Sample records for spray casting project

  1. Spray Deposition: A Fundamental Study of Droplet Impingement, Spreading and Consolidation

    DTIC Science & Technology

    1989-12-01

    low alloy (HSLA) steel. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened HSLA steel...manufacturing process. Specifically, HSLA-100, a copper precipitation strengthened high-strength, low - alloy steel was spray cast via the Osprey’ m process...by spray casting. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened steel, were spray cast under differing conditions

  2. Effect of formulation- and administration-related variables on deposition pattern of nasal spray pumps evaluated using a nasal cast.

    PubMed

    Kundoor, Vipra; Dalby, Richard N

    2011-08-01

    To systematically evaluate the effect of formulation- and administration-related variables on nasal spray deposition using a nasal cast. Deposition pattern was assessed by uniformly coating a transparent nose model with Sar-Gel®, which changes from white to purple on contact with water. Sprays were subsequently discharged into the cast, which was then digitally photographed. Images were quantified using Adobe® Photoshop. The effects of formulation viscosity (which influences droplet size), simulated administration techniques (head orientation, spray administration angle, spray nozzle insertion depth), spray pump design and metering volume on nasal deposition pattern were investigated. There was a significant decrease in the deposition area associated with sprays of increasing viscosity. This appeared to be mediated by an increase in droplet size and a narrowing of the spray plume. Administration techniques and nasal spray pump design also had a significant effect on the deposition pattern. This simple color-based method provides quantitative estimates of the effects that different formulation and administration variables may have on the nasal deposition area, and provides a rational basis on which manufacturers of nasal sprays can base their patient instructions or post approval changes when it is impractical to optimize these using a clinical study.

  3. Design of experiments to optimize an in vitro cast to predict human nasal drug deposition.

    PubMed

    Shah, Samir A; Dickens, Colin J; Ward, David J; Banaszek, Anna A; George, Chris; Horodnik, Walter

    2014-02-01

    Previous studies showed nasal spray in vitro tests cannot predict in vivo deposition, pharmacokinetics, or pharmacodynamics. This challenge makes it difficult to assess deposition achieved with new technologies delivering to the therapeutically beneficial posterior nasal cavity. In this study, we determined best parameters for using a regionally divided nasal cast to predict deposition. Our study used a model suspension and a design of experiments to produce repeatable deposition results that mimic nasal deposition patterns of nasal suspensions from the literature. The seven-section (the nozzle locator, nasal vestibule, front turbinate, rear turbinate, olfactory region, nasopharynx, and throat filter) nylon nasal cast was based on computed tomography images of healthy humans. It was coated with a glycerol/Brij-35 solution to mimic mucus. After assembling and orienting, airflow was applied and nasal spray containing a model suspension was sprayed. After disassembling the cast, drug depositing in each section was assayed by HPLC. The success criteria for optimal settings were based on nine in vivo studies in the literature. The design of experiments included exploratory and half factorial screening experiments to identify variables affecting deposition (angles, airflow, and airflow time), optimization experiments, and then repeatability and reproducibility experiments. We found tilt angle and airflow time after actuation affected deposition the most. The optimized settings were flow rate of 16 L/min, postactuation flow time of 12 sec, a tilt angle of 23°, nozzle angles of 0°, and actuation speed of 5 cm/sec. Neither cast nor operator caused significant variation of results. We determined cast parameters to produce results resembling suspension nasal sprays in the literature. The results were repeatable and unaffected by operator or cast. These nasal spray parameters could be used to assess deposition from new devices or formulations. For human deposition studies using radiolabeled formulations, this cast could show that radiolabel deposition represents drug deposition. Our methods could also be used to optimize settings for other casts.

  4. Hair casts due to a deodorant spray.

    PubMed

    Ena, Pasquale; Mazzarello, Vittorio; Chiarolini, Fausto

    2005-11-01

    A 7-year-old girl presented with itching and greyish-white sleeve-like structures in her hair. After ruling out other possible causes for the symptoms, such as nits and dandruff, it was determined that the patient was affected by hair casts. These are small cylindrical structures resembling louse eggs that encircle individual scalp hairs and are easily movable along the hair shafts. It was concluded that she had induced the condition through misuse of a deodorant body spray. Scanning electron microscopy combined with electron dispersive X-ray analysis (X-ray microanalysis) of the hair casts showed the chemical nature of the structures. Some elements present in the composition of the ingredients of the deodorant spray, such as aluminium, chlorine, silicon, magnesium and carbon, were also present in this uncommon type of hair casts.

  5. Mechanical Performance of Cold-Sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Petráčková, K.; Kondás, J.; Guagliano, M.

    2017-12-01

    Cold-sprayed coatings made of A357 aluminum alloy, a casting alloy widely used in aerospace, underwent set of standard tests as well as newly developed fatigue test to gain an information about potential of cold spray for repair and additive manufacturing of loaded parts. With optimal spray parameters, coating deposition on substrate with smooth surface resulted in relatively good bonding, which can be further improved by application of grit blasting on substrate's surface. However, no enhancement of adhesion was obtained for shot-peened surface. Process temperature, which was set either to 450 or 550 °C, was shown to have an effect on adhesion and cohesion strength, but it does not influence residual stress in the coating. To assess cold spray perspectives for additive manufacturing, flat tensile specimens were machined from coating and tested in as-sprayed and heat-treated (solution treatment and aging) condition. Tensile properties of the coating after the treatment correspond to properties of the cast A357-T61 aluminum alloy. Finally, fatigue specimen was proposed to test overall performance of the coating and coating's fatigue limit is compared to the results obtained on cast A357-T61 aluminum alloy.

  6. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.H. Kim; C.T. Lee; C.B. Lee

    2013-10-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the mostmore » promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.« less

  7. Accuracy and reproducibility of virtual edentulous casts created by laboratory impression scan protocols.

    PubMed

    Peng, Lingyan; Chen, Li; Harris, Bryan T; Bhandari, Bikash; Morton, Dean; Lin, Wei-Shao

    2018-04-24

    Although computer-aided design and computer-aided manufacturing (CAD-CAM) complete removable dental prostheses (CRDPs) have gained popularity, conventional impressions are still common for CAD-CAM CRDP treatment. These need to be digitized and converted into virtual edentulous casts with a laboratory impression scan protocol during prosthesis fabrication. How this can best be accomplished is unclear. The purpose of this in vitro study was to compare the accuracy and reproducibility of virtual edentulous casts created by a dental laboratory laser scanner and a cone-beam computed tomography (CBCT) scanner with a digitized master cast. A master cast was digitized as the virtual reference cast. Ten polyvinyl siloxane impressions were made on the master cast and scanned with the dental laboratory laser scanner and CBCT scanner. The impressions were sprayed with antiglare spray and rescanned. Four groups of virtual study casts (N=40) were created from the impression scans. All virtual study casts and the reference cast were registered with surface-matching software, and the root mean square (RMS) values (representation of overall accuracy) and percentage of measurement data points within 1 standard deviation (SD) of mean RMS values (%, representation of overall reproducibility) among the 4 study groups were measured. Additionally, 95 numeric distance differences (representation of accuracy at each region) were measured in 5 distinct regions: the apex of the denture border, 6 mm from denture border, crest of the ridge, palate, and posterior palatal seal. The repeated-measures ANOVA and post hoc test (t grouping) were used to determine statistical differences (α=.05). The laboratory scanner group had a significantly larger RMS value (4.0 ±0.3 μm, P<.001) and smaller percentage of measurement data points within 1 SD of mean RMS value (77.5 ±1.0%, P<.001). The RMS values between the CBCT scanner (1.2 ±0.3 μm) and CBCT scanner-spray (1.1 ±0.2 μm) groups were not significantly different (P=.968), and the percentage of measurement data points within 1 SD of mean RMS values (90.1 ±1.1% versus 89.5 ±0.8%) were also not significantly different (P=.662). The numeric distance differences across 5 regions were affected by the scanning protocols (P<.001). The laboratory scanner and laboratory scanner-spray groups had significantly higher numeric distance differences at the apex of the denture border and crest of the ridge regions (P<.001). The CBCT scanner created more accurate and reproducible virtual edentulous casts, and the antiglare spray only significantly improved the accuracy and reproducibility of virtual edentulous casts created by the dental laboratory laser scanner. The accuracy of the virtual edentulous casts was different across 5 regions and was affected by the scanning protocols. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Modeling metal droplet sprays in spray forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muoio, N.G.; Crowe, C.T.; Fritsching, U.

    1995-12-31

    Spray casting is a process whereby a molten metal stream is atomized and deposited on a substrate. The rapid solidification of the metal droplets gives rise to a fine grain structure and improved material properties. This paper presents a simulation for the fluid and thermal interaction of the fluid and droplets in the spray and the effect on the droplet spray pattern. Good agreement is obtained between the measured and predicted droplet mass flux distribution in the spray.

  9. In Vitro Assessment of Spray Deposition Patterns in a Pediatric (12 Year-Old) Nasal Cavity Model.

    PubMed

    Sawant, Namita; Donovan, Maureen D

    2018-03-26

    Nasal sprays available for the treatment of cold and allergy symptoms currently use identical formulations and devices for adults as well as for children. Due to the obvious differences between the nasal airway dimensions of a child and those of an adult, the performance of nasal sprays in children was evaluated. Deposition patterns of nasal sprays administered to children were tested using a nasal cast based on MRI images obtained from a 12 year old child's nasal cavity. Test formulations emitting a range of spray patterns were investigated by actuating the device into the pediatric nasal cast under controlled conditions. The results showed that the nasal sprays impacted in the anterior region of the 12 year old child's nasal cavity, and only limited spray entered the turbinate region - the effect site for most topical drugs and the primary absorptive region for systemically absorbed drugs. Differences in deposition patterns following the administration of nasal sprays to adults and children may lead to differences in efficacy between these populations. Greater anterior deposition in children may result in decreased effectiveness, greater anterior dosage form loss, and the increased potential for patient non-compliance.

  10. Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications

    NASA Astrophysics Data System (ADS)

    Marrocco, T.; Driver, L. C.; Harris, S. J.; McCartney, D. G.

    2006-12-01

    Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn-Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely, Al-20wt.%Sn-1wt.%Cu-2wt.%Ni and Al-20wt.%Sn-1wt.%Cu-7wt.%Si. This article will describe the microstructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. The microstructures of powders and coatings were investigated by scanning electron microscopy, and the phases were identified by x-ray diffraction. Coating microhardnesses were determined under both as-sprayed and heat-treated conditions, and by the differences related to the microstructures that developed. Finally, the wear behavior of the sprayed and heat-treated coatings in hot engine oil was measured using an industry standard test and was compared with that of previous work on a ternary alloy.

  11. Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method

    NASA Astrophysics Data System (ADS)

    Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.

    2018-06-01

    Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.

  12. Experimental und numerical investigations on cooling efficiency of Air-Mist nozzles on steel during continuous casting

    NASA Astrophysics Data System (ADS)

    Arth, G.; Taferner, M.; Bernhard, C.; Michelic, S.

    2016-07-01

    Cooling strategies in continuous casting of steel can vary from rapid cooling to slow cooling, mainly controlled by adjusting the amount of water sprayed onto the surface of the product. Inadequate adjustment however can lead to local surface undercooling or reheating, leading to surface and inner defects. This paper focuses on cooling efficiency of Air-Mist nozzles on casted steel and the experimental and numerical prediction of surface temperature distributions over the product width. The first part explains the determination of heat transfer coefficients (HTC) on laboratory scale, using a so called nozzle measuring stand (NMS). Based on measured water distributions and determined HTC's for air-mist nozzles using the NMS, surface temperatures are calculated by a transient 2D-model on a simple steel plate, explained in the second part of this paper. Simulations are carried out varying water impact density and spray water distribution, consequently influencing the local HTC distribution over the plate width. Furthermore, these results will be interpreted with regard to their consequence for surface and internal quality of the cast product. The results reveal the difficulty of correct adjustment of the amount of sprayed water, concurrent influencing water distribution and thus changing HTC distribution and surface temperature.

  13. A summary of special coatings projects conducted in support of the Die Casting Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selle, J.E.

    1988-09-12

    The usefulness of various kinds of coatings to the die casting program has been studied. This work includes heat transfer and fluid flow calculations, as well as experimental work, to examine the feasibility and characteristics of various types of coatings. Calculations include the effect of surface roughness on fluid flow, conductance as a function of coating thickness, conductivity as a function of coating porosity, and solidification and possible remelting of microspheres of metal. In each case, the model is described and the results are presented. Experimental work involved evaluating the relative insulating value of various coatings and an analysis ofmore » commercial flame-sprayed coatings, low-density coatings, and release coatings. In each case, description of the experimental arrangement is given and the results are described. 5 refs., 28 figs., 6 tabs.« less

  14. Computational fluid dynamics combustion analysis evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Y. M.; Shang, H. M.; Chen, C. P.; Ziebarth, J. P.

    1992-01-01

    This study involves the development of numerical modelling in spray combustion. These modelling efforts are mainly motivated to improve the computational efficiency in the stochastic particle tracking method as well as to incorporate the physical submodels of turbulence, combustion, vaporization, and dense spray effects. The present mathematical formulation and numerical methodologies can be casted in any time-marching pressure correction methodologies (PCM) such as FDNS code and MAST code. A sequence of validation cases involving steady burning sprays and transient evaporating sprays will be included.

  15. Formation Mechanism of Discoloration on Die-Cast AZ91D Components Surface After Chemical Conversion

    NASA Astrophysics Data System (ADS)

    Liu, Bao-sheng; Wei, Ying-hui; Hou, Li-feng

    2013-01-01

    A notebook (NB) computer component was manufactured from AZ91D Mg alloy by a die-casting process. After chemical conversion treatment, a discoloration was noted on the component surface. The source of this discoloration has been studied in detail by scanning electron microscopy, energy dispersive spectroscopy, and spark atomic absorption spectroscopy. The corrosion resistance was also measured by potentiodynamic polarization, hydrogen evolution and salt spray testing. The formation mechanism for the discoloration which was caused by the residue left behind by excess mold release agent sprayed during the die-casting was discussed in detail. After chemical conversion treatment, the residual-baked mold release agent was apparent on the component surface as "white ash." Consequently, it degraded seriously both the appearance and the corrosion resistance of the manufactured component.

  16. One-piece, composite crucible with integral withdrawal/discharge section

    DOEpatents

    Besser, Matthew; Terpstra, Robert L.; Sordelet, Daniel J.; Anderson, Iver E.; Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; Turner, Paul C.

    2002-07-30

    A one-piece, composite open-bottom casting mold with integral withdrawal section is fabricated by thermal spraying of materials compatible with and used for the continuous casting of shaped products of reactive metals and alloys such as, for example, titanium and its alloys or for the gas atomization thereof.

  17. Efficacy of Dinotefuran (Alpine® spray and dust) on six species of stored product insects

    USDA-ARS?s Scientific Manuscript database

    Dinotefuran, an agonist of insect nicotinic acetylcholine receptors, was evaluated both as a 0.5% active ingredient aerosol spray and a dust combined with diatomaceous earth (DE), 5 g/m2 and 10g/m2), at 45% r.h. and 75% r.h. Target species were six adult stored product insect species: Tribolium cast...

  18. Corrosion behavior of as-cast Mg-8Li-3Al+ xCe alloy in 3.5wt% NaCl solution

    NASA Astrophysics Data System (ADS)

    Manivannan, S.; Dinesh, P.; Mahemaa, R.; MariyaPillai, Nandhakumaran; Kumaresh Babu, S. P.; Sundarrajan, Srinivasan

    2016-10-01

    Mg-8Li-3Al+ xCe alloys ( x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg-8Li-3Al+ xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B-117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg-8Li-3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.

  19. Research Progresses and Suggestions of Manufacturing Technologies of Engine Bearing Bushes

    NASA Astrophysics Data System (ADS)

    Cao, J.; Yin, Z. W.; Li, H. L.; Y Gao, G.

    2017-12-01

    Bearing bush is a key part of diesel engine, and its performance directly influences the life of whole machine. Several manufacturing technologies of bearing bush such as centrifugal casting, sintering, electroplating and magnetron sputtering have been overviewed. Their bond strength, porosity, production efficient, layer thickness, frictional coefficient and corresponding materials analyzed and compared. Results show that the porosity and oxidation of sintering and centrifugal casting are higher than that of other two methods. However, the production efficiency and coating thickness are better than that of electroplating and magnetron sputtering. Based on above comparisons and discussions, the improvements of all manufacturing technologies are suggested and supersonic cold spraying is suggested. It is proved that cold spraying technology is the best choice in the future with the developing of low frictional materials.

  20. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy,more » typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.« less

  1. Coating Bores of Light Metal Engine Blocks with a Nanocomposite Material using the Plasma Transferred Wire Arc Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Ernst, F.; Zwick, J.; Schlaefer, T.; Cook, D.; Nassenstein, K.; Schwenk, A.; Schreiber, F.; Wenz, T.; Flores, G.; Hahn, M.

    2008-09-01

    Engine blocks of modern passenger car engines are generally made of light metal alloys, mostly hypoeutectic AlSi-alloys. Due to their low hardness, these alloys do not meet the tribological requirements of the system cylinder running surface—piston rings—lubricating oil. In order to provide a suitable cylinder running surface, nowadays cylinder liners made of gray cast iron are pressed in or cast into the engine block. A newer approach is to apply thermal spray coatings onto the cylinder bore walls. Due to the geometric conditions, the coatings are applied with specifically designed internal diameter thermal spray systems. With these processes a broad variety of feedstock can be applied, whereas mostly low-alloyed carbon steel feedstock is being used for this application. In the context of this work, an iron-based wire feedstock has been developed, which leads to a nanocrystalline coating. The application of this material was carried out with the Plasma Transferred Wire Arc system. AlMgSi0.5 liners were used as substrates. The coating microstructure and the properties of the coatings were analyzed.

  2. Influence of Bravo fungicide applications on wood density and moisture content of Swiss needle cast affected Douglas-fir trees.

    Treesearch

    G.R. Johnson; Barbara L. Gartner; Doug Maguire; Alan Kanaskie

    2003-01-01

    Wood density, moisture content, tracheld width and cell wall size were examined in trees from plots that were sprayed for 5 years with chlorothalonil (Bravo ®) fungicide to reduce the impact of Swiss needle-cast (SNC) and from trees in adjacent unsprayed plots. The unsprayed (more heavily diseased) trees had significantly narrower sapwood, narrower growth tings, lower...

  3. A Comparison of Shadowgraphy and X-ray Computed Tomography in Liquid Spray Analysis

    DTIC Science & Technology

    2014-11-14

    atomizers and downstream of the nozzle exit gives insight into optimizing atomizers, particularly for combustion applications. The performance of gas ...regions near the spray nozzle [9, 10]. Because light refraction by liquid sheets is significant, these areas all cast a full shadow on the camera...hollow-cone pressure swirl design. Within this nozzle design, liquid swirls around an air-cored vortex. Upon exiting, the fluid expands due to its

  4. Impact of nanocrystal spray deposition on inorganic solar cells.

    PubMed

    Townsend, Troy K; Yoon, Woojun; Foos, Edward E; Tischler, Joseph G

    2014-05-28

    Solution-synthesized inorganic cadmium telluride nanocrystals (∼4 nm; 1.45 eV band gap) are attractive elements for the fabrication of thin-film-based low-cost photovoltaic (PV) devices. Their encapsulating organic ligand shell enables them to be easily dissolved in organic solvents, and the resulting solutions can be spray-cast onto indium-tin oxide (ITO)-coated glass under ambient conditions to produce photoactive thin films of CdTe. Following annealing at 380 °C in the presence of CdCl2(s) and evaporation of metal electrode contacts (glass/ITO/CdTe/Ca/Al), Schottky-junction PV devices were tested under simulated 1 sun conditions. An improved PV performance was found to be directly tied to control over the film morphology obtained by the adjustment of spray parameters such as the solution concentration, delivery pressure, substrate distance, and surface temperature. Higher spray pressures produced thinner layers (<60 nm) with lower surface roughness (<200 nm), leading to devices with improved open-circuit voltages (Voc) due to decreased surface roughness and higher short-circuit current (Jsc) as a result of enhanced annealing conditions. After process optimization, spray-cast Schottky devices rivaled those prepared by conventional spin-coating, showing Jsc = 14.6 ± 2.7 mA cm(-2), Voc = 428 ± 11 mV, FF = 42.8 ± 1.4%, and Eff. = 2.7 ± 0.5% under 1 sun illumination. This optimized condition of CdTe spray deposition was then applied to heterojunction devices (ITO/CdTe/ZnO/Al) to reach 3.0% efficiency after light soaking under forward bias. The film thickness, surface morphology, and light absorption were examined with scanning electron microscopy, optical profilometry, and UV/vis spectroscopy.

  5. FRONT VIEW OF POURING FROM #61 HOLDING FURNACE AT #02 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT VIEW OF POURING FROM #61 HOLDING FURNACE AT #02 STATION INTO THREE VERTICAL MOLDS SUBMERGED IN A WATER-FILLED TANK BELOW THE CASTING FLOOR. THE CASTING CREW'S JOBS DURING THIS PHASE OF THE OPERATION INCLUDE REGULATING THE POURING RATE AND MONITORING THE VALVE RODS THAT CONTROL THE WATER SPRAYS ON THE MOLDS. DIFFERENT ALLOYS REQUIRE SPECIFIC POURING SPEEDS AND WATER PRESSURES. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  6. Modeling the spray casting process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Haggar, S.M.; Muoio, N.; Crowe, C.T.

    1995-12-31

    Spray forming is a process in which a liquid metal is atomized into very small droplets and deposited on a substrate. These small droplets cool very rapidly in a high velocity gas jet, giving rise to smaller grain structure and improved mechanical properties. This paper presents a numerical model, based on the trajectory approach, for the velocity and thermal properties of the droplets in the jet and predicts the deposition pattern and the state of the droplets upon contact with the substrate.

  7. Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product

    DOEpatents

    Dykes, Charles D.; Daniel, Sabah S.; Wood, J. F. Barry

    1990-02-20

    In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

  8. Cold Spray Repair of Martensitic Stainless Steel Components

    NASA Astrophysics Data System (ADS)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  9. Regional deposition of mometasone furoate nasal spray suspension in humans.

    PubMed

    Shah, Samir A; Berger, Robert L; McDermott, John; Gupta, Pranav; Monteith, David; Connor, Alyson; Lin, Wu

    2015-01-01

    Nasal deposition studies can demonstrate whether nasal sprays treating allergic rhinitis and polyposis reach the ciliated posterior nasal cavity, where turbinate inflammation and other pathology occurs. However, quantifying nasal deposition is challenging, because in vitro tests do not correlate to human nasal deposition; gamma scintigraphy studies are thus used. For valid data, the radiolabel must distribute, as the drug, into different-sized droplets, remain associated with the drug in the formulation after administration, and not alter its deposition. Some nasal deposition studies have demonstrated this using homogenous solutions. However, most commercial nasal sprays are heterogeneous suspensions. Using mometasone furoate nasal suspension (MFS), we developed a technique to validate radiolabel deposition as a surrogate for nasal cavity drug deposition and characterized regional deposition and nasal clearance in humans. Mometasone furoate (MF) formulation was spiked with diethylene triamine pentacaetic acid. Both unlabeled and radiolabeled formulations (n = 3) were sprayed into a regionally divided nasal cast. Drug deposition was quantified by high pressure liquid chromatography within each region; radiolabel deposition was determined by gamma camera. Healthy subjects (n = 12) were dosed and imaged for six hours. Scintigraphic images were coregistered with magnetic resonance imaging scans to quantify anterior and posterior nasal cavity deposition and mucociliary clearance. The ratio of radiolabel to unlabeled drug was 1.05 in the nasal cast and regionally appeared to match, indicating that in vivo radiolabel deposition could represent drug deposition. In humans, MFS delivered 86% (9.2) of metered dose to the nasal cavity, approximately 60% (9.1) of metered dose to the posterior nasal cavity. After 15 minutes, mucociliary clearance removed 59% of the initial radiolabel in the nasal cavity, consistent with clearance rates from the ciliated posterior surface. MFS deposited significant drug into the posterior nasal cavity. Both nasal cast validation and mucociliary clearance confirm the radiolabel deposition distribution method accurately represented corticosteroid nasal deposition.

  10. Regional deposition of mometasone furoate nasal spray suspension in humans.

    PubMed

    Shah, S A; Berger, R L; McDermott, J; Gupta, P; Monteith, D; Connor, A; Lin, W

    2014-11-21

    Nasal deposition studies can demonstrate whether nasal sprays treating allergic rhinitis and polyposis reach the ciliated posterior nasal cavity, where turbinate inflammation and other pathology occurs. However, quantifying nasal deposition is challenging, because in vitro tests do not correlate to human nasal deposition; gamma scintigraphy studies are thus used. For valid data, the radiolabel must distribute, as the drug, into different-sized droplets, remain associated with the drug in the formulation after administration, and not alter its deposition. Some nasal deposition studies have demonstrated this using homogenous solutions. However, most commercial nasal sprays are heterogeneous suspensions. Using mometasone furoate nasal suspension (MFS), we developed a technique to validate radiolabel deposition as a surrogate for nasal cavity drug deposition and characterized regional deposition and nasal clearance in humans. Mometasone furoate (MF) formulation was spiked with diethylene triamine pentacaetic acid. Both unlabeled and radiolabeled formulations (n = 3) were sprayed into a regionally divided nasal cast. Drug deposition was quantified by high pressure liquid chromatography within each region; radiolabel deposition was determined by gamma camera. Healthy subjects (n = 12) were dosed and imaged for six hours. Scintigraphic images were coregistered with magnetic resonance imaging scans to quantify anterior and posterior nasal cavity deposition and mucociliary clearance. The ratio of radiolabel to unlabeled drug was 1.05 in the nasal cast and regionally appeared to match, indicating that in vivo radiolabel deposition could represent drug deposition. In humans, MFS delivered 86% (9.2) of metered dose to the nasal cavity, approximately 60% (9.1) of metered dose to the posterior nasal cavity. After 15 minutes, mucociliary clearance removed 59% of the initial radiolabel in the nasal cavity, consistent with clearance rates from the ciliated posterior surface. MFS deposited significant drug into the posterior nasal cavity. Both nasal cast validation and mucociliary clearance confirm the radiolabel deposition distribution method accurately represented corticosteroid nasal deposition.

  11. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    2008-05-06

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  12. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    1999-01-01

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  13. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.

    1999-07-13

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.

  14. Reflective Self-Metallizing Polyimide Films

    NASA Technical Reports Server (NTRS)

    Thompson, David W. (Inventor); Caplan, Maggie L. (Inventor); St.Clair, Anne (Inventor)

    1997-01-01

    A silver organic complex, such as silver acetate, is solubilized in a polyamic acid resin or soluble polyimide solution using a suitable solvent such as hexafluoroacetyl acetone. The mixture is stable and can be applied to both flat and contoured surfaces. Application can be performed by casting, dip-coating, spraying, or other suitable techniques. In addition, the mixture can be cast or extruded as a polyimide film which is not applied to an underlying substrate. Upon curing, a flexible silver coated polyimide film is produced.

  15. Spray forming -- Aluminum: Third annual report (Phase 2). Technical progress -- Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozarek, R.L.

    1998-04-20

    Commercial production of aluminum sheet and plate by spray atomization and deposition is a potentially attractive manufacturing alternative to conventional ingot metallurgy/hot-milling and to continuous casting processes because of reduced energy requirements and reduced cost. To realize the full potential of the technology, the Aluminum Company of America (Alcoa), under contract by the US Department of Energy, is investigating currently available state-of-the-art atomization devices to develop nozzle design concepts whose spray characteristics are tailored for continuous sheet production. This third technical progress report will summarize research and development work conducted during the period 1997 October through 1998 March. Included aremore » the latest optimization work on the Alcoa III nozzle, results of spray forming runs with 6111 aluminum alloy and preliminary rolling trials of 6111 deposits.« less

  16. Elaboration of Alumina-Zirconia Composites: Role of the Zirconia Content on the Microstructure and Mechanical Properties

    PubMed Central

    Naglieri, Valentina; Palmero, Paola; Montanaro, Laura; Chevalier, Jérôme

    2013-01-01

    Alumina-zirconia (AZ) composites are attractive structural materials, which combine the high hardness and Young’s modulus of the alumina matrix with additional toughening effects, due to the zirconia dispersion. In this study, AZ composites containing different amounts of zirconia (in the range 5–20 vol %) were prepared by a wet chemical method, consisting on the surface coating of alumina powders by mixing them with zirconium salt aqueous solutions. After spray-drying, powders were calcined at 600 °C for 1 h. Green bodies were then prepared by two methods: uniaxial pressing of spray-dried granules and slip casting of slurries, obtained by re-dispersing the spray dried granulates. After pressureless sintering at 1500 °C for 1 h, the slip cast samples gave rise to fully dense materials, characterized by a quite homogeneous distribution of ZrO2 grains in the alumina matrix. The microstructure, phase composition, tetragonal to monoclinic transformation behavior and mechanical properties were investigated and are here discussed as a function of the ZrO2 content. The material containing 10 vol % ZrO2 presented a relevant hardness and exhibited the maximum value of KI0, mainly imputable to the t → m transformation at the crack tip. PMID:28809262

  17. A novel restraint spraying-Conform process for manufacturing hypereutectic Al-Si alloy with enhanced properties

    NASA Astrophysics Data System (ADS)

    Chen, Y. G.; Yang, H.; Zhang, B. Q.; Liu, Y. L.; Yin, J. C.; Wei, W.; Zhong, Y.

    2017-02-01

    A novel restraint spraying-Conform (RS-C) process, which directly combines spraying with Conform to process metals in one step, has been proposed. Al-20Si alloy selected as experimental material was successfully fabricated by the RS-C process. The microstructures were dominated with fine and uniform primary silicon phases. The tensile strength and elongation to failure of the Al-20Si alloy were 204 MPa and 7.2% respectively after the RS-C process. The wear resistance of the processed Al-20Si alloy was increased significantly, about 1.7 times over the as-cast ingot. The experimental results indicate that RS-C is a promising near net shape forming technology.

  18. Feasibility Study for Casting of High Temperature Refractory Superalloy Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1998-01-01

    Abstract This study investigated the feasibility of using conventional casting technique to fabricate refractory wires reinforced superalloy composites. These composites were being developed for advanced rocket engine turbine blades and other high temperature applications operating up to 2000 F. Several types of refractory metal wires such as W- Th, W-Re, Mo-Hf-C and W-HF-C reinforced waspaloy were experimentally cast and heat treated at 2000 F up to 48 hrs. Scanning electron microscope analysis was conducted in regions adjacent to the wire-matrix interface to determine the reaction zone and chemical compatibility resulting from material interdiffusion. It was concluded that fabrication using conventional casting may be feasible because the wire-matrix reaction zone thickness was comparable to similar composites produced by arc-sprayed monotape with hot isostatic pressing technique, Moreover, it was also found that the chemical compatibility could be improved significantly through a slight modification of the superalloy matrix compositions.

  19. Development and evaluation of a digital dental modeling method based on grating projection and reverse engineering software.

    PubMed

    Zhou, Qin; Wang, Zhenzhen; Chen, Jun; Song, Jun; Chen, Lu; Lu, Yi

    2016-01-01

    For reasons of convenience and economy, attempts have been made to transform traditional dental gypsum casts into 3-dimensional (3D) digital casts. Different scanning devices have been developed to generate digital casts; however, each has its own limitations and disadvantages. The purpose of this study was to develop an advanced method for the 3D reproduction of dental casts by using a high-speed grating projection system and noncontact reverse engineering (RE) software and to evaluate the accuracy of the method. The methods consisted of 3 main steps: the scanning and acquisition of 3D dental cast data with a high-resolution grating projection system, the reconstruction and measurement of digital casts with RE software, and the evaluation of the accuracy of this method using 20 dental gypsum casts. The common anatomic landmarks were measured directly on the gypsum casts with a Vernier caliper and on the 3D digital casts with the Geomagic software measurement tool. Data were statistically assessed with the t test. The grating projection system had a rapid scanning speed, and smooth 3D dental casts were obtained. The mean differences between the gypsum and 3D measurements were approximately 0.05 mm, and no statistically significant differences were found between the 2 methods (P>.05), except for the measurements of the incisor tooth width and maxillary arch length. A method for the 3D reconstruction of dental casts was developed by using a grating projection system and RE software. The accuracy of the casts generated using the grating projection system was comparable with that of the gypsum casts. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Template-assisted electrostatic spray deposition as a new route to mesoporous, macroporous, and hierarchically porous oxide films.

    PubMed

    Sokolov, S; Paul, B; Ortel, E; Fischer, A; Kraehnert, R

    2011-03-01

    A novel film coating technique, template-assisted electrostatic spray deposition (TAESD), was developed for the synthesis of porous metal oxide films and tested on TiO(2). Organic templates are codeposited with the titania precursor by electrostatic spray deposition and then removed during calcination. Resultant films are highly porous with pores casted by uniformly sized templates, which introduced a new level of control over the pore morphology for the ESD method. Employing the amphiphilic block copolymer Pluronic P123, PMMA latex spheres, or a combination of the two, mesoporous, macroporous, and hierarchically porous TiO(2) films are obtained. Decoupled from other coating parameters, film thickness can be controlled by deposition time or depositing multiple layers while maintaining the coating's structure and integrity.

  1. Investigation on the cold rolling and structuring of cold sprayed copper-coated steel sheets

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.; Gerdt, L.; Senge, S.; Hirt, G.

    2017-03-01

    A current driving force of research is lightweight design. One of the approaches to reduce the weight of a component without causing an overall stiffness decrease is the use of multi-material components. One of the main challenges of this approach is the low bonding strength between different materials. Focusing on steel-aluminum multi-material components, thermally sprayed copper coatings can come into use as a bonding agent between steel sheets and high pressure die cast aluminum to improve the bonding strength. This paper presents a combination of cold gas spraying of copper coatings and their subsequent structuring by rolling as surface pretreatment method of the steel inserts. Therefore, flat rolling experiments are performed with samples in “as sprayed” and heat treated conditions to determine the influence of the rolling process on the bond strength and the formability of the coating. Furthermore, the influence of the rolling on the roughness and the hardness of the coating was examined. In the next step, the coated surface was structured, to create a surface topology suited for a form closure connection in a subsequent high-pressure die casting process. No cracks were observed after the cold rolling process with a thickness reduction of up to ε = 14 % for heat treated samples. Structuring of heat treated samples could be realized without delamination and cracking.

  2. Evaluation of Convergent Spray Technology(TM) Spray Process for Roof Coating Application

    NASA Technical Reports Server (NTRS)

    Scarpa, J.; Creighton, B.; Hall, T.; Hamlin, K.; Howard, T.

    1998-01-01

    The overall goal of this project was to demonstrate the feasibility of(CST) Convergent Spray Technology (Trademark) for the roofing industry. This was accomplished by producing an environmentally compliant coating utilization recycled materials, a CST(Trademark) spray process portable application cart, and hand-held applicator with a CST(Trademark) spray process nozzle. The project culminated with application of this coating to a nine hundred sixty square foot metal for NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama.

  3. Updates on EPA’s High-Throughput Exposure Forecast (ExpoCast) Research Project (CPCP)

    EPA Science Inventory

    Recent research advances by the ORD ExpoCast project (CSS Rapid Exposure and Dosimetry) are presented to the computational toxicology community in the context of prioritizing chemicals on a risk-basis using joint ExpoCast and ToxCast predictions. Recent publications by Wambaugh e...

  4. Influence of Ni Interlayer on Microstructure and Mechanical Properties of Mg/Al Bimetallic Castings

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Liu, Canchun; Liang, Chunyong; Zhang, Yongguang

    2018-05-01

    Dissimilar joining of magnesium and aluminum using a compound casting process was investigated in the present work. For the first time, a Ni interlayer prepared by plasma spraying was inserted between the two base metals to improve the interfacial characteristics. Examination of the interfacial regions using scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and X-ray diffraction revealed the formation of a three-layered interface between Mg and Al without the interlayer. The thickness of the interface was approximately 600 μm when the casting was performed at 700 °C and increased with increasing casting temperature. However, with the addition of the Ni interlayer, the Al-Mg reaction was successfully prevented, and metallurgical bonding between the Ni interlayer and two base metals was achieved at a casting temperature of 700 °C. Upon increasing this temperature, Mg-Ni and Al-Ni intermetallics were generated at the separate interfaces. The shear strength of the Mg/Al bimetallic castings with the Ni interlayer was substantially improved compared with that of the direct Mg/Al joint, with a maximum value of 25.4 MPa achieved at 700 °C. Fracture occurred mainly along the Mg/Ni interface for the Mg/Ni/Al multilayer structure castings.

  5. An application of digital image processing techniques to the characterization of liquid petroleum gas (LPG) spray

    NASA Astrophysics Data System (ADS)

    Qi, Y. L.; Xu, B. Y.; Cai, S. L.

    2006-12-01

    To control fuel injection, optimize combustion and reduce emissions for LPG (liquefied petroleum gas) engines, it is necessary and important to understand the characteristics of LPG sprays. The present work investigates the geometry of LPG sprays, including spray tip penetration, spray angle, projected spray area and spray volume, by using schlieren photography and digital image processing techniques. Two types of single nozzle injectors were studied, with the same nozzle diameter, but one with and one without a double-hole flow-split head. A code developed to analyse the results directly from the digitized images is shown to be more accurate and efficient than manual measurement and analysis. Test results show that a higher injection pressure produces a longer spray tip penetration, a larger projected spray area and spray volume, but a smaller spray cone angle. The injector with the double-hole split-head nozzle produces better atomization and shorter tip penetration at medium and late injection times, but longer tip penetration in the early stage.

  6. Warm Spraying of High-Strength Ni-Al-Bronze: Cavitation Characteristics and Property Prediction

    NASA Astrophysics Data System (ADS)

    Krebs, Sebastian; Kuroda, Seiji; Katanoda, Hiroshi; Gaertner, Frank; Klassen, Thomas; Araki, Hiroshi; Frede, Simon

    2017-01-01

    Bronze materials such as Ni-Al-bronze show exceptional performances against cavitation erosion, due to their high fatigue strength and high strength. These materials are used for ship propellers, pump systems or for applications with alternating stresses. Usually, the respective parts are cast. With the aim to use resources more efficiently and to reduce costs, this study aimed to evaluate opportunities to apply bronze as a coating to critical areas of respective parts. The coatings should have least amounts of pores and non-bonded areas and any contaminations that might act as crack nuclei and contribute to material damages. Processes with low oxidation and high kinetic impacts fulfill these criteria. Especially warm spraying, a nitrogen-cooled HVOF process, with similar impact velocities as cold gas spraying but enhanced process temperature, allows for depositing high-strength Ni-Al-bronze. This study systematically simulates and evaluates the formation and performance of warm-sprayed Ni-Al-bronze coatings for different combustion pressures and nitrogen flow rates. Substrate preheating was used to improve coating adhesion for lower spray parameter sets. Furthermore, this study introduces an energy-based concept to compare spray parameter sets and to predict coating properties. Coatings with low porosities and high mechanical strengths are obtained, allowing for a cavitation resistance similar to bulk material.

  7. Accuracy of a new ring-opening metathesis elastomeric dental impression material with spray and immersion disinfection.

    PubMed

    Kronström, Mats H; Johnson, Glen H; Hompesch, Richard W

    2010-01-01

    A new elastomeric impression material has been formulated with a ring-opening metathesis chemistry. In addition to other properties of clinical significance, the impression accuracy must be confirmed. The purpose of this study was to compare the accuracy of the new elastomeric impression material with vinyl polysiloxane and polyether following both spray and immersion disinfection. Impressions of a modified dentoform with a stainless steel crown preparation in the lower right quadrant were made, and type IV gypsum working casts and dies were formed. Anteroposterior (AP), cross-arch (CA), buccolingual (BL), mesiodistal (MD), occlusogingivobuccal (OGB), and occlusogingivolingual (OGL) dimensions were measured using a microscope. Working cast and die dimensions were compared to those of the master model. The impression materials were a newly formulated, ring-opening metathesis-polymerization impression material (ROMP Cartridge Tray and ROMP Volume Wash), vinyl polysiloxane (VPS, Aquasil Ultra Monophase/LV), and a polyether (PE, Impregum Penta Soft/Permadyne Garant L). Fifteen impressions with each material were made, of which 5 were disinfected by spray for 10 minutes (CaviCide), 5 were disinfected by immersion for 90 minutes (ProCide D), and 5 were not disinfected. There were significant cross-product interactions with a 2-way ANOVA, so a 1-way ANOVA and Dunnett's T3 multiple comparison test were used to compare the dimensional changes of the 3 impression materials, by disinfection status and for each location (alpha=.05). For ROMP, there were no significant differences from the master, for any dimension, when comparing the control and 2 disinfectant conditions. No significant differences were detected among the 3 impression materials for CA, BL, and MD. The working die dimensions of OGB and OGL for VPS with immersion disinfection were significantly shorter than with PE and ROMP (P<.05). Overall, the AP dimension was more accurate than CA, and the BL of working dies was 0.040 mm greater in diameter than MD. The accuracy of gypsum working casts and working dies from the new and 2 existing types of impression material were similar, for both spray and immersion disinfection. Judicious application of a die spacer can compensate for the small differences observed. VPS may require additional laboratory accommodation to compensate for a shorter working die. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  8. Spray-on polyvinyl alcohol separators and impact on power production in air-cathode microbial fuel cells with different solution conductivities.

    PubMed

    Hoskins, Daniel L; Zhang, Xiaoyuan; Hickner, Michael A; Logan, Bruce E

    2014-11-01

    Separators are used to protect cathodes from biofouling and to avoid electrode short-circuiting, but they can adversely affect microbial fuel cell (MFC) performance. A spray method was used to apply a polyvinyl alcohol (PVA) separator to the cathode. Power densities were unaffected by the PVA separator (339±29mW/m(2)), compared to a control lacking a separator in a low conductivity solution (1mS/cm) similar to wastewater. Power was reduced with separators in solutions typical of laboratory tests (7-13mS/cm), compared to separatorless controls. The PVA separator produced more power in a separator assembly (SEA) configuration (444±8mW/m(2)) in the 1mS/cm solution, but power was reduced if a PVA or wipe separator was used in higher conductivity solutions with either Pt or activated carbon catalysts. Spray and cast PVA separators performed similarly, but the spray method is preferred as it was easier to apply and use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. EVALUATION OF CONVERGENT SPRAY TECHNOLOGYTM SPRAY PROCESS FOR ROOF COATING APPLICATION

    EPA Science Inventory

    The overall goal of this project was to demonstrate the feasibility of Convergent Spray TechnologyTM for the roofing industry. This was accomplished by producing an environmentally compliant coating utilizing recycled materials, a CSTTM spray process portable application cart, a...

  10. Sprays and Cartan projective connections

    NASA Astrophysics Data System (ADS)

    Saunders, D. J.

    2004-10-01

    Around 80 years ago, several authors (for instance H. Weyl, T.Y. Thomas, J. Douglas and J.H.C. Whitehead) studied the projective geometry of paths, using the methods of tensor calculus. The principal object of study was a spray, namely a homogeneous second-order differential equation, or more generally a projective equivalence class of sprays. At around the same time, E. Cartan studied the same topic from a different point of view, by imagining a projective space attached to a manifold, or, more generally, attached to a `manifold of elements'; the infinitesimal `glue' may be interpreted in modern language as a Cartan projective connection on a principal bundle. This paper describes the geometrical relationship between these two points of view.

  11. Analysis and test of insulated components for rotary engine

    NASA Technical Reports Server (NTRS)

    Badgley, Patrick R.; Doup, Douglas; Kamo, Roy

    1989-01-01

    The direct-injection stratified-charge (DISC) rotary engine, while attractive for aviation applications due to its light weight, multifuel capability, and potentially low fuel consumption, has until now required a bulky and heavy liquid-cooling system. NASA-Lewis has undertaken the development of a cooling system-obviating, thermodynamically superior adiabatic rotary engine employing state-of-the-art thermal barrier coatings to thermally insulate engine components. The thermal barrier coating material for the cast aluminum, stainless steel, and ductile cast iron components was plasma-sprayed zirconia. DISC engine tests indicate effective thermal barrier-based heat loss reduction, but call for superior coefficient-of-thermal-expansion matching of materials and better tribological properties in the coatings used.

  12. Fixed automated spray technology.

    DOT National Transportation Integrated Search

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  13. US EPA - ToxCast and the Tox21 program: perspectives

    EPA Science Inventory

    ToxCast is a large-scale project being conducted by the U.S. EPA to screen ~2000 chemicals against a large battery of in vitro high-throughput screening (HTS) assays. ToxCast is complemented by the Tox21 project being jointly carried out by the U.S. NIH Chemical Genomics Center (...

  14. Spray Characteristics and Tribo-Mechanical Properties of High-Velocity Arc-Sprayed WC-W2C Iron-Based Coatings

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Hagen, L.; Kokalj, D.

    2017-10-01

    In terms of arc-sprayed coatings, the lamellar coating microstructure is mainly affected by the atomization behavior of the molten electrode tips. When using compressed air, oxide formations occur during atomization, across the particle-laden spray plume and when the molten droplets splash onto the substrate. Within the scope of this study, the potential of a high-velocity arc-spraying process due to elevated atomization gas pressures and its effect on the spray and coating characteristics was analyzed using a cast tungsten carbide (CTC)-reinforced FeCMnSi cored wire. Since the atomization behavior corresponds with the electrode phenomena, the power spectrum and the droplet formation were observed during spraying. The tribo-mechanical properties of CTC-FeCMnSi coatings were examined in dry sliding experiments and indentation tests. In addition, adhesion tests and metallographic investigations were carried out to analyze the bonding strength, cohesive behavior, and lamellar microstructure. The occurrence of oxide phases was evaluated by x-ray diffraction and electron microscopy. Moreover, the oxygen content was determined by using glow discharge optical emission spectroscopy as well as energy-dispersive x-ray spectroscopy. With respect to elevated atomization gas pressures, a dense microstructure with improved adhesion to the substrate and reduced surface roughness was observed. Dry sliding experiments revealed an advanced wear behavior of specimens, when using above average increased atomization gas pressures. Analytic methods verified the existence of oxide phases, which were generated during spraying. A significant change of the extent and type of oxides, when applying an increased flow rate of the atomization gas, cannot be observed. Besides an enhanced coating quality, the use of increased atomization gas pressure exhibited good process stability.

  15. Polymer-based solar cells having an active area of 1.6 cm{sup 2} fabricated via spray coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarratt, N. W.; Griffin, J.; Zhang, Y.

    We demonstrate the fabrication of polymer solar cells in which both a PEDOT:PSS hole transport and a PCDTBT:PC{sub 71}BM photoactive layer are deposited by spray-casting. Two device geometries are explored, with devices having a pixel area of 165 mm{sup 2} attaining a power conversion efficiency of 3.7%. Surface metrology indicates that the PEDOT:PSS and PCDTBT:PC{sub 71}BM layers have a roughness of 2.57 nm and 1.18 nm over an area of 100 μm{sup 2}. Light beam induced current mapping reveals fluctuations in current generation efficiency over length-scales of ∼2 mm, with the average photocurrent being 75% of its maximum value.

  16. Alignment Fixtures For Vacuum-Plasma-Spray Gun

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Daniel, Ronald L., Jr.

    1993-01-01

    Fixtures for alignment of vacuum-plasma-spray guns built. Each fixture designed to fit specific gun and holds small, battery-powered laser on centerline of gun. Laser beam projects small red dot where centerline intersects surface of workpiece to be sprayed. After laser beam positioned on surface of workpiece, fixture removed from gun and spraying proceeds.

  17. Vacuum Plasma Spray Forming of Copper Alloy Liners for Regeneratively Cooled Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2003-01-01

    Vacuum plasma spray (VPS) has been demonstrated as a method to form combustion chambers from copper alloys NARloy-Z and GRCop-84. Vacuum plasma spray forming is of particular interest in the forming of CuCrNb alloys such as GRCop-84, developed by NASA s Glenn Research Center, because the alloy cannot be formed using conventional casting and forging methods. This limitation is related to the levels of chromium and niobium in the alloy, which exceed the solubility limit in copper. Until recently, the only forming process that maintained the required microstructure of CrNb intermetallics was powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. This paper discusses the techniques used to form combustion chambers from CuCrNb and NARloy-Z, which will be used in regeneratively cooled liquid rocket combustion chambers.

  18. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  19. Wear resistance of metals and alloys; Proceedings of the Conference, Chicago, IL, Sept. 24-30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kingsbury, G.R.

    1988-01-01

    Techniques for characterizing and improving the wear properties of metals and composites are discussed in reviews and reports. Topics addressed include the use of interatomic potentials to study the relationship between abrasive wear and other mechanical properties, gas-detonation powder spraying of diamond coatings, a fluidized-bed test method for erosion resistance, the wear behavior of Al and Al-Si-Cu alloys, and abrasive wear of bronze and ZA alloys with and without lubrication. Consideration is given to continuously cast vs sand-cast Zn-Al alloys for bearings, sintered 6061 Al-alloy-based particulate composites with dry lubricants, Cu-based particulate composites, high-temperature friction and wear of X-750 andmore » X-188 superalloys for low-heat-rejection engines, a new metallurgical conception of wear-resistant steels, and the effect of matrix microstructure on the abrasion resistance of high-Cr white cast irons. Extensive graphs and micrographs are provided.« less

  20. The Wettability of LaRC Colorless Polyimide Resins on Casting Surfaces

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Stoakley, Diane M.; St.Clair, Anne K.; Gierow, Paul A.; Bates, Kevin

    1997-01-01

    Two colorless polyimides developed at NASA Langley Research Center, LaRC -CP1 and LaRC -CP2, are noted for being optically transparent, resistant to radiation, and soluble in the imide form. These materials may be used to make transparent, thin polymer films for building large space reflector/collector inflatable antennas, solar arrays, radiometers, etc. Structures such as these require large area, seamless films produced via spin casting or spray coating the soluble imide on a variety of substrates. The ability of the soluble imide to wet and spread over the mandrel or casting substrate is needed information for processing these structures with minimum waste and reprocessing, thereby, reducing the production costs. The wettability of a liquid is reported as the contact angle of the solid/liquid system. This fairly simple measurement is complicated by the porosity and the amount of contamination of the solid substrate. This work investigates the effect of inherent viscosity, concentration of polyimide solids, and solvent type on the wettability of various curing surfaces.

  1. Corrosion characterization of in-situ titanium diboride (TiB2) reinforced aluminium-copper (Al-Cu) alloy by two methods: Salts spray fog and linear polarization resistance (LPR)

    NASA Astrophysics Data System (ADS)

    Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah

    2018-05-01

    Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.

  2. Exploring a Beach and Beach-Combing Projects

    ERIC Educational Resources Information Center

    White, Shelley

    1977-01-01

    One of the most exciting projects a teacher, parent, artist, or naturalist can share with others is beachcombing and making something lasting with the treasures found. This article discusses sand projects, sand painting, sand casting, sand cast candles, sea mobiles, seaweed collections, fish printing, and reed and grass printing. (NQ)

  3. Demonstration of the Impact of Thermomagnetic Processing on Cast Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard Michael; Murphy, Bart L.; Rios, Orlando

    2017-10-01

    This project builds on an earlier Manufacturing Demonstration Facility Technical Collaboration phase 1 project to investigate application of high magnetic fields during solution heat treating and aging of three different cast aluminum alloys.

  4. Equal Opportunity, Equal Work: Increasing Women's Participation in the U.S. President's Malaria Initiative Africa Indoor Residual Spraying Project

    PubMed Central

    Donner, Abigail; Belemvire, Allison; Johns, Ben; Mangam, Keith; Fiekowsky, Elana; Gunn, Jayleen; Hayden, Mary; Ernst, Kacey

    2017-01-01

    Background: One of the primary control measures for malaria transmission is indoor residual spraying (IRS). Historically, few women have worked in IRS programs, despite the income-generating potential. Increasing women's roles in IRS requires understanding the barriers to women's participation and implementing measures to address them. The U.S. President's Malaria Initiative (PMI) Africa Indoor Residual Spraying (AIRS) Project is the largest implementer of IRS globally. To address gender inequity in IRS operations, PMI AIRS assessed the barriers to the participation of women and developed and implemented policies to address these barriers. Methods: The PMI AIRS Project initially identified barriers through a series of informal assessments with key stakeholders. PMI AIRS then implemented a series of gender-guided policies, starting in 2015, in Benin, Ethiopia, Ghana, Mali, Madagascar, Mozambique, Rwanda, Senegal, Zambia, and Zimbabwe. The policies included adapting physical work environments to ensure privacy for women; ensuring the safety of women in the workplace; guaranteeing safety and job security of women during pregnancy; and encouraging qualified women to apply for supervisory positions. The project collected routine programmatic data on staff, spray quality, and spray efficiency; data from 2012 through the end of 2015 were analyzed (up through 1 year after implementation of the gender policies). In addition, PMI AIRS conducted surveys in 2015, 2016, and 2017 before and after the spray campaigns in 4 countries to determine changes in gender norms among spray operators through questions about decision making and agency. Results: The PMI AIRS Project increased women's employment with the program. Specifically, women's employment increased overall from 23% in 2012 to 29% in 2015, with a 2015 range from 16% (Mali) to 40% (Madagascar). Growth among supervisor roles was even stronger, with the percentage of women in supervisory roles increasing from 17% in 2012 to 46% in 2015, with a 2015 range from 9% (Mali) to 50% (Madagascar). While the data showed that in most countries women sprayed fewer houses per day than men in 2015, the differences were not meaningful, ranging from 0.1 to 1.2 households per day. Gender norms shifted toward more egalitarian views in 2 of the 4 countries with survey data. Conclusion: Preliminary results suggest the PMI AIRS Project gender policies are increasing the engagement of women in all aspects of spray operations, especially in supervisory roles. Expansion of these policies to all countries implementing IRS and to malaria control implementation more broadly is recommended. PMID:29242251

  5. Equal Opportunity, Equal Work: Increasing Women's Participation in the U.S. President's Malaria Initiative Africa Indoor Residual Spraying Project.

    PubMed

    Donner, Abigail; Belemvire, Allison; Johns, Ben; Mangam, Keith; Fiekowsky, Elana; Gunn, Jayleen; Hayden, Mary; Ernst, Kacey

    2017-12-28

    One of the primary control measures for malaria transmission is indoor residual spraying (IRS). Historically, few women have worked in IRS programs, despite the income-generating potential. Increasing women's roles in IRS requires understanding the barriers to women's participation and implementing measures to address them. The U.S. President's Malaria Initiative (PMI) Africa Indoor Residual Spraying (AIRS) Project is the largest implementer of IRS globally. To address gender inequity in IRS operations, PMI AIRS assessed the barriers to the participation of women and developed and implemented policies to address these barriers. The PMI AIRS Project initially identified barriers through a series of informal assessments with key stakeholders. PMI AIRS then implemented a series of gender-guided policies, starting in 2015, in Benin, Ethiopia, Ghana, Mali, Madagascar, Mozambique, Rwanda, Senegal, Zambia, and Zimbabwe. The policies included adapting physical work environments to ensure privacy for women; ensuring the safety of women in the workplace; guaranteeing safety and job security of women during pregnancy; and encouraging qualified women to apply for supervisory positions. The project collected routine programmatic data on staff, spray quality, and spray efficiency; data from 2012 through the end of 2015 were analyzed (up through 1 year after implementation of the gender policies). In addition, PMI AIRS conducted surveys in 2015, 2016, and 2017 before and after the spray campaigns in 4 countries to determine changes in gender norms among spray operators through questions about decision making and agency. The PMI AIRS Project increased women's employment with the program. Specifically, women's employment increased overall from 23% in 2012 to 29% in 2015, with a 2015 range from 16% (Mali) to 40% (Madagascar). Growth among supervisor roles was even stronger, with the percentage of women in supervisory roles increasing from 17% in 2012 to 46% in 2015, with a 2015 range from 9% (Mali) to 50% (Madagascar). While the data showed that in most countries women sprayed fewer houses per day than men in 2015, the differences were not meaningful, ranging from 0.1 to 1.2 households per day. Gender norms shifted toward more egalitarian views in 2 of the 4 countries with survey data. Preliminary results suggest the PMI AIRS Project gender policies are increasing the engagement of women in all aspects of spray operations, especially in supervisory roles. Expansion of these policies to all countries implementing IRS and to malaria control implementation more broadly is recommended. © Donner et al.

  6. Turbine airfoil to shroud attachment method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Christian X; Kulkarni, Anand A; James, Allister W

    2014-12-23

    Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) ofmore » the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.« less

  7. Application of Rapid Prototyping to the Investment Casting of Test Hardware (MSFC Center Director's Discretionary Fund Final Report, Project No. 98-08)

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.; Wells, D.

    2000-01-01

    Investment casting masters of a selected propulsion hardware component, a fuel pump housing, were rapid prototyped on the several processes in-house, along with the new Z-Corp process acquired through this project. Also, tensile samples were prototyped and cast using the same significant parameters. The models were then shelled in-house using a commercial grade zircon-based slurry and stucco technique. Next, the shelled models were fired and cast by our in-house foundry contractor (IITRI), with NASA-23, a commonly used test hardware metal. The cast models are compared by their surface finish and overall appearance (i.e., the occurrence of pitting, warping, etc.), as well as dimensional accuracy.

  8. Project CAST.

    ERIC Educational Resources Information Center

    Charles County Board of Education, La Plata, MD. Office of Special Education.

    The document outlines procedures for implementing Project CAST (Community and School Together), a community-based career education program for secondary special education students in Charles County, Maryland. Initial sections discuss the role of a learning coordinator, (including relevant travel reimbursement and mileage forms) and an overview of…

  9. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  10. Hilfiker reinforced soil embankment with full-height, cast-in-place concrete panels

    DOT National Transportation Integrated Search

    1992-05-01

    The objective of this project was to evaluate the construction and performance of a full-height retaining wall system. The contractor chose to use the Hilfiker Reinforced Soil Embankment with cast-in-place, concrete panels. The project included three...

  11. Development of spray guns for the application of rigid foam insulation

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    The paper describes the activities initiated to improve the existing spray gun system used for spraying insulating foam on the External Tank of the Space Shuttle, due to the quality variations of the applied foam noted in the past. Consideration is given to the two tasks of the project: (1) investigations of possible improvements, as an interim measure, to the spray gun currently used to apply the large acreage spray-on-foam insulation and the evaluation of other commercial equipment; and (2) the design and fabrication of a new automatic spray gun. The design and operation of the currently used Binks 43 PA spray gun are described together with several new breadboard spray guns designed and fabricated and the testing procedures developed. These new guns include the Modular Automatic Foam spray gun, the Ball Valve spray gun, and the Tapered Plug Valve (TPV) gun. As a result of tests, the TPV spray gun is recommended to replace the currently used automatic spray gun.

  12. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jekl, J.; Auld, J.; Sweet, C.

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffnessmore » requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.« less

  13. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  14. Paper Casting.

    ERIC Educational Resources Information Center

    Arrasjid, Dorine A.

    1980-01-01

    Describes an art project, based on the work of artist Chew Teng Beng, in the molding of wet paper on a plaster cast to create embossed paper designs. The values of such a project are outlined, including a note that its tactile approach makes it suitable to visually handicapped students. (SJL)

  15. Optimization of implant/bone attachment: The effects of implant surface porosity, bioactive ceramic coatings, and delivery of adsorbed growth factors

    NASA Astrophysics Data System (ADS)

    Melican, Mora Carolynne

    Various surface treatments and coating materials have been tested for use on metal alloy orthopaedic implants. Their purpose has been to enhance the bioactivity of the implant surfaces, and thus to increase the rate and degree of bony attachment in vivo in an attempt to hasten recovery time, increase implant service lifetime, and lessen pain associated with loosened orthopaedic implants. A series of in vivo and in vitro studies were performed to determine the influence of different implant surfaces including porous metal surfaces with varied porosity with depth, resorbable and non-resorbable plasma-sprayed hydroxyapatite (HA) coatings, and finally HA coatings with an adsorbed layer of human recombinant bone morphogenetic protein (rhBMP-2), an osteoinductive protein. Textured as-cast metal surfaces produced by investment casting in three dimensionally printed ceramic molds have exhibited superior bony ingrowth and attachment. Plasma-sprayed HA coatings have been shown to be appropriate substrates for osteoblast proliferation (particularly on highly crystalline HA) and stem cell proliferation (particularly on less crystalline HA). Less crystalline HA coatings have shown promise as delivery systems for different levels of rhBMP-2. The osteoinductive protein has been shown to remain active after delivery to the system, and was most effective when delivered in concentrations ranging from 30 to 50 ng/ml. Combinations of these surface treatments for metal implant surfaces warrant further investigation.

  16. Comparison of Heavy-Duty Scuffing Behavior between Chromium-Based Ceramic Composite and Nickel-Chromium-Molybdenum-Coated Ring Sliding against Cast Iron Liner under Starvation

    PubMed Central

    Shen, Yan; Yu, Baihong; Lv, Yutao; Li, Bin

    2017-01-01

    A running-in and starved lubrication experiment is designed to investigate the heavy-duty scuffing behavior of piston ring coatings against cast iron (Fe) cylinder liner using the piston ring reciprocating liner test rig. The scuffing resistance of the piston ring with the chromium-based ceramic composite coating (CKS), and that with the thermally sprayed nickel-chromium-molybdenum coating (NCM) is compared at different nominal pressures (40~100 MPa) and temperatures (180~250 °C). With the failure time as a criterion, the rank order is as follows: NCM/Fe > CKS/Fe. Before the scoring occurs at the interface of the piston ring and cylinder liner (PRCL), the cast iron liner enters into a “polish wear” stage, and iron-based adhesive materials begin to form on the piston ring surface. With the macroscopic adhesion formation, the plastic shearing cycle causes surface damages mainly due to abrasive effects for the CKS/Fe pairs and adhesive effects for the NCM/Fe pairs. PMID:29036911

  17. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  18. Cheminformatic Analysis of the US EPA ToxCast Chemical Library

    EPA Science Inventory

    The ToxCast project is employing high throughput screening (HTS) technologies, along with chemical descriptors and computational models, to develop approaches for screening and prioritizing environmental chemicals for further toxicity testing. ToxCast Phase I generated HTS data f...

  19. Math: Objectives Guide. Project CAST.

    ERIC Educational Resources Information Center

    Charles County Board of Education, La Plata, MD. Office of Special Education.

    The guide lists math objectives needed for independent living by secondary special education students. One of a series of Project CAST (Community and School Together) life skills manuals, the guide outlines basic competencies in terms of goal statements, behavioral objectives, and specialized vocabulary for the following areas: money, making…

  20. Advanced Main Combustion Chamber structural jacket strength analysis

    NASA Astrophysics Data System (ADS)

    Johnston, L. M.; Perkins, L. A.; Denniston, C. L.; Price, J. M.

    1993-04-01

    The structural analysis of the Advanced Main Combustion Chamber (AMCC) is presented. The AMCC is an advanced fabrication concept of the Space Shuttle Main Engine main combustion chamber (MCC). Reduced cost and fabrication time of up to 75 percent were the goals of the AMCC with cast jacket with vacuum plasma sprayed or platelet liner. Since the cast material for the AMCC is much weaker than the wrought material for the MCC, the AMCC is heavier and strength margins much lower in some areas. Proven hand solutions were used to size the manifolds cutout tee areas for combined pressure and applied loads. Detailed finite element strength analyses were used to size the manifolds, longitudinal ribs, and jacket for combined pressure and applied local loads. The design of the gimbal actuator strut attachment lugs were determined by finite element analyses and hand solutions.

  1. Modeling of Dendritic Evolution of Continuously Cast Steel Billet with Cellular Automaton

    NASA Astrophysics Data System (ADS)

    Wang, Weiling; Ji, Cheng; Luo, Sen; Zhu, Miaoyong

    2018-02-01

    In order to predict the dendritic evolution during the continuous steel casting process, a simple mechanism to connect the heat transfer at the macroscopic scale and the dendritic growth at the microscopic scale was proposed in the present work. As the core of the across-scale simulation, a two-dimensional cell automaton (CA) model with a decentered square algorithm was developed and parallelized. Apart from nucleation undercooling and probability, a temperature gradient was introduced to deal with the columnar-to-equiaxed transition (CET) by considering its variation during continuous casting. Based on the thermal history, the dendritic evolution in a 4 mm × 40 mm region near the centerline of a SWRH82B steel billet was predicted. The influences of the secondary cooling intensity, superheat, and casting speed on the dendritic structure of the billet were investigated in detail. The results show that the predicted equiaxed dendritic solidification of Fe-5.3Si alloy and columnar dendritic solidification of Fe-0.45C alloy are consistent with in situ experimental results [Yasuda et al. Int J Cast Metals Res 22:15-21 (2009); Yasuda et al. ISIJ Int 51:402-408 (2011)]. Moreover, the predicted dendritic arm spacing and CET location agree well with the actual results in the billet. The primary dendrite arm spacing of columnar dendrites decreases with increasing secondary cooling intensity, or decreasing superheat and casting speed. Meanwhile, the CET is promoted as the secondary cooling intensity and superheat decrease. However, the CET is not influenced by the casting speed, owing to the adjusting of the flow rate of secondary spray water. Compared with the superheat and casting speed, the secondary cooling intensity can influence the cooling rate and temperature gradient in deeper locations, and accordingly exerts a more significant influence on the equiaxed dendritic structure.

  2. Tox21 and ToxCast Chemical Landscapes: Laying the Foundation for 21st Century Toxicology

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast project and the related, multi-Agency Tox21 project are employing high-throughput technologies to screen hundreds to thousands of chemicals in hundreds of assays, probing a wide diversity of biological targets, pathways and mecha...

  3. Fan Fuel Casting Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imhoff, Seth D.

    LANL was approached to provide material and design guidance for a fan-shaped fuel element. A total of at least three castings were planned. The first casting is a simple billet mold to be made from high carbon DU-10Mo charge material. The second and third castings are for optimization of the actual fuel plate mold. The experimental scope for optimization is only broad enough for a second iteration of the mold design. It is important to note that partway through FY17, this project was cancelled by the sponsor. This report is being written in order to capture the knowledge gained shouldmore » this project resume at a later date.« less

  4. Deflocculation of clay suspensions using sodium polyacrylates

    NASA Technical Reports Server (NTRS)

    Jedlicka, P.

    1984-01-01

    Rheological properties of elutriated kaolin suspensions deflocculated by Na polyacrylate (DAC 3 and DAC 4) were studied and compared to those deflocculated by the conventional Na2CO3 water and glass and imported Dispex N40. The deflocculating effect of Na polyacrylate was comparable to that of Dispex N40. The optimum amounts of Na polyacrylate were determined for suspensions based on 5-type kaolin. The Na polyacrylate can be successfully used for decreasing the water content of ceramic slips for casting and spray drying.

  5. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  6. Operation Dominic, Shot Sword Fish. Project Officers Report-Project 1.2 Surface Phenomena

    DTIC Science & Technology

    1985-04-01

    8 78 4 . -.. =. . t...DMIAL SPRAY-DOW VELOMCE3 4 - % 8 0m o __D __ oC 400 o W0Z 02 I- 0 ) 0 -"I 6~~O,,, ’ _ _ _ _ _ _0 cs w Q00 2 . Q itl 0 0 0 0 0 0 0l0 0 02 0 0 0 0 0 0 0 0 0...8217 ’.,. " " _.. _ _ _... .. -\\. , .,. .’ ’,-,- •.-. ’-...-.’ ..,.’ USS BAUSELL 0.17 SECONDS 2 4 / 4 0.70 SECONDS FILM NO. A-IB- 8 I PRIMARY SHOCK WAVE SLICK 2 CENTRAL SPRAY AREA 3 OUTER EDGE OF SPRAY DOME 4

  7. A new method to acquire 3-D images of a dental cast

    NASA Astrophysics Data System (ADS)

    Li, Zhongke; Yi, Yaxing; Zhu, Zhen; Li, Hua; Qin, Yongyuan

    2006-01-01

    This paper introduced our newly developed method to acquire three-dimensional images of a dental cast. A rotatable table, a laser-knife, a mirror, a CCD camera and a personal computer made up of a three-dimensional data acquiring system. A dental cast is placed on the table; the mirror is installed beside the table; a linear laser is projected to the dental cast; the CCD camera is put up above the dental cast, it can take picture of the dental cast and the shadow in the mirror; while the table rotating, the camera records the shape of the laser streak projected on the dental cast, and transmit the data to the computer. After the table rotated one circuit, the computer processes the data, calculates the three-dimensional coordinates of the dental cast's surface. In data processing procedure, artificial neural networks are enrolled to calibrate the lens distortion, map coordinates form screen coordinate system to world coordinate system. According to the three-dimensional coordinates, the computer reconstructs the stereo image of the dental cast. It is essential for computer-aided diagnosis and treatment planning in orthodontics. In comparison with other systems in service, for example, laser beam three-dimensional scanning system, the characteristic of this three-dimensional data acquiring system: a. celerity, it casts only 1 minute to scan a dental cast; b. compact, the machinery is simple and compact; c. no blind zone, a mirror is introduced ably to reduce blind zone.

  8. Review of Research Work on Ti-BASED Composite Coatings

    NASA Astrophysics Data System (ADS)

    Gabbitas, Brian; Salman, Asma; Zhang, Deliang; Cao, Peng

    The service life of industrial components is limited predominantly by Chemical corrosion/mechanical wear. The project is concerned with the investigation of the capability of Ti(Al,O)/Al2O3 coatings to improve the service life of tool steel (H13) used for dies in aluminium high pressure die casting. This paper gives a general review on the research work conducted at the University of Waikato on producing and evaluating the titanium/alumina based composite coatings. The powder feedstocks for making the composite coatings were produced by high energy mechanical milling of a mixture of Al and TiO2 powders in two different molar ratios followed by a thermal reaction process. The feedstocks were then thermally sprayed using a high velocity air-fuel (HVAF) technique on H13 steel substrates to produce a Ti(Al,O)/Al2O3 composite coatings. The performance of the coating was assessed in terms of thermal shock resistance and reaction kinetics with molten aluminium. The composite powders and coatings were characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD).

  9. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuyucak, Selcuk; Li, Delin

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steelmore » casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using the lip pouring method. It was observed again that gating designs greatly influenced the melt filling velocity and the number of inclusion defects. The radial choked gating showed improvements in casting cleanliness and yield over the other gatings, even though no mold filters were used in the gating system.« less

  10. Development of High-Performance Cast Crankshafts. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Mark E

    The objective of this project was to develop technologies that would enable the production of cast crankshafts that can replace high performance forged steel crankshafts. To achieve this, the Ultimate Tensile Strength (UTS) of the new material needs to be 850 MPa with a desired minimum Yield Strength (YS; 0.2% offset) of 615 MPa and at least 10% elongation. Perhaps more challenging, the cast material needs to be able to achieve sufficient local fatigue properties to satisfy the durability requirements in today’s high performance gasoline and diesel engine applications. The project team focused on the development of cast steel alloysmore » for application in crankshafts to take advantage of the higher stiffness over other potential material choices. The material and process developed should be able to produce high-performance crankshafts at no more than 110% of the cost of current production cast units, perhaps the most difficult objective to achieve. To minimize costs, the primary alloy design strategy was to design compositions that can achieve the required properties with minimal alloying and post-casting heat treatments. An Integrated Computational Materials Engineering (ICME) based approach was utilized, rather than relying only on traditional trial-and-error methods, which has been proven to accelerate alloy development time. Prototype melt chemistries designed using ICME were cast as test specimens and characterized iteratively to develop an alloy design within a stage-gate process. Standard characterization and material testing was done to validate the alloy performance against design targets and provide feedback to material design and manufacturing process models. Finally, the project called for Caterpillar and General Motors (GM) to develop optimized crankshaft designs using the final material and manufacturing processing path developed. A multi-disciplinary effort was to integrate finite element analyses by engine designers and geometry-specific casting simulations with existing materials models to optimize crankshaft cost and performance. Prototype crankshafts of the final design were to be produced and validated using laboratory bench testing and on-engine durability testing. ICME process simulation tools were used to investigate a broad range of processing concepts. These concepts included casting orientation, various mold and core materials, and various filling and feeding strategies. Each crankshaft was first simulated without gating and risers, which is termed natural solidification. The natural solidification results were used as a baseline for strategy development of each concept. Casting process simulations and ICME tools were proven to be reasonable predictors of real world results. Potential alloys were developed that could meet the project material property goals with appropriate normalization and temper treatments. For the alloys considered, post-normalization temper treatments proved to be necessary to achieve the desired yield strengths and elongations and appropriate heat treatments were designed using ICME tools. The experimental data of all the alloys were analyzed in combination with ICME tools to establish chemistry-process-structure relations. Several GM small gas engine (SGE) crankshafts were successfully cast in sand molds using two different sprue, runner, gate, riser, chill designs. These crankshafts were cast in two different steel alloys developed during the project, but casting finishing (e.g. riser removal) remains a cost challenge. A long list of future work was left unfinished when this project was unexpectedly terminated.« less

  11. Species-Specific Predictive Signatures of Developmental Toxicity Using the ToxCast Chemical Library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive signatures that correlate with observed in vivo toxicity. In vitro profiling methods from ToxCast data consist of over 600 high-throughput screening (HTS) and high-content screening ...

  12. Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate

    NASA Astrophysics Data System (ADS)

    Bonabi, Salar Fatoureh; Ashrafizadeh, Fakhreddin; Sanati, Alireza; Nahvi, Saied Mehran

    2018-02-01

    In this research, four coatings including pure zinc, pure aluminum, a double-layered coating of zinc and aluminum, and a coating produced by simultaneous deposition of zinc and aluminum were deposited on a cast iron substrate using electric arc-spraying technique. The coatings were characterized by XRD, SEM and EDS map and spot analyses. Adhesion strength of the coatings was evaluated by three-point bending tests, where double-layered coating indicated the lowest bending angle among the specimens, with detection of cracks at the coating-substrate interface. Coatings produced by simultaneous deposition of zinc and aluminum possessed a relatively uniform distribution of both metals. In order to evaluate the corrosion behavior of the coatings, cyclic polarization and salt spray tests were conducted. Accordingly, pure aluminum coating showed susceptibility to pitting corrosion and other coatings underwent uniform corrosion. For double-layered coating, SEM micrographs revealed zinc corrosion products as flaky particles in the pores formed by pitting on the surface, an indication of penetration of corrosion products from the lower layer (zinc) to the top layer (aluminum). All coatings experienced higher negative corrosion potentials than the iron substrate, indicative of their sacrificial behavior.

  13. Biomimetic Structural Materials: Inspiration from Design and Assembly.

    PubMed

    Yaraghi, Nicholas A; Kisailus, David

    2018-04-20

    Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.

  14. Biomimetic Structural Materials: Inspiration from Design and Assembly

    NASA Astrophysics Data System (ADS)

    Yaraghi, Nicholas A.; Kisailus, David

    2018-04-01

    Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.

  15. Investigation of the interfacial reactions between steel and aluminum coatings for hybrid casting

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.; Gerdt, L.

    2018-06-01

    Coating of AA7075 was applied by means of cold gas spraying on steel substrates of 22MnB5 and DC04 as an interlayer for high pressure die casting of aluminum/steel hybrid components. The morphology and growth kinetics of intermetallic compounds formed at the interface between coating and steel has been investigated. Furthermore, the effect of alloying elements on the formation of the intermetallic phases was analyzed. The coated samples were heat treated by means of induction heating at the temperature T = 550 °C with different dwell times in the range of 10 s < t < 5 min. The reaction layer growth was examined by means of scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). Additionally, the intermetallic compounds were characterized by means of nanoindentation. Intermetallic compounds of AlFe phases occurred as the major constituent in the reaction zone for different combinations of coating and substrates.

  16. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  17. Workplace Basic Skills in the Metal Casting Industry for World Class Process and Technology.

    ERIC Educational Resources Information Center

    Rasmussen, Bonnie

    A workplace basic skills project for the metal casting industry was established jointly by Central Alabama Community College and Robinson Foundry, Inc. Evaluation of the project was made through a commercial test of hourly workers' general literacy level gains, instructor-developed pre- and posttests of mastery of the industrial process and…

  18. Tox21 and ToxCast Chemical Landscapes: Laying the Foundation for 21st Century Toxicology - Application of the Strategy to Chemical Testing

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast project and the related, multi-Agency Tox21 project are employing high-throughput technologies to screen hundreds to thousands of chemicals in hundreds of assays, probing a wide diversity of biological targets, pathways and mecha...

  19. Visualization and Quantification of Nasal and Olfactory Deposition in a Sectional Adult Nasal Airway Cast.

    PubMed

    Xi, Jinxiang; Yuan, Jiayao Eddie; Zhang, Yu; Nevorski, Dannielle; Wang, Zhaoxuan; Zhou, Yue

    2016-06-01

    To compare drug deposition in the nose and olfactory region with different nasal devices and administration techniques. A Sar-Gel based colorimetry method will be developed to quantify local deposition rates. A sectional nasal airway cast was developed based on an MRI-based nasal airway model to visualize deposition patterns and measure regional dosages. Four nasal spray pumps and four nebulizers were tested with both standard and point-release administration techniques. Delivered dosages were measured using a high-precision scale. The colorimetry correlation for deposited mass was developed via image processing in Matlab and its performance was evaluated through comparison to experimental measurements. Results show that the majority of nasal spray droplets deposited in the anterior nose while only a small fraction (less than 4.6%) reached the olfactory region. For all nebulizers considered, more droplets went beyond the nasal valve, leading to distinct deposition patterns as a function of both the nebulizer type (droplet size and initial speed) and inhalation flow rate. With the point-release administration, up to 9.0% (±1.9%) of administered drugs were delivered to the olfactory region and 15.7 (±2.4%) to the upper nose using Pari Sinus. Standard nasal devices are inadequate to deliver clinically significant olfactory dosages without excess drug losses in other nasal epitheliums. The Sar-Gel based colorimetry method appears to provide a simple and practical approach to visualize and quantify regional deposition.

  20. Clay Portrait Boxes

    ERIC Educational Resources Information Center

    Wilbert, Nancy Corrigan

    2009-01-01

    In an attempt to incorporate sculptural elements into her ceramics program, the author decided to try direct plaster casting of the face to make a plaster mold for clay. In this article, the author shares an innovative ceramics lesson that teaches students in making plaster casts and casting the face in clay. This project gives students the…

  1. Species-specific predictive models of developmental toxicity using the ToxCast chemical library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive models that correlate with observed in vivo toxicity. In vitro profiling methods are based on ToxCast data, consisting of over 600 high-throughput screening (HTS) and high-content sc...

  2. EPA's ToxCast Project: Lessons learned and future directions for use of HTS in predicting in vivo toxicology -- A Chemical Perspective

    EPA Science Inventory

    U.S. EPA’s ToxCast and the related Tox21 projects are employing high-throughput screening (HTS) technologies to profile thousands of chemicals, which in turn serve as probes of a wide diversity of targets, pathways and mechanisms related to toxicity. Initial models relating ToxCa...

  3. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for October 1 to December 1998, and January 31 to March 31, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, David; Purgert, Robert; Rhudy, Richard

    1999-04-21

    Some highlights are: (1) Material development, process development, and part validation are occurring simultaneously on a fast track schedule. (2) Prior project activity has resulted in a program emphasis on three components--manifolds, mounting brackets, and motor mounts; and three casting techniques--squeeze casting, pressure die casting, and sand casting. (3) With the project focus, it appears possible to offer manifolds and mounting brackets for automotive qualification testing on a schedule in line with the PNGV Year 2004 goal. (4) Through an iterative process of fly ash treatment, MMC ingot preparation, foundry process refinement, and parts production, both foundries (Eck Industries andmore » Thompson Aluminum Casting Company) are addressing the pre-competitive issues of: (a) Optimum castability with fly ash shapes and sizes; (b) Best mechanical properties derived from fly ash shapes and sizes; (c) Effective fly ash classification processes; (d) Mechanical properties resulting from various casting processes and fly ash formulations. Eck and TAC continued experiments with batch ingot provided by both Eck and the University of Wisconsin at Milwaukee. Castings were run that contained varying amounts of fly ash and different size fractions. Components were cast using cenosphere material to ascertain the effects of squeeze casting and to determine whether the pressure would break the cenospheres. Test parts are currently being machined into substandard test bars for mechanical testing. Also, the affect of heat treatments on ashalloy are being studied through comparison to two lots, one heat treated and one in the ''as cast'' condition.« less

  4. Tribological Properties of Ti(Al,O)/Al2O3 Composite Coating by Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Salman, Asma; Gabbitas, Brian; Cao, Peng; Zhang, Deliang

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity air fuel (HVAF) thermally sprayed wear resistant Ti(Al,O)/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting and dummy blocks aluminium extrusion. A feedstock of Ti(Al,O)/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity air-fuel (HVAF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The wear resistance of the coating was investigated by a tribometer using a spherical ended alumina pin as a counter body under dry and lubricating conditions. The results showed that composite coating has lower wear rate at high temperature than at room temperature without using lubricant. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  5. Biological profiling of the ToxCast Phase II Chemical Library in Primary Human Cell Co-Culture Systems

    EPA Science Inventory

    The U.S. EPA’s ToxCast research project was developed to address the need for high-throughput testing of chemicals and a pathway-based approach to hazard screening. Phase I of ToxCast tested over 300 unique compounds (mostly pesticides and antimicrobials). With the addition of Ph...

  6. Complex, Precision Cast Columbium Alloy Gas Turbine Engine Nozzles Coated to Resist Oxidation.

    DTIC Science & Technology

    1980-04-01

    Microstructures of Sprayed Specimens 64 Table 19 NS-4 Coated C129Y Alloy Specimens Weight Bisque Weight Sintered Weight Silicided Weight Pre-Oxidized...choice of another alloy , while perhaps assisting in the foundry process , would not have yielded a mechanical property data base with advantage over...Mo 250 ppm max; Fe 30 ppm max; Al , Ca, C, Si, Cr, Ni, Cu , Mn, Mg and Sn 10 ppm max each). Molybdenum វim powder (02 2000 ppm max; W 250 ppm max; Fe

  7. Manufacturing Methods and Technology Project Summary Reports.

    DTIC Science & Technology

    1980-12-01

    deposition of chrome-copper (Cr- Cu ), dry-film photoresist application, photolithographic masking, spray etching, die bonding, ultrasonic...4) cold roll forging. Of these, the cold roll forging process is the most widely used for the pro- duction of steel and low alloy blades. It provides... sprayed Mo- Al -Ni both provide relatively good wear resistance, see Figure 1. The powder -flame sprayed aluminum bronze did not perform as well. 147 -S t. I

  8. Identification of Coherent Structure Dynamics in Wall-Bounded Sprays using Proper Orthogonal Decomposition

    DTIC Science & Technology

    2010-08-31

    Wall interaction of sprays emanating from Gas Centered Swirl Coaxial (GCSC) injectors were experimentally studied as a part of this ten-week project. A...American Society of Engineering Education (ASEE) Dated August 31st 2010 Abstract Wall interaction of sprays emanating from Gas Centered...Edwards Air Force Base (AFRL/EAFB) have documented atomization characteristics of a Gas -Centered Swirl Coaxial (GCSC) injector [1-2], in which the

  9. Bond of Field-Cast Grouts to Precast Concrete Elements

    DOT National Transportation Integrated Search

    2017-01-01

    The performance of connections between prefabricated concrete elements constructed using field-cast cementitious grouts and groutlike materials is becoming a focus area for accelerated bridge construction (ABC) projects. These connections are require...

  10. Noise control of waste water pipes

    NASA Astrophysics Data System (ADS)

    Lilly, Jerry

    2005-09-01

    Noise radiated by waste water pipes is a major concern in multifamily housing projects. While the most common solution to this problem is to use cast-iron pipes in lieu of plastic pipes, this may not be sufficient in high-end applications. It should also be noted that many (if not most) multifamily housing projects in the U.S.A. are constructed with plastic waste piping. This paper discusses some of the measures that developers are currently using to control noise from both plastic and cast-iron waste pipes. In addition, results of limited noise measurements of transient water flow in plastic and cast-iron waste pipes will be presented.

  11. Validation of HVOF Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Hydraulic/Pneumatic Actuators

    DTIC Science & Technology

    2007-12-01

    Projects Agency (DARPA). The program evaluated HVOF, physical vapor deposition (PVD) and laser cladding , and concluded that HVOF was the best overall...components such as titanium flap tracks. 5 2.0 TECHNOLOGY DESCRIPTION 2.1 TECHNOLOGY DEVELOPMENT AND APPLICATION Technology background and...theory of operation: High-velocity oxygen-fuel (HVOF) is a standard commercial thermal spray process in which a powder of the material to be sprayed

  12. Comparison of house spraying and insecticide-treated nets for malaria control.

    PubMed Central

    Curtis, C. F.; Mnzava, A. E.

    2000-01-01

    The efficacies of using residual house spraying and insecticide-treated nets against malaria vectors are compared, using data from six recent comparisons in Africa, Asia and Melanesia. By all the entomological and malariological criteria recorded, pyrethroid-treated nets were at least as efficacious as house spraying with dichlorodiphenyltrichloroethane (DDT), malathion or a pyrethroid. However, when data from carefully monitored house spraying projects carried out between the 1950s and 1970s at Pare-Taveta and Zanzibar (United Republic of Tanzania), Kisumu (Kenya) and Garki (Nigeria) are compared with recent insecticide-treated net trials with apparently similar vector populations, the results with the insecticide-treated nets were much less impressive. Possible explanations include the longer duration of most of the earlier spraying projects and the use of non-irritant insecticides. Non-irritant insecticides may yield higher mosquito mortalities than pyrethroids, which tend to make insects leave the site of treatment (i.e. are excito-repellent). Comparative tests with non-irritant insecticides, including their use on nets, are advocated. The relative costs and sustainability of spraying and of insecticide-treated net operations are briefly reviewed for villages in endemic and epidemic situations and in camps for displaced populations. The importance of high population coverage is emphasized, and the advantages of providing treatment free of charge, rather than charging individuals, are pointed out. PMID:11196486

  13. Aerially released spray penetration of a tall coniferous canopy

    USDA-ARS?s Scientific Manuscript database

    An aerial spray deposition project was designed to evaluate aerial application to an Eastern Hemlock (Tsuga canadensis) canopy to combat Hemlock Woolly Adelgid (Adelges tsugae). This adelgid offers a difficult target residing in the forest canopy at the nodes of branchlets. The study collected 1680 ...

  14. Empowerment through income-generating projects.

    PubMed

    Rajamma, G

    1993-10-01

    In India, income generation projects proposed by development planners have often ignored the realities of women's lives and resulted in increased marginalization of women. In contrast, the Women's Liberation and Rehabilitation Society (WLARS) has adopted an empowerment approach to women's development in its income generation projects which target women of scheduled castes and scheduled tribes in Karnataka State. These women have the primary responsibility for sowing, transplanting, weeding, harvesting, and winnowing as well as caring for the household while men plough, apply fertilizer, spray pesticides, and harvest the produce. Because of their low status, women's health suffers and their wages are below those of men doing similar work. Women have no control over property or income, over their bodies or reproductive systems, or over their households if a man is in residence. WLARS, therefore, seeks to minimize socioeconomic gaps faced by women, to organize women to demand their rights, and to improve the economic status of women. WLARS has instigated the formation of women's groups which have collective savings funds and which further the longterm goals of increasing self-reliance among women. Women's groups have reduced women's domestic workload by overseeing the provision of nearby drinking water and domestic electricity, and women now alternate between agricultural labor during the growing season and income-generation activities the rest of the year. The women's groups also provide household necessities locally to reduce the need to travel to markets and have health committees which work to improve the health of the women and their families. The women involved are slowly but steadily improving community life as they improve their own lives.

  15. 76 FR 72921 - Proposed CERCLA Administrative Bona Fide Prospective Purchaser Settlement; The City of Dowagiac...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... and projected future response costs concerning the ICG Castings, Inc., Dowagiac site in Dowagiac..., telephone: (312) 886-6235. Comments should reference the ICG Castings, Inc., Dowagiac site in Dowagiac...

  16. Race, Caste, and Prejudice [And] Student Handbook to Race, Caste, and Prejudice. Publications No. 70-2 and 70-4.

    ERIC Educational Resources Information Center

    Kleg, Milton; And Others

    The regional and historical overview of race, caste, and prejudice is one of the units in the Anthropology Curriculum Project series. The major objective of the unit is to focus attention on discriminatory practices which grow out of physical differences and cultural attitudes. The document consists of teacher background materials and a student…

  17. Adhesive Bonding and Corrosion Protection of a Die Cast Magnesium Automotive Door

    NASA Astrophysics Data System (ADS)

    Bretz, G. T.; Lazarz, K. A.; Hill, D. J.; Blanchard, P. J.

    It is well known that magnesium alloys, in close proximity to other alloys, are susceptible to galvanic corrosion. Combined with this fact, in automotive applications, it is rare that magnesium will be present in the absence of other alloys such as steel or aluminum. Therefore, in wet applications, where the galvanic cell is completed, it is necessary to isolate the magnesium in order to prevent accelerated corrosion. There are numerous commercial pre-treatments available for magnesium, however this paper focuses on conversion coatings in conjunction with a spray powder coat. By means of example, results for a hem flange joint on an AM50 die cast magnesium door structure will be presented. The outer door skin is an aluminum alloy hemmed around a cast magnesium flange. An adhesive is used between the inner and outer to help with stiffness and NVH (Noise, Vibration and Harshness). Results from bonded lap-shear coupon tests that have been exposed to accelerated corrosion cycles are presented. A second phase of this work considered a surrogate hem flange coupon, which was similarly exposed to the same accelerated corrosion cycle. Results from both of these tests are presented within this paper along with a discussion as to their suitability for use within automotive applications.

  18. Noise Reduction to Reduce Patient Anxiety During Cast Removal: Can We Decrease Patient Anxiety With Cast Removal by Wearing Noise Reduction Headphones During Cast Saw Use?

    PubMed

    Mahan, Susan T; Harris, Marie S; Lierhaus, Anneliese M; Miller, Patricia E; DiFazio, Rachel L

    Noise reduction headphones decrease the sound during cast removal. Their effectiveness in decreasing anxiety has not been studied. Compare pediatric patients' anxiety levels during cast removal with and without utilization of noise reduction headphones combined with use of a personal electronic device. Quality improvement project. Patients randomly assigned to noise reduction headphone group or standard care group during cast removal. Faces, Legs, Activity, Cry, and Consolability Scale and heart rate were evaluated prior to, during, and after cast removal. Data were compared across groups. Fifty patients were included; 25 per group. No difference detected between the 2 groups in Faces, Legs, Activity, Cry, and Consolability Scale score prior to (p = .05) or after cast removal (p = .30). During cast removal, the headphone group had lower FLACC Scale scores (p = .03). Baseline heart rate was lower in the headphone group prior to (p = .02) and after (p = .005) cast removal with no difference during cast removal (p = .24). Utilizing noise reduction headphones and a personal electronic device during the cast removal process decreases patient anxiety.

  19. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    NASA Astrophysics Data System (ADS)

    Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.

    2009-08-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  20. Mission Critical STEM Partnership with the Air Force Office of Scientific Research

    DTIC Science & Technology

    2015-04-06

    Dr. Valerie Lundy-Wagner, Senior Research Associate, Community College Research Center Teachers College, Columbia University 29...composites. We were comparing our experiments vs. structural steel . Our project consisted of a 4x4 in square caste. The caste was fabricated by bonding...aluminum and stainless steel . The caste experiments varied from 3, 5, and 7 stainless steel rods embedded in the piece. We tested for tensile strength

  1. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littleton, Harry; Griffin, John

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Energy SMARRT) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy savingmore » estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU's/year and 6.46 trillion BTU's/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  2. Predictive In Vitro Screening of Environmental Chemicals – The ToxCast Project

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry and bioactivity profiling to predict potential for toxicity and prioritize limited testing resources (www.epa.gov/toc...

  3. Help for the Steel Industry

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A collaboration between NASA Lewis Research Center (LRC) and Gladwin Engineering resulted in the adaptation of aerospace high temperature metal technology to the continuous casting of steel. The continuous process is more efficient because it takes less time and labor. A high temperature material, once used on the X-15 research plane, was applied to metal rollers by a LRC developed spraying technique. Lewis Research Center also supplied mold prototype of metal composites, reducing erosion and promoting thermal conductivity. Rollers that previously cracked due to thermal fatigue, lasted longer. Gladwin's sales have increased, and additional NASA-developed innovations are anticipated.

  4. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Jon T.; Wang, Gerry; Luo, Alan

    The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improvemore » the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of the magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some improvement in tensile properties with vacuum casting. Plant trials with large castings revealed cavity fill issues attributed to cooling and partial solidification of metal in the shot sleeve while waiting for vacuum to be established in the die cavity. 6. Developed age-hardenable Mg-based alloys as potential alternatives to the AM60 and AZ91 alloys typically used in automotive applications. Mg-7%Al-based alloys having Sn or Sn+Si additions exhibited significant age hardening, but more work is needed to demonstrate significant improvement in tensile properties. Corrosion behavior of these alloys is between those of AM60 and AZ91 alloys. 7. Evaluated the die casting of magnesium directly onto either steel or aluminum tubes as a potential process to make large lightweight subassemblies. Samples were free of gross defects, but additional work is needed to increase the interfacial shear strength. Overall, the project demonstrated that an automotive door-in-white design incorporating a die cast magnesium inner panel and a stamped aluminum outer panel can achieve approximately 50% mass reduction compared to the stamped steel baseline door-in-white. This leads to reduced energy consumption when driving the vehicle, which should more than offset the increased embedded energy of manufacture associated with the lighter metals. However, additional design work would be needed in order to meet the mechanical performance required of a door. Development of high-strength, high-ductility magnesium alloy castings would help make this technology more attractive for potential use in the side doors on automobiles. Also, increased use of recycled magnesium and aluminum would reduce the embedded energy and greenhouse gas emissions associated with the manufacture of this type of lightweight door. Commercialization planning of the type of lightweight door technology addressed in this project would be contingent upon the doors meeting all technical performance requirements of the car maker. The specific lightweight door developed in this project didn’t meet some of those requirements, but a preliminary business case study was conducted anyhow. This study considered the ratio of cost increase to mass decrease when the lightweight door is compared to a baseline steel door. The ratio was found to be in an acceptable range for some vehicle programs, especially if the number of such vehicles to be produced is equal to or slightly less than the estimated 250,000-shot life of the die set. This would allow for the investment in the dies to be spread across many parts and thereby help minimize the cost increase.« less

  5. Reducing the Incidence of Cast-related Skin Complications in Children Treated With Cast Immobilization.

    PubMed

    Difazio, Rachel L; Harris, Marie; Feldman, Lanna; Mahan, Susan T

    2017-12-01

    Cast immobilization remains the mainstay of pediatric orthopaedic care, yet little is known about the incidence of cast-related skin complications in children treated with cast immobilization. The purposes of this quality improvement project were to: (1) establish a baseline rate of cast-related skin complications in children treated with cast immobilization, (2) identify trends in children who experienced cast-related skin complications, (3) design an intervention aimed at decreasing the rate of cast-related skin complications, and (4) determine the effectiveness of the intervention. A prospective interrupted time-series design was used to determine the incidence of cast-related skin complications overtime and compare the rates of skin complications before and after an intervention designed to decrease the incidence of cast-related heel complications. All consecutive patients who were treated with cast immobilization from September 2012 to September 2014 were included. A cast-related skin complications data collection tool was used to capture all cast-related skin complications. A high rate of heel events was noted in our preliminary analysis and an intervention was designed to decrease the rate of cast-related skin complications, including the addition of padding during casting and respective provider education. The estimated cast-related skin events rate for all patients was 8.9 per 1000 casts applied. The rate for the total preintervention sample was 13.6 per 1000 casts which decreased to 6.6 in the postintervention sample. When examining the heel-only group, the rate was 17.1 per 1000 lower extremity casts applied in the preintervention group and 6.8 in the postintervention group. Incorporating padding to the heel of lower extremity cast was an effective intervention in decreasing the incidence of cast-related skin complications in patients treated with cast immobilization. Level II.

  6. Modeling of skeletal members using polyurethane foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, J.M.F.; Weaver, R.W.

    1983-11-01

    At the request of the University of New Mexico's Maxwell Museum of Anthropology, members of the Plastic Section in the Process Development Division at SNLA undertook the special project of the Chaco Lady. The project consisted of polyurethane foam casting of a disinterred female skull considered to be approximately 1000 years old. Rubber latex molds, supplied by the UNM Anthropology Department, were used to produce the polymeric skull requested. The authors developed for the project a modified foaming process which will be used in future polyurethane castings of archaeological artifacts and contemporary skeletal members at the University.

  7. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  8. Arsenic Removal from Drinking Water - Web cast

    EPA Science Inventory

    Web cast presentation covered six topics: (1) Arsenic Chemistry, (2) Technology Selection/Arsenic Demonstration Program, (3) Case Study 1, (4) Caser Study 2, (5) Case Study 3, and (6) Media Regeneration Project. The presentation was considered a training session and consist of m...

  9. Arsenic Removal from Drinking Water - Web Cast Presentation

    EPA Science Inventory

    Web cast presentation covered six topics: 1), Arsenic Chemistry, 2), Technology Selection/Arsenic Demonstration Program, 3), Case Study 1, 4), Caser Study 2, 5), Case Study 3, and 6), Media Regeneration Project. The presentation was considered a training session and consist of m...

  10. T55-L-712 turbine engine compressor housing refurbishment-plasma spray project

    NASA Technical Reports Server (NTRS)

    Leissler, George W.; Yuhas, John S.

    1988-01-01

    A study was conducted to assess the feasibility of reclaiming T55-L-712 turbine engine compressor housings with an 88 wt percent aluminum to 12 wt percent silicon alloy applied by a plasma spray process. Tensile strength testing was conducted on as-sprayed and thermally cycled test specimens which were plasma sprayed with 0.020 to 0.100 in. coating thicknesses. Satisfactory tensile strength values were observed in the as-sprayed tensile specimens. There was essentially no decrease in tensile strength after thermally cycling the tensile specimens. Furthermore, compressor housings were plasma sprayed and thermally cycled in a 150-hr engine test and a 200-hr actual flight test during which the turbine engine was operated at a variety of loads, speeds and torques. The plasma sprayed coating system showed no evidence of degradation or delamination from the compressor housings. As a result of these tests, a procedure was designed and developed for the application of an aluminum-silicon alloy in order to reclaim T55-L-712 turbine engine compressor housings.

  11. Building Structure Feature-based Models for Predicting Isoform-specific Human Cytochrome P-450 (hCYP 3A4, 2D6 and 2C9) Inhibition Assay Results in ToxCast

    EPA Science Inventory

    EPA’s ToxCast project is using high-throughput screening (HTS) to profile and prioritize chemicals for further testing. ToxCast Phase I evaluated 309 unique chemicals, the majority pesticide actives, in over 500 HTS assays. These included 3 human cytochrome P450 (hCYP3A4, hCYP2...

  12. Magnesium Front End Research and Development: A Canada-China-USA Collaboration

    NASA Astrophysics Data System (ADS)

    Luo, Alan A.; Nyberg, Eric A.; Sadayappan, Kumar; Shi, Wenfang

    The Magnesium Front End Research & Development (MFERD) project is an effort jointly sponsored by the United States Department of Energy, the United States Automotive Materials Partnership (USAMP), the Chinese Ministry of Science and Technology and Natural Resources Canada (NRCan) to demonstrate the technical and economic feasibility of a magnesium-intensive automotive front end body structure which offers improved fuel economy and performance benefits in a multi-material automotive structure. The project examines novel magnesium automotive body applications and processes, beyond conventional die castings, including wrought components (sheet or extrusions) and high-integrity body castings. This paper outlines the scope of work and organization for the collaborative (tri-country) task teams. The project has the goals of developing key enabling technologies and knowledge base for increased magnesium automotive body applications. The MFERD project began in early 2007 by initiating R&D in the following areas: crashworthiness, NVH, fatigue and durability, corrosion and surface finishing, extrusion and forming, sheet and forming, high-integrity body casting, as well as joining and assembly. Additionally, the MFERD project is also linked to the Integrated Computational Materials Engineering (ICME) project that will investigate the processing/structure/properties relations for various magnesium alloys and manufacturing processes utilizing advanced computer-aided engineering and modeling tools.

  13. New Data from EPA's Exposure Forecasting (ExpoCast) Project (ISES meeting)

    EPA Science Inventory

    The health risks posed by the chemicals in our environment depends on both chemical hazard and exposure. However, relatively few chemicals have estimates of exposure intake, limiting risk estimations for thousands of chemicals. The U.S. EPA Exposure Forecasting (ExpoCast) projec...

  14. ExpoCast Framework for Rapid Exposure Forecasts (ISES ExpoDat symposium presentation)

    EPA Science Inventory

    The U.S. E.P.A. ExpoCast project uses high throughput exposure models (simulation) and any easily-obtained exposure heuristics to generate forward predictions of potential exposures from chemical properties. By comparison with exposures inferred via reverse pharmacokinetic modeli...

  15. Test/QA plan for the validation of the verification protocol for high speed pesticide spray drift reduction technologies for row and field crops

    EPA Science Inventory

    This test/QA plan for evaluation the generic test protocol for high speed wind tunnel, representing aerial application, pesticide spray drift reduction technologies (DRT) for row and field crops is in conformance with EPA Requirements for Quality Assurance Project Plans (EPA QA/R...

  16. Test/QA plan for the validation of the verification protocol for low speed pesticide spray drift reduction technologies for row and field crops

    EPA Science Inventory

    This test/QA plan for evaluation the generic test protocol for high speed wind tunnel, representing aerial application, pesticide spray drift reduction technologies (DRT) for row and field crops is in conformance with EPA Requirements for Quality Assurance Project Plans (EPA QA/R...

  17. Low-cost single-crystal turbine blades, volume 2

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Dennis, R. E.; Heath, B. R.

    1984-01-01

    The overall objectives of Project 3 were to develop the exothermic casting process to produce uncooled single-crystal (SC) HP turbine blades in MAR-M 247 and higher strength derivative alloys and to validate the materials process and components through extensive mechanical property testing, rig testing, and 200 hours of endurance engine testing. These Program objectives were achieved. The exothermic casting process was successfully developed into a low-cost nonproperietary method for producing single-crystal castings. Single-crystal MAR-M 247 and two derivatives DS alloys developed during this project, NASAIR 100 and SC Alloy 3, were fully characterized through mechanical property testing. SC MAR-M 247 shows no significant improvement in strength over directionally solidified (DS) MAR-M 247, but the derivative alloys, NASAIR 100 and Alloy 3, show significant tensile and fatigue improvements. Firtree testing, holography, and strain-gauge rig testing were used to determine the effects of the anisotropic characteristics of single-crystal materials. No undesirable characteristics were found. In general, the single-crystal material behaved similarly to DS MAR-M 247. Two complete engine sets of SC HP turbine blades were cast using the exothermic casting process and fully machined. These blades were successfully engine-tested.

  18. Microstructure and Sliding Wear Performance of Cr7C3-(Ni,Cr)3(Al,Cr) Coating Deposited from Cr7C3 In Situ Formed Atomized Powder

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-Bin; Shen, Jie; Gao, Feng; Yu, Yueguang; Li, Changhai

    2017-01-01

    This work is aimed at developing a new type of Cr7C3-(Ni,Cr)3(Al,Cr) coating for parts used in heavy-duty diesel engines. The feedstock, in which the stripe-shaped Cr7C3 was in situ formed, was firstly prepared by vacuum melting and gas atomization and then subjected by high-velocity oxy-fuel spraying to form the coatings. The carbon content, microstructure and phase constitution of the powders, as well as the sprayed coatings, were analyzed by chemical analysis, SEM and XRD. The hardness and sliding wear performance of the sprayed coatings were also tested and compared to a commercial Cr3C2-NiCr coating used on piston rings. The results showed that the content of carbon in feedstock was almost the same as designed, and that the volume content of in situ formed Cr7C3 was increased with carbon and chromium added. The major phases of the powders and sprayed coatings are Cr7C3 and Cr-alloyed Ni3Al. Only a small amount of carbon lost during the spraying process. As Cr7C3 content increased in the coatings, the microhardness at room temperature was firstly increased to about 1000Hv0.3. The microhardness of the coatings stayed almost constant, while the testing temperature was raised up to 700 °C for 0.5 h, which illustrates the potential application of the investigated coatings under high temperature conditions. The coatings containing 70 and 77 vol.% Cr7C3 showed the most promising wear resistance, lower friction coefficient and better tribological compatibility to gray cast iron counterpart than other tested Cr7C3-(Ni,Cr)3(Al,Cr) coatings and the reference Cr3C2-NiCr coating.

  19. Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique

    NASA Astrophysics Data System (ADS)

    Gockeln, Michael; Pokhrel, Suman; Meierhofer, Florian; Glenneberg, Jens; Schowalter, Marco; Rosenauer, Andreas; Fritsching, Udo; Busse, Matthias; Mädler, Lutz; Kun, Robert

    2018-01-01

    Reduction of lithium-ion battery (LIB) production costs is inevitable to make the use of LIB technology more viable for applications such as electric vehicles or stationary storage. To meet the requirements in today's LIB cost efficiency, our current research focuses on an alternative electrode fabrication method, characterized by a combination of double flame spray pyrolysis and lamination technique (DFSP/lamination). In-situ carbon coated nano-Li4Ti5O12 (LTO/C) was synthesized using versatile DFSP. The as-prepared composite powder was then directly laminated onto a conductive substrate avoiding the use of any solvent or binder for electrode preparation. The influence of lamination pressures on the microstructure and electrochemical performance of the electrodes was also investigated. Enhancements in intrinsic electrical conductivity were found for higher lamination pressures. Capacity retention of highest pressurized DFSP/lamination-prepared electrode was 87.4% after 200 dis-/charge cycles at 1C (vs. Li). In addition, LTO/C material prepared from the double flame spray pyrolysis was also used for fabricating electrodes via doctor blading technique. Laminated electrodes obtained higher specific discharge capacities compared to calendered and non-calendered blade-casted electrodes due to superior microstructural properties. Such a fast and industrially compelling integrative DFSP/lamination tool could be a prosperous, next generation technology for low-cost LIB electrode fabrication.

  20. Use of proteins to minimize the physical aging of EUDRAGIT sustained release films.

    PubMed

    Kucera, Shawn A; McGinity, James W; Zheng, Weijia; Shah, Navnit H; Malick, A Waseem; Infeld, Martin H

    2007-07-01

    The objective of this study was to investigate the influence of two proteins, albumin and type B gelatin, on the physical aging of EUDRAGIT RS 30 D and RL 30 D coated theophylline pellets. The physicomechanical properties of sprayed films, thermal properties of cast films, influence of proteins on the zeta potential and particle size of the dispersion, and the release of proteins from cast films under simulated dissolution conditions were investigated. The release rate of theophylline decreased significantly over time from pellets coated with an acrylic dispersion containing 10% albumin when there was no acidification of the acrylic dispersion; however, when pellets were coated with an acidified EUDRAGIT/albumin dispersion, the theophylline release rate was stable for dosage forms stored in the absence of humidity. The drug release rate was faster for pellets coated with acrylic dispersions containing 10% gelatin compared to the albumin-containing formulations. When sprayed films were stored at 40 degrees C/75% RH, the water vapor permeability decreased significantly for both EUDRAGIT films and those containing EUDRAGIT and albumin; however, there was no significant change in this parameter when 10% gelatin was present. Albumin was released from the acrylic films when the pH of the dissolution media was below the isoelectric point of the protein while no quantitative release of gelatin was observed in pH 1.2 or 7.4 media. The effect of gelatin to prevent the decrease in drug release rate was due to stabilization in water vapor permeability of the film. Acidification of the polymeric dispersion resulted in electrostatic repulsive forces between albumin and the acrylic polymer, which stabilized the drug release rate when the dosage forms were stored in aluminum induction sealed containers at both 40 degrees C/75% RH and 25 degrees C/60% RH.

  1. Cast Metals Coalition Technology Transfer and Program Management Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. Thismore » closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.« less

  2. HFIR Fuel Casting Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imhoff, Seth D.; Gibbs, Paul Jacob; Solis, Eunice Martinez

    Process exploration for fuel production for the High Flux Isotope Reactor (HFIR) using cast LEU-10wt.%Mo as an initial processing step has just begun. This project represents the first trials concerned with casting design and quality. The studies carried out over the course of this year and information contained in this report address the initial mold development to be used as a starting point for future operations. In broad terms, the final billet design is that of a solid rolling blank with an irregular octagonal cross section. The work covered here is a comprehensive view of the initial attempts to producemore » a sound casting. This report covers the efforts to simulate, predict, cast, inspect, and revise the initial mold design.« less

  3. Thermal spray manual for machinery components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis, R.; Ginther, C.; Herbstritt, M.

    1995-12-31

    The Thermal Spray Manual For Machinery Components is a National Shipbuilding Research (SP-7) Project. This Manual is being developed by Puget Sound Naval Shipyard with the help of other government thermal spray facilities and SP-7 panel members. The purpose of the manual is to provide marine repair facilities with a ``how to do`` document that will be ``user friendly`` and known to be technically sound through production experience. The manual`s intent is to give marine repair facilities the ability to maximize the thermal spray process as a repair method for machinery components and to give these facilities guidelines on howmore » to become qualified to receive certification that they meet the requirements of Military Standard 1687A.« less

  4. High-Throughput Models for Exposure-Based Chemical Prioritization in the ExpoCast Project

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) must characterize potential risks to human health and the environment associated with manufacture and use of thousands of chemicals. High-throughput screening (HTS) for biological activity allows the ToxCast research pr...

  5. High Throughput Genotoxicity Profiling of the US EPA ToxCast Chemical Library

    EPA Science Inventory

    A key aim of the ToxCast project is to investigate modern molecular and genetic high content and high throughput screening (HTS) assays, along with various computational tools to supplement and perhaps replace traditional assays for evaluating chemical toxicity. Genotoxicity is a...

  6. Chemical-Gene Interactions from ToxCast Bioactivity Data ...

    EPA Pesticide Factsheets

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets. To evaluate the information gained from the ToxCast project, a ToxCast bioactivity network was created comprising ToxCast chemical-gene interactions based on assay data and compared to a chemical-gene association network from literature. The literature network was compiled from PubMed articles, excluding ToxCast publications, mapped to genes and chemicals. Genes were identified by curated associations available from NCBI while chemicals were identified by PubChem submissions. The frequencies of chemical-gene associations from the literature network were log-scaled and then compared to the ToxCast bioactivity network. In total, 140 times more chemical-gene associations were present in the ToxCast network in comparison to the literature-derived network highlighting the vast increase in chemical-gene interactions putatively elucidated by the ToxCast research program. There were 165 associations found in the literature network that were reproduced by ToxCast bioactivity data, and 336 associations in the literature network were not reproduced by the ToxCast bioactivity network. The literature network relies on the assumption that chemical-gene associations represent a true chemical-gene inte

  7. Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.

    This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamentalmore » materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal projects concentrate on specific classes of materials and nonproprietary components and are done jointly by DOE and the Automotive Composites Consortium of U.S. Council for Automotive Research (USCAR). The third project developed a rapid tooling process that reduces tooling time, originally some 48-52 weeks, to less than 12 weeks by means of rapid generation of die-casting die inserts and development of generic holding blocks, suitable for use with large casting applications. This project was conducted by the United States Automotive Materials Partnership, another USCAR consortium.« less

  8. Balloon Sculpture

    ERIC Educational Resources Information Center

    Warwick, James F.

    1976-01-01

    For the adventurous teacher and student there is an alternative to the often messy mixing, pouring, casting, cutting, scoring and sanding of plaster of Paris for casting or sculptural projects. Balloon sculpture, devised, designed and shown here by a sculptor/teacher, is an eye appealing sculptural form and holds a strong interest for students.…

  9. In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project

    EPA Science Inventory

    Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency’s ToxCast program aims to address these concerns by ...

  10. The US EPAs ToxCast Program for the Prioritization and Prediction of Environmental Chemical Toxicity

    EPA Science Inventory

    To meet the need for evaluating large numbers of chemicals for potential toxicity, the U.S. Environmental Protection Agency has initiated a research project call ToxCast that makes use of recent advances in molecular biology and high-throughput screening. These technologies have ...

  11. Chemical and Biological Profiling Approaches for Exploring Mutagenicity and Carcinogenicity of EPA ToxCast Chemicals

    EPA Science Inventory

    Phase I of U.S. Environmental Protection Agency’s ToxCastTM research project is building on three rich data tiers: 309 unique, structurally diverse chemicals (predominantly pesticides), activity and concentration response data from approximately 500 in vitro (cell-based and cell-...

  12. Learning Numeracy on the Job: A Case Study of Chemical Handling and Spraying. An Adult Literacy National Project Report

    ERIC Educational Resources Information Center

    FitzSimons, Gail; Mlcek, Susan; Hull, Oksana; Wright, Claire

    2005-01-01

    Ensuring that people have the appropriate level of numeracy skills is particularly important in jobs which involve a risk to public safety and the environment. This research investigates the job-related numeracy requirements in the chemical spraying and handling operations of the horticulture, local government, outdoor recreation and warehousing…

  13. Thin Gauge Twin-Roll Casting, Process Capabilities and Product Quality

    NASA Astrophysics Data System (ADS)

    Daaland, O.; Espedal, A. B.; Nedreberg, M. L.; Alvestad, I.

    Traditionally industrial twin roll casters have been operated at gauges 6-10 mm, depending on the type of caster and the final product requirements. Over the past few years it has become apparent that a significant increase in productivity can be achieved when the casting gauge is reduced. Hydro Aluminium embarked on an extensive research and development, thin gauge casting programme, in the beginning of the 1990's and this paper presents some results from a five year lasting project (joint programme between Hydro Aluminium a.s. and Lauener Engineering). Based on more than 400 casting trials the major benefits and limitations of casting at reduced gauge and increased speed are outlined. Important aspects related to process development and product quality are discussed including: productivity and limitations, surface defects, microstructural characteristics, cooling rates and dendrite structure, segregation behaviour and mechanical properties after thermo-mechanical processing. Results for casting of several alloys are given. Additionally, numerical modelling results of the strip casting process are included.

  14. Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Von L. Richards

    2011-09-30

    This project addresses improvements in metal casting processes by reducing scrap and reducing the cost of production, due to scrap reduction from investment casting and yield improvement offered by lost foam casting as compared to no-bake or green sand molding. The objectives for the investment casting portion of the subtask are to improve knowledge of fracture toughness of mold shells and the sources of strength limiting flaws and to understand the effects of wax reclamation procedures on wax properties. Applying 'clean steel' approaches to pouring technology and cleanliness in investment casting of steel are anticipated to improve incoming materials inspectionmore » procedures as they affect the microstructure and toughness of the shell. This project focused on two areas of study in the production of steel castings to reduce scrap and save energy: (1) Reducing the amount of shell cracking in investment cast steel production; (2) Investigate the potential of lost foam steel casting The basic findings regarding investment casting shell cracking were: (1) In the case of post pouring cracking, this could be related to phase changes in silica upon cooling and could be delayed by pouring arrangement strategies that maintained the shell surface at temperature for longer time. Employing this delay resulted in less adherent oxidation of castings since the casting was cooler at the time o fair exposure. (2) A model for heat transfer through water saturated shell materials under steam pressure was developed. (3) Initial modeling result of autoclave de-waxing indicated the higher pressure and temperature in the autoclave would impose a steeper temperature gradient on the wax pattern, causing some melt flow prior to bulk expansion and decreasing the stress on the green shell. Basic findings regarding lost foam casting of steel at atmospheric pressure: (1) EPS foam generally decomposes by the collapse mode in steel casting. (2) There is an accumulation of carbon pick-up at the end of the casting opposite the gate. (3) It is recommended that lost foam castings in steel be gated for a quiescent fill in an empty cavity mold to prevent foam occlusion defects from the collapse mode. The energy benefit is primarily in yield savings and lower casting weight per function due to elimination of draft and parting lines for the larger lost foam castings. For the smaller investment casting, scrap losses due to shell cracking will be reduced. Both of these effects will reduce the metal melted per good ton of castings. There will also be less machine stock required per casting which is a yield savings and a small additional energy savings in machining. Downstream savings will come from heavy truck and railroad applications. Application of these processes to heavy truck castings will lighten the heavy truck fleet by about ten pounds per truck. Using ten years to achieve full penetration of the truck fleet at linear rate this will result in a fuel savings of 131 trillion BTU over ten years.« less

  15. Development testing of large volume water sprays for warm fog dispersal

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.; Beard, K. V.

    1986-01-01

    A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.

  16. Application of Rapid Prototyping and Wire Arc Spray to the Fabrication of Injection Mold Tools (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.

    2000-01-01

    Rapid prototyping (RP) is a layer-by-layer-based additive manufacturing process for constructing three-dimensional representations of a computer design from a wax, plastic, or similar material. Wire arc spray (WAS) is a metal spray forming technique, which deposits thin layers of metal onto a substrate or pattern. Marshall Space Flight Center currently has both capabilities in-house, and this project proposed merging the two processes into an innovative manufacturing technique, in which intermediate injection molding tool halves were to be fabricated with RP and WAS metal forming.

  17. Faster, Less Expensive Dies Using RSP Tooling

    NASA Astrophysics Data System (ADS)

    Knirsch, James R.

    2007-08-01

    RSP Tooling is an indirect spray form additive process that can produce production tooling for virtually any forming process and from virtually any metal. In the past 24 months a significant amount of research and development has been performed. This resulted in an increase in the basic metallurgical understanding of what transpires during the rapid solidification of the metal, significant improvements in the production machine up time, ceramic developments that have improved finish, process changes that have resulted in a shorter lead time for tool delivery, and the testing of many new alloys. RSP stands for Rapid Solidification Process and is the key to the superior metallurgical properties that result from the technology. Most metals that are sprayed in the process leave the machine with the same physical properties as the same metal normally achieves through heat treatment and in some cases the properties are superior. Many new applications are being pursued including INVAR tools for aerospace composite materials, and bimetallic tools made from tool steel and beryllium copper for die casting and plastic injection molding. Recent feasibility studies have been performed with tremendous success.

  18. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2001-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  19. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOEpatents

    Hajaligol, Mohammad R.; Sikka, Vinod K.

    2000-01-01

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  20. Solidification Based Grain Refinement in Steels

    DTIC Science & Technology

    2011-09-27

    project (Tasks 7-9). An industrial trial on an investment casting was done using rare earth silicide additions in a furnace prior to pouring (Task 7...an investment casting was done using rare earth silicide additions in a furnace prior to pounng (la.sk 7). Some of the test parts had a finer...poured at the end of a six casting batch. One test tree with no RE addition was poured. Before the second test tree was poured, sufficient RE silicide was

  1. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    1999-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  2. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, L.R.; Lundquist, S.H.

    1999-08-10

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions. 2 figs.

  3. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    2000-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  4. Method of preparing thin porous sheets of ceramic material

    DOEpatents

    Swarr, Thomas E.; Nickols, Richard C.; Krasij, Myron

    1987-03-24

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  5. Method of preparing thin porous sheets of ceramic material

    DOEpatents

    Swarr, T.E.; Nickols, R.C.; Krasij, M.

    1984-05-23

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  6. Mechanised spraying device a novel technology for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.V.K. Singh; V.K. Singh

    2004-10-15

    Spontaneous combustion in coal mines plays a vital role in occurrences of fire. Fire in coal, particularly in opencast mines, not only causes irreparable loss of national wealth but damages the surface structure and pollutes the environment. The problem of spontaneous combustion/fire in opencast coal benches is acute. Presently over 75% of the total production of coal in Indian mines is being carried out by opencast mining. Accordingly a mechanised spraying device has been developed for spraying the fire protective coating material for preventing spontaneous combustion in coal benches of opencast mines jointly by Central Mining Research Institute, Dhanbad andmore » M/s Signum Fire Protection (India) Pvt. Ltd., Nagpur under Science & Technology (S&T) project funded by Ministry of Coal, Govt. of India. The objective of this paper is to describe in detail about the mechanised spraying device and its application for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion/fire.« less

  7. Continuation of Crosscutting Technology Development at Cast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Roe-Hoan

    2012-03-31

    This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

  8. Collection and analysis of remotely sensed data from the Rhode River Estuary Watershed

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Williamson, F. S. L.

    1973-01-01

    The remote sensing study to survey the Rhode River watershed for spray irrigation with secondarily treated sewage is reported. The standardization of Autumn coloration changes with Munsell color chips is described along with the mapping of old field vegetation for the spray irrigation project. The interpretation and verification of salt marsh vegetation by remote sensing of the water shed is discussed.

  9. Predicting Developmental Toxicity of ToxCast Phase I Chemicals Using Human Embryonic Stem Cells and Metabolomics

    EPA Science Inventory

    EPA’s ToxRefDB contains prenatal guideline study data from rats and rabbits for over 240 chemicals that overlap with the ToxCast in vitro high throughput screening project. A subset of these compounds were tested in Stemina Biomarker Discovery's developmental toxicity platform, a...

  10. Effectiveness of Spray-Based Decontamination Methods for ...

    EPA Pesticide Factsheets

    Report The objective of this project was to assess the effectiveness of spray-based common decontamination methods for inactivating Bacillus (B.) atrophaeus (surrogate for B. anthracis) spores and bacteriophage MS2 (surrogate for foot and mouth disease virus [FMDV]) on selected test surfaces (with or without a model agricultural soil load). Relocation of viable viruses or spores from the contaminated coupon surfaces into aerosol or liquid fractions during the decontamination methods was investigated. This project was conducted to support jointly held missions of the U.S. Department of Homeland Security (DHS) and the U.S. Environmental Protection Agency (EPA). Within the EPA, the project supports the mission of EPA’s Homeland Security Research Program (HSRP) by providing relevant information pertinent to the decontamination of contaminated areas resulting from a biological incident.

  11. DOTD support for UTC project : development of rapid PCC pavement repair materials and construction techniques : research project capsule.

    DOT National Transportation Integrated Search

    2014-07-01

    The purpose of this project is to provide DOTD match funding for the proposed research. : This project is associated with the LTRC/Southern partnership with Research on Concrete : Applications for Sustainable Transportation (RE-CAST) Rapid Pavement C...

  12. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE PAGES

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara; ...

    2017-06-16

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  13. Building the Sun4Cast System: Improvements in Solar Power Forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haupt, Sue Ellen; Kosovic, Branko; Jensen, Tara

    The Sun4Cast System results from a research-to-operations project built on a value chain approach, and benefiting electric utilities’ customers, society, and the environment by improving state-of-the-science solar power forecasting capabilities. As integration of solar power into the national electric grid rapidly increases, it becomes imperative to improve forecasting of this highly variable renewable resource. Thus, a team of researchers from public, private, and academic sectors partnered to develop and assess a new solar power forecasting system, Sun4Cast. The partnership focused on improving decision-making for utilities and independent system operators, ultimately resulting in improved grid stability and cost savings for consumers.more » The project followed a value chain approach to determine key research and technology needs to reach desired results. Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial scales to predict surface solar irradiance. Anchoring the system is WRF-Solar, a version of the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via the Dynamic Integrated Forecast (DICast) System, the basis of the system beyond about 6 h. For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting technologies. These technologies are blended via the Nowcasting Expert System Integrator (NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term irradiance forecasts for solar array locations. The irradiance forecasts are translated into power with uncertainties quantified using an analog ensemble approach, and are provided to the industry partners for real-time decision-making. The Sun4Cast system ran operationally throughout 2015 and results were assessed. As a result, this paper analyzes the collaborative design process, discusses the project results, and provides recommendations for best-practice solar forecasting.« less

  14. Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings-A Review.

    PubMed

    Anilchandra, A R; Arnberg, Lars; Bonollo, Franco; Fiorese, Elena; Timelli, Giulio

    2017-08-30

    The tensile properties of an alloy can be exploited if detrimental defects and imperfections of the casting are minimized and the microstructural characteristics are optimized through several strategies that involve die design, process management and metal treatments. This paper presents an analysis and comparison of the salient characteristics of the reference dies proposed in the literature, both in the field of pressure and gravity die-casting. The specimens produced with these reference dies, called separately poured specimens, are effective tools for the evaluation and comparison of the tensile and physical behaviors of Al-Si casting alloys. Some of the findings of the present paper have been recently developed in the frame of the European StaCast project whose results are complemented here with some more recent outcomes and a comprehensive analysis and discussion.

  15. EPA DSSTox and ToxCast Project Updates: Generating New ...

    EPA Pesticide Factsheets

    EPA’s National Center for Computational Toxicology is generating data and capabilities to support a new paradigm for toxicity screening and prediction. The DSSTox project is improving public access to quality structure-annotated chemical toxicity information in less summarized forms than traditionally employed in SAR modeling, and in ways that facilitate data-mining and data read-across. The DSSTox Structure-Browser provides structure searchability across the full published DSSTox toxicity-related inventory, enables linkages to and from previously isolated toxicity data resources (soon to include public microarray resources GEO, ArrayExpress, and CEBS), and provides link-outs to cross-indexed public resources such as PubChem, ChemSpider, and ACToR. The published DSSTox inventory and bioassay information also have been integrated into PubChem allowing a user to take full advantage of PubChem structure-activity and bioassay clustering features. Phase I of the ToxCastTM project has generated high-throughput screening (HTS) data from several hundred biochemical and cell-based assays for a set of 320 chemicals, mostly pesticide actives, with rich toxicology profiles. DSSTox and ACToR are providing the primary cheminformatics support for ToxCastTM and collaborative efforts with the National Toxicology Program’s HTS Program and the NIH Chemical Genomics Center. DSSTox will also be a primary vehicle for publishing ToxCastTM ToxRef summarized bioassay data for use

  16. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  17. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings II: Specific Heat Capacity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma-sprayed (VPS) and cold-sprayed (CS) copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant-pressure specific heat capacities, C P, of these coatings. The data were empirically regression-fitted with the equation: \\varvec{C}_{P} = {AT}^{4} + {BT}^{3} + {CT}^{2} + DT + \\varvec{E}where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of C P using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the NK rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and C P > 3 R, where R is the universal gas constant, were measured for all the alloys except NiAl for which C P < 3 R at all temperatures.

  18. Wide Strip Casting Technology of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Park, W.-J.; Kim, J. J.; Kim, I. J.; Choo, D.

    Extensive investigations relating to the production of high performance and low cost magnesium sheet by strip casting have been performed for the application to automotive parts and electronic devices. Research on magnesium sheet production technology started in 2004 by Research Institute of Industrial Science and Technology (RIST) with support of Pohang Iron and Steel Company (POSCO). POSCO has completed the world's first plant to manufacture magnesium coil. Another big project in order to develop wide strip casting technology for the automotive applications of magnesium sheets was started in succession.

  19. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    NASA Astrophysics Data System (ADS)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  20. Projection par plasma de depots de dioxyde de titane: Contribution a l'etude de leurs microstructures et proprietes electriques

    NASA Astrophysics Data System (ADS)

    Branland, Nadege

    2002-04-01

    The aim of this PhD work is, thanks to particle parameters (velocity and temperature) characterization, to try to understand the influence of plasma spray parameters on titania coating microstructures and the influence of the latter one on their electrical resistivity, for the same substrate conditions. The experimental approach has consisted in using two plasma spraying processes (Arc plasma spraying and Inductive plasma spraying) which have permitted to obtain a broad range of particle velocities and temperatures leading to coatings with specific microstructures. Despite the stoichiometry of the starting powder, all coatings obtained were grey, the oxygen loss increasing with the particle temperature. Isolating the stoichiometry influence has permitted to show that the decrease of the coatings electrical resistivity is especially due to the decrease of the number of bad interlamellar contacts.

  1. 49 CFR 179.220-18 - Bottom outlets.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-shaped breakage groove shall be cut (not cast) in the upper part of the outlet nozzle at a point... nozzle extends below the bottom of the outer shell, a V-shaped breakage groove shall be cut (not cast) in... projection of the bottom outlet equipment may not be more than that allowed by appendix E of the AAR...

  2. Chapter 16 - Impacts of Swiss needle cast in the Cascade mountains of northern Oregon: Monitoring of permanent plots after 10 years (Project WC-EM-B-11-01)

    Treesearch

    Gregory M. Filip; Alan Kanaskie; Will R. Littke; John Browning; Kristen L. Chadwick; David C. Shaw; Robin L. Mulvey

    2014-01-01

    Swiss needle cast (SNC), caused by the fungus Phaeocryptopus gaeumannii, is one of the most damaging diseases of coast Douglasfir (Pseudotsuga menziesii var. menziesii) in the Pacific Northwest (Hansen and others 2000, Mainwaring and others 2005, Shaw and others 2011).

  3. DSSTox ToxCast and Tox21 Chemical Inventories: Laying the Foundation for the U.S. EPA’s Computational Toxicology Research Programs

    EPA Science Inventory

    High quality chemical structure inventories provide the foundation of the U.S. EPA’s ToxCast and Tox21 projects, which are employing high-throughput technologies to screen thousands of chemicals in hundreds of biochemical and cell-based assays, probing a wide diversity of targets...

  4. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  5. INDIAN CASTE SYSTEM: HISTORICAL AND PSYCHOANALYTIC VIEWS.

    PubMed

    Vallabhaneni, Madhusudana Rao

    2015-12-01

    This paper elucidates the historical origins and transformations of India's caste system. Surveying the complex developments over many centuries, it points out that three positions have been taken in this regard. One suggests that the caste one is born into can be transcended within one's lifetime by performing good deeds. The other declares caste to be immutable forever. And, the third says that one can be reborn into a higher caste if one lives a virtuous life. Moving on to the sociopolitical realm, the paper notes how these positions have been used and exploited. The paper then attempts to anchor the existence and purpose of the Hindu caste system in Freud's ideas about group psychology and Klein's proposals of splitting and projective identification. The paper also deploys the large group psychology concepts of Volkan and the culturally nuanced psychoanalytic anthropology of Roland and Kakar. It concludes with delineating some ameliorative strategies for this tragic problem in the otherwise robust democratic society of India.

  6. The ToxCast Chemical Landscape - Paving the Road to 21st ...

    EPA Pesticide Factsheets

    The ToxCast high-throughput screening (HTS) program within the U.S. Environmental Protection Agency (EPA) was launched in 2007. Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay endpoints. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in public release of screening data at the end of 2013. Concurrently, a larger EPA library of 3726 chemicals (including the Phase II chemicals) was undergoing screening in the cross-federal agency Tox21 HTS project. Four years later, Phase III of EPA’s ToxCast program is actively screening a diverse library consisting of more than 3800 chemicals, 96% of which are also undergoing Tox21 screening. The majority of ToxCast studies, to date, have focused on using HTS results to build biologically based models for predicting in vivo toxicity endpoints. The focus of the present article, in contrast, is on the EPA chemical library underpinning these efforts. A history of the phased construction of EPA’s ToxCast library is presented, considering factors influencing chemical selection as well as the various quality measures implemented. Next, Chemical Abstracts Service Registry Numbers (CASRN), which were used to compile initial chemical nominations for ToxCast testing, are used to assess overlaps of the current ToxCast library with important toxicity, regulatory, and exposure inventories. Lastly, ToxCast chemicals are described in terms of generaliz

  7. High-Strength Aluminum Casting Alloy for High-Temperature Applications (MSFC Center Director's Discretionary Fund Final Project No. 97-10)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    1998-01-01

    A new aluminum-silicon alloy has been successfully developed at Marshall Space Flight Center that has a significant improvement in tensile strength at elevated temperatures (550 to 700 F). For instance, the new alloy shows in average tensile strength of at least 90 percent higher than the current 390 aluminum piston alloy tested at 500 F. Compared to conventional aluminum alloys, automotive engines using the new piston alloy will have improved gas mileage, and may produce less air pollution in order to meet the future U.S. automotive legislative requirements for low hydrocarbon emissions. The projected cost for this alloy is less than $0.95/lb, and it readily allows the automotive components to be cast at a high production volume with a low, fully accounted cost. It is economically produced by pouring molten metal directly into conventional permanent steel molds or die casting.

  8. Equations for estimating stand establishment, release, and thinning costs in the Lake States.

    Treesearch

    Jeffrey T. Olson; Allen L. Lundgren; Dietmar Rose

    1978-01-01

    Equations for estimating project costs for certain silvicultural treatments in the Lake States have been developed from project records of public forests. Treatments include machine site preparation, hand planting, aerial spraying, prescribed burning, manual release, and thinning.

  9. Method for making thick and/or thin film

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-11-02

    A method to make thick or thin films a very low cost. The method is generally similar to the conventional tape casting techniques while being more flexible and versatile. The invention involves preparing a slip (solution) of desired material and including solvents such as ethanol and an appropriate dispersant to prevent agglomeration. The slip is then sprayed on a substrate to be coated using an atomizer which spreads the slip in a fine mist. Upon hitting the substrate, the solvent evaporates, leaving a green tape containing the powder and other additives, whereafter the tape may be punctured, cut, and heated for the desired application. The tape thickness can vary from about 1 .mu.m upward.

  10. INTERIOR OVERVIEW OF CONTINUOUS CASTER WITH NO. 12 LADLE. MOLTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OVERVIEW OF CONTINUOUS CASTER WITH NO. 12 LADLE. MOLTEN STEEL IS POURED FROM LADLE THROUGH SHROUD TO TUNDISH. FROM TUNDISH STEEL ENTERS MOLD THROUGH SHROUD AND FORMATION OF SLAB SHELL BEGINS. AS SLAB PROGRESSES THROUGH CONTAINMENT SECTION IT IS COOLED WITH AIR MIST SPRAYS AND CONTINUES SOLIDIFICATION. UPON EXITING THE MACHINE THE SLABS ARE CUT TO DESIRED LENGTH AND IDENTIFIED. THE SLABS ARE STACKED, REMOVED FROM MACHINE AND PREPARED FOR SHIPMENT TO HOT STRIP MILL. CASTER HAS ABILITY TO PRODUCE SINGLE OR TWIN CASTS. SINGLE SLABS PRODUCED MAY BE UP TO 102 INCHES; DOUBLE SLABS UP TO 49 INCHES. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  11. VIEW OF GUN EMPLACEMENT AND THE TABLELIKE CAST CONCRETE STRUCTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF GUN EMPLACEMENT AND THE TABLE-LIKE CAST CONCRETE STRUCTURE SHOWING THE SPALLED AREA ON ITS EAST SIDE (LEFT) WHERE THE SECOND PROJECTING ARM WAS BROKEN OFF. NOTE THE SLOPED CONCRETE PAD IN THE BACKGROUND. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI

  12. Extending the Derek-Meteor Workflow to Predict Chemical-Toxicity Space Impacted by Metabolism: Application to ToxCast and Tox21 Chemical Inventories

    EPA Science Inventory

    A central aim of EPA’s ToxCast project is to use in vitro high-throughput screening (HTS) profiles to build predictive models of in vivo toxicity. Where assays lack metabolic capability, such efforts may need to anticipate the role of metabolic activation (or deactivation). A wo...

  13. Materials for Advanced Turbine Engines (MATE). Project 4: Erosion resistant compressor airfoil coating

    NASA Technical Reports Server (NTRS)

    Rashid, J. M.; Freling, M.; Friedrich, L. A.

    1987-01-01

    The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.

  14. Viscosity Meaurement Technique for Metal Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Heng; Kennedy, Rory

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, themore » most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.« less

  15. Cast CF8C-Plus Stainless Steel for Turbocharger Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maziasz, P.J.; Shyam, A.; Evans, N.D.

    2010-06-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) project is to provide the critical test data needed to qualify CF8C-Plus cast stainless steel for commercial production and use for turbocharger housings with upgraded performance and durability relative to standard commercial cast irons or stainless steels. The turbocharger technologies include, but are not limited to, heavy-duty highway diesel engines, and passenger vehicle diesel and gasoline engines. This CRADA provides additional critical high-temperature mechanical properties testing and data analysis needed to quality the new CF8C-Plus steels for turbocharger housing applications.

  16. An Innovative Speech-Based User Interface for Smarthomes and IoT Solutions to Help People with Speech and Motor Disabilities.

    PubMed

    Malavasi, Massimiliano; Turri, Enrico; Atria, Jose Joaquin; Christensen, Heidi; Marxer, Ricard; Desideri, Lorenzo; Coy, Andre; Tamburini, Fabio; Green, Phil

    2017-01-01

    A better use of the increasing functional capabilities of home automation systems and Internet of Things (IoT) devices to support the needs of users with disability, is the subject of a research project currently conducted by Area Ausili (Assistive Technology Area), a department of Polo Tecnologico Regionale Corte Roncati of the Local Health Trust of Bologna (Italy), in collaboration with AIAS Ausilioteca Assistive Technology (AT) Team. The main aim of the project is to develop experimental low cost systems for environmental control through simplified and accessible user interfaces. Many of the activities are focused on automatic speech recognition and are developed in the framework of the CloudCAST project. In this paper we report on the first technical achievements of the project and discuss future possible developments and applications within and outside CloudCAST.

  17. The spray-drying process is sufficient to inactivate infectious porcine epidemic diarrhea virus in plasma.

    PubMed

    Gerber, Priscilla F; Xiao, Chao-Ting; Chen, Qi; Zhang, Jianqiang; Halbur, Patrick G; Opriessnig, Tanja

    2014-11-07

    Porcine epidemic diarrhea virus (PEDV) is considered an emergent pathogen associated with high economic losses in many pig rearing areas. Recently it has been suggested that PEDV could be transmitted to naïve pig populations through inclusion of spray-dried porcine plasma (SDPP) into the nursery diet which led to a ban of SDPP in several areas in North America and Europe. To determine the effect of spray-drying on PEDV infectivity, 3-week-old pigs were intragastrically inoculated with (1) raw porcine plasma spiked with PEDV (RAW-PEDV-CONTROL), (2) porcine plasma spiked with PEDV and then spray dried (SD-PEDV-CONTROL), (3) raw plasma from PEDV infected pigs (RAW-SICK), (4) spray-dried plasma from PEDV infected pigs (SD-SICK), or (5) spray-dried plasma from PEDV negative pigs (SD-NEG-CONTROL). For the spray-drying process, a tabletop spray-dryer with industry-like settings for inlet and outlet temperatures was used. In the RAW-PEDV-CONTROL group, PEDV RNA was present in feces at day post infection (dpi) 3 and the pigs seroconverted by dpi 14. In contrast, PEDV RNA in feces was not detected in any of the pigs in the other groups including the SD-PEDV-CONTROL group and none of the pigs had seroconverted by termination of the project at dpi 28. This work provides direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious PEDV in the plasma. Additionally, plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV. These findings suggest that the risk for PEDV transmission through commercially produced SDPP is minimal. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Innovative forming and fabrication technologies : new opportunities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.; Hryn, J.; Energy Systems

    2008-01-31

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metalmore » alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest developments in fiber-reinforced composite materials. Emerging curing processes are presented along with a discussion on the possible developments in biocomposite materials. The fourth section presents recent developments in the fabrication of bulk nanomaterials and nanoparticles reinforced materials. Advanced joining technologies are presented in the fifth section. Future research is proposed in the last section.« less

  19. Effect of disinfection on irreversible hydrocolloid and alternative impression materials and the resultant gypsum casts.

    PubMed

    Suprono, Montry S; Kattadiyil, Mathew T; Goodacre, Charles J; Winer, Myron S

    2012-10-01

    Many new products have been introduced and marketed as alternatives to traditional irreversible hydrocolloid materials. These alternative materials have the same structural formula as addition reaction silicone, also known as vinyl polysiloxane (VPS), impression materials. Currently, there is limited in vitro and in vivo research on these products, including on the effects of chemical disinfectants on the materials. The purpose of this study was to compare the effects of a spray disinfecting technique on a traditional irreversible hydrocolloid and 3 new alternative impression materials in vitro. The tests were performed in accordance with the American National Standards Institute/American Dental Association (ANSI/ADA) Specification Nos. 18 and 19. Under standardized conditions, 100 impressions were made of a ruled test block with an irreversible hydrocolloid and 3 alternative impression materials. Nondisinfected irreversible hydrocolloid was used as the control. The impressions were examined for surface detail reproduction before and after disinfection with a chloramine-T product. Type III and Type V dental stone casts were evaluated for linear dimensional change and gypsum compatibility. Comparisons of linear dimensional change were analyzed with 2-way ANOVA of mean ranks with the Scheffé post hoc comparisons (α=.05). Data for surface detail reproduction were analyzed with the Wilcoxon Signed-Rank procedure and gypsum compatibility with the Kruskal-Wallis Rank procedure (α=.05). The alternative impression materials demonstrated significantly better outcomes with all 3 parameters tested. Disinfection with chloroamine-T did not have any effect on the 3 alternative impression materials. The irreversible hydrocolloid groups produced the most variability in the measurements of linear dimensional change. All of the tested materials were within the ADA's acceptable limit of 1.0% for linear dimensional change, except for the disinfected irreversible hydrocolloid impression material. The alternative impression materials performed best for the parameters tested. Spray disinfection had no effect on the alternative impression materials. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  20. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1985-06-01

    Computer -Aided Design (CAD)/ Computer -Aided Manufacturing (CAM) Process for the Production of Cold Forged Gears Project 483 6121 - Robotic Welding and...Caliber Projectile Bodies Project 682 8370 - Automatic Inspection and 1-I1 Process Control of Weapons Parts Manufacturing METALS Project 181 7285 - Cast...designed for use on each project. Experience suggested that a general purpose computer interface might be designed that could be used on any project

  1. The Design and Construction Process of a Test Stand for Casting the Power Steering’S Housing with the Use of the Pdcpd Material

    NASA Astrophysics Data System (ADS)

    Sobek, M.; Baier, A.; Grabowski, Ł.

    2018-01-01

    The use of new technologies and materials in various industries is a natural process that is directly related to the very high rate of development of these technologies. Certain industries decide to much faster introduce new technologies and materials. One of such branches is the automotive industry, whose representatives are very energetically looking for both financial savings and savings resulting from the vehicles mass reduction. An economically justified approach to construction materials is leading the search for new solutions and materials. The use of a modern material such as the two-component PDCPD composite shows hitherto unknown possibilities of producing subassemblies of many different constructions. The possibility of using a modern composite material with parameters comparable to that of metals and significantly lighter, can be an excellent alternative in the selection of materials for many parts of motor vehicles. The potentiality of precise casting of tolerated surfaces will allow to reduce the operations related to machining process, which is an indispensable part of the production process of elements that are cast of metal. This article describes the process of designing and building a test stand for precise positioning of power steering gear components at the stage of casting their housing. The article presents the principle of operation of the test stand and the process of preparation for the casting and the cast itself will be rudely described. Due to the implementation of research as part of a research project with an industrial partner, the article will only describe some operations. This is related to the confidentiality of the project.

  2. Thermal and mechanical analysis of major components for the advanced adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The proposed design for the light duty diesel is an in-line four cylinder spark assisted diesel engine mounted transversely in the front of the vehicle. The engine has a one piece cylinder head, with one intake valve and one exhaust valve per cylinder. A flat topped piston is used with a cylindrical combustion chamber recessed into the cylinder head directly under the exhaust valve. A single ceramic insert is cast into the cylinder head to insulate both the combustion chamber and the exhaust port. A similar ceramic insert is cast into the head to insulate the intake port. A ceramic faceplate is pressed into the combustion face of the head to insulate the face of the head from hot combustion gas. The valve seats are machined directly into the ceramic faceplate for the intake valve and into the ceramic exhaust pot insert for the exhaust valve. Additional ceramic applications in the head are the use of ceramic valve guides and ceramic insulated valves. The ceramic valve guides are press fit into the head and are used for increased wear resistance. The ceramic insulated valves are conventional valves with the valve faces plasma spray coated with ceramic for insulation.

  3. Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process.

    PubMed

    Anzehaee, Mohammad Mousavi; Haeri, Mohammad

    2011-07-01

    New estimators are designed based on the modified force balance model to estimate the detaching droplet size, detached droplet size, and mean value of droplet detachment frequency in a gas metal arc welding process. The proper droplet size for the process to be in the projected spray transfer mode is determined based on the modified force balance model and the designed estimators. Finally, the droplet size and the melting rate are controlled using two proportional-integral (PI) controllers to achieve high weld quality by retaining the transfer mode and generating appropriate signals as inputs of the weld geometry control loop. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Essential Factors Influencing the Bonding Strength of Cold-Sprayed Aluminum Coatings on Ceramic Substrates

    NASA Astrophysics Data System (ADS)

    Drehmann, R.; Grund, T.; Lampke, T.; Wielage, B.; Wüstefeld, C.; Motylenko, M.; Rafaja, D.

    2018-02-01

    The present work summarizes the most important results of a research project dealing with the comprehensive investigation of the bonding mechanisms between cold-sprayed Al coatings and various poly- and monocrystalline ceramic substrates (Al2O3, AlN, Si3N4, SiC, MgF2). Due to their exceptional combination of properties, metallized ceramics are gaining more and more importance for a wide variety of applications, especially in electronic engineering. Cold spray provides a quick, flexible, and cost-effective one-step process to apply metallic coatings on ceramic surfaces. However, since most of the existing cold-spray-related publications focus on metallic substrates, only very little is known about the bonding mechanisms acting between cold-sprayed metals and ceramic substrates. In this paper, the essential factors influencing the bonding strength in such composites are identified. Besides mechanical tensile strength testing, a thorough analysis of the coatings and especially the metal/ceramic interfaces was conducted by means of HRTEM, FFT, STEM, EDX, EELS, GAXRD, and EBSD. The influence of substrate material, substrate temperature, and particle size is evaluated. The results suggest that, apart from mechanical interlocking, the adhesion of cold-sprayed metallic coatings on ceramics is based on a complex interplay of different mechanisms such as quasiadiabatic shearing, static recrystallization, and heteroepitaxial growth.

  5. Ducts Sealing Using Injected Spray Sealant, Raleigh, North Carolina (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques - manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the usemore » of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla

    The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkagemore » of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results« less

  7. Process Research ON Semix Silicon Materials (PROSSM)

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, J. H.; Warfield, D. B.

    1982-02-01

    A cost effective process sequence was identified, equipment was designed to implement a 6.6 MW per year automated production line, and a cost analysis projected a $0.56 per watt cell add-on cost for this line. Four process steps were developed for this program: glass beads back clean-up, hot spray antireflective coating, wave soldering of fronts, and ion milling for edging. While spray dopants were advertised as an off the shelf developed product, they were unreliable with shorter than advertised shelf life.

  8. Process Research ON Semix Silicon Materials (PROSSM)

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J. H.; Warfield, D. B.

    1982-01-01

    A cost effective process sequence was identified, equipment was designed to implement a 6.6 MW per year automated production line, and a cost analysis projected a $0.56 per watt cell add-on cost for this line. Four process steps were developed for this program: glass beads back clean-up, hot spray antireflective coating, wave soldering of fronts, and ion milling for edging. While spray dopants were advertised as an off the shelf developed product, they were unreliable with shorter than advertised shelf life.

  9. Spray Characteristics of a Hybrid Twin-Fluid Pressure-Swirl Atomizer

    NASA Technical Reports Server (NTRS)

    Durham, M. J.; Sojka, P. E.; Ashmore, C. B.

    2004-01-01

    The spray performance of a fuel injection system applicable for use in main combustion chamber of an oxidizer-rich staged combustion (ORSC) cycles is presented. The experimental data reported here include mean drop size and drop size distribution, spray cone half-angle, and momentum rate (directly related to spray penetration). The maximum entropy formalism, MEF, method to predict drop size distribution is applied and compared to the experimental data. Geometric variables considered include the radius of the injector inlet orifice plate through which oxidizer flows (&) and the exposed length from the fuel inlet to the injector exit plane (L2). Operating conditions that were varied include the liquid mass flow rate and air mass flow rate. For orifices B and C there is a significant dependence of D3Z on both the air and liquid mass flow rates, as well as on L2. For the A orifice, the momentum rate of the air flow appears to exceed a threshold value above which a constant D32 is obtained. Using the MEF method, a semi-analytical process was developed to model the spray distribution using two input parameters (q = 0.4 and Dso). The momentum rate of the spray is directly related to the air and liquid mass flow rates. The cone half angle of the spray ranges from 25 to 17 degrees. The data resulting from this project will eventually be used to develop advanced rocket systems.

  10. THC:CBD in Daily Practice: Available Data from UK, Germany and Spain.

    PubMed

    Fernández, Óscar

    2016-01-01

    From the time Sativex (THC:CBD) oromucosal spray first became available in European Union countries in 2010 for the management of treatment-resistant multiple sclerosis (MS) spasticity, data from daily practice have been collected through various projects. A retrospective registry study and a prospective safety study of THC:CBD oromucosal spray are reported. The most recent analysis of a retrospective registry established in the United Kingdom (UK), Germany and Switzerland, which collected safety data on more than 900 patients, has indicated a positive risk-benefit profile for THC:CBD oromucosal spray during long-term use. Long-term continuation rates were 68% (mean follow-up time 1 year) and the mean dose was 5.4 sprays/day. No new safety concerns were identified, and adverse events of special interest for a cannabis-based medicine were limited. The UK registry has since been closed but remains open in Germany and Switzerland. A prospective safety study undertaken in Spain involved 207 patients from 13 specialized MS centres who had been prescribed THC:CBD oromucosal spray. The findings aligned closely with the UK/German/Swiss registry data in terms of 1-year continuation rates (64.7%), mean daily dose (6.6 sprays/day) and safety profile, including no evidence of addiction, abuse or misuse. The homogeneity between these observational studies supports the interest in THC:CBD oromucosal spray for management of MS spasticity in daily practice. © 2016 S. Karger AG, Basel.

  11. Air Distribution Retrofit Strategies for Affordable Housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Conlin, Francis; Holloway, Parker

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the usemore » of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.« less

  12. Air Distribution Retrofit Strategies for Affordable Housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, J.; Conlin, F.; Holloway, Parker

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through themore » use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.« less

  13. Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings—A Review

    PubMed Central

    Anilchandra, A.R.; Arnberg, Lars; Bonollo, Franco; Fiorese, Elena

    2017-01-01

    The tensile properties of an alloy can be exploited if detrimental defects and imperfections of the casting are minimized and the microstructural characteristics are optimized through several strategies that involve die design, process management and metal treatments. This paper presents an analysis and comparison of the salient characteristics of the reference dies proposed in the literature, both in the field of pressure and gravity die-casting. The specimens produced with these reference dies, called separately poured specimens, are effective tools for the evaluation and comparison of the tensile and physical behaviors of Al-Si casting alloys. Some of the findings of the present paper have been recently developed in the frame of the European StaCast project whose results are complemented here with some more recent outcomes and a comprehensive analysis and discussion. PMID:28867796

  14. Evaluation of a bridge deck with CFRP prestressed panels under fatigue load cycles

    DOT National Transportation Integrated Search

    2003-09-01

    This report summarizes a study conducted under an IBRC (Innovative Bridge Research and Construction) project sponsored by the FHWA. In this project, a bridge deck with CFRP (carbon fiber reinforced polymeric) prestressed panels and cast-in-place topp...

  15. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    PubMed

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was <0.4 mm/year compared with ∼2 mm/year for the conventionally cast alloy and 26 mm/year for the rapidly solidified extruded ribbons. © 2014 Wiley Periodicals, Inc.

  16. Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal

    NASA Astrophysics Data System (ADS)

    Chong-Lin, Jia; Chang-Chun, Ge; Qing-Zhi, Yan

    2016-02-01

    Powder metallurgy (PM) superalloys are an important class of high temperature structural materials, key to the rotating components of aero engines. In the purview of the present challenges associated with PM superalloys, two novel approaches namely, powder preparation and the innovative spray-forming technique (for making turbine disk) are proposed and studied. Subsequently, advanced technologies like electrode-induction-melting gas atomization (EIGA), and spark-plasma discharge spheroidization (SPDS) are introduced, for ceramic-free superalloy powders. Presently, new processing routes are sought after for preparing finer and cleaner raw powders for disk superalloys. The progress of research in spray-formed PM superalloys is first summarized in detail. The spray-formed superalloy disks specifically exhibit excellent mechanical properties. This paper reviews the recent progress in innovative technologies for PM superalloys, with an emphasis on new ideas and approaches, central to the innovation driving techniques like powder processing and spray forming. Project supported by the National Natural Science Foundation of China (Grant Nos. 50974016 and 50071014).

  17. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece.

    PubMed

    Kasiotis, Konstantinos M; Glass, C Richard; Tsakirakis, Angelos N; Machera, Kyriaki

    2014-05-01

    The objective of this work was to generate spray drift data from pesticide application in the field comparing spray drift from traditional equipment with emerging, anti-drift technologies. The applications were carried out in the Kopais area in central Greece. Currently few data exist as regards to pesticide spray drift in Southern European conditions. This work details the data for ground and airborne deposition of spray drift using the methodology developed in the UK by the Food and Environment Research Agency (FERA). Three trials were performed in two days using sunset yellow dye which deposited on dosimeters placed at specific distances from the edge of the sprayer boom. The application was carried out with a tractor mounted boom sprayer, which was of local manufacture, as were the nozzles of Trial I, being flat fan brass nozzles. For Trials II and III anti-drift nozzles were used. The boom sprayers were used with the settings as employed by the farmers for the routine pesticide applications. The results of this work indicate that drift was significantly reduced when anti-drift nozzles were utilized. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Spray Forming Aluminum - Final Report (Phase II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Leon

    1999-07-08

    The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Incmore » developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.« less

  19. Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer

    NASA Astrophysics Data System (ADS)

    Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore

    2017-11-01

    The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.

  20. Expected outcomes from topical haemoglobin spray in non-healing and worsening venous leg ulcers.

    PubMed

    Arenberger, P; Elg, F; Petyt, J; Cutting, K

    2015-05-01

    To evaluate the effect of topical haemoglobin spray on treatment response and wound-closure rates in patients with chronic venous leg ulcers. A linear regression model was used to forecast healing outcomes over a 12-month period. Simulated data were taken from normal distributions based on post-hoc analysis of a 72-patient study in non-healing and worsening wounds (36 patients receiving standard care and 36 receiving standard care plus topical haemoglobin spray). Using a simulated 25,000 'patients' from each group, the proportion of wound closure over time was projected. Simulation results predicted a 55% wound closure rate at six months in the haemoglobin group, compared with 4% in the standard care group. Over a 12-month simulation period, a 43% overall reduction in wound burden was predicted. With the haemoglobin spray, 85% of wounds were expected to heal in 12 months, compared with 13% in the standard care group. Topical haemoglobin spray promises a more effective treatment for chronic venous leg ulcers than standard care alone in wounds that are non-healing or worsening. Further research is required to validate these predictions and to identify achievable outcomes in other chronic wound types.

  1. Implementation of Metal Casting Best Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppich, Robert; Naranjo, Robert D.

    2007-01-01

    The project examined cases where metal casters had implemented ITP research results and the benefits they received due to that implementation. In cases where casters had not implemented those results, the project examined the factors responsible for that lack of implementation. The project also informed metal casters of the free tools and service offered by the ITP Technology Delivery subprogram.

  2. Eddy Covariance Measurements of the Sea-Spray Aerosol Flu

    NASA Astrophysics Data System (ADS)

    Brooks, I. M.; Norris, S. J.; Yelland, M. J.; Pascal, R. W.; Prytherch, J.

    2015-12-01

    Historically, almost all estimates of the sea-spray aerosol source flux have been inferred through various indirect methods. Direct estimates via eddy covariance have been attempted by only a handful of studies, most of which measured only the total number flux, or achieved rather coarse size segregation. Applying eddy covariance to the measurement of sea-spray fluxes is challenging: most instrumentation must be located in a laboratory space requiring long sample lines to an inlet collocated with a sonic anemometer; however, larger particles are easily lost to the walls of the sample line. Marine particle concentrations are generally low, requiring a high sample volume to achieve adequate statistics. The highly hygroscopic nature of sea salt means particles change size rapidly with fluctuations in relative humidity; this introduces an apparent bias in flux measurements if particles are sized at ambient humidity. The Compact Lightweight Aerosol Spectrometer Probe (CLASP) was developed specifically to make high rate measurements of aerosol size distributions for use in eddy covariance measurements, and the instrument and data processing and analysis techniques have been refined over the course of several projects. Here we will review some of the issues and limitations related to making eddy covariance measurements of the sea spray source flux over the open ocean, summarise some key results from the last decade, and present new results from a 3-year long ship-based measurement campaign as part of the WAGES project. Finally we will consider requirements for future progress.

  3. Feasibility Assessment for Pressure Casting of Ceramic-Aluminum Composites for NASA's Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    Feasibility assessment of pressure casting of ceramic-aluminum composites for NASA% propulsion applications is summarized. A combination of several demonstration projects to produce three unique components for liquid hydrogen-oxygen rocket engine% flanges, valves and turbo-pump housing are conducted. These components are made from boron carbide, silicon carbide and alumina powders fabricated into complex net shaped parts using dry green powder compaction, slip casting or a novel 3D ink-jet printing process, followed by sintering to produce performs that can be pressure cast by infiltration with molten aluminum. I n addition, joining techniques are also explored to insure that these components can be assembled into a structure without degrading their highly tailored properties. The feasibility assessment was made to determine if these new materials could provide a significant weight savings, thereby reducing vehicle launch costs, while being durable materials to increase safety and performance for propulsion system.

  4. Clean Metal Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhlouf M. Makhlouf; Diran Apelian

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS asmore » a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.« less

  5. EPAs DSSTox Chemical Database: A Resource for the Non-Targeted Testing Community (EPA NTA workshop)

    EPA Science Inventory

    EPA’s DSSTox database project, which includes coverage of the ToxCast and Tox21 high-throughput testing inventories, provides high-quality chemical-structure files for inventories of toxicological and environmental relevance. A feature of the DSSTox project, which differentiates ...

  6. Clipboard

    ERIC Educational Resources Information Center

    Timmons, Virginia

    1978-01-01

    For the teacher with a limited art materials budget plaster provides a "best buy" in terms of the variety of art projects possible and relative cost. With plaster, the student can cast blocks for printmaking, carving, and assemblage and use it, in combination with other materials, in crafts projects. Describes different kinds of plaster…

  7. Internal flow characteristics in scaled pressure-swirl atomizer

    NASA Astrophysics Data System (ADS)

    Malý, Milan; Sapík, Marcel; Jedelský, Jan; Janáčková, Lada; Jícha, Miroslav; Sláma, Jaroslav; Wigley, Graham

    2018-06-01

    Pressure-swirl atomizers are used in a wide range of industrial applications, e.g.: combustion, cooling, painting, food processing etc. Their spray characteristics are closely linked to the internal flow which predetermines the parameters of the liquid sheet formed at the discharge orifice. To achieve a better understanding of the spray formation process, the internal flow was characterised using Laser Doppler Anemometry (LDA) and high-speed imaging in a transparent model made of cast PMMA (Poly(methyl methacrylate)). The design of the transparent atomizer was derived from a pressure-swirl atomizer as used in a small gas turbine. Due to the small dimensions, it was manufactured in a scale of 10:1. It has modular concept and consists of three parts which were ground, polished and bolted together. The original kerosene-type jet A-1 fuel had to be replaced due to the necessity of a refractive index match. The new working liquid should also be colourless, non-aggressive to the PMMA and have the appropriate viscosity to achieve the same Reynolds number as in the original atomizer. Several liquids were chosen and tested to satisfy these requirements. P-Cymene was chosen as the suitable working liquid. The internal flow characteristics were consequently examined by LDA and high-speed camera using p-Cymene and Kerosene-type jet A-1 in comparative manner.

  8. Position Paper External Tank Thermal Protection System (TPS) Manually Sprayed fly-as-is Foam Certification

    NASA Technical Reports Server (NTRS)

    Stadler, John H.

    2009-01-01

    During manufacture of the existing External Tanks (ETs), the Thermal Protection System (TPS) foam manual spray application processes lacked the enhanced controls/procedures to ensure that defects produced were less than the critical size. Therefore the only remaining option to certify the "fly-as-is" foam is to verify ET120 tank hardware meets the new foam debris requirements. The ET project has undertaken a significant effort studying the existing "fly-as-is" TPS foam. This paper contains the findings of the study.

  9. Orthodontics: computer-aided diagnosis and treatment planning

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Li, Zhongke; Wei, Suyuan; Deng, Fanglin; Yao, Sen

    2000-10-01

    The purpose of this article is to introduce the outline of our newly developed computer-aided 3D dental cast analyzing system with laser scanning, and its preliminary clinical applications. The system is composed of a scanning device and a personal computer as a scanning controller and post processor. The scanning device is composed of a laser beam emitter, two sets of linear CCD cameras and a table which is rotatable by two-degree-of-freedom. The rotating is controlled precisely by a personal computer. The dental cast is projected and scanned with a laser beam. Triangulation is applied to determine the location of each point. Generation of 3D graphics of the dental cast takes approximately 40 minutes. About 170,000 sets of X,Y,Z coordinates are store for one dental cast. Besides the conventional linear and angular measurements of the dental cast, we are also able to demonstrate the size of the top surface area of each molar. The advantage of this system is that it facilitates the otherwise complicated and time- consuming mock surgery necessary for treatment planning in orthognathic surgery.

  10. Evaluation of generation 3 treatment technology for swine waste - A North Carolina's clean water management trust fund project - Technical environmental performance report

    USDA-ARS?s Scientific Manuscript database

    This project evaluated and demonstrated the viability of a third generation manure treatment technology. The technology was developed as an alternative to the lagoon/spray field system typically used to treat the wastewater generated by swine farms in North Carolina. It separates solids and liquids ...

  11. Experimental and Numerical Modeling of Fluid Flow Processes in Continuous Casting: Results from the LIMMCAST-Project

    NASA Astrophysics Data System (ADS)

    Timmel, K.; Kratzsch, C.; Asad, A.; Schurmann, D.; Schwarze, R.; Eckert, S.

    2017-07-01

    The present paper reports about numerical simulations and model experiments concerned with the fluid flow in the continuous casting process of steel. This work was carried out in the LIMMCAST project in the framework of the Helmholtz alliance LIMTECH. A brief description of the LIMMCAST facilities used for the experimental modeling at HZDR is given here. Ultrasonic and inductive techniques and the X-ray radioscopy were employed for flow measurements or visualizations of two-phase flow regimes occurring in the submerged entry nozzle and the mold. Corresponding numerical simulations were performed at TUBAF taking into account the dimensions and properties of the model experiments. Numerical models were successfully validated using the experimental data base. The reasonable and in many cases excellent agreement of numerical with experimental data allows to extrapolate the models to real casting configurations. Exemplary results will be presented here showing the effect of electromagnetic brakes or electromagnetic stirrers on the flow in the mold or illustrating the properties of two-phase flows resulting from an Ar injection through the stopper rod.

  12. Research and Development Project Priotization. An Annotated Bibliography.

    DTIC Science & Technology

    1980-04-01

    matrix) theory provides the answer in any particular 17 problem. The matrix used is a table to express the number of votes cast for each motion...the majority-rule model and the game model. In 1964, Aumana’s chapter in Shelly and Bryan’s book [187] briefly described ordinal utility ranking...propositions to cast doubt on the existence of Bergson-Samuelson SWFs. They demonstrated that it was impossible to find a "reasonable" Bergson

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    Tom Walsh & Company’s homes in an urban infill project in Portland achieved meets 2012 IECC insulation requirements in the marine climate with R-21 fiberglass batt walls, R-25 slab insulation and R-49 spray foam and cellulose attic floors.

  14. Plaster People...A La George Segal.

    ERIC Educational Resources Information Center

    Boulay, Michele

    2003-01-01

    Describes an art project used with eleventh- and twelfth-grade students in which they created plaster self-portraits inspired by the work of George Segal. Includes directions for the casting and lists the art materials needed for the lesson. Explains that the project requires half a semester to complete. (CMK)

  15. EPA Project Updates: DSSTox and ToxCast Generating New Data and Data Linkages for Use in Predictive Modeling

    EPA Science Inventory

    EPAs National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction. The DSSTox project is improving public access to quality structure-annotated chemical toxicity information in less summarized forms than tr...

  16. Project Cheddarfield: Supporting Co-Curricular Themes through Creative Use of Video Course-Casting

    ERIC Educational Resources Information Center

    Simpson, Natalie C.; Hancock, Philip G.

    2011-01-01

    This article chronicles the coordination and better integration of existing institutional resources to support "cocurricular" themes embedded in the provision of a large enrollment, video-mediated undergraduate operations management (OM) course. The name Project Cheddarfield refers to a 2008 initiative in which two professors team-taught…

  17. EPA DSSTox and ToxCast Project Updates: Generating New Data and Linkages in Support of Public Toxico-Cheminformatics Efforts

    EPA Science Inventory

    EPA’s National Center for Computational Toxicology is generating data and capabilities to support a new paradigm for toxicity screening and prediction. The DSSTox project is improving public access to quality structure-annotated chemical toxicity information in less summarized fo...

  18. ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.

    PubMed

    Richard, Ann M; Judson, Richard S; Houck, Keith A; Grulke, Christopher M; Volarath, Patra; Thillainadarajah, Inthirany; Yang, Chihae; Rathman, James; Martin, Matthew T; Wambaugh, John F; Knudsen, Thomas B; Kancherla, Jayaram; Mansouri, Kamel; Patlewicz, Grace; Williams, Antony J; Little, Stephen B; Crofton, Kevin M; Thomas, Russell S

    2016-08-15

    The U.S. Environmental Protection Agency's (EPA) ToxCast program is testing a large library of Agency-relevant chemicals using in vitro high-throughput screening (HTS) approaches to support the development of improved toxicity prediction models. Launched in 2007, Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay end points. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in the public release of screening data at the end of 2013. Subsequent expansion in Phase III has resulted in more than 3800 chemicals actively undergoing ToxCast screening, 96% of which are also being screened in the multi-Agency Tox21 project. The chemical library unpinning these efforts plays a central role in defining the scope and potential application of ToxCast HTS results. The history of the phased construction of EPA's ToxCast library is reviewed, followed by a survey of the library contents from several different vantage points. CAS Registry Numbers are used to assess ToxCast library coverage of important toxicity, regulatory, and exposure inventories. Structure-based representations of ToxCast chemicals are then used to compute physicochemical properties, substructural features, and structural alerts for toxicity and biotransformation. Cheminformatics approaches using these varied representations are applied to defining the boundaries of HTS testability, evaluating chemical diversity, and comparing the ToxCast library to potential target application inventories, such as used in EPA's Endocrine Disruption Screening Program (EDSP). Through several examples, the ToxCast chemical library is demonstrated to provide comprehensive coverage of the knowledge domains and target inventories of potential interest to EPA. Furthermore, the varied representations and approaches presented here define local chemistry domains potentially worthy of further investigation (e.g., not currently covered in the testing library or defined by toxicity "alerts") to strategically support data mining and predictive toxicology modeling moving forward.

  19. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, Jerald R.

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Toolmore » steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was retained as the exterior layer of the tooling, while commercially pure copper was chosen for the interior structure of the tooling. The tooling was fabricated by traditional machining of the copper substrate, and H13 powder was deposited on the copper via the Laser Engineered Net Shape (LENSTM) process. The H13 deposition layer was then final machined by traditional methods. Two tooling components were designed and fabricated; a thermal fatigue test specimen, and a core for a commercial aluminum high pressure die casting tool. The bimetallic thermal fatigue specimen demonstrated promising performance during testing, and the test results were used to improve the design and LENS TM deposition methods for subsequent manufacture of the commercial core. Results of the thermal finite element analysis for the thermal fatigue test specimen indicate that it has the ability to lose heat to the internal water cooling passages, and to external spray cooling, significantly faster than a monolithic H13 thermal fatigue sample. The commercial core is currently in the final stages of fabrication, and will be evaluated in an actual production environment at Shiloh Die casting. In this research, the feasibility of designing and fabricating copper/H13 bimetallic die casting tooling via LENS TM processing, for the purpose of improving die casting process efficiency, is demonstrated.« less

  20. Development of Aerogel Molds for Metal Casting Using Lunar and Martian Regolith

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the last few years NASA has set new priorities for research and development of technologies necessary to enable long-term presence on the Moon and Mars. Among these key technologies is what is known as in situ resource utilization, which defines all conceivable usage of mineral, liquid, gaseous, or biological resources on a visited planet. In response to this challenge, we have been focusing on developing and demonstrating the manufacturing of a specific product using Lunar and Martian soil simulants (i.e., a mold for the casting of metal and alloy parts) which will be an indispensable tool for the survival of outposts on the Moon and Mars. In addition, our purpose is to demonstrate the feasibility of using mesoporous materials such as aerogels to serve as efficient casting molds for high quality components in propulsion and other aerospace applications. The first part of the project consists of producing aerogels from the in situ resources available in Martian and Lunar soil. The approach we are investigating is to use chemical processes to solubilize silicates using organic reagents at low temperatures and then use these as precursors in the formation of aerogels for the fabrication of metal casting molds. One set of experiments consists of dissolving silica sources in basic ethylene glycol solution to form silicon glycolates. When ground silica aerogel was used as source material, a clear solution of silicon glycolate was obtained and reacted to form a gel thus proving the feasibility of this approach. The application of this process to Lunar and Martian simulants did not result in the formation of a gel; further study is in progress. In the second method acidified alcohol is reacted with the simulants to form silicate esters. Preliminary results indicate the presence of silicon alkoxide in the product distillation. However, no gel has been obtained so further characterization is ongoing. In the second part of the project, the focus has been on developing a series of aerogel plates suitable for thin plate metal casting and ingot metal castings. The influence of aerogels on thin wall metal castings was studied by placing aerogel plates into the cavities of thin sections of resin bonded sand molds. An 1 based commercial alloy ( 356) containing 7 percent Si was poured into these molds. Post-solidification studies provide evidence that aerogel inserts significantly reduce the cooling rate during solidification. The advantage of a lower rate using aerogel inserts was reflected in the reduction of casting defects such as shrinkage porosity. Quantitative results support the hypothesis that using aerogels as a mold material can offer definite advantages when used as casting thin sections. As a separate effort, silica aerogel with cylindrical cavities have been prepared and will be evaluated for casting commercial alloys.

  1. Method for removing metal ions from solution with titanate sorbents

    DOEpatents

    Lundquist, Susan H.; White, Lloyd R.

    1999-01-01

    A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

  2. Sprayed skin turbine component

    DOEpatents

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  3. A study on post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems

    NASA Astrophysics Data System (ADS)

    Shahariar, G. M. H.; Wardana, M. K. A.; Lim, O. T.

    2018-04-01

    The post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems was numerically investigated in a constant volume chamber using STAR CCM+ CFD code. The turbulence flow was modelled by realizable k-ε two-layer model together with standard wall function and all y+ treatment was applied along with two-layer approach. The Eulerian-Lagrangian approach was used for the modelling of multi phase flow. Urea water solution (UWS) was injected onto the heated wall for the wall temperature of 338, 413, 473, 503 & 573 K. Spray development after impinging on the heated wall was visualized and measured. Droplet size distribution and droplet evaporation rates were also measured, which are vital parameters for the system performance but still not well researched. Specially developed user defined functions (UDF) are implemented to simulate the desired conditions and parameters. The investigation reveals that wall temperature has a great impact on spray development after impingement, droplet size distribution and evaporation. Increasing the wall temperature leads to longer spray front projection length, smaller droplet size and faster droplet evaporation which are preconditions for urea crystallization reduction. The numerical model and parameters are validated comparing with experimental data.

  4. Photoacoustic imaging of real-time oxygen changes in chronic leg ulcers after topical application of a haemoglobin spray: a pilot study.

    PubMed

    Petri, M; Stoffels, I; Jose, J; Leyh, J; Schulz, A; Dissemond, J; Schadendorf, D; Klode, J

    2016-02-01

    To use a non-invasive measurement of oxygen saturation in chronic leg ulcers after the application of a topical haemoglobin spray to investigate if photoacoustic tomography is able to measure the oxygen saturation and if the stimulated oxygen increase can be demonstrated. We measured the oxygen saturation of the ulcer tissue in five patients with chronic leg ulcers before application and 5 and 20 minutes after application of the haemoglobin spray, using photoacoustic tomography as a new method to assess oxygenation in real-time. The average oxygen saturation showed a significant increase from 56.4% before to 69% (p=0.042) after 5 minutes and 78.8% (p=0.043) 20 minutes after the topical haemoglobin application. The oxygenation status of chronic, hard-to-heal wounds is gaining increasing interest in modern wound therapy. Topical haemoglobin spray is a new and effective method to increase the oxygenation in the ulcer tissue, but until now the link between clinical results and the mode of action was unclear. We were able to show for the first time that the use of a topical haemoglobin spray leads to an increase in oxygen saturation in vivo using photoacoustic tomography. Joachim Dissemond received financial support from the company SastoMed for several scientific projects as well as for lectures and as an advisor. The haemoglobin spray was provided by SastoMed GmbH (Georgsmarienhütte, Germany).

  5. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregatesmore » that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.« less

  6. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregatesmore » that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.« less

  7. A Water Mass Tracer Detected in Aerosols Demonstrates Ocean-Atmosphere Mass Transfer and Links Sea Spray Aerosol to Source Waters

    NASA Astrophysics Data System (ADS)

    Pendergraft, M.; Grimes, D. J.; Giddings, S. N.; Feddersen, F.; Prather, K. A.; Santander, M.; Lee, C.; Beall, C.

    2016-12-01

    During September and October of 2015 the Cross Surfzone/Inner-shelf Dye Exchange (CSIDE) project released rhodamine WT dye to study nearshore water movement and exchange offshore along a Southern California sandy beach. We utilized this opportunity to investigate ocean-atmosphere mass transfer via sea spray aerosol and linkage to source waters. Aerosol-concentrating sampling equipment was deployed at beachside and inland locations during three dye releases. Concentrated aerosol samples were analyzed for dye content using fluorescence spectroscopy. Here we present the ocean and atmosphere conditions associated with the presence and absence of dye in aerosol samples. Dye was identified in aerosol samples collected 0.1-0.3 km from the shoreline for 6 hs during the first and third dye releases of the CSIDE project. During these releases the dye persisted in the waters upwind of the sampling equipment. Dye was not detected in aerosol samples collected during the second release during which dye was moved away from waters upwind of the sampling equipment. Recovery of a chemical tracer in sea spray aerosol allows direct linkage to a known source area in the ocean that is independent of, but supported by, wind data. Our observations demonstrate: a tight ocean-atmosphere spatial coupling; a short residence time of coastal marine constituents before transfer to the atmosphere; that the ocean is both a sink for and a source of atmospheric and terrestrial material; and that human inputs to the ocean can return to us in sea spray aerosol.

  8. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks formore » roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.« less

  9. Precision Casting via Advanced Simulation and Manufacturing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  10. Space Processing Applications Rocket project, SPAR 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Experiment objectives, design/operational concepts, and final results are summarized for six materials science experiments conducted during the second space processing applications rocket mission flown by NASA. The individual experiments discussed are: (1) solidification of Pb-Sb eutectic; (2) feasibility of producing closed-cell metal foams; (3) direct observation of dendrite remelting and macrosegregation in castings; (4) agglomeration in immiscible liquids; (5) casting dispersion - strengthened composites at zero gravity; and (6) solidification behavior of Al-In alloys under zero gravity conditions.

  11. Manufacturing and Characterization of Ultra Pure Ferrous Alloys Final Report CRADA No. TC02069.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.; McGreevy, T. E.

    This CRADA was a.collaborative effort between the Lawrence Livermore National Security LLC (formerly University of California)/Lawrence Livermore National Laboratory (LLNL),and Caterpillar Inc. (CaterpiHar), to further advance levitation casting techniques (developed at the Central Research Institute for Material (CRIM) in St. Petersburg, Russia) for use in manufacturing high purity metal alloys. This DOE Global Initiatives for Proliferation Prevention Program (IPP) project was to develop and demonstrate the levitation casting technology for producing ultra-pure alloys.

  12. Projection parameters for zirconia-alumina-ceria coatings made by flame spraying from results of numerical simulation

    NASA Astrophysics Data System (ADS)

    Rodríguez, L.; Ferrer, M.; Vargas, F.; Peña, G.

    2017-12-01

    A numerical simulation was performed with the software Jets et Poudres, the results let choose the parameters to deposit zirconia-alumina-ceria coatings of different composition on substrates of red clay, by thermal spraying with the oxyacetylene flame to obtain homogeneous coatings with good adhesion to the substrate. The effect of the projection distance (7, 10 and 12cm) between the substrate and the torch, the fusion percentage of particles and the K-Sommerfeld number was determined. This number is dimensionless and is affected by the projection distance and by the chemical composition of the particles. For a projection distance of 9cm, the fusion percentage of the particles varies between 83.8% and 100%, and the K-Sommerfeld number between 47.3 and 50 for the different compounds. This makes possible to obtain uniform coatings with good wettability, therefore, good adhesion to the substrate, while for the distance of 7cm the fusion percentage varies between 22% and 38%, due to the short time of the particles in the flame which causes low adhesion, when the projection distance is 12cm the particles do not have sufficient kinetic energy to reach the substrate and therefore the coating is not deposited.

  13. DEVELOPING AND IMPLEMENTING A BIRD MIGRATION MONITORING, ASSESSMENT AND PUBLIC OUTREACH PROGRAM FOR YOUR COMMUNITY - THE BIRDCAST PROJECT

    EPA Science Inventory

    The USEPA has developed a technology transfer handbook for the EMPACt BirdCast bird migration monitoring project. The document is essentially a "How-To" Handbook that addresses the planning and implementation steps that were needed to develop, operate and maintain a program simil...

  14. Why Teach? A Project-Ive Life-World Approach to Understanding What Teaching Means for Teachers

    ERIC Educational Resources Information Center

    Landrum, Brittany; Guilbeau, Catherine; Garza, Gilbert

    2017-01-01

    Previous literature has examined teachers' motivations to teach in terms of intrinsic and extrinsic motives, personality dimensions, and teacher burnout. These findings have been cast in the rubric of differences between teachers and non-teachers and the linear relations between these measures among teachers. Utilizing a phenomenological approach…

  15. Chalk Point cooling tower project native vegetation study. Final report 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, G.W.; Galloway, R.A.; Francis, B.A.

    1979-06-01

    The Potomac Electric Power Company generating station at Chalk Point, MD, utilizes brackish water in its natural draft cooling tower and, consequently, releases saline aerosol into the atmosphere. A research and monitoring project was established in 1974 to evaluate the effects of this drift on native perennial vegetation. Leaf samples have been collected form dogwood, Cornys florida, Virginia pine, Pinus virginiana, black locust, Robinia pseudoacacia, and sassafras, Sassafras albidum, located at 12 different sites in the vicinity of the power plant. Sampling was begun prior to the operation of the cooling tower, 1974, and continued through 1978. Complete results frommore » monthly monitoring of foliar chloride in the four native tree species is documented for May through September 1978. Results from salt spray experiments indicate chloride and sodium concentrations in the wood of dogwood trees increases with increased spraying levels.« less

  16. Composites in small and simple devices to increase mixing on detector surfaces

    NASA Astrophysics Data System (ADS)

    Hernandez, L. F.; Lima, R. R.; Leite, A. R.; Fachini, E. R.; Silva, M. L. P.

    2013-03-01

    This work aims at three different applications for the betterment of plasma generated-composite thin films: pre-mixing, spray formation in miniaturized structures and an increase in the performance of detector surfaces. Miniaturized structures were projected, simulated with FEMLAB® 3.2 software and then constructed. Clustered films made from tetraethoxysilane (TEOS) and nonafluoro(iso)butyl ether (HFE®) precursors were deposited on silicon, acrylic and quartz substrates for different kinds of film characterization/or in the projected structures. Physical and chemical characterization guided the selection of best films previous to/after UVC exposure. The active surfaces (plasma-deposited films) in structures were modified by UVC exposure and then tested. The applications include pre-mixing of liquids and/or spray formation, best results being obtained with surface covered by derivative-HFE films, which acted as passivation layers. Preliminary results show good humidity sensing for TEOS-derivative films.

  17. Joint Test Plan for Gas Dynamic Spray Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2008-01-01

    Air Force Space Command (AFSPC) and NASA have similar missions, facilities, and structures located in similar harsh environments. Both are responsible for a number of facilities/structures with metallic structural and non-structural components in highly and moderately corrosive environments. Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are subject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by AFSPC and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GDS) technology (also known as Cold Spray) will be evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GDS coatings also have no VOCs and are environmentally preferable coatings. To achieve a condition suitable for the application of a coating system, including GDS coatings, the substrate must undergo some type of surface preparation and/or depainting operation to ensure adhesion of the new coating system. The GDS unit selected for demonstration has a powder feeding system that can be used for surface preparation or coating application. The surface preparation feature will also be examined. The primary objective of this effort is to demonstrate GDS technology as a repair method for TSCs. The project will also determine the optimal GDS coating thickness for acceptable performance. Successful completion of this project will result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations and will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  18. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutland, Christopher J.

    2009-04-26

    The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less

  19. A Practical Recycling Project . . .

    ERIC Educational Resources Information Center

    Durant, Raymond H.; Mikuska, James M.

    1973-01-01

    Descirbes a school district's recycling program of aluminum lunch trays that are collected after their use. The trays are used as scrap metal in industrial education workshop and used for sand castings. (PS)

  20. Non-Destructive Evaluation of Grain Structure Using Air-Coupled Ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belvin, A. D.; Burrell, R. K.; Cole, E.G.

    2009-08-01

    Cast material has a grain structure that is relatively non-uniform. There is a desire to evaluate the grain structure of this material non-destructively. Traditionally, grain size measurement is a destructive process involving the sectioning and metallographic imaging of the material. Generally, this is performed on a representative sample on a periodic basis. Sampling is inefficient and costly. Furthermore, the resulting data may not provide an accurate description of the entire part's average grain size or grain size variation. This project is designed to develop a non-destructive acoustic scanning technique, using Chirp waveforms, to quantify average grain size and grain sizemore » variation across the surface of a cast material. A Chirp is a signal in which the frequency increases or decreases over time (frequency modulation). As a Chirp passes through a material, the material's grains reduce the signal (attenuation) by absorbing the signal energy. Geophysics research has shown a direct correlation with Chirp wave attenuation and mean grain size in geological structures. The goal of this project is to demonstrate that Chirp waveform attenuation can be used to measure grain size and grain variation in cast metals (uranium and other materials of interest). An off-axis ultrasonic inspection technique using air-coupled ultrasonics has been developed to determine grain size in cast materials. The technique gives a uniform response across the volume of the component. This technique has been demonstrated to provide generalized trends of grain variation over the samples investigated.« less

  1. The electrospray: Fundamentals and combustion applications

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro

    1993-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment. In view of the nearly unsurmountable difficulties of this two-phase flow, it would be useful to use an experimental arrangement that allow a systematic study of spray evolution and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones. An Electrostatic Spray (ES) of charged droplets lends itself to this type of combustion experiments under well-defined conditions and can be used to synthesize gradually more complex spray environments. In its simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip. This jet breaks up farther downstream into a fine spray of charged droplets. Several advantages distinguish the electrospray from alternative atomization techniques: the self-dispersion property of the spray due to coulombic repulsion; the absence of droplet coalescence; the potential control of the trajectories of charged droplets by suitable disposition of electrostatic fields; and the decoupling of atomization, which is strictly electrostatic, from gas flow processes. Furthermore, as recently shown in our laboratory, the electrospray can produce quasi-monodisperse droplets over a very broad size range (1-100 microns). The ultimate objective of this research project is to study the formation and burning of electrosprays of liquid fuels first in laminar regimes and then in turbulent ones. Combustion will eventually be investigated in conditions of three-dimensional droplet-droplet interaction, for which experimental studies have been limited to either qualitative observations in sprays or more quantitative observations on simplified systems consisting of a small number of droplets or droplet arrays. The compactness and potential controllability of this spray generaiton system makes it appealing for studies to be undertaken in the next two years on electrospray combustion in reduced-gravity environments such as those achievable at NASA microgravity test facilities.

  2. Study of Internal Dump Stability of Dudhichua Open Cast Project, Northern Coalfields Limited, India

    NASA Astrophysics Data System (ADS)

    Sengupta, S.; Roy, I.

    2015-04-01

    Dudhichua Open Cast Project is one of the prestigious projects of Northern Coalfields Limited, India; with total mineable coal reserves of approximately 400 million tonnes and corresponding 1,700 million m3 volume of waste rock i.e. overburden material. Accommodating this waste dump masses in the limited space of the de-coaled portion of the quarry is considered as one of the major challenges to the mine operators. It has been reported that this mine is facing frequent slope failures of waste rock dumps which is of great concern to the mine management in view of unsafe working condition. To tackle the above problem, a detailed investigation was carried out to propose a stable dump profile which will cater to the land economics and safety aspects of the mine. A detailed investigation along with recommendation of optimum design for dragline dump profile along with shovel-dumper-dump profile is presented in this paper.

  3. [Exploring a new method for superimposition of pre-treatment and post-treatment mandibular digital dental casts in adults].

    PubMed

    Dai, F F; Liu, Y; Xu, T M; Chen, G

    2018-04-18

    To explore a cone beam computed tomography (CBCT)-independent method for mandibular digital dental cast superimposition to evaluate three-dimensional (3D) mandibular tooth movement after orthodontic treatment in adults, and to evaluate the accuracy of this method. Fifteen post-extraction orthodontic treatment adults from the Department of Orthodontics, Peking University School and Hospital of Stomatology were included. All the patients had four first premolars extracted, and were treated with straight wire appliance. The pre- and post-treatment plaster dental casts and craniofacial CBCT scans were obtained. The plaster dental casts were transferred to digital dental casts by 3D laser scanning, and lateral cephalograms were created from the craniofacial CBCT scans by orthogonal projection. The lateral cephalogram-based mandibular digital dental cast superimposition was achieved by sequential maxillary dental cast superimposition registered on the palatal stable region, occlusal transfer, and adjustment of mandibular rotation and translation obtained from lateral cephalogram superimposition. The accuracy of the lateral cephalogram-based mandibular digital dental cast superimposition method was evaluated with the CBCT-based mandibular digital dental cast superimposition method as the standard reference. After mandibular digital dental cast superimposition using both methods, 3D coordinate system was established, and 3D displacements of the lower bilateral first molars, canines and central incisors were measured. Differences between the two superimposition methods in tooth displacement measurements were assessed using the paired t-test with the level of statistical significance set at P<0.05. No significant differences were found between the lateral cephalogram-based and CBCT-based mandibular digital dental cast superimposition methods in 3D displacements of the lower first molars, and sagittal and vertical displacements of the canines and central incisors; transverse displacements of the canines and central incisors differed by (0.3±0.5) mm with statistical significance. The lateral cephalogram-based mandibular digital dental cast superimposition method has the similar accuracy as the CBCT-based mandibular digital dental cast superimposition method in 3D evaluation of mandibular orthodontic tooth displacement, except for minor differences for the transverse displacements of anterior teeth. This method is applicable to adult patients with conventional orthodontic treatment records, especially the previous precious orthodontic data in the absence of CBCT scans.

  4. Materials for advanced ultrasupercritical steam turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purgert, Robert; Shingledecker, John; Saha, Deepak

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbinemore » throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using traditional sand foundry practices, and a techno-economic study of an A-USC plant including cost estimates for an A-USC turbine which showed A-USC to be economically attractive for partial carbon and capture compared to today’s USC technology. Based on this successful materials research and a review with U.S. utility stakeholders, a new project to develop a component test facility (ComTest) including the world’s first A-USC turbine has been proposed to continue the technology development.« less

  5. Characteristic study of flat spray nozzle by using particle image velocimetry (PIV) and ANSYS simulation method

    NASA Astrophysics Data System (ADS)

    Pairan, M. Rasidi; Asmuin, Norzelawati; Isa, Nurasikin Mat; Sies, Farid

    2017-04-01

    Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. This project studies the water droplet velocity and penetration angle generated by new development mist spray with a flat spray pattern. This research conducted into two part which are experimental and simulation section. The experimental was conducted by using particle image velocimetry (PIV) method, ANSYS software was used as tools for simulation section meanwhile image J software was used to measure the penetration angle. Three different of combination pressure of air and water were tested which are 1 bar (case A), 2 bar (case B) and 3 bar (case C). The flat spray generated by the new development nozzle was examined at 9cm vertical line from 8cm of the nozzle orifice. The result provided in the detailed analysis shows that the trend of graph velocity versus distance gives the good agreement within simulation and experiment for all the pressure combination. As the water and air pressure increased from 1 bar to 2 bar, the velocity and angle penetration also increased, however for case 3 which run under 3 bar condition, the water droplet velocity generated increased but the angle penetration is decreased. All the data then validated by calculate the error between experiment and simulation. By comparing the simulation data to the experiment data for all the cases, the standard deviation for this case A, case B and case C relatively small which are 5.444, 0.8242 and 6.4023.

  6. Optical sensors based on the NiPc-CoPc composite films deposited by drop casting and under the action of centrifugal force

    NASA Astrophysics Data System (ADS)

    Fatima, Noshin; Ahmed, Muhammad M.; Karimov, Khasan S.; Ahmad, Zubair; Fariq Muhammad, Fahmi

    2017-06-01

    In this study, solution processed composite films of nickel phthalocyanine (NiPc) and cobalt phthalocyanine (CoPc) are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc-CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity ({S}z) are equal to (-1.83) {{M}}{{Ω }}\\cdot {{cm}}2/{mW} and (-5.365){{M}}{{Ω }}\\cdot {{cm}}2/{mW} for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity ({S}{{c}}) are equal to 0.083 {pF}\\cdot {{cm}}2/{mW} and 0.185 {pF}\\cdot {{cm}}2/{mW} for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes (i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed. Project supported by the Center for Advanced Materials (CAM), Qatar University, Qatar.

  7. The "Deep Blue" Aerosol Project at NASA GSFC

    NASA Technical Reports Server (NTRS)

    Sayer, Andrew; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Carletta, N.; Chen, S.; Esmaili, R.

    2016-01-01

    Atmospheric aerosols such as mineral dust, wildfire smoke, sea spray, and volcanic ash are of interest for a variety of reasons including public health, climate change, hazard avoidance, and more. Deep Blue is a project which uses satellite observations of the Earth from sensors such as SeaWiFS, MODIS, and VIIRS to monitor the global aerosol burden. This talk will cover some basics about aerosols and the principles of aerosol remote sensing, as well as discussing specific results and future directions for the Deep Blue project.

  8. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method.

    PubMed

    Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu

    2014-01-03

    In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe₂ absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe₂ precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe₂ absorber layers. After spraying on Mo/glass substrates, the CuInSe₂ thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N₂ as atmosphere. When the CuInSe₂ thin films were annealed, without extra Se or H₂Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe₂ absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe₂ absorber layers could be controlled as the volume of used dispersed CuInSe₂-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe₂ absorber layers obtained by the Spray Coating Method.

  9. Improved design and durability of aluminum die casting horizontal shot sleeves

    NASA Astrophysics Data System (ADS)

    Birceanu, Sebastian

    The design and performance of shot sleeves is critical in meeting the engineering requirements of aluminum die cast parts. Improvement in shot sleeve materials have a major impact on dimensional stability, reproducibility and quality of the product. This investigation was undertaken in order to improve the life of aluminum die casting horizontal shot sleeves. Preliminary pin tests were run to evaluate the soldering, wash-out and thermal fatigue behavior of commercially available materials and coatings. An experimental rig was designed and constructed for shot sleeve configuration evaluation. Fabrication and testing of experimental shot sleeves was based upon preliminary results and manufacturing costs. Three shot sleeve designs and materials were compared to a reference nitrided H13 sleeve. Nitrided H13 is the preferred material for aluminum die casting shot sleeves because of wear resistance, strength and relative good soldering and wash-out resistance. The study was directed towards damage evaluation on the area under the pouring hole. This area is the most susceptible to damage because of high temperatures and impingement of molten aluminum. The results of this study showed that tungsten and molybdenum had the least amount of soldering and wash-out damage, and the best thermal fatigue resistance. Low solubility in molten aluminum and stability of intermetallic layers are main factors that determine the soldering and wash-out behavior. Thermal conductivity and thermal expansion coefficient directly influence thermal fatigue behavior. TiAlN nanolayered coating was chosen as the material with the best damage resistance among several commercial PVD coatings, because of relatively large thickness and simple deposition conditions. The results show that molybdenum thermal sprayed coating provided the best protection against damage under the pouring hole. Improved bonding is however required for life extension of the coating. TiAlN PVD coating applied on H13 nitrided substrate performed very well as long as the coating was maintained. Nitrided H13 sleeve showed extensive damage that occurred as early as 200 cycles. The nitrided layer only slowed down the diffusion process and dissolution took place at a higher rate as soon as the layer wore off. Stellite 6 sleeve also showed considerable wear under the action of molten aluminum.

  10. Mod II engine performance

    NASA Technical Reports Server (NTRS)

    Richey, Albert E.; Huang, Shyan-Cherng

    1987-01-01

    The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.

  11. Prediction of Phase Behavior of Spray-Dried Amorphous Solid Dispersions: Assessment of Thermodynamic Models, Standard Screening Methods and a Novel Atomization Screening Device with Regard to Prediction Accuracy

    PubMed Central

    Chavez, Pierre-François; Meeus, Joke; Robin, Florent; Schubert, Martin Alexander; Somville, Pascal

    2018-01-01

    The evaluation of drug–polymer miscibility in the early phase of drug development is essential to ensure successful amorphous solid dispersion (ASD) manufacturing. This work investigates the comparison of thermodynamic models, conventional experimental screening methods (solvent casting, quench cooling), and a novel atomization screening device based on their ability to predict drug–polymer miscibility, solid state properties (Tg value and width), and adequate polymer selection during the development of spray-dried amorphous solid dispersions (SDASDs). Binary ASDs of four drugs and seven polymers were produced at 20:80, 40:60, 60:40, and 80:20 (w/w). Samples were systematically analyzed using modulated differential scanning calorimetry (mDSC) and X-ray powder diffraction (XRPD). Principal component analysis (PCA) was used to qualitatively assess the predictability of screening methods with regards to SDASD development. Poor correlation was found between theoretical models and experimentally-obtained results. Additionally, the limited ability of usual screening methods to predict the miscibility of SDASDs did not guarantee the appropriate selection of lead excipient for the manufacturing of robust SDASDs. Contrary to standard approaches, our novel screening device allowed the selection of optimal polymer and drug loading and established insight into the final properties and performance of SDASDs at an early stage, therefore enabling the optimization of the scaled-up late-stage development. PMID:29518936

  12. A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete.

    PubMed

    Fritz, Laura; Hadwiger, Markus; Geier, Georg; Pittino, Gerhard; Gröller, M Eduard

    2009-01-01

    This paper describes advanced volume visualization and quantification for applications in non-destructive testing (NDT), which results in novel and highly effective interactive workflows for NDT practitioners. We employ a visual approach to explore and quantify the features of interest, based on transfer functions in the parameter spaces of specific application scenarios. Examples are the orientations of fibres or the roundness of particles. The applicability and effectiveness of our approach is illustrated using two specific scenarios of high practical relevance. First, we discuss the analysis of Steel Fibre Reinforced Sprayed Concrete (SFRSpC). We investigate the orientations of the enclosed steel fibres and their distribution, depending on the concrete's application direction. This is a crucial step in assessing the material's behavior under mechanical stress, which is still in its infancy and therefore a hot topic in the building industry. The second application scenario is the designation of the microstructure of ductile cast irons with respect to the contained graphite. This corresponds to the requirements of the ISO standard 945-1, which deals with 2D metallographic samples. We illustrate how the necessary analysis steps can be carried out much more efficiently using our system for 3D volumes. Overall, we show that a visual approach with custom transfer functions in specific application domains offers significant benefits and has the potential of greatly improving and optimizing the workflows of domain scientists and engineers.

  13. Solution-assisted ultrafast transfer of graphene-based thin films for solar cells and humidity sensors.

    PubMed

    Sun, Jiawei; Xie, Xiao; Bi, Hengchang; Jia, Haiyang; Zhu, Chongyang; Wan, Neng; Huang, Jianqiu; Nie, Meng; Li, Dan; Sun, Litao

    2017-03-01

    Vacuum filtration enables the fabrication of large-area graphene-based membranes (GBMs), possessing a smoother surface than that by spray, spin coating or drop casting. However, due to the strong interaction with substrates, the separation of thin GBMs from the filter is problematic. Conventional stamping separation/transfer of graphene oxide (GO) thin films requires another substrate and pressing for >10 h, which may damage the delicate structure of the transfer substrates. Other methods require GO to be reduced on filters before separation, thus limiting the reduction methods. Inspired by a coagulation bath that enables rapid formation of ultrastrong GO fibers, we present an ultrafast (<1 min) and solution-assisted strategy to fabricate smooth and freestanding GO films. The diverse interfacial energy of hydrogen bonds also demonstrates another reason for the successful separation. The film thickness ranges from 45 nm to several micrometers. When used as a composite of counter electrodes in dye sensitized solar cells, it showed higher (8.58%) power conversion efficiency than its spin-(7.71%) and spray-coated (8.07%) counterparts. It also showed promising performance in capacitive humidity sensors. The capacitance varied by three orders of magnitude in the range of the relative humidity of 15%-95%. Therefore the strategy realizes an ultrafast and high-quality film production which is suitable for various applications.

  14. Solution-assisted ultrafast transfer of graphene-based thin films for solar cells and humidity sensors

    NASA Astrophysics Data System (ADS)

    Sun, Jiawei; Xie, Xiao; Bi, Hengchang; Jia, Haiyang; Zhu, Chongyang; Wan, Neng; Huang, Jianqiu; Nie, Meng; Li, Dan; Sun, Litao

    2017-03-01

    Vacuum filtration enables the fabrication of large-area graphene-based membranes (GBMs), possessing a smoother surface than that by spray, spin coating or drop casting. However, due to the strong interaction with substrates, the separation of thin GBMs from the filter is problematic. Conventional stamping separation/transfer of graphene oxide (GO) thin films requires another substrate and pressing for >10 h, which may damage the delicate structure of the transfer substrates. Other methods require GO to be reduced on filters before separation, thus limiting the reduction methods. Inspired by a coagulation bath that enables rapid formation of ultrastrong GO fibers, we present an ultrafast (<1 min) and solution-assisted strategy to fabricate smooth and freestanding GO films. The diverse interfacial energy of hydrogen bonds also demonstrates another reason for the successful separation. The film thickness ranges from 45 nm to several micrometers. When used as a composite of counter electrodes in dye sensitized solar cells, it showed higher (8.58%) power conversion efficiency than its spin-(7.71%) and spray-coated (8.07%) counterparts. It also showed promising performance in capacitive humidity sensors. The capacitance varied by three orders of magnitude in the range of the relative humidity of 15%-95%. Therefore the strategy realizes an ultrafast and high-quality film production which is suitable for various applications.

  15. Technology Solutions Case Study: Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks formore » roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. In this project, Building Science Corporation investigated rain and built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.« less

  16. Infant Mortality

    MedlinePlus

    ... Projection Tool The CastCost Toolkit en Español Contraceptive Logistics Publications and Products Epidemiology Modules Multimedia Get Email ... Mortality Rates by State Map from the National Center for Health Statistics. ¹The number of infant deaths ...

  17. Silicon Ingot Casting - Heat Exchanger Method (HEM). Multi-Wire Slicing - Fixed Abrasive Slicing Technique (Fast). Phase 4 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Schmid, F.

    1981-01-01

    The crystallinity of large HEM silicon ingots as a function of heat flow conditions is investigated. A balanced heat flow at the bottom of the ingot restricts spurious nucleation to the edge of the melted-back seed in contact with the crucible. Homogeneous resistivity distribution over all the ingot has been achieved. The positioning of diamonds electroplated on wirepacks used to slice silicon crystals is considered. The electroplating of diamonds on only the cutting edge is described and the improved slicing performance of these wires evaluated. An economic analysis of value added costs of HEM ingot casting and band saw sectioning indicates the projected add on cost of HEM is well below the 1986 allocation.

  18. Joseph Carpue's file drawer experiment - A murder mystery from 1801.

    PubMed

    Freshwater, M Felix

    2015-12-01

    Today unpublished or "file drawer" experiments are the impetus for trial registration and reporting of all results. In 1801, Joseph Carpue, the father of modern plastic surgery, did a file drawer experiment for Benjamin West, who was President of the Royal Academy of Arts. George III had commissioned West to create the largest stained glass window ever created whose theme, the Crucifixion, was based upon Michelangelo's drawing. Subsequently, West suffered a series of political, professional and economic setbacks. In the summer of 1801, West's project was delayed. By the fall, West hoped that independent scientific confirmation of his design could salvage the project. West approached Carpue who obtained a murderer's fresh corpse that he crucified and documented the results with plaster casts created by sculptor Thomas Banks. Carpue's experiment showed that West's window design wrongly depicted the Crucifixion because West had posed the hands and shoulders incorrectly. West died in 1820 without ever being associated with Carpue's experiment. Carpue's obituary in The Lancet in 1846 contained Carpue's handwritten note that described the experiment but not West's Royal commission. As no records or publications associate the cast with West project, this can be considered to be a file drawer experiment. After 1801, West made further drawings of the Crucifixion that showed the figures in the same position as the cast. Nineteenth century auction catalogues suggest that West made a corrected Crucifixion painting, but its current location remains a mystery.

  19. Optimization of Squeeze Casting for Aluminum Alloy Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam; John F. Wallace; Qingming Chang

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' formore » evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must remain open until the casting is solidified and pressure is maintained on the solidifying casting. Fanned gates, particularly on the smaller section castings avoid jetting effects at the ingate end. The fan type ingate helps accomplish a rapid fill without high velocities. The molten metal has to fill the cavity before localized solidification occurs. This is best accomplished with a larger ingate to attain rapid filling without excessive velocity or jetting that occurs at high metal velocities. Straight gates are prone to case jetting of the metal stream even a low velocities. Fanned gates allow use of higher fill velocity without excessive jetting. A higher metal pressure provides a more complete fill of the die including improved compensation for solidification shrinkage. With the proper filling pattern, ingates, overflows and die temperature for a given die, very good tensile properties can be attained in squeeze casting. In general, the smaller squeeze castings require higher die temperatures. Computer models using the UES Procast and MagmaSoft finite element software can, after suitable adjustments, predict the flow pattern in the die cavity.« less

  20. Development of an Acceptance Test for Chip Seal Projects : final report.

    DOT National Transportation Integrated Search

    2016-11-21

    Chip seals are among the most popular preventive maintenance techniques implemented by many DOTs, county road departments and cities. The deteriorated pavement surface is sprayed with an asphalt emulsion or binder, and then a layer of uniformly-grade...

  1. PVA fiber reinforced shotcrete for rehabilitation and preventative maintenance of aging culverts.

    DOT National Transportation Integrated Search

    2009-12-01

    The goal of this project was to investigate the potential for using PVA (polyvinyl alcohol) fiber : reinforced mortar for the rehabilitation and preventative maintenance of aging metal highway : drainage culverts using a spray-on liner application ap...

  2. Fate of ethylene glycol in the environment : final report.

    DOT National Transportation Integrated Search

    1990-01-01

    The Louisiana Department of Transportation and Development uses ethylene glycol (EG) as a deicing agent on bridges. This study was undertaken to assess the impact of EG on workers and the environment after spraying. The objectives of the project were...

  3. Formulation of olfactory-targeted microparticles with tamarind seed polysaccharide to improve nose-to-brain transport of drugs.

    PubMed

    Yarragudi, Sasi B; Richter, Robert; Lee, Helen; Walker, Greg F; Clarkson, Andrew N; Kumar, Haribalan; Rizwan, Shakila B

    2017-05-01

    Targeted delivery and retention of drug formulations in the olfactory mucosa, the target site for nose-to-brain drug absorption is a major challenge due to the geometrical complexity of the nose and nasal clearance. Recent modelling data indicates that 10μm-sized microparticles show maximum deposition in the olfactory mucosa. In the present study we tested the hypothesis that 10μm-sized mucoadhesive microparticles would preferentially deposit on, and increase retention of drug on, the olfactory mucosa in a novel 3D-printed human nasal-replica cast under simulated breathing. The naturally occurring mucoadhesive polymer, tamarind seed polysaccharide (TSP) was used to formulate the microparticles using a spray drying technique. Physicochemical properties of microparticles such as size, morphology and mucoadhesiveness was investigated using a combination of laser diffraction, electron microscopy and texture-analysis. Furthermore, FITC-dextrans (5-40kDa) were incorporated in TSP-microparticles as model drugs. Size-dependent permeability of the FITC-dextrans was observed ex vivo using porcine nasal mucosa. Using the human nasal-replica cast, greater deposition of 10μm TSP-microparticles in the olfactory region was observed compared to TSP-microparticles 2μm in size. Collectively, these findings support our hypothesis that 10μm-sized mucoadhesive microparticles can achieve selective deposition and retention of drug in the olfactory mucosa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sea spray production by bag breakup mode of fragmentation of the air-water interface at strong and hurricane wind

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil; Zilitinkevich, Sergej

    2016-04-01

    Sea sprays is a typical element of the marine atmospheric boundary layer (MABL) of large importance for marine meteorology, atmospheric chemistry and climate studies. They are considered as a crucial factor in the development of hurricanes and severe extratropical storms, since they can significantly enhance exchange of mass, heat and momentum between the ocean and the atmosphere. This exchange is directly provided by spume droplets with the sizes from 10 microns to a few millimeters mechanically torn off the crests of a breaking waves and fall down to the ocean due to gravity. The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Experimental core of our work comprise laboratory experiments employing high-speed video-filming, which have made it possible to disclose how water surface looks like at extremely strong winds and how exactly droplets are torn off wave crests. We classified events responsible for spume droplet, including bursting of submerged bubbles, generation and breakup of "projections" or liquid filaments (Koa, 1981) and "bag breakup", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film, "bags". The process is similar to "bag-breakup" mode of fragmentation of liquid droplets and jets in gaseous flows. Basing on statistical analysis of results of these experiments we show that the main mechanism of spray-generation is attributed to "bag-breakup mechanism On the base of general principles of statistical physics (model of a canonical ensemble) we developed statistics of the "bag-breakup" events and constructed sea spray generation function (SSGF) for the mechanism of "bag-breakup". The "bag breakup" SSGF is shown to be in reasonable agreement in magnitude with SSFGs considered as the most reliable source function for spume droplets. The new SSGF is employed for estimate of the new"bag-breakup" mechanism to momentum and energy exchange in marine atmospheric boundary layer at hurricane conditions. This work was supported by the Russian Foundation of Basic Research (14-05-91767, 13-05-12093, 16-05-00839, 14-05-91767, 16-55-52025) and experiment and equipment was supported by Russian Science Foundation (Agreements 14-17-00667 and 15-17-20009 respectively), Yu.Troitskaya, A.Kandaurov and D.Sergeev were partially supported by FP7 collaborative Project No. 612610.

  5. Transferences of Teacher-Casting and Projections of Redemption: Teacher Education, Young Adult Literature and the Psychic Life of Reading

    ERIC Educational Resources Information Center

    Lewkowich, David

    2015-01-01

    As the psychic life of reading is imbued with desire, transferences and other forms of emotional turbulence, readers invariably and often unconsciously project their anxieties, hopes and worries onto the lives of fictional characters. Using the lens of psychoanalytic theory, this article explores the meanings produced in the convergence of teacher…

  6. Development and testing of a weed wiper for roadside vegetative control.

    DOT National Transportation Integrated Search

    2002-10-01

    The objective of the project was to investigate the potential of using the weed wiper applicator : as an alternative method to mowing and broadcast spraying for controlling noxious weds, brush and : plant growth along roadways. An existing weed wiper...

  7. Thermomechanical properties and fracture of resin-bonded-sand cores - Experimental study and application in aluminium foundry

    NASA Astrophysics Data System (ADS)

    Menet, Claire; Reynaud, Pascal; Fantozzi, Gilbert; Thibault, Delphine; Laforêt, Adrien

    2017-06-01

    Sand cores are used to produce internal cavities of metallic cast parts with complex shapes like automotive cylinder heads. Foundry cores are granular materials made of sand grains aggregated with binder bridges. In the cold box coring process, the binder is a polyurethane resin. It is noteworthy that during the casting of the liquid metal, the polymer binder is seriously damaged. This kind of materials has been poorly investigated so far. This study aims for a better understanding of the mechanical behaviour and fracture of cores subjected to various loads and thermal ageing. Particularly, the focus is on the decoring step, which consists in removing the sand by hammering and vibration of the metallic part after casting. This major project, generated from the collaboration of the aluminum casting company Montupet, and two laboratories Centre des Matériaux (CdM) and MATEIS, includes both experimental and numerical activities in order to model the decoring step of cylinder heads based on empiric data. Here, the experimental part of the work is presented.

  8. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method

    PubMed Central

    Diao, Chien-Chen; Kuo, Hsin-Hui; Tzou, Wen-Cheng; Chen, Yen-Lin; Yang, Cheng-Fu

    2014-01-01

    In this study, a new thin-film deposition process, spray coating method (SPM), was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method. PMID:28788451

  9. Design of experiments-based monitoring of critical quality attributes for the spray-drying process of insulin by NIR spectroscopy.

    PubMed

    Maltesen, Morten Jonas; van de Weert, Marco; Grohganz, Holger

    2012-09-01

    Moisture content and aerodynamic particle size are critical quality attributes for spray-dried protein formulations. In this study, spray-dried insulin powders intended for pulmonary delivery were produced applying design of experiments methodology. Near infrared spectroscopy (NIR) in combination with preprocessing and multivariate analysis in the form of partial least squares projections to latent structures (PLS) were used to correlate the spectral data with moisture content and aerodynamic particle size measured by a time of flight principle. PLS models predicting the moisture content were based on the chemical information of the water molecules in the NIR spectrum. Models yielded prediction errors (RMSEP) between 0.39% and 0.48% with thermal gravimetric analysis used as reference method. The PLS models predicting the aerodynamic particle size were based on baseline offset in the NIR spectra and yielded prediction errors between 0.27 and 0.48 μm. The morphology of the spray-dried particles had a significant impact on the predictive ability of the models. Good predictive models could be obtained for spherical particles with a calibration error (RMSECV) of 0.22 μm, whereas wrinkled particles resulted in much less robust models with a Q (2) of 0.69. Based on the results in this study, NIR is a suitable tool for process analysis of the spray-drying process and for control of moisture content and particle size, in particular for smooth and spherical particles.

  10. Uniform-droplet spray forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, C.A.; Sikka, V.K.; Chun, Jung-Hoon

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets thatmore » can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.« less

  11. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material

    USGS Publications Warehouse

    Ford, M.A.; Cahoon, D.R.; Lynch, J.C.

    1999-01-01

    Thin-layer deposition of dredged material on coastal marsh by means of high-pressure spray dredging (Jet-Spray??2) technology has been proposed as a mechanism to minimize wetland impacts associated with traditional bucket dredging technologies and to restore soil elevations in deteriorated marshes of the Mississippi River delta. The impact of spray dredging on vegetated marsh and adjacent shallow-water habitat (formerly vegetated marsh that deteriorated to open water) was evaluated in a 0.5-ha Spartina alterniflora-dominated salt marsh in coastal Louisiana. The thickness of dredged sediment deposits was determined from artificial soil marker horizons and soil elevation change was determined from sedimentation-erosion tables (SET) established prior to spraying in both sprayed and reference marshes. The vertical accretion and elevation change measurements were made simultaneously to allow for calculation of shallow (~5 m depth) subsidence (accretion minus elevation change). Measurements made immediately following spraying in July 1996 revealed that stems of S. alterniflora were knocked down by the force of the spray and covered with 23 mm of dredged material. Stems of S. alterniflora soon recovered, and by July 1997 the percent cover of S. alterniflora had increased three-fold over pre-project conditions. Thus, the layer of dredged material was thin enough to allow for survival of the S. alterniflora plants, with no subsequent colonization by plant species typical of higher marsh zones. By February 1998, 62 mm of vertical accretion accumulated at this site, and little indication of disturbance was noted. Although not statistically significant, soil elevation change was greater than accretion on average at both the spray and reference marshes, suggesting that subsurface expansion caused by increased root biomass production and/or pore water storage influence elevation in this marsh region. In the adjacent shallow water pond, 129 mm of sediment was deposited in July 1996 as a result of spraying, and despite initial shallow subsidence and continual erosion through February 1998, water bottom elevation was raised sufficiently to allow S. alterniflora to invade via rhizome growth from the adjacent marsh. Hence, thin-layer deposition of dredged material at this site was effective at restoring and maintaining marsh elevation after 1.5 years. However, if the open water sediment deposits are not soon completely stabilized via further vegetative colonization, erosion may eventually lower elevations to the level where emergent vegetation cannot persist.

  12. Bridge Health Monitoring Using a Machine Learning Strategy

    DOT National Transportation Integrated Search

    2017-01-01

    The goal of this project was to cast the SHM problem within a statistical pattern recognition framework. Techniques borrowed from speaker recognition, particularly speaker verification, were used as this discipline deals with problems very similar to...

  13. Prediction of Chemical Function: Model Development and Application

    EPA Science Inventory

    The United States Environmental Protection Agency’s Exposure Forecaster (ExpoCast) project is developing both statistical and mechanism-based computational models for predicting exposures to thousands of chemicals, including those in consumer products. The high-throughput (...

  14. Study of Two-Dimensional Compressible Non-Acoustic Modeling of Stirling Machine Type Components

    NASA Technical Reports Server (NTRS)

    Tew, Roy C., Jr.; Ibrahim, Mounir B.

    2001-01-01

    A two-dimensional (2-D) computer code was developed for modeling enclosed volumes of gas with oscillating boundaries, such as Stirling machine components. An existing 2-D incompressible flow computer code, CAST, was used as the starting point for the project. CAST was modified to use the compressible non-acoustic Navier-Stokes equations to model an enclosed volume including an oscillating piston. The devices modeled have low Mach numbers and are sufficiently small that the time required for acoustics to propagate across them is negligible. Therefore, acoustics were excluded to enable more time efficient computation. Background information about the project is presented. The compressible non-acoustic flow assumptions are discussed. The governing equations used in the model are presented in transport equation format. A brief description is given of the numerical methods used. Comparisons of code predictions with experimental data are then discussed.

  15. CASTING DEFECT MODELING IN AN INTEGRATED COMPUTATIONAL MATERIALS ENGINEERING APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S

    2015-01-01

    To accelerate the introduction of new cast alloys, the simultaneous modeling and simulation of multiphysical phenomena needs to be considered in the design and optimization of mechanical properties of cast components. The required models related to casting defects, such as microporosity and hot tears, are reviewed. Three aluminum alloys are considered A356, 356 and 319. The data on calculated solidification shrinkage is presented and its effects on microporosity levels discussed. Examples are given for predicting microporosity defects and microstructure distribution for a plate casting. Models to predict fatigue life and yield stress are briefly highlighted here for the sake ofmore » completion and to illustrate how the length scales of the microstructure features as well as porosity defects are taken into account for modeling the mechanical properties. Thus, the data on casting defects, including microstructure features, is crucial for evaluating the final performance-related properties of the component. ACKNOWLEDGEMENTS This work was performed under a Cooperative Research and Development Agreement (CRADA) with the Nemak Inc., and Chrysler Co. for the project "High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines. The author would also like to thank Amit Shyam for reviewing the paper and Andres Rodriguez of Nemak Inc. Research sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, as part of the Propulsion Materials Program under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Part of this research was conducted through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program, which is sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program.« less

  16. Current Status of Superheat Spray Modeling With NCC

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Bulzan, Dan L.

    2012-01-01

    An understanding of liquid fuel behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA's supersonics project office initiative on high altitude emissions, we have undertaken an effort to assess the accuracy of various existing CFD models used in the modeling of superheated sprays. As a part of this investigation, we have completed the implementation of a modeling approach into the national combustion code (NCC), and then applied it to investigate the following three cases: (1) the validation of a flashing jet generated by the sudden release of pressurized R134A from a cylindrical nozzle, (2) the differences between two superheat vaporization models were studied based on both hot and cold flow calculations of a Parker-Hannifin pressure swirl atomizer, (3) the spray characteristics generated by a single-element LDI (Lean Direct Injector) experiment were studied to investigate the differences between superheat and non-superheat conditions. Further details can be found in the paper.

  17. Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800 deg C

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Scheuermann, Coulson M.

    1987-01-01

    A promising iron-base cast alloy is being developed as part of the DOE/NASA Stirling Engine Systems Project under contract DEN 3-282 with the United Technologies Research Center. This report presents the results of a study at the Lewis Research Center of the alloy's creep-rupture properties. The alloy was tested under a variety of conditions and was found to exhibit the normal 3-stage creep response. The alloy compared favorably with others being used or under consideration for the automotive Stirling engine cylinder/regenerator housing.

  18. Manufacturing polymer thin films in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Vera, Ivan

    1987-01-01

    This project represents Venezuela's first scientific experiment in space. The apparatus for the automatic casting of two polymer thin films will be contained in NASA's Payload No. G-559 of the Get Away Special program for a future orbital space flight in the U.S. Space Shuttle. Semi-permeable polymer membranes have important applications in a variety of fields, such as medicine, energy, and pharmaceuticals and in general fluid separation processes, such as reverse osmosis, ultrafiltration, and electrodialysis. The casting of semi-permeable membranes in space will help to identify the roles of convection in determining the structure of these membranes.

  19. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam; John F. Wallace; Quanyou Zhou

    2002-01-30

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters.

  20. Development of an Identification Procedure for a Large Urban School Corporation: "Identifying Culturally Diverse and Academically Gifted Elementary Students"

    ERIC Educational Resources Information Center

    Pierce, Rebecca L.; Adams, Cheryll M.; Neumeister, Kristie L. Speirs; Cassady, Jerrell C.; Dixon, Felicia A.; Cross, Tracy L.

    2006-01-01

    This paper describes the identification process of a Priority One Jacob K. Javits grant, Clustering Learners Unlocks Equity (Project CLUE), a university-school partnership. Project CLUE uses a "sift-down model" to cast the net widely as the talent pool of gifted second-grade students is formed. The model is based on standardized test scores, a…

  1. Particle Engulfment and Pushing by Solidifying Interfaces

    NASA Technical Reports Server (NTRS)

    Stefanescu, D. M.; Mukherjee, S.; Juretzko, F. R.; Catalina, A. V.; Sen, S.; Curreri, P. A.

    2000-01-01

    The phenomenon of interaction of particles with solid-liquid interfaces (SLI) has been studied since mid 1960's. While the original interest stemmed from geology applications (frost heaving in soil), researchers soon realized that fundamental understanding of particles behavior at solidifying interfaces might yield practical benefits in other fields, including metallurgy. In materials engineering the main issue is the location of particles with respect to grain boundaries at the end of solidification. Considerable experimental and theoretical research was lately focused on applications to metal matrix composites produced by casting or spray forming techniques, and on inclusion management in steel. Another application of particle SLI interaction is in the growing of Y1Ba2Cu3O(7-delta) (123) superconductor crystals from an undercooled liquid. The oxide melt contains Y2Ba1Cu1O5 (211) precipitates, which act as flux pinning sites.

  2. Ceramic high pressure gas path seal

    NASA Technical Reports Server (NTRS)

    Liotta, G. C.

    1987-01-01

    Stage 1 ceramic shrouds (high pressure turbine gas path seal) were developed for the GE T700 turbine helicopter engine under the Army/NASA Contract NAS3-23174. This contract successfully proved the viability and benefits of a Stage 1 ceramic shroud for production application. Stage 1 ceramic shrouds were proven by extensive component and engine testing. This Stage 1 ceramic shroud, plasma sprayed ceramic (ZrOs-BY2O3) and bond coating (NiCrAlY) onto a cast metal backing, offers significant engine performance improvement. Due to the ceramic coating, the amount of cooling air required is reduced 20% resulting in a 0.5% increase in horsepower and a 0.3% decrease in specific fuel consumption. This is accomplished with a component which is lower in cost than the current production shroud. Stage 1 ceramic shrouds will be introduced into field service in late 1987.

  3. Carbon-free induction furnace

    DOEpatents

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  4. Non-carbon induction furnace

    DOEpatents

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  5. Electrospraying and Electrospinning of Polymers for Biomedical Applications. Poly(Lactic-Co-Glycolic Acid) and Poly(Ethylene-Co-Vinylacetate). Appendix 2

    NASA Technical Reports Server (NTRS)

    Stitzel, Joel D.; Bowlin, Gary L.; Mansfield, Kevin; Wnek, Gary E.; Simpson, David G.

    2000-01-01

    Significant opportunities exist for the processing of polymers (homopolymers and blends) using electric fields. Specific attention is given here to electrospinning, but we note that electroaerosol formation and field-modulated film casting represent additional processing options. Of particular interest is the ability to generate polymer fibers of sub-micron dimensions using electrospinning, down to about 0.05 microns (50 nm), a size range that has been traditionally difficult to access. In our work, poly(lactic-co-glycolic acid), PLA/PGA, poly(lactic acid) PLA, and poly(ethylene-co-vinylacetate) (PEVA) have been deposited from solutions in methylene chloride or chloroform by electrospraying or electrospinning to afford morphologically tailored materials for tissue engineering and related applications. Low solution concentrations tend to favor electrostatic spraying ('electro-aerosolization') while higher concentrations lead to spinning on fibrous mats. Preliminary observations of muscle cell growth on PLA electrospun mats are reported.

  6. Silicon Sheet Growth Development for the Large Area Sheet Task of the Low Cost Solar Array Project. Heat Exchanger Method - Ingot Casting Fixed Abrasive Method - Multi-Wire Slicing

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1978-01-01

    Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.

  7. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  8. Multiphysics control of a two-fluid coaxial atomizer supported by electric-charge on the liquid jet

    NASA Astrophysics Data System (ADS)

    Machicoane, Nathanael; Osuna, Rodrigo; Aliseda, Alberto

    2017-11-01

    We present an experimental setup to investigate multiphysics control strategies on atomization of a laminar fluid stream by a coaxial turbulent jet. Spray control (i.e. driving the droplet size distribution and the spatio-temporal location of the droplets towards a desired objective) has many potential engineering applications, but requires a mechanistic understanding of the processes that control droplet formation and transport (primary and secondary instabilities, turbulent transport, hydrodynamic and electric forces on the droplets, ...). We characterize experimentally the break-up dynamics in a canonical coaxial atomizer, and the spray structure (droplet size, location, and velocity as a function of time) in a series of open loop conditions with harmonic forcing of the gas swirl ratio, liquid injection rate, the electric field strength at the nozzle and along the spray development region. The effect of these actuators are characterized for different gas Reynolds numbers ranging from 104-106. This open-loop characterization of the injector will be used to develop reduced order models for feedback control, as well as to validate assumptions underlying an adjoint-based computational control strategy. This work is part of a large-scale project funded by an ONR MURI to provide fundamental understanding of the mechanisms for feedback control of sprays.

  9. Wildfires: Information for Pregnant Women and Parents of Young Infants

    MedlinePlus

    ... Projection Tool The CastCost Toolkit en Español Contraceptive Logistics Publications and Products Epidemiology Modules Multimedia Get Email ... breathing smoke or fumes and stay away from areas where there is a lot of smoke. Stay ...

  10. Arsenic Removal from Drinking Water

    EPA Science Inventory

    Web cast presentation covered six topics: 1), Arsenic Chemistry, 2), Technology Selection/Arsenic Demonstration Program, 3), Case Study 1, 4), Case Study 2,5), Case Study 3, and 6), Media Regeneration Project. The presentation consists of material presented at other training sess...

  11. Optimization of the parameters for obtaining zirconia-alumina coatings, made by flame spraying from results of numerical simulation

    NASA Astrophysics Data System (ADS)

    Ferrer, M.; Vargas, F.; Peña, G.

    2017-12-01

    The K-Sommerfeld values (K) and the melting percentage (% F) obtained by numerical simulation using the Jets et Poudres software were used to find the projection parameters of zirconia-alumina coatings by thermal spraying flame, in order to obtain coatings with good morphological and structural properties to be used as thermal insulation. The experimental results show the relationship between the Sommerfeld parameter and the porosity of the zirconia-alumina coatings. It is found that the lowest porosity is obtained when the K-Sommerfeld value is close to 45 with an oxidant flame, on the contrary, when superoxidant flames are used K values are close 52, which improve wear resistance.

  12. Splashy Portfolios Kids Can Make Themselves.

    ERIC Educational Resources Information Center

    Booth, Virginia Humphreys

    1994-01-01

    A children's art project lets students create artistic portfolios in a Jackson Pollock style. The activity takes 60 minutes and requires posterboard, adhesive tape, spray paint, tempera paints, eyedroppers, newspapers, colored markers, and stencil letters. By inviting students to make their own portfolios, teachers are cultivating students'…

  13. GENERIC VERIFICATION PROTOCOL FOR THE VERIFICATION OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES FOR ROW AND FIELD CROPS

    EPA Science Inventory

    This ETV program generic verification protocol was prepared and reviewed for the Verification of Pesticide Drift Reduction Technologies project. The protocol provides a detailed methodology for conducting and reporting results from a verification test of pesticide drift reductio...

  14. Processing and Characterization of Nanoparticle Coatings for Quartz Crystal Microbalance Measurements

    PubMed Central

    Torrey, Jessica D.; Kirschling, Teresa L.; Greenlee, Lauren F.

    2015-01-01

    The quartz-crystal microbalance is a sensitive and versatile tool for measuring adsorption of a variety of compounds (e.g. small molecules, polymers, biomolecules, nanoparticles and cells) to surfaces. While the technique has traditionally been used for measuring adsorption to flat surfaces and thin ridged films, it can also be extended to study adsorption to nanoparticle surfaces when the nanoparticles are fixed to the crystal surface. The sensitivity and accuracy of the measurement depend on the users’ ability to reproducibly prepare a thin uniform nanoparticle coating. This study evaluated four coating techniques, including spin coating, spray coating, drop casting, and electrophoretic deposition, for two unique particle chemistries [nanoscale zero valent iron (nZVI) and titanium dioxide (TiO2)] to produce uniform and reproducible nanoparticle coatings for real-time quartz-crystal microbalance measurements. Uniform TiO2 coatings were produced from a 50 mg/mL methanol suspension via spin coating. Nanoscale zero-valent iron was best applied by spray coating a low concentration 1.0 mg/mL suspended in methanol. The application of multiple coatings, rather than an increase in the suspension concentration, was the best method to increase the mass of nanoparticles on the crystal surface while maintaining coating uniformity. An upper mass threshold was determined to be approximately 96 µg/cm2; above this mass, coatings no longer maintained their uniform rigid characteristic, and a low signal to noise ratio resulted in loss of measurable signal from crystal resonances above the fundamental. PMID:26958434

  15. Historical perspective of pesticide poisoning in Japan and measures taken by the Japanese association of rural medicine.

    PubMed

    Nagami, Hiroshi

    2010-01-01

    The use of pesticides has rapidly increased in Japan since the end of World War II, significantly reducing work burdens and boosting food production. In the meantime, pesticides, responsible for poisoning and environmental pollution, have for many years posed grave issues that have had to be tackled by scientists of rural medicine for a long period. The Japanese Association of Rural Medicine, founded by the late Toshikazu Wakatsuki, has grappled with those issues for many years. Above all, the association has fulfilled its social obligations, such as by bringing the toxicity of organic mercury to light in animal tests to prompt the government to prohibit its use, and by casting light on birth defects caused by defoliants aerially sprayed during the Vietnam War to urge U.S. military forces to break off herbicide warfare. As it has become possible to make less toxic pesticides available for farm work in recent years, death-inducing accidents have seldom occurred during the spraying of pesticides, and the association's activities are now at a low ebb. Now that pesticides, which after all are biologically toxic compounds, are openly used on farms, there is the need to pay constant attention to their impacts on the human body and the environment. In the future, it is necessary to epidemiologically probe into chronic impacts on the human body and contribute to the prevention of pesticide poisoning in Southeast Asia.

  16. Historical Perspective of Pesticide Poisoning in Japan and Measures Taken by the Japanese Association of Rural Medicine

    PubMed Central

    Nagami, Hiroshi

    2010-01-01

    The use of pesticides has rapidly increased in Japan since the end of World War II, significantly reducing work burdens and boosting food production. In the meantime, pesticides, responsible for poisoning and environmental pollution, have for many years posed grave issues that have had to be tackled by scientists of rural medicine for a long period. The Japanese Association of Rural Medicine, founded by the late Toshikazu Wakatsuki, has grappled with those issues for many years. Above all, the association has fulfilled its social obligations, such as by bringing the toxicity of organic mercury to light in animal tests to prompt the government to prohibit its use, and by casting light on birth defects caused by defoliants aerially sprayed during the Vietnam War to urge U.S. military forces to break off herbicide warfare. As it has become possible to make less toxic pesticides available for farm work in recent years, death-inducing accidents have seldom occurred during the spraying of pesticides, and the association’s activities are now at a low ebb. Now that pesticides, which after all are biologically toxic compounds, are openly used on farms, there is the need to pay constant attention to their impacts on the human body and the environment. In the future, it is necessary to epidemiologically probe into chronic impacts on the human body and contribute to the prevention of pesticide poisoning in Southeast Asia. PMID:25649320

  17. High Throughput Transcriptomics: From screening to pathways

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  18. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  19. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30

    The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of coolingmore » lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die lubricants and technical support. Experiments conducted with these lubricants demonstrated good protection of the substrate steel. Graphite and boron nitride used as benchmarks are capable of completely eliminating soldering and washout. However, because of cost and environmental considerations these materials are not widely used in industry. The best water-based die lubricants evaluated in this program were capable of providing similar protection from soldering and washout. In addition to improved part quality and higher production rates, improving die casting processes to preserve the life of the inserts will result in energy savings and a reduction in environmental wastes. Improving die life by means of optimized cooling line placement, baffles and bubblers in the die will allow for reduced die temperatures during processing, saving energy associated with production. The utilization of optimized die lubricants will also reduce heat requirements in addition to reducing waste associated with soldering and washout. This new technology was predicted to result in an average energy savings of 1.1 trillion BTU's/year over a 10 year period. Current (2012) annual energy saving estimates, based on commercial introduction in 2010, a market penetration of 70% by 2020 is 1.26 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.025 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  20. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1982-12-01

    aluminide was used to eliminate adhesive failures. A doctor blade and expandable ring segment were selected as the tooling to apply the 0.010 inch...contractual effort is to develop manu- facturing technology for the production of integrally bladed impellers using titanium pre-alloyed powder and...Projectiles in Modernized Plants 1-16 METALS Abstracts ME-1 Projects 176 7046, 17T 7046 and 177 7046 - Precision Cast Titanium Compressor Casing ME

  1. Advances in Toxico-Cheminformatics: Supporting a New ...

    EPA Pesticide Factsheets

    EPA’s National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction through the harnessing of legacy toxicity data, creation of data linkages, and generation of new high-throughput screening (HTS) data. The DSSTox project is working to improve public access to quality structure-annotated chemical toxicity information in less summarized forms than traditionally employed in SAR modeling, and in ways that facilitate both data-mining and read-across. Both DSSTox Structure-Files and the dedicated on-line DSSTox Structure-Browser are enabling seamless structure-based searching and linkages to and from previously isolated, chemically indexed public toxicity data resources (e.g., NTP, EPA IRIS, CPDB). Most recently, structure-enabled search capabilities have been extended to chemical exposure-related microarray experiments in the public EBI Array Express database, additionally linking this resource to the NIEHS CEBS toxicogenomics database. The public DSSTox chemical and bioassay inventory has been recently integrated into PubChem, allowing a user to take full advantage of PubChem structure-activity and bioassay clustering features. The DSSTox project is providing cheminformatics support for EPA’s ToxCastTM project, as well as supporting collaborations with the National Toxicology Program (NTP) HTS and the NIH Chemical Genomics Center (NCGC). Phase I of the ToxCastTM project is generating HT

  2. Size and Velocity Characteristics of Droplets Generated by Thin Steel Slab Continuous Casting Secondary Cooling Air-Mist Nozzles

    NASA Astrophysics Data System (ADS)

    Minchaca M, J. I.; Castillejos E, A. H.; Acosta G, F. A.

    2011-06-01

    Direct spray impingement of high temperature surfaces, 1473 K to 973 K (1200 °C to 700 °C), plays a critical role in the secondary cooling of continuously cast thin steel slabs. It is known that the spray parameters affecting the local heat flux are the water impact flux w as well as the droplet velocity and size. However, few works have been done to characterize the last two parameters in the case of dense mists ( i.e., mists with w in the range of 2 to 90 L/m2s). This makes it difficult to rationalize how the nozzle type and its operating conditions must be selected to control the cooling process. In the present study, particle/droplet image analysis was used to determine the droplet size and velocity distributions simultaneously at various locations along the major axis of the mist cross section at a distance where the steel strand would stand. The measurements were carried out at room temperature for two standard commercial air-assisted nozzles of fan-discharge type operating over a broad range of conditions of practical interest. To achieve statistically meaningful samples, at least 6000 drops were analyzed at each location. Measuring the droplet size revealed that the number and volume frequency distributions were fitted satisfactorily by the respective log-normal and Nukiyama-Tanasawa distributions. The correlation of the parameters of the distribution functions with the water- and air-nozzle pressures allowed for reasonable estimation of the mean values of the size of the droplets generated. The ensemble of measurements across the mist axis showed that the relationship between the droplet velocity and the diameter exhibited a weak positive correlation. Additionally, increasing the water flow rate at constant air pressure caused a decrease in the proportion of the water volume made of finer droplets, whereas the volume proportion of faster droplets augmented until the water flow reached a certain value, after which it decreased. Diminishing the air-to-water flow rates ratio, particularly below 10, resulted in mists of bigger and slower droplets with low impinging Weber numbers. However, increasing the air pressure maintaining a constant water flow rate caused a greater proportion of finer and faster drops with Weber numbers greater than 80, which suggests an increased probability of wet drop contact with a hot surface that would intensify heat extraction.

  3. Advanced Gas Turbine (AGT) Technology Development Project annual report

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This report is the tenth in a series of Technical Summary reports for the Advanced Gas Turbine (AGT) Technology Development Project, authorized under NASA Contract DEN3-167, and sponsored by the Department of Energy (DOE). This report was prepared by Garrett Turbine Engine Company, A Division of the Garrett Corporation, and includes information provided by Ford Motor Company, the Carborundum Company, and AiResearch Casting Company. The Project is administered by Mr. Thomas N. Strom, Project Manager, NASA-Lewis Research Center, Cleveland, Ohio. This report covers plans and progress for the period July 1, 1984 through June 30, 1985.

  4. Health Authorities Data Collection of THC:CBD Oromucosal Spray (L'Agenzia Italiana del Farmaco Web Registry): Figures after 1.5 Years.

    PubMed

    Patti, Francesco

    2016-01-01

    In Italy, all prescriptions for THC:CBD oromucosal spray for treatment of multiple sclerosis (MS) spasticity are linked to the official Agenzia Italiana del Farmaco (AIFA) web-based registry, which tracks the effectiveness and tolerability of medications in a prospective and observational manner. AIFA e-registry data for THC:CBD oromucosal spray collected between January 2014 and February 2015 for 1,534 patients from 30 large Italian specialized MS centres were compiled. Patients had a long disease history (17.6 ± 8.6 years) and significant impairment (mean Expanded Disability Status Scale score 6.4 ± 1.2). MS spasticity was evaluated using the 0-10 numerical rating scale (NRS). After the first month titration and trial period, 61.9% of patients achieved sufficient improvement in spasticity (≥20% NRS) to qualify for continued treatment. After 6 months, clinically meaningful ≥30% NRS improvement was recorded in 40.2% of patients continuing with treatment. Spasticity-associated symptoms such as cramps and nocturnal spasms improved in most responding patients. Mean reported doses of THC:CBD oromucosal spray (6.2-6.7 sprays/day) were lower than those reported in clinical trials. Adverse events (mainly mild to moderate) were reported by 15% of patients; no new safety concerns beyond the approved label were identified. The results of the AIFA e-registry analysis align with those of other THC:CBD observational projects and reaffirm the characteristics of this therapeutic option in the management of treatment-resistant MS spasticity, a frequently overlooked symptom. © 2016 S. Karger AG, Basel.

  5. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, directmore » method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models. Cooling curve information, as well as temperature gradient history both in the solidifying metal and within the mold are invariably required to be validated. This validation depends upon the response of the sensor concerned, but also on its own effect upon the thermal environment. A joint university/industry team has completed an investigation of the invasive effects of thermocouples upon temperature history in permanent molds determining the degree of uncertainty associated with placement and indicating how the time-temperature history may be recovered. In addition to its relevance to the all important study of thermal contact of the casting with metallic molds, the observations also impact the determination of heat flux and interfacial heat transfer coefficients. In these respects the study represents the first of its kind that has tackled the problem in depth for permanent mold castings. An important ramification of this investigation has been the errors likely to be encountered in mold temperature measurement with thin section aluminum castings, especially with respect to the plans for thermocouple placement. A comparison between the degree of uncertainty experienced in sand molds compared with that found in permanent molds reveals that the associated problems have a lesser impact. These conclusions and the related recommendations have been disseminated to industry and the technical community through project reports and publications.« less

  6. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment maymore » be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.« less

  7. O

    NASA Astrophysics Data System (ADS)

    Donnellan, Karen

    My work is driven by the metaphysical and the potential for healing through the manipulation of energy. Points of research include the enso (the only symbol used in Zen Buddhism), which uses the circle as a symbol of wholeness, divinity, and enlightenment. The writings of Alex Grey, Eckhart Tolle and the work of Ann Hamilton will also be investigated. I plan to create work from turned wooden vortex forms, the shapes of which are based on the movement of energy within the body. These objects will be transformed from wood, through rubber, wax, plaster, iron, bronze to cast, and blown glass. This transformation through materials is becoming a metaphor for the continuous transformation of universal light and energy. As part of my material research, I will exploit various casting techniques including kiln casting, hot casting, and pate de verre. Photography, film, and projection also will be explored. Conceptually, the process will become an integral part of the work where involved, repetitive methods will be treated as a meditation or mantra and will, in turn, add a performative dimension to the work. It is through these meditative practices that I intend to imbue the work with healing energies.

  8. Performance of CAD/CAM fabricated fiber posts in oval-shaped root canals: An in vitro study.

    PubMed

    Tsintsadze, Nino; Juloski, Jelena; Carrabba, Michele; Tricarico, Marella; Goracci, Cecilia; Vichi, Alessandro; Ferrari, Marco; Grandini, Simone

    2017-10-01

    To assess the push-out strength, the cement layer thickness and the interfacial nanoleakage of prefabricated fiber posts, CAD/CAM fiber posts and metal cast posts cemented into oval-shaped root canals. Oval-shaped post spaces were prepared in 30 single-rooted premolars. Roots were randomly assigned to three groups (n=10), according to the post type to be inserted: Group 1: Prefabricated fiber post (D.T. Light-Post X-RO Illusion); Group 2: Cast metal post; Group 3: CAD/CAM-fabricated fiber post (experimental fiber blocks). In Group 3, post spaces were sprayed with scan powder (VITA), scanned with an inEos 4.2 scanner, and fiber posts were milled using an inLab MC XL CAD/CAM milling unit. All posts were cemented using Gradia Core dual-cure resin cement in combination with Gradia core self-etching bond (GC). After 24 hours, the specimens were sectioned perpendicular to the long axis into six 1 mm-thick sections, which were differentiated by the root level. Sections from six roots per group were used to measure the cement thickness and subsequently for the thin-slice push-out test, whereas the sections from the remaining four teeth were assigned to interfacial nanoleakage test. The cement thickness around the posts was measured in micrometers (µm) on the digital images acquired with a digital microscope using the Digimizer software. Thin-slice push-out test was conducted using a universal testing machine at the crosshead speed of 0.5 mm/minute and the bond strength was expressed in megaPascals (MPa). The interfacial nanoleakage was observed under light microscope and quantified by scoring the depth of silver nitrate penetration along the post-cement-dentin interfaces. The obtained results were statistically analyzed by Kruskal-Wallis ANOVA, followed by the Dunn's Multiple Range test for post hoc comparisons. The level of significance was set at P< 0.05. Statistically significant differences were found among the groups in push-out bond strength, cement thickness and interfacial nanoleakage (P< 0.05). CAD/CAM-fabricated fiber posts achieved retention that was comparable to that of cast metal posts and significantly higher than that of prefabricated fiber posts. The cement layer thickness around CAD/CAM-fabricated fiber posts was significantly lower than around prefabricated fiber posts, but higher than that around cast metal posts. Root level was not a significant factor for push-out strength in any of the groups, whereas it significantly affected cement layer thickness only in the prefabricated fiber post group. No differences were observed in interfacial nanoleakage between CAD/CAM fabricated and prefabricated fiber posts, while nanoleakage recorded in cast metal posts was significantly lower. CAD/CAM fabricated fiber posts could represent a valid alternative to traditionally used posts in the restoration of endodontically-treated teeth with oval or wide root canals, offering the advantages of better esthetics, retention, and cement thickness values that are comparable to cast post and cores.

  9. Silicon material development for terrestrial solar cells. Phase of exploration

    NASA Astrophysics Data System (ADS)

    Sirtl, E.

    1983-03-01

    A material project based on a multicrystalline silicon is reported. It consists of refining the metallurgical grade silicon via hydro and pyrometallurgical processes, preparation of square shaped ingots by (inert) gas protected or open hearth casting methods, and high speed slicing, using a multiple blade slurry saw. Second generation pilot equipment was constructed. Aluminothermic reduction of quartz sand into silicon and the foil casting process were tested. It is concluded that the production of silicon thru the gaseous phase depends upon the marketing of very cheap basic material (SG-Si 10 dollar/Kg) and that the purification of metallurgical grade silicon by refining is the most promising method.

  10. Modeling transport phenomena and uncertainty quantification in solidification processes

    NASA Astrophysics Data System (ADS)

    Fezi, Kyle S.

    Direct chill (DC) casting is the primary processing route for wrought aluminum alloys. This semicontinuous process consists of primary cooling as the metal is pulled through a water cooled mold followed by secondary cooling with a water jet spray and free falling water. To gain insight into this complex solidification process, a fully transient model of DC casting was developed to predict the transport phenomena of aluminum alloys for various conditions. This model is capable of solving mixture mass, momentum, energy, and species conservation equations during multicomponent solidification. Various DC casting process parameters were examined for their effect on transport phenomena predictions in an alloy of commercial interest (aluminum alloy 7050). The practice of placing a wiper to divert cooling water from the ingot surface was studied and the results showed that placement closer to the mold causes remelting at the surface and increases susceptibility to bleed outs. Numerical models of metal alloy solidification, like the one previously mentioned, are used to gain insight into physical phenomena that cannot be observed experimentally. However, uncertainty in model inputs cause uncertainty in results and those insights. The analysis of model assumptions and probable input variability on the level of uncertainty in model predictions has not been calculated in solidification modeling as yet. As a step towards understanding the effect of uncertain inputs on solidification modeling, uncertainty quantification (UQ) and sensitivity analysis were first performed on a transient solidification model of a simple binary alloy (Al-4.5wt.%Cu) in a rectangular cavity with both columnar and equiaxed solid growth models. This analysis was followed by quantifying the uncertainty in predictions from the recently developed transient DC casting model. The PRISM Uncertainty Quantification (PUQ) framework quantified the uncertainty and sensitivity in macrosegregation, solidification time, and sump profile predictions. Uncertain model inputs of interest included the secondary dendrite arm spacing, equiaxed particle size, equiaxed packing fraction, heat transfer coefficient, and material properties. The most influential input parameters for predicting the macrosegregation level were the dendrite arm spacing, which also strongly depended on the choice of mushy zone permeability model, and the equiaxed packing fraction. Additionally, the degree of uncertainty required to produce accurate predictions depended on the output of interest from the model.

  11. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    EPA Science Inventory

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  12. High Throughput Exposure Estimation Using NHANES Data (SOT)

    EPA Science Inventory

    In the ExpoCast project, high throughput (HT) exposure models enable rapid screening of large numbers of chemicals for exposure potential. Evaluation of these models requires empirical exposure data and due to the paucity of human metabolism/exposure data such evaluations includ...

  13. 75 FR 53301 - Notice of a Regional Project Waiver of Section 1605 (Buy American) of the American Recovery and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... blades are completely submerged. No stainless steel jackets that cover a cast iron housing shall be... shaft and hub grease chamber from the mixed media, running on a stainless steel exchangeable wear...

  14. Vitre-graf Coating on Mullite. Low Cost Silicon Array Project: Large Area Sillicon Sheet Task

    NASA Technical Reports Server (NTRS)

    Rossi, R. C.

    1979-01-01

    The processing parameters of the Vitre-Graf coating for optimal performance and economy when applied to mullite and graphite as substrates were presented. A minor effort was also performed on slip-cast fused silica substractes.

  15. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  16. High-throughput screening, predictive modeling and computational embryology - Abstract

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  17. Temporal variation of residential pesticide use and comparison of two survey platforms: a longitudinal study among households with young children in Northern California

    PubMed Central

    2013-01-01

    Background Pesticide use patterns are essential inputs into human pesticide exposure models. Currently, data included for modeling purposes have mostly been collected in cross-sectional surveys. However, it is questionable whether responses to one-time surveys are representative of pesticide use over longer periods, which is needed for assessment of health impact. This study was designed to evaluate population-wide temporal variations and within-household variations in reported residential pesticide use patterns and to compare alternative pesticide data collection methods – web surveys versus telephone interviews. Method A total of 481 households in Northern California provided up to 3 annual telephone interviews on residential pesticide use; 182 of these households provided up to 6 quarterly web surveys that covered the same topics for some of the same time periods. Information on frequency and areas of application were collected for outdoor and indoor sprays, indoor foggers, professional applications, and behind-the-neck treatments for pets. Population-wide temporal variation and within-household consistency were examined both within telephone surveys and within web surveys, and quantified using Generalized Estimating Equations and Mixed Effect Modeling. Reporting between the two methods, the telephone survey and the web survey, was also compared. Results Use prevalence of outdoor sprays across the population reported in both the annual telephone surveys and the quarterly web surveys decreased over time, as did behind-the-neck treatment of pets reported in the quarterly web survey. Similarly, frequencies of use of these products decreased in the quarterly web surveys. Indoor sprays showed no statistically significant population-wide temporal variation in either survey. Intraclass correlation coefficients indicated consistent use within a household for behind-the-neck treatment on pets and outdoor sprays but great variability for the use of indoor sprays. Indoor sprays were most consistently applied in the bathroom and kitchen. Outdoor sprays were consistently more often applied by male household members, while indoor sprays were not. The two survey approaches obtained fairly similar results on the prevalence of using pesticides, but found discrepancies in use frequencies. In addition, the number of products purchased was positively correlated with application frequency for outdoor sprays (R = 0.51, p = 0.0005) but not for indoor sprays. Conclusions In this population, repeated surveys are necessary either to obtain a reliable estimate of the average household use of pesticides or to project potential temporal changes of pesticide use. Web surveys could collect comparable data to traditional telephone surveys for some information. However, researchers need to consider the internet acceptability among the target population and balance lower participant burden against the need for sufficiently accurate time-varying measurement, to improve subject retention in longitudinal surveys. PMID:23962276

  18. Temporal variation of residential pesticide use and comparison of two survey platforms: a longitudinal study among households with young children in Northern California.

    PubMed

    Wu, Xiangmei May; Bennett, Deborah H; Ritz, Beate; Tancredi, Daniel J; Hertz-Picciotto, Irva

    2013-08-20

    Pesticide use patterns are essential inputs into human pesticide exposure models. Currently, data included for modeling purposes have mostly been collected in cross-sectional surveys. However, it is questionable whether responses to one-time surveys are representative of pesticide use over longer periods, which is needed for assessment of health impact. This study was designed to evaluate population-wide temporal variations and within-household variations in reported residential pesticide use patterns and to compare alternative pesticide data collection methods - web surveys versus telephone interviews. A total of 481 households in Northern California provided up to 3 annual telephone interviews on residential pesticide use; 182 of these households provided up to 6 quarterly web surveys that covered the same topics for some of the same time periods. Information on frequency and areas of application were collected for outdoor and indoor sprays, indoor foggers, professional applications, and behind-the-neck treatments for pets. Population-wide temporal variation and within-household consistency were examined both within telephone surveys and within web surveys, and quantified using Generalized Estimating Equations and Mixed Effect Modeling. Reporting between the two methods, the telephone survey and the web survey, was also compared. Use prevalence of outdoor sprays across the population reported in both the annual telephone surveys and the quarterly web surveys decreased over time, as did behind-the-neck treatment of pets reported in the quarterly web survey. Similarly, frequencies of use of these products decreased in the quarterly web surveys. Indoor sprays showed no statistically significant population-wide temporal variation in either survey. Intraclass correlation coefficients indicated consistent use within a household for behind-the-neck treatment on pets and outdoor sprays but great variability for the use of indoor sprays. Indoor sprays were most consistently applied in the bathroom and kitchen. Outdoor sprays were consistently more often applied by male household members, while indoor sprays were not. The two survey approaches obtained fairly similar results on the prevalence of using pesticides, but found discrepancies in use frequencies. In addition, the number of products purchased was positively correlated with application frequency for outdoor sprays (R = 0.51, p = 0.0005) but not for indoor sprays. In this population, repeated surveys are necessary either to obtain a reliable estimate of the average household use of pesticides or to project potential temporal changes of pesticide use. Web surveys could collect comparable data to traditional telephone surveys for some information. However, researchers need to consider the internet acceptability among the target population and balance lower participant burden against the need for sufficiently accurate time-varying measurement, to improve subject retention in longitudinal surveys.

  19. Country watch. Brazil.

    PubMed

    Szterenfeld, C; Lopes, V

    1993-01-01

    A fictional story using publicity-type language was depicted in an AIDS prevention video produced by the Health in Prostitution Project in Rio de Janeiro to support its work with prostitutes. The video was produced through the volunteer efforts of a professional cast and crew who used cultural entertainment codes to raise awareness. Although both established and new actors participated, the cast was comprised of largely famous soap opera and movie artists. This approach was chosen was the understanding that Brazilians watch soap operas 4-5 hours/day and would therefore readily recognize and pay attention to messages conveyed by the protagonists. The video was shot 2 weeks before Carnival when most actors usually rest and received wide media coverage and attention from the public sector. Prostitutes participated in all stages of production, from script-writing to casting to final editing. The video, Venus Fire, describes a pleasure lottery of which the prize is a lucky condom. The video was officially released on World AIDS Day 1992, and broadcast nationwide in January 1993. It was then subsequently aired in public squares and other street worker sites with question-and-answer sessions and public debates among average audience of 200-300 people. Similar health projects elsewhere in Brazil have also show the film with very good audience response. The prostitutes are happy that their profession is being treated with respect, while clients are attracted by the sexy images.

  20. Progress in Advanced Spray Combustion Code Integration

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1993-01-01

    A multiyear project to assemble a robust, muitiphase spray combustion code is now underway and gradually building up to full speed. The overall effort involves several university and government research teams as well as Rocketdyne. The first part of this paper will give an overview of the respective roles of the different participants involved, the master strategy, the evolutionary milestones, and an assessment of the state-of-the-art of various key components. The second half of this paper will highlight the progress made to date in extending the baseline Navier-Stokes solver to handle multiphase, multispecies, chemically reactive sub- to supersonic flows. The major hurdles to overcome in order to achieve significant speed ups are delineated and the approaches to overcoming them will be discussed.

  1. Cast Study: National Naval Medical Center, A Graduate Management Project

    DTIC Science & Technology

    2002-06-10

    USNR 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. pPDV^-- -’" !nDf-AxTT7ATION NATIONAL NAVAL MEDICAL CENTER BETHESDA 8901 WISCONSIN AVE...reinvented itself on July 3, 2000 when it transformed from a traditional stovepipe organization into a service line health care delivery system. In less...many diverse projects throughout the organization . Commander Steve Griffitts, USN... for your continual cooperation and flexibility as I pursued my

  2. Immunization coverage in India for areas served by the Integrated Child Development Services programme. The Integrated Child Development Services Consultants.

    PubMed

    Tandon, B N; Gandhi, N

    1992-01-01

    The Integrated Child Development Services (ICDS) programme was launched by the Indian government in October 1975 to provide a package of health, nutrition and informal educational services to mothers and children. In 1988 we studied the impact of ICDS on the immunization coverage of children aged 12-24 months and of mothers of infants in 19 rural, 8 tribal, and 9 urban ICDS projects that had been operational for more than 5 years. Complete coverage with BCG, diphtheria-pertussis-tetanus (DPT) and poliomyelitis vaccines was recorded for 65%, 63%, and 64% of children, respectively, in the ICDS population. By comparison, the coverage in the non-ICDS group was only 22% for BCG, 28% for DPT, and 27% for poliomyelitis. Complete immunization with tetanus toxoid was recorded for 68% of the mothers in the ICDS group and for 40% in the non-ICDS group. Coverage was greater in the urban and lower in the tribal projects. Scheduled castes, scheduled tribes, backward communities, and minorities (groups that have a high priority for social services) had immunization coverages in ICDS projects that were similar to those of higher castes.

  3. SprayQc: a real-time LC-MS/MS quality monitoring system to maximize uptime using off the shelf components.

    PubMed

    Scheltema, Richard A; Mann, Matthias

    2012-06-01

    With the advent of high-throughput mass spectrometry (MS)-based proteomics, the magnitude and complexity of the performed experiments has increased dramatically. Likewise, investments in chromatographic and MS instrumentation are a large proportion of the budget of proteomics laboratories. Guarding measurement quality and maximizing uptime of the LC-MS/MS systems therefore requires constant care despite automated workflows. We describe a real-time surveillance system, called SprayQc, that continuously monitors the status of the peripheral equipment to ensure that operational parameters are within an acceptable range. SprayQc is composed of multiple plug-in software components that use computer vision to analyze electrospray conditions, monitor the chromatographic device for stable backpressure, interact with a column oven to control pressure by temperature, and ensure that the mass spectrometer is still acquiring data. Action is taken when a failure condition has been detected, such as stopping the column oven and the LC flow, as well as automatically notifying the appropriate operator. Additionally, all defined metrics can be recorded synchronized on retention time with the MS acquisition file, allowing for later inspection and providing valuable information for optimization. SprayQc has been extensively tested in our laboratory, supports third-party plug-in development, and is freely available for download from http://sourceforge.org/projects/sprayqc .

  4. 76 FR 70954 - Idaho Panhandle National Forests, Idaho; Idaho Panhandle National Forest Noxious Weed Treatment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... registered herbicides is one of the various treatment methods that are proposed. The overall project goal is... insects; and herbicides that target specific invasive plant species. The application of herbicides would... spraying would be the primary method of applying herbicide in order to target individual and groups of...

  5. THE PRODUCTION OF THIN METAL OXIDE FILMS BY SPRAY PYROLYSIS USING SUPERCRITICAL CO2-ASSISTED AEROSOLIZATION OF AQUEOUS SOLUTIONS. (R824728)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Design and performance of stay-in-place UHPC prefabricated panels for infrastructure construction.

    DOT National Transportation Integrated Search

    2014-08-01

    This project aims at designing a stay-in-place formwork system for cast-in-place bridge applications using ultra-high performance : concrete (UHPC) that can be used in the permanent formwork construction. Such panels can be used as permanent formwork...

  7. Environmental Impact on Vascular Development Predicted by High Throughput Screening

    EPA Science Inventory

    Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High throughput screening (HTS) in EPA’s ToxCastTM project provides vast d...

  8. Austempered ductile iron (ADI) for railroad wheels : final report.

    DOT National Transportation Integrated Search

    2017-01-31

    The purpose of this project is to investigate the potential for austempered ductile iron (ADI) to be used as an alternative material for the production of rail wheels, which are currently cast or forged steel which is commonly heat treated. ADI has s...

  9. Development of volume deposition on cast iron by additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Niyanth; Dehoff, Ryan R.; Jordan, Brian H.

    2016-11-10

    ORNL partnered with Cummins to demonstrate the feasibility of using additive manufacturing techniques to help develop repair techniques for refurbished cast iron engine blocks. Cummins is interested in the refurbished engine business due to the increased cost savings and reduced emissions. It is expected that by refurbishing engines could help reduce the green house gas emissions by as much as 85%. Though such repair techniques are possible in principle there has been no major industry in the automotive sector that has deployed this technology. Therefore phase-1 would seek to evaluate the feasibility of using the laser directed energy deposition techniquemore » to repair cast iron engine blocks. The objective of the phase-1 would be to explore various strategies and understand the challenges involved. During phase-1 deposits were made using Inconel-718, Nickel, Nr-Cr-B braze filler. Inconel 718 builds showed significant cracking in the heat-affected zone in the cast iron. Nickel was used to reduce the cracking in the cast iron substrate, however the Ni builds did not wet the substrate sufficiently resulting in poor dimensional tolerance. In order to increase wetting the Ni was alloyed with the Ni-Cr-B braze to decrease the surface tension of Ni. This however resulted in significant cracks in the build due to shrinkage stresses associated with multiple thermal cycling. Hence to reduce the residual stresses in the builds the DMD-103D equipment was modified and the cast iron block was pre heated using cartridge heaters. Inconel-718 alloyed with Ni was deposited on the engine block. The pre-heated deposits showed a reduced susceptibility to cracking. If awarded the phase-2 of the project would aim to develop process parameters to achieve a crack free deposit engine block.« less

  10. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  11. Three-Dimensional Analysis of Internal Adaptations of Crowns Cast from Resin Patterns Fabricated Using Computer-Aided Design/Computer-Assisted Manufacturing Technologies.

    PubMed

    Liu, Yushu; Ye, Hongqiang; Wang, Yong; Zhao, Yijao; Sun, Yuchun; Zhou, Yongsheng

    2018-05-17

    To evaluate the internal adaptations of cast crowns made from resin patterns produced using three different computer-aided design/computer-assisted manufacturing technologies. A full-crown abutment made of zirconia was digitized using an intraoral scanner, and the design of the crown was finished on the digital model. Resin patterns were fabricated using a fused deposition modeling (FDM) 3D printer (LT group), a digital light projection (DLP) 3D printer (EV group), or a five-axis milling machine (ZT group). All patterns were cast in cobalt-chromium alloy crowns. Crowns made from traditional handmade wax patterns (HM group) were used as controls. Each group contained 10 samples. The internal gaps of the patterns were analyzed using a 3D replica method and optical digitization. The results were compared using Kruskal-Wallis analysis of variance (ANOVA), a one-sample t test, and signed rank test (α = .05). For the LT group, the marginal and axial gaps were significantly larger than in the other three groups (P < .05), but the occlusal adaptation did not reveal a significant difference (P > .05). In the ZT group, the axial gap was slightly smaller than in the HM group (P < .0083). All the means of gaps in all areas in the four groups were less than 150 μm. Casting crowns using casting patterns made from all three CAD/CAM systems could not produce the prescribed parameters, but the crowns showed clinically acceptable internal adaptations.

  12. Bag-breakup control of surface drag in hurricanes

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil

    2016-04-01

    Air-sea interaction at extreme winds is of special interest now in connection with the problem of the sea surface drag reduction at the wind speed exceeding 30-35 m/s. This phenomenon predicted by Emanuel (1995) and confirmed by a number of field (e.g., Powell, et al, 2003) and laboratory (Donelan et al, 2004) experiments still waits its physical explanation. Several papers attributed the drag reduction to spume droplets - spray turning off the crests of breaking waves (e.g., Kudryavtsev, Makin, 2011, Bao, et al, 2011). The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Herewith, it is unknown what is air-sea interface and how water is fragmented to spray at hurricane wind. Using high-speed video, we observed mechanisms of production of spume droplets at strong winds by high-speed video filming, investigated statistics and compared their efficiency. Experiments showed, that the generation of the spume droplets near the wave crest is caused by the following events: bursting of submerged bubbles, generation and breakup of "projections" and "bag breakup". Statistical analysis of results of these experiments showed that the main mechanism of spray-generation is attributed to "bag-breakup mechanism", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film. Using high-speed video, we show that at hurricane winds the main mechanism of spray production is attributed to "bag-breakup", namely, inflating and consequent breaking of short-lived, sail-like pieces of the water-surface film - "bags". On the base of general principles of statistical physics (model of a canonical ensemble) we developed statistics of the "bag-breakup" events: their number and statistical distribution of geometrical parameters depending on wind speed. Basing on the developed statistics, we estimated the surface stress caused by bags as the average sum of stresses caused by individual bags depending on their eometrical parameters. The resulting stress is subjected to counteracting impacts of the increasing wind speed: the increasing number of bags, and their decreasing sizes and life times and the balance yields a peaking dependence of the bag resistance on the wind speed: the share of bag-stress peaks at U10  35 m/s and then reduces. Peaking of surface stress associated with the "bag-breakup" explains seemingly paradoxical non-monotonous wind-dependence of surface drag coefficient peaking at winds about 35 m/s. This work was supported by the Russian Foundation of Basic Research (14-05-91767, 13-05-12093, 16-05-00839, 14-05-91767, 16-55-52025, 15-35-20953) and experiment and equipment was supported by Russian Science Foundation (Agreements 14-17-00667 and 15-17-20009 respectively), Yu.Troitskaya, A.Kandaurov and D.Sergeev were partially supported by FP7 Collaborative Project No. 612610.

  13. Ghosts, Demons and Chicken Bones: Dramatic Writing in the ESL Classroom.

    ERIC Educational Resources Information Center

    Peters, Bradley

    1986-01-01

    Describes an experimental project implemented in a language school in northern Italy in which students, using a poem as a basis, created a cast of characters and expanded the poem's story line to create a world in which the characters could interact. (SED)

  14. Evaluation of precast patches on U.S. 60 near the New Kent and James City County line.

    DOT National Transportation Integrated Search

    2006-01-01

    This project evaluated the use of precast concrete patches for repairing jointed concrete pavement. Six patches were placed: three had dowels cast into them during fabrication, and three had dowels inserted in place (dowel bar retrofit). Fabrication ...

  15. Probing the ToxCast Chemical Library for Predictive Signatures of Developmental Toxicity

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  16. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1983-06-01

    Proposal will be prepared by Solar Turbines, Inc. for introduction of cast titanium impellers into T62T-40 production. Detroit Diesel Allison will...microprocessor con- trol, RS 232 serial zommunications ports, binary I/O ports, floppy disk mass storage and cor.-rol panal . A component pickup

  17. High-Pressure Combustion of Binary Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Williams, F. A.; Dietrich, Daniel L.

    2001-01-01

    The research addressed here represents a small cooperative project between the US and Japan. The authors have now been involved in this project for a number of years. In previous workshops, the presentation has focused narrowly on the specific most recent accomplishment. If this tradition were followed again, then material about to be published would form the basis of the present write-up. At the present stage, however, it may be of greater interest to step back and take a longer look at the overall character of the project and its history. The recent accomplishments therefore will be covered here only in an abbreviated manner.

  18. The feasibility study of hot cell decontamination by the PFC spray method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-15

    The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to bemore » reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation module. A performance test on each module was executed and the results have been reported. A combined test of the four modules, however, has not been performed as yet. The main objective of the present study is to demonstrate the feasibility of the full PFC spray decontamination process. Decontamination of the inside of the IMEF hot cell by the PFC spray method was also performed. PFC spray decontamination process was demonstrated by using a surrogate wall contaminated with Eu{sub 2}O{sub 3} powder. The spray pressure was 41 kgf/cm{sup 2}, the orifice diameter was 0.2 mm and the spray velocity was 0.2 L/min. And, the decontaminated area was 100 cm{sup 2}. From previous test results, we found that the decontamination factor of the PFC spray method was in the range from 9.6 to 62.4. When the decontamination efficiency of Co-60 was high, then the decontamination efficiency of Cs-137 was also high. As the surface roughness of the specimen increased, the PFC spray decontamination efficiency decreased. Inferring from the previous results, the surface of the surrogate wall was cleaned by the PFC spray method. The vacuum cup of the collection module operated well and gathered more than 99 % of the PFC solution. Also, filtration and distillation modules operated well. All the filtered PFC solution flowed to the storage chamber where some of the PFC solution was distilled. The coolant of the distillation module was a dry ice. And, the recycled solution was transferred to the spray module by a high pressure pump. To evaluate the PFC spray decontamination efficiency, a smear device was fabricated and operated by a manipulator. Before and after decontamination, a smear test was performed. The tested area was 100 cm{sup 2} and the radioactivity was estimated indirectly by measuring the radioactivity of the filter paper. The average decontamination factor was in the range between 10 and 15. One application time was 2 minutes. The sprayed PFC solution was collected by the vacuum cup and it was stored in the collection equipment. After the termination of the decontamination test, the flexible hose was cut near a toboggan. The collection equipment that contained the spent PFC solution, vacuum cup, spray nozzle and the flexible hose was stored in a radioactive waste storage tank. A feasibility study for the PFC spray decontamination method for an application to a hot cell surface was performed. The decontamination equipment that consisted of four modules operated well in the hot cell. The collection module gathered the sprayed PFC solution. The solution was purified in the filtration or distillation modules. The main characteristic of the distillation module is the use of dry ice as a coolant. The decontamination factor of IMEF hot cell was in the range from 10 to 15. It was difficult to measure the radioactivity accurately at a given time. We, however, concluded that the PFC spray decontamination method is a promising technology. It generated a small amount of secondary waste and used a non-toxic and non-conducting material. Decontamination work was performed with a little loss of the main decontamination agent. Based on the test results, we are developing an improved PFC spray decontamination process.« less

  19. Enhancement of Efficiency and Reduction of Grid Thickness Variation on Casting Process with Lean Six Sigma Method

    NASA Astrophysics Data System (ADS)

    Witantyo; Setyawan, David

    2018-03-01

    In a lead acid battery industry, grid casting is a process that has high defect and thickness variation level. DMAIC (Define-Measure-Analyse-Improve-Control) method and its tools will be used to improve the casting process. In the Define stage, it is used project charter and SIPOC (Supplier Input Process Output Customer) method to map the existent problem. In the Measure stage, it is conducted a data retrieval related to the types of defect and the amount of it, also the grid thickness variation that happened. And then the retrieved data is processed and analyzed by using 5 Why’s and FMEA method. In the Analyze stage, it is conducted a grid observation that experience fragile and crack type of defect by using microscope showing the amount of oxide Pb inclusion in the grid. Analysis that is used in grid casting process shows the difference of temperature that is too high between the metal fluid and mold temperature, also the corking process that doesn’t have standard. The Improve stage is conducted a fixing process which generates the reduction of grid variation thickness level and defect/unit level from 9,184% to 0,492%. In Control stage, it is conducted a new working standard determination and already fixed control process.

  20. Expanding the Envelope of UAS Certification: What it Takes to Type Certify a UAS for Precision Agricultural Spraying

    NASA Technical Reports Server (NTRS)

    Maddalon, J. M.; Hayhurst, K. J.; Neogi, N. A.; Verstynen, H. A.; Clothier, R. A.

    2016-01-01

    One of the key challenges to the development of a commercial Unmanned Air-craft System (UAS) market is the lack of explicit consideration of UAS in the current regulatory framework. Despite recent progress, additional steps are needed to enable broad UAS types and operational models. This paper discusses recent research that examines how a risk-based approach for safety might change the process and substance of airworthiness requirements for UAS. The project proposed risk-centric airworthiness requirements for a midsize un-manned rotorcraft used for agricultural spraying and also identified factors that may contribute to distinguishing safety risk among different UAS types and operational concepts. Lessons learned regarding how a risk-based approach can expand the envelope of UAS certification are discussed.

  1. Wear and corrosion behaviour of Al2O3-TiO2 coatings produced by flame thermal projection

    NASA Astrophysics Data System (ADS)

    Forero-Duran, M.; Dulce-Moreno, H. J.; Ferrer-Pacheco, M.; Vargas-Galvis, F.

    2017-12-01

    Evaluated the wear resistance and the coatings corrosion behaviour of Al2O3-TiO2 prepared by thermal spraying by flame on AISI 1020 carbon steel substrates, previously coated with an alloy base Ni. For this purpose, were controlled parameters of thermal spraying and the use of powders of similar but different chemical composition is taken as a variable commercial reference for ceramic coating. SEM images allowed to know the morphology of the powders and coatings. Electrochemical techniques (Tafel) were applied to evaluate the protection against corrosion. Coatings were tested for wear with a tribometer configuration bola-disco. It was determined that the phases present in coatings are directly relate to the behaviour against corrosion and wear them. Keywords: wear, corrosion, thermal imaging.

  2. EPA Exposure Research and the ExpoCast Project: New Methods and New Data (NIEHS Exposome webinar)

    EPA Science Inventory

    Estimates of human and ecological exposures are required as critical input to risk-based prioritization and screening of thousands of chemicals. In a 2009 commentary in Environmental Health Perspectives, Shelden and Hubal proposed that “Novel statistical and informatic approaches...

  3. Probing the ToxCastTM Chemical Library for Predictive Signatures of Developmental Toxicity -NLTO Poster

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  4. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF IRON CASTINGS AND FABRICATED SHEET METAL PARTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected u...

  5. Fishing. Unit 1, Colorado Division of Wildlife.

    ERIC Educational Resources Information Center

    Hetzel, George K.; Smith, Dwight R.

    This booklet on fishing is part of a series developed to encourage youth to pursue outdoor projects. Fish anatomy, equipment, casting techniques, knot and leader tying, hooks, fishing areas, cleaning and cooking fish, types of bait, lures, and regulations are discussed and illustrated. Suggested activities and field trips are listed. (MR)

  6. Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data

    EPA Science Inventory

    EPA's ToxCast™ project is profiling the in vitro bioactivity of chemicals to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesized that developmental toxicity in guideline animal studies captured in the ToxRefDB database wou...

  7. Leveraging Publically Available Chemical Functional Use Data in Support of Exposure Prediction

    EPA Science Inventory

    The U.S. EPA Exposure Forecasting (ExpoCast) project aims to provide rapid screening-level exposure predictions for thousands of chemicals, most of which lack detailed exposure data. Chemical functional use - the role a chemical plays in processes or products (e.g. solvent, ant...

  8. The ExpoCast Project and Rapid Exposure Research at the U.S. E.P.A. (Global Chem webinar presentation)

    EPA Science Inventory

    Session Title: New Approaches for Developing Exposure Data to Advance Chemical Safety Assessments Session Description: Evaluating the potential risks from chemicals and the products of chemistry throughout their lifecycle requires information about both exposure and hazard. Pro...

  9. LIFE CYCLE DESIGN OF AIR INTAKE MANIFOLDS; PHASE I: 2.0 L FORD CONTOUR AIR INTAKE MANIFOLD

    EPA Science Inventory

    The project team applied the life cycle design methodology to the design analysis of three alternative air intake manifolds: a sand cast aluminum, brazed aluminum tubular, and nylon composite. The design analysis included a life cycle inventory analysis, environmental regulatory...

  10. A (Pod)cast of Thousands

    ERIC Educational Resources Information Center

    Dlott, Ann Marie

    2007-01-01

    Dlott, an instructional specialist, was a neophyte at digital broadcasting and blogging, but she could clearly see that creating podcasts would help elementary students reach a large audience and fire their motivation to do research and write. Dlott details three projects involving podcasting that she and classroom teachers launched at elementary…

  11. Building predictive models of developmental toxicity from ToxRefDB and ToxCast

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that are highly correlated with observed in vivo toxicity. We hypothesize that cell signaling pathways underlying development are primary targets f...

  12. 27. Graffiti in north cells: 'When the golden sun has ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Graffiti in north cells: 'When the golden sun has sunk beyond the desert horizon, and darkness followed, under a dim light casting my lonesome heart.'; 135mm lens with electronic flash illumination. - Tule Lake Project Jail, Post Mile 44.85, State Route 139, Newell, Modoc County, CA

  13. Biological profiling and dose-response modeling tools, characterizing uncertainty

    EPA Science Inventory

    Through its ToxCast project, the U.S. EPA has developed a battery of in vitro high throughput screening (HTS) assays designed to assess the potential toxicity of environmental chemicals. At present, over 1800 chemicals have been tested in up to 600 assays, yielding a large number...

  14. Automated Array Assembly, Phase 2. Low-cost Solar Array Project, Task 4

    NASA Technical Reports Server (NTRS)

    Lopez, M.

    1978-01-01

    Work was done to verify the technological readiness of a select process sequence with respect to satisfying the Low Cost Solar Array Project objectives of meeting the designated goals of $.50 per peak watt in 1986 (1975 dollars). The sequence examined consisted of: (1) 3 inches diameter as-sawn Czochralski grown 1:0:0 silicon, (2) texture etching, (3) ion implanting, (4) laser annealing, (5) screen printing of ohmic contacts and (6) sprayed anti-reflective coatings. High volume production projections were made on the selected process sequence. Automated processing and movement of hardware at high rates were conceptualized to satisfy the PROJECT's 500 MW/yr capability. A production plan was formulated with flow diagrams integrating the various processes in the cell fabrication sequence.

  15. Director's discretionary fund report for FY 1991

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Director's Discretionary Fund (DDF) at the Ames Research Center was established to fund innovative, high-risk projects in basic research which would otherwise be difficult to initiate, but which are essential to our future programs. Here, summaries are given of individual projects within this program. Topics covered include scheduling electric power for the Ames Research Center, the feasibility of light emitting diode arrays as a lighting source for plant growth chambers in space, plasma spraying of nonoxide coatings using a constricted arcjet, and the characterization of vortex impingement footprint using non-intrusive measurement techniques.

  16. Structural Benchmark Testing of Superalloy Lattice Block Subelements Completed

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Superalloy lattice block panels, which are produced directly by investment casting, are composed of thin ligaments arranged in three-dimensional triangulated trusslike structures (see the preceding figure). Optionally, solid panel face sheets can be formed integrally during casting. In either form, lattice block panels can easily be produced with weights less than 25 percent of the mass of a solid panel. Inconel 718 (IN 718) and MarM-247 superalloy lattice block panels have been developed under NASA's Ultra-Efficient Engine Technology Project and Higher Operating Temperature Propulsion Components Project to take advantage of the superalloys' high strength and elevated temperature capability with the inherent light weight and high stiffness of the lattice architecture (ref. 1). These characteristics are important in the future development of turbine engine components. Casting quality and structural efficiency were evaluated experimentally using small beam specimens machined from the cast and heat treated 140- by 300- by 11-mm panels. The matrix of specimens included samples of each superalloy in both open-celled and single-face-sheet configurations, machined from longitudinal, transverse, and diagonal panel orientations. Thirty-five beam subelements were tested in Glenn's Life Prediction Branch's material test machine at room temperature and 650 C under both static (see the following photograph) and cyclic load conditions. Surprisingly, test results exceeded initial linear elastic analytical predictions. This was likely a result of the formation of plastic hinges and redundancies inherent in lattice block geometry, which was not considered in the finite element models. The value of a single face sheet was demonstrated by increased bending moment capacity, where the face sheet simultaneously increased the gross section modulus and braced the compression ligaments against early buckling as seen in open-cell specimens. Preexisting flaws in specimens were not a discriminator in flexural, shear, or stiffness measurements, again because of redundant load paths available in the lattice block structure. Early test results are available in references 2 and 3; more complete analyses are scheduled for publication in 2004.

  17. Process for preparing essentially colorless polyimide film containing phenoxy-linked diamines

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Stclair, T. L.

    1986-01-01

    A polyimide film that is approximately 90% transparent at 500 nm, useful for thermal protective coatings and solar cells, and the processes for preparing the same by thermal and chemical conversion are disclosed. An essential feature for achieving maximum optical transparency films requires utilizing recrystallized and/or sublimated specific aromatic diamines and dianhydride monomers and introducing phenoxy or thiophenyl separator groups and isomeric m,m' or o,p'-oriented diamines into the polymer molecular structure. The incorporation of these groups in the polymer structure serves to separate the chromaphoric centers and reduce the formation of inter-chain and intra-chain charge transfer complexes which normally cause absorptions in the UV-visible range. The films may be obtained by hand, brushing, casting, or spraying a layer of polyamic acid solutions onto a surface and thermally converting the applied layer to the polyimide, or the polyamic acid solution can be chemically converted to the polyimide, subsequentially dissolved in an organic solvent, and applied as a polyimide film layer with the solvent therein thermally removed.

  18. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    PubMed Central

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-01-01

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting. PMID:28772519

  19. Surface protection of light metals by one-step laser cladding with oxide ceramics

    NASA Astrophysics Data System (ADS)

    Nowotny, S.; Richter, A.; Tangermann, K.

    1999-06-01

    Today, intricate problems of surface treatment can be solved through precision cladding using advanced laser technology. Metallic and carbide coatings have been produced with high-power lasers for years, and current investigations show that laser cladding is also a promising technique for the production of dense and precisely localized ceramic layers. In the present work, powders based on Al2O3 and ZrO2 were used to clad aluminum and titanium light alloys. The compact layers are up to 1 mm thick and show a nonporous cast structure as well as a homogeneous network of vertical cracks. The high adhesive strength is due to several chemical and mechanical bonding mechanisms and can exceed that of plasmasprayed coatings. Compared to thermal spray techniques, the material deposition is strictly focused onto small functional areas of the workpiece. Thus, being a precision technique, laser cladding is not recommended for large-area coatings. Examples of applications are turbine components and filigree parts of pump casings.

  20. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment.

    PubMed

    Srikanth, B; Goutham, R; Badri Narayan, R; Ramprasath, A; Gopinath, K P; Sankaranarayanan, A R

    2017-09-15

    The aim of this paper is to provide a review on the usage of different anchoring media (supports) for immobilising commonly employed photocatalysts for degradation of organic pollutants. The immobilisation of nano-sized photocatalysts can eliminate costly and impractical post-treatment recovery of spent photocatalysts in largescale operations. Some commonly employed immobilisation aids such as glass, carbonaceous substances, zeolites, clay and ceramics, polymers, cellulosic materials and metallic agents that have been previously discussed by various research groups have been reviewed. The study revealed that factors such as high durability, ease of availability, low density, chemical inertness and mechanical stability are primary factors responsible for the selection of suitable supports for catalysts. Common techniques for immobilisation namely, dip coating, cold plasma discharge, polymer assisted hydrothermal decomposition, RF magnetron sputtering, photoetching, solvent casting, electrophoretic deposition and spray pyrolysis have been discussed in detail. Finally, some common techniques adopted for the characterisation of the catalyst particles and their uses are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.

    PubMed

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-02-10

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  2. Development of New Generation of Ceramics for Environmentally Focused Chemical Separations

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Girish

    This dissertation focuses on the use of composite materials for environmental applications. For the first time, applications of both fresh and aged concrete as inexpensive adsorbents for nitrogen dioxide (NO2) removal is demonstrated. Concrete is the most widely used composite material of the modern era. Cement manufacturing (a major component of concrete) is considered to be one of the leading contributors to air pollution, resulting in 7% of the global carbon dioxide emissions along with a number of other harmful pollutants such as oxides, mercury and particulates. These emissions aide in the formation of acid rain, smog, and toxic ground level ozone, causing detrimental effects such as respiratory illnesses, visibility reduction, eutrification and global warming. This thesis offers a novel and sustainable solution in mitigating NOX emissions, by introducing the significant adsorption potential of recycled concrete. The work is based on both commercially available cement paste and already aged concrete samples, providing truly scalable solutions. The concrete samples aged for different periods of time were exposed to NO2 to measure their adsorption capacity. The results show that all of the concrete samples (fresh and aged) exhibited excellent NO2 adsorption capacity, with the fresh concrete samples removing almost 100% of the NO2. Furthermore, to compare the effects of long term aging, 12 year-old recently demolished concrete samples were obtained and its NOX removal was shown to be almost 60%. The experimental results provide evidence of nitrate and nitrite species formation from chemical reactions occurring between NO2 and surface alkaline species. This important discovery can be utilized for NO2 removal and subsequent NOX sequestered demolished concrete (NSDC) recycling in new concrete, either as a set accelerating admixture or as a corrosion inhibitor, a big leap towards better sustainability and longevity of the new reinforced concrete structures. The rest of this thesis focuses on development of a new generation of ceramic membranes utilizing thermal spray techniques to produce highly scalable and extremely cost effective filtration membranes. Thermal spray method of membrane manufacturing has the advantage of economic scalability (up to tens of square meters) along with performance enhancement as compared to conventional wet casting process. In addition to developing a proof of concept for this approach, several strategies on how to improve ceramic membranes' performance via spraying process optimization are also described. Specifically, several thermal sprayed Alumina membrane samples were prepared by varying different process parameters. These samples were characterized using known techniques and subjected to permeability and size exclusion tests to correlate spraying parameters with membranes' performance. The membrane samples showed excellent clean water flux comparable to commercially available membranes and had rejection rates up to 96%. These results show that the membranes produced in this research achieve outstanding performance at a fraction of the cost of commercially produced membrane, enabling the use of membrane filtrations units in developing countries.

  3. Quick-connect threaded attachment joint

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.; Messick, W. R.; Vasquez, P.

    1979-01-01

    Joint is self-aligning and tightens with only sixty-five degrees of rotation for quick connects and disconnects. Made of injection-molded plastics or cast or machined aluminum, joint can carry wires, tubes, liquids, or gases. When two parts of joint are brought together, their shapes align them. Small projections on male section and slots on female section further aid alignment; slight rotation of male form engages projections in slots. At this point, threads engage and male section is rotated until joint is fully engaged.

  4. Spray-formed tooling

    NASA Astrophysics Data System (ADS)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  5. Producing intricate IPMC shapes by means of spray-painting and printing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Trabia, Sarah; Olsen, Zakai; Hwang, Taeseon; Kim, Kwang Jin

    2017-04-01

    Ionic Polymer-Metal Composites (IPMC) are common soft actuators that are Nafion® based and plated with a conductive metal, such as platinum, gold, or palladium. Nafion® is available in three forms: sheets, pellets, and water dispersion. Nafion® sheets can be cut to the desired dimensions and are best for rectangular IPMCs. However, the user is not able to change the thickness of these sheets by stacking and melting because Nafion® does not melt. A solution to this is Nafion® pellets, which can melt. These can be used for extrusion and injection molding. Though Nafion® pellets can be melted, they are difficult to work with, making the process quite challenging to master. The last form is Nafion® Water Dispersion, which can be used for casting. Casting can produce the desired thickness, but it does not solve the problem of achieving complex contours. The current methods of fabrication do not allow for complex shapes and structures. To solve this problem, two methods are presented: painting and printing. The painting method uses Nafion® Water Dispersion, an airbrush, and vinyl stencils. The stencils can be made into any shape with detailed edges. The printing method uses Nafion® pellets that are extruded into filaments and a commercially available 3D printer. The models are drawn in a Computer-Aided Drawing (CAD) program, such as SolidWorks. The produced Nafion® membranes will be compared with a commercial Nafion® membrane through a variety of tests, including Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope, Thermogravimetric Analysis, Dynamic Mechanical Analysis, and Optical Microscope.

  6. MACHINING ELIMINATION THROUGH APPLICATION OF THREAD FORMING FASTENERS IN NET SHAPED CAST HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, Ryan J; Cleaver, Todd H; Talbott, Richard

    The ultimate objective of this work was to eliminate approximately 30% of the machining performed in typical automotive engine and transmission plants by using thread forming fasteners in as-cast holes of aluminum and magnesium cast components. The primary issues at the source of engineers reluctance to implementing thread forming fasteners in lightweight castings are: * Little proof of consistency of clamp load vs. input torque in either aluminum or magnesium castings. * No known data to understand the effect on consistency of clamp load as casting dies wear. The clamp load consistency concern is founded in the fact that amore » portion of the input torque used to create clamp load is also used to create threads. The torque used for thread forming may not be consistent due to variations in casting material, hole size and shape due to tooling wear and process variation (thermal and mechanical). There is little data available to understand the magnitude of this concern or to form the basis of potential solutions if the range of clamp load variation is very high (> +/- 30%). The range of variation that can be expected in as-cast hole size and shape over the full life cycle of a high pressure die casting die was established in previous work completed by Pacific Northwest National Laboratory, (PNNL). This established range of variation was captured in a set of 12 cast bosses by designing core pins at the size and draft angles identified in the sited previous work. The cast bosses were cut into nuts that could be used in the Ford Fastener Laboratory test-cell to measure clamp load when a thread forming fastener was driven into a cast nut. There were two sets of experiments run. First, a series of cast aluminum nuts were made reflecting the range of shape and size variations to be expected over the life cycle of a die casting die. Taptite thread forming fasteners, (a widely used thread forming fastener suitable for aluminum applications), were driven into the various cored, as-cast nuts at a constant input torque and resulting clamp loads were recorded continuously. The clamp load data was used to determine the range of clamp loads to be expected. The bolts were driven to failure. The clamp load corresponding to the target input of 18.5 Nm was recorded for each fastener. In a like fashion, a second set of experiments were run with cast magnesium nuts and ALtracs thread forming fasteners, (a widely used thread forming fastener suitable for magnesium applications). Again all clamp loads were recorded and analyzed similarly to the Taptites in aluminum cast nuts. Results from previous work performed on the same test cell for a Battelle project using standard M8 bolts into standard M8 nuts were included as a comparator for a standard bolt and nut application. The results for the thread forming fasteners in aluminum cast holes were well within industry expectations of +/- 30% for out of the box and robustness range testing. The results for the dry and lubed extreme conditions were only slightly higher than industry expectations at +/- 35.6%. However, when compared to the actual Battelle results (+/- 40%) for a standard bolt and nut the tread forming fasteners performed slightly better. The results for the thread forming fasteners in magnesium cast holes were all well within industry expectations of +/- 30% for all three conditions. The robustness range (.05mm larger and smaller holes than the expected wear pattern of a die casting die at full life cycle) results also fell within the industry expectations for standard threaded fasteners. These results were very encouraging. It was concluded that this work showed that clamp load variation with thread forming fasteners is consistent with industry expectations for standard steel bolts and nuts at +/- 30%. There does not appear to be any significant increase in clamp load variation due to the application of thread forming fasteners in as-cast holes of aluminum or magnesium over the effective life of a die casting mold. The fully implemented potential benefit of thread forming fasteners in as-cast holes of aluminum and magnesium is estimated to be 6 trillion Btu per year for North America. Economic benefit is estimated to be nearly $800 million per year. Environmental benefits and quality improvements will also result from full implementation of this technology.« less

  7. Assessment of the Cast Stone Low-Temperature Waste Form Technology Coupled with Technetium Removal - 14379

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey

    2014-03-03

    The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less

  8. Recent Developments in Toxico-Cheminformatics; Supporting ...

    EPA Pesticide Factsheets

    EPA's National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction through the harnessing of legacy toxicity data, creation of data linkages, and generation of new high-content and high-thoughput screening data. In association with EPA's ToxCast, ToxRefDB, and ACToR projects, the DSSTox project provides cheminformatics support and, in addition, is improving public access to quality structure-annotated chemical toxicity information in less summarized forms than traditionally employed in SAR modeling, and in ways that facilitate data-mining and data read-across. The latest DSSTox version of the Carcinogenic Potency Database file (CPDBAS) illustrates ways in which various summary definitions of carcinogenic activity can be employed in modeling and data mining. DSSTox Structure-Browser provides structure searchability across all published DSSTox toxicity-related inventory, and is enabling linkages between previously isolated toxicity data resources associated with environmental and industrial chemicals. The public DSSTox inventory also has been integrated into PubChem, allowing a user to take full advantage of PubChem structure-activity and bioassay clustering features. Phase I of the ToxCast project is generating high-throughput screening data from several hundred biochemical and cell-based assays for a set of 320 chemicals, mostly pesticide actives with rich toxicology profiles. Incorporating

  9. EPA Project Updates: DSSTox and ToxCast Generating New ...

    EPA Pesticide Factsheets

    EPAs National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction. The DSSTox project is improving public access to quality structure-annotated chemical toxicity information in less summarized forms than traditionally employed in SAR modeling, and in ways that facilitate data-mining, and data read-across. The DSSTox Structure-Browser, launched in September 2007, provides structure searchability across all published DSSTox toxicity-related inventory, and is enabling linkages between previously isolated toxicity data resources. As of early March 2008, the public DSSTox inventory as been integrated into PubChem, allowing a user to take full advantage of PubChem structure-activity and bioassay clustering features. The most recent DSSTox version of Carcinogenic Potency Database file (CPDBAS) illustrates ways in which various summary definitions of carcinogenic activity can be employed in modeling and data mining. Phase I of the ToxCast project is generating high-throughput screening data from several hundred biochemical and cell-based assays for a set of 320 chemicals, mostly pesticide actives, with rich toxicology profiles. Incorporating and expanding traditional SAR Concepts into this new high-throughput and data-rich would pose conceptual and practical challenges, but also holds great promise for improving predictive capabilities. EPA's National Center for Computational Toxicology is bu

  10. Heat exchanger-ingot casting/slicing process, phase 1: Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1977-01-01

    A controlled growth, heat-flow and cool-down process is described that yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material yielded conversion efficiency of over 9%. Representative characterizations of grown silicon demonstrated a dislocation density of less than 100/sq cm and a minority carrier diffusion length of 31 micron. The source of silicon carbide in silicon ingots was identified to be from graphite retainers in contact with silica crucibles. Higher growth rates were achieved with the use of a graphite plug at the bottom of the silica crucible.

  11. A moral history of the evolution of a caste of workers.

    PubMed Central

    Samuels, S W

    1996-01-01

    Using a dialectic method of philosophic inquiry, the actual ethical, legal, and social situation associated with genetic testing of beryllium-exposed workers in Department of Energy nuclear weapons facilities for markers of chronic beryllium disease is described. The cultural evolution of a caste system in a similar situation, and its social and biological implications, among uranium miners in the Erz Gebirge of Central Europe and on the Colorado Plateau of the United States, marked by suicide and lung disease, including cancer, is also described. The historically persistent social disease resulting from these situations. The Masada Syndrome, named from an analogous situation in biblical times, is characterized. Cultural intervention, a necessary condition for the ethical progression of the Human Genome Project, is outlined. PMID:8933047

  12. Silicon Ingot Casting - Heat Exchanger Method Multi-wire Slicing - Fixed Abrasive Slicing Technique. Phase 3 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    Several 20 cm diameter silicon ingots, up to 6.3 kg. were cast with good crystallinity. The graphite heat zone can be purified by heating it to high temperatures in vacuum. This is important in reducing costs and purification of large parts. Electroplated wires with 45 um synthetic diamonds and 30 um natural diamonds showed good cutting efficiency and lifetime. During slicing of a 10 cm x 10 cm workpiece, jerky motion occurred in the feed and rocking mechanisms. This problem is corrected and modifications were made to reduce the weight of the bladeheat by 50%.

  13. Thermally Sprayed High Temperature Sandwich Structures: Physical Properties and Mechanical Performance

    NASA Astrophysics Data System (ADS)

    Salavati, Saeid

    Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades due to their unique physical and mechanical properties. One of the potential applications of open pore metallic foam core sandwich structures is in heat exchangers. An investigation of sandwich structures fabricated from materials suitable for application at high temperatures and in corrosive environments was undertaken in this project. A novel method for fabrication of metallic foam core sandwich structures is thermal spray deposition of the faces on the prepared surfaces of the metallic foam substrate. The objective of the current study was to optimize the twin wire arc spray process parameters for the deposition of alloy 625 faces with controllable porosity content on the nickel foam substrate, and to characterize the physical and mechanical properties of the sandwich structure. The experimental investigations consisted of microstructural evaluation of the skin material and the foam substrate, investigation of the effect of alloying on the mechanical and thermal properties of the nickel foam, optimization of the grit-blasting and arc spray processes, observation of mechanical properties of the alloy 625 deposit by tensile testing and evaluation of the overall mechanical properties of the sandwich structure under flexural loading condition. The optimization of arc spraying process parameters allowed deposition of alloy 625 faces with a porosity of less than 4% for heat exchanger applications. Modification of the arc spraying process by co-deposition of polyester powder enabled 20% porosity to be obtained in the deposited faces for heat shield applications with film cooling. The effects of nickel foam alloying and heat treatment on the flexural rigidity of the sandwich structures were investigated and compared with as-received foam and as-fabricated sandwich structures. Available analytical models were employed to describe the effect of constituents' mechanical properties on the overall mechanical performance of the sandwich structures. Finite element modeling using ANSYS Structural was used to simulate the behaviour of the sandwich structures in four-point bending. The analytical and simulation results were compared with the experimental results obtained from the flexural tests.

  14. Bacterial Aerosols from a Field Source during Multiple-Sprinkler Irrigation: Deer Creek Lake State Park, Ohio

    DTIC Science & Technology

    1979-09-01

    was funded under Civil Works Project CWIS 31280, Evaluation of Existing Facilities for Waste- water Land Treatment. Robert Emerson of the Atmospheric...20 Estimation of Coliphage .................................. 23 Fluorescein Dye Runs ..................................... 23 Chemicai and...California Water Pollletion Control Board 1957) in which data were obtained on the travel of coliform bacteria from spray operations using

  15. Sea Spray and Icing in the Emerging Open Water of the Arctic Ocean

    DTIC Science & Technology

    2014-09-30

    CRREL personnel for this project are Kathy Jones, Chris Williams, and Kerry Claffey. Ed Andreas of NWRA is the co-PI with Jones. We borrowed Chris ...Mitchell K, Shafran P, Ebisuzaki W, Jovic D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D

  16. Positive Influence of Behavior Change Communication on Knowledge, Attitudes, and Practices for Visceral Leishmaniasis/Kala-azar in India.

    PubMed

    Srinivasan, Raghavan; Ahmad, Tanwir; Raghavan, Vidya; Kaushik, Manisha; Pathak, Ramakant

    2018-03-21

    Visceral leishmaniasis (VL) is endemic to 54 districts in 4 states of India. Poor awareness of the disease and inappropriate health-seeking behavior are major challenges to eliminating the disease. Between February 2016 and March 2017, we implemented a behavior change communication (BCC) intervention in 33 districts of Bihar, 4 districts of Jharkhand, and 3 districts of West Bengal using a mix of channels, including group and interpersonal communication, to improve knowledge, attitudes, and practices of communities, frontline health workers, and opinion leaders. We conducted an impact assessment in October 2016, after the second indoor residual spraying (IRS) round, in Bihar and Jharkhand to evaluate the effect of the BCC intervention. Villages in 10 districts of Bihar and 4 districts in Jharkhand were selected for inclusion in the assessment. Selected villages were categorized as either intervention or control based on where project activities were conducted. Households were randomly selected proportional to caste composition, and interviewers surveyed the head of the household on whether the house was sprayed during the last IRS round and on knowledge, attitudes, and practices related to VL. We interviewed 700 households in intervention villages and 350 households in control villages and conducted correlation analysis to explore the association between IRS refusal and socioeconomic variables, and tested for association between IRS refusal and exposure to BCC activities. Odds ratios (ORs) were calculated. We reached an estimated 3.3 million contacts in Bihar and Jharkhand through the intervention's BCC activities. IRS refusal rates were significantly lower in intervention households than control households (mean=7.95% vs. 24.45%, respectively; OR, 0.27; 95% confidence interval [CI], 0.11 to 0.62; P <.001). Households in intervention villages were more aware than those in control villages that VL is spread by sand flies (68.4% vs. 7.4%, respectively; P <.001) and of IRS as an effective control measure (82.3% vs. 41.7%, respectively; P <.001). A greater percentage of households in intervention villages than control villages indicated they would encourage a patient to go to primary health centers for diagnosis and treatment of VL (77.0% vs. 39.4%, respectively) and to encourage others to accept IRS (78.6% vs. 44.6%, respectively; P <.001). Households that were exposed to community-based BCC activities largely using group and interpersonal communication had better knowledge, attitudes, and practices related to VL, including acceptance of IRS as a preventive measure, than households not exposed. BCC activities are thus an important component of VL elimination strategies. © Srinivasan et al.

  17. Centrifugal casting of ZA8 zinc alloy and composite A356/silicon carbide: Study and modeling of phases' and particles' segregation

    NASA Astrophysics Data System (ADS)

    Balout, Bahaa

    Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles on the outer/inner casting surface and across the section varies whether the viscosity of the liquid metal used and the centrifugal radius are considered constant or variable during the modeling. Modeling the particles' segregation while discretizing, in time, the particles' velocities gives more consistent results compared to those obtained experimentally. Key-words: centrifugal casting, composite, macrosegregation, solidification.

  18. Using Non-Participant Observation in Curriculum Assessment: A Case Example.

    ERIC Educational Resources Information Center

    Troutman, Benjamin I., Jr.

    In this paper a rationale for the use of non-participant observation in curriculum development is presented. An assessment of the University of Georgia Anthropology Curriculum Project's Race, Caste, and Prejudice (RCP) provides a case example of the use of this qualitative model in educational research. The researcher's assessment of RCP focuses…

  19. Study Casts Cold Water on Bonus Pay

    ERIC Educational Resources Information Center

    Sawchuk, Stephen

    2010-01-01

    The most rigorous experimental study of performance-based teacher compensation ever conducted in the United States shows that a nationally watched bonus-pay system had no overall impact on student achievement--results that are certain to set off a firestorm of debate. The study, known as POINT for the Project on Incentives in Teaching, was a…

  20. EVALUATION OF OPPORTUNITIES TO IMPROVE STRUCTURAL INSPECTION CAPABILITIES FOR WATER MAINS: LARGE DIAMETER CAST IRON PIPE

    EPA Science Inventory

    The U.S. EPA and other organizations have projected that a large portion of the United States’ aging water conveyance infrastructure will reach the end of its service life in the next several decades. EPA has identified asset management as a critical factor in efficiently addre...

  1. Ruling by California Judge Casts a Cloud over All University Agricultural Research.

    ERIC Educational Resources Information Center

    London, Herbert

    1988-01-01

    A court ruling that the University of California must ensure that all federal Hatch Act agricultural research funds go to projects benefiting primarily small family farms is seen as promoting special-interest politics, selective interpretation of federal legislation, and a romanticized view of farmers and may unduly influence research directions.…

  2. ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF IRON CASTINGS AND FABRICATED SHEET METAL PARTS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expense to do so. aste Minimization Assessment Centers (WMACS) were established at selected univ...

  3. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    EPA Science Inventory

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultur...

  4. High Throughput Exposure Modeling of Semi-Volatile Chemicals in Articles of Commerce (ACS)

    EPA Science Inventory

    Risk due to chemical exposure is a function of both chemical hazard and exposure. Near-field exposures to chemicals in consumer products are identified as the main drivers of exposure and yet are not well quantified or understood. The ExpoCast project is developing a model that e...

  5. Probing the ToxCastTM Chemical Library for Predictive Signatures of Developmental Toxicity - Poster at Teratology Society Annual Meeting

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  6. Structure Identification Using High Resolution Mass Spectrometry Data and the EPAs Chemistry Dashboard (ACS Fall meeting)

    EPA Science Inventory

    The iCSS Chemistry Dashboard is a publicly accessible dashboard provided by the National Center for Computation Toxicology at the US-EPA. It serves a number of purposes, including providing a chemistry database underpinning many of our public-facing projects (e.g. ToxCast and Exp...

  7. Children at Play: Learning Gender in the Early Years

    ERIC Educational Resources Information Center

    Martin, Barbara

    2011-01-01

    This captivating book illuminates our understanding of how young children develop gender identities. A two year longitudinal research project on children's own understandings of gender casts new light on how 3 and 4 year old newcomers in early years classes learn rules for gendered behaviour from older children, in their imaginative and…

  8. Podcasting Communities and Second Language Pronunciation

    ERIC Educational Resources Information Center

    Lord, Gillian

    2008-01-01

    Although often neglected in language classrooms, second language phonology is a crucial element in language learning because it is often the most salient feature in the speech of a foreigner. As instructors, we must decide how to emphasize pronunciation and what techniques to use. This article discusses a collaborative pod-casting project in an…

  9. JOBS. A Partnership between Education and Industry.

    ERIC Educational Resources Information Center

    Mann, Sandra; And Others

    This packet contains 15 lessons developed in a workplace basic skills project for the metal casting industry established jointly by Central Alabama Community College and Robinson Foundry, Inc. The lessons cover the following topics: (1) green sand schedule; (2) the core room; (3) the core room (continued); (4) figuring time; (5) the cleaning room;…

  10. In-silico structure activity relationship study of toxicity endpoints by QSAR modeling (SOT)

    EPA Science Inventory

    Several thousand chemicals were tested in 700 toxicity-related in-vitro HTS bioassays through the EPA’s ToxCast and Tox21 projects. This chemical set only covers a portion of the chemical space of interest for environmental exposure, leading to a need to fill data gaps with alter...

  11. An improved method for collecting and monitoring pine oleoresin

    Treesearch

    Dick Karsky; Brian Strom; Harold Thistle

    2004-01-01

    A new method for collecting and monitoring pine oleoresin has been developed through a cooperative project involving the Missoula Technology Development Center (MTDC), Southern Research Station (Brian Strom, research entomologist), and the Forest Health Technology Enterprise Team. The new sampling unit (figure 1) is cast from rugged plastic. It provides a closed system...

  12. Comparison of the performance between a spray gun and a spray boom in ornamentals.

    PubMed

    Foqué, D; Nuyttens, D

    2011-01-01

    Flemish greenhouse growers predominantly use handheld spray guns and spray lances for their crop protection purposes although these techniques are known for their heavy workload and their high operator exposure risks. Moreover, when these techniques are compared with spray boom equipment, they are often found to be less effective. On the other hand, handheld spraying techniques are less expensive and more flexible to use. Additionally, many Flemish growers are convinced that a high spray volume and spray pressure is needed to assure a good plant protection. The aim of this work was to evaluate and compare the spray deposition, penetration and uniformity between a manually pulled horizontal spray boom and a spray gun under controlled laboratory conditions. In total, six different spray application techniques were evaluated. In general, the total deposition results were comparable between the spray boom and the spray gun applications but the boom applications resulted in a more uniform spray distribution over the crop. On a plant level, the spray distribution was not uniform for the different techniques with highest deposits on the upper side of the top leaves. Using spray guns at a higher spray pressure did not improve spray penetration and deposition on the bottom side of the leaves. From the different nozzle types, the XR 80 03 gave the best results. Plant density clearly affected crop penetration and deposition on the bottom side of the leaves.

  13. Liquid Fertilizer Spraying Performance Using A Knapsack Power Sprayer On Soybean Field

    NASA Astrophysics Data System (ADS)

    Gatot, P.; Anang, R.

    2018-05-01

    An effort for increasing soybean production can be conducted by applying liquid fertilizer on soybean cultivation field. The objective of this research was to determine liquid fertilizer spraying performance using knapsack power sprayer TASCO TF-900 on a soybean cultivation field. Performances test were conducted in the Laboratory of Spraying Test and on a soybean cultivation field to determine (1) effective spraying width, (2) droplets diameter, (3) droplets density, (4) effective spraying discharge rate, and (5) effective field capacity of spraying. The research was conducted using 2 methods: (1) one-nozzle spraying, and (2) four- nozzles spraying. Results of the research showed that at a constant pressure of 900 kPa effective spraying width using one-nozzle spraying and four-nozzles spraying were 0.62 m and 1.10 m. A bigger effective spraying width was resulted in a bigger average effective spraying discharge rate and average effective spraying field capacity of 4.52 l/min and 83.92 m2/min on forward walking speed range of 0.94 m/s up to 1.77 m/s. On the contrary, bigger effective spraying width was result in bigger droplets diameter of 502.73 μm and a smaller droplets density of 98.39 droplets/cm2, whereas smaller effective spraying width was resulted in a smaller droplets diameter of 367.09 μm and a bigger droplets density of 350.53 droplets/cm2. One-nozzle spraying method produced a better spraying quality than four-nozzles spraying method, although four-nozzles spraying was resulted in a bigger effective field capacity of spraying.

  14. Status of mirror segment production for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Martin, H. M.; Burge, J. H.; Davis, J. M.; Kim, D. W.; Kingsley, J. S.; Law, K.; Loeff, A.; Lutz, R. D.; Merrill, C.; Strittmatter, P. A.; Tuell, M. T.; Weinberger, S. N.; West, S. C.

    2016-07-01

    The Richard F. Caris Mirror Lab at the University of Arizona is responsible for production of the eight 8.4 m segments for the primary mirror of the Giant Magellan Telescope, including one spare off-axis segment. We report on the successful casting of Segment 4, the center segment. Prior to generating the optical surface of Segment 2, we carried out a major upgrade of our 8.4 m Large Optical Generator. The upgrade includes new hardware and software to improve accuracy, safety, reliability and ease of use. We are currently carrying out an upgrade of our 8.4 m polishing machine that includes improved orbital polishing capabilities. We added and modified several components of the optical tests during the manufacture of Segment 1, and we have continued to improve the systems in preparation for Segments 2-8. We completed two projects that were prior commitments before GMT Segment 2: casting and polishing the combined primary and tertiary mirrors for the LSST, and casting and generating a 6.5 m mirror for the Tokyo Atacama Observatory.

  15. Penetrating ballistic-like frontal brain injury caused by a metallic rod.

    PubMed

    Pascual, J M; Navas, M; Carrasco, R

    2009-06-01

    Penetrating non-missile intracranial injuries caused by metallic foreign bodies are very rare among the civilian population. We present a unique instance of a severe, high-energy, penetrating orbitocranial injury caused by a solid metallic rod that corresponded to the spray valve lever handle of a kitchen sink pre-rinse spray tap, which was fractured and projected at high speed for an unknown reason. To our knowledge, this is the first report of a high-energy, penetrating brain injury caused by such an object. After careful radiological evaluation of the shape and position of the foreign object, a combined right frontal craniotomy and supraorbital osteotomy was performed in order to achieve safe removal of the metal bar. Successful surgical treatment of an orbitocranial injury caused by a similar object has not previously been reported.

  16. Military housing foam application and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, J. J.

    2012-03-01

    Sandia and Forest City have established a Cooperative Research and Development Agreement (CRADA), the partnership provides a unique opportunity to take technology research and development from demonstration to application in sustainable communities. This project consists of two activities conducted in Hawaii that focus on performance, integration and application of energy saving technologies. Hawaii has many energy challenges, making this location an excellent testbed for these activities. Under this project, spray foam technology was applied at military housing on Oahu and the consumption data collected. A cost benefit and operational analysis of the foam was completed. The second phase of thismore » project included design, integration, and analysis of photovoltaic systems at a military community on Oahu. This phase of the project was conducted as part of Forest City's second Solar America Showcase Award.« less

  17. Comparison of the Characteristics and Performance of Flurbiprofen 8.75 mg Spray for Sore Throat.

    PubMed

    Veale, David; Shephard, Adrian; Adams, Verity; Lidster, Charlotte

    2017-01-01

    Sore throat sprays provide targeted relief by delivering the active ingredient directly to the site of pain. Different sprays vary in characteristics, thus affecting delivery of the active ingredient to the throat, which can impact compliance. The characteristics and performance of FLURBIPROFEN 8.75 mg SPRAY were compared with 12 other sprays. Parameters assessed included spray angle and pattern, droplet size distribution, shot weight uniformity and shot weight throughout life. Among all sprays tested WICK Sulagil Halsspray had the smallest spray angle (46°) and also the smallest diameter spray pattern (X=32.8 mm; Y=34.4 mm). Thiovalone® Buccal Spray Suspension had both the largest spray angle (82°) and largest diameter spray pattern (X=62.6 mm; Y=78.0 mm). Hasco Sept® Aerosol Spray had the smallest droplet size (Dv90=118.4 μm) whereas OKi infiammazione e dolore® 0.16% spray had the largest (Dv90=214.34 μm). In terms of shot weight uniformity, TANTUM® VERDE GOLA 0.25% spray showed the least variation (2% RSD) between shots and UNIBEN Aerosol Spray the most (23.4% RSD). Shot weight throughout life studies showed that FLURBIPROFEN 8.75 mg SPRAY had the least deviation from shot weight (1.77%) whereas OKi infiammazione e dolore® 0.16% spray deviated the most (44.9%). FLURBIPROFEN 8.75 mg SPRAY had the second smallest spray angle/pattern and droplet size distribution and also the least variation in shot weight. Different sore throat sprays vary in different attributes, affecting delivery of the active ingredient. FLURBIPROFEN 8.75 mg SPRAY performed well overall, ranking first among all sprays tested, and providing a dose which is targeted and uniformly delivered throughout the life of the bottle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Terrestrial applications from space technology

    NASA Technical Reports Server (NTRS)

    Clarks, H.

    1985-01-01

    NASA's Technology Utilization Program, which is concerned with transferring aerospace technologies to the public and private sectors, is described. The strategy for transferring the NASA technologies to engineering projects includes: (1) identification of the problem, (2) selection of an appropriate aerospace technology, (3) development of a partnership with the company, (4) implementation of the project, and (5) commercialization of the product. Three examples revealing the application of aerospace technologies to projects in biomedical engineering, materials, and automation and robotics are presented; the development of a programmable, implantable medication system and a programmable, mask-based optical correlator, and the improvement of heat and erosion resistance in continuous casting are examined.

  19. Making Together: An Interdisciplinary, Inter-institutional Assistive-Technology Project.

    PubMed

    Reiser, Susan; Bruce, Rebecca; Martin, Jackson; Skidmore, Brent

    2017-01-01

    Faculty at the University of North Carolina Asheville partnered with local healthcare professionals and retirement home residents and administrators on an assistive-technology project. The Creative Fabrication introductory computer science course incorporated subject-matter experts from the healthcare community, older and differently abled "users," medical students, and sculpture faculty. Over the semester, the class students created assistive devices to meet the needs of the retirement home residents. They prototyped their designs in foam and 3D modeling software and cast parts of their design in bronze or aluminum. User-centered design, the design process, and the importance of form and function were emphasized throughout the project.

  20. Novel multiphase systems based on thermoplastic chitosan: Analysis of the structure-properties relationships

    NASA Astrophysics Data System (ADS)

    Avérous, Luc; Pollet, Eric

    2016-03-01

    In the last years, biopolymers have attracted great attention. It is for instance the case of chitosan, a linear polysaccharide. It is a deacetylated derivative of chitin, which is the second most abundant polysaccharide found in nature after cellulose. Chitosan has been found to be nontoxic, biodegradable, biofunctional, and biocompatible in addition to having antimicrobial and antifungal properties, and thus has a great potential for environmental (packaging,) or biomedical applications.For preparing chitosan-based materials, only solution casting or similar methods have been used in all the past studies. Solution casting have the disadvantage in low efficiency and difficulty in scaling-up towards industrial applications. Besides, a great amount of environmentally unfriendly chemical solvents are used and released to the environment in this method. The reason for not using a melt processing method like extrusion or kneading in the past studies is that chitosan, like many other polysaccharides such as starch, has very low thermal stability and degrade prior to melting. Therefore, even if the melt processing method is more convenient and highly preferred for industrial production, its adaptation for polysaccharide-based materials remains very difficult. However, our recently published studies has demonstrated the successful use of an innovative melt processing method (internal mixer, extrusion,) as an alternative route to solution casting, for preparing materials based on thermoplastic chitosan. These promising thermoplastic materials, obtained by melt processing, have been the main topic of recent international projects, with partners from different countries Multiphase systems based on various renewable plasticizers have been elaborated and studied. Besides, different blends, and nano-biocomposites based on nanoclays, have been elaborated and fully analyzed. The initial consortium of this vast project was based on an international consortium (Canada, Australia, France). This project is currently ongoing and open, with new international academic partners (Mexico, Brazil and Spain).

  1. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves.

    PubMed

    Wang, Yong; Yu, Yu-Song; Li, Guo-Xiu; Jia, Tao-Ming

    2017-01-05

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern's Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu's, Varde's and Merrigton's model). It is found that the Merrigton's model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton's model is fitted with experimental results.

  2. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves

    PubMed Central

    Wang, Yong; Yu, Yu-song; Li, Guo-xiu; Jia, Tao-ming

    2017-01-01

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern’s Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu’s, Varde’s and Merrigton’s model). It is found that the Merrigton’s model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton’s model is fitted with experimental results. PMID:28054555

  3. Demonstration of Thermally Sprayed Metal and Polymer Coatings for Steel Structures at Fort Bragg, NC

    DTIC Science & Technology

    2017-09-01

    for Steel Structures at Fort Bragg, NC Final Report on Project F07-AR10 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry Larry D...and Polymer Coatings for Steel Structures at Fort Bragg, NC Final Report on Project F07-AR10 Larry D. Stephenson, Alfred D. Beitelman, Richard G...recently been estimated that at least 25 U.S. Army in- stallations have severe corrosion problems with above-ground steel stor- age tanks. Coatings are

  4. Testing the robustness of Citizen Science projects: Evaluating the results of pilot project COMBER.

    PubMed

    Chatzigeorgiou, Giorgos; Faulwetter, Sarah; Dailianis, Thanos; Smith, Vincent Stuart; Koulouri, Panagiota; Dounas, Costas; Arvanitidis, Christos

    2016-01-01

    Citizen Science (CS) as a term implies a great deal of approaches and scopes involving many different fields of science. The number of the relevant projects globally has been increased significantly in the recent years. Large scale ecological questions can be answered only through extended observation networks and CS projects can support this effort. Although the need of such projects is apparent, an important part of scientific community cast doubt on the reliability of CS data sets. The pilot CS project COMBER has been created in order to provide evidence to answer the aforementioned question in the coastal marine biodiversity monitoring. The results of the current analysis show that a carefully designed CS project with clear hypotheses, wide participation and data sets validation, can be a valuable tool for the large scale and long term changes in marine biodiversity pattern change and therefore for relevant management and conservation issues.

  5. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    PubMed

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  6. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    PubMed

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  7. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less

  8. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol.

    PubMed

    Mason-Smith, Nicholas; Duke, Daniel J; Kastengren, Alan L; Traini, Daniela; Young, Paul M; Chen, Yang; Lewis, David A; Edgington-Mitchell, Daniel; Honnery, Damon

    2017-04-01

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second with 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. The flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.

  9. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol

    DOE PAGES

    Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.; ...

    2017-01-17

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less

  10. Doping control container for urine stabilization: a pilot study.

    PubMed

    Tsivou, Maria; Giannadaki, Evangelia; Hooghe, Fiona; Roels, Kris; Van Gansbeke, Wim; Garribba, Flaminia; Lyris, Emmanouil; Deventer, Koen; Mazzarino, Monica; Donati, Francesco; Georgakopoulos, Dimitrios G; Van Eenoo, Peter; Georgakopoulos, Costas G; de la Torre, Xavier; Botrè, Francesco

    2017-05-01

    Urine collection containers used in the doping control collection procedure do not provide a protective environment for urine, against degradation by microorganisms and proteolytic enzymes. An in-house chemical stabilization mixture was developed to tackle urine degradation problems encountered in human sport samples, in cases of microbial contamination or proteolytic activity. The mixture consists of antimicrobial substances and protease inhibitors for the simultaneous inactivation of a wide range of proteolytic enzymes. It has already been tested in lab-scale, as part of World Anti-Doping Agency's (WADA) funded research project, in terms of efficiency against microbial and proteolytic activity. The present work, funded also by WADA, is a follow-up study on the improvement of chemical stabilization mixture composition, application mode and limitation of interferences, using pilot urine collection containers, spray-coated in their internal surface with the chemical stabilization mixture. Urine in plastic stabilized collection containers have been gone through various incubation cycles to test for stabilization efficiency and analytical matrix interferences by three WADA accredited Laboratories (Athens, Ghent, and Rome). The spray-coated chemical stabilization mixture was tested against microorganism elimination and steroid glucuronide degradation, as well as enzymatic breakdown of proteins, such as intact hCG, recombinant erythropoietin and small peptides (GHRPs, ipamorelin), induced by proteolytic enzymes. Potential analytical interferences, observed in the presence of spray-coated chemical stabilization mixture, were recorded using routine screening procedures. The results of the current study support the application of the spray-coated plastic urine container, in the doping control collection procedure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. JPRS Report, Science & Technology, Europe & Latin America

    DTIC Science & Technology

    1988-04-14

    can be applied everywhere that monitoring of gaseous atmospheres is required, for example in air pollution control, monitor- ing of furnace plants ...invest a further DM50 million in develop- ing the materials and construction of a pilot plant . 2.6 Spray Process To Produce Sheet Metal Today, semi...opportunities for building small production plants that can operate economically. Initial results from this project, in which two industrial

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multifamily buildings. In this project, the team helped to transform a 100-year-old empty school building into 12 high performance apartments with low energy costs. The advanced features included an excellent thermal envelope of closed-cell spray foam and triple-pane windows, ductless heat pumps, solar thermal hot water system, and photovoltaic system.

  13. Improved Orifice Plate for Spray Gun

    NASA Technical Reports Server (NTRS)

    Cunningham, W.

    1986-01-01

    Erratic spray pattern of commercial spray gun changed to repeatable one by simple redesign of two parts. In modified spray gun orifice plate and polytetrafluoroethylene bushing redesigned to assure centering and alignment with nozzle. Such improvement useful in many industrial applications requiring repeatable spray patterns. Might include spraying of foam insulation, paint, other protective coatings, detergents, abrasives, adhesives, process chemicals, or fuels. Unmodified spray gun produces erratic spray because lateral misalignment between orifice plate and nozzle.

  14. Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Development of a CFD Model.

    PubMed

    Rygg, Alex; Longest, P Worth

    2016-10-01

    The objective of this study was to develop a computational fluid dynamics (CFD) model to predict the deposition, dissolution, clearance, and absorption of pharmaceutical particles in the human nasal cavity. A three-dimensional nasal cavity geometry was converted to a surface-based model, providing an anatomically-accurate domain for the simulations. Particle deposition data from a commercial nasal spray product was mapped onto the surface model, and a mucus velocity field was calculated and validated with in vivo nasal clearance rates. A submodel for the dissolution of deposited particles was developed and validated based on comparisons to existing in vitro data for multiple pharmaceutical products. A parametric study was then performed to assess sensitivity of epithelial drug uptake to model conditions and assumptions. The particle displacement distance (depth) in the mucus layer had a modest effect on overall drug absorption, while the mucociliary clearance rate was found to be primarily responsible for drug uptake over the timescale of nasal clearance for the corticosteroid mometasone furoate (MF). The model revealed that drug deposition in the nasal vestibule (NV) could slowly be transported into the main passage (MP) and then absorbed through connection of the liquid layer in the NV and MP regions. As a result, high intersubject variability in cumulative uptake was predicted, depending on the length of time the NV dose was left undisturbed without blowing or wiping the nose. This study has developed, for the first time, a complete CFD model of nasal aerosol delivery from the point of spray formation through absorption at the respiratory epithelial surface. For the development and assessment of nasal aerosol products, this CFD-based in silico model provides a new option to complement existing in vitro nasal cast studies of deposition and in vivo imaging experiments of clearance.

  15. Thermomechanical processing of plasma sprayed intermetallic sheets

    DOEpatents

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  16. Development of in vitro models to demonstrate the ability of PecSys®, an in situ nasal gelling technology, to reduce nasal run-off and drip

    PubMed Central

    2013-01-01

    Many of the increasing number of intranasal products available for either local or systemic action can be considered sub-optimal, most notably where nasal drip or run-off give rise to discomfort/tolerability issues or reduced/variable efficacy. PecSys, an in situ gelling technology, contains low methoxy (LM) pectin which gels due to interaction with calcium ions present in nasal fluid. PecSys is designed to spray readily, only forming a gel on contact with the mucosal surface. The present study employed two in vitro models to confirm that gelling translates into a reduced potential for drip/run-off: (i) Using an inclined TLC plate treated with a simulated nasal electrolyte solution (SNES), mean drip length [±SD, n = 10] was consistently much shorter for PecSys (1.5 ± 0.4 cm) than non-gelling control (5.8 ± 1.6 cm); (ii) When PecSys was sprayed into a human nasal cavity cast model coated with a substrate containing a physiologically relevant concentration of calcium, PecSys solution was retained at the site of initial deposition with minimal redistribution, and no evidence of run-off/drip anteriorly or down the throat. In contrast, non-gelling control was significantly more mobile and consistently redistributed with run-off towards the throat. Conclusion In both models PecSys significantly reduced the potential for run-off/drip ensuring that more solution remained at the deposition site. In vivo, this enhancement of retention will provide optimum patient acceptability, modulate drug absorption and maximize the ability of drugs to be absorbed across the nasal mucosa and thus reduce variability in drug delivery. PMID:22803832

  17. Effects of hot extrusion and heat treatment on microstructure and properties of industrial large-scale spray-deposited 7055 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Yang, Yonggang; Zhao, Yutao; Kai, Xizhou; Zhang, Zhen; Zhang, Hao; Tao, Ran; Chen, Gang; Yin, Houshang; Wang, Min

    2018-01-01

    The industrial large-scale 7055 aluminum alloy fabricated by spray forming technology was subjected to hot extrusion and heat treatment to achieve high strength and ductility. Microstructure of the as-deposited alloy indicates that higher density billets with equiaxed grains (20-40 μm) were fabricated rather than a typical dendritic microstructure of the as-cast alloy. The grains of the as-extruded alloy exhibit fibrous morphology, the original boundaries disappear and fined second phases with size about 0.5-5 μm distribute along with extrusion direction. Meanwhile, the defects could be eliminated by hot extrusion, which resulted in good strength as well as ductility. The ultimate tensile strength, yield strength and elongation of the as-extruded alloy are 345 MPa, 236 MPa and 18.5%, respectively. After heat treatment, the partial recrystallization is observed around the un-recrystallized grains and sub-grains. And the platelet/rod-shaped precipitates (MgZn2) show a uniform distribution in the matrix alloy. The alloy reaches the maximum tensile strength of 730 MPa after T6 temper treatment, associated with a fine precipitation (MgZn2). However, with further deepen aging degree (from T6 to T73 temper), the size of dominant precipitated phases (MgZn2) grows obviously, the grain boundary precipitates transform from continuous to individual ones and the width of precipitate free zone increases. The result shows that the alloy after T7X temper treatment exhibits higher electrical conductivity (>35 %IACS) and facture toughness (>25.6 MPa m1/2) although a 8%-17% reduction in strength compared with that at T6 temper.

  18. Microstructural investigation of D2 tool steel during rapid solidification

    NASA Astrophysics Data System (ADS)

    Delshad Khatibi, Pooya

    Solidification is considered as a key processing step in developing the microstructure of most metallic materials. It is, therefore, important that the solidification process can be designed and controlled in such a way so as to obtain the desirable properties in the final product. Rapid solidification refers to the system's high undercooling and high cooling rate, which can yield a microstructure with unique chemical composition and mechanical properties. An area of interest in rapid solidification application is high-chromium, high-carbon tool steels which experience considerable segregation of alloying elements during their solidification in a casting process. In this dissertation, the effect of rapid solidification (undercooling and cooling rate) of D2 tool steel on the microstructure and carbide precipitation during annealing was explored. A methodology is described to estimate the eutectic and primary phase undercooling of solidifying droplets. The estimate of primary phase undercooling was confirmed using an online measurement device that measured the radiation energy of the droplets. The results showed that with increasing primary phase and eutectic undercooling and higher cooling rate, the amount of supersaturation of alloying element in metastable retained austenite phase also increases. In the case of powders, the optimum hardness after heat treatment is achieved at different temperatures for constant periods of time. Higher supersaturation of austenite results in obtaining secondary hardness at higher annealing temperature. D2 steel ingots generated using spray deposition have high eutectic undercooling and, as a result, high supersaturation of alloying elements. This can yield near net shape D2 tool steel components with good mechanical properties (specifically hardness). The data developed in this work would assist in better understanding and development of near net shape D2 steel spray deposit products with good mechanical properties.

  19. Structure Identification Using High Resolution Mass Spectrometry Data and the EPA’s CompTox Chemistry Dashboard (EAS)

    EPA Science Inventory

    The iCSS CompTox Dashboard is a publicly accessible dashboard provided by the National Center for Computation Toxicology at the US-EPA. It serves a number of purposes, including providing a chemistry database underpinning many of our public-facing projects (e.g. ToxCast and ExpoC...

  20. Chemical Selection Via In Vitro-In Vivo Correlation of ToxCast and ToxRefDB Data to Evaluate the Virtual Liver

    EPA Science Inventory

    The Virtual Liver Project (v-LiverTM) is a US EPA effort to simulate the function of the human liver with sufficient accuracy to predict how environmental exposure to xenobiotic compounds will perturb homeostasis. The better we understand the liver, the better we will understand...

  1. TEST OF FRENCH UNDERGROUND PERSONNEL SHELTERS

    DTIC Science & Technology

    The objective of this project was to investigate the predicted behavior of French underground personnel shelters, equipment, and instrumentation...structures designed by French engineers were tested: one cast-in- place rectangular structure, one precase circular shelter, two entranceways at...precast rings for the circular structure, and instrumentation were shipped from France and incorporated in the shelters. Preshot and postshot

  2. "A Dance with the Butterflies:" A Metamorphosis of Teaching and Learning through Technology

    ERIC Educational Resources Information Center

    McPherson, Sarah

    2009-01-01

    This paper describes a web-based collaborative project called "A Dance with the Butterflies" that applied the brain-based research of the Center for Applied Special Technologies (CAST) and principles of Universal Design for Learning (UDL) to Pre-K-4 science curriculum. Learning experiences were designed for students to invoke the Recognition,…

  3. From Metaphorically Speaking to Acting Boldly: A Commentary on the Special Issue

    ERIC Educational Resources Information Center

    Rock, Marcia L.; Billingsley, Bonnie

    2014-01-01

    Casting special education teacher development as an avatar living in a virtual and changing landscape is a creative way to consider the current state of the field and project possible futures. In this commentary, the authors consider areas that may help strengthen the Avatar, including conceptualizing and identifying the outcomes of teacher…

  4. Mystery of the Cast Off Caper: 4-H Solid Waste Curriculum Guide.

    ERIC Educational Resources Information Center

    North Carolina Cooperative Extension Service, Raleigh.

    This curriculum guide is composed of 16 lesson plans about terminology and concepts relevant to the four major methods of handling solid waste problems: (1) reuse; (2) recycling; (3) conversion of waste to energy ; and (4) landfilling. Games, investigations, a play, projects, a slide presentation, and skits are some of the teaching techniques…

  5. Patio Stone Project Gives Students a Concrete Learning Experience

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2005-01-01

    In this article, the author presents an overview of concrete as a building material and as an example of a particle composite, and discusses the origins of concrete in ancient Rome. He then describes an activity in which students can cast a concrete patio stone. Students can apply the technological design process, as well as the elements of…

  6. The Flies and Eyes project: design and methods of a cluster-randomised intervention study to confirm the importance of flies as trachoma vectors in The Gambia and to test a sustainable method of fly control using pit latrines.

    PubMed

    Emerson, Paul M; Lindsay, Steve W; Walraven, Gijs E L; Dibba, Sheikh Mafuji; Lowe, Kebba O; Bailey, Robin L

    2002-04-01

    The Flies and Eyes project is a community-based, cluster-randomised, intervention trial based in a rural area of The Gambia. It was designed to prove whether flies are mechanical vectors of trachoma; to quantify the relative importance of flies as vectors of trachoma and to test the effectiveness of insecticide spraying and the provision of latrines in trachoma control. A total of 21 clusters, each composed of 300-550 people, are to be recruited in groups of three. One cluster from each group is randomly allocated to receive insecticide spraying, one to receive pit latrines and the remaining to act as a control. The seven groups of clusters are recruited on a step-wise basis separated by two months to aid logistics and allow all seasons to be covered. Standardised, validated trachoma surveys are conducted for people of all ages and both sexes at baseline and six months post intervention. The Muscid fly population is monitored using standard traps and fly-eye contact is measured with catches of flies direct from children's faces. The Flies and Eyes project has been designed to strengthen the evidence base for the 'E' component of the SAFE strategy for trachoma control. The results will assist programme planners and country co-ordinators to make informed decisions on the environmental aspects of trachoma control.

  7. Evaluation of effervescent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Meng; Duan, YuFeng; Zhang, TieNan

    2010-09-15

    The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distancemore » increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)« less

  8. HEU Holdup Measurements in 321-M B and Spare U-Al Casting Furnaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salaymeh, S.R.

    The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Decontamination Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. This report covers holdup measurements in two uranium aluminum alloy (U-Al) casting furnaces. Our results indicate an upper limit of 235U content for the B and Spare furnaces of 51 and 67 g respectively. This report discusses themore » methodology, non-destructive assay (NDA) measurements, and results of the uranium holdup on the two furnaces.« less

  9. Multiple structured light system for the 3D measurement of feet

    NASA Astrophysics Data System (ADS)

    Gaertner, Hansjoerg; Lavoie, Jean-Francois; Vermette, Eric; Houle, Pascal-Simon

    1999-03-01

    In the field of custom foot orthosis bio-mechanics specialists take negative casts of the patient's feet and produce a positive on which they apply corrective elements. The corrected positive cast is then used to thermoform an orthosis. Several production steps can be simplified or eliminated by a 3D-acquisition of the underside of the foot. Such a complete custom footwear system, developed by Neogenix Technologies Inc., has been reported last year in IS and T/SPIE's symposium. A major improvement aimed at maximizing the coverage of the underside of foot surface has been achieved since by using multiple structured light projection technique. A description of a patent pending hardware set-up and range data extraction by software will be given in this paper.

  10. FInal Report - Investment Casting Shell Cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Von Richards

    2003-12-01

    This project made a significant contribution to the understanding of the investment casting shell cracking problem. The effects of wax properties on the occurrence of shell cracking were demonstrated and can be measured. The properties measured include coefficient of thermal expansion, heating rate and crystallinity of the structure. The important features of production molds and materials properties have been indicated by case study analysis and fractography of low strength test bars. It was found that stress risers in shell cavity design were important and that typical critical flaws were either oversize particles or large pores just behind the prime coat.more » It was also found that the true effect of fugitive polymer fibers was not permeability increase, but rather a toughening mechanism due to crack deflection.« less

  11. Case study of lean manufacturing application in a die casting manufacturing company

    NASA Astrophysics Data System (ADS)

    Ching, Ng Tan; Hoe, Clarence Chan Kok; Hong, Tang Sai; Ghobakhloo, Morteza; Pin, Chen Kah

    2015-05-01

    The case study of lean manufacturing aims to study the application of lean manufacturing in a die casting manufacturing company located in Pulau Penang, Malaysia. This case study describes mainly about the important concepts and applications of lean manufacturing which could gradually help the company in increasing the profit by studying and analyzing their current manufacturing process and company culture. Many approaches of lean manufacturing are studied in this project which includes: 5S housekeeping, Kaizen, and Takt Time. Besides, the lean tools mentioned, quality tool such as the House of Quality is being used as an analysis tool to continuously improve the product quality. In short, the existing lean culture in the company is studied and analyzed, with recommendations written at the end of this paper.

  12. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  13. Particle size distribution of aerosols sprayed from household hand-pump sprays containing fluorine-based and silicone-based compounds.

    PubMed

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2015-01-01

    Japan has published safety guideline on waterproof aerosol sprays. Furthermore, the Aerosol Industry Association of Japan has adopted voluntary regulations on waterproof aerosol sprays. Aerosol particles of diameter less than 10 µm are considered as "fine particles". In order to avoid acute lung injury, this size fraction should account for less than 0.6% of the sprayed aerosol particles. In contrast, the particle size distribution of aerosols released by hand-pump sprays containing fluorine-based or silicone-based compounds have not been investigated in Japan. Thus, the present study investigated the aerosol particle size distribution of 16 household hand-pump sprays. In 4 samples, the ratio of fine particles in aerosols exceeded 0.6%. This study confirmed that several hand-pump sprays available in the Japanese market can spray fine particles. Since the hand-pump sprays use water as a solvent and their ingredients may be more hydrophilic than those of aerosol sprays, the concepts related to the safety of aerosol-sprays do not apply to the hand pump sprays. Therefore, it may be required for the hand-pump spray to develop a suitable method for evaluating the toxicity and to establish the safety guideline.

  14. Chrysler Upset Protrusion Joining Techniques for Joining Dissimilar Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen

    The project goal was to develop and demonstrate a robust, cost effective, and versatile joining technique, known as Upset Protrusion Joining (UPJ), for joining challenging dissimilar metal com-binations, especially those where one of the metals is a die cast magnesium (Mg) component. Since two of the key obstacles preventing more widespread use of light metals (especially in high volume automotive applications) are 1) a lack of robust joining techniques and 2) susceptibility to galvanic corrosion, and since the majority of the joint combinations evaluated in this project include die cast Mg (the lightest structural metal) as one of the twomore » materials being joined, and since die casting is the most common and cost effective process for producing Mg components, then successful project completion provides a key enabler to high volume application of lightweight materials, thus potentially leading to reduced costs, and encouraging implementation of lightweight multi-material vehicles for significant reductions in energy consumption and reduced greenhouse gas emissions. Eco-nomic benefits to end-use consumers are achieved primarily via the reduction in fuel consumption. Unlike currently available commercial processes, the UPJ process relies on a very robust mechanical joint rather than intermetallic bonding, so the more cathodic material can be coated prior to joining, thus creating a robust isolation against galvanic attack on the more anodic material. Additionally, since the UPJ protrusion is going through a hole that can be pre-drilled or pre-punched prior to coating, the UPJ process is less likely to damage the coating when the joint is being made. Further-more, since there is no additional cathodic material (such as a steel fastener) used to create the joint, there is no joining induced galvanic activity beyond that of the two parent materials. In accordance with its originally proposed plan, this project has successfully developed process variants of UPJ to enable joining of Mg die castings to aluminum (Al) and steel sheet components of various thicknesses, strengths and coating configurations. While most development focused on the simpler round boss version of the process, an additional phase of the work focused on devel-opment of an oval boss version to support applications with narrow flanges, while yet another vari-ant of the process, known as Upset Cast Riveting (UCR), was developed and evaluated for joining mixed metals that may not necessarily include Mg or Al die cast components. Although each varia-tion posed unique challenges described later in the report, all variations were successfully produced and evaluated, and each could be further developed for specific types of commercial applications. In this project, UPJ performed favorably against the benchmark self-pierce riveting (SPR) process in Mg AM60B to Al 6013 combinations although significant corrosion challenges were observed in both processes, especially for the bare Mg to bare Al configurations. Additional challenges were observed in joining Mg to steel with the UPJ process (SPR was not evaluated for this combination as it was not considered viable). To pass FCA’s specified corrosion tests with Mg/steel combina-tions, new steel treatments were evaluated, as well as adhesives and sealed edges. These showed significant improvement. In general, UPJ performed very well in Mg to Al 6016 combinations, even in corrosion evaluation of the bare Mg to bare Al configuration (again, SPR was not evaluated for this material combination as the 1.1 mm thick Al6016 sheet thickness was considered too thin for the SPR process). The improvement in corrosion performance of the Mg to Al 6016 combina-tion over the Mg to Al 6013 combination was thought to be a result of the lower copper content in the Al 6016 alloy. Oval boss joints showed substantial improvement in all joint strength criteria compared to 8.0-mm diameter round boss joints but were not evaluated for corrosion performance. The improved joint strength is likely a result of larger shear area. Cosmetic corrosion performance of all test assemblies (UPJ, UCR and SPR) was a challenge due to exposed edges and crevices al-lowing undercutting of the coatings. In real world component applications, the exposed edges, so prevalent on the joining test coupons, would be less prevalent and easier to protect.« less

  15. Stability analysis of direct contact heat exchangers subject to system perturbations. Final report, Task 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, H.R.

    1985-01-01

    This report includes a project summary, copies of two papers resulting from the work and the Ph.D. Dissertation of Dr. Mehdi Golafshani entitled, ''Stability of a Direct Contact Heat Exchanger''. Specifically, the work deals with the operational stability of a spray column type heat exchanger subject to disturbances typical of those which can occur for geothermal applications. A computer program was developed to solve the one-dimensional transient two-phase flow problem and it was applied to the design of a spray column. The operation and design of the East Mesa 500kW/sub e/ direct contactor was assessed. It is shown that themore » heat transfer is governed by the internal resistance of the dispersed phase. In fact, the performance is well-represented by diffusion of heat within the drops. 5 refs.« less

  16. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  17. Spray sealing: A breakthrough in integral fuel tank sealing technology

    NASA Astrophysics Data System (ADS)

    Richardson, Martin D.; Zadarnowski, J. H.

    1989-11-01

    In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.

  18. Chalk point cooling tower project: effects of simulated saline cooling tower drift on woody species. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, B.A.

    1977-07-01

    Cooling towers of power plants are used to dissipate waste heat into the atmosphere. If saline water is used for cooling, a saline aerosol known as drift is released into the atmosphere. Drift effects on vegetation are not well known. To simulate drift for a field study, cooling tower basin water was sprayed thirty separate times during a 46-day period in 1975 on Virginia pine (Pinus virginiana), flowering dogwood (Cornus florida), tulip tree (Liriodendron tulipfera), and California privet (Ligustrum ovalifolium), Norway spruce (Picea abies), and white ash (Fraxinus americana) were added in 1976 and all trees were sprayed 43 timesmore » during a 59-day period. Only dogwood leaves showed significant injury. Absence of injury on other species was probably due to the ability of their leaves to exclude, or reduce absorption of, toxic concentrations of the ions supplied.« less

  19. An overview of spray drift reduction testing of spray nozzles

    USDA-ARS?s Scientific Manuscript database

    The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...

  20. Erosional Consequence of Saltcedar Control

    NASA Astrophysics Data System (ADS)

    Vincent, Kirk R.; Friedman, Jonathan M.; Griffin, Eleanor R.

    2009-08-01

    Removal of nonnative riparian trees is accelerating to conserve water and improve habitat for native species. Widespread control of dominant species, however, can lead to unintended erosion. Helicopter herbicide application in 2003 along a 12-km reach of the Rio Puerco, New Mexico, eliminated the target invasive species saltcedar ( Tamarix spp.), which dominated the floodplain, as well as the native species sandbar willow ( Salix exigua Nuttall), which occurred as a fringe along the channel. Herbicide application initiated a natural experiment testing the importance of riparian vegetation for bank stability along this data-rich river. A flood three years later eroded about 680,000 m3 of sediment, increasing mean channel width of the sprayed reach by 84%. Erosion upstream and downstream from the sprayed reach during this flood was inconsequential. Sand eroded from channel banks was transported an average of 5 km downstream and deposited on the floodplain and channel bed. Although vegetation was killed across the floodplain in the sprayed reach, erosion was almost entirely confined to the channel banks. The absence of dense, flexible woody stems on the banks reduced drag on the flow, leading to high shear stress at the toe of the banks, fluvial erosion, bank undercutting, and mass failure. The potential for increased erosion must be included in consideration of phreatophyte control projects.

  1. Erosional consequence of saltcedar control

    USGS Publications Warehouse

    Vincent, K.R.; Friedman, J.M.; Griffin, E.R.

    2009-01-01

    Removal of nonnative riparian trees is accelerating to conserve water and improve habitat for native species. Widespread control of dominant species, however, can lead to unintended erosion. Helicopter herbicide application in 2003 along a 12-km reach of the Rio Puerco, New Mexico, eliminated the target invasive species saltcedar (Tamarix spp.), which dominated the floodplain, as well as the native species sandbar willow (Salix exigua Nuttall), which occurred as a fringe along the channel. Herbicide application initiated a natural experiment testing the importance of riparian vegetation for bank stability along this data-rich river. A flood three years later eroded about 680,000 m3 of sediment, increasing mean channel width of the sprayed reach by 84%. Erosion upstream and downstream from the sprayed reach during this flood was inconsequential. Sand eroded from channel banks was transported an average of 5 km downstream and deposited on the floodplain and channel bed. Although vegetation was killed across the floodplain in the sprayed reach, erosion was almost entirely confined to the channel banks. The absence of dense, flexible woody stems on the banks reduced drag on the flow, leading to high shear stress at the toe of the banks, fluvial erosion, bank undercutting, and mass failure. The potential for increased erosion must be included in consideration of phreatophyte control projects. ?? 2009 U.S. Government.

  2. Demonstration of no-VOC/no-HAP wood furniture coating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, E.W.; Guan, R.; McCrillis, R.C.

    1997-12-31

    The United States Environmental Protection Agency has contracted with AeroVironment Environmental Services, Inc. and its subcontractor, Adhesive Coating Co., to develop and demonstrate a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The objectives of this project are to develop a new wood coating system that is sufficiently mature for demonstration and to develop a technology transfer plan to get the product into public use. The performance characteristics of this new coating system are excellent in terms of adhesion, drying times, gloss, hardness, mar resistance, level of solvents, and stain resistance. Workshops will be held to providemore » detailed information to wood furniture manufacturers on what is required to change to the new coating system. Topics such as spray gun selection, spray techniques, coating repair procedures, drying times and procedures, and spray equipment cleaning materials and techniques will be presented. A cost analysis, including costs of materials, capital outlay, and labor will be conducted comparing costs to finish furniture with the new system to systems currently used. Film performance, coating materials cost per unit production, productivity, manufacturing changes, and emission levels will be compared in the workshops, based on data gathered during the in-plant, full scale demonstrations.« less

  3. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    NASA Astrophysics Data System (ADS)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  4. Experimental characterization of gasoline sprays under highly evaporating conditions

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar

    2018-05-01

    An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.

  5. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    PubMed

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  6. A decision-support tool to predict spray deposition of insecticides in commercial potato fields and its implications for their performance.

    PubMed

    Nansen, Christian; Vaughn, Kathy; Xue, Yingen; Rush, Charlie; Workneh, Fekede; Goolsby, John; Troxclair, Noel; Anciso, Juan; Gregory, Ashley; Holman, Daniel; Hammond, Abby; Mirkov, Erik; Tantravahi, Pratyusha; Martini, Xavier

    2011-08-01

    Approximately US $1.3 billion is spent each year on insecticide applications in major row crops. Despite this significant economic importance, there are currently no widely established decision-support tools available to assess suitability of spray application conditions or of the predicted quality or performance of a given commercial insecticide applications. We conducted a field study, involving 14 commercial spray applications with either fixed wing airplane (N=8) or ground rig (N=6), and we used environmental variables as regression fits to obtained spray deposition (coverage in percentage). We showed that (1) ground rig applications provided higher spray deposition than aerial applications, (2) spray deposition was lowest in the bottom portion of the canopy, (3) increase in plant height reduced spray deposition, (4) wind speed increased spray deposition, and (5) higher ambient temperatures and dew point increased spray deposition. Potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), mortality increased asymptotically to approximately 60% in response to abamectin spray depositions exceeding around 20%, whereas mortality of psyllid adults reached an asymptotic response approximately 40% when lambda-cyhalothrin/thiamethoxam spray deposition exceeded 30%. A spray deposition support tool was developed (http://pilcc.tamu.edu/) that may be used to make decisions regarding (1) when is the best time of day to conduct spray applications and (2) selecting which insecticide to spray based on expected spray deposition. The main conclusion from this analysis is that optimization of insecticide spray deposition should be considered a fundamental pillar of successful integrated pest management programs to increase efficiency of sprays (and therefore reduce production costs) and to reduce risk of resistance development in target pest populations.

  7. Effect of Casting Material on the Cast Pressure After Sequential Cast Splitting.

    PubMed

    Roberts, Aaron; Shaw, K Aaron; Boomsma, Shawn E; Cameron, Craig D

    2017-01-01

    Circumferential casting is a vital component of nonoperative fracture management. These casts are commonly valved to release pressure and decrease the risk of complications from swelling. However, little information exists regarding the effect of different casting supplies on the pressure within the cast. Seventy-five long-arm casts were performed on human volunteers, divided between 5 experimental groups with 15 casts in each groups. Testing groups consisted of 2 groups with a plaster short-arm cast overwrapped with fiberglass to a long arm with either cotton or synthetic cast padding. The 3 remaining groups included fiberglass long-arm casts with cotton, synthetic, or waterproof cast padding. A pediatric blood pressure cuff bladder was placed within the cast and inflated to 100 mm Hg. After inflation, the cast was sequentially released with pressure reading preformed after each stage. Order of release consisted of cast bivalve, cast padding release, and cotton stockinet release. After release, the cast was overwrapped with a loose elastic bandage. Difference in pressure readings were compared based upon the cast material. Pressures within the cast were found to decrease with sequential release of cast. The cast type had no effect of change in pressure. Post hoc testing demonstrated that the type of cast padding significantly affected the cast pressures with waterproof padding demonstrating the highest pressure readings at all time-points in the study, followed by synthetic padding. Cotton padding had the lowest pressure readings at all time-points. Type of cast padding significantly influences the amount of pressure within a long-arm cast, even after bivalving the cast and cutting the cast padding. Cotton cast padding allows for the greatest change in pressure. Cotton padding demonstrates the greatest change in pressure within a long-arm cast after undergoing bivalve. Synthetic and waterproof cast padding should not be used in the setting of an acute fracture to accommodate swelling.

  8. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    PubMed

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  9. "English Is Here to Stay": A Critical Look at Institutional and Educational Practices in India.

    ERIC Educational Resources Information Center

    Ramanathan, Vai

    1999-01-01

    Based on an ethnographic project, this article examines ways that the Indian middle class, with its easy access to English, represents an inner circle of power and privilege that is inaccessible to particular groups of people in India. Certain institutional and teaching practices keep English out of reach of lower income and lower-caste groups and…

  10. Life With the Alien: Role Casting and Face-Saving Techniques in Family Conversation with Young Children.

    ERIC Educational Resources Information Center

    Fatigante, Marilena; Fasulo, Alessandra; Pontecorvo, Clotilde

    1998-01-01

    A qualitative study analyzed the distribution of participation by young children (ages 3-5) in family dinnertime conversation, focusing on "backstage talk," sequences adjacent to those in which the child is involved and within his auditory range, so that the child-projected participation-role alternates between that of addressee and overhearer.…

  11. "Cast Your Net Widely": Three Steps to Expanding and Refining Your Problem before Action Learning Application

    ERIC Educational Resources Information Center

    Reese, Simon R.

    2015-01-01

    This paper reflects upon a three-step process to expand the problem definition in the early stages of an action learning project. The process created a community-powered problem-solving approach within the action learning context. The simple three steps expanded upon in the paper create independence, dependence, and inter-dependence to aid the…

  12. Mass-Spectrometry Based Structure Identification of "Known-Unknowns" Using the EPA's CompTox Dashboard (ACS Spring National Meeting) 4 of 7

    EPA Science Inventory

    The CompTox Dashboard is a publicly accessible database provided by the National Center for Computational Toxicology at the US-EPA. The dashboard provides access to a database containing ~720,000 chemicals and integrates a number of our public-facing projects (e.g. ToxCast and Ex...

  13. Distributed Structure Searchable Toxicity

    EPA Pesticide Factsheets

    The Distributed Structure Searchable Toxicity (DSSTox) online resource provides high quality chemical structures and annotations in association with toxicity data. It helps to build a data foundation for improved structure-activity relationships and predictive toxicology. DSSTox publishes summarized chemical activity representations for structure-activity modeling and provides a structure browser. This tool also houses the chemical inventories for the ToxCast and Tox21 projects.

  14. Elementary Education in Rural India: A Grassroots View. Strategies for Human Development in India, Volume 2.

    ERIC Educational Resources Information Center

    Vaidyanathan, A., Ed.; Nair, P. R. Gopinathan, Ed.

    There are wide variations in educational attainment and literacy rates across the regions and social classes of India. A national project examined participation in and the quality of elementary education in nine states of India, focusing on rural areas and the situation of disadvantaged persons, especially girls and the scheduled castes and…

  15. Optimization of Fibrin Glue Spray Systems for Ophthalmic Surgery

    PubMed Central

    Chaurasia, Shyam S.; Champakalakshmi, Ravi; Angunawela, Romesh I.; Tan, Donald T.; Mehta, Jodhbir S.

    2012-01-01

    Purpose To optimize fibrin glue (FG) spray for ophthalmic surgery using two spray applicators, EasySpray and DuploSpray systems, by varying the distance from point of application and the pressure/flow rate, and to compare the adhesive strength of sutured and sutureless (FG sprayed) conjunctival graft surgery in a rabbit model. Methods FG was sprayed on a 0.2 mm-thick sheet of paper using EasySpray by variously combining application distances of 2.5, 5, 7.5, and 10 cm with pressures of 10, 15, and 20 psi. DuploSpray was used at the same distances but with varying flow rates of 1 and 2 L/min. Subsequently, FG was sprayed on porcine corneas and FG thickness was analyzed by histology. In addition, adhesive strength of the conjunctival graft (0.5 × 0.5 cm) attached to the rabbit cornea by sutured and sutureless surgery (FG spray) was compared using a tension meter. Results Histology measurements revealed that the FG thickness decreased with increases in distance and pressure of spray using the EasySpray applicator on paper and porcine corneal sections. The adhesive strength of the sutured conjunctival graft (41 ± 4.85 [kilopascal] KPa) was found to be higher than the graft attached by spraying (10 ± 2.3 KPa) and the sequential addition of FG (6 ± 0.714 KPa). Conclusions The EasySpray applicator formed a uniform spread of FG at a distance-pressure combination of 5 cm and 20 psi. The conjunctival graft attached with sutures had higher adhesive strength compared with grafts glued with a spray applicator. Although the adhesive strength of FG applied through the applicator was similar to the drop-wise sequential technique, the former was more cost effective because more samples could be sprayed compared with the sequential manual technique. Translational Relevance The standardization of the spray system for the application of FG in ophthalmology will provide an economical method for delivering consistent healing results after surgery. PMID:24049702

  16. Efficacy of Aedes aegypti control by indoor Ultra Low Volume (ULV) insecticide spraying in Iquitos, Peru

    PubMed Central

    Okamoto, Kenichi W.; Astete, Helvio; Vasquez, Gissella M.; Del Aguila, Clara; Pinedo, Raul; Cardenas, Roldan; Pacheco, Carlos; Chalco, Enrique; Rodriguez-Ferruci, Hugo; Scott, Thomas W.; Lloyd, Alun L.; Gould, Fred

    2018-01-01

    Background Aedes aegypti is a primary vector of dengue, chikungunya, Zika, and urban yellow fever viruses. Indoor, ultra low volume (ULV) space spraying with pyrethroid insecticides is the main approach used for Ae. aegypti emergency control in many countries. Given the widespread use of this method, the lack of large-scale experiments or detailed evaluations of municipal spray programs is problematic. Methodology/Principal findings Two experimental evaluations of non-residual, indoor ULV pyrethroid spraying were conducted in Iquitos, Peru. In each, a central sprayed sector was surrounded by an unsprayed buffer sector. In 2013, spray and buffer sectors included 398 and 765 houses, respectively. Spraying reduced the mean number of adults captured per house by ~83 percent relative to the pre-spray baseline survey. In the 2014 experiment, sprayed and buffer sectors included 1,117 and 1,049 houses, respectively. Here, the sprayed sector’s number of adults per house was reduced ~64 percent relative to baseline. Parity surveys in the sprayed sector during the 2014 spray period indicated an increase in the proportion of very young females. We also evaluated impacts of a 2014 citywide spray program by the local Ministry of Health, which reduced adult populations by ~60 percent. In all cases, adult densities returned to near-baseline levels within one month. Conclusions/Significance Our results demonstrate that densities of adult Ae. aegypti can be reduced by experimental and municipal spraying programs. The finding that adult densities return to approximately pre-spray densities in less than a month is similar to results from previous, smaller scale experiments. Our results demonstrate that ULV spraying is best viewed as having a short-term entomological effect. The epidemiological impact of ULV spraying will need evaluation in future trials that measure capacity of insecticide spraying to reduce human infection or disease. PMID:29624581

  17. A Comparison of Fuel Sprays from Several Types of Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1936-01-01

    This report presents the tests results of a series of tests made of the sprays from 14 fuel injection nozzles of 9 different types, the sprays being injected into air at atmospheric density and at 6 and 14 times atmospheric density. High-speed spark photographs of the sprays from each nozzle at each air density were taken at the rate of 2,000 per second, and from them were obtained the dimensions of the sprays and the rates of spray-tip penetration. The sprays were also injected against plasticine targets placed at different distances from the nozzles, and the impressions made in the plasticine were used as an indication of the distribution of the fuel within the spray. Cross-sectional sketches of the different types of sprays are given showing the relative sizes of the spray cores and envelopes. The characteristics of the sprays are compared and discussed with respect to their application to various types of engines.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Scott R.; Efird, Marty

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet-cleanable; anti-biofouling; waterproof; and anti-corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of othermore » fields of use.« less

  19. Combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Claus, R. W.

    1985-01-01

    Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.

  20. Foliar spray banding characteristics

    Treesearch

    A.R. Womac; C.W. Smith; Joseph E. Mulrooney

    2004-01-01

    Foliar spray banding was explored as a means of reducing peticide use compared to broadcast applications. Barious geometric spray patterns and delivery angles of foliar spray bands were investigated to increase spray deposits in a crop row at a constant spray rate of 94 L/ha. Wind-free laboratory results indicated that a banded application using three 65° hollow-cone...

  1. Light extinction method on high-pressure diesel injection

    NASA Astrophysics Data System (ADS)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  2. Hydrogen no-vent fill testing in a 5 cubic foot (142 liter) tank using spray nozzle and spray bar liquid injection

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.

    1992-01-01

    A total of 38 hydrogen no-vent fill tests were performed in this test series using various size spray nozzles and a spray bar with different hole sizes in a 5 cubic foot receiver tank. Fill levels of 90 percent by volume or greater were achieved in 26 of the tests while maintaining a receiver tank pressure below 30 psia. Spray nozzles were mounted at the top of the tank, whereas, the spray bar was centered in the tank axially. The spray nozzle no-vent fills demonstrated tank pressure and temperature responses comparable to previous test series. Receiver tank pressure responses for the spray bar configuration were similar to the spray nozzle tests with the pressure initially rising rapidly, then leveling off as vapor condenses onto the discharging liquid streams, and finally ramping up near the end of the test due to ullage compression. Both liquid injection techniques tested were capable of filling the receiver tank to 90 percent under variable test conditions. Comparisons between the spray nozzle and spray bar configurations for well matched test conditions indicate the spray nozzle injection technique is more effective in minimizing the receiving tank pressure throughout a no-vent fill compared to the spray bar under normal gravity conditions.

  3. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves.

    PubMed

    Grant, P S; Castles, F; Lei, Q; Wang, Y; Janurudin, J M; Isakov, D; Speller, S; Dancer, C; Grovenor, C R M

    2015-08-28

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture.

  4. Manufacture of electrical and magnetic graded and anisotropic materials for novel manipulations of microwaves

    PubMed Central

    Grant, P. S.; Castles, F.; Lei, Q.; Wang, Y.; Janurudin, J. M.; Isakov, D.; Speller, S.; Dancer, C.; Grovenor, C. R. M.

    2015-01-01

    Spatial transformations (ST) provide a design framework to generate a required spatial distribution of electrical and magnetic properties of materials to effect manipulations of electromagnetic waves. To obtain the electromagnetic properties required by these designs, the most common materials approach has involved periodic arrays of metal-containing subwavelength elements. While aspects of ST theory have been confirmed using these structures, they are often disadvantaged by narrowband operation, high losses and difficulties in implementation. An all-dielectric approach involves weaker interactions with applied fields, but may offer more flexibility for practical implementation. This paper investigates manufacturing approaches to produce composite materials that may be conveniently arranged spatially, according to ST-based designs. A key aim is to highlight the limitations and possibilities of various manufacturing approaches, to constrain designs to those that may be achievable. The article focuses on polymer-based nano- and microcomposites in which interactions with microwaves are achieved by loading the polymers with high-permittivity and high-permeability particles, and manufacturing approaches based on spray deposition, extrusion, casting and additive manufacture. PMID:26217051

  5. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    NASA Astrophysics Data System (ADS)

    Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.

    2018-06-01

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.

  6. Design and characterization of Yb and Nd doped transparent ceramics for high power laser applications: recent advancements

    NASA Astrophysics Data System (ADS)

    Lapucci, A.; Vannini, M.; Ciofini, M.; Pirri, A.; Nikl, M.; Li, J.; Esposito, L.; Biasini, V.; Hostasa, J.; Goto, T.; Boulon, G.; Maksimov, R.; Gizzi, L.; Labate, L.; Toci, G.

    2017-01-01

    We report a review on our recent developments in Yttebium and Neodymium doped laser ceramics, along two main research lines. The first is the design and development of Yb:YAG ceramics with non uniform doping distribution, for the management of thermo-mechanical stresses and for the mitigation of ASE: layered structures have been produced by solid state reactive sintering, using different forming processes (spray drying and cold press of the homogenized powders, tape cast of the slurry); samples have been characterized and compared to FEM analysis. The second is the investigation of Lutetium based ceramics (such as mixed garnets LuYAG and Lu2O3); this interest is mainly motivated by the favorable thermal properties of these hosts under high doping. We recently obtained for the first time high efficiency laser emission from Yb doped LuYAG ceramics. The investigation on sesquioxides has been focused on Nddoped Lu2O3 ceramics, fabricated with the Spark Plasma Sintering method (SPS). We recently achieved the first laser emission above 1 W from Nd doped Lu2O3 ceramics fabricated by SPS.

  7. Black-to-Transmissive Electrochromism with Visible-to-Near-Infrared Switching of a Co(II)-Based Metallo-Supramolecular Polymer for Smart Window and Digital Signage Applications.

    PubMed

    Hsu, Chih-Yu; Zhang, Jian; Sato, Takashi; Moriyama, Satoshi; Higuchi, Masayoshi

    2015-08-26

    Black-to-transmissive electrochromism has been obtained with a Co(II)-based metallo-supramolecular polymer (polyCo). Thin films of polyCo, based on bisterpyridine ligand assembled with Co(II) metal ion, were constructed by spray casting the polymer onto ITO glass. With such simple fabricating means to form good-quality films, polyCo films show stable switching at the central metal ion of the Co(II)/Co(I) redox reaction when immersed in aqueous solution. With an increase in the pH of the aqueous electrolyte solution from neutral, the film exhibits a color response due to the interaction between the d-orbital electron and hydroxide ions affecting the d-d* transition. As a result, a nearly transparent-to-black electrochromic performance can be achieved with a transmittance difference at 550 nm of 74.3% (81.9-7.6%) in pH 13 solution. The light absorption of the film can be tuned over light regions from visible to near-infrared with a large attenuation.

  8. Low dielectric fluorinated poly(phenylene ether ketone) film and coating

    NASA Technical Reports Server (NTRS)

    Cassidy, Patrick E. (Inventor); Tullos, Gordon L. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    The present invention relates to film and coating materials prepared from novel fluorinated poly(phenylene ether ketones). A fluorinated poly(phenylene ether ketone) is prepared by reacting a bisphenol with 1,1,1,3,3,3 hexafluoro-2,2-bis 4-(4-halobenzoyl) phenyl propane (wherein halo is fluoro or chloro), which is a novel monomer formed as the reaction product of halobenzene (wherein halo is fluoro or chloro) and 1,1,1,3,3,3 hexafluoro-2,2-bis (p-chloro formyl phenyl) propane. Especially beneficial results of this invention are that films and coating materials prepared from the novel fluorinated poly(phenylene ether ketone) are essentially optically transparent/colorless and have a lower dielectric constant than otherwise comparable, commercially available poly(phenylene ether ketones). Moreover, unlike the otherwise comparable commercially available materials, the novel fluorinated poly(phenylene ether ketones) of the present invention can be solution cast or sprayed to produce the films and coatings. Furthermore, the long term thermal stability of the polymers of the present invention is superior to that of the commercially available materials.

  9. GRCop-84: A High Temperature Copper-based Alloy For High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2005-01-01

    While designed for rocket engine main combustion chamber liners, GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) offers potential for high heat flux applications in industrial applications requiring a temperature capability up to approximately 700 C (1292 F). GRCop-84 is a copper-based alloy with excellent elevated temperature strength, good creep resistance, long LCF lives and enhanced oxidation resistance. It also has a lower thermal expansion than copper and many other low alloy copper-based alloys. GRCop-84 can be manufactured into a variety of shapes such as tubing, bar, plate and sheet using standard production techniques and requires no special production techniques. GRCop-84 forms well, so conventional fabrication methods including stamping and bending can be used. GRCop-84 has demonstrated an ability to be friction stir welded, brazed, inertia welded, diffusion bonded and electron beam welded for joining to itself and other materials. Potential applications include plastic injection molds, resistance welding electrodes and holders, permanent metal casting molds, vacuum plasma spray nozzles and high temperature heat exchanger applications.

  10. One-way water permeable valve via water-based superhydrophobic coatings

    NASA Astrophysics Data System (ADS)

    Mates, Joseph E.; Megaridis, Constantine M.

    2013-11-01

    Spray-cast superhydrophobic coatings have shown promise in commercial applications for fluid management due to their intrinsic low-cost, large-area capabilities and substrate independence (Schutzius et al. 2011). A technique of applying a light (< 2 gsm) water-based superhydrophobic coating on inherently hydrophilic cellulosic substrates to generate a preferred directionality for water absorption and transmission is presented. The mechanism described allows water to pass through a thin treated porous substrate in one direction under negligible pressure, but does not allow water to return from the opposite direction unless much greater pressure is applied. This pressure disparity ``window'' effectively creates a one-way fluid valve, with envisioned applications ranging from personal hygiene products, to oil-water separation and filtration. Combining SEM imaging with theoretical robustness factors (Tuteja et al. 2008), the penetration pressures are found to be tunable for application-specific designs by choosing a substrate based on limiting factors of fiber diameter and spacing. The process can also be modified with the addition of functionalized (e.g. antibacterial, conductive) nanoparticle fillers suited for the desired application.

  11. Spray pattern analysis in TWAS using photogrammetry and digital image correlation

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Rademacher, H. G.; Hagen, L.; Abdulgader, M.; El Barad’ei, M.

    2018-06-01

    In terms of arc spraying processes, the spray plume characteristic is mainly affected by the flow characteristic of the atomization gas at the nozzle inlet and intersection point of the wire tips, which in turn affect the particle distribution at the moment of impact when molten spray particles splash onto the substrate. With respect to the route of manufacturing of near net-shaped coatings on complex geometries, the acquisition of the spray patterns is pressingly necessary to determine the produced coating thickness. Within the scope of this study, computer fluid dynamics (CFD) simulations were carried out to determine the distribution of spray particles for different spray parameter settings. The results were evaluated by three-dimensional spray spot analyses using an optical measurement based on photogrammetry and digital image correlation. The optical measurement represents a promising and much faster candidate to measure spray patterns compared to the tactile measurement system but with an equal accuracy. For given nozzle configurations and spray parameter settings, numerous spray patterns were examined to their shape factors, demonstrating the potential of an online analysis, which encompasses a “fast sample loop” and a data processing system to generate a three-dimensional surface of the spray spot profile.

  12. Recycle of radioactive scrap metal from the Oak Ridge Gaseous Diffusion Plant (K-25 Site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehan, R.W.

    1997-02-01

    The scale of the metal available for reuse at the plant includes 22 million pounds of Ni, 17 million pounds of Al, 47 million pounds of copper, and 835 million pounds of steels. In addition there is a wide range of industrial equipment and other items of value. The author describes small bench scale and pilot plant scale efforts made at treating metal for decontamination and fabrication into cast stock or specialized containers for reuse within the DOE complex or release. These projects show that much of the material can be cleaned or chemically decontaminated to a level where itmore » can be free released to various markets. Of the remaining metals, much of it can be cast into products which can be absorbed within the DOE complex.« less

  13. Climate change and the effects of dengue upon Australia: An analysis of health impacts and costs

    NASA Astrophysics Data System (ADS)

    Newth, D.; Gunasekera, D.

    2010-08-01

    Projected regional warming and climate change analysis and health impact studies suggest that Australia is potentially vulnerable to increased occurrence of vector borne diseases such as dengue fever. Expansion of the dengue fever host, Aedes aegypti could potentially pose a significant public health risk. To manage such health risks, there is a growing need to focus on adaptive risk management strategies. In this paper, we combine analyses from climate, biophysical and economic models with a high resolution population model for disease spread, the EpiCast model to analyse the health impacts and costs of spread of dengue fever. We demonstrate the applicability of EpiCast as a decision support tool to evaluate mitigation strategies to manage the public health risks associated with shifts in the distribution of dengue fever in Australia.

  14. Castable plastic mold with electroplatable base

    DOEpatents

    Domeier, Linda A.; Morales, Alfredo M.; Gonzales, Marcela G.; Keifer, Patrick M.

    2004-01-20

    A sacrificial plastic mold having an electroplatable backing is provided as are methods of making such a mold via the infusion of a castable liquid formulation through a porous metal substrate (sheet, screen, mesh or foam) and into the features of a micro-scale master mold. Upon casting and demolding, the porous metal substrate is embedded within the cast formulation and projects a plastic structure with features determined by the mold tool. The plastic structure provides a sacrificial plastic mold mechanically bonded to the porous metal substrate, which provides a conducting support suitable for electroplating either contiguous or non-contiguous metal replicates. After electroplating and lapping, the sacrificial plastic can be dissolved, leaving the desired metal structure bonded to the porous metal substrate. Optionally, the electroplated structures may be debonded from the porous substrate by selective dissolution of the porous substrate or a coating thereon.

  15. Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, James

    Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the nextmore » generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.« less

  16. Lightweight Advertising and Scalable Discovery of Services, Datasets, and Events Using Feedcasts

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Ramachandran, R.; Movva, S.

    2010-12-01

    Broadcast feeds (Atom or RSS) are a mechanism for advertising the existence of new data objects on the web, with metadata and links to further information. Users then subscribe to the feed to receive updates. This concept has already been used to advertise the new granules of science data as they are produced (datacasting), with browse images and metadata, and to advertise bundles of web services (service casting). Structured metadata is introduced into the XML feed format by embedding new XML tags (in defined namespaces), using typed links, and reusing built-in Atom feed elements. This “infocasting” concept can be extended to include many other science artifacts, including data collections, workflow documents, topical geophysical events (hurricanes, forest fires, etc.), natural hazard warnings, and short articles describing a new science result. The common theme is that each infocast contains machine-readable, structured metadata describing the object and enabling further manipulation. For example, service casts contain type links pointing to the service interface description (e.g., WSDL for SOAP services), service endpoint, and human-readable documentation. Our Infocasting project has three main goals: (1) define and evangelize micro-formats (metadata standards) so that providers can easily advertise their web services, datasets, and topical geophysical events by adding structured information to broadcast feeds; (2) develop authoring tools so that anyone can easily author such service advertisements, data casts, and event descriptions; and (3) provide a one-stop, Google-like search box in the browser that allows discovery of service, data and event casts visible on the web, and services & data registered in the GEOSS repository and other NASA repositories (GCMD & ECHO). To demonstrate the event casting idea, a series of micro-articles—with accompanying event casts containing links to relevant datasets, web services, and science analysis workflows--will be authored for several kinds of geophysical events, such as hurricanes, smoke plume events, tsunamis, etc. The talk will describe our progress so far, and some of the issues with leveraging existing metadata standards to define lightweight micro-formats.

  17. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    NASA Astrophysics Data System (ADS)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  18. Fibreglass Total Contact Casting, Removable Cast Walkers, and Irremovable Cast Walkers to Treat Diabetic Neuropathic Foot Ulcers: A Health Technology Assessment

    PubMed Central

    Costa, Vania; Tu, Hong Anh; Wells, David; Weir, Mark; Holubowich, Corinne; Walter, Melissa

    2017-01-01

    Background Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. Methods We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. Results We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00–0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01–0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval −0.11–0.14]). The economic analysis showed that total contact casting and irremovable cast walkers were less expensive and led to more health outcome gains (e.g., ulcers healed and quality-adjusted life-years) than removable cast walkers. Irremovable cast walkers were as effective as total contact casting and were associated with lower costs. The 5-year budget impact of funding total contact casting, removable cast walkers, and irremovable cast walkers (device costs only at 100% access) would be $17 to $20 million per year. The patients we interviewed felt that wound healing was improved with total contact casting than with removable cast walkers, but that removable cast walkers were more convenient and came with a lower cost burden. They reported no experience or familiarity with irremovable cast walkers. Conclusions Ulcer healing improved with total contact casting, irremovable cast walkers, and removable cast walkers, but total contact casting and irremovable cast walkers had higher rates of ulcer healing than removable cast walkers. Increased access to offloading devices could result in cost savings for the health system because of fewer amputations. Patients with diabetic foot ulcers reported a preference for total contact casting over removable cast walkers, largely because they perceived wound healing to be improved with total contact casting. However, cost, comfort, and convenience are concerns for patients. PMID:28989556

  19. Fibreglass Total Contact Casting, Removable Cast Walkers, and Irremovable Cast Walkers to Treat Diabetic Neuropathic Foot Ulcers: A Health Technology Assessment.

    PubMed

    2017-01-01

    Diabetic neuropathic foot ulcers are a risk factor for lower leg amputation. Many experts recommend offloading with fibreglass total contact casting, removable cast walkers, and irremovable cast walkers as a way to treat these ulcers. We completed a health technology assessment, which included an evaluation of clinical benefits and harms, value for money, and patient preferences for offloading devices. We performed a systematic literature search on August 17, 2016, to identify randomized controlled trials that compared fibreglass total contact casting, removable cast walkers, and irremovable cast walkers with other treatments (offloading or non-offloading) in patients with diabetic neuropathic foot ulcers. We developed a decision-analytic model to assess the cost-effectiveness of fibreglass total contact casting, removable cast walkers, and irremovable cast walkers, and we conducted a 5-year budget impact analysis. Finally, we interviewed people with diabetes who had lived experience with foot ulcers, asking them about the different offloading devices and the factors that influenced their treatment choices. We identified 13 randomized controlled trials. The evidence suggests that total contact casting, removable cast walkers, and irremovable cast walkers are beneficial in the treatment of neuropathic, noninfected foot ulcers in patients with diabetes but without severe peripheral arterial disease. Compared to removable cast walkers, ulcer healing was improved with total contact casting (moderate quality evidence; risk difference 0.17 [95% confidence interval 0.00-0.33]) and irremovable cast walkers (low quality evidence; risk difference 0.21 [95% confidence interval 0.01-0.40]). We found no difference in ulcer healing between total contact casting and irremovable cast walkers (low quality evidence; risk difference 0.02 [95% confidence interval -0.11-0.14]). The economic analysis showed that total contact casting and irremovable cast walkers were less expensive and led to more health outcome gains (e.g., ulcers healed and quality-adjusted life-years) than removable cast walkers. Irremovable cast walkers were as effective as total contact casting and were associated with lower costs. The 5-year budget impact of funding total contact casting, removable cast walkers, and irremovable cast walkers (device costs only at 100% access) would be $17 to $20 million per year. The patients we interviewed felt that wound healing was improved with total contact casting than with removable cast walkers, but that removable cast walkers were more convenient and came with a lower cost burden. They reported no experience or familiarity with irremovable cast walkers. Ulcer healing improved with total contact casting, irremovable cast walkers, and removable cast walkers, but total contact casting and irremovable cast walkers had higher rates of ulcer healing than removable cast walkers. Increased access to offloading devices could result in cost savings for the health system because of fewer amputations. Patients with diabetic foot ulcers reported a preference for total contact casting over removable cast walkers, largely because they perceived wound healing to be improved with total contact casting. However, cost, comfort, and convenience are concerns for patients.

  20. Layered growth with bottom-spray granulation for spray deposition of drug.

    PubMed

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

Top