Garcia-Martin, Antonio; Rella, Roberto

    2014-08-15

    A comparison between sensing performance of traditional SPR (Surface Plasmon Resonance) and magneto-optic SPR (MOSPR) transducing techniques is presented in this work. MOSPR comes from an evolution of traditional SPR platform aiming at modulating Surface Plasmon wave by the application of an external magnetic field in transverse configuration. Previous work demonstrated that, when the Plasmon resonance is excited in these structures, the external magnetic field induces a modification of the coupling of the incident light with the Surface Plasmon Polaritons (SPP). Besides, these structures can lead to an enhancement in the magneto-optical (MO) activity when the SPP is excited. This phenomenon is exploited in this work to demonstrate the possibility to use the enhanced MO signal as proper transducer signal for investigating biomolecular interactions in liquid phase. To this purpose, the transducer surface was functionalized by thiol chemistry and used for recording the binding between Bovine Serum Albumin molecules immobilized onto the surface and its complementary target. Higher sensing performance in terms of sensitivity and lower limit of detection of the MOSPR biosensor with respect to traditional SPR sensors is demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. [Express diagnostics of bovine leucosis by immune sensor based on surface plasmon resonance].

    PubMed

    Pyrohova, L V; Starodub, M F; Artiukh, V P; Nahaieva, L I; Dobrosol, H I

    2002-01-01

    An immune sensor based on the surface plasmon resonance (SPR) was developed for express diagnostics of bovine leucosis. The sensor was used for detection of the level of antibodies against bovine leukaemia virus (BLV) in the blood serum. The industrially manufactured BLV antigen for screening test in the agar gel immunodiffusion (AGID) required the additional purification in order to be used in immune sensor analysis. It was shown that immune sensor analysis was more sensitive, rapid and simple in comparison with the traditional AGID test. It was stated that the developed immune sensor was capable to be used for performance of bovine leucosis screening at the farms and the minimal dilution of the serum should be 1:500.

  4. Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies.

    PubMed

    Zhao, Xihong; Tsao, Yu-Chia; Lee, Fu-Jung; Tsai, Woo-Hu; Wang, Ching-Ho; Chuang, Tsung-Liang; Wu, Mu-Shiang; Lin, Chii-Wann

    2016-07-01

    A side-polished fiber optic surface plasmon resonance (SPR) sensor was fabricated to expose the core surface and then deposited with a 40 nm thin gold film for the near surface sensing of effective refractive index changes with surface concentration or thickness of captured avian influenza virus subtype H6. The detection surface of the SPR optical fiber sensor was prepared through the plasma modification method for binding a self-assembled monolayer of isopropanol chemically on the gold surface of the optical fiber. Subsequently, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide was activated to enable EB2-B3 monoclonal antibodies to capture A/chicken/Taiwan/2838V/00 (H6N1) through a flow injection system. The detection limit of the fabricated optical fiber sensor for A/chicken/Taiwan/2838V/00 was 5.14 × 10(5) EID50/0.1 mL, and the response time was 10 min on average. Moreover, the fiber optic sensor has the advantages of a compact size and low cost, thus rendering it suitable for online and remote sensing. The results indicated that the optical fiber sensor can be used for epidemiological surveillance and diagnosing of avian influenza subtype H6 rapidly. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Quantitative Investigation of Protein-Nucleic Acid Interactions by Biosensor Surface Plasmon Resonance.

    PubMed

    Wang, Shuo; Poon, Gregory M K; Wilson, W David

    2015-01-01

    Biosensor-surface plasmon resonance (SPR) technology has emerged as a powerful label-free approach for the study of nucleic acid interactions in real time. The method provides simultaneous equilibrium and kinetic characterization for biomolecular interactions with low sample requirements and without the need for external probes. A detailed and practical guide for protein-DNA interaction analyses using biosensor-SPR methods is presented. Details of SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips and samples, experimental design, quantitative and qualitative data analyses and presentation. A specific example of the interaction of a transcription factor with DNA is provided with results evaluated by both kinetic and steady-state SPR methods.

  6. Real-time biodetection using a smartphone-based dual-color surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Yuan, Huizhen; Liu, Yun; Wang, Jiabin; Jing, Zhenguo; Peng, Wei

    2018-04-01

    We proposed a compact and cost-effective red-green dual-color fiber optic surface plasmon resonance (SPR) sensor based on the smartphone. Inherent color selectivity of phone cameras was utilized for real-time monitoring of red and green color channels simultaneously, which can reduce the chance of false detection and improve the sensitivity. Because there are no external prisms, complex optical lenses, or diffraction grating, simple optical configuration is realized. It has a linear response in a refractive index range of 1.326 to 1.351 (R2 = 0.991) with a resolution of 2.3 × 10 - 4 RIU. We apply it for immunoglobulin G (IgG) concentration measurement. Experimental results demonstrate that a linear SPR response was achieved for IgG concentrations varying from 0.02 to 0.30 mg / ml with good repeatability. It may find promising applications in the fields of public health and environment monitoring owing to its simple optics design and applicability in real-time, label-free biodetection.

  7. SPR sensors for monitoring the degradation processes of Eu(dbm)3(phen) and Alq3 thin films under atmospheric and UVA exposure

    NASA Astrophysics Data System (ADS)

    Del Rosso, T.; Zaman, Q.; Cremona, M.; Pandoli, O.; Barreto, A. R. J.

    2018-06-01

    The degradation processes of tris(8-hydroxyquinoline) (Alq3) and tris(dibenzoylmethane) mono(1,10-phenanthroline)europium(III) (Eu(dbm)3(phen)) thin films are investigated by the use of AFM, photoluminescence and SPR spectroscopy. The plasmonic sensors are operated both in air and nitrogen environments, where they are irradiated with controlled doses of UVA radiation. AFM results don't reveal the formation of heterogeneous phases and crystallization under air exposure. The organic thin films change their refractive index under both types of exposure and act as a protective layer against oxidation for the SiO2/MPTS/metal interface of the plasmonic sensors. SPR measurements reveal a strict correlation between the refractive index increase and quenching of the photoluminescence of the organic thin films. The results are promising for the development of compact plasmonic UVA dosimeters in the surface plasmon coupled emission configuration (SPCE) with lanthanide β-diketonate complex materials (patent pending).

  8. Quantum plasmonic sensing

    DOE PAGES

    Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.

    2015-11-04

    Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that withmore » a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.« less

  9. Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2015-03-21

    A highly sensitive chlorine sensor for an aqueous medium is fabricated using an optical fiber surface plasmon resonance (OFSPR) system. An OFSPR-based chlorine sensor is designed with a multilayer-type platform by zinc oxide (ZnO) and polyvinylpyrollidone (PVP) film morphology manipulations. Among all the methodologies of transduction reported in the field of solid state chemical and biochemical sensing, our attention is focused on the Kretschmann configuration optical fiber sensing technique using the mechanism of surface plasmon resonance. The optical fiber surface plasmon resonance (SPR) chlorine sensor is developed using a multimode optical fiber with the PVP-supported ZnO film deposited over a silver-coated unclad core of the fiber. A spectral interrogation mode of operation is used to characterize the sensor. In an Ag/ZnO/PVP multilayer system, the absorption of chlorine in the vicinity of the sensing region is performed by the PVP layer and the zinc oxide layer enhances the shift in resonance wavelength. It is, experimentally, demonstrated that the SPR wavelength shifts nonlinearly towards the red side of the visible region with an increase in the chlorine concentration in an aqueous medium while the sensitivity of the sensor decreases linearly with an increase in the chlorine concentration. As the proposed sensor utilizes an optical fiber, it possesses the additional advantages of fiber such as less signal degradation, less susceptibility to electromagnetic interference, possibility of remote sensing, probe miniaturization, probe re-usability, online monitoring, small size, light weight and low cost.

  10. Nano-structured surface plasmon resonance sensor for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ho; Kim, Hyo-Sop; Kim, Jin-Ho; Choi, Sung-Wook; Cho, Yong-Jin

    2008-08-01

    A new nano-structured SPR sensor was devised to improve its sensitivity. Nano-scaled silica particles were used as the template to fabricate nano-structure. The surface of the silica particles was modified with thiol group and a single layer of the modified silica particles was attached on the gold or silver thin film using Langmuir-Blodgett (LB) method. Thereafter, gold or silver was coated on the template by an e-beam evaporator. Finally, the nano-structured surface with basin-like shape was obtained after removing the silica particles by sonication. Applying the new developed SPR sensor to a model food of alcoholic beverage, the sensitivities for the gold and silver nano-structured sensors, respectively, had 95% and 126% higher than the conventional one.

  11. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    PubMed

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  12. Surface plasmon resonance optical cavity enhanced refractive index sensing.

    PubMed

    Giorgini, A; Avino, S; Malara, P; Gagliardi, G; Casalino, M; Coppola, G; Iodice, M; Adam, P; Chadt, K; Homola, J; De Natale, P

    2013-06-01

    We report on a method for surface plasmon resonance (SPR) refractive index sensing based on direct time-domain measurements. An optical resonator is built around an SPR sensor, and its photon lifetime is measured as a function of loss induced by refractive index variations. The method does not rely on any spectroscopic analysis or direct intensity measurement. Time-domain measurements are practically immune to light intensity fluctuations and thus lead to high resolution. A proof of concept experiment is carried out in which a sensor response to liquid samples of different refractive indices is measured. A refractive index resolution of the current system, extrapolated from the reproducibility of cavity-decay time determinations over 133 s, is found to be about 10(-5) RIU. The possibility of long-term averaging suggests that measurements with a resolution better than 10(-7) RIU/√Hz are within reach.

  13. Optofluidic plasmonic onchip nanosensor array for biodetection

    NASA Astrophysics Data System (ADS)

    Huang, Min

    Surface plasmon resonance (SPR) sensing has been demonstrated in the past decade to be the gold standard technique for biochemical interaction analysis, and plays an important role in drug discovery and biomedical research. The technique circumvents the need of fluorescence/radioactive tagging or enzymatic detection, enables ultrasensitive remote sensing, and quantitatively monitors bio-interaction in real time. Although SPR has these attractive features that can satisfy most research/clinic requirements, there still exist problems that limit its applications. First, the reflection geometry of the prism coupling scheme adds limitations for high throughput screening application. Additionally, SPR instrumentations are bulky and not suitable for point-of-care settings. Moreover, the SPR sensor is embedded in conventional micro-fluidic cells, in which the sensor performance is limited by inefficient analyte transport. Suspended plasmonic nanohole array (PNA) offers an opportunity to overcome these limitations. A collinear excitation/collection coupling scheme combined with the small footprint of PNA provides unique platform for multiplexing and system minimization. The suspended nanohole structure also offers a unique configuration to integrate nano-photonics with nano-fluidics. This thesis focuses on developing a lab-on-a-chip PNA platform for point-of-care bio-detection. To achieve this, we first demonstrate that the figure-of-merit of our PNA sensor surpasses that of the prism coupled SPR. We also show that the ultrasensitive label-free PNA sensor is able to directly detect intact viruses from biological media at clinically relevant concentrations with little sample preparation. We then present a plasmonic microarray with over one million PNA sensors on a microscope slide for high throughput screening applications. A dual-color filter imaging method is introduced to increase the accuracy, reliability, and signal-to-noise ratio in a highly multiplexed manner. Finally, we present a nanoplasmonic-nanofluidic platform enabling active delivery of analyte to the sensor. Sensor response time is reduced by an order of magnitude compared to the conventional flow scheme. A dynamic range spanning 5 orders of magnitude from 103 to 107 particles/mL is shown on this platform corresponding to analyte concentration sufficient for clinical applications. The proposed approach opens up opportunities of a lab-on-a-chip bio-detection system for drug screening, disease diagnostic as well as clinic studies.

  14. Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Rahman, M. Saifur; Anower, Md. Shamim; Hasan, Md. Rabiul; Hossain, Md. Biplob; Haque, Md. Ismail

    2017-08-01

    We demonstrate a highly sensitive Au-MoS2-Graphene based hybrid surface plasmon resonance (SPR) biosensor for the detection of DNA hybridization. The performance parameters of the proposed sensor are investigated in terms of sensitivity, detection accuracy and quality factor at operating wavelength of 633 nm. We observed in the numerical study that sensitivity can be greatly increased by adding MoS2 layer in the middle of a Graphene-on-Au layer. It is shown that by using single layer of MoS2 in between gold and graphene layer, the proposed biosensor exhibits simultaneously high sensitivity of 87.8 deg/RIU, high detection accuracy of 1.28 and quality factor of 17.56 with gold layer thickness of 50 nm. This increased performance is due to the absorption ability and optical characteristics of graphene biomolecules and high fluorescence quenching ability of MoS2. On the basis of changing in SPR angle and minimum reflectance, the proposed sensor can sense nucleotides bonding happened between double-stranded DNA (dsDNA) helix structures. Therefore, this sensor can successfully detect the hybridization of target DNAs to the probe DNAs pre-immobilized on the Au-MoS2-Graphene hybrid with capability of distinguishing single-base mismatch.

  15. An enzyme-chromogenic surface plasmon resonance biosensor probe for hydrogen peroxide determination using a modified Trinder's reagent.

    PubMed

    Nakamura, Hideaki; Mogi, Yotaro; Akimoto, Takuo; Naemura, Kiyoshi; Kato, Teru; Yano, Kazuyoshi; Karube, Isao

    2008-11-15

    An absorption-based surface plasmon resonance (SPR(Abs)) biosensor probe has been developed for simple and reproducible measurements of hydrogen peroxide using a modified Trinder's reagent (a chromogenic reagent). The reagent enabled the determination of the hydrogen peroxide concentration by the development of deep color dyes (lambda(max)=630 nm) through the oxidative coupling reaction with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethylaniline sodium salt monohydrate (MAOS; C(13)H(20)NNaO(4)S.H(2)O) and 4-aminoantipyrine (4-AA) in the presence of hydrogen peroxide and horseradish peroxidase (HRP). In the present study, urea as an adduct of hydrogen peroxide for color development could be omitted from the measurement solution. The measurement solution containing 5mM hydrogen peroxide was deeply colored at a high absorbance value calculated as 46.7cm(-1) and was directly applied to the SPR(Abs) biosensing without dilution. The measurement was simply performed by dropping the measurement solution onto the surface of the SPR sensor probe, and the SPR(Abs) biosensor response to hydrogen peroxide was obtained as a reflectivity change in the SPR spectrum. After investigation of the pH profiles in the SPR(Abs) biosensor probe, a linear calibration curve was obtained between 1.0 and 50mM hydrogen peroxide (r=0.991, six points, average of relative standard deviation; 0.152%, n=3) with a detection limit of 0.5mM. To examine the applicability of this SPR(Abs) biosensor probe, 20mM glucose detection using glucose oxidase was also confirmed without influence of the refractive index in the measurement solution. Thus, the SPR(Abs) biosensor probe employing the modified Trinder's reagent demonstrated applicability to other analyte biosensing tools.

  16. Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification.

    PubMed

    Uludag, Yildiz; Tothill, Ibtisam E

    2012-07-17

    Early detection of cancer is vital for the successful treatment of the disease. Hence, a rapid and sensitive diagnosis is essential before the cancer is spread out to the other body organs. Here we describe the development of a point-of-care immunosensor for the detection of the cancer biomarker (total prostate-specific antigen, tPSA) using surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) sensor platforms in human serum samples. K(D) of the antibody used toward PSA was calculated as 9.46 × 10(-10) M, indicating high affinity of the antibody used in developing the assay. By performing a sandwich assay using antibody-modified nanoparticles concentrations of 2.3 ng mL(-1) (Au, 20 nm) and 0.29 ng mL(-1) (8.5 pM) (Au, 40 nm) tPSA in 75% human serum were detected using the developed assay on an SPR sensor chip. The SPR sensor results were found to be comparable to that achieved using a QCM sensor platform, indicating that both systems can be applied for disease biomarkers screening. The clinical applicability of the developed immunoassay can therefore be successfully applied to patient's serum samples. This demonstrates the high potential of the developed sensor devices as platforms for clinical prostate cancer diagnosis and prognosis.

  17. Plasmonic Biosensors

    PubMed Central

    Hill, Ryan T.

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The “gold standard” film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming LSPR-based and plasmonically coupled sensor technology. PMID:25377594

  18. Aptamer-Immobilized Surface Plasmon Resonance Biosensor for Rapid and Sensitive Determination of Virulence Determinant.

    PubMed

    Song, Myeong-Sub; Sekhon, Simranjeet Singh; Shin, Woo-Ri; Rhee, Sung-Keun; Ko, Jung Ho; Kim, Sang Yong; Min, Jiho; Ahn, Ji-Young; Kim, Yang-Hoon

    2018-05-01

    Shigella sonnei isolate invasion plasmid antigen protein, IpaH, was successfully expressed in recombinant overexpression bacterial system. The soluble expression IpaH was enhanced with molecular chaperon co-expressed environment. Specific aptamer IpaH17 was isolated through the SELEX process and showed fM binding affinity. IpaH17-SPR biosensor platform was involved to verify the binding sensitivity and specificity. The IpaH concentration dependent IpaH17-SPR sensor response was highly linear with a linear regression constant of 99.4% in the range between 0 and 100 ng/mL. In addition, S. sonnei revealed the specific RU value and detected in a real-time manner within 1 hour. Our study indicated that IpaH17-SPR sensor can allow for rapid, sensitive and specific determination of Shigella sonnei virulent factor.

  19. SPR-DNA array for detection of methicillin-resistant Staphylococcus aureus (MRSA) in combination with loop-mediated isothermal amplification.

    PubMed

    Nawattanapaiboon, Kawin; Kiatpathomchai, Wansika; Santanirand, Pitak; Vongsakulyanon, Apirom; Amarit, Ratthasart; Somboonkaew, Armote; Sutapun, Boonsong; Srikhirin, Toemsak

    2015-12-15

    In this study, we evaluated surface plasmon resonance imaging (SPR imaging) as a DNA biosensor for the detection of methicillin-resistant Staphylococcus aureus (MRSA) which is one of the most common causes of nosocomial infections. The DNA sample were collected from clinical specimens, including sputum and blood hemoculture were undergone LAMP amplification for 0.18 kbp and 0.23 kbp DNA fragments of femB and mecA genes, respectively. The self-assembled monolayer surface (SAMs) was used for immobilized streptavidin-biotinylated probes on the sensor surface for the detection of LAMP amplicons from MRSA. Both LAMP amplicons were simultaneously hybridized with ssDNA probes immobilized onto a bio-functionalized surface to detect specific targets in the multiplex DNA array platform. In addition, the sensor surface could be regenerated allowing at least five cycles of use with a shortened assay time. The detection limit of LAMP-SPR sensing was 10 copies/µl and LAMP-SPR sensing system showed a good selectivity toward the MRSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Surface plasmon resonance immunoassay analysis of pituitary hormones in urine and serum samples.

    PubMed

    Treviño, Juan; Calle, Ana; Rodríguez-Frade, José Miguel; Mellado, Mario; Lechuga, Laura M

    2009-05-01

    Direct determination of four pituitary peptide hormones: human thyroid stimulating hormone (hTSH), growth hormone (hGH), follicle stimulating hormone (hFSH), and luteinizing hormone (hLH) has been carried out using a portable surface plasmon resonance (SPR) immunosensor. A commercial SPR biosensor was employed. The immobilization of the hormones was optimized and monoclonal antibodies were selected in order to obtain the best sensor performance. Assay parameters as running buffer and regeneration solution composition or antibody concentration were adjusted to achieve a sensitive analyte detection. The performance of the assays was assessed in buffer solution, serum and urine, showing sensitivity in the range from 1 to 6 ng/mL. The covalent attachment of the hormones ensured the stability of the SPR signal through repeated use in up to 100 consecutive assay cycles. Mean intra- and inter-day coefficients of variation were all <7%, while batch-assay variability using different sensor surfaces was <5%. Taking account both the excellent reutilization performance and the outstanding reproducibility, this SPR immunoassay method turns on a highly reliable tool for endocrine monitoring in laboratory and point-of-care (POC) settings.

  1. Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

    PubMed Central

    Genslein, Christa; Hausler, Peter; Kirchner, Eva-Maria; Bierl, Rudolf; Baeumner, Antje J

    2016-01-01

    The label-free nature of surface plasmon resonance techniques (SPR) enables a fast, specific, and sensitive analysis of molecular interactions. However, detection of highly diluted concentrations and small molecules is still challenging. It is shown here that in contrast to continuous gold films, gold nanohole arrays can significantly improve the performance of SPR devices in angle-dependent measurement mode, as a signal amplification arises from localized surface plasmons at the nanostructures. This leads consequently to an increased sensing capability of molecules bound to the nanohole array surface. Furthermore, a reduced graphene oxide (rGO) sensor surface was layered over the nanohole array. Reduced graphene oxide is a 2D nanomaterial consisting of sp2-hybridized carbon atoms and is an attractive receptor surface for SPR as it omits any bulk phase and therefore allows fast response times. In fact, it was found that nanohole arrays demonstrated a higher shift in the resonance angle of 250–380% compared to a continuous gold film. At the same time the nanohole array structure as characterized by its diameter-to-periodicity ratio had minimal influence on the binding capacity of the sensor surface. As a simple and environmentally highly relevant model, binding of the plasticizer diethyl phthalate (DEP) via π-stacking was monitored on the rGO gold nanohole array realizing a limit of detection of as low as 20 nM. The concentration-dependent signal change was studied with the best performing rGO-modified nanohole arrays. Compared to continuous gold films a diameter-to-periodicity ratio (D/P) of 0.43 lead to a 12-fold signal enhancement. Finally, the effect of environmental waters on the sensor was evaluated using samples from sea, lake and river waters spiked with analytically relevant amounts of DEP during which significant changes in the SPR signal are observed. It is expected that this concept can be successfully transferred to enhance the sensitivity in SPR sensors. PMID:28144507

  2. An optical sensing approach for the noninvasive transdermal monitoring of cortisol

    NASA Astrophysics Data System (ADS)

    Hwang, Yongsoon; Gupta, Niraj K.; Ojha, Yagya R.; Cameron, Brent D.

    2016-03-01

    Cortisol, a biomarker of stress, has recently been shown to have potential in evaluating the physiological state of individuals diagnosed with stress-related conditions including chronic fatigue syndrome. Noninvasive techniques to extract biomarkers from the body are a topic of considerable interest. One such technique to achieve this is known as reverse iontophoresis (RI) which is capable of extracting biomolecules through the skin. Unfortunately, however, the extracted levels are often considerably lower in concentration than those found in blood, thereby requiring a very sensitive analytical method with a low limit of detection. A promising sensing approach, which is well suited to handle such samples, is Surface Plasmon Resonance (SPR) spectroscopy. When coupled with aptamer modified surfaces, such sensors can achieve both selectivity and the required sensitivity. In this study, fabrication and characterization of a RIbased SPR biosensor for the measurement of cortisol has been developed. The optical mount and diffusion cell were both fabricated through the use of 3D printing techniques. The SPR sensor was configured to employ a prism couplerbased arrangement with a laser generation module and CCD line sensor. Cortisol-specific DNA aptamers were immobilized onto a gold surface to achieve the necessary selectivity. For demonstration purposes, cortisol was extracted by the RI system using a skin phantom flow system capable of generating time dependent concentration profiles. The captured sample was then transported using a micro-fluidic platform from the RI collection site to the SPR sensor for real-time monitoring. Analysis and system control was accomplished within a developed LabVIEW® program.

  3. Immobilization of flavan-3-ols onto sensor chips to study their interactions with proteins and pectins by SPR

    NASA Astrophysics Data System (ADS)

    Watrelot, Aude A.; Tran, Dong Tien; Buffeteau, Thierry; Deffieux, Denis; Le Bourvellec, Carine; Quideau, Stéphane; Renard, Catherine M. G. C.

    2016-05-01

    Interactions between plant polyphenols and biomacromolecules such as proteins and pectins have been studied by several methods in solution (e.g. isothermal titration calorimetry, dynamic light scattering, nuclear magnetic resonance and spectrophotometry). Herein, these interactions were investigated in real time by Surface Plasmon Resonance (SPR) analysis after immobilization of flavan-3-ols onto a sensor chip surface. (-)-epicatechin, (+)-catechin and flavan-3-ol oligomers with an average degree of polymerization of 2 and 8 were chemically modified using N-(2-(tritylthio)ethyl)propiolamide in order to introduce a spacer unit onto the catecholic B ring. Modified flavan-3-ols were then immobilized onto a carboxymethylated dextran surface (CM5). Immobilization was validated and further verified by evaluating flavan-3-ol interaction with bovine serum albumin (BSA), poly-L-proline or commercial pectins. BSA was found to have a stronger association with monomeric flavan-3-ols than oligomers. SPR analysis of selected flavan-3-ols immobilized onto CM5 sensor chips showed a stronger association for citrus pectins than apple pectins, regardless of flavan-3-ol degree of polymerization.

  4. Highly sensitive biological sensor based on photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Azzam, Shaimaa I. H.; Hameed, Mohamed F.; Obayya, S. S. A.

    2014-05-01

    A photonic crystal fiber (PCF) surface plasmon resonance (SPR) based sensor is proposed and analysed. The proposed sensor consists of microuidic slots enclosing a dodecagonal layer of air holes cladding and a central air hole. The sensor can perform analyte detection using both HEx 11 and HEy 11 modes with a relatively high sensitivities up to 4000 nm=RIU and 3000 nm=RIU and resolutions of 2.5×10-5 RIU-1 and 3.33×10-5 RIU-1 with HEx11 and HEy11, respectively, with regards to spectral interrogation which to our knowledge are higher than those reported in the literature. Moreover, the structure of the suggested sensor is simple with no fabrication complexities which makes it easy to fabricate with standard PCF fabrication technologies.

  5. Electrografted diazonium salt layers for antifouling on the surface of surface plasmon resonance biosensors.

    PubMed

    Zou, Qiongjing; Kegel, Laurel L; Booksh, Karl S

    2015-02-17

    Electrografted diazonium salt layers on the surface of surface plasmon resonance (SPR) sensors present potential for a significant improvement in antifouling coatings. A pulsed potential deposition profile was used in order to circumvent mass-transport limitations for layer deposition rate. The influence of number of pulses with respect to antifouling efficacy was evaluated by nonspecific adsorption surface coverage of crude bovine serum proteins. Instead of using empirical and rough estimated values, the penetration depth and sensitivity of the SPR instrument were experimentally determined for the calculation of nonspecific adsorption surface coverage. This provides a method to better examine antifouling surface coatings and compare crossing different coatings and experimental systems. Direct comparison of antifouling performance of different diazonium salts was facilitated by a tripad SPR sensor design. The electrografted 4-phenylalanine diazonium chloride (4-APhe) layers with zwitterionic characteristic demonstrate ultralow fouling.

  6. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor.

    PubMed

    Forzani, Erica S; Zhang, Haiqian; Chen, Wilfred; Tao, Nongjian

    2005-03-01

    We have built a high-resolution differential surface plasmon resonance (SPR) sensor for heavy metal ion detection. The sensor surface is divided into a reference and sensing areas, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. In the presence of metal ions, the differential signal changes due to specific binding of the metal ions onto the sensing area coated with properly selected peptides, which provides an accurate real-time measurement and quantification of the metal ions. Selective detection of Cu2+ and Ni2+ in the ppt-ppb range was achieved by coating the sensing surface with peptides NH2-Gly-Gly-His-COOH and NH2-(His)6-COOH. Cu2+ in drinking water was tested using this sensor.

  7. A SPR-based immunosensor for the detection of isoproturon.

    PubMed

    Gouzy, Marie-Françoise; Kess, Melanie; Krämer, Petra M

    2009-02-15

    The proof of principle of a reusable surface plasmon resonance (SPR)-based immunosensor for the monitoring of isoproturon (IPU), a selective and systemic herbicide, is presented. The detecting rat monoclonal anti-isoproturon antibody (mAb IOC 7E1) was reversibly immobilized through the use of a capture mouse anti-rat (kappa-chain) monoclonal antibody (mAb TIB 172), which was covalently immobilized on the sensor chip surface. Such strategy features a controlled binding of the captured detecting antibody as well as facilitates the surface regeneration. The capture of the anti-IPU mAb by the antibody (TIB 172) coated sensor surface could be carried out up to 120 times (immobilization/regeneration cycles) without any evidence of activity loss. With a high test midpoint and a low associated SPR signal, the direct detection format was shown to be unsuitable for the routine analysis of isoproturon. However, the limit of detection (LOD) could be easily enhanced by using a strategy based on a surface competition assay, which improved all immunosensor parameters. Moreover, the sensitivity and working range of the indirect format were found to be dependent on the surface density of the anti-IPU mAb IOC 7E1. As expected for competitive formats, the lowest surface coverage (0.5 ng/mm(2)) allowed a lower detection of the herbicide isoproturon with a calculated LOD of 0.1 microg/l, an IC(50) (50% inhibition) of 5.3+/-0.6 microg/l, and a working range (20-80% inhibition) of 1.3-16.3 microg/l.

  8. Development of a Novel Two Dimensional Surface Plasmon Resonance Sensor Using Multiplied Beam Splitting Optics

    PubMed Central

    Hemmi, Akihide; Mizumura, Ryosuke; Kawanishi, Ryuta; Nakajima, Hizuru; Zeng, Hulie; Uchiyama, Katsumi; Kaneki, Noriaki; Imato, Toshihiko

    2013-01-01

    A novel two dimensional surface plasmon resonance (SPR) sensor system with a multi-point sensing region is described. The use of multiplied beam splitting optics, as a core technology, permitted multi-point sensing to be achieved. This system was capable of simultaneously measuring nine sensing points. Calibration curves for sucrose obtained on nine sensing points were linear in the range of 0–10% with a correlation factor of 0.996–0.998 with a relative standard deviation of 0.090–4.0%. The detection limits defined as S/N = 3 were 1.98 × 10−6–3.91 × 10−5 RIU. This sensitivity is comparable to that of conventional SPR sensors. PMID:23299626

  9. 1-butanethiol vapor sensing based on gold nanoparticle immobilized on glass slide by digital color analysis

    NASA Astrophysics Data System (ADS)

    Shokoufi, Nader; Adeleh, Sara

    2017-12-01

    We demonstrate that gold nanoparticles (GNPs) immobilized on silanized glass act as an optical sensor that is able to quantify 1-butanethiol vapor. GNPs optical properties in the visible region are dominated by the surface plasmon resonance (SPR). The high affinity between 1-butanethiol and GNPs through Au-s bond leads to change in plasmon feature of GNPs that immobilized on silanized glass and causes absorption decrease at 542 nm in SPR spectrum of GNPs. It can be used as an optical sensor for quantitative detection. In this research, the glass slide surface activated by aminopropyltriethoxysilane (APTES). Spherical GNPs immobilized on silanized glass by silanization agent. The sensor is based on the spectrophotometry and digital color analysis (DCA) through RGB. We monitored R value and linear range 50-700 µM (R 2  =  0.97) with 2.05% relative standard deviation and 26.5 µM value was achieved, for the limit of detection. This method represents advantages of metal gold nanoparticles and solid substrate stability in one package, being inexpensive and low time consuming is another advantage of our method that can be conducted in petrochemical, pharmaceutical industries, and for detection of rotten food in food industries.

  10. Optofluidic refractometer using resonant optical tunneling effect.

    PubMed

    Jian, A Q; Zhang, X M; Zhu, W M; Yu, M

    2010-12-30

    This paper presents the design and analysis of a liquid refractive index sensor that utilizes a unique physical mechanism of resonant optical tunneling effect (ROTE). The sensor consists of two hemicylindrical prisms, two air gaps, and a microfluidic channel. All parts can be microfabricated using an optical resin NOA81. Theoretical study shows that this ROTE sensor has extremely sharp transmission peak and achieves a sensitivity of 760 nm∕refractive index unit (RIU) and a detectivity of 85 000 RIU(-1). Although the sensitivity is smaller than that of a typical surface plasmon resonance (SPR) sensor (3200 nm∕RIU) and is comparable to a 95% reflectivity Fabry-Pérot (FP) etalon (440 nm∕RIU), the detectivity is 17 000 times larger than that of the SPR sensor and 85 times larger than that of the FP etalon. Such ROTE sensor could potentially achieve an ultrahigh sensitivity of 10(-9) RIU, two orders higher than the best results of current methods.

  11. Plasmonic biosensors.

    PubMed

    Hill, Ryan T

    2015-01-01

    The unique optical properties of plasmon resonant nanostructures enable exploration of nanoscale environments using relatively simple optical characterization techniques. For this reason, the field of plasmonics continues to garner the attention of the biosensing community. Biosensors based on propagating surface plasmon resonances (SPRs) in films are the most well-recognized plasmonic biosensors, but there is great potential for the new, developing technologies to surpass the robustness and popularity of film-based SPR sensing. This review surveys the current plasmonic biosensor landscape with emphasis on the basic operating principles of each plasmonic sensing technique and the practical considerations when developing a sensing platform with the various techniques. The 'gold standard' film SPR technique is reviewed briefly, but special emphasis is devoted to the up-and-coming localized surface plasmon resonance and plasmonically coupled sensor technology. © 2014 Wiley Periodicals, Inc.

  12. Overcoming non-specific binding to measure the active concentration and kinetics of serum anti-HLA antibodies by surface plasmon resonance.

    PubMed

    Visentin, Jonathan; Couzi, Lionel; Dromer, Claire; Neau-Cransac, Martine; Guidicelli, Gwendaline; Veniard, Vincent; Coniat, Karine Nubret-le; Merville, Pierre; Di Primo, Carmelo; Taupin, Jean-Luc

    2018-06-07

    Human leukocyte antigen (HLA) donor-specific antibodies are key serum biomarkers for assessing the outcome of transplanted patients. Measuring their active concentration, i.e. the fraction that really interacts with donor HLA, and their affinity could help deciphering their pathogenicity. Surface plasmon resonance (SPR) is recognized as the gold-standard for measuring binding kinetics but also active concentrations, without calibration curves. SPR-based biosensors often suffer from non-specific binding (NSB) occurring with the sensor chip surface and the immobilized targets, especially for complex media such as human serum. In this work we show that several serum treatments such as dialysis or IgG purification reduce NSB but insufficiently for SPR applications. We then demonstrate that the NSB contribution to the SPR signal can be eliminated to determine precisely and reliably the active concentration and the affinity of anti-HLA antibodies from patients' sera. This was achieved even at concentrations close to the limit of quantification of the method, in the 0.5-1 nM range. The robustness of the assay was demonstrated by using a wide range of artificially generated NSB and by varying the density of the targets captured onto the surface. The assay is of general interest and can be used with molecules generating strong NSB, as far as a non-cognate target structurally close to the target can be captured on the same flow cell, in a different binding cycle. Compared with current fluorescence-based methods that are semi-quantitative, we expect this SPR-based assay to help better understanding anti-HLA antibodies pathogenicity and improving organ recipients' management. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Surface Plasmon Resonance based sensing of lysozyme in serum on Micrococcus lysodeikticus-modified graphene oxide surfaces.

    PubMed

    Vasilescu, Alina; Gáspár, Szilveszter; Gheorghiu, Mihaela; David, Sorin; Dinca, Valentina; Peteu, Serban; Wang, Qian; Li, Musen; Boukherroub, Rabah; Szunerits, Sabine

    2017-03-15

    Lysozyme is an enzyme found in biological fluids, which is upregulated in leukemia, renal diseases as well as in a number of inflammatory gastrointestinal diseases. We present here the development of a novel lysozyme sensing concept based on the use of Micrococcus lysodeikticus whole cells adsorbed on graphene oxide (GO)-coated Surface Plasmon Resonance (SPR) interfaces. M. lysodeikticus is a typical enzymatic substrate for lysozyme. Unlike previously reported sensors which are based on the detection of lysozyme through bioaffinity interactions, the bioactivity of lysozyme will be used here for sensing purposes. Upon exposure to lysozyme containing serum, the integrity of the bacterial cell wall is affected and the cells detach from the GO based interfaces, causing a characteristic decrease in the SPR signal. This allows sensing the presence of clinically relevant concentrations of lysozyme in undiluted serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Design and analysis of a spectro-angular surface plasmon resonance biosensor operating in the visible spectrum

    NASA Astrophysics Data System (ADS)

    Filion-Côté, Sandrine; Roche, Philip J. R.; Foudeh, Amir M.; Tabrizian, Maryam; Kirk, Andrew G.

    2014-09-01

    Surface plasmon resonance (SPR) sensing is one of the most widely used methods to implement biosensing due to its sensitivity and capacity for label-free detection. Whilst most commercial SPR sensors operate in the angular regime, it has recently been shown that an increase in sensitivity and a greater robustness against noise can be achieved by measuring the reflectivity when varying both the angle and wavelength simultaneously, in a so-called spectro-angular SPR biosensor. A single value decomposition method is used to project the two-dimensional spectro-angular reflection signal onto a basis set and allow the image obtained from an unknown refractive index sample to be compared very accurately with a pre-calculated reference set. Herein we demonstrate that a previously reported system operated in the near infra-red has a lower detection limit when operating in the visible spectrum due to the improved spatial resolution and numerical precision of the image sensor. The SPR biosensor presented here has an experimental detection limit of 9.8 × 10-7 refractive index unit. To validate the system as a biosensor, we also performed the detection of synthetic RNA from pathogenic Legionella pneumophila with the developed biosensing platform.

  15. Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor

    NASA Astrophysics Data System (ADS)

    Pal, Sarika; Verma, Alka; Raikwar, S.; Prajapati, Y. K.; Saini, J. P.

    2018-05-01

    In this paper, graphene-coated black phosphorus at the metal surface for the detection of DNA hybridization event is numerically demonstrated. The strategy consists of placing the sensing medium on top of black phosphorus-graphene-coated SPR which interfaces with phosphate-buffered saline solution carrying single-stranded DNA. Upon hybridization with its complementary DNA, desorption of the nanostructures takes place and thus enables the sensitive detection of the DNA hybridization event. The proposed sensor exhibits a sensitivity (125 ο/RIU), detection accuracy (0.95) and quality factor (13.62 RIU-1) for complementary DNA. In comparison with other reported papers, our suggested sensor provides much better performance. Thus, this label-free DNA detection platform should spur off new interest towards the use of black phosphorus-graphene-coated SPR interfaces.

  16. Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection.

    PubMed

    Liu, Yang; Wilson, W David

    2010-01-01

    Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.

  17. Surface plasmon resonance sensing of a biomarker of Alzheimer disease in an intensity measurement mode with a bimetallic chip

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jin; Sohn, Young-Soo; Kim, Chang-duk; Jang, Dae-ho

    2016-09-01

    A surface plasmon resonance (SPR) sensor system with a bimetallic chip has been utilized to sense the very low concentration of amyloid-beta (A β)(1-42) by measurement of the reflectance variation. The bimetallic chip was comprised of Au (10 nm) and Ag (40 nm) on Cr (2 nm)-coated BK-7 glass substrate. Protein A was used to efficiently immobilize the antibody of A β(1-42) on the surface of the bimetallic chip. The reflectance curve of the bimetallic chip represented a narrower linewidth compared to that of the conventional gold (Au) chip. The SPR sensor using the bimetallic chip in the intensity interrogation mode acquired the response of A β(1-42) at concentrations of 250, 500, 750 and 1,000 pg/ml. The calibration plot showed a linear relationship between the mean reflectance variation and the A β(1-42) concentration. The results proved that the SPR sensor system with the bimetallic chip in the intensity interrogation mode can successfully detect various concentrations of A β(1-42), including critical concentration, to help diagnose Alzheimer's disease.

  18. Sensitive detection of capsaicinoids using a surface plasmon resonance sensor with anti-homovanillic Acid polyclonal antibodies.

    PubMed

    Nakamura, Shingo; Yatabe, Rui; Onodera, Takeshi; Toko, Kiyoshi

    2013-11-13

    Recently, highly functional biosensors have been developed in preparation for possible large-scale terrorist attacks using chemical warfare agents. Practically applicable sensors are required to have various abilities, such as high portability and operability, the capability of performing rapid and continuous measurement, as well as high sensitivity and selectivity. We developed the detection method of capsaicinoids, the main component of some lachrymators, using a surface plasmon resonance (SPR) immunosensor as an on-site detection sensor. Homovanillic acid, which has a vanillyl group similar to capsaicinoids such as capsaicin and dihydrocapsaicin, was bound to Concholepas concholepas hemocyanin (CCH) for use as an immunogen to generate polyclonal antibodies. An indirect competitive assay was carried out to detect capsaicinoids using SPR sensor chips on which different capsaicin analogues were immobilized. For the sensor chip on which 4-hydroxy-3-methoxybenzylamine hydrochloride was immobilized, a detection limit of 150 ppb was achieved. We found that the incubation time was not required and the detection can be completed in five minutes.

  19. Surface plasmon resonance study on the optical sensing properties of tin oxide (SnO2) films to NH3 gas

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2016-04-01

    Surface plasmon resonance (SPR) technique is an easy and reliable method for detecting very low concentration of toxic gases at room temperature using a gas sensitive thin film layer. In the present work, a room temperature operated NH3 gas sensor has been developed using a laboratory assembled SPR measurement setup utilising a p-polarized He-Ne laser and prism coupling technique. A semiconducting gas sensitive tin oxide (SnO2) layer has been deposited under varying growth conditions (i.e., by varying deposition pressure) over the gold coated prism (BK-7) to excite the surface plasmon modes in Kretschmann configuration. The SPR reflectance curves for prism/Au/SnO2/air system for SnO2 thin films prepared at different sputtering pressure were measured, and the SnO2 film deposited at 10 mT pressure is found to exhibit a sharp SPR reflectance curve with minimum reflectance (0.32) at the resonance angle of 44.7° which is further used for sensing NH3 gas of different concentration at room temperature. The SPR reflectance curve shows a significant shift in resonance angle from 45.05° to 58.55° on interacting with NH3. The prepared sensor is found to give high sensing response (0.11) with high selectivity towards very low concentration of NH3 (0.5 ppm) and quick response time at room temperature.

  20. Theoretical analysis of metamaterial-gold auxiliary grating sensing structure for surface plasmon resonance sensing application based on polarization control method

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Cai, Haoyuan; Wang, Xiaoping

    2017-12-01

    A metamaterial-gold multilayer sensing structure designed using the particle swarm optimization (PSO) algorithm with an auxiliary grating is proposed for using in a surface plasmon resonance (SPR) sensor system based on the polarization control method. After numerical calculations and simulation analysis, it was found that the metamaterial sensing structure significantly improves the sensitivity of the SPR signal with intensity singularity. The metamaterial sensing structure also increases the penetration depth of evanescent wave, making it possible to detect low-molecular-weight biomolecules and larger cells such as bacteria. The auxiliary grating structure was designed to identify the refractive index of the sensing region on both sides of intensity singularity. The stability of recognition and the electric field intensity of the visible light band were also studied.

  1. Dataset of surface plasmon resonance based on photonic crystal fiber for chemical sensing applications.

    PubMed

    Khalek, Md Abdul; Chakma, Sujan; Paul, Bikash Kumar; Ahmed, Kawsar

    2018-08-01

    In this research work a perfectly circular lattice Photonic Crystal Fiber (PCF) based surface Plasmon resonance (SPR) based sensor has been proposed. The investigation process has been successfully carried out using finite element method (FEM) based commercial available software package COMSOL Multiphysics version 4.2. The whole investigation module covers the wider optical spectrum ranging from 0.48 µm to 1.10 µm. Using the wavelength interrogation method the proposed model exposed maximum sensitivity of 9000 nm/RIU(Refractive Index Unit) and using the amplitude interrogation method it obtained maximum sensitivity of 318 RIU -1 . Moreover the maximum sensor resolution of 1.11×10 -5 in the sensing ranges between 1.34 and 1.37. Based on the suggested sensor model may provide great impact in biological area such as bio-imaging.

  2. Determination of High-affinity Antibody-antigen Binding Kinetics Using Four Biosensor Platforms.

    PubMed

    Yang, Danlin; Singh, Ajit; Wu, Helen; Kroe-Barrett, Rachel

    2017-04-17

    Label-free optical biosensors are powerful tools in drug discovery for the characterization of biomolecular interactions. In this study, we describe the use of four routinely used biosensor platforms in our laboratory to evaluate the binding affinity and kinetics of ten high-affinity monoclonal antibodies (mAbs) against human proprotein convertase subtilisin kexin type 9 (PCSK9). While both Biacore T100 and ProteOn XPR36 are derived from the well-established Surface Plasmon Resonance (SPR) technology, the former has four flow cells connected by serial flow configuration, whereas the latter presents 36 reaction spots in parallel through an improvised 6 x 6 crisscross microfluidic channel configuration. The IBIS MX96 also operates based on the SPR sensor technology, with an additional imaging feature that provides detection in spatial orientation. This detection technique coupled with the Continuous Flow Microspotter (CFM) expands the throughput significantly by enabling multiplex array printing and detection of 96 reaction sports simultaneously. In contrast, the Octet RED384 is based on the BioLayer Interferometry (BLI) optical principle, with fiber-optic probes acting as the biosensor to detect interference pattern changes upon binding interactions at the tip surface. Unlike the SPR-based platforms, the BLI system does not rely on continuous flow fluidics; instead, the sensor tips collect readings while they are immersed in analyte solutions of a 384-well microplate during orbital agitation. Each of these biosensor platforms has its own advantages and disadvantages. To provide a direct comparison of these instruments' ability to provide quality kinetic data, the described protocols illustrate experiments that use the same assay format and the same high-quality reagents to characterize antibody-antigen kinetics that fit the simple 1:1 molecular interaction model.

  3. Carboxyl-rich plasma polymer surfaces in surface plasmon resonance immunosensing

    NASA Astrophysics Data System (ADS)

    Makhneva, Ekaterina; Obrusník, Adam; Farka, Zdeněk; Skládal, Petr; Vandenbossche, Marianne; Hegemann, Dirk; Zajíčková, Lenka

    2018-01-01

    Stable carboxyl-rich plasma polymers (PPs) were deposited onto the gold surface of surface plasmon resonance (SPR) chips under conditions that were chosen based on lumped kinetic model results. Carboxyl-rich films are of high interest for bio-applications thanks to their high reactivity, allowing the formation of covalent linkages between biomolecules and a surface. Accordingly, the monoclonal antibody, specific to human serum albumin (HSA), was immobilized and the performance of SPR immunosensors was evaluated by the immunoassay flow test. The developed sensors performed high level of stability and provided selective and high response to the HSA antigen solutions. The achieved results confirmed that the presented methodologies for the grafting of biomolecules on the gold surfaces have great potential for biosensing applications.

  4. Numerical Investigation of a Novel Microscale Swirling Jet Reactor for Medical Sensor Applications

    NASA Astrophysics Data System (ADS)

    Ogus, G.; Baelmans, M.; Lammertyn, J.; Vanierschot, M.

    2018-03-01

    A microscale swirler and corresponding reactor for a recent detection and analysis tool for healthcare applications, Fiber optic-surface plasmon resonance (FO-SPR), is presented in this study. The sensor is a 400 μm diameter needle that works as a detector for certain particles. Currently, the detection process relies on diffusion of particles towards the sensor and hence diagnostic time is rather long. The aim of this study is to decrease that diagnostic time by introducing convective mixing in the reactor by means of a swirling inlet flow. This will increase the particle deposition on the FO-SPR sensor and hence an increase in detection rate, as this rate strongly depends on the aimed particle concentration near the sensor. As the flow rates are rather low and the length scales are small, the flow in such reactors is laminar. In this study, robustly controllable mixing features of a swirling jet flow is used to increase the particle concentration near the sensor. A numerical analysis (CFD) is performed to characterize the flow and a detailed analysis of flow structures depending on the flow rate are reported.

  5. Advances in Surface Plasmon Resonance Imaging allowing for quantitative measurement of laterally heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Raegen, Adam; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2012-02-01

    The Surface Plasmon Resonance (SPR) phenomenon is routinely exploited to qualitatively probe changes to materials on metallic surfaces for use in probes and sensors. Unfortunately, extracting truly quantitative information is usually limited to a select few cases -- uniform absorption/desorption of small biomolecules and films, in which a continuous ``slab'' model is a good approximation. We present advancements in the SPR technique that expand the number of cases for which the technique can provide meaningful results. Use of a custom, angle-scanning SPR imaging system, together with a refined data analysis method, allow for quantitative kinetic measurements of laterally heterogeneous systems. The degradation of cellulose microfibrils and bundles of microfibrils due to the action of cellulolytic enzymes will be presented as an excellent example of the capabilities of the SPR imaging system.

  6. Real-Time Protein and Cell Binding Measurements on Hydroxyapatite Coatings

    PubMed Central

    Vilardell, A. M.; Cinca, N.; Jokinen, A.; Garcia-Giralt, N.; Dosta, S.; Cano, I. G.; Guilemany, J. M.

    2016-01-01

    Although a lot of in vitro and in vivo assays have been performed during the last few decades years for hydroxyapatite bioactive coatings, there is a lack of exploitation of real-time in vitro interaction measurements. In the present work, real-time interactions for a plasma sprayed hydroxyapatite coating were measured by a Multi-Parametric Surface Plasmon Resonance (MP-SPR), and the results were compared with standard traditional cell viability in vitro assays. MP-SPR is proven to be suitable not only for measurement of molecule–molecule interactions but also molecule–material interaction measurements and cell interaction. Although SPR is extensively utilized in interaction studies, recent research of protein or cell adsorption on hydroxyapatite coatings for prostheses applications was not found. The as-sprayed hydroxyapatite coating resulted in 62.4% of crystalline phase and an average thickness of 24 ± 6 μm. The MP-SPR was used to measure lysozyme protein and human mesenchymal stem cells interaction to the hydroxyapatite coating. A comparison between the standard gold sensor and Hydroxyapatite (HA)-plasma coated sensor denoted a clearly favourable cell attachment on HA coated sensor as a significantly higher signal of cell binding was detected. Moreover, traditional cell viability and proliferation tests showed increased activity with culture time indicating that cells were proliferating on HA coating. Cells show homogeneous distribution and proliferation along the HA surface between one and seven days with no significant mortality. Cells were flattened and spread on rough surfaces from the first day, with increasing cytoplasmatic extensions during the culture time. PMID:27618911

  7. Characterization of lipid films by an angle-interrogation surface plasmon resonance imaging device.

    PubMed

    Liu, Linlin; Wang, Qiong; Yang, Zhong; Wang, Wangang; Hu, Ning; Luo, Hongyan; Liao, Yanjian; Zheng, Xiaolin; Yang, Jun

    2015-04-01

    Surface topographies of lipid films have an important significance in the analysis of the preparation of giant unilamellar vesicles (GUVs). In order to achieve accurately high-throughput and rapidly analysis of surface topographies of lipid films, a homemade SPR imaging device is constructed based on the classical Kretschmann configuration and an angle interrogation manner. A mathematical model is developed to accurately describe the shift including the light path in different conditions and the change of the illumination point on the CCD camera, and thus a SPR curve for each sampling point can also be achieved, based on this calculation method. The experiment results show that the topographies of lipid films formed in distinct experimental conditions can be accurately characterized, and the measuring resolution of the thickness lipid film may reach 0.05 nm. Compared with existing SPRi devices, which realize detection by monitoring the change of the reflective-light intensity, this new SPRi system can achieve the change of the resonance angle on the entire sensing surface. Thus, it has higher detection accuracy as the traditional angle-interrogation SPR sensor, with much wider detectable range of refractive index. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time.

    PubMed

    Zhang, Hongyan; Yang, Liquan; Zhou, Bingjiang; Liu, Weimin; Ge, Jiechao; Wu, Jiasheng; Wang, Ying; Wang, Pengfei

    2013-09-15

    An ultrasensitive and selective detection of mercury (II) was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01ng/ml for Hg(2+) ions in ultrapure and tap water based on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg(2+)-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg(2+) ion concentration, which is unaffected by the presence of other metal ions. The coefficients obtained for ultrapure and tap water were 0.99902 and 0.99512, respectively, for the linear part over a range of 0.01-100ng/ml. The results show that the double-effect sensor has potential for practical applications with ultra sensitivity and selectivity, especially in online or real-time monitoring of Hg(2+) ions pollution in tap water with the further improvement of portable LSCI-SPR instrument. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Surface plasmon resonance biosensors for highly sensitive detection in real samples

    NASA Astrophysics Data System (ADS)

    Sepúlveda, B.; Carrascosa, L. G.; Regatos, D.; Otte, M. A.; Fariña, D.; Lechuga, L. M.

    2009-08-01

    In this work we summarize the main results obtained with the portable surface plasmon resonance (SPR) device developed in our group (commercialised by SENSIA, SL, Spain), highlighting its applicability for the real-time detection of extremely low concentrations of toxic pesticides in environmental water samples. In addition, we show applications in clinical diagnosis as, on the one hand, the real-time and label-free detection of DNA hybridization and single point mutations at the gene BRCA-1, related to the predisposition in women to develop an inherited breast cancer and, on the other hand, the analysis of protein biomarkers in biological samples (urine, serum) for early detection of diseases. Despite the large number of applications already proven, the SPR technology has two main drawbacks: (i) not enough sensitivity for some specific applications (where pM-fM or single-molecule detection are needed) (ii) low multiplexing capabilities. In order solve such drawbacks, we work in several alternative configurations as the Magneto-optical Surface Plasmon Resonance sensor (MOSPR) based on a combination of magnetooptical and ferromagnetic materials, to improve the SPR sensitivity, or the Localized Surface Plasmon Resonance (LSPR) based on nanostructures (nanoparticles, nanoholes,...), for higher multiplexing capabilities.

  10. Scattering-Type Surface-Plasmon-Resonance Biosensors

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh

    2005-01-01

    Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined

  11. [The experiment research on solution refractive index sensor based on tilted fiber Bragg grating].

    PubMed

    Jiang, Qi; Lü, Dan-Dan; Yu, Ming-Hao; Kang, Li-Min; Ouyang, Jun

    2013-12-01

    The present paper analyzes the sensor's basic principle of the bare tilted fiber Bragg grating (TFBG) and surface plasmon resonance sensor (SPR) that deposited nanoscale gold-coating on the surface of the cladding. We simulated the transmission spectrums and some order cladding mode of TFBG in different concentration solutions by Integration and optical fiber grating software OptiGrating. So by the graphic observation and data analysis, a preliminary conclusion was got that in a certain sensing scope, the cladding modes of TFBG shift slightly to right with the increasing the solution refractive index(SRI),and the relation between resonance peak caused by the coupling of core mode and a certain cladding mode and the SRI was linear. Then the 45 nm thick gold coating was deposited on the surface of the TFBG cladding in a small-scale sputtering chamber KYKY SBC-12, and thermal field scanning electron microscopy presents that the effect of gold-coating was satisfactory to a certain extent in terms of microscopic level. The refractive index(RI) sensing experiments of different concentration solutions of NaCI, MgCI2, CaCI2 were carried out using bare and gold deposited TFBG. The RI sensing characteristics of both bare and gold deposited TFBGs respectively were studied by experiments. Meanwhile, it proved the conclusion that the cladding modes of TFBG drifted to right gradually when the SRI was increasing and the relations between resonance peak caused by the coupling of core mode and a certain cladding mode and the SRI were linear. And by quantitative analysis, we know that SPR sensor with the deposited namoscale gold layer on the surface of cladding enhanced the RI sensitivity dramatically by 2 to 500 nm RIU-1 which is 200 to 300 times larger than that of the bare tilted fiber Bragg grating approximately. The degrees of linear fittings of resonance peak caused by the coupling of core mode and a certain cladding mode and SRI of bare and gold-coating deposited SPR sensor are very good and both of them reach up to more than 0. 99.

  12. Pesticides sensing by surface plasmon resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalabina, N.A.; Ksenevich, T.I.; Beloglazov, A.A.

    1995-12-31

    High toxicity of pesticides and their wide use in agriculture, represent a general danger for environmental welfare and could become a real threat to life. Screening of pesticides in the environment has become very important during last years due to low threshold values for pesticides in drinking water. An optical biosensor has been developed for detection of pesticides, based on surface plasmon resonance (SPR) technique. Concentration of the pesticides was measured in liquid or gas. The authors specially originated organic film on a disposable element. A setup on the base of the Kretschmann arrangement was improved by using a computer-controlledmore » angular scanning system. The detection concentration limit of dinitrophenole (DNP) was 10{sup {minus}9} M. Some samples exhibited effect down to 10{sup {minus}11} M of DNP. The results obtained provide reason for further development of SPR sensor as applied to pesticides monitoring.« less

  13. Sensitive Detection of Capsaicinoids Using a Surface Plasmon Resonance Sensor with Anti-Homovanillic Acid Polyclonal Antibodies

    PubMed Central

    Nakamura, Shingo; Yatabe, Rui; Onodera, Takeshi; Toko, Kiyoshi

    2013-01-01

    Recently, highly functional biosensors have been developed in preparation for possible large-scale terrorist attacks using chemical warfare agents. Practically applicable sensors are required to have various abilities, such as high portability and operability, the capability of performing rapid and continuous measurement, as well as high sensitivity and selectivity. We developed the detection method of capsaicinoids, the main component of some lachrymators, using a surface plasmon resonance (SPR) immunosensor as an on-site detection sensor. Homovanillic acid, which has a vanillyl group similar to capsaicinoids such as capsaicin and dihydrocapsaicin, was bound to Concholepas concholepas hemocyanin (CCH) for use as an immunogen to generate polyclonal antibodies. An indirect competitive assay was carried out to detect capsaicinoids using SPR sensor chips on which different capsaicin analogues were immobilized. For the sensor chip on which 4-hydroxy-3-methoxybenzylamine hydrochloride was immobilized, a detection limit of 150 ppb was achieved. We found that the incubation time was not required and the detection can be completed in five minutes. PMID:25586413

  14. Evaluation of taste solutions by sensor fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko

    In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surfacemore » plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.« less

  15. Microfluidic transmission surface plasmon resonance enhancement for biosensor applications

    NASA Astrophysics Data System (ADS)

    Lertvachirapaiboon, Chutiparn; Baba, Akira; Ekgasit, Sanong; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao

    2017-01-01

    The microfluidic transmission surface plasmon resonance (MTSPR) constructed by assembling a gold-coated grating substrate with a microchannel was employed for biosensor application. The transmission surface plasmon resonance spectrum obtained from the MTSPR sensor chip showed a strong and narrow surface plasmon resonance (SPR) peak located between 650 and 800 nm. The maximum SPR excitation was observed at an incident angle of 35°. The MTSPR sensor chip was employed for glucose sensor application. Gold-coated grating substrates were functionalized using 3-mercapto-1-propanesulfonic acid sodium salt and subsequently functionalized using a five-bilayer poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) to facilitate the coupling/decoupling of the surface plasmon and to prepare a uniform surface for sensing. The detection limit of our developed system for glucose was 2.31 mM. This practical platform represents a high possibility of further developing several biomolecules, multiplex systems, and a point-of-care assay for practical biosensor applications.

  16. Advances in Surface Plasmon Resonance Imaging enable quantitative measurement of laterally heterogeneous coatings of nanoscale thickness

    NASA Astrophysics Data System (ADS)

    Raegen, Adam; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2013-03-01

    The Surface Plasmon Resonance (SPR) phenomenon is routinely exploited to qualitatively probe changes to the optical properties of nanoscale coatings on thin metallic surfaces, for use in probes and sensors. Unfortunately, extracting truly quantitative information is usually limited to a select few cases - uniform absorption/desorption of small biomolecules and films, in which a continuous ``slab'' model is a good approximation. We present advancements in the SPR technique that expand the number of cases for which the technique can provide meaningful results. Use of a custom, angle-scanning SPR imaging system, together with a refined data analysis method, allow for quantitative kinetic measurements of laterally heterogeneous systems. We first demonstrate the directionally heterogeneous nature of the SPR phenomenon using a directionally ordered sample, then show how this allows for the calculation of the average coverage of a heterogeneous sample. Finally, the degradation of cellulose microfibrils and bundles of microfibrils due to the action of cellulolytic enzymes will be presented as an excellent example of the capabilities of the SPR imaging system.

  17. Reducing airflow energy use in multiple zone vav systems

    NASA Astrophysics Data System (ADS)

    Tukur, Ahmed Gidado

    Variable Air Volume (VAV) systems are the most popular HVAC systems in commercial buildings. VAV systems are designed to deliver airflows at design conditions which only occur for a few hours in a year. Minimizing energy use in VAV systems requires reducing the amount of airflow delivered through the system at part load conditions. Air Handling Unit (AHU) fans are the major drivers of airflow in VAV systems and installing a Variable Frequency Drive (VFD) is the most common method of regulating airflow in VAV systems. A VFD drive does not necessarily save energy without use of an appropriate control strategy. Static pressure reset (SPR) is considered to be the most energy efficient control strategy for AHU fans with VFDs installed. The implementation of SPR however has many challenges; for example, rogue zones--zones which have faulty sensors or failed controls and actuators, system dynamics like hunting and system diversity. By investigating the parameters associated with the implementation of SPR in VAV systems, a new, improved, more stable SPR algorithm was developed and validated. This approach was further improved using Fault Detection and Diagnostics (FDD) to eliminate rogue zones. Additionally, a CO2-Demand Control Ventilation (DCV) based minimum airflow control was used to further reduce ventilation airflow and save more energy from SPR. Energy savings ranging from 25% to 51% were recorded in actual buildings with the new SPR algorithm. Finally, a methodology that utilizes historical VAV data was developed to estimate the potential savings that could be realized using SPR. The approach employed first determines an effective system loss coefficient as a function of mean damper position using the historical duct static pressure, VAV damper positions and airflows. Additionally, the historical data is used to identify the maximum mean duct damper position realizable as a result of insuring a sufficient number of VAVs are fully open at any time. Savings are estimated by shifting the damper distribution mean at each time to this maximum value and reducing the static pressure to achieve the same overall system airflow rate. The methodology was tested on three different buildings with varying system characteristics. Savings estimates correlated well to the savings actually realized from SPR. This result has significant implications for energy service providers, who could use the predictions to guarantee savings from SPR.

  18. The use of reverse iontophoresis based surface plasmon resonance for the development of a noninvasive real time transdermal biomarker sensor

    NASA Astrophysics Data System (ADS)

    Gupta, Niraj K.; Hwang, Yongsoon; Cameron, Brent D.

    2016-03-01

    Recent developments in the identification of biomarkers offer a potential means to facilitate early disease detection, gauge treatment in drug therapy clinical trials, and to assess the impact of fatigue and/or stress as related to human physical and cognitive performance. For practical implementation, however, real-time sensing and quantification of such physiological biomarkers is preferred. Some key aspects in this process are continuous sample collection and real time detection. Traditionally, blood is considered the gold standard for samples but frequent phlebotomy is painful and inconvenient. Other sources like saliva and passive sweat cannot be precisely controlled and are affected by other limitations. Some of these can be addressed by reverse iontophoresis which is a noninvasive technique capable of facilitating controlled transport of biomolecules up to 20kDa in size across the skin barrier by passing a low level current between two dermal electrodes. The samples collected at the electrode site can then be monitored at site or transported via a microfluidic channel towards a sensor. In the case reported here, the sensor is based on surface plasmon resonance (SPR), which is a label free, real time, and highly sensitive optical sensing technique. The real time SPR detection of targeted biomarkers is then achieved through the use of aptamer surface modification. In this experiment, extraction and detection of orexin A, a stress related biomarker, is used for demonstration purposes.

  19. DNA-Aptamer optical biosensors based on a LPG-SPR optical fiber platform for point-of-care diagnostic

    NASA Astrophysics Data System (ADS)

    Coelho, L.; Queirós, R. B.; Santos, J. L.; Martins, M. Cristina L.; Viegas, D.; Jorge, P. A. S.

    2014-03-01

    Surface Plasmon Resonance (SPR) is the base for some of the most sensitive label free optical fiber biosensors. However, most solutions presented to date require the use of fragile fiber optic structure such as adiabatic tapers or side polished fibers. On the other hand, long-period fiber gratings (LPG) present themselves as an interesting solution to attain an evanescent wave refractive index sensor platform while preserving the optical fiber integrity. The combination of these two approaches constitute a powerful platform that can potentially reach the highest sensitivities as it was recently demonstrated by detailed theoretical study [1, 2]. In this work, a LPG-SPR platform is explored in different configurations (metal coating between two LPG - symmetric and asymmetric) operating in the telecom band (around 1550 nm). For this purpose LPGs with period of 396 μm are combined with tailor made metallic thin films. In particular, the sensing regions were coated with 2 nm of chromium to improve the adhesion to the fiber and 16 nm of gold followed by a 100 nm thick layer of TiO2 dielectric material strategically chosen to attain plasmon resonance in the desired wavelength range. The obtained refractometric platforms were then validated as a biosensor. For this purpose the detection of thrombin using an aptamer based probe was used as a model system for protein detection. The surface of the sensing fibers were cleaned with isopropanol and dried with N2 and then the aminated thrombin aptamer (5'-[NH2]- GGTTGGTGTGGTTGG-3') was immobilized by physisorption using Poly-L-Lysine (PLL) as cationic polymer. Preliminary results indicate the viability of the LPFG-SPR-APTAMER as a flexible platforms point of care diagnostic biosensors.

  20. Surface Plasmon Resonance kinetic analysis of the interaction between G-quadruplex nucleic acids and an anti-G-quadruplex monoclonal antibody.

    PubMed

    Lago, Sara; Nadai, Matteo; Rossetto, Monica; Richter, Sara N

    2018-06-01

    G-quadruplexes (G4s) are nucleic acids secondary structures formed in guanine-rich sequences. Anti-G4 antibodies represent a tool for the direct investigation of G4s in cells. Surface Plasmon Resonance (SPR) is a highly sensitive technology, suitable for assessing the affinity between biomolecules. We here aimed at improving the orientation of an anti-G4 antibody on the SPR sensor chip to optimize detection of binding antigens. SPR was employed to characterize the anti-G4 antibody interaction with G4 and non-G4 oligonucleotides. Dextran-functionalized sensor chips were used both in covalent coupling and capturing procedures. The use of two leading molecule for orienting the antibody of interest allowed to improve its activity from completely non-functional to 65% active. The specificity of the anti-G4 antobody for G4 structures could thus be assessed with high sensitivity and reliability. Optimization of the immobilization protocol for SPR biosensing, allowed us to determine the anti-G4 antibody affinity and specificity for G4 antigens with higher sensitivity with respect to other in vitro assays such as ELISA. Anti-G4 antibody specificity is a fundamental assumption for the future utilization of this kind of antibodies for monitoring G4s directly in cells. The heterogeneous orientation of amine-coupling immobilized ligands is a general problem that often leads to partial or complete inactivation of the molecules. Here we describe a new strategy for improving ligand orientation: driving it from two sides. This principle can be virtually applied to every molecule that loses its activity or is poorly immobilized after standard coupling to the SPR chip surface. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Trends and challenges of refractometric nanoplasmonic biosensors: a review.

    PubMed

    Estevez, M-Carmen; Otte, Marinus A; Sepulveda, Borja; Lechuga, Laura M

    2014-01-02

    Motivated by potential benefits such as sensor miniaturization, multiplexing opportunities and higher sensitivities, refractometric nanoplasmonic biosensing has profiled itself in a short time span as an interesting alternative to conventional Surface Plasmon Resonance (SPR) biosensors. This latter conventional sensing concept has been subjected during the last decades to strong commercialization, thereby strongly leaning on well-developed thin-film surface chemistry protocols. Not surprisingly, the examples found in literature based on this sensing concept are generally characterized by extensive analytical studies of relevant clinical and diagnostic problems. In contrast, the more novel Localized Surface Plasmon Resonance (LSPR) alternative finds itself in a much earlier, and especially, more fundamental stage of development. Driven by new fabrication methodologies to create nanostructured substrates, published work typically focuses on the novelty of the presented material, its optical properties and its use - generally limited to a proof-of-concept - as a label-free biosensing scheme. Given the different stages of development both SPR and LSPR sensors find themselves in, it becomes apparent that providing a comparative analysis of both concepts is not a trivial task. Nevertheless, in this review we make an effort to provide an overview that illustrates the progress booked in both fields during the last five years. First, we discuss the most relevant advances in SPR biosensing, including interesting analytical applications, together with different strategies that assure improvements in performance, throughput and/or integration. Subsequently, the remaining part of this work focuses on the use of nanoplasmonic sensors for real label-free biosensing applications. First, we discuss the motivation that serves as a driving force behind this research topic, together with a brief summary that comprises the main fabrication methodologies used in this field. Next, the sensing performance of LSPR sensors is examined by analyzing different parameters that can be invoked in order to quantitatively assess their overall sensing performance. Two aspects are highlighted that turn out to be especially important when trying to maximize their sensing performance, being (1) the targeted functionalization of the electromagnetic hotspots of the nanostructures, and (2) overcoming inherent negative influence that stem from the presence of a high refractive index substrate that supports the nanostructures. Next, although few in numbers, an overview is given of the most exhaustive and diagnostically relevant LSPR sensing assays that have been recently reported in literature, followed by examples that exploit inherent LSPR characteristics in order to create highly integrated and high-throughput optical biosensors. Finally, we discuss a series of considerations that, in our opinion, should be addressed in order to bring the realization of a stand-alone LSPR biosensor with competitive levels of sensitivity, robustness and integration (when compared to a conventional SPR sensor) much closer to reality. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Inhibitory assay for degradation of collagen IV by cathepsin B with a surface plasmon resonance sensor.

    PubMed

    Shoji, Atsushi; Suenaga, Yumiko; Hosaka, Atsushi; Ishida, Yuuki; Yanagida, Akio; Sugawara, Masao

    2017-10-25

    We describe a simple method for evaluating the inhibition of collagen IV degradation by cathepsin B with a surface plasmon resonance (SPR) biosensor. The change in the SPR signal decreased with an increase in the concentration of cathepsin B inhibitors. The order of the inhibitory constant (Ki) obtained by the SPR method was CA074Me≈Z-Phe-Phe-FMK < leupeptin. This order was different from that obtained by benzyloxycarbonyl-Phe-Phe-Fluoromethylketone (Z-Phe-Phe-FMK) as a peptide substrate. The comparison of Ki suggested that CA074 and Z-Phe-Phe-FMK inhibited exopeptidase activity, and leupeptin inhibited the endopeptidase activity of cathepsin B more strongly. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A direct determination of AFBs in vinegar by aptamer-based surface plasmon resonance biosensor.

    PubMed

    Wu, Wenbo; Zhu, Zhiling; Li, Bingjie; Liu, Zhuqing; Jia, Lili; Zuo, Limin; Chen, Long; Zhu, Zhentai; Shan, Guangzhi; Luo, Shi-Zhong

    2018-05-01

    Aflatoxin (AFB) is one of the most toxic fungal metabolites produced by Aspergillus flavus, which may contaminate food and agricultural products. Herein, an aptamer-based surface plasmon resonance (SPR) biosensor was developed to detect AFBs. The chosen aptamer showed comparable interaction with the two AFBs, namely aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2). Such phenomenon was rarely reported, and might lead to a simultaneous detection of both AFBs. In this study, AFB1 was used to systematically establish the detection method. In the SPR system, streptavidin proteins were immobilized on the surface of a CM5 sensor chip as a cross-linker and biotin-aptamers were captured through streptavidin-biotin interaction. After optimization, the assay showed a dynamic range between 0.09 and 200 ng mL -1 (linear range from 1.5 to 50 ng mL -1 and a LOD of 0.19 ng mL -1 ) of AFB1 in buffer. As expected, the aptasensor showed high specificity towards AFB1 and AFB2, but hardly bound to other toxins with similar structures, including ochratoxin A (OTA), ochratoxin B (OTB), Zeralenone (ZEA) and T-2 toxin (T-2). Determination of AFB1 in vinegar was further performed using the SPR biosensor. Recoveries of AFB1 from spiked samples ranged from 96.3 to 117.8%. The developed SPR assay is a simple, fast and sensitive approach for the detection of residual AFBs in agricultural products and foodstuffs like vinegar. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Long range surface plasmon resonance (LRSPR) based highly sensitive refractive index sensor using Kretschmann prism coupling arrangement

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2016-04-01

    Long range surface plasmon resonance (LRSPR) when exploited for sensing purpose exhibit less losses in comparison to the sensors based on conventional SPR technique leading to the development of highly sensitive refractive index sensor. In order to excite long range surface plasmon (LRSP) mode, a high refractive index prism is used as coupler and a thin metal layer is sandwiched between a dielectric having similar refractive index with that of another semi-infinite dielectric. LRSP mode has been excited in symmetric configuration where metal (Au) layer is sandwiched between the two similar refractive index dielectrics (LiF thin film and a fixed concentration of sugar solution) for realization of a refractive index sensor. When the concentration of sugar solution is slightly increased from 30% to 40%, the LRSPR angle increases from 64.6° to 67.9° and the sensor is found to be highly sensitive with sensitivity of 0.0911 °/(mg/dl).

  5. Properties of mixed metal-dielectric nanogratings for application in resonant absorption, sensing, and display

    NASA Astrophysics Data System (ADS)

    Fannin, Alexander L.; Wenner, Brett R.; Allen, Jeffery W.; Allen, Monica S.; Magnusson, Robert

    2017-12-01

    We treat fundamental resonance effects in hybridized metal-dielectric elements that may find applications in absorption, sensing, and displays. The hybrid structures support guided-mode resonance (GMR) and surface plasmon resonance (SPR) operating independently or in unison. Numerical simulations of periodic resonant films coated in gold that effectively combine principles of both resonance effects show viability of absorbers with equalized spectra and hybrid waveguides. The experimentally measured spectra show qualitative agreement with theoretical models. We introduce a hybrid GMR/SPR refractive-index sensor consisting of a thin aluminum film integrated with a subwavelength silicon-dioxide grating. The sensor operates between the Rayleigh wavelengths of the cover and the substrate. A GMR is excited by TE-polarized light and is subsequently attenuated by the Rayleigh anomaly as the cover index increases. In transverse-magnetic-polarized light, it operates as a Rayleigh sensor with sharp spectral features that would be easily monitored with a spectrum analyzer. As a final device example, we present simulation results pertaining to a one-dimensional color filter utilizing SPR, GMR, and the Rayleigh anomaly and convert it into a polarization insensitive two-dimensional device. With dual periods along orthogonal directions, two resonant peaks are induced within the visible spectrum for unpolarized input light rendering a color-mixing effect. The output color of the dual pixel is tunable with the input polarization state.

  6. Numerical modeling study of silver nano-filling based on grapefruit-type photonic crystal fiber sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Yibo; Zhang, Lei; Wang, Yuan

    2017-10-01

    In this letter, surface plasmon resonance sensors based on grapefruit-type photonic crystal fiber (PCF)with different silver nano-filling structure have been analyzed and compared though the finite element method (FEM). The regularity of the resonant wavelength changing with refractive index of the sample has been numerically simulated. The surface plasmon resonance (SPR) sensing properties have been numerically simulated in both areas of resonant wavelength and intensity detection. Numerical results show that excellent sensor resolution of 4.17×10-5RIU can be achieved as the radius of the filling silver nanowires is 150 nm by spectrum detection method. Comprehensive comparison indicates that the 150 nm silver wire filling structure is suitable for spectrum detection and 30 nm silver film coating structure is suitable for the amplitude detection.

  7. A Low-Cost and Portable Dual-Channel Fiber Optic Surface Plasmon Resonance System.

    PubMed

    Liu, Qiang; Liu, Yun; Chen, Shimeng; Wang, Fang; Peng, Wei

    2017-12-04

    A miniaturization and integration dual-channel fiber optic surface plasmon resonance (SPR) system was proposed and demonstrated in this paper. We used a yellow light-emitting diode (LED, peak wavelength 595 nm) and built-in web camera as a light source and detector, respectively. Except for the detection channel, one of the sensors was used as a reference channel to compensate nonspecific binding and physical absorption. We packaged the LED and surface plasmon resonance (SPR) sensors together, which are flexible enough to be applied to mobile devices as a compact and portable system. Experimental results show that the normalized intensity shift and refractive index (RI) of the sample have a good linear relationship in the RI range from 1.328 to 1.348. We used this sensor to monitor the reversible, specific interaction between lectin concanavalin A (Con A) and glycoprotein ribonuclease B (RNase B), which demonstrate its capabilities of specific identification and biochemical samples concentration detection. This sensor system has potential applications in various fields, such as medical diagnosis, public health, food safety, and environment monitoring.

  8. Nano-imprint gold grating as refractive index sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Sudha; Mohapatra, Saswat; Moirangthem, Rakesh S.

    Large scale of fabrication of plasmonic nanostructures has been a challenging task due to time consuming process and requirement of expensive nanofabrication tools such as electron beam lithography system, focused ion beam system, and extreme UV photolithography system. Here, we present a cost-effective fabrication technique so called soft nanoimprinting to fabricate nanostructures on the larger sample area. In our fabrication process, a commercially available optical DVD disc was used as a template which was imprinted on a polymer glass substrate to prepare 1D polymer nano-grating. A homemade nanoimprinting setup was used in this fabrication process. Further, a label-free refractive indexmore » sensor was developed by utilizing the properties of surface plasmon resonance (SPR) of a gold coated 1D polymer nano-grating. Refractive index sensing was tested by exposing different solutions of glycerol-water mixture on the surface of gold nano-grating. The calculated bulk refractive index sensitivity was found to be 751nm/RIU. We believed that our proposed SPR sensor could be a promising candidate for developing low-cost refractive index sensor with high sensitivity on a large scale.« less

  9. Synthesis methods of gold nanoparticles for Localized Surface Plasmon Resonance (LSPR) sensor applications

    NASA Astrophysics Data System (ADS)

    Diyanah Samsuri, Nurul; Maisarah Mukhtar, Wan; Rashid, Affa Rozana Abdul; Dasuki, Karsono Ahmad; Awangku Yussuf, Awangku Abdul Rahman Hj.

    2017-11-01

    Gold nanoparticles (GNPs) have been known as an excellent characteristic for Local Surface Plasmon Resonance (LSPR) sensors due to their sensitive spectral response to the local environment of the nanoparticle surface and ease of monitoring the light signal due to their strong scattering or absorption. Prior the technologies, GNPs based LSPR has been commercialized and have become a central tool for characterizing and quantifying in various field. In this review, we presented a brief introduction on the history of surface plasmon, the theory behind the surface plasmon resonance (SPR) and the principles of LSPR. We also reported on the synthetization as well of the properties of the GNPs and the applications in current LSPR sensors.

  10. Design and fabrication of an angle-scanning based platform for the construction of surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Hu, Jiandong; Cao, Baiqiong; Wang, Shun; Li, Jianwei; Wei, Wensong; Zhao, Yuanyuan; Hu, Xinran; Zhu, Juanhua; Jiang, Min; Sun, Xiaohui; Chen, Ruipeng; Ma, Liuzheng

    2016-03-01

    A sensing system for an angle-scanning optical surface-plasmon-resonance (SPR) based biosensor has been designed with a laser line generator in which a P polarizer is embedded to utilize as an excitation source for producing the surface plasmon wave. In this system, the emitting beam from the laser line generator is controlled to realize the angle-scanning using a variable speed direct current (DC) motor. The light beam reflected from the prism deposited with a 50 nm Au film is then captured using the area CCD array which was controlled by a personal computer (PC) via a universal serial bus (USB) interface. The photoelectric signals from the high speed digital camera (an area CCD array) were converted by a 16 bit A/D converter before it transferred to the PC. One of the advantages of this SPR biosensing platform is greatly demonstrated by the label-free and real-time bio-molecular analysis without moving the area CCD array by following the laser line generator. It also could provide a low-cost surface plasmon resonance platform to improve the detection range in the measurement of bioanalytes. The SPR curve displayed on the PC screen promptly is formed by the effective data from the image on the area CCD array and the sensing responses of the platform to bulk refractive indices were calibrated using various concentrations of ethanol solution. These ethanol concentrations indicated with volumetric fraction of 5%, 10%, 15%, 20%, and 25%, respectively, were experimented to validate the performance of the angle-scanning optic SPR biosensing platform. As a result, the SPR sensor was capable to detect a change in the refractive index of the ethanol solution with the relative high linearity at the correlation coefficient of 0.9842. This greatly enhanced detection range is obtained from the position relationship between the laser line generator and the right-angle prism to allow direct quantification of the samples over a wide range of concentrations.

  11. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings

    PubMed Central

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-01-01

    We propose and demonstrate hydrogen peroxide (H2O2) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 105) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H2O2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H2O2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H2O2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H2O2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H2O2 and glucose detection in human serum. PMID:29675315

  12. Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings.

    PubMed

    Zhang, Xuejun; Wu, Ze; Liu, Fu; Fu, Qiangqiang; Chen, Xiaoyong; Xu, Jian; Zhang, Zhaochuan; Huang, Yunyun; Tang, Yong; Guo, Tuan; Albert, Jacques

    2018-04-01

    We propose and demonstrate hydrogen peroxide (H 2 O 2 ) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 10 5 ) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H 2 O 2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H 2 O 2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H 2 O 2 concentration with a limit of detection of 0.2 μM. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H 2 O 2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H 2 O 2 and glucose detection in human serum.

  13. Sensitive and rapid detection of anti-PEG in blood using surface plasmon resonance sensor (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sun, Fang; Jiang, Shaoyi; Yu, Qiuming

    2016-03-01

    Polyethylene glycol (PEG) is widely used to modify many therapeutic proteins and nanoparticles to reduce their immunogenicity and to improve their pharmacokinetic and therapeutic properties. It is generally accepted that PEG is non-immunogenic and non-antigenic. However, an emerging of literature and studies shows that the immune system can generate specific antibodies binding PEG. These anti-PEG antibodies not only correlate with adverse reactions appeared after patient infusions, but are also found to be the reason for therapeutic efficacy loss during chronical administrations. In addition, because of constant exposure to PEG in daily consumer products including detergents, processed food and cosmetics, a substantial proportion of the population has likely developed anti-PEG immunity. Thus a method to quickly and accurately measure the anti-PEG antibody level is desired. Nevertheless, the gold standard to detect anti-PEG antibodies is ELISA, which is costly and time-consuming especially for quantification. Herein, we demonstrated the anti-PEG measurement in blood serum using surface plasmon resonance (SPR) sensor. Several PEG-based surface functionalization on SPR sensor chip were studied in terms of protein resistance and the limit of detection (LOD) of anti-PEG. The quantitative detection can be achieved in less than 30 min with LOD comparable to ELISA. Furthermore, the IgG and IgM of anti-PEG can be differentiated by following the secondary antibody.

  14. Fabrication of a cost-effective polymer nanograting as a disposable plasmonic biosensor using nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Mohapatra, Saswat; Kumari, Sudha; Moirangthem, Rakesh S.

    2017-07-01

    A simple and cost-effective flexible plasmonic sensor is developed using a gold-coated polymer nanograting structure prepared via soft UV nanoimprint lithography. The sub-wavelength nanograting patterns of digital versatile discs were used as a template to prepare the polydimethylsiloxane stamp. The plasmonic sensing substrate was achieved after coating a gold thin film on top of the imprinted nanograting sample. The surface plasmon resonance (SPR) modes excited on the gold-coated nanograting structure appeared as a dip in the reflectance spectrum measured at normal incidence under white light illumination in the ambient air medium. Electromagnetic simulation based on the finite element method was carried out to analyze the excited SPR modes. The simulated result shows very close agreement with the experimental data. The performance of the sensor with respect to changing the surrounding dielectric medium yields a bulk refractive index sensitivity of 788  ±  21 nm per refractive index unit. Further, label-free detection of proteins using a plasmonic sensing substrate was demonstrated by monitoring specific interactions between bovine serum albumin (BSA) and anti-BSA proteins, which gave a detection limit of 123 pg mm-2 with respect to target anti-BSA protein binding. Thus, our proposed plasmonic sensor has potential for the development of an economical and highly sensitive label-free optical biosensing device for biomedical applications.

  15. Application of surface plasmon resonance biosensor for the detection of Candida albicans

    NASA Astrophysics Data System (ADS)

    Yodmongkol, Sirasa; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Puttharugsa, Chokchai; Sutapun, Boonsong; Amarit, Ratthasart; Somboonkaew, Armote; Srikhirin, Toemsak

    2016-02-01

    In this study, surface plasmon resonance imaging (SPR imaging) was developed for the detection of Candida albicans which is a causal agent of oral infection. The detection was based on the sandwich assay. The capture antibody was covalently immobilized on the mixed self assemble monolayers (SAMs). The ratio of mixed SAMs between 11-mercaptoundecanoic acid and 3-mercaptopropanol was varied to find the optimal ratio for use as a sensor surface. The results showed that the suitable surface for C. albicans detection was SAM of carboxylic (mixed SAMs 1:0), even though mixed SAMs 1:40 had a high detection signal in comparison to mixed SAMs 1:0, but the non-specific signal was higher. The detection limit was 107 cells/ml for direct detection, and was increased to 106 cells/ml with sandwich antibody. The use of polyclonal C. albicans antibody as capture and sandwich antibody showed good selectivity against the relevant oral bacteria including Escherichia coli, Streptococcus mutan, Staphylococcus aureus, β-streptococci, and Lactobacillus casei. SPR platform in this study could detect C. albicans from the mixed microbial suspension without requirement of skillful technician. This SPR imaging biosensor could be applied for Candida identification after cultivation.

  16. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    PubMed

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-09-29

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications.

  17. Design and Simulation of Surface Plasmon Resonance Sensors for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Mahmood, Aseel I.; Ibrahim, Rawa Kh; Mahmood, Aml I.; Ibrahim, Zainab Kh

    2018-05-01

    In this work a Surface Plasmon Resonance (SPR) sensor based on Photonic Crystal Fiber (PCF) infiltrated with water samples has been proposed. To accurate detection of the sample properties, gold is used as plasmonic material. The air holes of PCF has been infiltrated with water samples, the optical properties of these samples has been taken from samples collected from Al-Qadisiya and Wathba lab. (east Tigris, Wathba, and Al-Rasheed) water projects at Baghdad- Iraq. Finite Element Method (FEM) has been used to study the sensor performance and fiber properties. From the numerical investigation we get maximum sensitivity circa 164.3 nm/RIU in the sensing range of 1.33 (of STD water) to 1.3431 (of river sample). The proposed sensor could be developed to detect f various high refractive index (RI) chemicals like the heavy metals in water.

  18. Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift

    PubMed Central

    Alharbi, Raed; Irannejad, Mehrdad; Yavuz, Mustafa

    2017-01-01

    Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene) enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local) sensitivity than a regular surface plasmon resonance (SPR) sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit) at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection. PMID:28106850

  19. Ion-imprinted nanoparticles for the concurrent estimation of Pb(II) and Cu(II) ions over a two channel surface plasmon resonance-based fiber optic platform

    NASA Astrophysics Data System (ADS)

    Shrivastav, Anand Mohan; Gupta, Banshi D.

    2018-01-01

    We report the design, fabrication, and characterization of an optical fiber sensor based on the surface plasmon resonance (SPR) technique for the simultaneous determination of lead (Pb) and copper (Cu) metal ions in aqueous samples. Two cascade channels over a single optical fiber are fabricated by removing cladding from two well-separated regions of the fiber. SPR working as a transducing mechanism for the sensor is realized by coating thin films of copper and silver over unclad cores of channel I and channel II, respectively. Ion-imprinted nanoparticles for both ions are separately synthesized and coated over the metal-coated unclad cores of the fiber as the recognition layers for sensor fabrication. A first channel having layer of Pb(II) ion-imprinted nanoparticles detects Pb(II) ions and a second channel having layer of Cu(II) ion-imprinted nanoparticles are used for the detection of Cu(II) ions. Both channels are characterized using the wavelength interrogation method. The sensor operates in the range between 0 to 1000 μg/L and 0 to 1000 mg/L for Pb(II) and Cu(II) ions, respectively. These ranges cover water resources and the human body for these ions. The sensitivities of channel I and channel II are found to be 8.19×104 nm/(μg/L) and 4.07×105 nm/(mg/L) near the lowest concentration of Pb(II) and Cu(II) ions, respectively. The sensor can detect concentrations of Pb(II) and Cu(II) ions as low as 4.06 × 10-12 g/L and 8.18 × 10-10 g/L, respectively, which are the least among the reported values in the literature. Further, the probe is simple, cost effective, highly selective, and applicable for online monitoring and remote sensing.

  20. Gold Nanoplates for a Localized Surface Plasmon Resonance-Based Boric Acid Sensor

    PubMed Central

    Morsin, Marlia; Mat Salleh, Muhamad; Ali Umar, Akrajas; Sahdan, Mohd Zainizan

    2017-01-01

    Localized surface plasmon resonance (LSPR) properties of metallic nanostructures, such as gold, are very sensitive to the dielectric environment of the material, which can simply be adjusted by changing its shape and size through modification of the synthesizing process. Thus, these unique properties are very promising, particularly for the detection of various types of chemicals, for example boric acid which is a non-permitted preservative employed in food preparations. For the sensing material, gold (Au) nanoplates with a variety of shapes, i.e., triangular, hexagonal, truncated pentagon and flat rod, were prepared using a seed-mediated growth method. The yield of Au nanoplates was estimated to be ca. 63% over all areas of the sensing material. The nanoplates produced two absorption bands, i.e., the transverse surface plasmon resonance (t-SPR) and the longitudinal surface plasmon resonance (l-SPR) at 545 nm and 710 nm, respectively. In the sensing study, these two bands were used to examine the response of gold nanoplates to the presence of boric acid in an aqueous environment. In a typical process, when the sample is immersed into an aqueous solution containing boric acid, these two bands may change their intensity and peak centers as a result of the interaction between the boric acid and the gold nanoplates. The changes in the intensities and peak positions of t-SPR and l-SPR linearly correlated with the change in the boric acid concentration in the solution. PMID:28441323

  1. Gold Nanoplates for a Localized Surface Plasmon Resonance-Based Boric Acid Sensor.

    PubMed

    Morsin, Marlia; Mat Salleh, Muhamad; Ali Umar, Akrajas; Sahdan, Mohd Zainizan

    2017-04-25

    Localized surface plasmon resonance (LSPR) properties of metallic nanostructures, such as gold, are very sensitive to the dielectric environment of the material, which can simply be adjusted by changing its shape and size through modification of the synthesizing process. Thus, these unique properties are very promising, particularly for the detection of various types of chemicals, for example boric acid which is a non-permitted preservative employed in food preparations. For the sensing material, gold (Au) nanoplates with a variety of shapes, i.e., triangular, hexagonal, truncated pentagon and flat rod, were prepared using a seed-mediated growth method. The yield of Au nanoplates was estimated to be ca. 63% over all areas of the sensing material. The nanoplates produced two absorption bands, i.e., the transverse surface plasmon resonance (t-SPR) and the longitudinal surface plasmon resonance (l-SPR) at 545 nm and 710 nm, respectively. In the sensing study, these two bands were used to examine the response of gold nanoplates to the presence of boric acid in an aqueous environment. In a typical process, when the sample is immersed into an aqueous solution containing boric acid, these two bands may change their intensity and peak centers as a result of the interaction between the boric acid and the gold nanoplates. The changes in the intensities and peak positions of t-SPR and l-SPR linearly correlated with the change in the boric acid concentration in the solution.

  2. Direct optical detection of protein-ligand interactions.

    PubMed

    Gesellchen, Frank; Zimmermann, Bastian; Herberg, Friedrich W

    2005-01-01

    Direct optical detection provides an excellent means to investigate interactions of molecules in biological systems. The dynamic equilibria inherent to these systems can be described in greater detail by recording the kinetics of a biomolecular interaction. Optical biosensors allow direct detection of interaction patterns without the need for labeling. An overview covering several commercially available biosensors is given, with a focus on instruments based on surface plasmon resonance (SPR) and reflectometric interference spectroscopy (RIFS). Potential assay formats and experimental design, appropriate controls, and calibration procedures, especially when handling low molecular weight substances, are discussed. The single steps of an interaction analysis combined with practical tips for evaluation, data processing, and interpretation of kinetic data are described in detail. In a practical example, a step-by-step procedure for the analysis of a low molecular weight compound interaction with serum protein, determined on a commercial SPR sensor, is presented.

  3. Floating Chip Mounting System Driven by Repulsive Force of Permanent Magnets for Multiple On-Site SPR Immunoassay Measurements

    PubMed Central

    Horiuchi, Tsutomu; Tobita, Tatsuya; Miura, Toru; Iwasaki, Yuzuru; Seyama, Michiko; Inoue, Suzuyo; Takahashi, Jun-ichi; Haga, Tsuneyuki; Tamechika, Emi

    2012-01-01

    We have developed a measurement chip installation/removal mechanism for a surface plasmon resonance (SPR) immunoassay analysis instrument designed for frequent testing, which requires a rapid and easy technique for changing chips. The key components of the mechanism are refractive index matching gel coated on the rear of the SPR chip and a float that presses the chip down. The refractive index matching gel made it possible to optically couple the chip and the prism of the SPR instrument easily via elastic deformation with no air bubbles. The float has an autonomous attitude control function that keeps the chip parallel in relation to the SPR instrument by employing the repulsive force of permanent magnets between the float and a float guide located in the SPR instrument. This function is realized by balancing the upward elastic force of the gel and the downward force of the float, which experiences a leveling force from the float guide. This system makes it possible to start an SPR measurement immediately after chip installation and to remove the chip immediately after the measurement with a simple and easy method that does not require any fine adjustment. Our sensor chip, which we installed using this mounting system, successfully performed an immunoassay measurement on a model antigen (spiked human-IgG) in a model real sample (non-homogenized milk) that included many kinds of interfering foreign substances without any sample pre-treatment. The ease of the chip installation/removal operation and simple measurement procedure are suitable for frequent on-site agricultural, environmental and medical testing. PMID:23202030

  4. Gold Nanoparticles Used as Protein Scavengers Enhance Surface Plasmon Resonance Signal

    PubMed Central

    Ferreira de Macedo, Erenildo; Ducatti Formaggio, Daniela Maria; Salles Santos, Nivia; Batista Tada, Dayane

    2017-01-01

    Although several researchers had reported on methodologies for surface plasmon resonance (SPR) signal amplification based on the use of nanoparticles (NPs), the majority addressed the sandwich technique and low protein concentration. In this work, a different approach for SPR signal enhancement based on the use of gold NPs was evaluated. The method was used in the detection of two lectins, peanut agglutinin (PNA) and concanavalin A (ConA). Gold NPs were functionalized with antibodies anti-PNA and anti-ConA, and these NPs were used as protein scavengers in a solution. After being incubated with solutions of PNA or ConA, the gold NPs coupled with the collected lectins were injected on the sensor containing the immobilized antibodies. The signal amplification provided by this method was compared to the signal amplification provided by the direct coupling of PNA and ConA to gold NPs. Furthermore, both methods, direct coupling and gold NPs as protein scavengers, were compared to the direct detection of PNA and ConA in solution. Compared to the analysis of free protein, the direct coupling of PNA and ConA to gold NPs resulted in a signal amplification of 10–40-fold and a 13-fold decrease of the limit of detection (LOD), whereas the use of gold NPs as protein scavengers resulted in an SPR signal 40–50-times higher and an LOD 64-times lower. PMID:29186024

  5. DNA tetrahedral scaffolds-based platform for the construction of electrochemiluminescence biosensor.

    PubMed

    Feng, Qiu-Mei; Zhou, Zhen; Li, Mei-Xing; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-04-15

    Proximal metallic nanoparticles (NPs) could quench the electrochemiluminescence (ECL) emission of semiconductor quantum dots (QDs) due to Förster energy transfer (FRET), but at a certain distance, the coupling of light-emission with surface plasmon resonance (SPR) result in enhanced ECL. Thus, the modification strategies and distances control between QDs and metallic NPs are critical for the ECL intensity of QDs. In this strategy, a SPR enhanced ECL sensor based on DNA tetrahedral scaffolds modified platform was reported for the detection of telomerase activity. Due to the rigid three-dimensional structure, DNA tetrahedral scaffolds grafting on the electrode surface could accurately modulate the distance between CdS QDs and luminol labelled gold nanoparticles (L-Au NPs), meanwhile provide an enhanced spatial dimension and accessibility for the assembly of multiple L-Au NPs. The ECL intensities of both CdS QDs (-1.25V vs. SCE) and luminol (+0.33V vs. SCE) gradually increased along with the formation of multiple L-Au NPs at the vertex of DNA tetrahedral scaffolds induced by telomerase, bringing in a dual-potential ECL analysis. The proposed method showed high sensitivity for the identification of telomerase and was successfully applied for the differentiation of cancer cells from normal cells. This work suggests that DNA tetrahedral scaffolds could serve as an excellent choice for the construction of SPR-ECL system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Technical Note: Improving proton stopping power ratio determination for a deformable silicone-based 3D dosimeter using dual energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taasti, Vicki Trier, E-mail: victaa@rm.dk; Høye, Ellen Marie; Hansen, David Christoffer

    Purpose: The aim of this study was to investigate whether the stopping power ratio (SPR) of a deformable, silicone-based 3D dosimeter could be determined more accurately using dual energy (DE) CT compared to using conventional methods based on single energy (SE) CT. The use of SECT combined with the stoichiometric calibration method was therefore compared to DECT-based determination. Methods: The SPR of the dosimeter was estimated based on its Hounsfield units (HUs) in both a SECT image and a DECT image set. The stoichiometric calibration method was used for converting the HU in the SECT image to a SPR valuemore » for the dosimeter while two published SPR calibration methods for dual energy were applied on the DECT images. Finally, the SPR of the dosimeter was measured in a 60 MeV proton by quantifying the range difference with and without the dosimeter in the beam path. Results: The SPR determined from SECT and the stoichiometric method was 1.10, compared to 1.01 with both DECT calibration methods. The measured SPR for the dosimeter material was 0.97. Conclusions: The SPR of the dosimeter was overestimated by 13% using the stoichiometric method and by 3% when using DECT. If the stoichiometric method should be applied for the dosimeter, the HU of the dosimeter must be manually changed in the treatment planning system in order to give a correct SPR estimate. Using a wrong SPR value will cause differences between the calculated and the delivered treatment plans.« less

  7. Assessing the Location of Surface Plasmons Over Nanotriangle and Nanohole Arrays of Different Size and Periodicity

    PubMed Central

    Correia-Ledo, Debby; Gibson, Kirsty F.; Dhawan, Anuj; Couture, Maxime; Vo-Dinh, Tuan; Graham, Duncan; Masson, Jean-Francois

    2012-01-01

    The increasing popularity of surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS) sensor design based on nanotriangle or nanohole arrays, and the possibility to manufacture substrates at the transition between these plasmonic substrates, makes them ideal candidates for the establishment of structure-property relationships. This work features near diffraction-limited Raman images and FDTD simulations of nanotriangle and nanohole arrays substrates, which clearly demonstrate that the localization of the hot spot on these SERS substrates is significantly influenced by the ratio of diameter/periodicity (D/P). The experimental and simulation data reveal that the hot spots are located around nanotriangles (D/P = 1), characteristic of localized SPR. Decreasing the D/P ratio to 0.75-0.7 led to the creation of nanohole arrays, which promoted the excitation of a propagating surface plasmon (SP) delocalized over the metal network. The optimal SERS intensity was consistently achieved at this transition from nanotriangles to nanoholes, for every periodicity (650 nm to 1.5 μm) and excitation wavelength (633 and 785 nm) investigated, despite the presence or absence of a plasmonic band near the laser excitation. Further decreasing the D/P ratio led to excitation of a localized SP located around the rim of nanohole arrays for D/P of 0.5-0.6, in agreement with previous reports. In addition, this manuscript provides the first evidence that the hot spots are positioned inside the hole for D/P of 0.4, with the center being the region of highest electric field and Raman intensity. The compelling experimental evidence and FDTD simulations offer an overall understanding of the plasmonic properties of nanohole arrays as SERS and SPR sensors, which is of significant value in advancing the diversity of applications from such surfaces. PMID:23977402

  8. Electrochemical MIP-Sensors for Drugs.

    PubMed

    Yarman, Aysu; Kurbanoglu, Sevinc; Jetzschmann, Katharina J; Ozkan, Sibel A; Wollenberger, Ulla; Scheller, Frieder

    2017-10-05

    In order to replace bio-macromolecules by stable synthetic materials in separation techniques and bioanalysis biomimetic receptors and catalysts have been developed: Functional monomers are polymerized together with the target analyte and after template removal cavities are formed in the "molecularly imprinted polymer" (MIP) which resemble the active sites of antibodies and enzymes. Staring almost 80 years ago, around 1,100 papers on MIPs were published in 2016. Electropolymerization allows to deposit MIPs directly on voltammetric electrodes or chips for quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). For the readout of MIPs for drugs amperometry, differential pulse voltammetry (DPV) and impedance spectroscopy (EIS) offer higher sensitivity as compared with QCM or SPR. Application of simple electrochemical devices allows both the reproducible preparation of MIP sensors, but also the sensitive signal generation. Electrochemical MIP-sensors for the whole arsenal of drugs, e.g. the most frequently used analgesics, antibiotics and anticancer drugs have been presented in literature and tested under laboratory conditions. These biomimetic sensors typically have measuring ranges covering the lower nano- up to millimolar concentration range and they are stable under extreme pH and in organic solvents like non-aqueous extracts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Antibody-antigenic peptide interactions monitored by SPR and QCM-D. A model for SPR detection of IA-2 autoantibodies in human serum.

    PubMed

    Ayela, Cedric; Roquet, Francoise; Valera, Lionel; Granier, Claude; Nicu, Liviu; Pugnière, Martine

    2007-06-15

    This work reports on a complementary use of surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D) technologies to study interactions between a peptide antigen and polyclonal antibodies, in an experimental format suitable for diagnostic assays of autoimmune diseases. In the chosen model, a synthetic peptide from the juxtamembrane region of IA-2 (a type 1 diabetes associated antigen) was immobilized by an optimized chemical protocol applicable to both BIACORE and QCM-D sensors. A thorough study of the peptide immobilization was performed to optimize the signal-to-noise ratio using mixed self-assembled monolayers (SAM) on a gold surface. Introduction of polyethylene glycol (EG(6)) chains into mixed SAM layers and addition of an anionic surfactant to the human serum reduced non-specific binding without modifying the viscoelasticity properties of the layer. Under our conditions, the antibody SPR detection limit was determined to be 0.2 nM in diluted human serum. This value is in agreement with the reported rank distribution of IA-2 antibodies in diabetic patient sera. Label-free and real-time technologies such as SPR and/or QCM-D could be precious tools in future diagnostic assays.

  10. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification.

    PubMed

    Yao, Xin; Li, Xin; Toledo, Freddy; Zurita-Lopez, Cecilia; Gutova, Margarita; Momand, Jamil; Zhou, Feimeng

    2006-07-15

    Oligonucleotide (ODN)-capped gold nanoparticles (Au-NPs) were used in a sandwich assay of ODN or polynucleotide by a flow injection surface plasmon resonance (SPR). A carboxylated dextran film was immobilized onto the SPR sensor surface to eliminate nonspecific adsorption of ODN-capped Au-NPs. The tandem use of signal amplification via the adlayer of the ODN-capped Au-NPs and the differential signal detection by the bicell detector on the SPR resulted in a remarkable DNA detection level. A 39-mer target at a quantity as low as 2.1 x 10(-20)mol, corresponding to 1.38 fM in a 15 microl solution, can be measured. To our knowledge, both the concentration and quantity detection levels are the lowest among all the gene analyses conducted with SPR to this point. The method is shown to be reproducible (relative standard deviation values <16%) and to possess high sequence specificity. It is also demonstrated to be viable for sequence-specific p53 cDNA analysis. The successful elimination of nonspecific adsorption of, and the signal amplification by, ODN-capped Au-NPs renders the SPR attractive for cases where the DNA concentration is extremely low and the sample availability is severely limited.

  11. Validation of proton stopping power ratio estimation based on dual energy CT using fresh tissue samples

    NASA Astrophysics Data System (ADS)

    Taasti, Vicki T.; Michalak, Gregory J.; Hansen, David C.; Deisher, Amanda J.; Kruse, Jon J.; Krauss, Bernhard; Muren, Ludvig P.; Petersen, Jørgen B. B.; McCollough, Cynthia H.

    2018-01-01

    Dual energy CT (DECT) has been shown, in theoretical and phantom studies, to improve the stopping power ratio (SPR) determination used for proton treatment planning compared to the use of single energy CT (SECT). However, it has not been shown that this also extends to organic tissues. The purpose of this study was therefore to investigate the accuracy of SPR estimation for fresh pork and beef tissue samples used as surrogates of human tissues. The reference SPRs for fourteen tissue samples, which included fat, muscle and femur bone, were measured using proton pencil beams. The tissue samples were subsequently CT scanned using four different scanners with different dual energy acquisition modes, giving in total six DECT-based SPR estimations for each sample. The SPR was estimated using a proprietary algorithm (syngo.via DE Rho/Z Maps, Siemens Healthcare, Forchheim, Germany) for extracting the electron density and the effective atomic number. SECT images were also acquired and SECT-based SPR estimations were performed using a clinical Hounsfield look-up table. The mean and standard deviation of the SPR over large volume-of-interests were calculated. For the six different DECT acquisition methods, the root-mean-square errors (RMSEs) for the SPR estimates over all tissue samples were between 0.9% and 1.5%. For the SECT-based SPR estimation the RMSE was 2.8%. For one DECT acquisition method, a positive bias was seen in the SPR estimates, having a mean error of 1.3%. The largest errors were found in the very dense cortical bone from a beef femur. This study confirms the advantages of DECT-based SPR estimation although good results were also obtained using SECT for most tissues.

  12. Polarization-dependent transverse-stress sensing characters of the gold-coated and liquid crystal filled photonic crystal fiber based on Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Liu, Hai; Zhu, Chenghao; Wang, Yan; Tan, Ce; Li, Hongwei

    2018-03-01

    A transverse-stress sensor with enhanced sensitivity based on nematic liquid crystal (NLC) filled photonic crystal fiber (PCF) is proposed and analyzed by using the finite element method (FEM). The central hole of the PCF is infiltrated with NLC material with an adjustable rotation angle to achieve the polarization-dependent wavelength-selective sensing. And the combined use of side-hole structure and Surface Plasmon Resonance (SPR) technology enhanced the transverse-stress sensitivity enormously. Results reveal that the sensor can achieve a high sensitivity based on the polarization filter characteristic at special wavelengths. Besides that, the temperature and the transverse-stress in either direction can be effectively discriminated through dual-parameter demodulation method by adjusting the rotation angle of the NLC to introduce a new degree of freedom for sensing.

  13. Fabrication and characterization of SPR chips with the modified bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Zhang, Lu-lu; Cui, Da-fu

    2016-03-01

    A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.

  14. Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range.

    PubMed

    Xue, Peihong; Ye, Shunsheng; Su, Hongyang; Wang, Shuli; Nan, Jingjie; Chen, Xingchi; Ruan, Weidong; Zhang, Junhu; Cui, Zhanchen; Yang, Bai

    2017-05-25

    We present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching. The surface plasmon resonance (SPR) peaks were measured at different positions, which move gradually along the Ag nanowell arrays with a geometric gradient. Such micro-/nanostructure arrays with graded and integrated SPR peaks can work as a fine plasmonic "library" (FPL), and the spectral range can be controlled using a "coarse adjustment knob" (lattice constant) and a "fine adjustment knob" (pore diameter). Additionally, the spectral resolution of the FPL is high, which benefits from the high value of the full height/full width at half-maximum and the small step size of the wavelength shift (0.5 nm). Meanwhile, the FPL could be effectively applied as a well-defined model to verify the plasmonic enhancement in surface enhanced Raman scattering. As the FPL is an integrated optical material with graded individual SPR peaks, it can not only be a theoretical model for fundamental research, but also has great potential in high-throughput screening of optical materials, multiplex sensors, etc.

  15. A Continuous Liquid-Level Sensor for Fuel Tanks Based on Surface Plasmon Resonance

    PubMed Central

    Pozo, Antonio M.; Pérez-Ocón, Francisco; Rabaza, Ovidio

    2016-01-01

    A standard problem in large tanks at oil refineries and petrol stations is that water and fuel usually occupy the same tank. This is undesirable and causes problems such as corrosion in the tanks. Normally, the water level in tanks is unknown, with the problems that this entails. We propose herein a method based on surface plasmon resonance (SPR) to detect in real time the interfaces in a tank which can simultaneously contain water, gasoline (or diesel) and air. The plasmonic sensor is composed of a hemispherical glass prism, a magnesium fluoride layer, and a gold layer. We have optimized the structural parameters of the sensor from the theoretical modeling of the reflectance curve. The sensor detects water-fuel and fuel-air interfaces and measures the level of each liquid in real time. This sensor is recommended for inflammable liquids because inside the tank there are no electrical or electronic signals which could cause explosions. The sensor proposed has a sensitivity of between 1.2 and 3.5 RIU−1 and a resolution of between 5.7 × 10−4 and 16.5 × 10−4 RIU. PMID:27213388

  16. Optical tweezers and surface plasmon resonance combination system based on the high numerical aperture lens

    NASA Astrophysics Data System (ADS)

    Shan, Xuchen; Zhang, Bei; Lan, Guoqiang; Wang, Yiqiao; Liu, Shugang

    2015-11-01

    Biology and medicine sample measurement takes an important role in the microscopic optical technology. Optical tweezer has the advantage of accurate capture and non-pollution of the sample. The SPR(surface plasmon resonance) sensor has so many advantages include high sensitivity, fast measurement, less consumption of sample and label-free detection of biological sample that the SPR sensing technique has been used for surface topography, analysis of biochemical and immune, drug screening and environmental monitoring. If they combine, they will play an important role in the biological, chemical and other subjects. The system we propose use the multi-axis cage system, by using the methods of reflection and transmiss ion to improve the space utilization. The SPR system and optical tweezer were builtup and combined in one system. The cage of multi-axis system gives full play to its accuracy, simplicity and flexibility. The size of the system is 20 * 15 * 40 cm3 and thus the sample can be replaced to switch between the optical tweezers system and the SPR system in the small space. It means that we get the refractive index of the sample and control the particle in the same system. In order to control the revolving stage, get the picture and achieve the data stored automatically, we write a LabVIEW procedure. Then according to the data from the back focal plane calculate the refractive index of the sample. By changing the slide we can trap the particle as optical tweezer, which makes us measurement and trap the sample at the same time.

  17. Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system

    PubMed Central

    Stevens, Richard C.; Soelberg, Scott D.; Near, Steve; Furlong, Clement E.

    2011-01-01

    Saliva provides a useful and non-invasive alternative to blood for many biomedical diagnostic assays. The level of the hormone cortisol in blood and saliva is related to the level of stress. We present here the development of a portable surface plasmon resonance (SPR) biosensor system for detection of cortisol in saliva. Cortisol-specific monoclonal antibodies were used to develop a competition assay with a 6-channel portable SPR biosensor designed in our laboratory. The detection limit of cortisol in laboratory buffers was 0.36 ng/ml (1.0 nM). An in-line filter based on diffusion through a hollow fiber hydrophilic membrane served to separate small molecules from the complex macromolecular matrix of saliva prior to introduction to the sensor surface. The filtering flow cell provided in-line separation of small molecules from salivary mucins and other large molecules with only a 29% reduction of signal compared with direct flow of the same concentration of analyte over the sensor surface. A standard curve for detection of cortisol in saliva was generated with a detection limit of 1.0 ng/ml (3.6 nM), sufficiently sensitive for clinical use. The system will also be useful for a wide range of applications where small molecular weight analytes are found in complex matrices. PMID:18656950

  18. Optical immunosensors for detection of Listeria monocytogenes and Salmonella enteritidis from food

    NASA Astrophysics Data System (ADS)

    Bhunia, Arun K.; Geng, Tao; Lathrop, Amanda; Valadez, Angela; Morgan, Mark T.

    2004-03-01

    Listeria monocytogenes and Salmonella are two major foodborne pathogens of significant concern. Two optical evanescent wave immunosensors were evaluated for detection: Antibody-coupled fiber-optic biosensor and a surface plasmon resonant (SPR) immunosensor. In the fiber-optic sensor, polyclonal antibodies for the test organisms were immobilized on polystyrene fiber wave -guides using streptavidin - biotin chemistry. Cyanine 5 -labeled monoclonal antibodies C11E9 (for L. monocytogenes) and SF-11 (for Salmonella Enteritidis) were used to generate a specific fluorescent signal. Signal acquisition was performed by launching a laser-light (635 nm) from an Analyte-2000. This immunosensor was able to detect 103 - 109 cfu/ml of L. monocytogenes or 106-109 cfu/ml of Salmonella Enteritidis and the assays were conducted at near real-time with results obtained within one hour of sampling. The assays were specific and showed signal even in the presence of other microorganisms such as E. coli, Enterococcus faecalis or Salmonella Typhimurium. In the SPR system, IAsys instrument (resonant mirror sensor) was used. Monoclonal antibody-C11E9 was directly immobilized onto a carboxylate cuvette. Whole Listeria cells at various concentrations did not yield any signal while surface protein extracts did. Crude protein extracts from L. monocytogenes and L. innocua had average binding responses of around 150 arc sec (0.25 ng/mm2), which was significantly different from L. grayi, L. ivanovii, or L. welshimeri with average responses of <48 arc sec. Both fiber-optic and SPR sensors show promise in near real-time detection of foodborne L. monocytogenes and Salmonella Enteritidis.

  19. Tracking Silent Hypersensitivity Reactions to Asparaginase during Leukemia Therapy Using Single-Chip Indirect Plasmonic and Fluorescence Immunosensing.

    PubMed

    Charbonneau, David M; Breault-Turcot, Julien; Sinnett, Daniel; Krajinovic, Maja; Leclerc, Jean-Marie; Masson, Jean-François; Pelletier, Joelle N

    2017-12-22

    Microbial asparaginase is an essential component of chemotherapy for the treatment of childhood acute lymphoblastic leukemia (cALL). Silent hypersensitivity reactions to this microbial enzyme need to be monitored accurately during treatment to avoid adverse effects of the drug and its silent inactivation. Here, we present a dual-response anti-asparaginase sensor that combines indirect SPR and fluorescence on a single chip to perform ELISA-type immunosensing, and correlate measurements with classical ELISA. Analysis of serum samples from children undergoing cALL therapy revealed a clear correlation between single-chip indirect SPR/fluorescence immunosensing and ELISA used in clinical settings (R 2 > 0.9). We also report that the portable SPR/fluorescence system had a better sensitivity than classical ELISA to detect antibodies in clinical samples with low antigenicity. This work demonstrates the reliability of dual sensing for monitoring clinically relevant antibody titers in clinical serum samples.

  20. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part II. Implementation on abdomen and thorax phantoms using cross sectional CT images and scanned projection radiograph images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jia; Christner, Jodie A.; Duan Xinhui

    2012-11-15

    Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w},more » the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.« less

  1. Label-enhanced surface plasmon resonance applied to label-free interaction analysis of small molecules and fragments.

    PubMed

    Eng, Lars; Nygren-Babol, Linnéa; Hanning, Anders

    2016-10-01

    Surface plasmon resonance (SPR) is a well-established method for studying interactions between small molecules and biomolecules. In particular, SPR is being increasingly applied within fragment-based drug discovery; however, within this application area, the limited sensitivity of SPR may constitute a problem. This problem can be circumvented by the use of label-enhanced SPR that shows a 100-fold higher sensitivity as compared with conventional SPR. Truly label-free interaction data for small molecules can be obtained by applying label-enhanced SPR in a surface competition assay format. The enhanced sensitivity is accompanied by an increased specificity and inertness toward disturbances (e.g., bulk refractive index disturbances). Label-enhanced SPR can be used for fragment screening in a competitive assay format; the competitive format has the added advantage of confirming the specificity of the molecular interaction. In addition, label-enhanced SPR extends the accessible kinetic regime of SPR to the analysis of very fast fragment binding kinetics. In this article, we demonstrate the working principles and benchmark the performance of label-enhanced SPR in a model system-the interaction between carbonic anhydrase II and a number of small-molecule sulfonamide-based inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Aptamer-based surface plasmon resonance sensing of glycated human blood proteins

    NASA Astrophysics Data System (ADS)

    Reaver, Nathan G. F.; Zheng, Rui; Kim, Dong-Shik; Cameron, Brent D.

    2013-02-01

    The concentration ratio of glycated to non-glycated forms of various blood proteins can be used as a diagnostic measure in diabetes to determine a history of glycemic compliance. Depending on a protein's half-life in blood, compliance can be assessed from a few days to several months in the past, which can then be used to provide additional therapeutic guidance. Current glycated protein detection methods are limited in their ability to measure multiple proteins, and are susceptible to interference from other blood pathologies. In this study, we developed and characterized DNA aptamers for use in Surface Plasmon Resonance (SPR) sensors to assess the blood protein hemoglobin. The aptamers were developed by way of a modified Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process which selects DNA sequences that have a high binding affinity to a specific protein. DNA products resulting from this process are sequenced and identified aptamers are then synthesized. The SELEX process was performed to produce aptamers for a glycated form of hemoglobin. Equilibrium dissociation constants for the binding of the identified aptamer to glycated hemoglobin, hemoglobin, and fibrinogen were calculated from fitted Langmuir isotherms obtained through SPR. These constants were determined to be 94 nM, 147 nM, and 244 nM respectively. This aptamer can potentially be used to create a SPR aptamer based biosensor for detection of glycated hemoglobin, a technology that has the potential to deliver low-cost and immediate glycemic compliance assessment in either a clinical or home setting.

  3. Ultrasensitive detection of EGFR gene based on surface plasmon resonance enhanced electrochemiluminescence of CuZnInS quantum dots.

    PubMed

    Chen, Xueqian; Gui, Wenying; Ma, Qiang

    2018-06-07

    In our work, a novel DNA electrochemiluminescence (ECL) sensor based on CuZnInS quantum dots (QDs) and gold-nanoparticles (Au NPs) is developed for highly sensitive detection of epidermal growth factor receptor (EGFR) Gene, which has a close relation with the lung cancer. The CuZnInS QDs work as a novel kind of ECL luminophore, whose defect state emission is suitable for ECL sensing. To enhance the sensitivity of the sensing system, Au NPs are utilized creatively to strengthen the ECL intensity of CuZnInS QD S according to the surface plasmon resonance (SPR) effect. An ultrasensitive and universal detecting platform is built based on the SPR effect between Au NPs and CuZnInS QD S . The effect of the capped stabilizer on the ECL signal of QDs is firstly investigated. Three different stabilizers are used to cap the CuZnInS QDs, including mercaptopropionic acid (MPA), l-glutathione (GSH) and cysteamine (CA). MPA capped CuZnInS QDs possess the strongest ECL intensity among the three kinds of the CuZnInS QDs. Under the optimum conditions, a good linear relationship between ECL intensity and the concentration of target DNA is obtained in the range from 0.05 nmol L -1 to 1 nmol L -1 . The detection limit is 0.0043 nmol L -1 . The proposed DNA sensor has been employed for the determination of target DNA EGFR in human serum samples with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. High performance multi-spectral interrogation for surface plasmon resonance imaging sensors.

    PubMed

    Sereda, A; Moreau, J; Canva, M; Maillart, E

    2014-04-15

    Surface plasmon resonance (SPR) sensing has proven to be a valuable tool in the field of surface interactions characterization, especially for biomedical applications where label-free techniques are of particular interest. In order to approach the theoretical resolution limit, most SPR-based systems have turned to either angular or spectral interrogation modes, which both offer very accurate real-time measurements, but at the expense of the 2-dimensional imaging capability, therefore decreasing the data throughput. In this article, we show numerically and experimentally how to combine the multi-spectral interrogation technique with 2D-imaging, while finding an optimum in terms of resolution, accuracy, acquisition speed and reduction in data dispersion with respect to the classical reflectivity interrogation mode. This multi-spectral interrogation methodology is based on a robust five parameter fitting of the spectral reflectivity curve which enables monitoring of the reflectivity spectral shift with a resolution of the order of ten picometers, and using only five wavelength measurements per point. In fine, such multi-spectral based plasmonic imaging system allows biomolecular interaction monitoring in a linear regime independently of variations of buffer optical index, which is illustrated on a DNA-DNA model case. © 2013 Elsevier B.V. All rights reserved.

  5. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust.

    PubMed

    Sanders, Melanie; McPartlin, Daniel; Moran, Kara; Guo, Yirong; Eeckhout, Mia; O'Kennedy, Richard; De Saeger, Sarah; Maragos, Chris

    2016-04-11

    A sample preparation method was developed for the screening of deoxynivalenol (DON) in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA) was compared to the sensor-based techniques of surface plasmon resonance (SPR) and biolayer interferometry (BLI) in terms of sensitivity, affinity and matrix effect. The matrix effects from wheat and wheat dust using SPR were too high to further use this screenings method. The preferred ELISA and BLI methods were validated according to the criteria established in Commission Regulation 519/2014/EC and Commission Decision 2002/657/EC. A small survey was executed on 16 wheat lots and their corresponding dust samples using the validated ELISA method. A linear correlation (r = 0.889) was found for the DON concentration in dust versus the DON concentration in wheat (LOD wheat: 233 μg/kg, LOD wheat dust: 458 μg/kg).

  6. Bloch surface wave structures for high sensitivity detection and compact waveguiding

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Umar; Corbett, Brian

    2016-01-01

    Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.

  7. Optical resonance analysis of reflected long period fiber gratings with metal film overlay

    NASA Astrophysics Data System (ADS)

    Zhang, Guiju; Cao, Bing; Wang, Chinua; Zhao, Minfu

    2008-11-01

    We present the experimental results of a novel single-ended reflecting surface plasma resonance (SPR) based long period fiber grating (LPFG) sensor. A long period fiber grating sensing device is properly designed and fabricated with a pulsed CO2 laser writing system. Different nm-thick thin metal films are deposited on the fiber cladding and the fiber end facet for the excitation of surface plasma waves (SPWs) and the reflection of the transmission spectrum of the LPFG with doubled interaction between metal-dielectric interfaces of the fiber to enhance the SPW of the all-fiber SPR-LPFG sensing system. Different thin metal films with different thicknesses are investigated. The effect of the excited SPW transmission along the fiber cladding-metal interface with silver and aluminum films is observed. It is found that different thicknesses of the metal overlay show different resonant behaviors in terms of resonance peak situation, bandwidth and energy loss. Within a certain range, thinner metal film shows narrower bandwidth and deeper peak loss.

  8. 3D DNA origami as programmable anchoring points for bioreceptors in fiber optic surface plasmon resonance biosensing.

    PubMed

    Daems, Devin; Pfeifer, Wolfgang; Rutten, Iene; Sacca, Barbara; Spasic, Dragana; Lammertyn, Jeroen

    2018-06-27

    Many challenges in biosensing originate from the fact that the all-important nano-architecture of the biosensor's surface, including precise density and orientation of bioreceptors, is not entirely comprehended. Here we introduced a 3D DNA origami as bioreceptor carrier to functionalize the fiber optic surface plasmon resonance (FO-SPR) sensor with nanoscale precision. Starting from a 24-helix bundle, two distinct DNA origami structures were designed to position thrombin-specific aptamers with different density and distance (27 and 113 nm) from the FO-SPR surface. The origami-based biosensors proved to be not only capable of reproducible, label-free thrombin detection, but revealed also valuable innovative features: (1) a significantly better performance in the absence of backfilling, known as essential in biosensing field, suggesting improved bioreceptor orientation and accessibility and (2) a wider linear range compared to previously reported thrombin biosensors. We envisage that our method will be beneficial both for scientists and clinicians looking for new surface (bio)chemistry and improved diagnostics.

  9. Terahertz absorber based on Fano-like resonance of inverted quadrangular frustum pyramid metal grooves and sensor application

    NASA Astrophysics Data System (ADS)

    Yu, Yingying; Sun, Bo

    2018-07-01

    We investigate the multi-resonance coupling of inverted quadrangular frustum pyramid (IQFP) groove metal arrays at terahertz frequencies. The surface plasmon resonance (SPR) and groove resonance are induced, resulting in resonance coupling. The dipole of the groove resonance drives the quadrupole of the SPR and creates a sharp Fano-like resonance. The effects of geometry parameters including the width (at the bottom) and height are analyzed in detail. The results show that with the decrease in the sidewall slope of the groove, the confinement of the groove region on the electromagnetic field decreases, thereby increasing the resonance coupling. The Fano-like resonance is enhanced. The sensitivity and quality factor are discussed. The results show that the Fano-like resonance has high sensitivity and quality factor. With the increase in the sidewall slope of the groove, the sensitivity increases, and the quality factor decreases. The results show that the Fano-like resonance of IQFP groove metal arrays has a significant potential for biological monitoring and sensing.

  10. Nanostructured zinc oxide thin film for application to surface plasmon resonance based cholesterol biosensor

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Tomar, Monika; Gupta, Vinay

    2015-11-01

    ZnO thin film was deposited on gold coated glass prism by RF sputtering technique in glancing angle deposition (GLAD) configuration. The structural, morphological and optical properties of the deposited film were investigated using X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and Fourier Transform Infrared (FTIR) Spectroscopy. ZnO coated Au prisms (ZnO/Au/prism) were used to excite surface plasmons in Kretschmann configuration at the Au- ZnO interface on a laboratory assembled Surface Plasmon Resonance (SPR) measurement setup. Cholesterol oxidase (ChOx) enzyme was immobilized on the ZnO/Au/prism structure by physical adsorption technique. Polydimethylsiloxane (PDMS) microchannels were fabricated over ChOx/ZnO/Au/prism system and various concentrations of cholesterol were passed over the sensor surface. The concentration of cholesterol was varied from 0.12 to 10.23 mM and the SPR reflectance curves were recorded in both static as well as dynamic modes demonstrating a high sensitivity of 0.36° mM-1.

  11. SU-E-J-136: Investigation Into Robustness of Stopping Power Calculated by DECT and SECT for Proton Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, J; Penfold, S; Royal Adelaide Hospital, Adelaide, SA

    2015-06-15

    Purpose: To investigate the robustness of dual energy CT (DECT) and single energy CT (SECT) proton stopping power calibration techniques and quantify the associated errors when imaging a phantom differing in chemical composition to that used during stopping power calibration. Methods: The CIRS tissue substitute phantom was scanned in a CT-simulator at 90kV and 140kV. This image set was used to generate a DECT proton SPR calibration based on a relationship between effective atomic number and mean excitation energy. A SECT proton SPR calibration based only on Hounsfield units (HUs) was also generated. DECT and SECT scans of a secondmore » phantom of known density and chemical composition were performed. The SPR of the second phantom was calculated with the DECT approach (SPR-DECT),the SECT approach (SPR-SECT) and finally the known density and chemical composition of the phantom (SPR-ref). The DECT and SECT image sets were imported into the Pinnacle{sup 3} research release of proton therapy treatment planning. The difference in dose when exposed to a common pencil beam distribution was investigated. Results: SPR-DECT was found to be in better agreement with SPR-ref than SPR- SECT. The mean difference in SPR for all materials was 0.51% for DECT and 6.89% for SECT. With the exception of Teflon, SPR-DECT was found to agree with SPR-ref to within 1%. Significant differences in calculated dose were found when using the DECT image set or the SECT image set. Conclusion: The DECT calibration technique was found to be more robust to situations in which the physical properties of the test materials differed from the materials used during SPR calibration. Furthermore, it was demonstrated that the DECT and SECT SPR calibration techniques can Result in significantly different calculated dose distributions.« less

  12. Inhibition of homophilic dimerization and disruption of cell adhesion by P-cadherin-specific small molecules from SPR-based assays.

    PubMed

    Senoo, Akinobu; Nagatoishi, Satoru; Moberg, Anna; Babol, Linnea Nygren; Mitani, Tomoya; Tashima, Takumi; Kudo, Shota; Tsumoto, Kouhei

    2018-05-09

    The inhibitor for the homophilic dimerization of P-cadherin was discovered by SPR-based screening using fragment compounds. Our SPR assays identified a specific P-cadherin binder, which was able to inhibit the cell adhesion of living CHO cells that expressed P-cadherin.

  13. Toxin Detection by Surface Plasmon Resonance

    PubMed Central

    Hodnik, Vesna; Anderluh, Gregor

    2009-01-01

    Significant efforts have been invested in the past years for the development of analytical methods for fast toxin detection in food and water. Immunochemical methods like ELISA, spectroscopy and chromatography are the most used in toxin detection. Different methods have been linked, e.g. liquid chromatography and mass spectrometry (LC-MS), in order to detect as low concentrations as possible. Surface plasmon resonance (SPR) is one of the new biophysical methods which enables rapid toxin detection. Moreover, this method was already included in portable sensors for on-site determinations. In this paper we describe some of the most common methods for toxin detection, with an emphasis on SPR. PMID:22573957

  14. Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer

    PubMed Central

    Zhang, Yintang; Xu, Maotian; Wang, Yanju; Toledo, Freddy; Zhou, Feimeng

    2007-01-01

    The use of a flow-injection surface plasmon resonance (FI-SPR) spectrometer equipped with a bicell detector or a position-sensitive device for determining coordination of heavy metal ions (Cd2+ and Hg2+) by surface-confined apo-metallothionein (apo-MT) molecules is described. To facilitate the formation of a compact MT adsorbate layer with a uniform surface orientation, MT molecules were attached onto a preformed alkanethiol self-assembled monolayer. The method resorts to the generation of apo-MT at the surface by treating the MT-covered sensor chip with glycine–HCl and the measurement of the apo-MT conformation changes upon metal ion incorporation. Domain-specific metal ion binding processes by the apo-MT molecules were observed. Competitive replacement of one metal ion by another can be monitored in real time by FI-SPR. The tandem use of an immobilization scheme for forming a sub-monolayer of MT molecules at the sensor surface and the highly sensitive FI-SPR instrument affords a low concentration detection level. The detection level for Cd2+ (0.1 μM or 15 ppb) compares favorably with similar studies and the methodology complements to other well-established sensitive analytical techniques. The extent of metal incorporation by apo-MT molecules was also determined. PMID:18493298

  15. Enabling fiber optic serotyping of pathogenic bacteria through improved anti-fouling functional surfaces

    NASA Astrophysics Data System (ADS)

    Janssen, K. P. F.; Knez, K.; Vanysacker, L.; Schrooten, J.; Spasic, D.; Lammertyn, J.

    2012-06-01

    Significant research efforts are continually being directed towards the development of sensitive and accurate surface plasmon resonance biosensors for sequence specific DNA detection. These sensors hold great potential for applications in healthcare and diagnostics. However, the performance of these sensors in practical usage scenarios is often limited due to interference from the sample matrix. This work shows how the co-immobilization of glycol (PEG) diluents or ‘back filling’ of the DNA sensing layer can successfully address these problems. A novel SPR based melting assay is used for the analysis of a synthetic oligomer target as well as PCR amplified genomic DNA extracted from Legionella pneumophila. The benefits of sensing layer back filling on the assay performance are first demonstrated through melting analysis of the oligomer target and it is shown how back filling enables accurate discrimination of Legionella pneumophila serogroups directly from the PCR reaction product with complete suppression of sensor fouling.

  16. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing.

    PubMed

    Regatos, David; Sepúlveda, Borja; Fariña, David; Carrascosa, Laura G; Lechuga, Laura M

    2011-04-25

    We present a theoretical and experimental study on the biosensing sensitivity of Au/Co/Au multilayers as transducers of the magneto-optic surface-plasmon-resonance (MOSPR) sensor. We demonstrate that the sensing response of these magneto-plasmonic (MP) transducers is a trade-off between the optical absorption and the magneto-optical activity, observing that the MP multilayer with larger MO effect does not provide the best sensing response. We show that it is possible to design highly-sensitive MP transducers able to largely surpass the limit of detection of the conventional surface-plasmon-resonance (SPR) sensor. This was proved comparing the biosensing performance of both sensors for the label-free detection of short DNA chains hybridization. For this purpose, we used and tested a novel label-free biofunctionalization protocol based on polyelectrolytes, which increases the resistance of MP transducers in aqueous environments.

  17. Characterization of protein--DNA interactions using surface plasmon resonance spectroscopy with various assay schemes.

    PubMed

    Teh, Huey Fang; Peh, Wendy Y X; Su, Xiaodi; Thomsen, Jane S

    2007-02-27

    Specific protein-DNA interactions play a central role in transcription and other biological processes. A comprehensive characterization of protein-DNA interactions should include information about binding affinity, kinetics, sequence specificity, and binding stoichiometry. In this study, we have used surface plasmon resonance spectroscopy (SPR) to study the interactions between human estrogen receptors (ER, alpha and beta subtypes) and estrogen response elements (ERE), with four assay schemes. First, we determined the sequence-dependent receptors' binding capacity by monitoring the binding of ER to various ERE sequences immobilized on a sensor surface (assay format denoted as the direct assay). Second, we screened the relative affinity of ER for various ERE sequences using a competition assay, in which the receptors bind to an ERE-immobilized surface in the presence of competitor ERE sequences. Third, we monitored the assembly of ER-ERE complexes on a SPR surface and thereafter the removal and/or dissociation of the ER (assay scheme denoted as the dissociation assay) to determine the binding stoichiometry. Last, a sandwich assay (ER binding to ERE followed by anti-ER recognition of a specific ER subtype) was performed in an effort to understand how ERalpha and ERbeta may associate and compete when binding to the DNA. With these assay schemes, we reaffirmed that (1) ERalpha is more sensitive than ERbeta to base pair change(s) in the consensus ERE, (2) ERalpha and ERbeta form a heterodimer when they bind to the consensus ERE, and (3) the binding stoichiometry of both ERalpha- and ERbeta-ERE complexes is dependent on salt concentration. With this study, we demonstrate the versatility of the SPR analysis. With the involvement of various assay arrangements, the SPR analysis can be further extended to more than kinetics and affinity study.

  18. Analyzing the application of silicon-silver-2D nanomaterial-Al2O3 heterojunction in plasmonic sensor and its performance evaluation

    NASA Astrophysics Data System (ADS)

    Sharma, Anuj K.

    2018-03-01

    A semiconductor-metal-dielectric heterojunction system, generally useful in enhancing the efficiency of solar cells, is explored to design a high performance optical sensor based on surface plasmon resonance in near infrared (NIR). Silicon is considered as light coupling material and different 2D nanomaterials such as graphene, MoS2, and MoSe2 are explored to enhance the sensor's performance in terms of its figure of merit (FOM). An Al2O3 interlayer with a few nanometers of thickness is introduced, which acts as a critical component to significantly enhance the sensor's FOM. It is observed that an Al2O3 interlayer of around 9 nm thickness is able to many-fold upturn the sensor's FOM. As another important finding, silver layer thickness of around 60 nm is found to be highly useful to achieve high values of FOM. It is established through results that operating at longer NIR wavelength leads to greater FOM for any choice of 2D nanomaterial and any thickness of Al2O3 interlayer. Proposed sensor provides significantly greater FOM than previous works on SPR sensors.

  19. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  20. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    PubMed

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  1. Evaluation of agglutination strength by a flow-induced cell movement assay based surface plasmon resonance (SPR) technique.

    PubMed

    Sudprasert, Krisda; Peungthum, Patjaree; Vongsakulyanon, Apirom; Amarit, Ratthasart; Somboonkaew, Armote; Sutapun, Boonsong; Kitpoka, Pimpun; Kunakorn, Mongkol; Srikhirin, Toemsak

    2015-02-07

    A flow-induced cell movement assay combined with a surface plasmon resonance (SPR) technique was developed to quantify the agglutination strength, derived from the standard tube-agglutination test. Red blood cells (RBCs), based on the ABO blood group system, were specifically captured by anti-A and/or anti-B antibodies immobilized on a sensor surface. The agglutination strength corresponds to the amount of antigen-antibody interactions or the strength of RBC adhesion. Under a shear flow, the adherent RBCs were forced to move out of the region of interest with different average cell velocities (vc) depending upon the adhesion strength and wall shear stress (WSS). That is, a higher adhesion strength (higher agglutination strength) or lower WSS represents a lower vc or vice versa. In this work, the agglutination strength was derived from the vc that was calculated from the time derivative of the relative SPR signal by using a simple model of cell movement response, whose validity was verified. The vc values of different samples were correlated with their agglutination strengths at a given WSS and antibody surface density. The vc decreased as the agglutination strength increased, which can be considered as a linear regression. The coefficient of variation of the calculated vc decreased to 0.1 as vc increased to 30 μm min(-1). The sensitivity of this assay can be controlled by optimizing the antibody surface density or the WSS. This assay has the capability to resolve the antigen density of A1 and B RBCs from that of A1B RBCs.

  2. An integrated platform for biomolecule interaction analysis

    NASA Astrophysics Data System (ADS)

    Jan, Chia-Ming; Tsai, Pei-I.; Chou, Shin-Ting; Lee, Shu-Sheng; Lee, Chih-Kung

    2013-02-01

    We developed a new metrology platform which can detect real-time changes in both a phase-interrogation mode and intensity mode of a SPR (surface plasmon resonance). We integrated a SPR and ellipsometer to a biosensor chip platform to create a new biomolecular interaction measurement mechanism. We adopted a conductive ITO (indium-tinoxide) film to the bio-sensor platform chip to expand the dynamic range and improve measurement accuracy. The thickness of the conductive film and the suitable voltage constants were found to enhance performance. A circularly polarized ellipsometry configuration was incorporated into the newly developed platform to measure the label-free interactions of recombinant human C-reactive protein (CRP) with immobilized biomolecule target monoclonal human CRP antibody at various concentrations. CRP was chosen as it is a cardiovascular risk biomarker and is an acute phase reactant as well as a specific prognostic indicator for inflammation. We found that the sensitivity of a phaseinterrogation SPR is predominantly dependent on the optimization of the sample incidence angle. The effect of the ITO layer effective index under DC and AC effects as well as an optimal modulation were experimentally performed and discussed. Our experimental results showed that the modulated dynamic range for phase detection was 10E-2 RIU based on a current effect and 10E-4 RIU based on a potential effect of which a 0.55 (°/RIU) measurement was found by angular-interrogation. The performance of our newly developed metrology platform was characterized to have a higher sensitivity and less dynamic range when compared to a traditional full-field measurement system.

  3. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions.

    PubMed

    Cooper, Matthew A; Singleton, Victoria T

    2007-01-01

    The widespread exploitation of biosensors in the analysis of molecular recognition has its origins in the mid-1990s following the release of commercial systems based on surface plasmon resonance (SPR). More recently, platforms based on piezoelectric acoustic sensors (principally 'bulk acoustic wave' (BAW), 'thickness shear mode' (TSM) sensors or 'quartz crystal microbalances' (QCM)), have been released that are driving the publication of a large number of papers analysing binding specificities, affinities, kinetics and conformational changes associated with a molecular recognition event. This article highlights salient theoretical and practical aspects of the technologies that underpin acoustic analysis, then reviews exemplary papers in key application areas involving small molecular weight ligands, carbohydrates, proteins, nucleic acids, viruses, bacteria, cells and lipidic and polymeric interfaces. Key differentiators between optical and acoustic sensing modalities are also reviewed. Copyright (c) 2007 John Wiley & Sons, Ltd.

  4. Rapid Detection of Nivalenol and Deoxynivalenol in Wheat Using Surface Plasmon Resonance Immunoassay

    USDA-ARS?s Scientific Manuscript database

    Surface plasmon resonance immunoassay using a monoclonal antibody was developed to measure nivalenol (NIV) and deoxynivalenol (DON) contamination in wheat. A DON-immobilized sensor chip having high sensitivity and stability was prepared, and an SPR detection procedure was developed. The competitiv...

  5. Immune biosensors based on the SPR and TIRE: efficiency of their application for bacteria determination

    NASA Astrophysics Data System (ADS)

    Starodub, N. F.; Ogorodniichuk, J.; Lebedeva, T.; Shpylovyy, P.

    2013-11-01

    In this work we have designed high-specific biosensors for Salmonella typhimurium detection based on the surface plasmon resonance (SPR) and total internal reflection ellipsometry (TIRE). It has been demonstrated high selectivity and sensitivity of analysis. As a registering part for our experiments the Spreeta (USA) and "Plasmonotest" (Ukraine) with flowing cell have been applied among of SPR device. Previous researches confirmed an efficiency of SPR biosensors using for detecting of specific antigen-antibody interactions therefore this type of reactions with some previous preparations of surface binding layer was used as reactive part. It has been defined that in case with Spreeta sensitivity was on the level 103 - 107 cells/ml. Another biosensor based on the SPR has shown the sensitivity within 101 - 106 cells/ml. Maximal sensitivity was on the level of several cells in 10 ml (up to the fact that less than 5 cells) which has been obtained using the biosensor based on TIRE.

  6. Portable six-port reflectometer for determining moisture content of biomass material

    USDA-ARS?s Scientific Manuscript database

    A portable six-port reflectometer (SPR) for determining moisture content of biomass material is proposed for the first time in this paper. The proposed system consists of a 5.13 GHz reflectometer used with an open-ended half-mode substrateintegrated waveguide (HMSIW) sensor. The complex permittivity...

  7. Micro-array versus nano-array platforms: a comparative study for ODN detection based on SPR enhanced ellipsometry

    NASA Astrophysics Data System (ADS)

    Celen, Burcu; Demirel, Gökhan; Piskin, Erhan

    2011-04-01

    The rapid and sensitive detection of DNA has recently attracted worldwide attention for a variety of disease diagnoses and detection of harmful bacteria in food and drink. In this paper, we carried out a comparative study based on surface plasmon resonance enhanced ellipsometry (SPREE) for the detection of oligodeoxynucleotides (ODNs) using micro- and nano-array platforms. The micro-arrayed surfaces were fabricated by a photolithography approach using different types of mask having varying size and shape. Well-ordered arrays of high aspect ratio polymeric nanotubes were also obtained using high molecular weight polystyrene (PS) and anodic aluminum oxide (AAO) membranes having 200 nm pore diameters. The SPREE sensors were then prepared by direct coupling of thiolated probe-ODNs, which contain suitable spacer arms, on gold-coated micro- and nano-arrayed surfaces. We experimentally demonstrated that, for the first time, gold-coated free standing polymeric nano-arrayed platforms can easily be produced and lead to a significant sensor sensitivity gain compared to that of the conventional SPREE surfaces of about four times. We believe that such an enhancement in sensor response could be useful for next generation sensor systems.

  8. Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core

    PubMed Central

    Rifat, Ahmmed A.; Mahdiraji, G. Amouzad; Chow, Desmond M.; Shee, Yu Gang; Ahmed, Rajib; Adikan, Faisal Rafiq Mahamd

    2015-01-01

    We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber’s properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU−1) with resolution as high as 2.4 × 10−5 RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46–1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor’s footprint. PMID:25996510

  9. Surface plasmon resonance microscopy: achieving a quantitative optical response

    PubMed Central

    Peterson, Alexander W.; Halter, Michael; Plant, Anne L.; Elliott, John T.

    2016-01-01

    Surface plasmon resonance (SPR) imaging allows real-time label-free imaging based on index of refraction, and changes in index of refraction at an interface. Optical parameter analysis is achieved by application of the Fresnel model to SPR data typically taken by an instrument in a prism based configuration. We carry out SPR imaging on a microscope by launching light into a sample, and collecting reflected light through a high numerical aperture microscope objective. The SPR microscope enables spatial resolution that approaches the diffraction limit, and has a dynamic range that allows detection of subnanometer to submicrometer changes in thickness of biological material at a surface. However, unambiguous quantitative interpretation of SPR changes using the microscope system could not be achieved using the Fresnel model because of polarization dependent attenuation and optical aberration that occurs in the high numerical aperture objective. To overcome this problem, we demonstrate a model to correct for polarization diattenuation and optical aberrations in the SPR data, and develop a procedure to calibrate reflectivity to index of refraction values. The calibration and correction strategy for quantitative analysis was validated by comparing the known indices of refraction of bulk materials with corrected SPR data interpreted with the Fresnel model. Subsequently, we applied our SPR microscopy method to evaluate the index of refraction for a series of polymer microspheres in aqueous media and validated the quality of the measurement with quantitative phase microscopy. PMID:27782542

  10. Silver nanoparticles-based colorimetric array for the detection of Thiophanate-methyl

    NASA Astrophysics Data System (ADS)

    Zheng, Mingda; Wang, Yingying; Wang, Chenge; Wei, Wei; Ma, Shuang; Sun, Xiaohan; He, Jiang

    2018-06-01

    A simple and selective colorimetric sensor based on citrate capped silver nanoparticles (Cit-AgNPs) is proposed for the detection of Thiophanate-methyl (TM) with high sensitivity and selectivity. The method based on the color change of Cit-AgNPs from yellow to cherry red with the addition of TM to Cit-AgNPs that caused a red-shift on the surface plasmon resonance (SPR) band from 394 nm to 525 nm due to the hydrogen-bonding and substitution. The density functional theory (DFT) method was also calculated the interactions between the TM and citrate ions. Under the optimized conditions, a linear relationship between the absorption ratio (A525nm/A394nm) and TM concentration was found in the range of 2-100 μM with correlation coefficient (R2) of 0.988. The detection limit of TM was 0.12 μM by UV-vis spectrometer. Moreover, the applicability of colorimetric sensor is successfully verified by the detection of TM in environmental samples with good recoveries.

  11. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust

    PubMed Central

    Sanders, Melanie; McPartlin, Daniel; Moran, Kara; Guo, Yirong; Eeckhout, Mia; O’Kennedy, Richard; De Saeger, Sarah; Maragos, Chris

    2016-01-01

    A sample preparation method was developed for the screening of deoxynivalenol (DON) in wheat and wheat dust. Extraction was carried out with water and was successful due to the polar character of DON. For detection, an enzyme-linked immunosorbent assay (ELISA) was compared to the sensor-based techniques of surface plasmon resonance (SPR) and biolayer interferometry (BLI) in terms of sensitivity, affinity and matrix effect. The matrix effects from wheat and wheat dust using SPR were too high to further use this screenings method. The preferred ELISA and BLI methods were validated according to the criteria established in Commission Regulation 519/2014/EC and Commission Decision 2002/657/EC. A small survey was executed on 16 wheat lots and their corresponding dust samples using the validated ELISA method. A linear correlation (r = 0.889) was found for the DON concentration in dust versus the DON concentration in wheat (LOD wheat: 233 μg/kg, LOD wheat dust: 458 μg/kg). PMID:27077883

  12. Interconnecting wearable devices with nano-biosensing implants through optical wireless communications

    NASA Astrophysics Data System (ADS)

    Johari, Pedram; Pandey, Honey; Jornet, Josep M.

    2018-02-01

    Major advancements in the fields of electronics, photonics and wireless communication have enabled the development of compact wearable devices, with applications in diverse domains such as fitness, wellness and medicine. In parallel, nanotechnology is enabling the development of miniature sensors that can detect events at the nanoscale with unprecedented accuracy. On this matter, in vivo implantable Surface Plasmon Resonance (SPR) nanosensors have been proposed to analyze circulating biomarkers in body fluids for the early diagnosis of a myriad of diseases, ranging from cardiovascular disorders to different types of cancer. In light of these results, in this paper, an architecture is proposed to bridge the gap between these two apparently disjoint paradigms, namely, the commercial wearable devices and the advanced nano-biosensing technologies. More specifically, this paper thoroughly assesses the feasibility of the wireless optical intercommunications of an SPR-based nanoplasmonic biochip -implanted subcutaneously in the wrist-, with a nanophotonic wearable smart band which is integrated by an array of nano-lasers and photon-detectors for distributed excitation and measurement of the nanoplasmonic biochip. This is done through a link budget analysis which captures the peculiarities of the intra-body optical channel at (sub) cellular level, the strength of the SPR nanosensor reflection, as well as the capabilities of the nanolasers (emission power, spectrum) and the nano photon-detectors (sensitivity and noise equivalent power). The proposed analysis guides the development of practical communication designs between the wearable devices and nano-biosensing implants, which paves the way through early-stage diagnosis of severe diseases.

  13. Simultaneous differentiation and quantification of ricin and agglutinin by an antibody-sandwich surface plasmon resonance sensor.

    PubMed

    Stern, Daniel; Pauly, Diana; Zydek, Martin; Müller, Christian; Avondet, Marc A; Worbs, Sylvia; Lisdat, Fred; Dorner, Martin B; Dorner, Brigitte G

    2016-04-15

    Ricin is one of the most toxic plant toxins known. Its accessibility and relative ease of preparation makes it a potential agent for criminal or bio-terrorist attacks. Detection of ricin from unknown samples requires differentiation of ricin from the highly homologous Ricinus communis agglutinin which is currently not feasible using immunological methods. Here we have developed a simple and sensitive surface plasmon resonance (SPR) sensing system for rapid differentiation between ricin and agglutinin done in real time. Both lectins were quantified in a sandwich immunoassay-like setting by capturing with a cross-reactive antibody (R109) binding to both proteins while differentiating by injection of a ricin-specific antibody (R18) in a subsequent enhancement step. The SPR-assay was reproducible and sensitive for different R. communis cultivars, showing no false positive results when other lectins were tested. Quantification and differentiation of both molecules was also demonstrated from a crude castor bean extract and complex matrices. For the first time, we have demonstrated how the closely related lectins can be discerned and quantified in a single assay based on immunological methods. This novel approach delivers crucial information regarding the composition, purity, concentration, and toxicity of suspicious samples containing ricin in less than 30 minutes. Furthermore, we show how enhancement injections during SPR-measurements can be used to determine the ratio of two related proteins independently of the actual protein concentration by comparing normalized enhancement response levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Live cell refractometry based on non-SPR microparticle sensor.

    PubMed

    Liu, Chang; Chen, David D Y; Yu, Lirong; Luo, Yong

    2013-06-01

    Unlike the nanoparticles with surface plasmon resonance, the optical response of polystyrene microparticles (PSMPs) is insensitive to the chemical components of the surrounding medium under the wavelength-dependent differential interference contrast microscopy. This fact is exploited for the measurement of the refractive index of cytoplasm in this study. PSMPs of 400 nm in diameter were loaded into the cell to contact cytoplasm seamlessly, and the refractive index information of cytoplasm could be extracted by differential interference contrast microscopy operated at 420 nm illumination wavelength through the contrast analysis of PSMPs images. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fragment screening by SPR and advanced application to GPCRs.

    PubMed

    Shepherd, Claire A; Hopkins, Andrew L; Navratilova, Iva

    2014-01-01

    Surface plasmon resonance (SPR) is one of the primary biophysical methods for the screening of low molecular weight 'fragment' libraries, due to its low protein consumption and 'label-free' methodology. SPR biosensor interaction analysis is employed to both screen and confirm the binding of compounds in fragment screening experiments, as it provides accurate information on the affinity and kinetics of molecular interactions. The most advanced application of the use of SPR for fragment screening is against membrane protein drug targets, such G-protein coupled receptors (GPCRs). Biophysical GPCR assays using SPR have been validated with pharmacological measurements approximate to cell-based methods, yet provide the advantage of biophysical methods in their ability to measure the weak affinities of low molecular weight fragments. A number of SPR fragment screens against GPCRs have now been disclosed in the literature. SPR fragment screening is proving versatile to screen both thermostabilised GPCRs and solubilised wild type receptors. In this chapter, we discuss the state-of-the-art in GPCR fragment screening by SPR and the technical considerations in performing such experiments. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Gold nanoparticle-enhanced multiplexed imaging surface plasmon resonance (iSPR) detection of Fusarium mycotoxins in wheat

    USDA-ARS?s Scientific Manuscript database

    A rapid, sensitive and multiplexed imaging surface plasmon resonance (iSPR) biosensor assay was developed and validated for three Fusarium toxins, deoxynivalenol (DON), zearalenone (ZEA) and T-2 toxin. The iSPR assay was based on a competitive inhibition format with secondary antibodies (Ab2) conjug...

  17. Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay

    2009-08-01

    Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.

  18. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  19. Ultrasensitive Biosensors Using Enhanced Fano Resonances in Capped Gold Nanoslit Arrays

    PubMed Central

    Lee, Kuang-Li; Huang, Jhih-Bin; Chang, Jhih-Wei; Wu, Shu-Han; Wei, Pei-Kuen

    2015-01-01

    Nanostructure-based sensors are capable of sensitive and label-free detection for biomedical applications. However, plasmonic sensors capable of highly sensitive detection with high-throughput and low-cost fabrication techniques are desirable. We show that capped gold nanoslit arrays made by thermal-embossing nanoimprint method on a polymer film can produce extremely sharp asymmetric resonances for a transverse magnetic-polarized wave. An ultrasmall linewidth is formed due to the enhanced Fano coupling between the cavity resonance mode in nanoslits and surface plasmon resonance mode on periodic metallic surface. With an optimal slit length and width, the full width at half-maximum bandwidth of the Fano mode is only 3.68 nm. The wavelength sensitivity is 926 nm/RIU for 60-nm-width and 1,000-nm-period nanoslits. The figure of merit is up to 252. The obtained value is higher than the theoretically estimated upper limits of the prism-coupling SPR sensors and the previously reported record high figure-of-merit in array sensors. In addition, the structure has an ultrahigh intensity sensitivity up to 48,117%/RIU. PMID:25708955

  20. A SPR strategy for high-throughput ligand screenings based on synthetic peptides mimicking a selected subdomain of the target protein: a proof of concept on HER2 receptor.

    PubMed

    Monfregola, Luca; Vitale, Rosa Maria; Amodeo, Pietro; De Luca, Stefania

    2009-10-01

    The discovery of pharmaceutical agents is a complex, lengthy and costly process, critically depending on the availability of rapid and efficient screening methods. In particular, when targets are large, multidomain proteins, their complexity may affect unfavorably technical feasibility, costs and unambiguity of binding test interpretation. A possible strategy to overcome these problems relies on molecular design of receptor fragments that are: sensible targets for ligand screenings, conformationally stable also as standalone domains, easily synthesized and immobilized on chip for Biacore experiments. An additional desirable feature for new ligands is the ability of selectively targeting alternative conformational states typical of many proteins. To test the feasibility of such approach on a case with potential applicative interest, we developed a surface plasmon resonance (SPR)-based screening method for drug candidates toward HER2, a Tyr-kinase receptor targeted in anticancer therapies. HER2 was mimicked by HER2-DIVMP, a modified fragment of it immobilized onto the sensor surface specifically modeling HER2 domain IV in its bounded form, designed by structural comparison of HER2 alone and in complex with Herceptin, a monoclonal therapeutic anti-HER2 antibody. This design and its implementation in SPR devices was validated by investigating Herceptin- HER2-DIVMP affinity, measuring its dissociation constant (K(D)=19.2 nM). An efficient synthetic procedure to prepare the HER2-DIVMP peptide was also developed. The HER2-DIVMP conformational stability suggested by experimental and computational results, makes it also a valuable candidate as a mold to design new molecules selectively targeting domain IV of HER2.

  1. Antibody-Functionalized Carbon Nanotube Transistors as Biosensors for the Detection of Prostate Cancer

    DTIC Science & Technology

    2010-07-01

    the attachment by AFM and electronic measurement (Fig. 1.2). We have also begun experiments to quantify the sensor response to solutions of OPN...to facilitate IMAC purification. Each of the sc Fv were expressed, purified, and binding activity ch aracterized via surface plasm on resonance (SPR

  2. Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors

    NASA Astrophysics Data System (ADS)

    Augel, L.; Fischer, I. A.; Dunbar, L. A.; Bechler, S.; Berrier, A.; Etezadi, D.; Hornung, F.; Kostecki, K.; Ozdemir, C. I.; Soler, M.; Altug, H.; Schulze, J.

    2016-03-01

    Nanohole array surface plasmon resonance (SPR) sensors offer a promising platform for high-throughput label-free biosensing. Integrating nanohole arrays with group-IV semiconductor photodetectors could enable low-cost and disposable biosensors compatible to Si-based complementary metal oxide semiconductor (CMOS) technology that can be combined with integrated circuitry for continuous monitoring of biosamples and fast sensor data processing. Such an integrated biosensor could be realized by structuring a nanohole array in the contact metal layer of a photodetector. We used Fouriertransform infrared spectroscopy to investigate nanohole arrays in a 100 nm Al film deposited on top of a vertical Si-Ge photodiode structure grown by molecular beam epitaxy (MBE). We find that the presence of a protein bilayer, constitute of protein AG and Immunoglobulin G (IgG), leads to a wavelength-dependent absorptance enhancement of ~ 8 %.

  3. Au Nanoparticle Sub-Monolayers Sandwiched between Sol-Gel Oxide Thin Films

    PubMed Central

    Della Gaspera, Enrico; Menin, Enrico; Sada, Cinzia

    2018-01-01

    Sub-monolayers of monodisperse Au colloids with different surface coverage have been embedded in between two different metal oxide thin films, combining sol-gel depositions and proper substrates functionalization processes. The synthetized films were TiO2, ZnO, and NiO. X-ray diffraction shows the crystallinity of all the oxides and verifies the nominal surface coverage of Au colloids. The surface plasmon resonance (SPR) of the metal nanoparticles is affected by both bottom and top oxides: in fact, the SPR peak of Au that is sandwiched between two different oxides is centered between the SPR frequencies of Au sub-monolayers covered with only one oxide, suggesting that Au colloids effectively lay in between the two oxide layers. The desired organization of Au nanoparticles and the morphological structure of the prepared multi-layered structures has been confirmed by Rutherford backscattering spectrometry (RBS), Secondary Ion Mass Spectrometry (SIMS), and Scanning Electron Microscopy (SEM) analyses that show a high quality sandwich structure. The multi-layered structures have been also tested as optical gas sensors. PMID:29538338

  4. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Fei; Hou, Xiangshu; Xu, Kun

    2015-10-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core-shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H2O2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core-shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum.

  5. Design of an ultrasensitive SPR biosensor based on a graphene-MoS2 hybrid structure with a MgF2 prism.

    PubMed

    Feng, Yuncai; Liu, Youwen; Teng, Jinghua

    2018-05-10

    We propose, to the best of our knowledge, a new configuration of a biosensor based on the graphene-MoS 2 hybrid structure by adopting the lower refractive index MgF 2 prism in order to improve the sensitivity and the figure of merit (FOM). We can obtain an ultrasensitive sensor with values of sensitivity and FOM as high as 540.8°/RIU and 145/RIU, respectively, by modulating the parameters in the configuration and comparatively choosing a different absentee layer material. The proposed structure is applicable in the realization of an integrated device for the surface plasmon resonance biosensor.

  6. Integrating nanohybrid membranes of reduced graphene oxide: chitosan: silica sol gel with fiber optic SPR for caffeine detection

    NASA Astrophysics Data System (ADS)

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D.

    2017-05-01

    Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.

  7. NIR spectrometer using a Schottky photodetector enhanced by grating-based SPR.

    PubMed

    Chen, Wenjing; Kan, Tetsuo; Ajiki, Yoshiharu; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-10-31

    We present a near-infrared (NIR) spectrum measurement method using a Schottky photodetector enhanced by surface plasmon resonance (SPR). An Au grating was fabricated on an n-type silicon wafer to form a Schottky barrier and act as an SPR coupler. The resulting photodetector provides wavelength-selective photodetection depending on the SPR coupling angle. A matrix was pre-calculated to describe this characteristic. The spectrum was obtained from this matrix and the measured photocurrents at various SPR coupling angles. Light with single and multiple wavelengths was tested. Comparative measurements showed that our method is able to detect spectra with a wavelength resolution comparable to that of a commercial spectrometer.

  8. Liposomes with High Refractive Index Encapsulants as Tunable Signal Amplification Tools in Surface Plasmon Resonance Spectroscopy.

    PubMed

    Fenzl, Christoph; Hirsch, Thomas; Baeumner, Antje J

    2015-11-03

    One major goal in the surface plasmon resonance (SPR) technique is the reliable detection of small molecules as well as low analyte concentrations. This can be achieved by a viable signal amplification strategy. We therefore investigated optimal liposome characteristics for use as a signal enhancement system for SPR sensors, as liposomes excel not only at versatility but also at colloidal stability and ease of functionalization. These characteristics include the encapsulation of high refractive index markers, lipid composition, liposome size, and surface modifications to best match the requirements of the SPR system. Our studies of the binding of biotinylated liposomes to surface-immobilized streptavidin show that the refractive index of the encapsulant has a major influence on the SPR signal and outweighs the influence of the thin lipid bilayer. Thus, the signal amplification properties of liposomes can be adjusted to the respective needs of any analytical task by simply exchanging the encapsulant solution. In this work, a maximum enhancement factor of 23 was achieved by encapsulating a 500 mM sucrose solution. Dose-response studies with and without liposome enhancement revealed an improvement of the limit of detection from 10 nmol L(-1) to 320 pmol L(-1) streptavidin concentration with a much higher sensitivity of 3 mRIU per logarithmic unit of the concentration between 500 pmol L(-1) and 10 nmol L(-1).

  9. Ultra-low fouling and high antibody loading zwitterionic hydrogel coatings for sensing and detection in complex media.

    PubMed

    Chou, Ying-Nien; Sun, Fang; Hung, Hsiang-Chieh; Jain, Priyesh; Sinclair, Andrew; Zhang, Peng; Bai, Tao; Chang, Yung; Wen, Ten-Chin; Yu, Qiuming; Jiang, Shaoyi

    2016-08-01

    For surface-based diagnostic devices to achieve reliable biomarker detection in complex media such as blood, preventing nonspecific protein adsorption and incorporating high loading of biorecognition elements are paramount. In this work, a novel method to produce nonfouling zwitterionic hydrogel coatings was developed to achieve these goals. Poly(carboxybetaine acrylamide) (pCBAA) hydrogel thin films (CBHTFs) prepared with a carboxybetaine diacrylamide crosslinker (CBAAX) were coated on gold and silicon dioxide surfaces via a simple spin coating process. The thickness of CBHTFs could be precisely controlled between 15 and 150nm by varying the crosslinker concentration, and the films demonstrated excellent long-term stability. Protein adsorption from undiluted human blood serum onto the CBHTFs was measured with surface plasmon resonance (SPR). Hydrogel thin films greater than 20nm exhibited ultra-low fouling (<5ng/cm(2)). In addition, the CBHTFs were capable of high antibody functionalization for specific biomarker detection without compromising their nonfouling performance. This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. In this work, we developed an approach to realize ultra-low fouling and high ligand loading with a highly-crosslinked, purely zwitterionic, carboxybetaine thin film hydrogel (CBHTF) coating platform. The CBHTF on a hydrophilic surface demonstrated long-term stability. By varying the crosslinker content in the spin-coated hydrogel solution, the thickness of CBHTFs could be precisely controlled. Optimized CBHTFs exhibited ultra-low nonspecific protein adsorption below 5ng/cm(2) measured by a surface plasmon resonance (SPR) sensor, and their 3D architecture allowed antibody loading to reach 693ng/cm(2). This strategy provides a facile method to modify SPR biosensor chips with an advanced nonfouling material, and can be potentially expanded to a variety of implantable medical devices and diagnostic biosensors. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Detection of retromer assembly in Plasmodium falciparum by immunosensing coupled to Surface Plasmon Resonance.

    PubMed

    Iqbal, Mohd Shameel; Siddiqui, Asim Azhar; Banerjee, Chinmoy; Nag, Shiladitya; Mazumder, Somnath; De, Rudranil; Saha, Shubhra Jyoti; Karri, Suresh Kumar; Bandyopadhyay, Uday

    Retromer complex plays a crucial role in intracellular protein trafficking and is conserved throughout the eukaryotes including malaria parasite, Plasmodium falciparum, where it is partially conserved. The assembly of retromer complex in RBC stages of malarial parasite is extremely difficult to explore because of its complicated physiology, small size, and intra-erythrocytic location. Nonetheless, understanding of retromer assembly may pave new ways for the development of novel antimalarials targeting parasite-specific protein trafficking pathways. Here, we investigated the assembly of retromer complex in P. falciparum, by an immunosensing method through highly sensitive Surface Plasmon Resonance (SPR) technique. After taking leads from the bioinformatics search and literature, different interacting proteins were identified and specific antibodies were raised against them. The sensor chip was prepared by covalently linking antibody specific to one component and the whole cell lysate was passed through it in order to trap the interacting complex. Antibodies raised against other interacting components were used to detect them in the trapped complex on the SPR chip. We were able to detect three different components in the retromer complex trapped by the immobilized antibody specific against a different component on a sensor chip. The assay was reproduced and validated in a different two-component CD74-MIF system in mammalian cells. We, thus, illustrate the assembly of retromer complex in P. falciparum through a bio-sensing approach that combines SPR with immunosensing requiring a very small amount of sample from the native source. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Deposition of functionalized polymer layers in surface plasmon resonance immunosensors by in-situ polymerization in the evanescent wave field.

    PubMed

    Chegel, Vladimir; Whitcombe, Michael J; Turner, Nicholas W; Piletsky, Sergey A

    2009-01-01

    Traditionally, the integration of sensing gel layers in surface plasmon resonance (SPR) is achieved via "bulk" methods, such as precipitation, spin-coating or in-situ polymerization onto the total surface of the sensor chip, combined with covalent attachment of the antibody or receptor to the gel surface. This is wasteful in terms of materials as the sensing only occurs at the point of resonance interrogated by the laser. By isolating the sensing materials (antibodies, enzymes, aptamers, polymers, MIPs, etc.) to this exact spot a more efficient use of these recognition elements will be achieved. Here we present a method for the in-situ formation of polymers, using the energy of the evanescent wave field on the surface of an SPR device, specifically localized at the point of interrogation. Using the photo-initiator couple of methylene blue (sensitizing dye) and sodium p-toluenesulfinate (reducing agent) we polymerized a mixture of N,N-methylene-bis-acrylamide and methacrylic acid in water at the focal point of SPR. No polymerization was seen in solution or at any other sites on the sensor surface. Varying parameters such as monomer concentration and exposure time allowed precise control over the polymer thickness (from 20-200 nm). Standard coupling with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide was used for the immobilization of protein G which was used to bind IgG in a typical biosensor format. This model system demonstrated the characteristic performance for this type of immunosensor, validating our deposition method.

  12. Surface Plasmon Resonance: New Biointerface Designs and High-Throughput Affinity Screening

    NASA Astrophysics Data System (ADS)

    Linman, Matthew J.; Cheng, Quan Jason

    Surface plasmon resonance (SPR) is a surface optical technique that measures minute changes in refractive index at a metal-coated surface. It has become increasingly popular in the study of biological and chemical analytes because of its label-free measurement feature. In addition, SPR allows for both quantitative and qualitative assessment of binding interactions in real time, making it ideally suited for probing weak interactions that are often difficult to study with other methods. This chapter presents the biosensor development in the last 3 years or so utilizing SPR as the principal analytical technique, along with a concise background of the technique itself. While SPR has demonstrated many advantages, it is a nonselective method and so, building reproducible and functional interfaces is vital to sensing applications. This chapter, therefore, focuses mainly on unique surface chemistries and assay approaches to examine biological interactions with SPR. In addition, SPR imaging for high-throughput screening based on microarrays and novel hyphenated techniques involving the coupling of SPR to other analytical methods is discussed. The chapter concludes with a commentary on the current state of SPR biosensing technology and the general direction of future biosensor research.

  13. Quantitative blood group typing using surface plasmon resonance.

    PubMed

    Then, Whui Lyn; Aguilar, Marie-Isabel; Garnier, Gil

    2015-11-15

    The accurate and reliable typing of blood groups is essential prior to blood transfusion. While current blood typing methods are well established, results are subjective and heavily reliant on analysis by trained personnel. Techniques for quantifying blood group antibody-antigen interactions are also very limited. Many biosensing systems rely on surface plasmon resonance (SPR) detection to quantify biomolecular interactions. While SPR has been widely used for characterizing antibody-antigen interactions, measuring antibody interactions with whole cells is significantly less common. Previous studies utilized SPR for blood group antigen detection, however, showed poor regeneration causing loss of functionality after a single use. In this study, a fully regenerable, multi-functional platform for quantitative blood group typing via SPR detection is achieved by immobilizing anti-human IgG antibody to the sensor surface, which binds to the Fc region of human IgG antibodies. The surface becomes an interchangeable platform capable of quantifying the blood group interactions between red blood cells (RBCs) and IgG antibodies. As with indirect antiglobulin tests (IAT), which use IgG antibodies for detection, IgG antibodies are initially incubated with RBCs. This facilitates binding to the immobilized monolayer and allows for quantitative blood group detection. Using the D-antigen as an example, a clear distinction between positive (>500 RU) and negative (<100 RU) RBCs is achieved using anti-D IgG. Complete regeneration of the anti-human IgG surface is also successful, showing negligible degradation of the surface after more than 100 regenerations. This novel approach is validated with human-sourced whole blood samples to demonstrate an interesting alternative for quantitative blood grouping using SPR analysis. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  14. A hybrid approach to predict the relationship between tablet tensile strength and compaction pressure using analytical powder compression.

    PubMed

    Persson, Ann-Sofie; Alderborn, Göran

    2018-04-01

    The objective was to present a hybrid approach to predict the strength-pressure relationship (SPR) of tablets using common compression parameters and a single measurement of tablet tensile strength. Experimental SPR were derived for six pharmaceutical powders with brittle and ductile properties and compared to predicted SPR based on a three-stage approach. The prediction was based on the Kawakita b -1 parameter and the in-die Heckel yield stress, an estimate of maximal tensile strength, and a parameter proportionality factor α. Three values of α were used to investigate the influence of the parameter on the SPR. The experimental SPR could satisfactorily be described by the three stage model, however for sodium bicarbonate the tensile strength plateau could not be observed experimentally. The shape of the predicted SPR was to a minor extent influenced by the Kawakita b -1 but the width of the linear region was highly influenced by α. An increased α increased the width of the linear region and thus also the maximal predicted tablet tensile strength. Furthermore, the correspondence between experimental and predicted SPR was influenced by the α value and satisfactory predictions were in general obtained for α = 4.1 indicating the predictive potential of the hybrid approach. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Kinetic analysis of inhibition of glucoamylase and active site mutants via chemoselective oxime immobilization of acarbose on SPR chip surfaces.

    PubMed

    Sauer, Jørgen; Abou Hachem, Maher; Svensson, Birte; Jensen, Knud J; Thygesen, Mikkel B

    2013-06-28

    We here report a quantitative study on the binding kinetics of inhibition of the enzyme glucoamylase and how individual active site amino acid mutations influence kinetics. To address this challenge, we have developed a fast and efficient method for anchoring native acarbose to gold chip surfaces for surface plasmon resonance studies employing wild type glucoamylase and active site mutants, Y175F, E180Q, and R54L, as analytes. The key method was the chemoselective and protecting group-free oxime functionalization of the pseudo-tetrasaccharide-based inhibitor acarbose. By using this technique we have shown that at pH 7.0 the association and dissociation rate constants for the acarbose-glucoamylase interaction are 10(4)M(-1)s(-1) and 10(3)s(-1), respectively, and that the conformational change to a tight enzyme-inhibitor complex affects the dissociation rate constant by a factor of 10(2)s(-1). Additionally, the acarbose-presenting SPR surfaces could be used as a glucoamylase sensor that allowed rapid, label-free affinity screening of small carbohydrate-based inhibitors in solution, which is otherwise difficult with immobilized enzymes or other proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Flavobacterium johnsoniae sprB Is Part of an Operon Spanning the Additional Gliding Motility Genes sprC, sprD, and sprF ▿ †

    PubMed Central

    Rhodes, Ryan G.; Nelson, Shawn S.; Pochiraju, Soumya; McBride, Mark J.

    2011-01-01

    Cells of Flavobacterium johnsoniae move rapidly over surfaces by a process known as gliding motility. Gld proteins are thought to comprise the gliding motor that propels cell surface adhesins, such as the 669-kDa SprB. A novel protein secretion apparatus called the Por secretion system (PorSS) is required for assembly of SprB on the cell surface. Genetic and molecular analyses revealed that sprB is part of a seven-gene operon spanning 29.3 kbp of DNA. In addition to sprB, three other genes of this operon (sprC, sprD, and sprF) are involved in gliding. Mutations in sprB, sprC, sprD, and sprF resulted in cells that failed to form spreading colonies on agar but that exhibited some motility on glass in wet mounts. SprF exhibits some similarity to Porphyromonas gingivalis PorP, which is required for secretion of gingipain protease virulence factors via the P. gingivalis PorSS. F. johnsoniae sprF mutants produced SprB protein but were defective in localization of SprB to the cell surface, suggesting a role for SprF in secretion of SprB. The F. johnsoniae PorSS is involved in secretion of extracellular chitinase in addition to its role in secretion of SprB. SprF was not needed for chitinase secretion and may be specifically required for SprB secretion by the PorSS. Cells with nonpolar mutations in sprC or sprD produced and secreted SprB and propelled it rapidly along the cell surface. Multiple paralogs of sprB, sprC, sprD, and sprF are present in the genome, which may explain why mutations in sprB, sprC, sprD, and sprF do not result in complete loss of motility and suggests the possibility that semiredundant SprB-like adhesins may allow movement of cells over different surfaces. PMID:21131497

  17. Impact of joint statistical dual-energy CT reconstruction of proton stopping power images: Comparison to image- and sinogram-domain material decomposition approaches.

    PubMed

    Zhang, Shuangyue; Han, Dong; Politte, David G; Williamson, Jeffrey F; O'Sullivan, Joseph A

    2018-05-01

    The purpose of this study was to assess the performance of a novel dual-energy CT (DECT) approach for proton stopping power ratio (SPR) mapping that integrates image reconstruction and material characterization using a joint statistical image reconstruction (JSIR) method based on a linear basis vector model (BVM). A systematic comparison between the JSIR-BVM method and previously described DECT image- and sinogram-domain decomposition approaches is also carried out on synthetic data. The JSIR-BVM method was implemented to estimate the electron densities and mean excitation energies (I-values) required by the Bethe equation for SPR mapping. In addition, image- and sinogram-domain DECT methods based on three available SPR models including BVM were implemented for comparison. The intrinsic SPR modeling accuracy of the three models was first validated. Synthetic DECT transmission sinograms of two 330 mm diameter phantoms each containing 17 soft and bony tissues (for a total of 34) of known composition were then generated with spectra of 90 and 140 kVp. The estimation accuracy of the reconstructed SPR images were evaluated for the seven investigated methods. The impact of phantom size and insert location on SPR estimation accuracy was also investigated. All three selected DECT-SPR models predict the SPR of all tissue types with less than 0.2% RMS errors under idealized conditions with no reconstruction uncertainties. When applied to synthetic sinograms, the JSIR-BVM method achieves the best performance with mean and RMS-average errors of less than 0.05% and 0.3%, respectively, for all noise levels, while the image- and sinogram-domain decomposition methods show increasing mean and RMS-average errors with increasing noise level. The JSIR-BVM method also reduces statistical SPR variation by sixfold compared to other methods. A 25% phantom diameter change causes up to 4% SPR differences for the image-domain decomposition approach, while the JSIR-BVM method and sinogram-domain decomposition methods are insensitive to size change. Among all the investigated methods, the JSIR-BVM method achieves the best performance for SPR estimation in our simulation phantom study. This novel method is robust with respect to sinogram noise and residual beam-hardening effects, yielding SPR estimation errors comparable to intrinsic BVM modeling error. In contrast, the achievable SPR estimation accuracy of the image- and sinogram-domain decomposition methods is dominated by the CT image intensity uncertainties introduced by the reconstruction and decomposition processes. © 2018 American Association of Physicists in Medicine.

  18. Biosensor-based small molecule fragment screening with biolayer interferometry

    NASA Astrophysics Data System (ADS)

    Wartchow, Charles A.; Podlaski, Frank; Li, Shirley; Rowan, Karen; Zhang, Xiaolei; Mark, David; Huang, Kuo-Sen

    2011-07-01

    Biosensor-based fragment screening is a valuable tool in the drug discovery process. This method is advantageous over many biochemical methods because primary hits can be distinguished from non-specific or non-ideal interactions by examining binding profiles and responses, resulting in reduced false-positive rates. Biolayer interferometry (BLI), a technique that measures changes in an interference pattern generated from visible light reflected from an optical layer and a biolayer containing proteins of interest, is a relatively new method for monitoring small molecule interactions. The BLI format is based on a disposable sensor that is immersed in 96-well or 384-well plates. BLI has been validated for small molecule detection and fragment screening with model systems and well-characterized targets where affinity constants and binding profiles are generally similar to those obtained with surface plasmon resonsance (SPR). Screens with challenging targets involved in protein-protein interactions including BCL-2, JNK1, and eIF4E were performed with a fragment library of 6,500 compounds, and hit rates were compared for these targets. For eIF4E, a protein containing a PPI site and a nucleotide binding site, results from a BLI fragment screen were compared to results obtained in biochemical HTS screens. Overlapping hits were observed for the PPI site, and hits unique to the BLI screen were identified. Hit assessments with SPR and BLI are described.

  19. Considerations on Circuit Design and Data Acquisition of a Portable Surface Plasmon Resonance Biosensing System.

    PubMed

    Chang, Keke; Chen, Ruipeng; Wang, Shun; Li, Jianwei; Hu, Xinran; Liang, Hao; Cao, Baiqiong; Sun, Xiaohui; Ma, Liuzheng; Zhu, Juanhua; Jiang, Min; Hu, Jiandong

    2015-08-19

    The aim of this study was to develop a circuit for an inexpensive portable biosensing system based on surface plasmon resonance spectroscopy. This portable biosensing system designed for field use is characterized by a special structure which consists of a microfluidic cell incorporating a right angle prism functionalized with a biomolecular identification membrane, a laser line generator and a data acquisition circuit board. The data structure, data memory capacity and a line charge-coupled device (CCD) array with a driving circuit for collecting the photoelectric signals are intensively focused on and the high performance analog-to-digital (A/D) converter is comprehensively evaluated. The interface circuit and the photoelectric signal amplifier circuit are first studied to obtain the weak signals from the line CCD array in this experiment. Quantitative measurements for validating the sensitivity of the biosensing system were implemented using ethanol solutions of various concentrations indicated by volume fractions of 5%, 8%, 15%, 20%, 25%, and 30%, respectively, without a biomembrane immobilized on the surface of the SPR sensor. The experiments demonstrated that it is possible to detect a change in the refractive index of an ethanol solution with a sensitivity of 4.99838 × 10(5) ΔRU/RI in terms of the changes in delta response unit with refractive index using this SPR biosensing system, whereby the theoretical limit of detection of 3.3537 × 10(-5) refractive index unit (RIU) and a high linearity at the correlation coefficient of 0.98065. The results obtained from a series of tests confirmed the practicality of this cost-effective portable SPR biosensing system.

  20. Fast and accurate detection of cancer cell using a versatile three-channel plasmonic sensor

    NASA Astrophysics Data System (ADS)

    Hoseinian, M.; Ahmadi, A. R.; Bolorizadeh, M. A.

    2016-09-01

    Surface Plasmon Resonance (SPR) optical fiber sensors can be used as cost-effective small sized biosensors that are relatively simple to operate. Additionally, these instruments are label-free, hence rendering them highly sensitive to biological measurements. In this study, a three-channel microstructure optical fiber plasmonic-based portable biosensor is designed and analyzed using Finite Element Method. The proposed system is capable of determining changes in sample's refractive index with precision of order one thousandth. The biosensor measures three absorption resonance wavelengths of the analytes simultaneously. This property is one of the main advantages of the proposed biosensor since it reduces the error in the measured wavelength and enhances the accuracy of the results up to 10-5 m/RIU by reducing noise. In this paper, Jurkat cell, an indicator cell for leukemia cancer, is considered as the analyte; and its absorption resonance wavelengths as well as sensitivity in each channel are determined.

  1. Enhancing Surface Sensing Sensitivity of Metallic Nanostructures using Blue-Shifted Surface Plasmon Mode and Fano Resonance.

    PubMed

    Lee, Kuang-Li; Chang, Chia-Chun; You, Meng-Lin; Pan, Ming-Yang; Wei, Pei-Kuen

    2018-06-27

    Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.

  2. Graphene plasmonic nanogratings for biomolecular sensing in liquid

    NASA Astrophysics Data System (ADS)

    Chorsi, Meysam T.; Chorsi, Hamid T.

    2017-12-01

    We design a surface plasmon resonance (SPR) molecular sensor based on graphene and biomolecule adsorption at graphene-liquid interfaces. The sensor configuration consists of two opposing arrays of graphene nanograting mounted on a substrate, with a liquid-phase sensing medium confined between them. We characterize the design in simulation on a variety of substrates by altering the refractive index of the sensing medium and varying the absorbance-transmittance characteristics. The influence of various parameters on the biosensor's performance, including the Fermi level of graphene, the dielectric constant of the substrate, and the incident angle for plasmon excitation, is investigated. Numerical simulations demonstrate the sensitivity higher than 3000 nm/RIU (refractive index unit). The device supports a wide range of substrates in which graphene can be epitaxially grown. The proposed biosensor works independent of the incident angle and can be tuned to cover a broadband wavelength range.

  3. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE PAGES

    Sakadjian, B.; Hu, S.; Maryamchik, M.; ...

    2015-06-05

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  4. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakadjian, B.; Hu, S.; Maryamchik, M.

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore » of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. Furthermore, the SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  5. Simultaneous Detection of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes at a Very Low Level Using Simultaneous Enrichment Broth and Multichannel SPR Biosensor.

    PubMed

    Zhang, Xiaoguang; Tsuji, Sachiko; Kitaoka, Hayato; Kobayashi, Hiroshi; Tamai, Mitsuru; Honjoh, Ken-Ichi; Miyamoto, Takahisa

    2017-10-01

    Detection of foodborne pathogens at very low levels is still a challenge. A custom-built multichannel surface plasmon resonance (SPR) biosensor and simultaneous enrichment broth (SEB) were used to develop a simultaneous detection method for 3 important foodborne pathogens, Escherichia coli O157:H7 (O157:H7), Salmonella enteritidis, and Listeria monocytogenes, at a very low level. These 3 foodborne pathogens at a very low level (14, 6, and 28 CFU/25 g (mL) for O157:H7, S. enteritidis, and L. monocytogenes, respectively) were inoculated in SEB and incubated at 37 ˚C for 24 h. Sample prepared from the simultaneous enrichment culture was analyzed using the multichannel SPR biosensor and sensor chip immobilized with polyclonal antibodies specific to each of the target pathogens. O157:H7, S. enteritidis, and L. monocytogenes in chicken were detected simultaneously at an inoculum dose of 14, 6, and 28 CFU/25 g, respectively. Our method using a custom-built multichannel SPR biosensor and enrichment in SEB is expected as a rapid and simultaneous detection method for low levels of O157:H7, S. enteritidis, and L. monocytogenes in food. Our method is expected as a rapid and simultaneous detection method for pathogens at very low levels. It has great potential for safety control of food and microbiological detection applications. © 2017 Institute of Food Technologists®.

  6. Synthesis of gold-cellobiose nanocomposites for colorimetric measurement of cellobiase activity.

    PubMed

    Lai, Cui; Zeng, Guang-Ming; Huang, Dan-Lian; Zhao, Mei-Hua; Wei, Zhen; Huang, Chao; Xu, Piao; Li, Ning-Jie; Zhang, Chen; Chen, Ming; Li, Xue; Lai, Mingyong; He, Yibin

    2014-11-11

    Gold-cellobiose nanocomposites (GCNCs) were synthesized by reducing gold salt with a polysaccharide, cellobiose. Here, cellobiose acted as a controller of nucleation or stabilizer in the formation of gold nanoparticles. The obtained GCNCs were characterized with UV-visible spectroscopy; Zetasizer and Fourier transform infrared (FT-IR) spectrophotometer. Moreover, 6-Mercapto-1-hexanol (MCH) was modified on GCNCs, and the MCH-GCNCs were used to determine the cellobiase activity in compost extracts based on the surface plasmon resonance (SPR) property of MCH-GCNCs. The degradation of cellobiose on MCH-GCNCs by cellobiase could induce the aggregation, and the SPR absorption wavelength of MCH-GCNCs correspondingly red shifted. Thus, the absorbance ratio of treated MCH-GCNCs (A650/A520) could be used to estimate the cellobiase activity, and the probe exhibited highly sensitive and selective detection of the cellobiase activity with a wide linear from 3.0 to 100.0U L(-1) within 20 min. Meanwhile, a good linear relationship with correlation coefficient of R2=0.9976 was obtained. This approach successfully showed the suitability of gold nanocomposites as a colorimetric sensor for the sensitive and specific enzyme activity detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Implementation of a SPR immunosensor for the simultaneous detection of the 22K and 20K hGH isoforms in human serum samples.

    PubMed

    de Juan-Franco, Elena; Rodríguez-Frade, J M; Mellado, M; Lechuga, Laura M

    2013-09-30

    We have implemented a Surface Plasmon Resonance (SPR) immunosensor based on a sandwich assay for the simultaneous detection of the two main hGH isoforms, of 22 kDa (22K) and 20 kDa (20K). An oriented-antibody sensor surface specific for both hormone isoforms was assembled by using the biotin-streptavidin system. The immunosensor functionality was checked for the direct detection of the 22K hGH isoform in buffer, which gave high specificity and reproducibility (intra and inter-assay mean coefficients of variation of 8.23% and 9% respectively). The selective determination of the 22K and 20K hGH isoforms in human serum samples in a single assay was possible by using two specific anti-hGH monoclonal antibodies. The detection limit for both hormone isoforms was 0.9 ng mL(-1) and the mean coefficient of variation was below 7.2%. The excellent reproducibility and sensitivity obtained indicate the high performance of this immunosensor for implementing an anti-doping test. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Side-polished fiber immunosensor based on surface plasmon resonance for detection of Legionella pneumophila

    NASA Astrophysics Data System (ADS)

    Tsao, Yu-Chia; Yang, Yi-Wen; Tsai, Woo-Hu; Yan, Tsong-Rong

    2008-02-01

    Side-polished fiber immunosensor based on surface plasmon resonance (SPR) onto self-assembled protein A layer was proposed for the detection of Legionella pneumophila. A self-assembled protein A layer on gold (Au) surface was fabricated by adsorbing a mixture of 11-mercaptoundecanoic acid (MUA) and activated by N-Ethyl-N'-(3-dimethylaminopropyl) carbodiimide/ N-Hydroxysuccinimide (EDC/NHS). The formation of self-assembled protein A and gold layer on side-polished surface and the binding of antibody and antigen in series were confirmed by SPR response on spectrum. The binding protein A layer can improve the sensitivity, which indirectly supports the configurations that antibody layer is immobilized on the binding protein A layer with a well-ordered orientation. The surface morphology analyses of self-assembled protein A layer on Au substrate and monoclonal antibody against L. pneumophila immobilized on protein A were demonstrated by SPR dip shifts on optical spectrum analyzer. The SPR fiber immunosensor for detection of L. pneumophila was developed and the detection limit was 10 CFU/ml with the SPR dip shift in wavelength from 1070 to 1105nm. The current fabrication technique of a SPR immunosensor using optical fiber for the detection of Legionella pneumophila could be applied to construct other biosensor.

  9. Development of a Strategy Based on the Surface Plasmon Resonance Technology for Platelet Compatibility Testing.

    PubMed

    Wu, Chang-Lin; He, Jian-An; Gu, Da-Yong; Shao, Chao-Peng; Zhu, Yi; Dang, Xin-Tang

    2018-01-01

    This study was aimed to establish a novel strategy based on the surface plasmon resonance (SPR) technology for platelet compatibility testing. A novel surface matrix was prepared based on poly (OEGMA-co-HEMA) via surface-initiated polymerization as a biosensor surface platform. Type O universal platelets and donor platelets were immobilized on these novel matrices via amine-coupling reaction and worked as a capturing ligand for binding the platelet antibody. Antibodies binding to platelets were monitored in real time by injecting the samples into a microfluidic channel. Clinical serum samples (n = 186) with multiple platelet transfusions were assayed for platelet antibodies using the SPR technology and monoclonal antibody-immobilized platelet antigen (MAIPA) assay. The novel biosensor surface achieved nonfouling background and high immobilization capacity and showed good repeatability and stability after regeneration. The limit of detection of the SPR biosensor for platelet antibody was estimated to be 50 ng/mL. The sensitivity and specificity were 92% and 98.7%. It could detect the platelet antibody directly in serum samples, and the results were similar to MAIPA assay. A novel strategy to facilitate the sensitive and reliable detection of platelet compatibility for developing an SPR-based biosensor was established in this study. The SPR-based biosensor combined with novel surface chemistry is a promising method for platelet compatibility testing.

  10. Selection bias in population-based cancer case-control studies due to incomplete sampling frame coverage.

    PubMed

    Walsh, Matthew C; Trentham-Dietz, Amy; Gangnon, Ronald E; Nieto, F Javier; Newcomb, Polly A; Palta, Mari

    2012-06-01

    Increasing numbers of individuals are choosing to opt out of population-based sampling frames due to privacy concerns. This is especially a problem in the selection of controls for case-control studies, as the cases often arise from relatively complete population-based registries, whereas control selection requires a sampling frame. If opt out is also related to risk factors, bias can arise. We linked breast cancer cases who reported having a valid driver's license from the 2004-2008 Wisconsin women's health study (N = 2,988) with a master list of licensed drivers from the Wisconsin Department of Transportation (WDOT). This master list excludes Wisconsin drivers that requested their information not be sold by the state. Multivariate-adjusted selection probability ratios (SPR) were calculated to estimate potential bias when using this driver's license sampling frame to select controls. A total of 962 cases (32%) had opted out of the WDOT sampling frame. Cases age <40 (SPR = 0.90), income either unreported (SPR = 0.89) or greater than $50,000 (SPR = 0.94), lower parity (SPR = 0.96 per one-child decrease), and hormone use (SPR = 0.93) were significantly less likely to be covered by the WDOT sampling frame (α = 0.05 level). Our results indicate the potential for selection bias due to differential opt out between various demographic and behavioral subgroups of controls. As selection bias may differ by exposure and study base, the assessment of potential bias needs to be ongoing. SPRs can be used to predict the direction of bias when cases and controls stem from different sampling frames in population-based case-control studies.

  11. Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors.

    PubMed

    Voisin, Valérie; Pilate, Julie; Damman, Pascal; Mégret, Patrice; Caucheteur, Christophe

    2014-01-15

    Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. The biosensor configuration reported in this work uses nanometric-scale gold-coated tilted fiber Bragg gratings (TFBGs) interrogated by light polarized radially to the optical fiber outer surface, so as to maximize the optical coupling with the SPR. These gratings were recently associated to aptamers to assess their label-free biorecognition capability in buffer and serum solutions. In this work, using the well-acknowledged biotin-streptavidin pair as a benchmark, we go forward in the demonstration of their unique sensitivity. In addition to the monitoring of the self-assembled monolayer (SAM) in real time, we report an unprecedented limit of detection (LOD) as low as 2 pM. Finally, an immunosensing experiment is realized with human transferrin (dissociation constant Kd~10(-8) M(-1)). It allows to assess both the reversibility and the robustness of the SPR-TFBG biosensors and to confirm their high sensitivity. © 2013 Published by Elsevier B.V.

  12. Label-Enhanced Surface Plasmon Resonance: A New Concept for Improved Performance in Optical Biosensor Analysis

    PubMed Central

    Granqvist, Niko; Hanning, Anders; Eng, Lars; Tuppurainen, Jussi; Viitala, Tapani

    2013-01-01

    Surface plasmon resonance (SPR) is a well-established optical biosensor technology with many proven applications in the study of molecular interactions as well as in surface and material science. SPR is usually applied in the label-free mode which may be advantageous in cases where the presence of a label may potentially interfere with the studied interactions per se. However, the fundamental challenges of label-free SPR in terms of limited sensitivity and specificity are well known. Here we present a new concept called label-enhanced SPR, which is based on utilizing strongly absorbing dye molecules in combination with the evaluation of the full shape of the SPR curve, whereby the sensitivity as well as the specificity of SPR is significantly improved. The performance of the new label-enhanced SPR method was demonstrated by two simple model assays: a small molecule assay and a DNA hybridization assay. The small molecule assay was used to demonstrate the sensitivity enhancement of the method, and how competitive assays can be used for relative affinity determination. The DNA assay was used to demonstrate the selectivity of the assay, and the capabilities in eliminating noise from bulk liquid composition variations. PMID:24217357

  13. Unified Software Solution for Efficient SPR Data Analysis in Drug Research

    PubMed Central

    Dahl, Göran; Steigele, Stephan; Hillertz, Per; Tigerström, Anna; Egnéus, Anders; Mehrle, Alexander; Ginkel, Martin; Edfeldt, Fredrik; Holdgate, Geoff; O’Connell, Nichole; Kappler, Bernd; Brodte, Annette; Rawlins, Philip B.; Davies, Gareth; Westberg, Eva-Lotta; Folmer, Rutger H. A.; Heyse, Stephan

    2016-01-01

    Surface plasmon resonance (SPR) is a powerful method for obtaining detailed molecular interaction parameters. Modern instrumentation with its increased throughput has enabled routine screening by SPR in hit-to-lead and lead optimization programs, and SPR has become a mainstream drug discovery technology. However, the processing and reporting of SPR data in drug discovery are typically performed manually, which is both time-consuming and tedious. Here, we present the workflow concept, design and experiences with a software module relying on a single, browser-based software platform for the processing, analysis, and reporting of SPR data. The efficiency of this concept lies in the immediate availability of end results: data are processed and analyzed upon loading the raw data file, allowing the user to immediately quality control the results. Once completed, the user can automatically report those results to data repositories for corporate access and quickly generate printed reports or documents. The software module has resulted in a very efficient and effective workflow through saved time and improved quality control. We discuss these benefits and show how this process defines a new benchmark in the drug discovery industry for the handling, interpretation, visualization, and sharing of SPR data. PMID:27789754

  14. Kinetic Analyses of Data from a Human Serum Albumin Assay Using the liSPR System.

    PubMed

    Henseleit, Anja; Pohl, Carolin; Kaltenbach, Hans-Michael; Hettwer, Karina; Simon, Kirsten; Uhlig, Steffen; Haustein, Natalie; Bley, Thomas; Boschke, Elke

    2015-01-19

    We used the interaction between human serum albumin (HSA) and a high-affinity antibody to evaluate binding affinity measurements by the bench-top liSPR system (capitalis technology GmbH). HSA was immobilized directly onto a carboxylated sensor layer, and the mechanism of interaction between the antibody and HSA was investigated. The bivalence and heterogeneity of the antibody caused a complex binding mechanism. Three different interaction models (1:1 binding, heterogeneous analyte, bivalent analyte) were compared, and the bivalent analyte model best fit the curves obtained from the assay. This model describes the interaction of a bivalent analyte with one or two ligands (A + L ↔ LA + L ↔ LLA). The apparent binding affinity for this model measured 37 pM for the first reaction step, and 20 pM for the second step.

  15. Kinetic Analyses of Data from a Human Serum Albumin Assay Using the liSPR System

    PubMed Central

    Henseleit, Anja; Pohl, Carolin; Kaltenbach, Hans-Michael; Hettwer, Karina; Simon, Kirsten; Uhlig, Steffen; Haustein, Natalie; Bley, Thomas; Boschke, Elke

    2015-01-01

    We used the interaction between human serum albumin (HSA) and a high-affinity antibody to evaluate binding affinity measurements by the bench-top liSPR system (capitalis technology GmbH). HSA was immobilized directly onto a carboxylated sensor layer, and the mechanism of interaction between the antibody and HSA was investigated. The bivalence and heterogeneity of the antibody caused a complex binding mechanism. Three different interaction models (1:1 binding, heterogeneous analyte, bivalent analyte) were compared, and the bivalent analyte model best fit the curves obtained from the assay. This model describes the interaction of a bivalent analyte with one or two ligands (A + L ↔ LA + L ↔ LLA). The apparent binding affinity for this model measured 37 pM for the first reaction step, and 20 pM for the second step. PMID:25607476

  16. Affinity Interaction between Hexamer Peptide Ligand HWRGWV and Immunoglobulin G Studied by Quartz Crystal Microbalance and Surface Plasmon Resonance

    NASA Astrophysics Data System (ADS)

    Shen, Fei

    Immunoglobulins (Ig), also referred to as antibodies, act as protective agents against pathogens trying to invade an organism. Human immunoglobulin G (hIgG), as the most prominent immunoglobulin presented in serum and other human fluids, has broad applications in fields like immunotherapy and clinical diagnostics. Staphylococcus aureus Protein A and Streptococcus Protein G are the most common affinity ligands for IgG purifaction and detection. However, drawbacks associated with these two protein ligands have motivated searches for alternative affinity ligands. The hexamer peptide ligand HWRGWV identified from a one-bead-one-peptide combinatorial library synthesized on chromatography resins has demonstrated high affinity and specificity to the Fc fragment of hIgG. A chromatography resin with HWRGWV can purify human IgG (hIgG) from complete minimum essential medium (cMEM) with purities and yields as high as 95%, which are comparable to using Protein A as affinity ligand (4). As a short peptide ligand, HWRGWV can be produced at relatively low costs under good manufacturing practices (GMP) conditions, it is highly robust, less immunogenic and allows for milder elution conditions for the bound antibody (3, 5). Although this short peptide ligand has exhibited promising properties for IgG capture and purification, limited information is available on the intrinsic mechanisms of affinity interaction between the peptide ligand and target protein. In this study, the affinity interaction between hIgG and peptide ligand immobilized on solid surfaces was studied by quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). Compared with previous methods employed for the peptide characterization, QCM and SPR can provide direct measurements of equilibrium adsorption isotherms and rates of adsorption, allowing a complete kinetic and thermodynamics analyses of the ligand-target interactions. New methods were developed to modify gold and silica surfaces of QCM and SPR sensors for the immobilization of peptide ligands with low nonspecific binding. The silica surface was first modified by the formation of self-assembling monolayer (SAM) of 3-amino-propyl triethoxy silane as an anchor layer. Short chains of poly(ethylene glycol) (PEG) with Fmoc-protected amino groups at one end and carboxyl groups at the other end were then coupled through the carboxyl terminal to the amino groups on the silane. The short PEG chains served as spacer arms to reduce nonspecific binding to the substrate. The gold surface was modified by a two-component SAM using mixtures of HS(CH 2)11(CH2CH2O)6NH2 and HS(CH2)11(CH2CH2O)3OH. The advantage of using a modified silica surface is its relatively higher stability than the SAM on gold during the peptide functionalization step, however the SPR sensors do not work on silica surfaces. In addition, the modification process of the gold surface is relatively simple compared with that of the silica surface. The peptide immobilization process was optimized with silica surfaces and the best conditions were applied for the immobilization on gold surfaces. The results of surface modifications and peptide immobilizations were characterized by various surface analysis techniques including, ellipsometry, contact angle goniometer, chemical force microscopy (CFM), x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopy (ToF-SIMS). QCM and SPR results indicated that this peptide ligand HWRGWV immobilized on modified silica or gold surfaces has high affinity and specificity to hIgG binding even in a complex medium such as cMEM. Both thermodynamic and kinetic parameters of affinity interaction were obtained by the analysis of QCM and SPR data. Compared with QCM, SPR is more suitable for quantitative analysis of the protein binding, which is essential for the investigation of thermodynamics and kinetics parameters. The maximum binding capacity (4.15 mg m-2 ) and the dissociation constant (1.83 muM) derived from SPR data are both close to those obtained with chromatography techniques. The association and dissociation rate constants (0.68 m3 mol-1 s-1 and 1.24 s-1 respectively) were acquired for the first time for the affinity binding of IgG on peptide ligand HWRGWV functionalized surface. Although QCM is not as quantitative as SPR, it provides additional information on the status of the adsorbed layers. For instance, the dissipation measurement of QCM indicated that no significant denaturation of adsorbed hIgG occurred during the adsorption process. In addition, it was shown that the peptide ligand immobilized on modified silica surfaces has similar affinity and binding characteristics for IgG adsorption as on modified gold surfaces. In summary, new surface modification strategies were developed to study the affinity interaction between peptide ligands and target biomolecules. The use of Fc-specific binding peptides on QCM and SPR sensors could result in new devices for IgG concentration determination and also have promise as platforms for the development of immunosensors.

  17. Identification of a ligand for tumor necrosis factor receptor from Chinese herbs by combination of surface plasmon resonance biosensor and UPLC-MS.

    PubMed

    Cao, Yan; Li, Ying-Hua; Lv, Di-Ya; Chen, Xiao-Fei; Chen, Lang-Dong; Zhu, Zhen-Yu; Chai, Yi-Feng; Zhang, Jun-Ping

    2016-07-01

    Identification of bioactive compounds directly from complex herbal extracts is a key issue in the study of Chinese herbs. The present study describes the establishment and application of a sensitive, efficient, and convenient method based on surface plasmon resonance (SPR) biosensors for screening active ingredients targeting tumor necrosis factor receptor type 1 (TNF-R1) from Chinese herbs. Concentration-adjusted herbal extracts were subjected to SPR binding assay, and a remarkable response signal was observed in Rheum officinale extract. Then, the TNF-R1-bound ingredients were recovered, enriched, and analyzed by UPLC-QTOF/MS. As a result, physcion-8-O-β-D-monoglucoside (PMG) was identified as a bioactive compound, and the affinity constant of PMG to TNF-R1 was determined by SPR affinity analysis (K D  = 376 nM). Pharmacological assays revealed that PMG inhibited TNF-α-induced cytotoxicity and apoptosis in L929 cells via TNF-R1. Although PMG was a trace component in the chemical constituents of the R. officinale extract, it had considerable anti-inflammatory activities. It was found for the first time that PMG was a ligand for TNF receptor from herbal medicines. The proposed SPR-based screening method may prove to be an effective solution to analyzing bioactive components of Chinese herbs and other complex drug systems. Graphical abstract Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them. Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them.

  18. Resonance surface plasmon spectroscopy by tunable enhanced light transmission through nanostructured gratings and thin films

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Hsun

    Surface plasmon resonance (SPR) is a powerful tool in probing interfacial events in that any changes of effective refractive index in the interface directly impact the behavior of surface plasmons, an electromagnetic wave, travelling along the interface. Surface plasmons (SPs) are generated only if the momemtum of incident light matches that of SPs in the interface. This thesis focuses on tuning the behavior of SPs by changing the topology of diffraction gratings, monitoring the thickness of thin films by diffraction gratings, and use of dispersion images to analyze complex optical responses of SPs through diffraction gratings. Chapter 1 covers the background/principle of SPR, comprehensive literature review, sensor applications, control of SPR spectral responses, and sensitivity of SPR. In Chapter 2, we illustrate a chirped grating with varying surface topology along its spatial position. We demonstrated that the features of nanostructure such as pitch and amplitude significantly impact the behavior of enhanced transmission. In addition, we also illustrate the sensing application of chirped grating and the results indicate that the chirped grating is a sensitive and information rich SPR platform. In chapter 3, we used a commercial DVD diffraction grating as a SPR coupler. A camera-mounted microscope with Bertrend lens attachment is used to observe the enhanced transmission. We demonstrate that this system can monitor the SPR responses and track the thickness of a silicon monoxide film without using a spectrophotometer. Surface plasmons are a result of collective oscillation of free electrons in the metal/dielectric interface. Thus, the interaction of SPs with delocalized electrons from molecular resonance is complex. In chapter 4, we perform both experimental and simulation works to address this complex interaction. Detailed examination and analysis show nontypical SPR responses. For p-polarized light, a branch of dispersion curve and quenching of SPs in the Q band of zinc phthalocyanine are observed. For both p- and s-polarized light, additional waveguided modes are observed and the wavelength from different guided modes are dispersed. Diffraction gratings can provide complicated optical information about SPs. Both front side (air/metal) and back side (metal/substrate) provide SPR signals simultaneously. In chapter 5, we use dispersion images to analyze the complicated optical responses of SPR from an asymmetrical diffraction grating consisting of three layers (air/gold/polycarbonate). We illustrate that clear identification of SPR responses from several diffraction orders at front side and back side can be achieved by the use of dispersion images. Theoretical prediction and experimental results show consistency. We also show that only the behavior of SPs from the front side is impacted by the deposition of Langmuir-Blodgett dielectric films. In chapter 6, we construct a diffraction grating that has a fixed pitch and several amplitudes on its surface by using interference lithography. The purpose of this work is to examine how the amplitude impacts the behavior of transmission peaks. Different amplitudes are successfully fabricated by varying development time in the lithography process. We observed that largest (optimized) enhanced transmission peak shows as the amplitude approach a critical value. Transmission is not maximized below or beyond a critical amplitude. We also found that transmission enhancements are strongly affected by the diffraction efficiencies. A maximum enhancement is observed as diffraction efficiency is largest where amplitude reaches the critical value. The experimental results are then compared to the simulation. (Abstract shortened by UMI.)

  19. Superior Sensitivity of Copper-Based Plasmonic Biosensors.

    PubMed

    Stebunov, Yury V; Yakubovsky, Dmitry I; Fedyanin, Dmitry Yu; Arsenin, Aleksey V; Volkov, Valentyn S

    2018-04-17

    Plasmonic biosensing has been demonstrated to be a powerful technique for quantitative determination of molecular analytes and kinetic analysis of biochemical reactions. However, interfaces of most plasmonic biosensors are made of noble metals, such as gold and silver, which are not compatible with industrial production technologies. This greatly limits biosensing applications beyond biochemical and pharmaceutical research. Here, we propose and investigate copper-based biosensor chips fully fabricated with a standard complementary metal-oxide-semiconductor (CMOS) process. The protection of thin copper films from oxidation is achieved with SiO 2 and Al 2 O 3 dielectric films deposited onto the metal surface. In addition, the deposition of dielectric films with thicknesses of only several tens of nanometers significantly improves the biosensing sensitivity, owing to better localization of electromagnetic field above the biosensing surface. According to surface plasmon resonance (SPR) measurements, the copper biosensor chips coated with thin films of SiO 2 (25 nm) and Al 2 O 3 (15 nm) show 55% and 75% higher sensitivity to refractive index changes, respectively, in comparison to pure gold sensor chips. To test biomolecule immobilization, the copper-dielectric biosensor chips are coated with graphene oxide linking layers and used for the selective analysis of oligonucleotide hybridization. The proposed plasmonic biosensors make SPR technology more affordable for various applications and provide the basis for compact biosensors integrated with modern electronic devices.

  20. Evaluation of the molecular recognition of monoclonal and polyclonal antibodies for sensitive detection of 2,4,6-trinitrotoluene (TNT) by indirect competitive surface plasmon resonance immunoassay.

    PubMed

    Shankaran, Dhesingh Ravi; Kawaguchi, Toshikazu; Kim, Sook Jin; Matsumoto, Kiyoshi; Toko, Kiyoshi; Miura, Norio

    2006-11-01

    Detection of TNT is an important environmental and security concern all over the world. We herein report the performance and comparison of four immunoassays for rapid and label-free detection of 2,4,6-trinitrotoluene (TNT) based on surface plasmon resonance (SPR). The immunosensor surface was constructed by immobilization of a home-made 2,4,6-trinitrophenyl-keyhole limpet hemocyanin (TNPh-KLH) conjugate onto an SPR gold surface by simple physical adsorption within 10 min. The immunoreaction of the TNPh-KLH conjugate with four different antibodies, namely, monoclonal anti-TNT antibody (M-TNT Ab), monoclonal anti-trinitrophenol antibody (M-TNP Ab), polyclonal anti-trinitrophenyl antibody (P-TNPh Ab), and polyclonal anti-TNP antibody (P-TNP Ab), was studied by SPR. The principle of indirect competitive immunoreaction was employed for quantification of TNT. Among the four antibodies, the P-TNPh Ab prepared by our group showed highest sensitivity with a detection limit of 0.002 ng/mL (2 ppt) TNT. The lowest detection limits observed with other commercial antibodies were 0.008 ng/mL (8 ppt), 0.25 ng/mL (250 ppt), and 40 ng/mL (ppb) for M-TNT Ab, P-TNP Ab, and M-TNP Ab, respectively, in the similar assay format. The concentration of the conjugate and the antibodies were optimized for use in the immunoassay. The response time for an immunoreaction was 36 s and a single immunocycle could be done within 2 min, including the sensor surface regeneration using pepsin solution. In addition to the quantification of TNT, all immunoassays were evaluated for robustness and cross-reactivity towards several TNT analogs.

  1. Material elemental decomposition in dual and multi-energy CT via a sparsity-dictionary approach for proton stopping power ratio calculation.

    PubMed

    Shen, Chenyang; Li, Bin; Chen, Liyuan; Yang, Ming; Lou, Yifei; Jia, Xun

    2018-04-01

    Accurate calculation of proton stopping power ratio (SPR) relative to water is crucial to proton therapy treatment planning, since SPR affects prediction of beam range. Current standard practice derives SPR using a single CT scan. Recent studies showed that dual-energy CT (DECT) offers advantages to accurately determine SPR. One method to further improve accuracy is to incorporate prior knowledge on human tissue composition through a dictionary approach. In addition, it is also suggested that using CT images with multiple (more than two) energy channels, i.e., multi-energy CT (MECT), can further improve accuracy. In this paper, we proposed a sparse dictionary-based method to convert CT numbers of DECT or MECT to elemental composition (EC) and relative electron density (rED) for SPR computation. A dictionary was constructed to include materials generated based on human tissues of known compositions. For a voxel with CT numbers of different energy channels, its EC and rED are determined subject to a constraint that the resulting EC is a linear non-negative combination of only a few tissues in the dictionary. We formulated this as a non-convex optimization problem. A novel algorithm was designed to solve the problem. The proposed method has a unified structure to handle both DECT and MECT with different number of channels. We tested our method in both simulation and experimental studies. Average errors of SPR in experimental studies were 0.70% in DECT, 0.53% in MECT with three energy channels, and 0.45% in MECT with four channels. We also studied the impact of parameter values and established appropriate parameter values for our method. The proposed method can accurately calculate SPR using DECT and MECT. The results suggest that using more energy channels may improve the SPR estimation accuracy. © 2018 American Association of Physicists in Medicine.

  2. Optimization of dual-energy CT acquisitions for proton therapy using projection-based decomposition.

    PubMed

    Vilches-Freixas, Gloria; Létang, Jean Michel; Ducros, Nicolas; Rit, Simon

    2017-09-01

    Dual-energy computed tomography (DECT) has been presented as a valid alternative to single-energy CT to reduce the uncertainty of the conversion of patient CT numbers to proton stopping power ratio (SPR) of tissues relative to water. The aim of this work was to optimize DECT acquisition protocols from simulations of X-ray images for the treatment planning of proton therapy using a projection-based dual-energy decomposition algorithm. We have investigated the effect of various voltages and tin filtration combinations on the SPR map accuracy and precision, and the influence of the dose allocation between the low-energy (LE) and the high-energy (HE) acquisitions. For all spectra combinations, virtual CT projections of the Gammex phantom were simulated with a realistic energy-integrating detector response model. Two situations were simulated: an ideal case without noise (infinite dose) and a realistic situation with Poisson noise corresponding to a 20 mGy total central dose. To determine the optimal dose balance, the proportion of LE-dose with respect to the total dose was varied from 10% to 90% while keeping the central dose constant, for four dual-energy spectra. SPR images were derived using a two-step projection-based decomposition approach. The ranges of 70 MeV, 90 MeV, and 100 MeV proton beams onto the adult female (AF) reference computational phantom of the ICRP were analytically determined from the reconstructed SPR maps. The energy separation between the incident spectra had a strong impact on the SPR precision. Maximizing the incident energy gap reduced image noise. However, the energy gap was not a good metric to evaluate the accuracy of the SPR. In terms of SPR accuracy, a large variability of the optimal spectra was observed when studying each phantom material separately. The SPR accuracy was almost flat in the 30-70% LE-dose range, while the precision showed a minimum slightly shifted in favor of lower LE-dose. Photon noise in the SPR images (20 mGy dose) had lower impact on the proton range accuracy as comparable results were obtained for the noiseless situation (infinite dose). Root-mean-square range errors averaged over all irradiation angles associated to dual-energy imaging were comprised between 0.50 mm and 0.72 mm for the noiseless situation and between 0.51 mm and 0.77 mm for the realistic scenario. The impact of the dual-energy spectra and the dose allocation between energy levels on the SPR accuracy and precision determined through a projection-based dual-energy algorithm were evaluated to guide the choice of spectra for dual-energy CT for proton therapy. The dose balance between energy levels was not found to be sensitive for the SPR estimation. The optimal pair of dual-energy spectra was material dependent but on a heterogeneous anthropomorphic phantom, there was no significant difference in range accuracy and the choice of spectra could be driven by the precision, i.e., the energy gap. © 2017 American Association of Physicists in Medicine.

  3. Assembly, molecular organization, and membrane-binding properties of development-specific septins

    PubMed Central

    Garcia, Galo; Finnigan, Gregory C.; Heasley, Lydia R.; Sterling, Sarah M.; Aggarwal, Adeeti; Pearson, Chad G.

    2016-01-01

    Septin complexes display remarkable plasticity in subunit composition, yet how a new subunit assembled into higher-order structures confers different functions is not fully understood. Here, this question is addressed in budding yeast, where during meiosis Spr3 and Spr28 replace the mitotic septin subunits Cdc12 and Cdc11 (and Shs1), respectively. In vitro, the sole stable complex that contains both meiosis-specific septins is a linear Spr28–Spr3–Cdc3–Cdc10–Cdc10–Cdc3–Spr3–Spr28 hetero-octamer. Only coexpressed Spr3 and Spr28 colocalize with Cdc3 and Cdc10 in mitotic cells, indicating that incorporation requires a Spr28-Spr3 protomer. Unlike their mitotic counterparts, Spr28-Spr3–capped rods are unable to form higher-order structures in solution but assemble to form long paired filaments on lipid monolayers containing phosphatidylinositol-4,5-bisphosphate, mimicking presence of this phosphoinositide in the prospore membrane. Spr28 and Spr3 fail to rescue the lethality of a cdc11Δ cdc12Δ mutant, and Cdc11 and Cdc12 fail to restore sporulation proficiency to spr3Δ/spr3Δ spr28Δ/spr28Δ diploids. Thus, specific meiotic and mitotic subunits endow septin complexes with functionally distinct properties. PMID:26929450

  4. Tunable optical metamaterial based on liquid crystal-gold nanosphere composite.

    PubMed

    Pratibha, R; Park, K; Smalyukh, I I; Park, W

    2009-10-26

    Effect of the surrounding anisotropic liquid crystal medium on the surface plasmon resonance (SPR) exhibited by concentrated suspensions of gold nanospheres has been investigated experimentally and compared with the Mie scattering theory. The observed polarization-sensitive SPR and the red-shift in the SPR wavelength with increasing concentration of the gold nanospheres in the liquid crystal matrix have been explained using calculations based on the Maxwell Garnet effective medium theory. Agglomeration of the gold nanospheres that could also lead to such a red-shift has been ruled out using Atomic force microscopy study of thin nanoparticle-doped smectic films obtained on solid substrates. Our study demonstrates feasibility of obtaining tunable optical bulk metamaterials based on smectic liquid crystal - nanoparticle composites.

  5. Plates-formes de microscopie et fluorescence par resonance de plasmons de surface appliquees a l'imagerie cellulaire

    NASA Astrophysics Data System (ADS)

    Chabot, Vincent

    L'elaboration de nouveaux medicaments repose sur les etudes pharmacologiques, dont le role est d'identifier de nouveaux composes actifs ou de nouvelles cibles pharmacologiques agissant entre autres au niveau cellulaire. Recemment, la detection basee sur la resonance des plasmons de surface (SPR) a ete appliquee a l'etude de reponses cellulaires. Cette methode de detection, permettant d'observer des variations d'indice de refraction associes a de faibles changements de masse a la surface d'un metal, a l'avantage de permettre l'etude d'une population de cellules vivantes en temps reel, sans necessiter l'introduction d'agents de marquage. Pour effectuer la detection au niveau de cellules individuelles, on peut employer la microscopie SPR, qui consiste a localiser spatialement la detection par un systeme d'imagerie. Cependant, la detection basee sur la SPR est une mesure sans marquage et les signaux mesures sont attribues a une reponse moyennee des differentes sources cellulaires. Afin de mieux comprendre et identifier les composantes cellulaires generant le signal mesure en SPR, il est pertinent de combiner la microscopie SPR avec une modalite complementaire, soit l'imagerie de fluorescence. C'est dans cette problematique que s'insere ce projet de these, consistant a concevoir deux plates-formes distinctes de microscopie SPR et de fluorescence optimisees pour l'etude cellulaire, de sorte a evaluer les possibilites d'integration de ces deux modalites en un seul systeme. Des substrats adaptes pour chaque plate-forme ont ete concus et realises. Ces substrats employaient une couche d'argent passivee par l'ajout d'une mince couche d'or. La stabilite et la biocompatibilite des substrats ont ete validees pour l'etude cellulaire. Deux configurations permettant d'ameliorer la sensibilite en sondant les cellules plus profondement ont ete evaluees, soit l'emploi de plasmons de surface a longue portee et de guides d'onde a gaine metallique. La sensibilite accrue de ces configurations a aussi ete demontree pour un usage en biodetection cellulaire. Une plate-forme permettant de mesurer la spectroscopie SPR simultanement avec l'acquisition d'images de fluorescence a ete realisee. Cette plate-forme a ensuite ete validee par l'etude de reponses cellulaires suite a une stimulation pharmacologique. Puis, un systeme base sur la microscopie SPR a ete concu et caracterise. Son emploi pour l'etude de reponses au niveau de cellules individuelles a ete demontre. Finalement, les forces et faiblesses des substrats et des plates-formes realisees au cours de la these ont ete evaluees. Des possibilites d'amelioration sont mises de l'avant et l'integration des modalites de microscopie SPR et de fluorescence suite aux travaux de la these est discutee. Les realisations au cours de cette etude ont donc permis d'identifier les composantes cellulaires impliquees dans la generation du signal mesure en biodetection SPR. Mots-cles : Resonance des plasmons de surface, microscopie SPR, plasmons de surface a longue portee LRSPR, guide d'onde a gaine metallique MCWG, fluorescence exaltee par plasmons de surface SPEF, biodetection cellulaire, imagerie SPR.

  6. Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria

    NASA Astrophysics Data System (ADS)

    Kuroda, Chiaki; Iizuka, Ryota; Ohki, Yoshimichi; Fujimaki, Makoto

    2018-05-01

    To detect biological substances such as bacteria speedily and accurately, a dielectrophoresis-assisted surface plasmon resonance (SPR) fluorescence biosensor is being developed. Using Escherichia coli as a target organism, an appropriate voltage frequency to collect E. coli cells on indium tin oxide quadrupole electrodes by dielectrophoresis is analyzed. Then, E. coli is stained with 4‧,6-diamidino-2-phenylindole (DAPI). To clearly detect fluorescence signals from DAPI-stained E. coli cells, the sensor is optimized so that we can excite SPR on Al electrodes by illuminating 405 nm photons. As a result, the number of fluorescence signals is increased on the electrodes by the application of a low-frequency voltage. This indicates that E. coli cells with a lower permittivity than the surrounding water are collected by negative dielectrophoresis onto the electrodes where the electric field strength is lowest.

  7. Plasmonics analysis of nanostructures for bioapplications

    NASA Astrophysics Data System (ADS)

    Xie, Qian

    Plasmonics, the science and technology of the plasmons, is a rapidly growing field with substantial broader impact in numerous different fields, especially for bio-applications such as bio-sensing, bio-photonics and photothermal therapy. Resonance effects associated with plasmatic behavior i.e. surface Plasmon resonance (SPR) and localize surface Plasmon resonance (LSPR), are of particular interest because of their strong sensitivity to the local environment. In this thesis, plasmonic resonance effects are discussed from the basic theory to applications, especially the application in photothermal therapy, and grating bio-sensing. This thesis focuses on modeling different metallic nanostructures, i.e. nanospheres, nanorods, core-shell nanoparticles, nanotori and hexagonal closed packed nanosphere structures, to determine their LSPR wavelengths for use in various applications. Experiments regarding photothermal therapy using gold nanorods are described and a comparison is presented with results obtained from simulations. Lastly, experiments of grating-based plasmon-enhanced bio-sensing are also discussed. In chapter one, the physics of plasmonics is reviewed, including surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR). In the section on surface plasmon resonance, the physics behind the phenomenon is discussed, and also, the detection methods and applications in bio-sensing are described. In the section on localized surface plasmon resonance (LSPR), the phenomenon is described with respect to sub wavelength metallic nanoparticles. In chapter two, specific plasmonic-based bio-applications are discussed including plasmonic and magneto-plasmonic enhanced photothermal therapy and grating-based SPR bio-sening. In chapter three, which is the most important part in the thesis, optical modeling of different gold nanostructures is presented. The modeling tools used in this thesis are Comsol and custom developed Matlab programs. In Comsol, the geometries of different metallic nanostructures are drawn and simulated using finite element-based computational electromagnetics. The power absorption of the nanostructures is plotted as a function of wavelength to identify the LSPR wavelength, i.e. the wavelength of peak absorption. In Matlab, Mie scattering theory is programmed in terms of semi-analytical mathematical equations, which predict the power absorption for specific plasmonic geometries, i.e. nanospheres, nanorods and core-shell particles. These predictions, which are much faster than the Comsol analysis, are validated using corresponding numerical simulations. In chapter four, experiments involving novel magneto-plasmonic Nano platforms are described, and experimental data is presented to illustrate the use of the modeling in analyzing these particles. Simulations are performed to determine the influence on the laser absorption of magnetic nanospheres in proximity to metallic nanorods. These results are compared with experimental data. In the last chapter, experiments using a grating-based SPR sensor are described, and modeling results are also presented. In summary, this thesis discusses the physics of plasmonics, electromagnetic analysis for predicting the absorption spectra of metallic nanoparticles and bio-applications that utilize these effects.

  8. Ultrasensitive detection of endotoxins using computationally designed nanoMIPs.

    PubMed

    Altintas, Zeynep; Abdin, Mohammed J; Tothill, Alexander M; Karim, Kal; Tothill, Ibtisam E

    2016-09-07

    Novel molecularly imprinted polymer nanoparticles (nanoMIPs) were designed for endotoxin from Escherichia coli 0111:B4, using computational modeling. The screening process based on binding energy between endotoxin and each monomer was performed with 21 commonly used monomers, resulting in the selection of itaconic acid, methacrylic acid and acrylamide as functional monomers due to their strong binding interaction with the endotoxin template. The nanoMIPs were successfully synthesized with functional groups on the outer surface to aid in the immobilization onto sensor surface. The solid phase photopolymerization approach used for the synthesis of nanoMIPs ranging from 200 to 235 nm in diameter. The limit of detection and KD were significantly improved when endotoxin samples were prepared using a novel triethylamine method. This improved the efficiency of gold nanoparticle functionalization by targeting the subunits of the endotoxin. Compared to the vancomycin MIP control, the endotoxin MIPs displayed outstanding affinity and selectivity towards the endotoxin with KD values in the range of 4.4-5.3 × 10(-10) M, with limits of detection of 0.44 ± 0.02 ng mL(-1) as determined by surface plasmon resonance (SPR) sensor when itaconic acid was used as the functional monomer. The MIP surface can be regenerated >30 times without significant loss of binding activity making this approach highly cost effective for expensive analyte templates. The combination of molecular modeling and solid phase synthesis enabled the successful synthesis of nanoMIPs capable of recognition and ultrasensitive detection of endotoxins using the highly sensitive SPR biosensor with triethylamine method. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing

    NASA Astrophysics Data System (ADS)

    Jia, Peipei; Yang, Jun

    2014-07-01

    Surface plasmon resonance (SPR) on metal nanostructures offers a promising route for manipulation and interrogation of light in the subwavelength regime. However, the utility of SPR structures is largely limited by currently used complex nanofabrication methods and relatively sophisticated optical components. Here to relieve these restrictions, plasmonic optical fibers are constructed by transferring periodic metal nanostructures from patterned templates onto endfaces of optical fibers using an epoxy adhesive. Patterned metal structures are generally extended from two-dimensional (2D) nanohole arrays to one-dimensional (1D) nanoslit arrays. By controlling the viscosity of the adhesive layer, diverse surface topographies of metal structures are realized with the same template. We design a special plasmonic fiber that simultaneously implements multimode refractive index sensing (transmission and reflection) with remarkably narrow linewidth (6.6 nm) and high figure of merit (60.7), which are both among the best reported values for SPR sensors. We further demonstrate a real-time immunoassay relying on our plasmonic fiber integrated with a special flow cell. Plasmonic optical fibers also take advantages of excellent stability during fiber bending and capability of spectrum filtering. These features enable our plasmonic fibers to open up an alternative avenue for the general community in biosensing and nanoplasmonics.

  10. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing.

    PubMed

    Jia, Peipei; Yang, Jun

    2014-08-07

    Surface plasmon resonance (SPR) on metal nanostructures offers a promising route for manipulation and interrogation of light in the subwavelength regime. However, the utility of SPR structures is largely limited by currently used complex nanofabrication methods and relatively sophisticated optical components. Here to relieve these restrictions, plasmonic optical fibers are constructed by transferring periodic metal nanostructures from patterned templates onto endfaces of optical fibers using an epoxy adhesive. Patterned metal structures are generally extended from two-dimensional (2D) nanohole arrays to one-dimensional (1D) nanoslit arrays. By controlling the viscosity of the adhesive layer, diverse surface topographies of metal structures are realized with the same template. We design a special plasmonic fiber that simultaneously implements multimode refractive index sensing (transmission and reflection) with remarkably narrow linewidth (6.6 nm) and high figure of merit (60.7), which are both among the best reported values for SPR sensors. We further demonstrate a real-time immunoassay relying on our plasmonic fiber integrated with a special flow cell. Plasmonic optical fibers also take advantages of excellent stability during fiber bending and capability of spectrum filtering. These features enable our plasmonic fibers to open up an alternative avenue for the general community in biosensing and nanoplasmonics.

  11. Dual-Valve and Counter-Flow Surface Plasmon Resonance.

    PubMed

    Wang, Xiaoying; Zhou, Feimeng

    2018-04-17

    Two six-port injector valves and one selector valve commonly used in flow injection analysis are combined with a surface plasmon resonance (SPR) instrument wherein solutions introduced from the two inlets counter-flow inside the flow cell. The system is versatile as the same or different solutions can be rapidly and repeatedly introduced to the two fluidic channels in series or in parallel. Unlike most commercial SPR instruments employing a single injector valve, solutions separately injected from the two injector valves can be readily exchanged (<1 s) between the two channels. This new method, referred to as the alternate injection mode, not only saves analysis time but also facilitates efficient and facile surface reactions for ligand immobilization and prevents immobilized species from desorbing. These advantages are demonstrated with the measurements of binding of acetazolamide (222.2 Da) to histidine-tagged human carbonic anhydrase II (his-tagged HCA). Amine-containing residues of his-tagged HCA molecules tethered at Ni-nitrilotriacetic acid (NTA) sensors were rapidly cross-linked to the underlying carboxymethylated dextran. The higher ligand densities and more stable surfaces are essential for SPR detection of small molecule binding. In a different application, microglobulin solutions of increasing concentrations were introduced for continuous binding to the preimmobilized antibody. The kinetic and affinity measurements can be conducted without performing repeated dissociation and surface regeneration reactions.

  12. Computational study for optimization of a plasmon FET as a molecular biosensor

    NASA Astrophysics Data System (ADS)

    Ciappesoni, Mark; Cho, Seongman; Tian, Jieyuan; Kim, Sung Jin

    2018-02-01

    Surface Plasmon Resonance (SPR) is currently being widely studied as it exhibits sensitive optical properties to changes in in the refractive index of the surrounding medium. As novel devices using SPR have been developing rapidly there is a necessity to develop models and simulation environments that will allow for continued development and optimization of these devices. A biological sensing device of interest is the Plasmon FET which has been proven experimentally to have a limit of detection (LOD) of 20pg/ml while being immune to the absorption of the medium. The Plasmon FET is a metal-semiconductor-metal detector which employ functionalized gold nanostructures on a semi-conducting layer. This direct approach has the advantages of not requiring readout optics reducing size and allowing for point-of -care measurements. Using Lumerical FDTD and Device numerical solvers, we can report an advanced simulation environment illustrating several key sensor specifications including LOD, resolution, sensitivity, and dynamic range, for a variety of biological markers providing a comprehensive analysis of a Direct Plasmon-to-Electric conversion device designed to function with colored mediums (eg.whole blood). This model allows for the simulation and optimization of a plasmonic sensor that already o ers advantages in size, operability, and multiplexing-capability, with real time monitoring.

  13. NBIT Program Phase I (2007-2010). Part 1, Chapters 1 Through 4

    DTIC Science & Technology

    2009-08-27

    2 schematically shows the sample prepared before hydrothermal synthesis . The thin layer of Zn was convered to ZnO nanowires during hydrothermal ... Nanoparticle -Based Magnetically Amplified Surface Plasmon Resonance (Mag-SPR) Techniques; Jinwoo Cheon (Yonsei University, Korea) and A. Paul...Ion; Chapter 3 ? Ultra-Sensitive Biological Detection via Nanoparticle -Based Magnetically Amplified Surface Plasmon Resonance (Mag-SPR) Techniques

  14. Surface plasmon resonance near-infrared spectroscopy.

    PubMed

    Ikehata, Akifumi; Itoh, Tamitake; Ozaki, Yukihiro

    2004-11-01

    Near-infrared (NIR) spectroscopy is ill-suited to microanalysis because of its low absorptivity. We have developed a highly sensitive detection method for NIR spectroscopy based on absorption-sensitive surface plasmon resonance (SPR). The newly named SPR-NIR spectroscopy, which may open the way for NIR spectroscopy in microanalysis and surface science, is realized by an attachment of the Kretschmann configuration equipped with a mechanism for fine angular adjustment of incident light. The angular sweep of incident light enables us to make a tuning of a SPR peak for an absorption band of sample medium. From the dependences of wavelength, incident angle, and thickness of a gold film on the intensity of the SPR peak, it has been found that the absorbance can be enhanced by approximately 100 times compared with the absorbance obtained without the gold film under optimum conditions. This article reports the details of the experimental setup and the characteristics of absorption-sensitive SPR in the NIR region, together with some experimental results obtained by using it.

  15. Real-Time Analysis of Specific Protein-DNA Interactions with Surface Plasmon Resonance

    PubMed Central

    Ritzefeld, Markus; Sewald, Norbert

    2012-01-01

    Several proteins, like transcription factors, bind to certain DNA sequences, thereby regulating biochemical pathways that determine the fate of the corresponding cell. Due to these key positions, it is indispensable to analyze protein-DNA interactions and to identify their mode of action. Surface plasmon resonance is a label-free method that facilitates the elucidation of real-time kinetics of biomolecular interactions. In this article, we focus on this biosensor-based method and provide a detailed guide how SPR can be utilized to study binding of proteins to oligonucleotides. After a description of the physical phenomenon and the instrumental realization including fiber-optic-based SPR and SPR imaging, we will continue with a survey of immobilization methods. Subsequently, we will focus on the optimization of the experiment, expose pitfalls, and introduce how data should be analyzed and published. Finally, we summarize several interesting publications of the last decades dealing with protein-DNA and RNA interaction analysis by SPR. PMID:22500214

  16. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings.

    PubMed

    Xing, Cheng-Mei; Meng, Fan-Ning; Quan, Miao; Ding, Kai; Dang, Yuan; Gong, Yong-Kuan

    2017-09-01

    A versatile fabrication and performance optimization strategy of PEG and zwitterionic polymer coatings is developed on the sensor chip of surface plasma resonance (SPR) instrument. A random copolymer bearing phosphorylcholine zwitterion and active ester side chains (PMEN) and carboxylic PEG coatings with comparable thicknesses were deposited on SPR sensor chips via amidation coupling on the precoated polydopamine (PDA) intermediate layer. The PMEN coating showed much stronger resistance to bovine serum albumin (BSA) adsorption than PEG coating at very thin thickness (∼1nm). However, the BSA resistant efficacy of PEG coating could exceed that of PMEN due to stronger steric repelling effect when the thickness increased to 1.5∼3.3nm. Interestingly, both the PEG and PMEN thick coatings (≈3.6nm) showed ultralow fouling by BSA and bovine plasma fibrinogen (Fg). Moreover, changes in the PEG end group from -OH to -COOH, protein adsorption amount could increase by 10-fold. Importantly, the optimized PMEN and PEG-OH coatings were easily duplicated on other substrates due to universal adhesion of the PDA layer, showed excellent resistance to platelet, bacteria and proteins, and no significant difference in the antifouling performances was observed. These detailed results can explain the reported discrepancy in performances between PEG and zwitterionic polymer coatings by thickness. This facile and substrate-independent coating strategy may benefit the design and manufacture of advanced antifouling biomedical devices and long circulating nanocarriers. Prevention of biofouling is one of the biggest challenges for all biomedical applications. However, it is very difficult to fabricate a highly hydrophilic antifouling coating on inert materials or large devices. In this study, PEG and zwitterion polymers, the most widely investigated polymers with best antifouling performance, are conveniently immobilized on different kinds of substrates from their aqueous solutions by precoating a polydopamine intermediate layer as the universal adhesive and readily re-modifiable surface. Importantly, the coating fabrication and antifouling performance can be monitored and optimized quantitatively by a surface plasma resonance (SPR) system. More significantly, the SPR on-line optimized coatings were successfully duplicated off-line on other substrates, and supported by their excellent antifouling properties. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Microcavity surface plasmon resonance bio-sensors

    NASA Astrophysics Data System (ADS)

    Mosavian, Nazanin

    This work discusses a miniature surface plasmon biosensor which uses a dielectric sub- micron diameter core with gold spherical shell. The shell has a subwavelength nanoaperture believed to excite stationary plasmon resonances at the biosensor's surface. The sub-micron cavity enhances the measurement sensitivity of molecules binding to the sensor surface. We used visible-range optical spectroscopy to study the wavelength shift as bio-molecules absorbed-desorbed at the shell surface. We also used Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) ablation to study the characteristics of microcavity surface plasmon resonance sensor (MSPRS) and the inner structure formed with metal deposition and its spectrum. We found that resonances at 580 nm and 670 nm responded to bound test agents and that Surface Plasmon Resonance (SPR) sensor intensity could be used to differentiate between D-glucose and L-glucose. The responsiveness of the system depended upon the mechanical integrity of the metallic surface coating.

  18. Surface plasmon resonance-based molecular detection of Hb S [beta6(A3)Glu-->Val, GAG-->GTG] at the gene level.

    PubMed

    Atalay, Erol O; Ustel, Emre; Yildiz, Sanem; Atalay, Ayfer

    2006-01-01

    The surface plasmon resonance (SPR) approach, being a relatively novel biophysical method, is used to detect many different targets by biomolecular interaction. The SPR system uses optical and evanescent wave phenomenon. This approach does not need any labels, such as enzymes or isotopes, and the monitored interactions are in real time. In DNA-DNA interaction, the SPR approach is Tm-independent. Here we report our preliminary results for the molecular detection of the Hb S (GAG -->GTG) mutation at codon 6 of the human beta-globin gene. Our preliminary results show that the SPR approach could be applied as an inexpensive and fast routine test system for the molecular diagnosis of abnormal hemoglobins (Hbs), especially in premarital screening programs.

  19. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout.

    PubMed

    Taylor, Adam B; Kim, Jooho; Chon, James W M

    2012-02-27

    In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.

  20. Development of LSPR and SPR sensor for the detection of an anti-cancer drug for chemotherapy

    NASA Astrophysics Data System (ADS)

    Zhao, Sandy Shuo; Bolduc, Olivier R.; Colin, Damien Y.; Pelletier, Joelle N.; Masson, Jean-François

    2012-03-01

    The anti-cancer drug, methotrexate (MTX) as a strong inhibitor of human dihydrofolate reductase (hDHFR) has been studied in localized surface plasmon resonance (LSPR) and surface plasmon resonance (SPR) competitive binding assays with folic acid stabilized gold nanoparticles (FA AuNP). The latter with a diameter of 15 nm were prepared in a simple step with sequential characterization using UV-Vis, FTIR, and Raman. A LSPR competitive binding assay between different concentrations of MTX and FA AuNP for hDHFR in solution was designed to quantify MTX by using UV-Vis spectroscopy. Sensitivity of the assay was optimized with respect to both concentrations of the enzyme and FA. The detection and quantification of spiked MTX was demonstrated in phosphate buffer saline and in fetal bovine serum accompanied by solid-phase extraction treatment of the serum. In addition, this assay could also provide as a screening tool for potential inhibitors of hDHFR. In another perspective, MTX was measured in a competitive binding assay with FA AuNP for histidine-tagged hDHFR immobilized on a SPR sensitive surface. In this case, FA AuNP offer a secondary amplification of the analytical response which is indirectly proportional to the concentration of MTX. This alternative approach could contribute to the realization of direct detection of MTX in complex biological fluids. A comparison of characteristics and analytical parameters such as sensitivity, dynamic range and limit of detection between the LSPR and SPR sensing platforms will also be presented. Both assays offer potential in tackling real biological samples for the purpose of monitoring and validating anti-cancer drug levels in human serum during chemotherapy.

  1. Carbodiimide-mediated immobilization of acidic biomolecules on reversed-charge zwitterionic sensor chip surfaces.

    PubMed

    Risse, Fabian; Gedig, Erk T; Gutmann, Jochen S

    2018-04-30

    The carbodiimide-mediated amine coupling of protein ligands to sensor chips coated with anionic polycarboxylate hydrogels, such as carboxymethyl dextran, is the predominant covalent immobilization procedure utilized in optical biosensors, namely surface plasmon resonance (SPR) biosensors. Usually, electrostatic interactions at a slightly acidic pH and low ionic strength are employed to efficiently accumulate neutral and basic ligands on the chip surface, which are then covalently coupled by surface-bound active N-hydroxysuccinimide (NHS) esters. Unfortunately, this approach is not suitable for acidic proteins or other ligands with low isoelectric points (IEPs), such as nucleic acids, because the charge density of the polycarboxylates is greatly reduced at acidic pH or because electrostatic attraction cannot be achieved. To overcome these drawbacks, we have established a charge-reversal approach that allows the preconcentration of acidic proteins above their IEPs. A precisely controlled amount of tertiary amines is applied to reverse the previous anionic surface charge while maintaining carbodiimide compatibility with future protein immobilization. The mechanism of this reversed-charge immobilization approach was demonstrated employing protein A as a model protein and using attenuated total reflectance Fourier transform infrared spectroscopy, dynamic contact angle measurements, colorimetric quantification, and SPR analysis to characterize surface derivatization. Furthermore, even though it had previously proven impossible to preconcentrate DNA electrostatically and to covalently couple it to polyanionic chip surfaces, we demonstrated that our approach allowed DNA to be preconcentrated and immobilized in good yields. Graphical abstract Principle of the covalent immobilization of acidic ligands on reversed-charge zwitterionic sensor chip surfaces.

  2. Supertrees Based on the Subtree Prune-and-Regraft Distance

    PubMed Central

    Whidden, Christopher; Zeh, Norbert; Beiko, Robert G.

    2014-01-01

    Supertree methods reconcile a set of phylogenetic trees into a single structure that is often interpreted as a branching history of species. A key challenge is combining conflicting evolutionary histories that are due to artifacts of phylogenetic reconstruction and phenomena such as lateral gene transfer (LGT). Many supertree approaches use optimality criteria that do not reflect underlying processes, have known biases, and may be unduly influenced by LGT. We present the first method to construct supertrees by using the subtree prune-and-regraft (SPR) distance as an optimality criterion. Although calculating the rooted SPR distance between a pair of trees is NP-hard, our new maximum agreement forest-based methods can reconcile trees with hundreds of taxa and > 50 transfers in fractions of a second, which enables repeated calculations during the course of an iterative search. Our approach can accommodate trees in which uncertain relationships have been collapsed to multifurcating nodes. Using a series of benchmark datasets simulated under plausible rates of LGT, we show that SPR supertrees are more similar to correct species histories than supertrees based on parsimony or Robinson–Foulds distance criteria. We successfully constructed an SPR supertree from a phylogenomic dataset of 40,631 gene trees that covered 244 genomes representing several major bacterial phyla. Our SPR-based approach also allowed direct inference of highways of gene transfer between bacterial classes and genera. A Small number of these highways connect genera in different phyla and can highlight specific genes implicated in long-distance LGT. [Lateral gene transfer; matrix representation with parsimony; phylogenomics; prokaryotic phylogeny; Robinson–Foulds; subtree prune-and-regraft; supertrees.] PMID:24695589

  3. Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection.

    PubMed

    Pandey, Sadanand; Goswami, Gopal K; Nanda, Karuna K

    2012-11-01

    Biopolymer used for the production of nanoparticles (NPs) has attracted increasing attention. In the presence article we use aqueous solution of polysaccharide Cyamopsis tetragonaloba commonly known as guar gum (GG), from plants. GG acts as reductive preparation of silver nanoparticles which are found to be <10 nm in size. The uniformity of the NPs size was measured by the SEM and TEM, while a face centered cubic structure of crystalline silver nanoparticles was characterized using powder X-ray diffraction technique. Aqueous ammonia sensing study of polymer/silver nanoparticles nanocomposite (GG/AgNPs NC) was performed by optical method based on surface plasmon resonance (SPR). The performances of optical sensor were investigated which provide the excellent result. The response time of 2-3 s and the detection limit of ammonia solution, 1 ppm were found at room temperature. Thus, in future this room temperature optical ammonia sensor can be used for clinical and medical diagnosis for detecting low ammonia level in biological fluids, such as plasma, sweat, saliva, cerebrospinal liquid or biological samples in general for various biomedical applications in human. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Graphene enhanced surface plasmon resonance sensing based on Goos-Hänchen shift

    NASA Astrophysics Data System (ADS)

    Chen, Huifang; Tong, Jinguang; Wang, Yiqin; Jiang, Li

    2018-03-01

    A graphene/Ag structure is engineered as an enhanced platform for surface plasmon resonance sensing due to the high impermeability nature of graphene and the superior surface plasmon resonance performance of Ag. This structure is ultrasensitive to even tiny refractive index change of analytes based on Goos-Hänchen shift measurement compared to the traditional SPR sensor with bare Au film. The graphene/Ag configuration is consisted of five components, including BK7 glass slide, titanium thin film, silver thin film, two-dimensional graphene layers and biomolecular analyte layer. We have optimized the parameters of each layer and theoretically analyzed Goos-Hänchen shift of the plasmonic structure under surface plasmon resonance effect. The optimized graphene/Ag structure is monolayer graphene coated on Ag thin film with the thickness of 42 nm.

  5. The effects of colorimetric detection of heavy metal ions based on Au nanoparticles (NPs): size and shape—a case of Co2+

    NASA Astrophysics Data System (ADS)

    Leng, Yumin; He, Junbao; Li, Bo; Xing, Xiaojing; Guo, Yongming; Ye, Liqun; Lu, Zhiwen

    2017-09-01

    The different sized and shaped Au NPs have intrigued considerable attention, because they possess different surface plasma resonance (SPR) absorption bands and thus result in many colorimetric Au NP-based detection applications. In this article, four different sized and shaped Au NPs of nanodots/rods were prepared and characterized. The as-prepared Au NPs were modified by the negatively charged anions of [SCH2CO2]2- to investigate both the size and shape effects of modified Au NPs on colorimetric detection of Co2+ and the corresponding SPR absorption properties. The different-shaped Au NPs possess different SPR absorption properties. The Au nanorods appeared to be colorimetric sensitive for Co2+ sensing.

  6. Evaluation of an affinity-amplified immunoassay of graphene oxide using surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Chiu, Nan-Fu; Huang, Teng-Yi; Kuo, Chun-Chuan

    2015-05-01

    We describe a fundamental study on the plasmonic properties and advanced biosensing mechanisms of functionalized graphene. We discuss a specific design using modified carboxyl groups, which can modulate surface plasmon (SP) coupling and provide an advantage for their binding to the sensing layer with high-performance affinity in an immunological reaction. The functionalized graphene-based surface plasmon resonance (SPR) biosensors have three advantages: high performance, high sensitivity, and excellent molecular kinetic response. In the future, functionalized graphene sheets will make a unique contribution to photonic and SPR diagnosis devices. We wish to highlight the essential characteristics of functionalized graphene-based SPR biosensors to assist researchers in developing and advancing suitable biosensors for unique applications.

  7. SPR Biosensors in Direct Molecular Fishing: Implications for Protein Interactomics.

    PubMed

    Florinskaya, Anna; Ershov, Pavel; Mezentsev, Yuri; Kaluzhskiy, Leonid; Yablokov, Evgeniy; Medvedev, Alexei; Ivanov, Alexis

    2018-05-18

    We have developed an original experimental approach based on the use of surface plasmon resonance (SPR) biosensors, applicable for investigation of potential partners involved in protein⁻protein interactions (PPI) as well as protein⁻peptide or protein⁻small molecule interactions. It is based on combining a SPR biosensor, size exclusion chromatography (SEC), mass spectrometric identification of proteins (LC-MS/MS) and direct molecular fishing employing principles of affinity chromatography for isolation of potential partner proteins from the total lysate of biological samples using immobilized target proteins (or small non-peptide compounds) as ligands. Applicability of this approach has been demonstrated within the frame of the Human Proteome Project (HPP) and PPI regulation by a small non-peptide biologically active compound, isatin.

  8. Concentration Gradient Immunoassay I. A Rapid Immunoassay Based on Interdiffusion and Surface Binding in a Microchannel

    PubMed Central

    Nelson, Kjell E.; Foley, Jennifer O.; Yager, Paul

    2008-01-01

    We describe a novel microfluidic immunoassay method based on the diffusion of a small molecule analyte into a parallel-flowing stream containing cognate antibody. This interdiffusion results in a steady-state gradient of antibody binding site occupancy transverse to convective flow. In contrast to the diffusion immunoassay (Hatch et al. Nature Biotechnology,19:461−465 (2001)), this antibody occupancy gradient is interrogated by a sensor surface coated with a functional analog of the analyte. Antibodies with at least one unoccupied binding site may specifically bind to this functionalized surface, leading to a quantifiable change in surface coverage by the antibody. SPR imaging is used to probe the spatial distribution of antibody binding to the surface and, therefore, the outcome of the assay. We show that the pattern of antibody binding to the SPR sensing surface correlates with the concentration of a model analyte (phenytoin) in the sample stream. Using an inexpensive disposable microfluidic device, we demonstrate assays for phenytoin ranging in concentration from 75 to 1000 nM in phosphate buffer. At a total volumetric flow rate of 90 nL/sec, the assays are complete within 10 minutes. Inclusion of an additional flow stream on the side of the antibody stream opposite to that of the sample enables simultaneous calibration of the assay. This assay method is suitable for rapid quantitative detection of low-molecular weight analytes for point-of-care diagnostic instrumentation. PMID:17437332

  9. Analysis and design of negative resistance oscillators using surface transverse wave-based single port resonators.

    PubMed

    Avramov, Ivan D

    2003-03-01

    This practically oriented paper presents the fundamentals for analysis, optimization, and design of negative resistance oscillators (NRO) stabilized with surface transverse wave (STW)-based single-port resonators (SPR). Data on a variety of high-Q, low-loss SPR devices in the 900- to 2000-MHz range, suitable for NRO applications, are presented, and a simple method for SPR parameter extraction through Pi-circuit measurements is outlined. Negative resistance analysis, based on S-parameter data of the active device, is performed on a tuned-base, grounded collector transistor NRO, known for its good stability and tuning at microwave frequencies. By adding a SPR in the emitter network, the static transducer capacitance is absorbed by the circuit and is used to generate negative resistance only over the narrow bandwidth of the acoustic device, eliminating the risk of spurious oscillations. The analysis allows exact prediction of the oscillation frequency, tuning range, loaded Q, and excess gain. Simulation and experimental data on a 915-MHz fixed-frequency NRO and a wide tuning range, voltage-controlled STW oscillator, built and tested experimentally, are presented. Practical design aspects including the choice of transistor, negative feedback circuits, load coupling, and operation at the highest phase slope for minimum phase noise are discussed.

  10. Various on-chip sensors with microfluidics for biological applications.

    PubMed

    Lee, Hun; Xu, Linfeng; Koh, Domin; Nyayapathi, Nikhila; Oh, Kwang W

    2014-09-12

    In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  11. Mass effect of redox reactions: A novel mode for surface plasmon resonance-based bioanalysis.

    PubMed

    Yuan, Pei-Xin; Deng, Sheng-Yuan; Xin, Peng; Ji, Xu-Bo; Shan, Dan; Cosnier, Serge

    2015-12-15

    The pursuit of more specific and sensitive response is a perpetual goal for modern bioassays. This work proposed a novel label-free strategy about redox-related mass effect based on the surface plasmon resonance (SPR) technique for ultrasensitive determination of DNA. The protocol starts with the modification of SPR gilded disk with the capture DNA (cDNA). After the conjugation of immobilized cDNA with the target DNA (tDNA), the hybridization chain reaction was triggered by the introduction of mutual partial complementary primers to elongate the terminal into a nanoscale duplex. As it is reported that porphyrin could intercalate into the grooves of the double-stranded DNA (dsDNA) scaffold, multiple positive-charged Fe(III)meso-tetra(N-methyl-4-pyridyl) porphine (FeTMPyP) with symmetric structure were uptaken for in situ formation of porphyrin-dsDNA complex. Given FeTMPyP a highly efficient catalysis for the peroxide reduction, its presence as a biomimetic cofactor was validated via circular dichroism and UV-vis spectroscopy, demonstrating a tight binding as well as high catalytic activity and stability. Using 4-chloro-1-naphthol as a proton donor, the catalytic reduction of H2O2 would oxidize it into insoluble benzo-4-chloro-hexadienone, which simultaneously deposited on the heterogeneous interface, leading to a significant amplification in both SPR response and topological height profile. The signal increment was proportional to the concentration of tDNA, thus an ultrasensitive SPR-based DNA assay was developed with a linear range over four orders of magnitudes and a sub-femtomolar detection limit of 0.73 fM. The developed methodology exemplifies a different way of thinking about mass-sensing modes, extending conventional SPR-based DNA analysis to relevant biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. SPR online: creating, maintaining, and distributing a virtual professional society on the Internet.

    PubMed

    D'Alessandro, M P; Galvin, J R

    1998-01-01

    SPR Online (http:@www.pedrad.org) is a recently developed digital representation of the Society for Pediatric Radiology (SPR) that enables physicians to access pertinent information and services on the Internet. SPR Online was organized on the basis of the five main services of the SPR, which include Administration, Patient Care, Education, Research, and Meetings. For each service, related content from the SPR was digitized and placed onto SPR Online. Usage over a 12-month period was evaluated with server log file analysis. A total of 3,209 users accessed SPR Online, viewing 11,246 pages of information. A wide variety of information was accessed, with that from the Education, Administration, and Meetings services being the most popular. Fifteen percent of users came from foreign countries. As a virtual professional society, SPR Online greatly enhances the power and scope of the SPR and has proved to be a popular resource, meeting the diverse information needs of an international community of pediatric radiologists.

  13. Development of a Surface Plasmon Resonance Assay for the Characterization of Small-Molecule Binding Kinetics and Mechanism of Binding to Kynurenine 3-Monooxygenase.

    PubMed

    Poda, Suresh B; Kobayashi, Masakazu; Nachane, Ruta; Menon, Veena; Gandhi, Adarsh S; Budac, David P; Li, Guiying; Campbell, Brian M; Tagmose, Lena

    2015-10-01

    Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway, was identified as a potential therapeutic target for treating neurodegenerative and psychiatric disorders. In this article, we describe a surface plasmon resonance (SPR) assay that delivers both kinetics and the mechanism of binding (MoB) data, enabling a detailed characterization of KMO inhibitors for the enzyme in real time. SPR assay development included optimization of the protein construct and the buffer conditions. The stability and inhibitor binding activity of the immobilized KMO were significantly improved when the experiments were performed at 10°C using a buffer containing 0.05% n-dodecyl-β-d-maltoside (DDM) as the detergent. The KD values of the known KMO inhibitors (UPF648 and RO61-8048) from the SPR assay were in good accordance with the biochemical LC/MS/MS assay. Also, the SPR assay was able to differentiate the binding kinetics (k(a) and k(d)) of the selected unknown KMO inhibitors. For example, the inhibitors that showed comparable IC50 values in the LC/MS/MS assay displayed differences in their residence time (τ = 1/k(d)) in the SPR assay. To better define the MoB of the inhibitors to KMO, an SPR-based competition assay was developed, which demonstrated that both UPF648 and RO61-8048 bound to the substrate-binding site. These results demonstrate the potential of the SPR assay for characterizing the affinity, the kinetics, and the MoB profiles of the KMO inhibitors.

  14. Determination of the chromatic dispersion of liquids based on the liquid-prism SPR configuration in angular and spectral interrogations

    NASA Astrophysics Data System (ADS)

    Lan, Guoqiang; Liu, Shugang; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin

    2015-10-01

    In this work, we use the liquid-prism SPR sensing configuration to determine the chromatic dispersion of different liquids, since the condition of SPR is sensitive to the refractive index of the liquid prism. We use the glass slide coated with 50 nm Au film as the sensing chip, and use AvaLight - HAL (360 nm - 2500 nm) light source as the broaden band light source in our experiments. We adopt the deionized water as the standard sample to determine the chromatic dispersion of different liquid samples (ethanol and n-hexane), and we implement the experiment through the SPR sensing configuration in angular and spectral interrogations. According to the experimental data, the chromatic dispersions of ethanol and n-hexane are obtained. The proposed technique provides a new high sensitive method for the determination of chromatic dispersion of liquids.

  15. Detection of Vegetable Oil Variance Using Surface Plasmon Resonance (SPR) Technique

    NASA Astrophysics Data System (ADS)

    Supardianningsih; Panggabean, R. D.; Romadhon, I. A.; Laksono, F. D.; Nofianti, U.; Abraha, K.

    2018-05-01

    The difference between coconut oil, corn oil, olive oil, and palm oil has been detected using surface plasmon resonance (SPR) technique. This is a new method in material characterization that can be used to identify vegetable oil variance. The SPR curve was measured by SPR system consisting of optical instruments, mechanical instruments, Main UNIT, and user interface (computer). He-Ne laser beam of wavelength 633 nm was used as light source, while gold (Au) thin film evaporated on half cylinder prism was used as the base so that surface plasmon polariton (SPP) waves propagate at the interface. Tween-80 and PEG-400 are used as surfactant and co-surfactant to make water-oil emulsion from each sample. The sample was prepared with the ratio of oil: surfactant: co-surfactant as 1:2:1 and then stirred on the water to make emulsions. The angle shift was measured by the change of SPR angle from prism/Au/air system to prism/Au/water-oil emulsion. The different SPR angle of each sample has been detected in the various number of spray, a method that was used for depositing the emulsion. From this work, we conclude that the saturated fatty acid component was the most significant component that changes the refractive index in the vegetable oil in water emulsion that can be used to characterize the vegetable oil variance.

  16. Early-stage detection of VE-cadherin during endothelial differentiation of human mesenchymal stem cells using SPR biosensor.

    PubMed

    Fathi, Farzaneh; Rezabakhsh, Aysa; Rahbarghazi, Reza; Rashidi, Mohammad-Reza

    2017-10-15

    Surface plasmon resonance (SPR) biosensors are most commonly applied for real-time dynamic analysis and measurement of interactions in bio-molecular studies and cell-surface analysis without the need for labeling processes. Up to present, SPR application in stem cell biology and biomedical sciences was underused. Herein, a very simple and sensitive method was developed to evaluate human mesenchymal stem cells trans-differentiation to endothelial lineage of over a period of 14 days based on VE-cadherin biomarker. The SPR signals increased with the increase of the amount of VE-cadherin expression on the cell surface during cell differentiation process. The method was able to detect ≈27 cells permm 2 . No significant effect was observed on the cell viability during the cell attachment to the surface of immune-reactive biochips and during the SPR analysis. Using this highly sensitive SPR method, it was possible to sense the early stage of endothelial differentiation on day 3 in label-free form, whereas flow cytometry and fluorescent microscopy methods were found unable to detect the cell differentiation at the same time. Therefore, the proposed method can rapidly and accurately detect cell differentiation in live cells and label-free manner without any need of cell breakage and has great potential for both diagnostic and experimental approaches. Copyright © 2017. Published by Elsevier B.V.

  17. A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers

    PubMed Central

    Wang, Huan; Wang, Xiaomei; Wang, Jue; Fu, Weiling; Yao, Chunyan

    2016-01-01

    The detection of tumor markers is very important in early cancer diagnosis; however, tumor markers are usually present at very low concentrations, especially in the early stages of tumor development. Surface plasmon resonance (SPR) is widely used to detect biomolecular interactions; it has inherent advantages of being high-throughput, real-time, and label-free technique. However, its sensitivity needs essential improvement for practical applications. In this study, we developed a signal amplification strategy using antibody-quantum dot (QD) conjugates for the sensitive and quantitative detection of α-fetoprotein (AFP), carcinoembryonic antigen (CEA) and cytokeratin fragment 21-1 (CYFRA 21-1) in clinical samples. The use of a dual signal amplification strategy using AuNP-antibody and antibody-QD conjugates increased the signal amplification by 50-folds. The constructed SPR biosensor showed a detection limit as low as 0.1 ng/mL for AFP, CEA, and CYFRA 21-1. Moreover, the results obtained using this SPR biosensor were consistent with those obtained using the electrochemiluminescence method. Thus, the constructed SPR biosensor provides a highly sensitive and specific approach for the detection of tumor markers. This SPR biosensor can be expected to be readily applied for the detection of other tumor markers and can offer a potentially powerful solution for tumor screening. PMID:27615417

  18. Commissioning an in-room mobile CT for adaptive proton therapy with a compact proton system.

    PubMed

    Oliver, Jasmine A; Zeidan, Omar; Meeks, Sanford L; Shah, Amish P; Pukala, Jason; Kelly, Patrick; Ramakrishna, Naren R; Willoughby, Twyla R

    2018-05-01

    To describe the commissioning of AIRO mobile CT system (AIRO) for adaptive proton therapy on a compact double scattering proton therapy system. A Gammex phantom was scanned with varying plug patterns, table heights, and mAs on a CT simulator (CT Sim) and on the AIRO. AIRO-specific CT-stopping power ratio (SPR) curves were created with a commonly used stoichiometric method using the Gammex phantom. A RANDO anthropomorphic thorax, pelvis, and head phantom, and a CIRS thorax and head phantom were scanned on the CT Sim and AIRO. Clinically realistic treatment plans and nonclinical plans were generated on the CT Sim images and subsequently copied onto the AIRO CT scans for dose recalculation and comparison for various AIRO SPR curves. Gamma analysis was used to evaluate dosimetric deviation between both plans. AIRO CT values skewed toward solid water when plugs were scanned surrounded by other plugs in phantom. Low-density materials demonstrated largest differences. Dose calculated on AIRO CT scans with stoichiometric-based SPR curves produced over-ranged proton beams when large volumes of low-density material were in the path of the beam. To create equivalent dose distributions on both data sets, the AIRO SPR curve's low-density data points were iteratively adjusted to yield better proton beam range agreement based on isodose lines. Comparison of the stoichiometric-based AIRO SPR curve and the "dose-adjusted" SPR curve showed slight improvement on gamma analysis between the treatment plan and the AIRO plan for single-field plans at the 1%, 1 mm level, but did not affect clinical plans indicating that HU number differences between the CT Sim and AIRO did not affect dose calculations for robust clinical beam arrangements. Based on this study, we believe the AIRO can be used offline for adaptive proton therapy on a compact double scattering proton therapy system. © 2018 Orlando Health UF Health Cancer Center. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  19. SU-F-J-195: On the Performance of Four Dual Energy CT Formalisms for Extracting Proton Stopping Powers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, E; Royle, G; Lalonde, A

    Purpose: Dual energy CT can predict stopping power ratios (SPR) for ion therapy treatment planning. Several approaches have been proposed recently, however accuracy and practicability in a clinical workflow are unaddressed. The aim of this work is to provide a fair comparison of available approaches in a human-like phantom to find the optimal method for tissue characterization in a clinical situation. Methods: The SPR determination accuracy is investigated using simulated DECT images. A virtual human-like phantom is created containing 14 different standard human tissues. SECT (120 kV) and DECT images (100 kV and 140 kV Sn) are simulated using themore » software ImaSim. The single energy CT (SECT) stoichiometric calibration method and four recently published calibration-based DECT methods are implemented and used to predict the SPRs from simulated images. The difference between SPR predictions and theoretical SPR are compared pixelwize. Mean, standard deviation and skewness of the SPR difference distributions are used as measures for bias, dispersion and symmetry. Results: The average SPR differences and standard deviations are (0.22 ± 1.27)% for SECT, and A) (−0.26 ± 1.30)%, B) (0.08 ± 1.12)%, C) (0.06 ± 1.15)% and D) (−0.05 ± 1.05)% for the four DECT methods. While SPR prediction using SECT is showing a systematic error on SPR, the DECT methods B, C and D are unbiased. The skewness of the SECT distribution is 0.57%, and A) −0.19%, B) −0.56%, C) −0.29% and D) −0.07% for DECT methods respectively. Conclusion: The here presented DECT methods B, C and D outperform the commonly used SECT stoichiometric calibration. These methods predict SPR accurately without a bias and within ± 1.2% (68th percentile). This indicates that DECT potentially improves accuracy of range predictions in proton therapy. A validation of these findings using clinical CT images of real tissues is necessary.« less

  20. Investigation of DNA sequence recognition by a streptomycete MarR family transcriptional regulator through surface plasmon resonance and X-ray crystallography

    PubMed Central

    Stevenson, Clare E. M.; Assaad, Aoun; Chandra, Govind; Le, Tung B. K.; Greive, Sandra J.; Bibb, Mervyn J.; Lawson, David M.

    2013-01-01

    Consistent with their complex lifestyles and rich secondary metabolite profiles, the genomes of streptomycetes encode a plethora of transcription factors, the vast majority of which are uncharacterized. Herein, we use Surface Plasmon Resonance (SPR) to identify and delineate putative operator sites for SCO3205, a MarR family transcriptional regulator from Streptomyces coelicolor that is well represented in sequenced actinomycete genomes. In particular, we use a novel SPR footprinting approach that exploits indirect ligand capture to vastly extend the lifetime of a standard streptavidin SPR chip. We define two operator sites upstream of sco3205 and a pseudopalindromic consensus sequence derived from these enables further potential operator sites to be identified in the S. coelicolor genome. We evaluate each of these through SPR and test the importance of the conserved bases within the consensus sequence. Informed by these results, we determine the crystal structure of a SCO3205-DNA complex at 2.8 Å resolution, enabling molecular level rationalization of the SPR data. Taken together, our observations support a DNA recognition mechanism involving both direct and indirect sequence readout. PMID:23748564

  1. 2016 Updates to US Medical Eligibility Criteria for Contraceptive Use and Selected Practice Recommendations for Contraceptive Use: Highlights for Adolescent Patients.

    PubMed

    Hoopes, Andrea J; Simmons, Katharine B; Godfrey, Emily M; Sucato, Gina S

    2017-04-01

    The US Medical Eligibility Criteria for Contraceptive Use (MEC) and US Selected Practice Recommendations for Contraceptive Use (SPR) provide evidence-based guidance to safely provide contraception counseling and services. Both documents were updated in 2016 and are endorsed by the North American Society for Pediatric and Adolescent Gynecology. The purpose of this mini-review is to highlight updates to the US MEC and US SPR that are most relevant to health care providers of adolescents to support dissemination and implementation of these evidence-based best practices. This document is intended to highlight these changes and to complement, not replace, the detailed practice guidance within the US MEC and US SPR. Copyright © 2017 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  2. Simultaneous tuning of electric field intensity and structural properties of ZnO: Graphene nanostructures for FOSPR based nicotine sensor.

    PubMed

    Tabassum, Rana; Gupta, Banshi D

    2017-05-15

    We report theoretical and experimental realization of a SPR based fiber optic nicotine sensor having coatings of silver and graphene doped ZnO nanostructure onto the unclad core of the optical fiber. The volume fraction (f) of graphene in ZnO was optimized using simulation of electric field intensity. Four types of graphene doped ZnO nanostructures viz. nanocomposites, nanoflowers, nanotubes and nanofibers were prepared using optimized value of f. The morphology, photoluminescence (PL) spectra and UV-vis spectra of these nanostructures were studied. The peak PL intensity was found to be highest for ZnO: graphene nanofibers. The optimized value of f in ZnO: graphene nanofiber was reconfirmed using UV-vis spectroscopy. The experiments were performed on the fiber optic probe fabricated with Ag/ZnO: graphene layer and optimized parameters for in-situ detection of nicotine. The interaction of nicotine with ZnO: graphene nanostructures alters the dielectric function of ZnO: graphene nanostructure which is manifested in terms of shift in resonance wavelength. From the sensing signal, the performance parameters were measured including sensitivity, limit of detection (LOD), limit of quantification (LOQ), stability, repeatability and selectivity. The real sample prepared using cigarette tobacco leaves and analyzed using the fabricated sensor makes it suitable for practical applications. The achieved values of LOD and LOQ are found to be unrivalled in comparison to the reported ones. The sensor possesses additional advantages such as, immunity to electromagnetic interference, low cost, capability of online monitoring, remote sensing. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Influence of polymer coating morphology on microsensor response

    NASA Astrophysics Data System (ADS)

    Levit, Natalia; Pestov, Dmitry; Tepper, Gary C.

    2004-03-01

    Nanoscale polymeric coatings are used in a variety of sensor systems. The influence of polymer coating morphology on sensor response was investigated and it was determined that coating morphology plays a particularly important role in transducers based on optical or acoustic resonance such as surface acoustic wave (SAW) or surface plasmon resonance (SPR) devices. Nanoscale polymeric coatings were deposited onto a number of miniature devices using a "solvent-free" deposition technique known as Rapid Expansion of Supercritical Solutions (RESS). In RESS, the supercritical solvent goes into the vapor phase upon fast depressurization and separates from the polymer. Therefore, dry polymer particles are deposited from the gas phase. The average diameter of RESS precipitates is about two orders of magnitude smaller than the minimum droplet size achievable by the air-brush method. For rubbery polymers, such as PIB and PDMS, the nanoscale solute droplets produced by RESS agglomerate on the surface forming a highly-uniform continuous nanoscale film. For glassy and crstalline polymers, the RESS droplets produce uniform particulate coatings exhibiting high surface-to-volume ratio. The coating morphology can be changed by controlling the RESS processing conditions.

  4. Ultrasensitive detection of nucleic acids and proteins using quartz crystal microbalance and surface plasmon resonance sensors based on target-triggering multiple signal amplification strategy.

    PubMed

    Sun, Wenbo; Song, Weiling; Guo, Xiaoyan; Wang, Zonghua

    2017-07-25

    In this study, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) sensors were combined with template enhanced hybridization processes (TEHP), rolling circle amplification (RCA) and biocatalytic precipitation (BCP) for ultrasensitive detection of DNA and protein. The DNA complementary to the aptamer was released by the specific binding of the aptamer to the target protein and then hybridized with the capture probe and the assistant DNA to form a ternary "Y" junction structure. The initiation chain was generated by the template-enhanced hybridization process which leaded to the rolling circle amplification reaction, and a large number of repeating unit sequences were formed. Hybridized with the enzyme-labeled probes, the biocatalytic precipitation reaction was further carried out, resulting in a large amount of insoluble precipitates and amplifying the detection signal. Under the optimum conditions, detection limits as low as 43 aM for target DNA and 53 aM for lysozyme were achieved. In addition, this method also showed good selectivity and sensitivity in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Various On-Chip Sensors with Microfluidics for Biological Applications

    PubMed Central

    Lee, Hun; Xu, Linfeng; Koh, Domin; Nyayapathi, Nikhila; Oh, Kwang W.

    2014-01-01

    In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip. PMID:25222033

  6. Validation of cold plasma treatment for protein inactivation: a surface plasmon resonance-based biosensor study

    NASA Astrophysics Data System (ADS)

    Bernard, C.; Leduc, A.; Barbeau, J.; Saoudi, B.; Yahia, L'H.; DeCrescenzo, G.

    2006-08-01

    Gas plasma is being proposed as an interesting and promising tool to achieve sterilization. The efficacy of gas plasma to destroy bacterial spores (the most resistant living microorganisms) has been demonstrated and documented over the last ten years. In addition to causing damage to deoxyribonucleic acid by UV radiation emitted by excited species originating from the plasma, gas plasma has been shown to promote erosion of the microorganism in addition to possible oxidation reactions within the microorganism. In this work, we used lysozyme as a protein model to assess the effect of gas plasma on protein inactivation. Lysozyme samples have been subjected to the flowing afterglow of a gas discharge achieved in a nitrogen-oxygen mixture. The efficiency of this plasma treatment on lysozyme has been tested by two different assays. These are an enzyme-linked immunosorbent assay (ELISA) and a surface plasmon resonance (SPR)-based biosensor assay. The two methods showed that exposure to gas plasma can abrogate lysozyme interactions with lysozyme-specific antibodies, more likely by destroying the epitopes responsible for the interaction. More specifically, two SPR-based assays were developed since our ELISA approach did not allow us to discriminate between background and low, but still intact, quantities of lysozyme epitope after plasma treatment. Our SPR results clearly demonstrated that significant protein destruction or desorption was achieved when amounts of lysozyme less than 12.5 ng had been deposited in polystyrene 96-well ELISA plates. At higher lysozyme amounts, traces of available lysozyme epitopes were detected by SPR through indirect measurements. Finally, we demonstrated that a direct SPR approach in which biosensor-immobilized lysozyme activity is directly measured prior and after plasma treatment is more sensitive, and thus, more appropriate to define plasma treatment efficacy with more certainty.

  7. Combination of human acetylcholinesterase and serum albumin sensing surfaces as highly informative analytical tool for inhibitor screening.

    PubMed

    Fabini, Edoardo; Tramarin, Anna; Bartolini, Manuela

    2018-06-05

    In the continuous research for potential drug lead candidates, the availability of highly informative screening methodologies may constitute a decisive element in the selection of best-in-class compounds. In the present study, a surface plasmon resonance (SPR)-based assay was developed and employed to investigate interactions between human recombinant AChE (hAChE) and four known ligands: galantamine, tacrine, donepezil and edrophonium. To this aim, a sensor chip was functionalized with hAChE using mild immobilization conditions to best preserve enzyme integrity. Binding affinities and, for the first time, kinetic rate constants for all drug-hAChE complexes formation/disruption were determined. Inhibitors were classified in two groups: slow-reversible and fast-reversible binders according to respective target residence time. Combining data obtained on drug-target residence time with data obtained on serum albumin binding levels, a good correlation with potency, plasma protein binding in vivo, and administration regimen was found. The outcomes of this work demonstrated that the developed SPR-based assay is suitable for the screening, the binding affinity ranking and the kinetic evaluation of hAChE inhibitors. The method proposed ensures a simpler and cost-effective assay to quantify kinetic rate constants for inhibitor-hAChE interaction as compared with other proposed and published methods. Eventually, the determination of residence time in combination with preliminary ADME studies might constitute a better tool to predict in vivo behaviour, a key information for the research of new potential drug candidates. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Fiber-Optic SPR Immunosensors Tailored To Target Epithelial Cells through Membrane Receptors.

    PubMed

    Malachovská, Viera; Ribaut, Clotilde; Voisin, Valérie; Surin, Mathieu; Leclère, Philippe; Wattiez, Ruddy; Caucheteur, Christophe

    2015-06-16

    We report, for the first time, the use of a surface plasmon resonance (SPR) fiber-optic immunosensor for selective cellular detection through membrane protein targeting. The sensor architecture lies on gold-coated tilted fiber Bragg gratings (Au-coated TFBGs) photoimprinted in the fiber core via a laser technique. TFBGs operate in the near-infrared wavelength range at ∼1550 nm, yielding optical and SPR sensing characteristics that are advantageous for the analyses of cellular bindings and technical compatibility with relatively low-cost telecommunication-grade measurement devices. In this work, we take consider their numerous assets to figure out their ability to selectively detect intact epithelial cells as analytes in cell suspensions in the range of 2-5 × 10(6) cells mL(-1). For this, the probe was first thermally annealed to ensure a strong adhesion of the metallic coating to the fiber surface. Its surface was then functionalized with specific monoclonal antibodies via alkanethiol self-assembled monolayers (SAMs) against extracellular domain of epidermal growth factor receptors (EGFRs) and characterized by peak force tapping atomic force microscopy. A differential diagnosis has been demonstrated between two model systems. The developed immunosensors were able to monitor, in real time, the specific attachment of single intact cells in concentrations from 3 × 10(6) cells mL(-1). Such results confirm that the developed probe fits the lab-on-fiber technology and has the potential to be used as a disposable device for in situ and real-time clinical diagnosis.

  9. Ultrasensitive and selective detection of mercury (II) in serum based on the gold film sensor using a laser scanning confocal imaging-surface plasmon resonance system in real time

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Zhang, Hongyan; Liu, Weimin; Wang, Pengfei

    2015-10-01

    Hg2+ ions are one of the most toxic heavy metal ion pollutants, and are caustic and carcinogenic materials with high cellular toxicity. The Hg2+ ions can accumulate in the human body through the food chain and cause serious and permanent damage to the brain with both acute and chronic toxicity. According to the US Environment Protection Agency (EPA) guidelines, Hg2+ ions must be at concentrations below 1 ng/ml (10 nM) in drinking water. If the Hg2+ ions are higher than 2.5 ng/ml in serum, that will bring mercury poisoning. The traditional testing for Hg2+ ions includes atomic absorption, atomic fluorescence, and inductively coupled plasma mass spectrometry. These methods are usually coupled with gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. However, these instrument-based techniques are rather complicated, time-consuming, costly, and unsuitable for online and portable use. An ultrasensitive and selective detection of mercury (II) in serum was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01 ng/ml for Hg2+ ions in fetal calf serum and that is lower than that was required Hg2+ ions must be at concentrations below 1 ng/ml by the US Environment Protection Agency (EPA) guidelines. This sensor was designed on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg2+-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg2+ ion concentration, which is unaffected by the presence of other metal ions. A good liner relation was got with the coefficients of 0.9116 in 30% fetal calf serums with the linear part over a range of 0.01 ng/ml to10 ng/ml.

  10. Mechanical slowing-down of cytoplasmic diffusion allows in vivo counting of proteins in individual cells

    NASA Astrophysics Data System (ADS)

    Okumus, Burak; Landgraf, Dirk; Lai, Ghee Chuan; Bakhsi, Somenath; Arias-Castro, Juan Carlos; Yildiz, Sadik; Huh, Dann; Fernandez-Lopez, Raul; Peterson, Celeste N.; Toprak, Erdal; El Karoui, Meriem; Paulsson, Johan

    2016-05-01

    Many key regulatory proteins in bacteria are present in too low numbers to be detected with conventional methods, which poses a particular challenge for single-cell analyses because such proteins can contribute greatly to phenotypic heterogeneity. Here we develop a microfluidics-based platform that enables single-molecule counting of low-abundance proteins by mechanically slowing-down their diffusion within the cytoplasm of live Escherichia coli (E. coli) cells. Our technique also allows for automated microscopy at high throughput with minimal perturbation to native physiology, as well as viable enrichment/retrieval. We illustrate the method by analysing the control of the master regulator of the E. coli stress response, RpoS, by its adapter protein, SprE (RssB). Quantification of SprE numbers shows that though SprE is necessary for RpoS degradation, it is expressed at levels as low as 3-4 molecules per average cell cycle, and fluctuations in SprE are approximately Poisson distributed during exponential phase with no sign of bursting.

  11. Nanostructure materials for biosensing and bioimaging applications

    NASA Astrophysics Data System (ADS)

    Law, Wing Cheung

    In the first part of the thesis our work on a surface plasmon resonance (SPR) biosensor will be presented. It will begin with understanding the working principle of SPR sensing technology and the basic concept of SPR biosensing. In SPR technology, there are different coupling schemes to excite surface plasmons such as prism coupler, grating coupler and waveguide coupler. Our setup will be based on the attenuated total reflection (ATR) prism coupling configuration. A gold sensing film is attached to one face of the prism. The samples are flowing over the gold surface and the light source is directed to the prism side. The reflected beam containing SPR information is collected and analyzed. SPR biosensors have become powerful tools in biological and chemical sensing application because of their capability of real-time monitoring and label-free sensing. Quantitative measurements such as the binding kinetics and the binding affinity between two biomolecules can be readily calculated from the SPR sensorgram. In our design, SPR phase will be monitored using photoelastic modulation (PEM) technique. The PEM is used to produce a modulation signal so that the phase quantity can be extracted by measuring the relative amplitudes of the harmonic signals. Since this system contains no moving component and only single beam and single detector are used, precise component alignment, which may be troublesome in making the setup compact and robust, can be eliminated. In order to demonstrate the operation of the proposed approach, two experiments were performed. The first one was to measure the refractive index change caused by varying the concentration of glycerin-water mixtures. The second one was to monitor the binding reactions between biotin and streptavidin--BSA complex at the sensor surface. Recently, the use of metallic nanoparticle on SPR platform has received great attention due to the capability of sensitivity enhancement. Although the mechanism of the enhancement is still not fully understand, three possible factors are concluded after systematic researches: (i) an increase of the absolute mass in each binding event, (ii) an increase in the bulk refractive index of the analyte, and (iii) coupling between the localized surface plasmon resonance (LSPR) of metallic nanoparticles and surface plasmon resonance (SPR) of the sensing film. Indeed, the role of plasmonic coupling in sensitivity enhancement is still an open question. In order to obtain a better understanding of this phenomenon, at the end of part I, extended studies were performed to investigate how the LSPR properties of metallic nanoparticle labels correlate with the enhancement factor. For this purpose, gold nanorods (Au-NRs) were chosen as the amplification labels because of the easy tunability of LSPR peak of Au-NR. After reading the "Result and Discussion" section, the readers will have better understanding of "plasmonic coupling" between the sensing film and the metallic labels with suitable operating laser source. In the second part of the thesis, the bioimaging part, the application of nanostructure materials in live cancer cell imaging and small animal imaging were demonstrated. There are different types of imaging technique available in laboratories and clinics: optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), thermography and ultrasound imaging. Although such imaging techniques have been well developed and used over a decade, improving the sensitivity, enhancing the contrast, decreasing the acquisition time and reducing the toxicity of the contrast agent are highly desirable. For optical imaging, the scientists discovered that the use of near infrared fluorescence materials can assist the surgeon to locate the tumor, the nerve and the lymph node more accurately. For CT scan, the use of Au-NR as the contrast agent can improve the sensitivity. Iron oxide nanoparticle or gadolinium ion containing nanoparticle can greatly enhance the contrast of MRI. On the one hand, concrete effort has been concentrated on exploring the feasibilities of nanomaterials. However, on the contrary, the researchers also revealed the cytotoxicity of nanoparticles and the potential hazard for long term circulation in vivo. They argued that the long-term contact of the nanoparticles with biological fluids can result partial desorption of the hydrophilic moieties, thus exposing the bare surface to the biological system, with high chances of releasing toxic ions to the surrounding. This dissertation will focus on two nanomaterials, Au-NR and QD, using as nanoprobes for live pancreatic cancer cells imaging and small animal imaging. Different surface modification strategies and the biocompatibility will be discussed. The toxicities of the nanomaterials will also be evaluated by appropriate bio-assay. (Abstract shortened by UMI.)

  12. Comprehensive analysis of proton range uncertainties related to stopping-power-ratio estimation using dual-energy CT imaging

    NASA Astrophysics Data System (ADS)

    Li, B.; Lee, H. C.; Duan, X.; Shen, C.; Zhou, L.; Jia, X.; Yang, M.

    2017-09-01

    The dual-energy CT-based (DECT) approach holds promise in reducing the overall uncertainty in proton stopping-power-ratio (SPR) estimation as compared to the conventional stoichiometric calibration approach. The objective of this study was to analyze the factors contributing to uncertainty in SPR estimation using the DECT-based approach and to derive a comprehensive estimate of the range uncertainty associated with SPR estimation in treatment planning. Two state-of-the-art DECT-based methods were selected and implemented on a Siemens SOMATOM Force DECT scanner. The uncertainties were first divided into five independent categories. The uncertainty associated with each category was estimated for lung, soft and bone tissues separately. A single composite uncertainty estimate was eventually determined for three tumor sites (lung, prostate and head-and-neck) by weighting the relative proportion of each tissue group for that specific site. The uncertainties associated with the two selected DECT methods were found to be similar, therefore the following results applied to both methods. The overall uncertainty (1σ) in SPR estimation with the DECT-based approach was estimated to be 3.8%, 1.2% and 2.0% for lung, soft and bone tissues, respectively. The dominant factor contributing to uncertainty in the DECT approach was the imaging uncertainties, followed by the DECT modeling uncertainties. Our study showed that the DECT approach can reduce the overall range uncertainty to approximately 2.2% (2σ) in clinical scenarios, in contrast to the previously reported 1%.

  13. Optical hysteresis in SPR structures with amorphous As2S3 film under low-power laser irradiation

    NASA Astrophysics Data System (ADS)

    Stafe, M.; Popescu, A. A.; Savastru, D.; Negutu, C.; Vasile, G.; Mihailescu, M.; Ducariu, A.; Savu, V.; Tenciu, D.; Miclos, S.; Baschir, L.; Verlan, V. V.; Bordian, O.; Puscas, N. N.

    2018-03-01

    Optical hysteresis is a fundamental phenomenon that can lead to optical bistability and high-speed signal processing. Here, we present a theoretical and experimental study of the optical hysteresis phenomenon in amorphous As2S3 chalcogenide based waveguide structures under surface plasmon resonance (SPR) conditions. The SPR structure is irradiated with low power CW Ar laser radiation at 514 nm wavelength, with photon energy near the optical band-gap of As2S3, in a Kretschmann-Raether configuration. First, we determined the incidence angle on the SPR structure for resonant coupling of the laser radiation within the waveguide structure. Subsequently, by setting the near resonance incidence angle, we analyzed the variation of the laser power reflected on the SPR structure with incident power. We demonstrated that, by setting the incidence angle at a value slightly smaller than the resonance angle, the increase followed by the decrease of the incident power lead to a wide (up to 60%) hysteresis loop of the reflected power. This behavior is related to the slow and persistent photo-induced modification of the complex refractive index of As2S3 under 514 nm laser irradiation. The experimental and theoretical results are in good agreement, demonstrating the validity of the theoretical model presented here.

  14. Assessment of Complement Activation by Nanoparticles: Development of a SPR Based Method and Comparison with Current High Throughput Methods.

    PubMed

    Coty, Jean-Baptiste; Noiray, Magali; Vauthier, Christine

    2018-04-26

    A Surface Plasmon Resonance chip (SPR) was developed to study the activation of complement system triggered by nanomaterials in contact with human serum, which is an important concern today to warrant safety of nanomedicines. The developed chip was tested for its specificity in complex medium and its longevity of use. It was then employed to assess the release of complement fragments upon incubation of nanoparticles in serum. A comparison was made with other current methods assessing complement activation (μC-IE, ELISA). The SPR chip was found to give a consistent response for C3a release upon activation by nanoparticles. Results were similar to those obtained by μC-IE. However, ELISA detection of iC3b fragments showed an explained high non-specific background. The impact of sample preparation preceding the analysis was assessed with the newly develop SPR method. The removal of nanoparticles before analysis showed an important modification in the obtained response, possibly leading to false negative results. The SPR chip developed in this work allows for an automated assessment of complement activation triggered by nanoparticles with possibility of multiplexed analysis. The design of the chip proved to give consistent results of complement activation by nanoparticles.

  15. Studying protein structural changes based on surface plasmon resonance and surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Pin; Chen, Shean-Jen; Yih, Jenq-Nan; Lin, G.-Y.; Chang, Guan L.

    2004-06-01

    The ability to recognize the conformational changes and structural variations of a protein when immobilized in a solid surface is of great importance in a variety of applications. Surface plasmon resonance (SPR) sensing is an appropriate technique for investigating interfacial phenomena, and enables the conformational changes of proteins to be monitored through the variation in the SPR angle shift. Meanwhile, the surface-enhanced Raman scattering (SERS) system can also assist in clarifying the changes in protein structure. The present study utilizes a 1 mM CrO3 phosphate buffer solution (PBS) to induce conformational changes of human serum albumin (HSA). Monitoring the corresponding SPR angle shifts and the SPR reflectivity spectrum enables the relationships between the conformational changes of the surface-immobilized protein and the thickness and dielectric constants of the protein layer to be estimated. The experimental SPR results indicate that the Cr6+ ions cause significant conformational change of the protein. It is established that the ions are not merely absorbed into the protein as a result of electrostatic forces, but that complex protein refolding events also take place. Furthermore, the data acquired from the SERS system yield valuable information regarding the changes which take place in the protein structure.

  16. The effects of magnetic fields exposure on relative permittivity of saline solutions measured by a high resolution SPR system

    PubMed Central

    Jiang, Li; Zhao, Xinyuan; Fei, Yue; Yu, Dongdong; Qian, Jun; Tong, Jinguang; Chen, Guangdi; He, Sailing

    2016-01-01

    A measurement system for the relative permittivity of a physiological solution under 50 Hz magnetic fields (MF) is presented. It is based on a phase-sensitive surface plasmon resonance (SPR) system. Relative permittivity was analyzed for different solute concentrations of sodium chloride under various MF exposure parameters. We found that MF exposure at 0.2–4.0 mT step-wise decreased significantly the SPR phase signal of a 0.9% sodium chloride solution while 0.1 mT of MF exposure did not. The decreases in the SPR phase signal depended on the duration of MF exposure, and the signal reached a plateau after 15 min of exposure. Interestingly, the decreased SPR phase signal showed a gradual increase and approached the background level when the exposure was drawn off. In addition, we found that the response of the sodium chloride solution to MF also depended on its concentration. In brief, the relative permittivity of sodium chloride in solutions appears to be practically affected by 50 Hz MF exposure. Our data indicates that the relative permittivity of the saline solution influenced by MF exposure should be considered when investigating the biological effects of MF exposure on organisms in experimental study. PMID:27121618

  17. Beyond conventional dose-response curves: Sensorgram comparison in SPR allows single concentration activity and similarity assessment.

    PubMed

    Gassner, C; Karlsson, R; Lipsmeier, F; Moelleken, J

    2018-05-30

    Previously we have introduced two SPR-based assay principles (dual-binding assay and bridging assay), which allow the determination of two out of three possible interaction parameters for bispecific molecules within one assay setup: two individual interactions to both targets, and/or one simultaneous/overall interaction, which potentially reflects the inter-dependency of both individual binding events. However, activity and similarity are determined by comparing report points over a concentration range, which also mirrors the way data is generated by conventional ELISA-based methods So far, binding kinetics have not been specifically considered in generic approaches for activity assessment. Here, we introduce an improved slope-ratio model which, together with a sensorgram comparison based similarity assessment, allows the development of a detailed, USP-conformal ligand binding assay using only a single sample concentration. We compare this novel analysis method to the usual concentration-range approach for both SPR-based assay principles and discuss its impact on data quality and increased sample throughput. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Research and development in optical biosensors for determination of toxic environmental pollutants

    NASA Astrophysics Data System (ADS)

    Tsargorodska, Anna

    The detection of pollutants (such as toxins, heavy metal ions, and pesticides) in water and food plays an important role in human health and safety regulations. Different optical biosensing techniques enabling the monitoring of these compounds were chosen for this study. Low molecular weight (LMW) environmental toxins, such as simazine, atrazine, nonylphenol and T-2 mycotoxin were registered with the methods of surface plasmon resonance (SPR) and the recently developed total internal reflection ellipsometry (TIRE). The immune assay approach was exploited for in situ registration of the above toxins with specific antibodies immobilized onto a gold surface via a polyelectrolyte layer using electrostatic self-assembly (ESA) technique. TIRE showed a higher sensitivity than the SPR technique. The obtained responses of the TIRE method were higher than estimated for the immune binding of single molecules of nonylphenol or T-2 mycotoxin. The mechanism of the binding of large aggregates of these toxins to respective antibodies was suggested as a possible reason for this. The formation of large molecular aggregates of toxin molecules on the surface was later proven by the AFM study.The prototype of the portable sensor array device for water pollution monitoring was based on a SiO[2]/Si[3]n[4] planar waveguide with a sensing window coated with ESA film containing pH sensitive organic chromophore molecules and different enzymes (namely, urease, acetyl- and butyryl-cholinesterase) adsorbed on a disposable nylon membrane. The sensor was capable of registration of enzyme reactions as well as their inhibition by traces of some typical water pollutants, such as heavy metal ions Cd[2+], Pb[2+], and Ni[2+], and pesticides imidacloprid and DVDP over a wide range of concentrations (from 1000 ppb down to 0.1 ppb). A portable prototype sensor array device comprises a fan-beam laser diode, a semi-cylindrical lens, a planar waveguide with a three-channel cell attached, and a CCD array photodetector. Dedicated software was developed for CCD image processing and further data analysis with an artificial neural network.The large internal surface area within a small volume, efficient room-temperature visible photoluminescence and biocompatibility of porous silicon (PS) has stimulated recent interest in its applications for sensor development. The method of spectroscopic ellipsometry was applied to study in situ the adsorption of bovine serum albumin (BSA) into PS. The porosity and amount of adsorbed BSA were determined by fitting the ellipsometric data to the Bruggeman effective medium approximation model. The presence of intermediate adsorbed layers of polyelectrolytes was found to increase protein adsorption.

  19. Suppressors of systemin signaling identify genes in the tomato wound response pathway.

    PubMed Central

    Howe, G A; Ryan, C A

    1999-01-01

    In tomato plants, systemic induction of defense genes in response to herbivory or mechanical wounding is regulated by an 18-amino-acid peptide signal called systemin. Transgenic plants that overexpress prosystemin, the systemin precursor, from a 35S::prosystemin (35S::prosys) transgene exhibit constitutive expression of wound-inducible defense proteins including proteinase inhibitors and polyphenol oxidase. To study further the role of (pro)systemin in the wound response pathway, we isolated and characterized mutations that suppress 35S::prosys-mediated phenotypes. Ten recessive, extragenic suppressors were identified. Two of these define new alleles of def-1, a previously identified mutation that blocks both wound- and systemin-induced gene expression and renders plants susceptible to herbivory. The remaining mutants defined four loci designated Spr-1, Spr-2, Spr-3, and Spr-4 (for Suppressed in 35S::prosystemin-mediated responses). spr-3 and spr-4 mutants were not significantly affected in their response to either systemin or mechanical wounding. In contrast, spr-1 and spr-2 plants lacked systemic wound responses and were insensitive to systemin. These results confirm the function of (pro)systemin in the transduction of systemic wound signals and further establish that wounding, systemin, and 35S::prosys induce defensive gene expression through a common signaling pathway defined by at least three genes (Def-1, Spr-1, and Spr-2). PMID:10545469

  20. Effect of sulfasalazine on human neuroblastoma: analysis of sepiapterin reductase (SPR) as a new therapeutic target.

    PubMed

    Yco, Lisette P; Geerts, Dirk; Mocz, Gabor; Koster, Jan; Bachmann, André S

    2015-06-21

    Neuroblastoma (NB) is an aggressive childhood malignancy in children up to 5 years of age. High-stage tumors frequently relapse even after aggressive multimodal treatment, and then show therapy resistance, typically resulting in patient death. New molecular-targeted compounds that effectively suppress tumor growth and prevent relapse with more efficacy are urgently needed. We and others previously showed that polyamines (PA) like spermidine and spermine are essential for NB tumorigenesis and that DFMO, an inhibitor of the key PA synthesis gene product ODC, is effective both in vitro and in vivo, securing its evaluation in NB clinical trials. To find additional compounds interfering with PA biosynthesis, we tested sulfasalazine (SSZ), an FDA-approved salicylate-based anti-inflammatory and immune-modulatory drug, recently identified to inhibit sepiapterin reductase (SPR). We earlier presented evidence for a physical interaction between ODC and SPR and we showed that RNAi-mediated knockdown of SPR expression significantly reduced native ODC enzyme activity and impeded NB cell proliferation. Human NB mRNA expression datasets in the public domain were analyzed using the R2 platform. Cell viability, isobologram, and combination index analyses as a result of SSZ treatment with our without DFMO were carried out in NB cell cultures. Molecular protein-ligand docking was achieved using the GRAMM algorithm. Statistical analyses were performed with the Kruskal-Wallis test, 2log Pearson test, and Student's t test. In this study, we show the clinical relevance of SPR in human NB tumors. We found that high SPR expression is significantly correlated to unfavorable NB characteristics like high age at diagnosis, MYCN amplification, and high INSS stage. SSZ inhibits the growth of NB cells in vitro, presumably due to the inhibition of SPR as predicted by computational docking of SSZ into SPR. Importantly, the combination of SSZ with DFMO produces synergistic antiproliferative effects in vitro. The results suggest the use of SSZ in combination with DFMO for further experiments, and possible prioritization as a novel therapy for the treatment of NB patients.

  1. Optical biosensors.

    PubMed

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Note: Four-port microfluidic flow-cell with instant sample switching

    NASA Astrophysics Data System (ADS)

    MacGriff, Christopher A.; Wang, Shaopeng; Tao, Nongjian

    2013-10-01

    A simple device for high-speed microfluidic delivery of liquid samples to a surface plasmon resonance sensor surface is presented. The delivery platform is comprised of a four-port microfluidic cell, two ports serve as inlets for buffer and sample solutions, respectively, and a high-speed selector valve to control the alternate opening and closing of the two outlet ports. The time scale of buffer/sample switching (or sample injection rise and fall time) is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement.

  3. Development of diagnostic SPR based biosensor for the detection of pharmaceutical compounds in saliva

    NASA Astrophysics Data System (ADS)

    Sonny, Susanna; Sesay, Adama M.; Virtanen, Vesa

    2010-11-01

    The aim of the study is to develop diagnostic tests for the detection of pharmaceutical compounds in saliva. Oral fluid is increasingly being considered as an ideal sample matrix. It can be collected non-invasively and causes less stress to the person being tested. The detection of pharmaceutical compounds and drugs in saliva can give valuable information on individual bases on dose response, usage, characterization and clinical diagnostics. Surface plasmon resonance (SPR) is a highly sensitive, fast and label free analytical technique for the detection of molecular interactions. The specific binding of measured analyte onto the active gold sensing surface of the SPR device induces a refractive index change that can be monitored. To monitor these pharmaceutical compounds in saliva the immunoassays were developed using a SPR instrument. The instrument is equipped with a 670nm laser diode and has two sensing channels. Monoclonal antibodies against the pharmaceutical compounds were used to specifically recognise and capture the compounds which intern will have an effect of the refractive index monitored. Preliminary results show that the immunoassays for cocaine and MDMA (3,4-methylenedioxymethamphetamine) are very sensitive and have linear ranges of 0.01 pg/ml - 1 ng/ml and 0.1 pg/ml - 100 ng/ml, respectively.

  4. Target immobilization as a strategy for NMR-based fragment screening: comparison of TINS, STD, and SPR for fragment hit identification.

    PubMed

    Kobayashi, Masakazu; Retra, Kim; Figaroa, Francis; Hollander, Johan G; Ab, Eiso; Heetebrij, Robert J; Irth, Hubertus; Siegal, Gregg

    2010-09-01

    Fragment-based drug discovery (FBDD) has become a widely accepted tool that is complementary to high-throughput screening (HTS) in developing small-molecule inhibitors of pharmaceutical targets. Because a fragment campaign can only be as successful as the hit matter found, it is critical that the first stage of the process be optimized. Here the authors compare the 3 most commonly used methods for hit discovery in FBDD: high concentration screening (HCS), solution ligand-observed nuclear magnetic resonance (NMR), and surface plasmon resonance (SPR). They selected the commonly used saturation transfer difference (STD) NMR spectroscopy and the proprietary target immobilized NMR screening (TINS) as representative of the array of possible NMR methods. Using a target typical of FBDD campaigns, the authors find that HCS and TINS are the most sensitive to weak interactions. They also find a good correlation between TINS and STD for tighter binding ligands, but the ability of STD to detect ligands with affinity weaker than 1 mM K(D) is limited. Similarly, they find that SPR detection is most suited to ligands that bind with K(D) better than 1 mM. However, the good correlation between SPR and potency in a bioassay makes this a good method for hit validation and characterization studies.

  5. Objective Identification of Prepubertal Female Singers and Non-singers by Singing Power Ratio Using Matlab.

    PubMed

    Usha, M; Geetha, Y V; Darshan, Y S

    2017-03-01

    The field of music is increasingly gaining scope and attracting researchers from varied fields in terms of improvising the art of voice modulation in singing. There has been a lot of competition, and young budding singers are emerging with more talent. This study is aimed to develop software to differentiate a prepubertal voice as that of a singer or a non-singer using an objective tool-singing power ratio (SPR)-as an objective measure to quantify the resonant voice quality. Recordings of singing and phonation were obtained from 30 singers and 30 non-singer girls (8-10 years). Three professional singers perceptually evaluated all samples using a rating scale and categorized them as singers or non-singers. Using Matlab, a program was developed to automatically calculate the SPR of a particular sample and classify it into either of two groups based on the normative values of SPR developed manually. Positive correlation for SPR of phonation or singing was found between perceptual and manual ratings, and objective values of SPR. Software could automatically give the SPR values for samples that are fed and could further differentiate them as singer or non-singer. Researchers need not depend on professional singers or musicians for the judgment of voice for research purposes. This software uses an objective tool, which serves as an instrument to judge singing talent using singing and phonation samples of children. Also, it can be used as a first line of judgment in any singing audition process, which could ease the work of professionals. Copyright © 2017 The Voice Foundation. All rights reserved.

  6. Boronic Acid Functionalized Au Nanoparticles for Selective MicroRNA Signal Amplification in Fiber-Optic Surface Plasmon Resonance Sensing System.

    PubMed

    Qian, Siyu; Lin, Ming; Ji, Wei; Yuan, Huizhen; Zhang, Yang; Jing, Zhenguo; Zhao, Jianzhang; Masson, Jean-François; Peng, Wei

    2018-05-25

    MicroRNA (miRNA) regulates gene expression and plays a fundamental role in multiple biological processes. However, if both single-stranded RNA and DNA can bind with capture DNA on the sensing surface, selectively amplifying the complementary RNA signal is still challenging for researchers. Fiber-optic surface plasmon resonance (SPR) sensors are small, accurate, and convenient tools for monitoring biological interaction. In this paper, we present a high sensitivity microRNA detection technique using phenylboronic acid functionalized Au nanoparticles (PBA-AuNPs) in fiber-optic SPR sensing systems. Due to the inherent difficulty directly detecting the hybridized RNA on the sensing surface, the PBA-AuNPs were used to selectively amplify the signal of target miRNA. The result shows that the method has high selectivity and sensitivity for miRNA, with a detection limit at 2.7 × 10 -13 M (0.27 pM). This PBA-AuNPs amplification strategy is universally applicable for RNA detection with various sensing technologies, such as surface-enhanced Raman spectroscopy and electrochemistry, among others.

  7. Magneto-nanosensor platform for probing low-affinity protein–protein interactions and identification of a low-affinity PD-L1/PD-L2 interaction

    PubMed Central

    Lee, Jung-Rok; Bechstein, Daniel J. B.; Ooi, Chin Chun; Patel, Ashka; Gaster, Richard S.; Ng, Elaine; Gonzalez, Lino C.; Wang, Shan X.

    2016-01-01

    Substantial efforts have been made to understand the interactions between immune checkpoint receptors and their ligands targeted in immunotherapies against cancer. To carefully characterize the complete network of interactions involved and the binding affinities between their extracellular domains, an improved kinetic assay is needed to overcome limitations with surface plasmon resonance (SPR). Here, we present a magneto-nanosensor platform integrated with a microfluidic chip that allows measurement of dissociation constants in the micromolar-range. High-density conjugation of magnetic nanoparticles with prey proteins allows multivalent receptor interactions with sensor-immobilized bait proteins, more closely mimicking natural-receptor clustering on cells. The platform has advantages over traditional SPR in terms of insensitivity of signal responses to pH and salinity, less consumption of proteins and better sensitivities. Using this platform, we characterized the binding affinities of the PD-1—PD-L1/PD-L2 co-inhibitory receptor system, and discovered an unexpected interaction between the two known PD-1 ligands, PD-L1 and PD-L2. PMID:27447090

  8. Immunosensing with Near-Infrared Plasmonic Optical Fiber Gratings.

    PubMed

    Caucheteur, Christophe; Ribaut, Clotilde; Malachovska, Viera; Wattiez, Ruddy

    2017-01-01

    Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. They are usually obtained from a gold-coated fiber segment for which the core-guided light is brought into contact with the surrounding medium, either by etching (or side-polishing) or by using grating coupling. Recently, SPR generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute the unique configuration able to probe all the fiber cladding modes individually, with high Q-factors. We use these unique spectral features in our work to sense proteins and extra-cellular membrane receptors that are both overexpressed in cancerous tissues. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way for the further use of such immunosensors for cancer diagnosis.

  9. Surface plasmon resonance measurement of pH-induced responses of immobilized biomolecules: conformational change or electrostatic interaction effects?

    PubMed

    Paynter, Sally; Russell, David A

    2002-10-01

    Recently, the observation of pH-induced conformational changes of biomolecules supported on carboxymethyldextran (CMD)-coated surfaces measured using surface plasmon resonance (SPR) has been reported. However, it is apparent that the evidence reported in the literature is ambiguous. The research presented in this paper describes investigations to study the changing SPR signal of immobilized biomolecules as a function of varying pH, to provide a detailed understanding of the origin of the pH-induced changes in the SPR profile. SPR measurements were performed with cytochrome c, concanavalin A, and poly-L-lysine, biomolecules that exhibit diverse conformational responses to changing pH, covalently immobilized onto CMD-coated supports. These SPR measurements were supported by circular dichroism (CD) solution studies. The SPR profiles recorded were not consistent with the conformational transitions of the biomolecules as observed using CD. An alternative explanation for the observed shifts in SPR is proposed, which explains the SPR profiles in terms of electrostatic interaction effects between the immobilized biomolecules and the carboxymethyldextran matrix.

  10. A cis-antisense RNA acts in trans in Staphylococcus aureus to control translation of a human cytolytic peptide.

    PubMed

    Sayed, Nour; Jousselin, Ambre; Felden, Brice

    2011-12-25

    Antisense RNAs (asRNAs) pair to RNAs expressed from the complementary strand, and their functions are thought to depend on nucleotide overlap with genes on the opposite strand. There is little information on the roles and mechanisms of asRNAs. We show that a cis asRNA acts in trans, using a domain outside its target complementary sequence. SprA1 small regulatory RNA (sRNA) and SprA1(AS) asRNA are concomitantly expressed in S. aureus. SprA1(AS) forms a complex with SprA1, preventing translation of the SprA1-encoded open reading frame by occluding translation initiation signals through pairing interactions. The SprA1 peptide sequence is within two RNA pseudoknots. SprA1(AS) represses production of the SprA1-encoded cytolytic peptide in trans, as its overlapping region is dispensable for regulation. These findings demonstrate that sometimes asRNA functional domains are not their gene-target complementary sequences, suggesting there is a need for mechanistic re-evaluation of asRNAs expressed in prokaryotes and eukaryotes.

  11. Spent Nuclear Fuel Transport Reliability Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Wang, Hong; Jiang, Hao

    This conference paper was orignated and shorten from the following publisehd PTS documents: 1. Jy-An Wang, Hao Jiang, and Hong Wang, Dynamic Deformation Simulation of Spent Nuclear Fuel Assembly and CIRFT Deformation Sensor Stability Investigation, ORNL/SPR-2015/662, November 2015. 2. Jy-An Wang, Hong Wang, Mechanical Fatigue Testing of High-Burnup Fuel for Transportation Applications, NUREG/CR-7198, ORNL/TM-2014/214, May 2015. 3. Jy-An Wang, Hong Wang, Hao Jiang, Yong Yan, Bruce Bevard, Spent Nuclear Fuel Vibration Integrity Study 16332, WM2016 Conference, March 6 10, 2016, Phoenix, Arizona.

  12. Developmentally-Regulated Excision of the SPβ Prophage Reconstitutes a Gene Required for Spore Envelope Maturation in Bacillus subtilis

    PubMed Central

    Abe, Kimihiro; Kawano, Yuta; Iwamoto, Keito; Arai, Kenji; Maruyama, Yuki; Eichenberger, Patrick; Sato, Tsutomu

    2014-01-01

    Temperate phages infect bacteria by injecting their DNA into bacterial cells, where it becomes incorporated into the host genome as a prophage. In the genome of Bacillus subtilis 168, an active prophage, SPβ, is inserted into a polysaccharide synthesis gene, spsM. Here, we show that a rearrangement occurs during sporulation to reconstitute a functional composite spsM gene by precise excision of SPβ from the chromosome. SPβ excision requires a putative site-specific recombinase, SprA, and an accessory protein, SprB. A minimized SPβ, where all the SPβ genes were deleted, except sprA and sprB, retained the SPβ excision activity during sporulation, demonstrating that sprA and sprB are necessary and sufficient for the excision. While expression of sprA was observed during vegetative growth, sprB was induced during sporulation and upon mitomycin C treatment, which triggers the phage lytic cycle. We also demonstrated that overexpression of sprB (but not of sprA) resulted in SPβ prophage excision without triggering the lytic cycle. These results suggest that sprB is the factor that controls the timing of phage excision. Furthermore, we provide evidence that spsM is essential for the addition of polysaccharides to the spore envelope. The presence of polysaccharides on the spore surface renders the spore hydrophilic in water. This property may be beneficial in allowing spores to disperse in natural environments via water flow. A similar rearrangement occurs in Bacillus amyloliquefaciens FZB42, where a SPβ-like element is excised during sporulation to reconstitute a polysaccharide synthesis gene, suggesting that this type of gene rearrangement is common in spore-forming bacteria because it can be spread by phage infection. PMID:25299644

  13. PHEX Mimetic (SPR4-Peptide) Corrects and Improves HYP and Wild Type Mice Energy-Metabolism

    PubMed Central

    Zelenchuk, Lesya V.; Hedge, Anne-Marie; Rowe, Peter S. N.

    2014-01-01

    Context PHEX or DMP1 mutations cause hypophosphatemic-rickets and altered energy metabolism. PHEX binds to DMP1-ASARM-motif to form a complex with α5β3 integrin that suppresses FGF23 expression. ASARM-peptides increase FGF23 by disrupting the PHEX-DMP1-Integrin complex. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide/motif to study the DMP1-PHEX interaction and to assess SPR4 for the treatment of energy metabolism defects in HYP and potentially other bone-mineral disorders. Design Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle (VE) into wild-type mice (WT) and HYP-mice (PHEX mutation) for 4 weeks. Results SPR4 partially corrected HYP mice hypophosphatemia and increased serum 1.25(OH)2D3. Serum FGF23 remained high and PTH was unaffected. WT-SPR4 mice developed hypophosphatemia and hypercalcemia with increased PTH, FGF23 and 1.25(OH)2D3. SPR4 increased GAPDH HYP-bone expression 60× and corrected HYP-mice hyperglycemia and hypoinsulinemia. HYP-VE serum uric-acid (UA) levels were reduced and SPR4 infusion suppressed UA levels in WT-mice but not HYP-mice. SPR4 altered leptin, adiponectin, and sympathetic-tone and increased the fat mass/weight ratio for HYP and WT mice. Expression of perlipin-2 a gene involved in obesity was reduced in HYP-VE and WT-SPR4 mice but increased in HYP-SPR4 mice. Also, increased expression of two genes that inhibit insulin-signaling, ENPP1 and ESP, occurred with HYP-VE mice. In contrast, SPR4 reduced expression of both ENPP1 and ESP in WT mice and suppressed ENPP1 in HYP mice. Increased expression of FAM20C and sclerostin occurred with HYP-VE mice. SPR4 suppressed expression of FAM20C and sclerostin in HYP and WT mice. Conclusions ASARM peptides and motifs are physiological substrates for PHEX and modulate osteocyte PHEX-DMP1-α5β3-integrin interactions and thereby FGF23 expression. These interactions also provide a nexus that regulates bone and energy metabolism. SPR4 suppression of sclerostin and/or sequestration of ASARM-peptides improves energy metabolism and may have utility for treating familial rickets, osteoporosis, obesity and diabetes. PMID:24839967

  14. Ethical Challenges in Promoting the Implementation of Preventive Interventions: Report of the SPR Task Force.

    PubMed

    Leadbeater, Bonnie J; Dishion, Tom; Sandler, Irwin; Bradshaw, Catherine P; Dodge, Kenneth; Gottfredson, Denise; Graham, Phillip W; Lindstrom Johnson, Sarah; Maldonado-Molina, Mildred M; Mauricio, Anne M; Smith, Emilie Phillips

    2018-06-23

    Prevention science researchers and practitioners are increasingly engaged in a wide range of activities and roles to promote evidence-based prevention practices in the community. Ethical concerns invariably arise in these activities and roles that may not be explicitly addressed by university or professional guidelines for ethical conduct. In 2015, the Society for Prevention Research (SPR) Board of Directors commissioned Irwin Sandler and Tom Dishion to organize a series of roundtables and establish a task force to identify salient ethical issues encountered by prevention scientists and community-based practitioners as they collaborate to implement evidence-based prevention practices. This article documents the process and findings of the SPR Ethics Task Force and aims to inform continued efforts to articulate ethical practice. Specifically, the SPR membership and task force identified prevention activities that commonly stemmed from implementation and scale-up efforts. This article presents examples that illustrate typical ethical dilemmas. We present principles and concepts that can be used to frame the discussion of ethical concerns that may be encountered in implementation and scale-up efforts. We summarize value statements that stemmed from our discussion. We also conclude that the field of prevention science in general would benefit from standards and guidelines to promote ethical behavior and social justice in the process of implementing evidence-based prevention practices in community settings. It is our hope that this article serves as an educational resource for students, investigators, and Human Subjects Review Board members regarding some of the complexity of issues of fairness, equality, diversity, and personal rights for implementation of preventive interventions.

  15. Applications of small surface plasmon resonance sensors for biochemical monitoring

    NASA Astrophysics Data System (ADS)

    Masson, Jean-Francois; Battaglia, Tina M.; Beaudoin, Stephen; Booksh, Karl S.

    2004-12-01

    The development of small surface plasmon resonance (SPR) sensors to detect biological markers for myocardial ischemia (MI), spinal muscular atrophy (SMA), and wound healing was achieved at low ng/mL and in less than 10 minutes. The markers of interest for MIs are myoglobin (MG) and cardiac Troponin I (cTnI). The limits of detection for these markers are respectively 600 pg/mL and 1.4 ng/mL in saline solution. To study SMA, the level of survival motor neuron protein (SMN) was investigated. A limit of detection of 990 pg/mL was achieved for the detection of SMN. The interactions of SMN with MG decreased the signal for both SMN and MG. Interleukin 6 and tumor necrosis factor alpha (TNFa) were investigated to monitor wound healing. The sensor's performance in more complex solutions, e.g.: serum, showed a large non-specific signal. Modifying the support on which the antibodies are attached improved the sensor's stability in serum by a factor of 5. To achieve this non-specific binding (NSB) reduction, different polysaccharides, biocompatible polymers and short chain thiols were investigated.

  16. Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration

    PubMed Central

    Yang, M; Zhu, X R; Park, PC; Titt, Uwe; Mohan, R; Virshup, G; Clayton, J; Dong, L

    2012-01-01

    The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0–3.4%, primarily because soft tissue is the dominant tissue type in human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield Numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction. PMID:22678123

  17. Output Feedback Adaptive Control of Non-Minimum Phase Systems Using Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Hashemi, Kelley E.; Yucelen, Tansel; Arabi, Ehsan

    2018-01-01

    This paper describes output feedback adaptive control approaches for non-minimum phase SISO systems with relative degree 1 and non-strictly positive real (SPR) MIMO systems with uniform relative degree 1 using the optimal control modification method. It is well-known that the standard model-reference adaptive control (MRAC) cannot be used to control non-SPR plants to track an ideal SPR reference model. Due to the ideal property of asymptotic tracking, MRAC attempts an unstable pole-zero cancellation which results in unbounded signals for non-minimum phase SISO systems. The optimal control modification can be used to prevent the unstable pole-zero cancellation which results in a stable adaptation of non-minimum phase SISO systems. However, the tracking performance using this approach could suffer if the unstable zero is located far away from the imaginary axis. The tracking performance can be recovered by using an observer-based output feedback adaptive control approach which uses a Luenberger observer design to estimate the state information of the plant. Instead of explicitly specifying an ideal SPR reference model, the reference model is established from the linear quadratic optimal control to account for the non-minimum phase behavior of the plant. With this non-minimum phase reference model, the observer-based output feedback adaptive control can maintain stability as well as tracking performance. However, in the presence of the mismatch between the SPR reference model and the non-minimum phase plant, the standard MRAC results in unbounded signals, whereas a stable adaptation can be achieved with the optimal control modification. An application of output feedback adaptive control for a flexible wing aircraft illustrates the approaches.

  18. Mechanical slowing-down of cytoplasmic diffusion allows in vivo counting of proteins in individual cells

    PubMed Central

    Okumus, Burak; Landgraf, Dirk; Lai, Ghee Chuan; Bakhsi, Somenath; Arias-Castro, Juan Carlos; Yildiz, Sadik; Huh, Dann; Fernandez-Lopez, Raul; Peterson, Celeste N.; Toprak, Erdal; El Karoui, Meriem; Paulsson, Johan

    2016-01-01

    Many key regulatory proteins in bacteria are present in too low numbers to be detected with conventional methods, which poses a particular challenge for single-cell analyses because such proteins can contribute greatly to phenotypic heterogeneity. Here we develop a microfluidics-based platform that enables single-molecule counting of low-abundance proteins by mechanically slowing-down their diffusion within the cytoplasm of live Escherichia coli (E. coli) cells. Our technique also allows for automated microscopy at high throughput with minimal perturbation to native physiology, as well as viable enrichment/retrieval. We illustrate the method by analysing the control of the master regulator of the E. coli stress response, RpoS, by its adapter protein, SprE (RssB). Quantification of SprE numbers shows that though SprE is necessary for RpoS degradation, it is expressed at levels as low as 3–4 molecules per average cell cycle, and fluctuations in SprE are approximately Poisson distributed during exponential phase with no sign of bursting. PMID:27189321

  19. Polymerization amplified SPR-DNA assay on noncovalently functionalized graphene.

    PubMed

    Yuan, Pei-Xin; Deng, Sheng-Yuan; Yao, Chuan-Guang; Wan, Ying; Cosnier, Serge; Shan, Dan

    2017-03-15

    A highly efficient surface plasmon resonance (SPR)-based DNA assay was developed, by employing noncovalently functionalized graphene nanosheets as a substrate, and enzymatic catalysis-induced polymerization as mass relay. The objective of this strategy was manifold: first of all, to sensitize the overall SPR output by in situ optimized electrogeneration of graphene thin-film, which was characterized by atomic force microscopic topography; secondly, to regulate the self-assembly and orientation of biotinylated capture probes on nickel-chelated nitrilotriacetic acid (NTA) scaffolds, that anchored onto graphene-supported pyrenyl derivatives; and lastly, to synergize the signal amplification via real-time conversion of the additive aniline into polyaniline precipitation by horseradish peroxidase-tagged reporters. With this setup, a precise and replicable DNA sensing platform for specific targets was achieved with a detection limit down to femtomolar, thus demonstrating a beneficial exploration and exploitation of two-dimensional nanomaterials as unique SPR infrastructure. The possibility of such ″bottom-up″ architecture mounted with ″top-down″ weight reactor would be most likely extensible and adaptable to protein determinations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Surface plasmon resonance biosensor for enzymatic detection of small analytes

    NASA Astrophysics Data System (ADS)

    Massumi Miyazaki, Celina; Makoto Shimizu, Flávio; Mejía-Salazar, J. R.; Oliveira, Osvaldo N., Jr.; Ferreira, Marystela

    2017-04-01

    Surface plasmon resonance (SPR) biosensing is based on the detection of small changes in the refractive index on a gold surface modified with molecular recognition materials, thus being mostly limited to detecting large molecules. In this paper, we report on a SPR biosensing platform suitable to detect small molecules by making use of the mediator-type enzyme microperoxidase-11 (MP11) in layer-by-layer films. By depositing a top layer of glucose oxidase or uricase, we were able to detect glucose or uric acid with limits of detection of 3.4 and 0.27 μmol l-1, respectively. Measurable SPR signals could be achieved because of the changes in polarizability of MP11, as it is oxidized upon interaction with the analyte. Confirmation of this hypothesis was obtained with finite difference time domain simulations, which also allowed us to discard the possible effects from film roughness changes observed in atomic force microscopy images. The main advantage of this mediator-type enzyme approach is in the simplicity of the experimental method that does not require an external potential, unlike similar approaches for SPR biosensing of small molecules. The detection limits reported here were achieved without optimizing the film architecture, and therefore the performance can in principle be further enhanced, while the proposed SPR platform may be extended to any system where hydrogen peroxide is generated in enzymatic reactions.

  1. Portable surface plasmon resonance immunosensor for the detection of fluoroquinolone antibiotic residues in milk.

    PubMed

    Fernández, Fátima; Pinacho, Daniel G; Sánchez-Baeza, Francisco; Marco, M Pilar

    2011-05-11

    An inexpensive and portable surface plasmon resonance (SPR) sensor, SPReeta Evaluation Kit SPR3, has been used to develop a biosensor for the determination of fluoroquinolone antibiotics (FQs) and to demonstrate its performance analyzing FQ residues in milk samples. The SPReeta three-channel gold chips were activated with a mixed self-assembled monolayer (m-SAM) and functionalized with a FQ haptenized protein. Binding of the antibody produced a concentration-dependent increase of the SPR signal as a result of the change in the refraction index. Similarly, the presence of the FQ produced a dose-dependent decrease of the response, which allowed a good limit of detection (LOD) to be obtained (1.0 ± 0.4 μg L(-1) for enrofloxacin in buffer). The response was reproducible in all three channels, on different injections and days, and also between chips. Milk samples could be analyzed after a simple sample treatment involving fat removal by centrifugation and dilution with water. Under these conditions calibration curves were obtained showing that FQ residues can be analyzed in milk samples with an IC(50) value of 26.4 ± 7.2 μg L(-1) and a LOD of 2.0 ± 0.2 μg L(-1) (for enrofloxacin), far below the European Union regulations for this antibiotic family in this matrix. Finally, the paper also demonstrates that the biosensor is able to selectively detect the presence of FQs in milk samples, even in the presence of other antibiotics. Enrofloxacin, ciprofloxacin, and norfloxacin residues were detected in blind samples supplied by Nestlé Co.

  2. Immuno-biosensor for Detection of CD20-Positive Cells Using Surface Plasmon Resonance.

    PubMed

    Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili; Fathi, Farzaneh; Ezzati Nazhad Dolatabadi, Jafar

    2017-06-01

    Purpose: Surface plasmon resonance (SPR) sensing confers a real-time assessment of molecular interactions between biomolecules and their ligands. This approach is highly sensitive and reproducible and could be employed to confirm the successful binding of drugs to cell surface targets. The specific affinity of monoclonal antibodies (MAb) for their target antigens is being utilized for development of immuno-sensors and therapeutic agents. CD20 is a surface protein of B lymphocytes which has been widely employed for immuno-targeting of B-cell related disorders. In the present study, binding ability of an anti-CD20 MAb to surface antigens of intact target cells was investigated by SPR technique. Methods: Two distinct strategies were used for immobilization of the anti-CD20 MAb onto gold (Au) chips. MUA (11-mercaptoundecanoic acid) and Staphylococcus aureus protein A (SpA) were the two systems used for this purpose. A suspension of CD20-positive Raji cells was injected in the analyte phase and the resulting interactions were analyzed and compared to those of MOLT-4 cell line as CD20-negative control. Results: Efficient binding of anti-CD20 MAb to the surface antigens of Raji cell line was confirmed by both immobilizing methods, whereas this MAb had not a noticeable affinity to the MOLT-4 cells. Conclusion: According to the outcomes, the investigated MAb had acceptable affinity and specificity to the target antigens on the cell surface and could be utilized for immuno-detection of CD20-positive intact cells by SPR method.

  3. Immuno-biosensor for Detection of CD20-Positive Cells Using Surface Plasmon Resonance

    PubMed Central

    Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili; Fathi, Farzaneh; Ezzati Nazhad Dolatabadi, Jafar

    2017-01-01

    Purpose: Surface plasmon resonance (SPR) sensing confers a real-time assessment of molecular interactions between biomolecules and their ligands. This approach is highly sensitive and reproducible and could be employed to confirm the successful binding of drugs to cell surface targets. The specific affinity of monoclonal antibodies (MAb) for their target antigens is being utilized for development of immuno-sensors and therapeutic agents. CD20 is a surface protein of B lymphocytes which has been widely employed for immuno-targeting of B-cell related disorders. In the present study, binding ability of an anti-CD20 MAb to surface antigens of intact target cells was investigated by SPR technique. Methods: Two distinct strategies were used for immobilization of the anti-CD20 MAb onto gold (Au) chips. MUA (11-mercaptoundecanoic acid) and Staphylococcus aureus protein A (SpA) were the two systems used for this purpose. A suspension of CD20-positive Raji cells was injected in the analyte phase and the resulting interactions were analyzed and compared to those of MOLT-4 cell line as CD20-negative control. Results: Efficient binding of anti-CD20 MAb to the surface antigens of Raji cell line was confirmed by both immobilizing methods, whereas this MAb had not a noticeable affinity to the MOLT-4 cells. Conclusion: According to the outcomes, the investigated MAb had acceptable affinity and specificity to the target antigens on the cell surface and could be utilized for immuno-detection of CD20-positive intact cells by SPR method. PMID:28761820

  4. [Binding properties of components removable from dental base plate, analysed by Fourier-Transform Surface Plasmon Resonance (FT-SPR) method].

    PubMed

    Bakó, József; Kelemen, Máté; Szalóki, Melinda; Vitályos, Géza; Radics, Tünde; Hegedüs, Csaba

    2015-03-01

    In parallel with the emergence of new dental materials the number of allergic diseases is continuously increasing. Extremely small quantities of the allergens are capable to inducing an allergic reaction. Therefore it is particularly important to examine these materials as antigens and investigate their binding properties to proteins (e.g. formaldehyde, methacrylic acid, benzoyl-peroxide...). The Fourier Transform Surface Plasmon Resonance Spectroscopy (FT-SPR) is a suitable examination method for this type of procedure. FT-SPR measurement is performed at a fixed angel of incident light, and reflectivity is measured over a range of wavelength in the near infrared. The advantages of this method are the outstanding sensitivity, the label-free detection capability and the possibility of the real-time testing procedure. Formaldehyde and methacrylic acid are among the most common dental allergens. In our study we examined these molecules by FT-SPR spectroscopy. The aim of this work was to investigate the suitability of this method to the detection of these materials, with special focuses on the analysis and evaluation concentration-dependent measurements. Different concentrations (0.01 %-0.2%) of formaldehyde and methacrylic acid solutions were measured. The individual spectra were measured for all of the solutions, and calibration curves were calculated for the materials for the possibility of the determination of an unknown concentration. The results confirmed that the method is theoretically capable to detect hundred-thousandths scale concentration-changes in the solution flowing above the SPR-chip. The concentration-dependent studies had proved that the method capable to measure directly these materials and can provide appropriate calibration for quantitative determination. These experiments show the broad applicability of the FT-SPR method, which can greatly facilitate the mapping and understanding of biomolecular interactions in the future.

  5. Ex vivo validation of a stoichiometric dual energy CT proton stopping power ratio calibration

    NASA Astrophysics Data System (ADS)

    Xie, Yunhe; Ainsley, Christopher; Yin, Lingshu; Zou, Wei; McDonough, James; Solberg, Timothy D.; Lin, Alexander; Teo, Boon-Keng Kevin

    2018-03-01

    A major source of uncertainty in proton therapy is the conversion of Hounsfield unit (HU) to proton stopping power ratio relative to water (SPR). In this study, we measured and quantified the accuracy of a stoichiometric dual energy CT (DECT) SPR calibration. We applied a stoichiometric DECT calibration method to derive the SPR using CT images acquired sequentially at 80 kVp and 140 kVp . The dual energy index was derived based on the HUs of the paired spectral images and used to calculate the effective atomic number (Z eff), relative electron density ({{ρ }e} ), and SPRs of phantom and biological materials. Two methods were used to verify the derived SPRs. The first method measured the sample’s water equivalent thicknesses to deduce the SPRs using a multi-layer ion chamber (MLIC) device. The second method utilized Gafchromic EBT3 film to directly compare relative ranges between sample and water after proton pencil beam irradiation. Ex vivo validation was performed using five different types of frozen animal tissues with the MLIC and three types of fresh animal tissues using film. In addition, the residual ranges recorded on the film were used to compare with those from the treatment planning system using both DECT and SECT derived SPRs. Bland-Altman analysis indicates that the differences between DECT and SPR measurement of tissue surrogates, frozen and fresh animal tissues has a mean of 0.07% and standard deviation of 0.58% compared to 0.55% and 1.94% respectively for single energy CT (SECT) and SPR measurement. Our ex vivo study indicates that the stoichiometric DECT SPR calibration method has the potential to be more accurate than SECT calibration under ideal conditions although beam hardening effects and other image artifacts may increase this uncertainty.

  6. Rapid detection of Salmonella Typhimurium in chicken carcass using a SPR biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Shizhou; Lan, Yubin; Yin, Yongguang; Dasari, Thirumala R.

    2005-11-01

    The SPR biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The selectivity of the SPR biosensor was assayed using a series of antibody concentrations and dilution series of the organism. The SPR biosensor was specific to Salmonella Typhimurium at concentrations of 106 CFU/ml. Initial results show potential for its application for pathogenic bacteria monitoring.

  7. Synthesis and characterization of physical properties of Gd2O2S:Pr3+ semi-nanoflower phosphor

    NASA Astrophysics Data System (ADS)

    Bagheri, A.; Rezaee Ebrahim Saraee, Kh.; Shakur, H. R.; Zamani Zeinali, H.

    2016-05-01

    Pure gadolinium oxysulfide phosphor (Gd2O2S) and trivalent praseodymium-doped gadolinium oxysulfide phosphor (Gd2O2S:Pr3+) scintillators with semi-nanoflower crystalline structures were successfully synthesized through a precipitation method and subsequent calcination treatment as a converter for X-ray imaging detectors. The characterization such as the crystal structures and nanostructure of Gd2O2S:Pr3+ scintillator measured by XRD and FeE-SEM experiment. The optical properties of Gd2O2S:Pr3+ scintillator were studied. Luminescence spectra of Gd2O2S:Pr3+ under 320 nm UV excitation show a green emission at near 511 nm corresponding to the 3P0-3H4 of Pr ions. After scintillation properties of synthesized Gd2O2S:Pr3+ scintillator investigated, Gd2O2S:Pr3+ scintillating film fabricated on a glass substrate by a sedimentation method. X-ray imaging of the fabricated scintillators confirmed that the Gd2O2S:Pr3+ scintillator could be used for radiography applications in which good spatial resolution is needed.

  8. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    PubMed

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-07

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.

  9. Thin metal bilayer for surface plasmon resonance sensors in a multimode plastic optical fiber: the case of palladium and gold metal films

    NASA Astrophysics Data System (ADS)

    Cennamo, Nunzio; Zuppella, Paola; Bacco, Davide; Corso, Alain J.; Pelizzo, Maria G.; Pesavento, Maria; Zeni, Luigi

    2016-05-01

    A novel sensing platform based on thin metal bilayer for surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) has been designed, implemented and tested. The experimental results are congruent with the numerical studies. This platform has been properly optimized to work in the 1.38 -1.42 refractive index range and it exhibits excellent sensitivity. This refractive index range is very interesting for bio-chemical applications, where the polymer layer are used as receptors (e.g. molecularly imprinted polymer) or to immobilize the bio-receptor on the metal surface. The proposed metallic bilayer is based on palladium and gold films and replaces the traditional gold by exhibiting higher performances. Furthermore, the deposition of the thin bilayer is a single process and no further manufacturing step is required. In fact, in this case the photoresist buffer layer between the POF core and the metal layer, usually required to increase the refractive index range, is no longer necessary.

  10. Surface plasmon resonance application for herbicide detection

    NASA Astrophysics Data System (ADS)

    Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.

    1998-01-01

    The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.

  11. Surface plasmon resonance application for herbicide detection

    NASA Astrophysics Data System (ADS)

    Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.

    1997-12-01

    The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.

  12. Optimal Patrol to Detect Attacks at Dispersed Heterogeneous Locations

    DTIC Science & Technology

    2013-12-01

    path with one revisit SPR2 Shortest path with two revisits SPR3 Shortest path with three revisits TSP Traveling salesman problem UAV Unmanned aerial...path patrol pattern. Finding the shortest-path patrol pattern is an example of solving a traveling salesman problem , as described in Section 16.5 of...use of patrol paths based on the traveling salesman prob- lem (TSP), where patrollers follow the shortest Hamiltonian cycle in a graph in order to

  13. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices.

    PubMed

    Diao, Wei; Tang, Min; Ding, Shijia; Li, Xinmin; Cheng, Wenbin; Mo, Fei; Yan, Xiaoyu; Ma, Hongmin; Yan, Yurong

    2018-02-15

    Early detection, diagnosis and treatment of human immune deficiency virus (HIV) infection is the key to reduce acquired immunodeficiency syndrome (AIDS) mortality. In our research, an innovative surface plasmon resonance (SPR) biosensing strategy has been developed for highly sensitive detection of HIV-related DNA based on entropy-driven strand displacement reactions (ESDRs) and double-layer DNA tetrahedrons (DDTs). ESDRs as enzyme-free and label-free signal amplification circuit can be specifically triggered by target DNA, leading to the cyclic utilization of target DNA and the formation of plentiful double-stranded DNA (dsDNA) products. Subsequently, the dsDNA products bind to the immobilized hairpin capture probes and further combine with DDTs nanostructures. Due to the high efficiency of ESDRs and large molecular weight of DDTs, the SPR response signal was enhanced dramatically. The proposed SPR biosensor could detect target DNA sensitively and specifically in a linear range from 1pM to 150nM with a detection limit of 48fM. In addition, the whole detecting process can be accomplished in 60min with high accuracy and duplicability. In particular, the developed SPR biosensor was successfully used to analyze target DNA in complex biological sample, indicating that the developed strategy is promising for rapid and early clinical diagnosis of HIV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Applicability of a novel immunoassay based on surface plasmon resonance for the diagnosis of Chagas disease.

    PubMed

    Luz, João G G; Souto, Dênio E P; Machado-Assis, Girley F; de Lana, Marta; Luz, Rita C S; Martins-Filho, Olindo A; Damos, Flávio S; Martins, Helen R

    2016-02-15

    We defined the methodological criteria for the interpretation of the results provided by a novel immunoassay based on surface plasmon resonance (SPR) to detect antibodies anti-Trypanosoma cruzi in human sera (SPRCruzi). Then, we evaluated its applicability as a diagnostic tool for Chagas disease. To define the cut-off point and serum dilution factor, 57 samples were analyzed at SPRCruzi and the obtained values of SPR angle displacement (ΔθSPR) were submitted to statistical analysis. Adopting the indicated criteria, its performance was evaluated into a wide panel of samples, being 99 Chagas disease patients, 30 non-infected subjects and 42 with other parasitic/infectious diseases. In parallel, these samples were also analyzed by ELISA. Our data demonstrated that 1:320 dilution and cut-off point at ∆θSPR=17.2 m° provided the best results. Global performance analysis demonstrated satisfactory sensitivity (100%), specificity (97.2%), positive predictive value (98%), negative predictive value (100%) and global accuracy (99.6%). ELISA and SPRCruzi showed almost perfect agreement, mainly between chagasic and non-infected individuals. However, the new immunoassay was better in discriminate Chagas disease from other diseases. This work demonstrated the applicability of SPRCruzi as a feasible, real time, label free, sensible and specific methodology for the diagnosis of Chagas disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Surfactant Protein A (SP-A)-mediated Clearance of Staphylococcus aureus Involves Binding of SP-A to the Staphylococcal Adhesin Eap and the Macrophage Receptors SP-A Receptor 210 and Scavenger Receptor Class A*

    PubMed Central

    Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V.; Kobzik, Lester; Chroneos, Zissis C.

    2011-01-01

    Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap+) but not Eap-deficient (Eap−) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap+ S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap+ but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap+ S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap− S. aureus was impaired. Macrophages express two isoforms: SP-R210L and SP-R210S. The results show that WT alveolar macrophages are distinguished by expression of SP-R210L, whereas SR-A−/− alveolar macrophages are deficient in SP-R210L expressing only SP-R210S. Accordingly, SR-A−/− mice were highly susceptible to both Eap+ and Eap− S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210L mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A. PMID:21123169

  16. Surfactant protein A (SP-A)-mediated clearance of Staphylococcus aureus involves binding of SP-A to the staphylococcal adhesin eap and the macrophage receptors SP-A receptor 210 and scavenger receptor class A.

    PubMed

    Sever-Chroneos, Zvjezdana; Krupa, Agnieszka; Davis, Jeremy; Hasan, Misbah; Yang, Ching-Hui; Szeliga, Jacek; Herrmann, Mathias; Hussain, Muzafar; Geisbrecht, Brian V; Kobzik, Lester; Chroneos, Zissis C

    2011-02-11

    Staphylococcus aureus causes life-threatening pneumonia in hospitals and deadly superinfection during viral influenza. The current study investigated the role of surfactant protein A (SP-A) in opsonization and clearance of S. aureus. Previous studies showed that SP-A mediates phagocytosis via the SP-A receptor 210 (SP-R210). Here, we show that SP-R210 mediates binding and control of SP-A-opsonized S. aureus by macrophages. We determined that SP-A binds S. aureus through the extracellular adhesin Eap. Consequently, SP-A enhanced macrophage uptake of Eap-expressing (Eap(+)) but not Eap-deficient (Eap(-)) S. aureus. In a reciprocal fashion, SP-A failed to enhance uptake of Eap(+) S. aureus in peritoneal Raw264.7 macrophages with a dominant negative mutation (SP-R210(DN)) blocking surface expression of SP-R210. Accordingly, WT mice cleared infection with Eap(+) but succumbed to sublethal infection with Eap- S. aureus. However, SP-R210(DN) cells compensated by increasing non-opsonic phagocytosis of Eap(+) S. aureus via the scavenger receptor scavenger receptor class A (SR-A), while non-opsonic uptake of Eap(-) S. aureus was impaired. Macrophages express two isoforms: SP-R210(L) and SP-R210(S). The results show that WT alveolar macrophages are distinguished by expression of SP-R210(L), whereas SR-A(-/-) alveolar macrophages are deficient in SP-R210(L) expressing only SP-R210(S). Accordingly, SR-A(-/-) mice were highly susceptible to both Eap(+) and Eap(-) S. aureus. The lungs of susceptible mice generated abnormal inflammatory responses that were associated with impaired killing and persistence of S. aureus infection in the lung. In conclusion, alveolar macrophage SP-R210(L) mediates recognition and killing of SP-A-opsonized S. aureus in vivo, coordinating inflammatory responses and resolution of S. aureus pneumonia through interaction with SR-A.

  17. SPR4-peptide Alters Bone Metabolism of Normal and HYP Mice

    PubMed Central

    Zelenchuk, Lesya V; Hedge, Anne-Marie; Rowe, Peter S N

    2015-01-01

    Context ASARM-peptides are substrates and ligands for PHEX, the gene responsible for X-linked hypophosphatemic rickets (HYP). PHEX binds to the DMP1-ASARM-motif to form a trimeric-complex with α5β3-integrin on the osteocyte surface and this suppresses FGF23 expression. ASARM-peptide disruption of this complex increases FGF23 expression. We used a 4.2 kDa peptide (SPR4) that binds to ASARM-peptide and ASARM-motif to study DMP1-PHEX interactions and to assess SPR4 for treating inherited hypophosphatemic rickets. Design Subcutaneously transplanted osmotic pumps were used to infuse SPR4-peptide or vehicle into wild-type mice (WT) and HYP-mice for 4 weeks. Results Asymmetrically distributed mineralization defects occurred with WT-SPR4 femurs. Specifically, SPR4 induced negative effects on trabecular bone and increased bone volume and mineralization in cortical-bone. Markedly increased sclerostin and reduced active β-catenin occurred with HYP mice. SPR4-infusion suppressed sclerostin and increased active β-catenin in WT and HYP mice and improved HYP-mice trabecular mineralization defects but not cortical mineralization defects. Conclusions SPR4-peptide has bimodal activity and acts by: (1) preventing DMP1 binding to PHEX and (2) sequestering an inhibitor of DMP1-PHEX binding, ASARM-peptide. In PHEX defective HYP-mice the second pathway predominates. Although SPR4-peptide improved trabecular calcification defects, decreased sclerostin and increased active β-catenin it did not correct HYP-mice cortical mineralization defects on a normal phosphate diet. Thus, for inherited hypophosphatemic rickets patients on a normal phosphate diet, SPR4-peptide is not a useful therapeutic. PMID:25460577

  18. Nano and Microparticle-Enhanced Immunosensor Approaches for the Detection of Cancer Biomarker Proteins

    NASA Astrophysics Data System (ADS)

    Mani, Vigneshwaran

    Accurate, sensitive, point-of-care multiplexed protein measurements are critical for early disease detection and monitoring, impacting biomarker and drug discovery, and personalized medicine. Significant application involves monitoring panels of proteins in the blood that are biomarkers for diagnosing cancer. However, measurements of biomarker panels in blood or other bodily fluids have been slow to integrate into current practice of cancer diagnostics partly due to the lack of technically simple, low-cost, sensitive, point-of-care multiplexed measurement devices, as well as the lack of rigorously validated protein panels. The present thesis in part addresses these limitations by the development of electrochemical and surface plasmon resonance (SPR) immunosensors utilizing 1mum superparamagnetic labels for accurate detection of prostate cancer biomarker proteins in patient serum samples. Electrochemical discrete immunosensors featuring nanostructured surface with densely packed 5 nm glutathione-coated gold nanoparticles coupled with multi-enzyme magnetic particle (MP) labels enabled measurement of prostate specific antigen (PSA) with a detection limit (DL) of 0.5 pg mL-1 in undiluted serum. Such low DLs are attributed to high surface area, conductivity of nanostructured surface, and multi-enzyme signal amplification. DLs are further improved by utilizing MP bioconjugated with more than 100,000 antibody labels to offline capture proteins from the serum sample matrix, minimizing nonspecific binding of interfering proteins on sensor surface before detection. This approach provided an unprecedented 10 fg DL mL-1 for PSA in undiluted serum using a flow SPR biosensor. Finally electrochemical microfluidic immunoarrays featuring nanostructured surface and offline protein capture by multi-label MPs enabled multiplexed detection of prostate cancer biomarkers PSA and interleukin-6 (IL-6). These approaches provided up to 1000-fold lower DLs compared to commercial bead based assays. The high sensitivity of these approaches will allow monitoring of biomarker levels in diseases states where proteins are in sub pg mL -1 concentrations that are normally challenging to detect using traditional methods such as enzyme linked immunosorbent assays (ELISA). Further emphases will be on SPR-based fundamental studies on binding affinity enhancement of MP conjugates to protein surfaces. In addition, this thesis describes the assembly of glucose/O2 enzymatic biofuel cells for power generation utilizing layer-by-layer films of osmium redox polymers and enzymes. Towards the end, the present thesis describes a simple, low-cost and accurate paper-based electrochemical device fabrication methods and its applications towards monitoring genotoxic activities in the environmental samples.

  19. Quantitative monitoring of two simultaneously binding species using Label-Enhanced surface plasmon resonance.

    PubMed

    Eng, Lars; Garcia, Brandon L; Geisbrecht, Brian V; Hanning, Anders

    2018-02-26

    Surface plasmon resonance (SPR) is a well-established method for biomolecular interaction studies. SPR monitors the binding of molecules to a solid surface, embodied as refractive index changes close to the surface. One limitation of conventional SPR is the universal nature of the detection that results in an inability to qualitatively discriminate between different binding species. Furthermore, it is impossible to directly discriminate two species simultaneously binding to different sites on a protein, which limits the utility of SPR, for example, in the study of allosteric binders or bi-specific molecules. It is also impossible in principle to discriminate protein conformation changes from actual binding events. Here we demonstrate how Label-Enhanced SPR can be utilized to discriminate and quantitatively monitor the simultaneous binding of two different species - one dye-labeled and one unlabeled - on a standard, single-wavelength SPR instrument. This new technique increases the versatility of SPR technology by opening up application areas where the usefulness of the approach has previously been limited. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Phase sensitive spectral domain interferometry for label free biomolecular interaction analysis and biosensing applications

    NASA Astrophysics Data System (ADS)

    Chirvi, Sajal

    Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi-channel label-free biosensing applications is introduced. Simultaneous interrogation of multiple biosensors is achievable with a single spectral domain phase sensitive interferometer by coding the individual sensograms in coherence-multiplexed channels. Experimental results demonstrating multiplexed quantitative biomolecular interaction analysis of antibodies binding to antigen coated functionalized biosensor chip surfaces on different platforms are presented.

  1. Functional analysis of Agaricus bisporus serine proteinase 1 reveals roles in utilization of humic rich substrates and adaptation to the leaf‐litter ecological niche

    PubMed Central

    Heneghan, Mary N.; Burns, Claire; Costa, Ana M. S. B.; Burton, Kerry S.; Challen, Michael P.

    2016-01-01

    Summary Agaricus bisporus is a secondary decomposer fungus and an excellent model for the adaptation, persistence and growth of fungi in humic‐rich environments such as soils of temperate woodland and pastures. The A. bisporus serine proteinase SPR1 is induced by humic acids and is highly expressed during growth on compost. Three Spr1 gene silencing cassettes were constructed around sense, antisense and non‐translatable‐stop strategies (pGRsensehph, pGRantihph and pGRstophph). Transformation of A. bisporus with these cassettes generated cultures showing a reduction in extracellular proteinase activity as demonstrated by the reduction, or abolition, of a clearing zone on plate‐based bioassays. These lines were then assessed by detailed enzyme assay, RT‐qPCR and fruiting. Serine proteinase activity in liquid cultures was reduced in 83% of transformants. RT‐qPCR showed reduced Spr1 mRNA levels in all transformants analysed, and these correlated with reduced enzyme activity. When fruiting was induced, highly‐silenced transformant AS5 failed to colonize the compost, whilst for those that did colonize the compost, 60% gave a reduction in mushroom yield. Transcriptional, biochemical and developmental observations, demonstrate that SPR1 has an important role in nutrient acquisition in compost and that SPR1 is a key enzyme in the adaptation of Agaricus to the humic‐rich ecological niche formed during biomass degradation. PMID:27113919

  2. Applications of Surface Penetrating Radar for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.

    2015-12-01

    Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the development of radar technology, SPR's technological trends applied in moon and deep space exploration are summarized in the following: Technological convergence in SPR and SAR(Synthetic Aperture Radar); Muliti-frequency and Multi-polarization; Bistatic or multistatic SPRs for geophysical network; Tomography.

  3. Avoiding treatment bias of REDD+ monitoring by sampling with partial replacement.

    PubMed

    Köhl, Michael; Scott, Charles T; Lister, Andrew J; Demon, Inez; Plugge, Daniel

    2015-12-01

    Implementing REDD+ renders the development of a measurement, reporting and verification (MRV) system necessary to monitor carbon stock changes. MRV systems generally apply a combination of remote sensing techniques and in-situ field assessments. In-situ assessments can be based on 1) permanent plots, which are assessed on all successive occasions, 2) temporary plots, which are assessed only once, and 3) a combination of both. The current study focuses on in-situ assessments and addresses the effect of treatment bias, which is introduced by managing permanent sampling plots differently than the surrounding forests. Temporary plots are not subject to treatment bias, but are associated with large sampling errors and low cost-efficiency. Sampling with partial replacement (SPR) utilizes both permanent and temporary plots. We apply a scenario analysis with different intensities of deforestation and forest degradation to show that SPR combines cost-efficiency with the handling of treatment bias. Without treatment bias permanent plots generally provide lower sampling errors for change estimates than SPR and temporary plots, but do not provide reliable estimates, if treatment bias occurs, SPR allows for change estimates that are comparable to those provided by permanent plots, offers the flexibility to adjust sample sizes in the course of time, and allows to compare data on permanent versus temporary plots for detecting treatment bias. Equivalence of biomass or carbon stock estimates between permanent and temporary plots serves as an indication for the absence of treatment bias while differences suggest that there is evidence for treatment bias. SPR is a flexible tool for estimating emission factors from successive measurements. It does not entirely depend on sample plots that are installed at the first occasion but allows for the adjustment of sample sizes and placement of new plots at any occasion. This ensures that in-situ samples provide representative estimates over time. SPR offers the possibility to increase sampling intensity in areas with high degradation intensities or to establish new plots in areas where permanent plots are lost due to deforestation. SPR is also an ideal approach to mitigate concerns about treatment bias.

  4. Phonology, reading, and Chomsky and Halle's optimal orthography.

    PubMed

    Steinberg, D D

    1973-09-01

    Chomsky and Halle claim that an orthography based on their underlying phonological representations (UPR) of lexical items would be optimal for English. This paper challenges three of C & H's basic phonological assumptions, that their vowel shift rule is valid, that the UPR is the only sound representation to be listed in the lexicon, and that derived words do not appear as wholes in the lexicon. A less abstract phonological representation level based on the conscious perceptions of speakers, the surface phonemic (SPR), is proposed. An SPR-based orthography has advantages which a UPR-based orthography would not: it is easy to learn and teach, it can be learned at an early age, and it permits rapid detection of rhyme. It is concluded that an orthography based on SPRs, and not UPRs, would be optimal.

  5. Assaying Auxin Receptor Activity Using SPR Assays with F-Box Proteins and Aux/IAA Degrons.

    PubMed

    Quareshy, Mussa; Uzunova, Veselina; Prusinska, Justyna M; Napier, Richard M

    2017-01-01

    The identification of TIR1 as an auxin receptor combined with advanced biophysical instrumentation has led to the development of real-time activity assays for auxins. Traditionally, molecules have been assessed for auxinic activity using bioassays, and agrochemical compound discovery continues to be based on "spray and pray" technologies. Here, we describe the methodology behind an SPR-based assay that uses TIR1 and related F-box proteins with surface plasmon resonance spectrometry for rapid compound screening. In addition, methods for collecting kinetic binding data and data processing are given so that they may support programs for rational design of novel auxin ligands.

  6. Mechanical modulation method for ultrasensitive phase measurements in photonics biosensing.

    PubMed

    Patskovsky, S; Maisonneuve, M; Meunier, M; Kabashin, A V

    2008-12-22

    A novel polarimetry methodology for phase-sensitive measurements in single reflection geometry is proposed for applications in optical transduction-based biological sensing. The methodology uses altering step-like chopper-based mechanical phase modulation for orthogonal s- and p- polarizations of light reflected from the sensing interface and the extraction of phase information at different harmonics of the modulation. We show that even under a relatively simple experimental arrangement, the methodology provides the resolution of phase measurements as low as 0.007 deg. We also examine the proposed approach using Total Internal Reflection (TIR) and Surface Plasmon Resonance (SPR) geometries. For TIR geometry, the response appears to be strongly dependent on the prism material with the best values for high refractive index Si. The detection limit for Si-based TIR is estimated as 10(-5) in terms Refractive Index Units (RIU) change. SPR geometry offers much stronger phase response due to a much sharper phase characteristics. With the detection limit of 3.2*10(-7) RIU, the proposed methodology provides one of best sensitivities for phase-sensitive SPR devices. Advantages of the proposed method include high sensitivity, simplicity of experimental setup and noise immunity as a result of a high stability modulation.

  7. Real-time and rapid detection of Salmonella Typhimurium using an inexpensive lab-built surface plasmon resonance setup

    NASA Astrophysics Data System (ADS)

    Lukose, Jijo; Shetty, Vignesh; Ballal, Mamatha; Chidangil, Santhosh; Sinha, Rajeev K.

    2018-07-01

    Cost-effective diagnostic platforms for rapid pathogen detection are always incumbent in both developing and developed worlds. However, exorbitant diagnostic expenses and the inability to detect pathogens early are a matter of concern for the sustainability and affordability of healthcare devices, which are crucial for deciding how to provide healthcare solutions to the masses, especially in developing countries. Herein, we present the rapid and real-time detection of Salmonella Typhimurium using an inexpensive lab-built surface plasmon resonance (SPR) imaging set up. Pathogen detection is accomplished with the aid of a monoclonal antibody immobilized on a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide): N-hydroxysuccinimide-modified self-assembled monolayer covalently bonded to a Au thin film. Successful pathogen detection is performed at two concentrations, ~1.5  ×  108 and ~1  ×  106 cfu ml‑1, in phosphate-buffered saline solution. The developed system is capable of detecting bacterial cells within 6–7 min after their injection into the SPR sensor surface. The present study reveals a cost-effective device having high potential for pathogen detection without any labelling tags.

  8. Acoustic analysis of the singing and speaking voice in singing students.

    PubMed

    Lundy, D S; Roy, S; Casiano, R R; Xue, J W; Evans, J

    2000-12-01

    The singing power ratio (SPR) is an objective means of quantifying the singer's formant. SPR has been shown to differentiate trained singers from nonsingers and sung from spoken tones. This study was designed to evaluate SPR and acoustic parameters in singing students to determine if the singer-in-training has an identifiable difference between sung and spoken voices. Digital audio recordings were made of both sung and spoken vowel sounds in 55 singing students for acoustic analysis. SPR values were not significantly different between the sung and spoken samples. Shimmer and noise-to-harmonic ratio were significantly higher in spoken samples. SPR analysis may provide an objective tool for monitoring the student's progress.

  9. Novel Approach to Surface Plasmon Resonance: A Third Dimension in Data Interpretation Through Surface Roughness Changes.

    PubMed

    Manole, Claudiu Constantin; Pîrvu, C; Maury, F; Demetrescu, I

    2016-06-01

    In a Surface Plasmon Resonance (SPR) experiment two key parameters are classically recorded: the time and the angle of SPR reflectivity. This paper brings into focus a third key parameter: SPR reflectivity. The SPR reflectivity is proved to be related to surface roughness changes. Practical investigations on (i) gold anodizing and (ii) polypyrrole film growth in presence of oxalic acid is detailed under potentiostatic conditions. These experimental results reveal the potential of using the SPR technique to investigate real-time changes both on the gold surface, but also in the gold film itself. This extends the versatility of the technique in particular as sensitive in-situ diagnostic tool.

  10. The Arabidopsis SPIRAL2 Protein Targets and Stabilizes Microtubule Minus Ends.

    PubMed

    Fan, Yuanwei; Burkart, Graham M; Dixit, Ram

    2018-03-19

    The contribution of microtubule tip dynamics to the assembly and function of plant microtubule arrays remains poorly understood. Here, we report that the Arabidopsis SPIRAL2 (SPR2) protein modulates the dynamics of the acentrosomal cortical microtubule plus and minus ends in an opposing manner. Live imaging of a functional SPR2-mRuby fusion protein revealed that SPR2 shows both microtubule plus- and minus-end tracking activity in addition to localization at microtubule intersections and along the lattice. Analysis of microtubule dynamics showed that cortical microtubule plus ends rarely undergo catastrophe in the spr2-2 knockout mutant compared to wild-type. In contrast, cortical microtubule minus ends in spr2-2 depolymerized at a much faster rate than in wild-type. Destabilization of the minus ends in spr2-2 caused a significant decrease in the lifetime of microtubule crossovers, which dramatically reduced the microtubule-severing frequency and inhibited light-induced microtubule array reorientation. Using in vitro reconstitution experiments combined with single-molecule imaging, we found that recombinant SPR2-GFP intrinsically localizes to microtubule minus ends, where it binds stably and inhibits their dynamics. Together, our data establish SPR2 as a new type of microtubule tip regulator that governs the length and lifetime of microtubules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Effects of gravity on growth phenotype in MAPs mutants of Arabidopsis

    NASA Astrophysics Data System (ADS)

    Higuchi, Sayoko; Kumasaki, Saori; Matsumoto, Shouhei; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi; Hoson, Takayuki

    Hypergravity suppresses elongation growth and promotes lateral expansion of stem organs in various plants. It has been shown that cortical microtubules are involved in gravity-induced modifications of growth and development. Because microtubule-associated proteins (MAPs) are important in dynamics of microtubules, they may also play a role in the gravity response. In the present study, the roles of MAPs (MOR1, SPR1, SPR2, MAP65, and KTN1) in hypergravityinduced changes in growth and development were examined in Arabidopsis hypocotyls. The expression of MOR1, SPR1, SPR2 , and MAP65 genes was down-regulated, whereas that of KTN1 gene was increased transiently by hypergravity. We analyzed the growth behavior of MAPs mutants (mor1/rid5, spr1-2 , spr2-2, and katanin mutants) under hypergravity conditions. Hypergravity inhibited elongation growth of hypocotyls in spr1-2 as in wild-type. On the other hand, elongation growth of hypocotyls in mor1/rid5, spr2-2, and katanin mutants was suppressed as compared with wild-type under 1 g conditions, and was not affected further by hypergravity stimuli. Hypocotyls of mor1/rid5, spr1-2 , and spr2-2 also showed helical growth even under 1 g conditions, and in mor1/rid5 such a phenotype was intensified under hypergravity conditions. The alignment of cell line was abnormal in hypocotyls of katanin mutants under both 1 g and hypergravity conditions. The orientation of cortical microtubules in wildtype hypocotyls was changed from transverse direction to longitudinal or random directions by hypergravity stimuli. In mor1/rid5 hypocotyls, the orientation of microtubules was random even under 1 g condition, which was not affected by hypergravity. Furthermore, partial disruption of cortical microtubules was observed in mor1/rid5 hypocotyls. These results suggest that MAPs, especially MOR1, play an important role in maintenance of normal growth phenotype against gravity in plants probably via stabilization of microtubule structure.

  12. Spectrum-enhanced Au@ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Liu, Qisheng; Wei, Yunwei; Shahid, Malik Zeeshan; Yao, Mingming; Xu, Bo; Liu, Guangning; Jiang, Kejian; Li, Cuncheng

    2018-03-01

    Spectrum-enhanced Au@ZnO plasmonic nanoparticles (NPs) are developed for fabrication of the dye-sensitized solar cells (DSSCs), and their remarkable enhanced performances are achieved due to Surface Plasmon Resonance (SPR) effects. When being doped different blended amounts of the Au@ZnO NPs within the photoanode layers, various enhanced effects in the SPR-based DSSCs are exhibited. Compared with the power conversion efficiency (PCE, 7.50%) achieved for bare DSSC, device with doped Au@ZnO NPs of 1.93% delivers the top PCE of 8.91%, exhibiting about 20% enhancement. To elaborate the charge transfer process in the Au@ZnO NPs blended DSSCs, the photoluminescence (PL), electrochemical impedance spectra (EIS), etc are performed. We find that both the enhanced SPR absorption properties and the suppressed recombination process of charges contribute much to the improved performance of Au@ZnO-incorporated DSSCs.

  13. Evaluation of panicle residue from broom sorghum as a feed ingredient in finishing diets for lambs.

    PubMed

    Estrada-Angulo, A; Coronel-Burgos, F; Castro-Pérez, B I; Barreras, A; Zinn, R A; Corona-Gochi, L; Plascencia, A

    2018-05-09

    Sorghum panicle residue (SPR), a by-product of Sorghum vulgare, obtained in the manufacture of brooms and wisks, has potential as a partial substitute for grain in growing-finishing diets for feedlot lambs. Accordingly, 48 Pelibuey×Katahdin lambs (initial weight=16.2±4.3 kg) were used in an 84-d growth-performance trial to evaluate its comparative feeding value. Lambs were blocked by weight and assigned within weight groupings to 12 pens (4 lambs per pen). The SPR was finely ground before it was incorporated into the diet. The basal diet contained 60% whole grain sorghum (WGS; DM basis). Dietary treatments consisted in the replacement of WGS with 0, 50, or 100% SPR. Replacement of WGS with SPR decreased (linear effect, P=0.04) average daily gain (ADG), and tended to increase (linear effect, P=0.06) dry matter intake (DMI). Replacement of WGS with SPR decreased (linear effect, P<0.01) gain efficiency (ADG : DMI), and observed dietary net energy (NE), as well as hot carcass weight, dressing percentage, kidney-pelvic-heart fat, and back fat thickness (linear effect, P⩽.05) Other carcass characteristics and wholesale cuts as a percentage of cold carcass weight were not affected by dietary treatments. It is concluded that SPR is a palatable feed ingredient for inclusion in finishing diets for feedlot lambs. The comparative NE values for SPR are 1.50 and 0.91 Mcal/kg for maintenance and gain, respectively, 75% the NE value of WGS. These NE values reflect the greater fiber content of SPR. To the extent that dietary energy density limits energy intake (and hence daily weight gain), appropriate constraints on level of SPR incorporation is warranted.

  14. Secondary patella resurfacing in painful non-resurfaced total knee arthroplasties : A study of survival and clinical outcome from the Norwegian Arthroplasty Register (1994-2011).

    PubMed

    Leta, Tesfaye H; Lygre, Stein Håkon L; Skredderstuen, Arne; Hallan, Geir; Gjertsen, Jan-Erik; Rokne, Berit; Furnes, Ove

    2016-04-01

    In Norway, 19 % of revisions of non-resurfaced total knee arthroplasties done for knee pain between 1994 and 2011 were Secondary Patella Resurfacing (SPR). It is, however, unclear whether SPR actually resolves the pain. The aim was to investigate prostheses survival and clinical outcomes following SPR. A total of 308 knees (301 patients) with SPR were used to assess implant survival, and a sub-cohort (n = 114 out of 301 patients) with Patient Reported Outcome Measures (PROMs) data were used to assess the clinical outcomes. The EuroQol (EQ-5D), the Knee Injury and Osteoarthritis Outcome Score, and Visual Analogue Scales on satisfaction and pain were used to collect PROM data. Outcomes were analysed by Kaplan-Meier, Cox regression, and multiple linear regression. The five- and ten-year Kaplan-Meier survival percentages were 91 % and 87 %, respectively. Overall, 35 knees were re-revised at a median follow-up of eight years and pain alone (10 knees) was the main cause of re-revision. Younger patients (<60 years) had nearly nine times higher risk of re-revision compared to older patients (>70 years) (RR = 8.6; p < 0.001). Mean EQ-5D index score had improved from 0.41 (SD 0.21) preoperative to 0.56 (SD 0.25) postoperative following SPR. A total of 63 % of patients with PROM data were satisfied with the outcomes of SPR. The long-term prostheses survival following SPR was satisfactory, although not as good as for primary knee replacement. Patients' health related quality of life improved significantly following SPR. Still, more than a third of patients with PROMs data were dissatisfied with the outcomes of the SPR procedure.

  15. Photothermal effects from Au-Cu2O core-shell nanocubes, octahedra, and nanobars with broad near-infrared absorption tunability

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Ju; Yang, Kung-Hsun; Hsu, Shih-Chen; Huang, Michael H.

    2015-12-01

    Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths.Other than the display of purely optical phenomenon, the recently-discovered facet-dependent optical properties of metal-Cu2O nanocrystals have become useful by illuminating Au-Cu2O nanocubes and octahedra having a surface plasmon resonance (SPR) absorption band in the near-infrared (NIR) region from octahedral Au cores with 808 nm light for heat generation. After 5 min of light irradiation, a solution of Au-Cu2O nanocubes can reach 65 °C with their Au SPR band matching the illuminating light wavelength. Photothermal efficiency has been found to be facet-dependent. In addition, short gold nanorods were employed to synthesize {100}-bound rectangular Au-Cu2O nanobars with a tunable longitudinal Au SPR absorption band covering a broad NIR range from ~1050 to 1400 nm. Because the Au SPR bands can become fixed with relatively thin Cu2O shells of less than 15 nm, ultrasmall nanobars having a size of 61 nm directly red-shift the Au SPR band to 1047 nm. And 73 nm nanobars can give a Au SPR band at 1390 nm. Truncated nanobars exposing {100}, {110}, and {111} facets give a very blue-shifted Au SPR band. The nanobars also exhibit photothermal activity when illuminated by 1064 nm light. These small Au-Cu2O nanocrystals represent the simplest nanostructure design to absorb light covering the entire NIR wavelengths. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06847a

  16. Association of Employee Attributes and Exceptional Performance Rating at a National Center of the US Centers for Disease Control and Prevention, 2011.

    PubMed

    Roberts, Henry; Myles, Ranell L; Truman, Benedict I; Dean, Hazel D

    2015-01-01

    Employee performance evaluation motivates and rewards exceptional individual performance that advances the achievement of organizational goals. The Centers for Disease Control and Prevention (CDC) and its operating units evaluate employee performance annually and reward exceptional performance with a cash award or quality step increase in pay. A summary performance rating (SPR) of "exceptional" indicated personal achievements in 2011 that were beyond expectations described in the employee's performance plan. To determine whether personal attributes and job setting of civil service employees were associated with an exceptional SPR in National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP) in 2011. Data from the CDC 2011 performance management database collected in 2012 were analyzed in 2013 to identify SPR, personal attributes, and job settings of full-time civil service employees. Multivariate logistic regression controlled for confounding and stratified analysis detected effect modifiers of the association between receiving an exceptional SPR in 2011 and gender, race/ethnicity, education, job location, job series, grade level, years in grade, years of federal service, supervisory role, and NCHHSTP division. Among the 1037 employees, exceptional SPR was independently associated with: female gender (adjusted odds ratio: 1.7 [1.3, 2.3]), advanced degrees (doctorate: 1.7 [1.1, 2.5] master's: [1.1, 2.0]), headquarters location (2.8 [1.9, 4.1]), higher pay grade (3.3 [2.4, 4.5]) and years in grade (0-1 years: 1.7 [1.3, 2.4]; 2-4 years: 1.5 [1.1, 2.0]), division level (Division A: 5.0 [2.5, 9.9]; Division B: 5.5 [3.5, 8.8]), and supervisory status (at a lower-pay grade) (odds ratio: 3.7 [1.1, 11.3]). Exceptional SPR is independently associated with personal employee attributes and job settings that are not modifiable by interventions designed to improve employee performance based on accomplishments.

  17. Insight on agglomerates of gold nanoparticles in glass based on surface plasmon resonance spectrum: study by multi-spheres T-matrix method

    NASA Astrophysics Data System (ADS)

    Avakyan, L. A.; Heinz, M.; Skidanenko, A. V.; Yablunovski, K. A.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; Bugaev, L. A.

    2018-01-01

    The formation of a localized surface plasmon resonance (SPR) spectrum of randomly distributed gold nanoparticles in the surface layer of silicate float glass, generated and implanted by UV ArF-excimer laser irradiation of a thin gold layer sputter-coated on the glass surface, was studied by the T-matrix method, which enables particle agglomeration to be taken into account. The experimental technique used is promising for the production of submicron patterns of plasmonic nanoparticles (given by laser masks or gratings) without damage to the glass surface. Analysis of the applicability of the multi-spheres T-matrix (MSTM) method to the studied material was performed through calculations of SPR characteristics for differently arranged and structured gold nanoparticles (gold nanoparticles in solution, particles pairs, and core-shell silver-gold nanoparticles) for which either experimental data or results of the modeling by other methods are available. For the studied gold nanoparticles in glass, it was revealed that the theoretical description of their SPR spectrum requires consideration of the plasmon coupling between particles, which can be done effectively by MSTM calculations. The obtained statistical distributions over particle sizes and over interparticle distances demonstrated the saturation behavior with respect to the number of particles under consideration, which enabled us to determine the effective aggregate of particles, sufficient to form the SPR spectrum. The suggested technique for the fitting of an experimental SPR spectrum of gold nanoparticles in glass by varying the geometrical parameters of the particles aggregate in the recurring calculations of spectrum by MSTM method enabled us to determine statistical characteristics of the aggregate: the average distance between particles, average size, and size distribution of the particles. The fitting strategy of the SPR spectrum presented here can be applied to nanoparticles of any nature and in various substances, and, in principle, can be extended for particles with non-spherical shapes, like ellipsoids, rod-like and other T-matrix-solvable shapes.

  18. Association of Employee Attributes and Exceptional Performance Rating at a National Center of the U.S. Centers for Disease Control and Prevention, 2011

    PubMed Central

    Roberts, Henry; Myles, Ranell L.; Truman, Benedict I.; Dean, Hazel D.

    2015-01-01

    Context Employee performance evaluation motivates and rewards exceptional individual performance that advances the achievement of organizational goals. CDC and its operating units evaluate employee performance annually and reward exceptional performance with a cash award or quality step increase in pay. A summary performance rating (SPR) of “exceptional” indicated personal achievements in 2011 that were beyond expectations described in the employee's performance plan. Objective To determine if personal attributes and job setting of civil service employees were associated with an exceptional SPR in NCHHSTP in 2011. Design Data from the CDC 2011 performance management database collected in 2012 were analyzed in 2013 to identify SPR, personal attributes, job-settings of full-time civil service employees. Multivariate logistic regression controlled for confounding and stratified analysis detected effect modifiers of the association between receiving an exceptional SPR in 2011 and gender, race/ethnicity, education, job location, job series, grade level, years in grade, years of federal service, supervisory role, and NCHHSTP division. Results Among the 1,037 employees, exceptional SPR was independently associated with: female gender (aOR: 1.7 [1.3,2.3]), advanced degrees (Doctorate: 1.7 [1.1,2.5]) Master's: 1.1, 2.0]), headquarters location (2.8 [1.9, 4.1]), higher pay grade (3.3 [2.4,4.5]) and years in grade (0-1yrs: 1.7 [1.3,2.4]; 2-4yrs: 1.5 [1.1,2.0]), division level (Division A: 5.0 [2.5,9.9]; Division B: 5.5 [3.5, 8.8]), and supervisory status (at a lower pay grade) (OR: 3.7 [1.1, 11.3]). Conclusions Exceptional SPR is independently associated with personal employee attributes and job-settings that are not modifiable by interventions designed to improve employee performance based on accomplishments. PMID:25271386

  19. An Advanced Semimetal-Organic Bi Spheres-g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification.

    PubMed

    Dong, Fan; Zhao, Zaiwang; Sun, Yanjuan; Zhang, Yuxin; Yan, Shuai; Wu, Zhongbiao

    2015-10-20

    To achieve efficient photocatalytic air purification, we constructed an advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid through the in-situ growth of Bi nanospheres on g-C3N4 nanosheets. This Bi-g-C3N4 compound exhibited an exceptionally high and stable visible-light photocatalytic performance for NO removal due to the surface plasmon resonance (SPR) endowed by Bi metal. The SPR property of Bi could conspicuously enhance the visible-light harvesting and the charge separation. The electromagnetic field distribution of Bi spheres involving SPR effect was simulated and reaches its maximum in close proximity to the Bi particle surface. When the Bi metal content was controlled at 25%, the corresponding Bi-g-C3N4 displayed outstanding photocatalytic capability and transcended those of other visible-light photocatalysts. The Bi-g-C3N4 exhibited a high structural stability under repeated photocatalytic runs. A new visible-light-induced SPR-based photocatalysis mechanism with Bi-g-C3N4 was proposed on the basis of the DMPO-ESR spin-trapping. The photoinduced electrons could transfer from g-C3N4 to the Bi metal, as revealed with time-resolved fluorescence spectra. The function of Bi semimetal as a plasmonic cocatalyst for boosting visible light photocatalysis was similar to that of noble metals, which demonstrated a great potential of utilizing the economically feasible Bi element as a substitute for noble metals for the advancement of photocatalysis efficiency.

  20. Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding.

    PubMed

    Pereira, Antonio; Hoeger, Ingrid C; Ferrer, Ana; Rencoret, Jorge; Del Rio, José C; Kruus, Kristiina; Rahikainen, Jenni; Kellock, Miriam; Gutiérrez, Ana; Rojas, Orlando J

    2017-04-10

    Lignins were isolated from spruce, wheat straw, and eucalyptus by using the milled wood lignin (MWL) method. Functional groups and compositional analyses were assessed via 2D NMR and 31 P NMR to realize their effect on enzyme binding. Films of the lignins were fabricated and ellipsometry, atomic force microscopy, and water contact angle measurements were used for their characterization and to reveal the changes upon enzyme adsorption. Moreover, lignin thin films were deposited on quartz crystal microgravimetry (QCM) and surface plasmon (SPR) resonance sensors and used to gain further insights into the lignin-cellulase interactions. For this purpose, a commercial multicomponent enzyme system and a monocomponent Trichoderma reesei exoglucanase (CBH-I) were considered. Strong enzyme adsorption was observed on the various lignins but compared to the multicomponent cellulases, CBH-I displayed lower surface affinity and higher binding reversibility. This resolved prevalent questions related to the affinity of this enzyme with lignin. Remarkably, a strong correlation between enzyme binding and the syringyl/guaiacyl (S/G) ratio was found for the lignins, which presented a similar hydroxyl group content ( 31 P NMR): higher protein affinity was determined on isolated spruce lignin (99% G units), while the lowest adsorption occurred on isolated eucalyptus lignin (70% S units). The effect of electrostatic interactions in enzyme adsorption was investigated by SPR, which clearly indicated that the screening of charges allowed more extensive protein adsorption. Overall, this work furthers our understanding of lignin-cellulase interactions relevant to biomass that has been subjected to no or little pretreatment and highlights the widely contrasting effects of the nature of lignin, which gives guidance to improve lignocellulosic saccharification and related processes.

  1. Continuity of care of emergency surgical admissions: impact on SpR training.

    PubMed

    Ledwidge, S F C; Bryden, E; Halestrap, P; Galland, R B

    2008-06-01

    Continuity of patient care is an important component of surgical education. This study assesses continuity of care in the current working climate. Data were collected prospectively on consecutive emergency general surgical admissions during one month. Our SpR rota is a partial shift 24 hour on call with the SpR's own consultant. The SpR is free of commitments the next day following post-take work. The on call general surgery SpR was designated the 'assessor'. Data were analysed according to involvement of the 'assessor' at subsequent stages of the admission--consent, operation, review during admission and review on discharge. Data were also collected defining whether the 'assessor' and operator followed-up the patient. There were 200 admissions; 108 female and 92 male. Overall 23% admissions had the same 'assessor' for all stages of patient care. The 'assessor' dealt with an aspect of patient care in 11% of admissions who underwent an operation and 29% of admissions who were conservatively managed. SpR follow-up of admissions on whom they operated was 70% but only 41% of admissions who were conservatively managed were followed-up by the assessing SpR. Complete in-hospital continuity of care was poor, although SpR follow-up of patients on whom they had operated was better. Introduction of shift patterns has reduced continuity of patient care. This will have a negative impact on both surgical training and patient care.

  2. A Murine Model for Human Sepiapterin-Reductase Deficiency

    PubMed Central

    Yang, Seungkyoung; Lee, Young Jae; Kim, Jin-Man; Park, Sean; Peris, Joanna; Laipis, Philip; Park, Young Shik; Chung, Jae Hoon; Oh, S. Paul

    2006-01-01

    Tetrahydrobiopterin (BH4) is an essential cofactor for several enzymes, including all three forms of nitric oxide synthases, the three aromatic hydroxylases, and glyceryl-ether mono-oxygenase. A proper level of BH4 is, therefore, necessary for the metabolism of phenylalanine and the production of nitric oxide, catecholamines, and serotonin. BH4 deficiency has been shown to be closely associated with diverse neurological psychiatric disorders. Sepiapterin reductase (SPR) is an enzyme that catalyzes the final step of BH4 biosynthesis. Whereas the number of cases of neuropsychological disorders resulting from deficiencies of other catalytic enzymes involved in BH4 biosynthesis and metabolism has been increasing, only a handful of cases of SPR deficiency have been reported, and the role of SPR in BH4 biosynthesis in vivo has been poorly understood. Here, we report that mice deficient in the Spr gene (Spr−/−) display disturbed pterin profiles and greatly diminished levels of dopamine, norepinephrine, and serotonin, indicating that SPR is essential for homeostasis of BH4 and for the normal functions of BH4-dependent enzymes. The Spr−/− mice exhibit phenylketonuria, dwarfism, and impaired body movement. Oral supplementation of BH4 and neurotransmitter precursors completely rescued dwarfism and phenylalanine metabolism. The biochemical and behavioral characteristics of Spr−/− mice share striking similarities with the symptoms observed in SPR-deficient patients. This Spr mutant strain of mice will be an invaluable resource to elucidate many important issues regarding SPR and BH4 deficiencies. PMID:16532389

  3. Note: Model identification and analysis of bivalent analyte surface plasmon resonance data.

    PubMed

    Tiwari, Purushottam Babu; Üren, Aykut; He, Jin; Darici, Yesim; Wang, Xuewen

    2015-10-01

    Surface plasmon resonance (SPR) is a widely used, affinity based, label-free biophysical technique to investigate biomolecular interactions. The extraction of rate constants requires accurate identification of the particular binding model. The bivalent analyte model involves coupled non-linear differential equations. No clear procedure to identify the bivalent analyte mechanism has been established. In this report, we propose a unique signature for the bivalent analyte model. This signature can be used to distinguish the bivalent analyte model from other biphasic models. The proposed method is demonstrated using experimentally measured SPR sensorgrams.

  4. Surface-enhanced Raman scattering of amorphous silica gel adsorbed on gold substrates for optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D.

    2015-10-01

    Two kinds of gold substrates are used to produce surface-enhanced Raman scattering (SERS) of amorphous silica obtained via the sol-gel route using tetraethoxysilane Si(OC2H5)4 (TEOS) solution. The first substrate consists of a gold nanometric film elaborated on a glass slide by sputter deposition, controlling the desired gold thickness and sputtering current intensity. The second substrate consists of an array of micrometer-sized gold inverted pyramidal pits able to confine surface plasmon (SP) enhancing electric field, which results in a distribution of electromagnetic energy inside the cavities. These substrates are optically characterized to observe SPR with, respectively, extinction and reflectance spectrometries. Once coated with thin layers of amorphous silica (SiO2) gel, these samples show Raman amplification of amorphous SiO2 bands. This enhancement can occur in SERS sensors using amorphous SiO2 gel as shells, spacers, protective coatings, or waveguides, and represents particularly a potential interest in the field of Raman distributed sensors, which use the amorphous SiO2 core of optical fibers as a transducer to make temperature measurements.

  5. 10 CFR 625.5 - Failure to perform in accordance with SPR Contracts of Sale.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SALE OF STRATEGIC PETROLEUM RESERVE PETROLEUM § 625.5 Failure to perform in accordance with SPR... petroleum sale contractual provisions, and such failure is not excused by those provisions, the Headquarters... SPR petroleum sales contracts. (b) Determination of ineligibility. No purchaser shall be made...

  6. 10 CFR 625.5 - Failure to perform in accordance with SPR Contracts of Sale.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SALE OF STRATEGIC PETROLEUM RESERVE PETROLEUM § 625.5 Failure to perform in accordance with SPR... petroleum sale contractual provisions, and such failure is not excused by those provisions, the Headquarters... SPR petroleum sales contracts. (b) Determination of ineligibility. No purchaser shall be made...

  7. Theory of the special Smith-Purcell radiation from a rectangular grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weihao, E-mail: liuwhao@ustc.edu.cn; He, Zhigang, E-mail: hezhg@ustc.edu.cn; Jia, Qika

    2015-12-15

    The recently uncovered special Smith-Purcell radiation (S-SPR) from the rectangular grating has significantly higher intensity than the ordinary Smith-Purcell radiation (SPR). Its monochromaticity and directivity are also much better. Here we explored the mechanism of the S-SPR by applying the fundamental electromagnetic theory and simulations. We have confirmed that the S-SPR is exactly from the radiating eigen modes of the grating. Its frequency and direction are well correlated with the beam velocity and structure parameters, which indicates its promising applications in tunable wave generation and beam diagnostic.

  8. A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhang, Di; Deng, Xinyu; Sun, Ying; Wang, Xinghua; Ma, Pinyi; Song, Daqian

    2018-02-01

    Herein we report a novel polydopamine-silver nanoparticle-polydopamine-gold (PDA-AgNPs-PDA-Au) film based surface plasmon resonance (SPR) biosensor for horse IgG detection. The PDA-AgNPs-PDA-Au film sensing platform was built on Au-film via layer-by-layer self-assembly. Ag ion was reduced in situ to AgNPs in presence of PDA. The top PDA layer can prevent AgNPs from being oxidized and connect with antibody via Schiff alkali reaction directly. The morphology and thickness of the modified gold film were characterized using scanning electron microscope and Talystep. Experimental results show that the PDA-AgNPs-PDA-Au film sensing platform is stable, regenerative and sensitive for horse IgG detection. The detection limit of horse IgG obtained with the present biosensor is 0.625 μg mL- 1, which is 2-fold and 4-fold lower than that obtained with biosensor based on PDA modified Au film and conventional biosensor based on MPA, respectively. Furthermore, when challenged to real serum samples, our sensor exhibited excellent specificity to horse IgG, suggesting its potential for industrial application.

  9. Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor.

    PubMed

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D

    2018-01-15

    Fabrication and characterization of a surface plasmon resonance based fiber optic xanthine sensor using entrapment of xanthine oxidase (XO) enzyme in several nanostructures of tantalum (v) oxide (Ta 2 O 5 ) have been reported. Chemical route was adopted for synthesizing Ta 2 O 5 nanoparticles, nanorods, nanotubes and nanowires while Ta 2 O 5 nanofibers were prepared by electrospinning technique. The synthesized Ta 2 O 5 nanostructures were characterized by photoluminescence, scanning electron microscopy, UV-Visible spectra and X-ray diffraction pattern. The probes were fabricated by coating an unclad core of the fiber with silver layer followed by the deposition of XO entrapped Ta 2 O 5 nanostructures. The crux of sensing mechanism relies on the modification of dielectric function of sensing layer upon exposure to xanthine solution of diverse concentrations, reflected in terms of shift in resonance wavelength. The sensing probe coated with XO entrapped Ta 2 O 5 nanofibers has been turned out to possess maximum sensitivity amongst the synthesized nanostructures. The probe was optimized in terms of pH of the sample and the concentration of XO entrapped in Ta 2 O 5 nanofibers. The optimized sensing probe possesses a remarkably good sensitivity of 26.2nm/µM in addition to linear range from 0 to 3µM with an invincible LOD value of 0.0127µM together with a response time of 1min. Furthermore, probe selectivity with real sample analysis ensure the usage of the sensor for practical scenario. The results reported open a novel perspective towards a sensitive, rapid, reliable and selective detection of xanthine. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Pulmonary O2 uptake on-kinetics in endurance- and sprint-trained master athletes.

    PubMed

    Berger, N J A; Rittweger, J; Kwiet, A; Michaelis, I; Williams, A G; Tolfrey, K; Jones, A M

    2006-12-01

    The purpose of this study was to characterise the VO2 kinetic response to moderate intensity cycle exercise in endurance-trained (END) and sprint or power-trained (SPR) track and field master athletes ranging in age from 45 to 85 years. We hypothesised that the time constant (tau) describing the Phase II VO2 on-response would be smaller in the END compared to the SPR athletes, and that the tau would become greater with increasing age in both groups. Eighty-four master athletes who were competing at either the British or European Veteran Athletics Championships acted as subjects, and were classified as either END (800 m - marathon; n = 41), or SPR (100 - 400 m and field events; n = 43) specialists. Subjects completed two 6 minute "step" transitions to a work rate of moderate intensity on a cycle ergometer and pulmonary gas exchange was measured breath-by-breath. Analysis of variance revealed that SPR athletes had slower VO2 on-kinetics (i.e., greater tau) compared to END athletes at each of the age groups studied: 46 - 55 yrs (END: 25 +/- 6 vs. SPR: 36 +/- 9 s; p < 0.10), 56 - 65 yrs (END: 25 +/- 5 vs. SPR: 35 +/- 10 s; p < 0.05), 66 - 75 yrs (END: 29 +/- 10 vs. SPR: 40 +/- 13 s; p < 0.05), and 76 - 85 yrs (END: 31 +/- 10 vs. SPR: 51 +/- 18 s; p < 0.05). The VO2 on-kinetics became slower with advancing age in the SPR athletes (p < 0.05 between 56 - 65 and 76 - 85 yrs) but were not significantly changed in the END athletes. The slower VO2 on-kinetics in SPR compared to END master athletes is consistent both with differences in physiology (e.g., muscle fibre type, oxidative/glycolytic capacity) and training between these specialist athletes. Master END athletes have similar tau values to their younger counterparts (approximately 25 s) suggesting that participation in endurance exercise training limits the slowing of VO2 on-kinetics with age in this population.

  11. MISR Level 2 Cloud Product Versioning

    Atmospheric Science Data Center

    2017-10-11

    ... New ancillary files: MISR_AM1_ASCT_BDAS_(WIN,SPR,SUM,FALL)_DCCAM_ T<901-932>_F02_0005.hdf MISR_AM1_ASCT_BDAS_(WIN,SPR,SUM,FALL)_DBCAM_ T<901-932>_F02_0005.hdf MISR_AM1_ASCT_BDAS_(WIN,SPR,SUM,FALL)_CBCAM_ T<901-932>_F02_0005.hdf ...

  12. Advanced materials for improving biosensing performances of propagating and localized plasmonic transducers

    NASA Astrophysics Data System (ADS)

    Manera, M. G.; Colombelli, A.; Convertino, A.; Rella, S.; De Lorenzis, E.; Taurino, A.; Malitesta, C.; Rella, R.

    2015-05-01

    Among all transduction methodologies reported in the field of solid state optical chemical sensors, the attention has been focused onto the optical sensing characterization by using propagating and localized surface plasmon resonance (SPR) techniques. The research in this field is always oriented in the improvement of the sensing features in terms of sensitivity and limits of detection. To this purpose different strategies have been proposed to realize advanced materials for high sensitive plasmonic devices. In this work nanostructured silica nanowires decorated by gold nanoparticles and active magneto-plasmonic transductors are considered as new biosensing transductors useful to increase the performance of sensitive devices.

  13. Affinity ranking of antibodies using flow cytometry: application in antibody phage display-based target discovery.

    PubMed

    Geuijen, Cecilia A W; Clijsters-van der Horst, Marieke; Cox, Freek; Rood, Pauline M L; Throsby, Mark; Jongeneelen, Mandy A C; Backus, Harold H J; van Deventer, Els; Kruisbeek, Ada M; Goudsmit, Jaap; de Kruif, John

    2005-07-01

    Application of antibody phage display to the identification of cell surface antigens with restricted expression patterns is often complicated by the inability to demonstrate specific binding to a certain cell type. The specificity of an antibody can only be properly assessed when the antibody is of sufficient high affinity to detect low-density antigens on cell surfaces. Therefore, a robust and simple assay for the prediction of relative antibody affinities was developed and compared to data obtained using surface plasmon resonance (SPR) technology. A panel of eight anti-CD46 antibody fragments with different affinities was selected from phage display libraries and reformatted into complete human IgG1 molecules. SPR was used to determine K(D) values for these antibodies. The association and dissociation of the antibodies for binding to CD46 expressed on cell surfaces were analysed using FACS-based assays. We show that ranking of the antibodies based on FACS data correlates well with ranking based on K(D) values as measured by SPR and can therefore be used to discriminate between high- and low-affinity antibodies. Finally, we show that a low-affinity antibody may only detect high expression levels of a surface marker while failing to detect lower expression levels of this molecule, which may lead to a false interpretation of antibody specificity.

  14. Strategic Petroleum Reserve and the Department of Energy's baseline assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Joe LaGrone of DOE's Oak Ridge Operations and John Milloway of the Strategic Petroleum Reserve (SPR) Task Force responded to allegations that the SPR program is providing an inadequate defense and that the program management is guilty of mismanagement and misconduct. The task force prepared a 307-page baseline assessment of the SPR that is critical of past practices, which it feels must be corrected. The assessment does not challenge the viability of the SPR program itself. Two appendices with additional responses from LaGrone and excerpts from the report follow the testimony. (DCK)

  15. Nanoplasmonic-gold-cylinder-array-enhanced terahertz source

    NASA Astrophysics Data System (ADS)

    Zhiguang, Ao; Jinhai, Sun; He, Cai; Guofeng, Song; Jiakun, Song; Yuzhi, Song; Yun, Xu

    2016-12-01

    Photoconductive antennas (PCAs) based on nanoplasmonic gratings contact electrodes have been proposed to satisfy the demand for high power, efficiency and responsivity terahertz (THz) sources. Reducing the average photo-generated carrier transport path to the photoconductor contact electrodes was previously considered the dominant mechanism to improve PCAs' power. However, considering the bias in a real device, the electric field between gratings is limited and the role of surface plasmonic resonance (SPR) field enhancement is more important in improving THz radiation. This paper, based on SPR, analyzes the interaction between incident light and substrate in nano cylinder array PCAs and clearly shows that the SPR can enhance the light absorption in the substrate. After the optimization of the structure size, the proposed structure can offer 87% optical transmission into GaAs substrate. Compared with conventional PCAs, the optical transmission into the substrate will increase 5.8 times and the enhancement factor of substrate absorption will reach 13.7 respectively. Project supported by the National Basic Research Program of China (Nos. 2015CB351902, 2015CB932402), the National Key Research Program of China (No. 2011ZX01015-001), and the National Natural Science Foundation of China (No. U143231).

  16. Sulfa drugs inhibit sepiapterin reduction and chemical redox cycling by sepiapterin reductase.

    PubMed

    Yang, Shaojun; Jan, Yi-Hua; Mishin, Vladimir; Richardson, Jason R; Hossain, Muhammad M; Heindel, Ned D; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2015-03-01

    Sepiapterin reductase (SPR) catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4), a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism. SPR also mediates chemical redox cycling, catalyzing one-electron reduction of redox-active chemicals, including quinones and bipyridinium herbicides (e.g., menadione, 9,10-phenanthrenequinone, and diquat); rapid reaction of the reduced radicals with molecular oxygen generates reactive oxygen species (ROS). Using recombinant human SPR, sulfonamide- and sulfonylurea-based sulfa drugs were found to be potent noncompetitive inhibitors of both sepiapterin reduction and redox cycling. The most potent inhibitors of sepiapterin reduction (IC50s = 31-180 nM) were sulfasalazine, sulfathiazole, sulfapyridine, sulfamethoxazole, and chlorpropamide. Higher concentrations of the sulfa drugs (IC50s = 0.37-19.4 μM) were required to inhibit redox cycling, presumably because of distinct mechanisms of sepiapterin reduction and redox cycling. In PC12 cells, which generate catecholamine and monoamine neurotransmitters via BH4-dependent amino acid hydroxylases, sulfa drugs inhibited both BH2/BH4 biosynthesis and redox cycling mediated by SPR. Inhibition of BH2/BH4 resulted in decreased production of dopamine and dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 5-hydroxytryptamine. Sulfathiazole (200 μM) markedly suppressed neurotransmitter production, an effect reversed by BH4. These data suggest that SPR and BH4-dependent enzymes, are "off-targets" of sulfa drugs, which may underlie their untoward effects. The ability of the sulfa drugs to inhibit redox cycling may ameliorate ROS-mediated toxicity generated by redox active drugs and chemicals, contributing to their anti-inflammatory activity. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Functional performance following selective posterior rhizotomy: long-term results determined using a validated evaluative measure.

    PubMed

    Mittal, Sandeep; Farmer, Jean-Pierre; Al-Atassi, Borhan; Montpetit, Kathleen; Gervais, Nathalie; Poulin, Chantal; Benaroch, Thierry E; Cantin, Marie-André

    2002-09-01

    Selective posterior rhizotomy (SPR) may result in considerable benefit for children with spastic cerebral palsy. To date, however, there have been few studies in which validated functional outcome measures have been used to report surgical results beyond 3 years. The authors analyzed data obtained from the McGill Rhizotomy Database to determine long-term functional performance outcomes in patients who underwent lumbosacral dorsal rhizotomy performed using intraoperative electrophysiological monitoring. The study population was composed of children with debilitating spasticity who underwent SPR and were evaluated by a multidisciplinary team preoperatively and at 6 months and 1 year postoperatively. Quantitative standardized assessments of activities of daily living (ADL) were obtained using the Pediatric Evaluation of Disability Inventory (PEDI). Of 57 patients who met the entry criteria for the study, 41 completed the 3-year assessments and 30 completed the 5-year assessments. Statistical analysis demonstrated significant improvement in the mobility and self-care domains of the functional skills dimension at 1 year after SPR. The preoperative and 1-, 3-, and 5-year postoperative scaled scores for the mobility domain were 56, 64, 77.2, and 77.8, respectively. The scaled score for the self-care domain increased from 59 presurgery to 67.9, 81.6, and 82.4 at the 1-, 3-, and 5-year postoperative assessments, respectively. The results of this study support the presence of significant improvements in functional performance, based on PEDI scores obtained 1 year after SPR. The improvements persisted at the 3- and 5-year follow-up examinations. The authors conclude that SPR performed using intraoperative stimulation is valuable in the augmentation of motor function and self-care skills essential to the performance of ADL.

  18. Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds.

    PubMed

    Lindley, Sarah A; Cooper, Jason K; Rojas-Andrade, Mauricio D; Fung, Victoria; Leahy, Conor J; Chen, Shaowei; Zhang, Jin Z

    2018-04-18

    In principle, the diameter and surface plasmon resonance (SPR) frequency of hollow metal nanostructures can be independently adjusted, allowing the formation of targeted photoactivated structures of specific size and optical functionality. Although tunable SPRs have been reported for various systems, the shift in SPR is usually concomitant with a change in particle size. As such, more advanced tunability, including constant diameter with varying SPR or constant SPR with varying diameter, has not been properly achieved experimentally. Herein, we demonstrate this advanced tunability with hollow gold nanospheres (HGNs). HGNs were synthesized through galvanic exchange using cobalt-based nanoparticles (NPs) as sacrificial scaffolds. Co 2 B NP scaffolds were prepared by sodium borohydride nucleation of aqueous cobalt chloride and characterized using UV-vis, dynamic light scattering, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Careful control over the size of the Co 2 B scaffold and its galvanic conversion is essential to realize fine control of the resultant HGN diameter and shell thickness. In pursuit of size control, we introduce B(OH) 4 - (the final product of NaBH 4 hydrolysis) as a growth agent to obtain hydrodynamic diameters ranging from ∼17-85 nm with relative standard deviation <3%. The highly monodisperse Co 2 B NPs were then used as scaffolds for the formation of HGNs. In controlling HGN shell thickness and uniformity, environmental oxygen was shown to affect both the structural and optical properties of the resultant gold shells. With careful control of these key factors, we demonstrate an HGN synthesis that enables independent variation of diameter and shell thickness, and thereby SPR, with unprecedented uniformity. The new synthesis method creates a truly tunable plasmonic nanostructure platform highly desirable for a wide range of applications, including sensing, catalysis, and photothermal therapy.

  19. High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors.

    PubMed

    March, Carmen; García, José V; Sánchez, Ángel; Arnau, Antonio; Jiménez, Yolanda; García, Pablo; Manclús, Juan J; Montoya, Ángel

    2015-03-15

    In spite of being widely used for in liquid biosensing applications, sensitivity improvement of conventional (5-20MHz) quartz crystal microbalance (QCM) sensors remains an unsolved challenging task. With the help of a new electronic characterization approach based on phase change measurements at a constant fixed frequency, a highly sensitive and versatile high fundamental frequency (HFF) QCM immunosensor has successfully been developed and tested for its use in pesticide (carbaryl and thiabendazole) analysis. The analytical performance of several immunosensors was compared in competitive immunoassays taking carbaryl insecticide as the model analyte. The highest sensitivity was exhibited by the 100MHz HFF-QCM carbaryl immunosensor. When results were compared with those reported for 9MHz QCM, analytical parameters clearly showed an improvement of one order of magnitude for sensitivity (estimated as the I50 value) and two orders of magnitude for the limit of detection (LOD): 30μgl(-1) vs 0.66μgL(-1)I50 value and 11μgL(-1) vs 0.14μgL(-1) LOD, for 9 and 100MHz, respectively. For the fungicide thiabendazole, I50 value was roughly the same as that previously reported for SPR under the same biochemical conditions, whereas LOD improved by a factor of 2. The analytical performance achieved by high frequency QCM immunosensors surpassed those of conventional QCM and SPR, closely approaching the most sensitive ELISAs. The developed 100MHz QCM immunosensor strongly improves sensitivity in biosensing, and therefore can be considered as a very promising new analytical tool for in liquid applications where highly sensitive detection is required. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Adaptation of the World Health Organization's Selected Practice Recommendations for Contraceptive Use for the United States.

    PubMed

    Curtis, Kathryn M; Tepper, Naomi K; Jamieson, Denise J; Marchbanks, Polly A

    2013-05-01

    The Centers for Disease Control and Prevention (CDC) recently adapted global guidance on contraceptive use from the World Health Organization (WHO) to create the US Selected Practice Recommendations for Contraceptive Use (US SPR). The WHO guidance includes evidence-based recommendations on common, yet sometimes complex, contraceptive management questions. We determined the need and scope for the adaptation, conducted 30 systematic reviews of the scientific evidence and convened a meeting of health care professionals to discuss translation of the evidence into recommendations. The US SPR provides recommendations on contraceptive management issues such as how to initiate contraceptive methods, what regular follow-up is needed, and how to address problems, including missed pills and side effects such as unscheduled bleeding. The US SPR is intended to serve as a source of clinical guidance for providers in assisting women and men to initiate and successfully use contraception to prevent unintended pregnancy. Published by Elsevier Inc.

  1. A common-path phase-shift interferometry surface plasmon imaging system

    NASA Astrophysics Data System (ADS)

    Su, Y.-T.; Chen, Shean-Jen; Yeh, T.-L.

    2005-03-01

    A biosensing imaging system is proposed based on the integration of surface plasmon resonance (SPR) and common-path phase-shift interferometry (PSI) techniques to measure the two-dimensional spatial phase variation caused by biomolecular interactions upon a sensing chip. The SPR phase imaging system can offer high resolution and high-throughout screening capabilities to analyze microarray biomolecular interaction without the need for additional labeling. With the long-term stability advantage of the common-path PSI technique even with external disturbances such as mechanical vibration, buffer flow noise, and laser unstable issue, the system can match the demand of real-time kinetic study for biomolecular interaction analysis (BIA). The SPR-PSI imaging system has achieved a detection limit of 2×10-7 refraction index change, a long-term phase stability of 2.5x10-4π rms over four hours, and a spatial phase resolution of 10-3 π with a lateral resolution of 100μm.

  2. Wavelength-multiplexing surface plasmon holographic microscopy.

    PubMed

    Zhang, Jiwei; Dai, Siqing; Zhong, Jinzhan; Xi, Teli; Ma, Chaojie; Li, Ying; Di, Jianglei; Zhao, Jianlin

    2018-05-14

    Surface plasmon holographic microscopy (SPHM), which combines surface plasmon microscopy with digital holographic microscopy, can be applied for amplitude- and phase-contrast surface plasmon resonance (SPR) imaging. In this paper, we propose an improved SPHM with the wavelength multiplexing technique based on two laser sources and a common-path hologram recording configuration. Through recording and reconstructing the SPR images at two wavelengths simultaneously employing the improved SPHM, tiny variation of dielectric refractive index in near field is quantitatively monitored with an extended measurement range while maintaining the high sensitivity. Moreover, imaging onion tissues is performed to demonstrate that the detection sensitivities of two wavelengths can compensate for each other in SPR imaging. The proposed wavelength-multiplexing SPHM presents simple structure, high temporal stability and inherent capability of phase curvature compensation, as well as shows great potentials for further applications in monitoring diverse dynamic processes related with refractive index variations and imaging biological tissues with low-contrast refractive index distributions in the near field.

  3. Detection of egg yolk antibodies reflecting Salmonella enteritidis infections using a surface plasmon resonance biosensor.

    PubMed

    Thomas, Ekelijn; Bouma, Annemarie; van Eerden, Ellen; Landman, Wil J M; van Knapen, Frans; Stegeman, Arjan; Bergwerff, Aldert A

    2006-08-31

    A surface plasmon resonance (SPR) biosensor assay was developed on the basis of a lipopolysaccharide antigen of Salmonella enterica serovar enteritidis (S. enterica serovar enteritidis) to detect egg yolk antibodies against S. enterica serovar enteritidis. This biosensor assay was compared to two commercial ELISA kits based on LPS antigen and flagellar antigen. A number of 163 egg yolk and combined egg white and yolk samples from chickens experimentally infected with S. enterica serovar enteritidis and 90 egg yolk and combined egg white and yolk samples from uninfected chickens were analyzed. Receiver operating characteristic analysis of the data calculated a diagnostic sensitivity of 82% and a diagnostic specificity of 100%. The within-day coefficient of variation of a positive internal-control egg yolk was 1%. The SPR biosensor assay was able to detect antibodies in a significantly higher percentage of known positive samples than the commercial ELISA's. The anticipated use of the SPR biosensor assay is to determine the S. enterica serovar enteritidis serostatus of non-vaccinated layer hens.

  4. The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method.

    PubMed

    Oh, Geum-Yoon; Kim, Doo Gun; Choi, Young-Wan

    2009-11-09

    We have explicated the Goos-Hänchen (GH) shift in a mum-order Kretchmann-Raether configuration embedded in an optical waveguide structure by using the finite-difference time-domain method. For optical waveguide-type surface plasmon resonance (SPR) devices, the precise derivation of the GH shift has become critical. Artmann's equation, which is accurate enough for bulk optics, is difficult to apply to waveguide-type SPR devices. This is because Artmann's equation, based on the differentiation of the phase shift, is inaccurate at the critical and resonance angles where drastic phase changes occur. In this study, we accurately identified both the positive and the negative GH shifts around the incidence angle of resonance. In a waveguide-type Kretchmann-Raether configuration with an Au thin film of 50 nm, positive and negative lateral shifts of -0.75 and + 1.0 microm are obtained on the SPR with the incident angles of 44.4 degrees and 47.5 degrees, respectively, at a wavelength of 632.8 nm.

  5. High-resolution surface plasmon resonance biosensing system for glucose concentration detecting

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Dachao; Yu, Haixia; Huang, Fuxiang; Hu, Xiaotang; Xu, Kexin

    2007-02-01

    Glucose is one of the most important substances widely contained in organism and food, thus people pay much attention in researching and improving the way for the detection of glucose. Traditional ways, although precise and reliable when in high concentration and large amount of sample, have unconvincing performance in detecting mixture and solution with low concentration and micro-volume. As far as the ideal way is concerned, it should not only specifically detect the glucose and exclude other components in solution, but also meet the need of micro-sample (approximately 5μL) and low concentration. We introduced D-galactose/D-glucose Binding Protein (GGBP) - a kind of protein which has the ability to absorb the glucose specifically, to construct a novel surface plasmon resonance measuring system. By immobilizing GGBP onto the surface of the SPR sensor, we develop a new detecting system for glucose testing in mixed solution. The experimental result indicates that compared with 0.1g/L before immobilization of GGBP, the detecting limit or the resolution of glucose testing rises to 1mg/L after the immobilization, the system succeeds in distinguishing glucose from other components in mixture, which reveals a bright future to apply SPR in the minimally invasive diabetes testing and food quality control.

  6. Plasmon Spectroscopy Applied to Biomolecular Interactions in Membranes

    NASA Astrophysics Data System (ADS)

    Tollin, Gordon

    2010-03-01

    Plasmon-waveguide resonance (PWR) is an optical spectroscopy method that can provide information about materials immobilized on the surface of a plasmon resonator consisting of a right angle prism coated with thin layers of a metal (approx. 50 nm; usually silver) and a dielectric (approx. 500 nm; usually silica). The technique has been developed in our laboratory and is an extension of the more commonly used surface plasmon resonance (SPR) method, having higher sensitivity (20-50 fold) and resolution (10-20 fold). The dielectric layer allows plasmon excitation by light whose electric vector is polarized both perpendicular and parallel to the sensor surface, in contrast to SPR that can only utilize perpendicular polarized excitation. This allows both mass density and mass distribution to be characterized in uniaxially oriented deposited materials, such as biomembranes. We have utilized this technique to investigate binding interactions between membrane-incorporated protein receptors and their ligands (both proteins and small molecules), using both purified receptors inserted into lipid bilayers and membranes derived from cells expressing these receptors. Such studies have provided many new insights into biological signaling events. Inasmuch as many of these receptors are targets for approximately 50 percent of ethical drugs, PWR can be a useful methodology for drug discovery in the pharmaceutical industry. Examples of these experiments will be presented.

  7. An ultrasensitive micropillar-based quartz crystal microbalance device for real-time measurement of protein immobilization and protein-protein interaction.

    PubMed

    Su, Junwei; Esmaeilzadeh, Hamed; Zhang, Fang; Yu, Qing; Cernigliaro, George; Xu, Jin; Sun, Hongwei

    2018-01-15

    A new sensing device was developed to achieve ultrahigh sensitivity, by coupling polymer micropillars with a quartz crystal microbalance (QCM) substrate to form a two-degree- of-freedom resonance system (QCM-P). The sensitivity of these QCM-P devices was evaluated by measuring mass changes for both deposited gold film and adsorption of bovine serum albumin (BSA), respectively, on poly(methyl methacrylate) (PMMA) micropillar surfaces, as well as assessing ligand-analyte binding interactions between anti-human immunoglobulin G (anti-hIgG) and human immunoglobulin G (hIgG). The anti-hIgG and hIgG binding results show QCM-P achieved an eightfold improvement in sensitivity relative to conventional QCM sensors. In addition, the binding affinity obtained from the QCM-P device for anti-hIgG and hIgG proteins was found in good agreement with that measured by surface plasmon resonance (SPR) for the same binding reaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. High surface plasmon resonance sensitivity enabled by optical disks.

    PubMed

    Dou, Xuan; Phillips, Blayne M; Chung, Pei-Yu; Jiang, Peng

    2012-09-01

    We report a systematic, experimental, and theoretical investigation on the surface plasmon resonance (SPR) sensing using optical disks with different track pitches, including Blu-ray disk (BD), digital versatile disk (DVD), and compact disk (CD). Optical reflection measurements indicate that CD and DVD exhibit much higher SPR sensitivity than BD. Both experiments and finite-difference time-domain simulations reveal that the SPR sensitivity is significantly affected by the diffraction order of the SPR peaks and higher diffraction order results in lower sensitivity. Numerical simulations also show that very high sensitivity (∼1600  nm per refractive index unit) is achievable by CDs.

  9. Final state of the Strategic Petroleum Reserve (SPR) Weeks Island Mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MOLECKE,MARTIN A.

    2000-02-01

    This report documents the decommissioning and abandonment activities at the Weeks Island Strategic Petroleum Reserve (SPR) site, Iberia Parish, Louisiana, that were concluded in 1999. These activities required about six years of intense operational, engineering, geotechnical, and management support efforts, following initiation of site abandonment plans in 1994. The Weeks Island SPR mine stored about 72.5 million bbl of crude oil following oil fill in 1980--1982, until November 1995, when the DOE initiated oil drawdown procedures, with brine refill and oil skimming, and numerous plugging and sealing activities. About 98% of the crude oil was recovered and transferred to othermore » SPR facilities in Louisiana and Texas; a small amount was also sold. This document summarizes recent pre- and post-closure: conditions of surface features at the site, including the sinkholes, the freeze wall, surface subsidence measurements and predictions; conditions within the SPR mine, including oil recovery, brine filling, and the Markel Wet Drift; risk assessment evaluations relevant to the decommissioning and long-term potential environmental impacts; continuing environmental monitoring activities at the site; and, an overview on the background and history of the Weeks Island SPR facility.« less

  10. Real-Time Evaluation of Live Cancer Cells by an in Situ Surface Plasmon Resonance and Electrochemical Study.

    PubMed

    Wu, Changyu; Rehman, Fawad Ur; Li, Jingyuan; Ye, Jing; Zhang, Yuanyuan; Su, Meina; Jiang, Hui; Wang, Xuemei

    2015-11-11

    This work presents a new strategy of the combination of surface plasmon resonance (SPR) and electrochemical study for real-time evaluation of live cancer cells treated with daunorubicin (DNR) at the interface of the SPR chip and living cancer cells. The observations demonstrate that the SPR signal changes could be closely related to the morphology and mass changes of adsorbed cancer cells and the variation of the refractive index of the medium solution. The results of light microscopy images and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide studies also illustrate the release or desorption of HepG2 cancer cells, which were due to their apoptosis after treatment with DNR. It is evident that the extracellular concentration of DNR residue can be readily determined through electrochemical measurements. The decreases in the magnitudes of SPR signals were linearly related to cell survival rates, and the combination of SPR with electrochemical study could be utilized to evaluate the potential therapeutic efficiency of bioactive agents to cells. Thus, this label-free, real-time SPR-electrochemical detection technique has great promise in bioanalysis or monitoring of relevant treatment processes in clinical applications.

  11. MIPs are ancestral ligands for the sex peptide receptor.

    PubMed

    Kim, Young-Joon; Bartalska, Katarina; Audsley, Neil; Yamanaka, Naoki; Yapici, Nilay; Lee, Ju-Youn; Kim, Yong-Chul; Markovic, Milica; Isaac, Elwyn; Tanaka, Yoshiaki; Dickson, Barry J

    2010-04-06

    Upon mating, females of many animal species undergo dramatic changes in their behavior. In Drosophila melanogaster, postmating behaviors are triggered by sex peptide (SP), which is produced in the male seminal fluid and transferred to female during copulation. SP modulates female behaviors via sex peptide receptor (SPR) located in a small subset of internal sensory neurons that innervate the female uterus and project to the CNS. Although required for postmating responses only in these female sensory neurons, SPR is expressed broadly in the CNS of both sexes. Moreover, SPR is also encoded in the genomes of insects that lack obvious SP orthologs. These observations suggest that SPR may have additional ligands and functions. Here, we identify myoinhibitory peptides (MIPs) as a second family of SPR ligands that is conserved across a wide range of invertebrate species. MIPs are potent agonists for Drosophila, Aedes, and Aplysia SPRs in vitro, yet are unable to trigger postmating responses in vivo. In contrast to SP, MIPs are not produced in male reproductive organs, and are not required for postmating behaviors in Drosophila females. We conclude that MIPs are evolutionarily conserved ligands for SPR, which are likely to mediate functions other than the regulation of female reproductive behaviors.

  12. Determination of the Adsorption Free Energy for Peptide–Surface Interactions by SPR Spectroscopy

    PubMed Central

    Wei, Yang; Latour, Robert A.

    2009-01-01

    To understand and predict protein adsorption behavior, we must first understand the fundamental interactions between the functional groups presented by the amino acid residues making up a protein and the functional groups presented by the surface. Limited quantitative information is available, however, on these types of submolecular interactions. The objective of this study was therefore to develop a reliable method to determine the standard state adsorption free energy (ΔG°ads) of amino acid residue–surface interactions using surface plasma resonance (SPR) spectroscopy. Two problems are commonly encountered when using SPR for peptide adsorption studies: the need to account for “bulk-shift” effects and the influence of peptide–peptide interactions at the surface. Bulk-shift effects represent the contribution of the bulk solute concentration to the SPR response that occurs in addition to the response due to adsorption. Peptide–peptide interactions, which are assumed to be zero for Langmuir adsorption, can greatly skew the isotherm shape and result in erroneous calculated values of ΔG°ads. To address these issues, we have developed a new approach for the determination of ΔG°ads using SPR that is based on the chemical potential. In this article, we present the development of this new approach and its application for the calculation of ΔG°ads for a set of peptide–surface systems where the peptide has a host–guest amino acid sequence of TGTG-X-GTGT (where G and T are glycine and threonine residues and X represents a variable residue) and the surface consists of alkanethiol self-assembled monolayers (SAMs) with methyl (CH3) and hydroxyl (OH) functionality. This new approach enables bulk-shift effects to be directly determined from the raw SPR versus peptide concentration data plots and the influence of peptide–peptide interaction effects to be minimized, thus providing a very straightforward and accurate method for the determination of ΔG °ads for peptide adsorption. Further studies are underway to characterize ΔG°ads for a large library of peptide–SAM combinations. PMID:18507411

  13. Contractor evaluations in the contractor selection process.

    DOT National Transportation Integrated Search

    2014-04-01

    The current contractor evaluation system in use within the Kentucky Transportation Cabinet is based on the contractor evaluation system developed as part of SPR 212-00 "Quality Based Prequalification of Contractors." This system relies on average per...

  14. Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A

    2010-01-01

    We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is inmore » support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.« less

  15. Amelioration of Behavioral Abnormalities in BH4-deficient Mice by Dietary Supplementation of Tyrosine

    PubMed Central

    Kwak, Sang Su; Jeong, Mikyoung; Choi, Ji Hye; Kim, Daesoo; Min, Hyesun; Yoon, Yoosik; Hwang, Onyou; Meadows, Gary G.; Joe, Cheol O.

    2013-01-01

    This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr −/− mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr −/− mice. We found that Spr −/− mice display variable ‘open-field’ behaviors, impaired motor functions on the ‘rotating rod’, and dystonic ‘hind-limb clasping’. In this study, we report that these aberrant motor deficits displayed by Spr −/− mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr −/− mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr −/− mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr −/− mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency. PMID:23577163

  16. Prior knowledge driven Granger causality analysis on gene regulatory network discovery

    DOE PAGES

    Yao, Shun; Yoo, Shinjae; Yu, Dantong

    2015-08-28

    Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>>T. In this study, we proposed a new method, viz., CGC-2SPR (CGC using two-step prior Ridge regularization) to resolve the problem by incorporating prior biological knowledge about a target gene data set. In our simulation experiments, themore » propose new methodology CGC-2SPR showed significant performance improvement in terms of accuracy over other widely used GC modeling (PGC, Ridge and Lasso) and MI-based (MRNET and ARACNE) methods. In addition, we applied CGC-2SPR to a real biological dataset, i.e., the yeast metabolic cycle, and discovered more true positive edges with CGC-2SPR than with the other existing methods. In our research, we noticed a “ 1+1>2” effect when we combined prior knowledge and gene expression data to discover regulatory networks. Based on causality networks, we made a functional prediction that the Abm1 gene (its functions previously were unknown) might be related to the yeast’s responses to different levels of glucose. In conclusion, our research improves causality modeling by combining heterogeneous knowledge, which is well aligned with the future direction in system biology. Furthermore, we proposed a method of Monte Carlo significance estimation (MCSE) to calculate the edge significances which provide statistical meanings to the discovered causality networks. All of our data and source codes will be available under the link https://bitbucket.org/dtyu/granger-causality/wiki/Home.« less

  17. Plasmonic active spectral filter in VIS-NIR region using metal-insulator-metal (MIM) structure on glass plate

    NASA Astrophysics Data System (ADS)

    Oshikane, Yasushi; Murai, Kensuke; Higashi, Takaya; Yamamoto, Fumihiko; Nakano, Motohiro; Inoue, Haruyuki

    2012-10-01

    Interaction between surface plasmons at two interfaces inside a meta-insulator-metal (MIM) structure is one of the interesting physical phenomena in nanophotonics. We have started to create a plasmonic active spectral filter based on the MIM structure for a developing white light-emitting diode (LED) visible-light communication. An optical active filter at visible region assisted by surface plasmon resonance (SPR) in MIM structure of vacuum-deposited thin films on glass substrate has been studied both experimentally and theoretically. Interface between the first thin silver layer (M1, around 50 nm-thick) and bulk glass slide is appropriate for excitation of SPR at particular wavelength and incident angle of illumination light. And spatial extension of the SPR wave may cause an effective propagating mode confined in the insulator layer (I, around 150 nm-thick) by both M1 and the second thick silver layer (M2, around 200 nm-thick). Such an energy conversion from the illuminating light to the propagating SPR modes corresponds to an evident absorption dip on spectral reflectance curve of the MIM structure, and the shape of dip may vary widely in response to material and configuration of the MIM. The spectral and angular reflectance of the prototypical MIM structure has been measured by spectrophotometer for P- and S-polarized light because the plasmonic effect inside the MIM structure depends strongly on the polarization of light. Such the characteristic reflection feature has also been studied by using both the usual transfer matrix method and 2D electromagnetic simulation based on the finite element method. In this talk, several striking and preliminary MIM prototypes will be introduced and discussed.

  18. EDITORIAL: Sensors based on interfaces

    NASA Astrophysics Data System (ADS)

    Camassel, Jean; Soukiassian, Patrick G.

    2007-12-01

    Sensors are specific analog devices that convert a physical quantity, like the temperature or external pressure or concentration of carbon monoxide in a confined atmosphere, into an electrical signal. Considered in this way, every sensor is then a part of the artificial interface, which connects the human world to the world of machines. The other side of the interface is represented by actuators. Most often, after processing the data they are used to convert the out-coming electrical power into counteracting physical action. In the last few years, thanks to inexpensive silicon technology, enormous capability for data processing has been developed and the world of machines has become increasingly invasive. The world of sensors has become increasingly complex too. Applications range from classical measurements of the temperature, vibrations, shocks and acceleration to more recent chemical and bio-sensing technologies. Chemical sensors are used to detect the presence of specific, generally toxic, chemical species. To measure their concentration, one uses some specific property, generally a physical one, like the intensity of infrared absorption bands. Bio-sensors are new, more complex, devices that combine a bio-receptor with a physical transducer. The bio-receptor is a molecule (for instance, an enzyme like glucose oxidase) that can recognize a specific target (glucose molecules in the case of glucose oxidase). The enzyme must be fixed on the transducer and, as a consequence of recognition, the transducer must convert the event into a measurable analytical signal. A common feature of many chemical and bio-sensors is that they require a large surface of interaction with the outside world. For that reason and in order to increase efficiency, either nanoparticles or pores or a combination of both, made from various materials including (but not limited to) porous silicon, are often used as the functional transducer interface. The reviews in this Cluster Issue of Journal of Physics D: Applied Physics describe some recent advances in this field and the very different approaches and/or techniques that can be used for the sensors' implementation. They include the use of molecularly modified metal nanoparticles in or as chemical sensors, especially for high sensitivity hydrogen sensors. Hydrogen sensing can also be achieved by performing galvanic measurements on a thin layer of perovskite oxide covered with platinum. In this case, one mixes an ionic (proton) transport in the oxide with an electronic one in the metal. Another focus is on optical and electrical read-out techniques, like surface-plasmon resonance (SPR), such as for immuno-sensor applications or piezo-electrical and electro-chemical detection. Toward this end, the preparation, structure and application of functional interfacial surfaces are described and discussed. A totally different approach based on the use of Hall effect measurements performed on a granular metal-oxide-semiconductor layer and different experimental solutions is also presented. Finally, optical sensors are addressed through the photonic modulation of surface properties or transmission interferometric absorption sensors. Mixed electrical and optical chemical sensors are also examined.

  19. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies.

    PubMed

    Boozer, Christina; Kim, Gibum; Cong, Shuxin; Guan, Hannwen; Londergan, Timothy

    2006-08-01

    Surface plasmon resonance (SPR) biosensors have enabled a wide range of applications in which researchers can monitor biomolecular interactions in real time. Owing to the fact that SPR can provide affinity and kinetic data, unique features in applications ranging from protein-peptide interaction analysis to cellular ligation experiments have been demonstrated. Although SPR has historically been limited by its throughput, new methods are emerging that allow for the simultaneous analysis of many thousands of interactions. When coupled with new protein array technologies, high-throughput SPR methods give users new and improved methods to analyze pathways, screen drug candidates and monitor protein-protein interactions.

  20. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction

    NASA Astrophysics Data System (ADS)

    Low, Jingxiang; Qiu, Shuoqi; Xu, Difa; Jiang, Chuanjia; Cheng, Bei

    2018-03-01

    Surface plasmon resonance (SPR) effect has been utilized in many solar conversion applications because of its ability to convert visible photons into "hot electron" energy. However, the direct evidence and enhancement of this unique effect are still great challenges, limiting its practical applications. Here we present the direct evidence and enhancement of SPR effect using TiO2 nanotube arrays (TNTAs) loaded with Ag nanoparticles (NPs) as a proof-of-concept example. Particularly, electrochemical deposition method is applied to deposit Ag NPs into the inner space of TNTAs for enhancing SPR effect of Ag NPs, as demonstrated by Raman and light absorption spectroscopies. This enhanced SPR effect is because multi-scattered light within TNTAs can be effectively utilized by Ag NPs in the inner space of TNTAs. Moreover, combining synchronous-illumination X-ray photoelectron and electrochemical impedance spectroscopy characterization, we confirm that the SPR effect of Ag NPs can enhance photocatalytic performance of TNTAs mainly from two aspects: (i) injection of "hot electrons" from Ag NPs to TNTAs and (ii) acceleration of charge carrier migration on the TNTAs through a unique near field effect. The direct evidence and enhancement of SPR effect open new perspectives in design of functional plasmonic nanomaterials with high solar conversion efficiency.

Top