Sample records for spray combustion processes

  1. Effects of fuel cetane number on the structure of diesel spray combustion: An accelerated Eulerian stochastic fields method

    NASA Astrophysics Data System (ADS)

    Jangi, Mehdi; Lucchini, Tommaso; Gong, Cheng; Bai, Xue-Song

    2015-09-01

    An Eulerian stochastic fields (ESF) method accelerated with the chemistry coordinate mapping (CCM) approach for modelling spray combustion is formulated, and applied to model diesel combustion in a constant volume vessel. In ESF-CCM, the thermodynamic states of the discretised stochastic fields are mapped into a low-dimensional phase space. Integration of the chemical stiff ODEs is performed in the phase space and the results are mapped back to the physical domain. After validating the ESF-CCM, the method is used to investigate the effects of fuel cetane number on the structure of diesel spray combustion. It is shown that, depending of the fuel cetane number, liftoff length is varied, which can lead to a change in combustion mode from classical diesel spray combustion to fuel-lean premixed burned combustion. Spray combustion with a shorter liftoff length exhibits the characteristics of the classical conceptual diesel combustion model proposed by Dec in 1997 (http://dx.doi.org/10.4271/970873), whereas in a case with a lower cetane number the liftoff length is much larger and the spray combustion probably occurs in a fuel-lean-premixed mode of combustion. Nevertheless, the transport budget at the liftoff location shows that stabilisation at all cetane numbers is governed primarily by the auto-ignition process.

  2. Liquid rocket performance computer model with distributed energy release

    NASA Technical Reports Server (NTRS)

    Combs, L. P.

    1972-01-01

    Development of a computer program for analyzing the effects of bipropellant spray combustion processes on liquid rocket performance is described and discussed. The distributed energy release (DER) computer program was designed to become part of the JANNAF liquid rocket performance evaluation methodology and to account for performance losses associated with the propellant combustion processes, e.g., incomplete spray gasification, imperfect mixing between sprays and their reacting vapors, residual mixture ratio striations in the flow, and two-phase flow effects. The DER computer program begins by initializing the combustion field at the injection end of a conventional liquid rocket engine, based on injector and chamber design detail, and on propellant and combustion gas properties. It analyzes bipropellant combustion, proceeding stepwise down the chamber from those initial conditions through the nozzle throat.

  3. Development and validation of spray models for investigating diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Som, Sibendu

    Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and combusting data from Sandia National Laboratory. The KH-ACT model is observed to provide better predictions for spray dispersion, axial velocity decay, sauter mean diameter, and liquid and lift-off length interplay which is attributed to the enhanced primary breakup predicted by this model. In addition, experimentally observed trends with changing nozzle conicity could only be captured by the KH-ACT model. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. Finally, the differences in inner nozzle flow and spray characteristics of petrodiesel and biodiesel are quantified. The improved modeling capability developed in this work can be used for extensive diesel engine simulations to further optimize injection, spray, combustion, and emission processes.

  4. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  5. The Effect of Spray Initial Conditions on Heat Release and Emissions in LDI CFD Calculations

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.; Liu, Nan-Suey; Davoudzadeh, Farhad

    2008-01-01

    The mass and velocity distribution of liquid spray has a primary effect on the combustion heat release process. This heat release process then affects emissions like nitrogen oxides (NOx) and carbon monoxide (CO). Computational Fluid Dynamics gives the engineer insight into these processes, but various setup options exist (number of droplet groups, and initial droplet temperature) for spray initial conditions. This paper studies these spray initial condition options using the National Combustion Code (NCC) on a single swirler lean direct injection (LDI) flame tube. Using laminar finite rate chemistry, comparisons are made against experimental data for velocity measurements, temperature, and emissions (NOx, CO).

  6. Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model

    NASA Astrophysics Data System (ADS)

    Wei, Haiqiao; Zhao, Wanhui; Zhou, Lei; Chen, Ceyuan; Shu, Gequn

    2018-03-01

    Large eddy simulation coupled with the linear eddy model (LEM) is employed for the simulation of n-heptane spray flames to investigate the low temperature ignition and combustion process in a constant-volume combustion vessel under diesel-engine relevant conditions. Parametric studies are performed to give a comprehensive understanding of the ignition processes. The non-reacting case is firstly carried out to validate the present model by comparing the predicted results with the experimental data from the Engine Combustion Network (ECN). Good agreements are observed in terms of liquid and vapour penetration length, as well as the mixture fraction distributions at different times and different axial locations. For the reacting cases, the flame index was introduced to distinguish between the premixed and non-premixed combustion. A reaction region (RR) parameter is used to investigate the ignition and combustion characteristics, and to distinguish the different combustion stages. Results show that the two-stage combustion process can be identified in spray flames, and different ignition positions in the mixture fraction versus RR space are well described at low and high initial ambient temperatures. At an initial condition of 850 K, the first-stage ignition is initiated at the fuel-lean region, followed by the reactions in fuel-rich regions. Then high-temperature reaction occurs mainly at the places with mixture concentration around stoichiometric mixture fraction. While at an initial temperature of 1000 K, the first-stage ignition occurs at the fuel-rich region first, then it moves towards fuel-richer region. Afterwards, the high-temperature reactions move back to the stoichiometric mixture fraction region. For all of the initial temperatures considered, high-temperature ignition kernels are initiated at the regions richer than stoichiometric mixture fraction. By increasing the initial ambient temperature, the high-temperature ignition kernels move towards richer mixture regions. And after the spray flames gets quasi-steady, most heat is released at the stoichiometric mixture fraction regions. In addition, combustion mode analysis based on key intermediate species illustrates three-mode combustion processes in diesel spray flames.

  7. The Effects of Sooting and Radiation on Droplet Combustion

    NASA Technical Reports Server (NTRS)

    Lee, Kyeong-Ook; Manzello, Samuel L.; Choi, Mun Young

    1997-01-01

    The burning of liquid hydrocarbon fuels accounts for a significant portion of global energy production. With predicted future increases in demand and limited reserves of hydrocarbon fuel, it is important to maximize the efficiency of all processes that involve conversion of fuel. With the exception of unwanted fires, most applications involve introduction of liquid fuels into an oxidizing environment in the form of sprays which are comprised of groups of individual droplets. Therefore, tremendous benefits can result from a better understanding of spray combustion processes. Yet, theoretical developments and experimental measurements of spray combustion remains a daunting task due to the complex coupling of a turbulent, two-phase flow with phase change and chemical reactions. However, it is recognized that individual droplet behavior (including ignition, evaporation and combustion) is a necessary component for laying the foundation for a better understanding of spray processes. Droplet combustion is also an ideal problem for gaining a better understanding of non-premixed flames. Under the idealized situation producing spherically-symmetric flames (produced under conditions of reduced natural and forced convection), it represents the simplest geometry in which to formulate and solve the governing equations of mass, species and heat transfer for a chemically reacting two phase flow with phase change. The importance of this topic has promoted extensive theoretical investigations for more than 40 years.

  8. Analysis of high injection pressure and ambient temperature on biodiesel spray characteristics using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal

    2017-09-01

    Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.

  9. Application Of Holography In The Distribution Measurement Of Fuel Spraying Field In Diesel Engines

    NASA Astrophysics Data System (ADS)

    Xiang, He Wan; Xiong, Li Zhi

    1988-01-01

    The distribution of fuel spraying field in the combustion chamber is an important factor which influences the performance of diesel engines. Precise data for those major parameters of the spraying field distribution are difficult to obtain using conventional ways of measurement, so its effects on the combustion process cannot be controlled. The laser holographic measurement is used and many researches have been made on the injecting nozzles used in diesel engines Series 95, 100 and 130. These researches show that clear spraying field hologram can be taken with an "IC Engine Laser Holography System". By rendition and data processing, droplet size, amount and their space distribution in the spraying; the spraying range, cone angle and other dependable data can be obtained. Therefore, the spraying quality of an injecting nozzle can be precisely determined, which provides reliable basis for the improvement of diesel engines' functions.

  10. Formation and Levitation of Unconfined Droplet Clusters

    NASA Technical Reports Server (NTRS)

    Liu, S.; Ruff, G. A.

    1999-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. The overall objective of this research is to study the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. This paper describes current work on the design and performance of an apparatus to generate and stabilize droplet clusters using acoustic and electrostatic forces.

  11. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    NASA Astrophysics Data System (ADS)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  12. A RANS simulation toward the effect of turbulence and cavitation on spray propagation and combustion characteristics

    NASA Astrophysics Data System (ADS)

    Taghavifar, Hadi; Khalilarya, Shahram; Jafarmadar, Samad; Taghavifar, Hamid

    2016-08-01

    A multidimensional computational fluid dynamic code was developed and integrated with probability density function combustion model to give the detailed account of multiphase fluid flow. The vapor phase within injector domain is treated with Reynolds-averaged Navier-Stokes technique. A new parameter is proposed which is an index of plane-cut spray propagation and takes into account two parameters of spray penetration length and cone angle at the same time. It was found that spray propagation factor (SPI) tends to increase at lower r/ d ratios, although the spray penetration tends to decrease. The results of SPI obtained by empirical correlation of Hay and Jones were compared with the simulation computation as a function of respective r/ d ratio. Based on the results of this study, the spray distribution on plane area has proportional correlation with heat release amount, NO x emission mass fraction, and soot concentration reduction. Higher cavitation is attributed to the sharp edge of nozzle entrance, yielding better liquid jet disintegration and smaller spray droplet that reduces soot mass fraction of late combustion process. In order to have better insight of cavitation phenomenon, turbulence magnitude in nozzle and combustion chamber was acquired and depicted along with spray velocity.

  13. Combustion and flow modelling applied to the OMV VTE

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Jeng, San-Mou

    1990-01-01

    A predictive tool for hypergolic bipropellant spray combustion and flow evolution in the OMV VTE (orbital maneuvering vehicle variable thrust engine) is described. It encompasses a computational technique for the gas phase governing equations, a discrete particle method for liquid bipropellant sprays, and constitutive models for combustion chemistry, interphase exchanges, and unlike impinging liquid hypergolic stream interactions. Emphasis is placed on the phenomenological modelling of the hypergolic liquid bipropellant gasification processes. An application to the OMV VTE combustion chamber is given in order to show some of the capabilities and inadequacies of this tool.

  14. Spray and High-Pressure Flow Computations in the National Combustion Code (NCC) Improved

    NASA Technical Reports Server (NTRS)

    Raju, Manthena S.

    2002-01-01

    Sprays occur in a wide variety of industrial and power applications and in materials processing. A liquid spray is a two-phase flow with a gas as the continuous phase and a liquid as the dispersed phase in the form of droplets or ligaments. The interactions between the two phases--which are coupled through exchanges of mass, momentum, and energy--can occur in different ways at disparate time and length scales involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the ratecontrolling processes associated with turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates of the spray, among many other factors. With the aim of developing an efficient solution procedure for use in multidimensional combustor modeling, researchers at the NASA Glenn Research Center have advanced the state-of-the-art in spray computations in several important ways.

  15. Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, S.; Longman, D. E; Ramirez, A. I.

    2011-03-01

    Diesel engine performance and emissions are strongly coupled with fuel atomization and spray processes, which in turn are strongly influenced by injector flow dynamics. Modern engines employ micro-orifices with different orifice designs. It is critical to characterize the effects of various designs on engine performance and emissions. In this study, a recently developed primary breakup model (KH-ACT), which accounts for the effects of cavitation and turbulence generated inside the injector nozzle is incorporated into a CFD software CONVERGE for comprehensive engine simulations. The effects of orifice geometry on inner nozzle flow, spray, and combustion processes are examined by coupling themore » injector flow and spray simulations. Results indicate that conicity and hydrogrinding reduce cavitation and turbulence inside the nozzle orifice, which slows down primary breakup, increasing spray penetration, and reducing dispersion. Consequently, with conical and hydroground nozzles, the vaporization rate and fuel air mixing are reduced, and ignition occurs further downstream. The flame lift-off lengths are the highest and lowest for the hydroground and conical nozzles, respectively. This can be related to the rate of fuel injection, which is higher for the hydroground nozzle, leading to richer mixtures and lower flame base speeds. A modified flame index is employed to resolve the flame structure, which indicates a dual combustion mode. For the conical nozzle, the relative role of rich premixed combustion is enhanced and that of diffusion combustion reduced compared to the other two nozzles. In contrast, for the hydroground nozzle, the role of rich premixed combustion is reduced and that of non-premixed combustion is enhanced. Consequently, the amount of soot produced is the highest for the conical nozzle, while the amount of NOx produced is the highest for the hydroground nozzle, indicating the classical tradeoff between them.« less

  16. Ignition and Flame Development in the Case of Diesel Fuel Injection

    NASA Technical Reports Server (NTRS)

    Holfelder, Otto

    1936-01-01

    To investigate the process of ignition and combustion in the case of spray injection into heated air, a new form of apparatus is developed and the tests carried out with it described. Photographs of the spray before and after ignition are obtained at frequencies of 500 pictures per second. Pressures and temperatures are simultaneously recorded on oscillograms. Information on the initial conditions, ignition time lag, period of complete combustion, place where ignition starts, and general course of the combustion is obtained.

  17. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  18. Vacuum Plasma Spray Forming of Copper Alloy Liners for Regeneratively Cooled Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2003-01-01

    Vacuum plasma spray (VPS) has been demonstrated as a method to form combustion chambers from copper alloys NARloy-Z and GRCop-84. Vacuum plasma spray forming is of particular interest in the forming of CuCrNb alloys such as GRCop-84, developed by NASA s Glenn Research Center, because the alloy cannot be formed using conventional casting and forging methods. This limitation is related to the levels of chromium and niobium in the alloy, which exceed the solubility limit in copper. Until recently, the only forming process that maintained the required microstructure of CrNb intermetallics was powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. This paper discusses the techniques used to form combustion chambers from CuCrNb and NARloy-Z, which will be used in regeneratively cooled liquid rocket combustion chambers.

  19. A study of the current group evaporation/combustion theories

    NASA Technical Reports Server (NTRS)

    Shen, Hayley H.

    1990-01-01

    Liquid fuel combustion can be greatly enhanced by disintegrating the liquid fuel into droplets, an effect achieved by various configurations. A number of experiments carried out in the seventies showed that combustion of droplet arrays and sprays do not form individual flames. Moreover, the rate of burning in spray combustion greatly deviates from that of the single combustion rate. Such observations naturally challenge its applicability to spray combustion. A number of mathematical models were developed to evaluate 'group combustion' and the related 'group evaporation' phenomena. This study investigates the similarity and difference of these models and their applicability to spray combustion. Future work that should be carried out in this area is indicated.

  20. Combustion of Unconfined Droplet Clusters in Microgravity

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.

    2001-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. This paper describes the design and performance of the 1-g experimental apparatus, some preliminary 1-g results, and plans for testing in microgravity.

  1. Characteristics of combustion flame sprayed nickel aluminum using a Coanda Assisted Spray Manipulation collar for off-normal deposits

    NASA Astrophysics Data System (ADS)

    Archibald, Reid S.

    A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.

  2. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The various physical processes that occur in the gas turbine combustor and the development of analytical models that accurately describe these processes are discussed. Aspects covered include fuel sprays; fluid mixing; combustion dynamics; radiation and chemistry and numeric techniques which can be applied to highly turbulent, recirculating, reacting flow fields.

  3. LSPRAY: Lagrangian Spray Solver for Applications With Parallel Computing and Unstructured Gas-Phase Flow Solvers

    NASA Technical Reports Server (NTRS)

    Raju, Manthena S.

    1998-01-01

    Sprays occur in a wide variety of industrial and power applications and in the processing of materials. A liquid spray is a phase flow with a gas as the continuous phase and a liquid as the dispersed phase (in the form of droplets or ligaments). Interactions between the two phases, which are coupled through exchanges of mass, momentum, and energy, can occur in different ways at different times and locations involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the rate-controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as other phenomena. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on sprays to unstructured grids and parallel computing. LSPRAY, which was developed by M.S. Raju of Nyma, Inc., is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo probability density function (PDF) solver. The LSPRAY solver accommodates the use of an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements in the gas-phase solvers. It is used specifically for fuel sprays within gas turbine combustors, but it has many other uses. The spray model used in LSPRAY provided favorable results when applied to stratified-charge rotary combustion (Wankel) engines and several other confined and unconfined spray flames. The source code will be available with the National Combustion Code (NCC) as a complete package.

  4. Investigation of critical burning of fuel droplets

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1979-01-01

    The general problem of spray combustion was investigated. The combustion of bipropellent droplets; combustion of hydrozine fuels; and combustion of sprays were studied. A model was developed to predict mean velocities and temperatures in a combusting gas jet.

  5. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    NASA Astrophysics Data System (ADS)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  6. Effect of plasma spraying modes on material properties of internal combustion engine cylinder liners

    NASA Astrophysics Data System (ADS)

    Timokhova, O. M.; Burmistrova, O. N.; Sirina, E. A.; Timokhov, R. S.

    2018-03-01

    The paper analyses different methods of remanufacturing worn-out machine parts in order to get the best performance characteristics. One of the most promising of them is a plasma spraying method. The mathematical models presented in the paper are intended to anticipate the results of plasma spraying, its effect on the properties of the material of internal combustion engine cylinder liners under repair. The experimental data and research results have been computer processed with Statistica 10.0 software package. The pare correlation coefficient values (R) and F-statistic criterion are given to confirm the statistical properties and adequacy of obtained regression equations.

  7. Spray combustion model improvement study, 1

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-01-01

    This study involves the development of numerical and physical modeling in spray combustion. These modeling efforts are mainly motivated to improve the physical submodels of turbulence, combustion, atomization, dense spray effects, and group vaporization. The present mathematical formulation can be easily implemented in any time-marching multiple pressure correction methodologies such as MAST code. A sequence of validation cases includes the nonevaporating, evaporating and_burnin dense_sprays.

  8. Compression ignition engine having fuel system for non-sooting combustion and method

    DOEpatents

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  9. Effect of turbulence modelling to predict combustion and nanoparticle production in the flame assisted spray dryer based on computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Septiani, Eka Lutfi; Widiyastuti, W.; Winardi, Sugeng; Machmudah, Siti; Nurtono, Tantular; Kusdianto

    2016-02-01

    Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ɛ and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.

  10. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  11. Acoustic effects of sprays

    NASA Technical Reports Server (NTRS)

    Pindera, Maciej Z.; Przekwas, Andrzej J.

    1994-01-01

    Since the early 1960's, it has been known that realistic combustion models for liquid fuel rocket engines should contain at least a rudimentary treatment of atomization and spray physics. This is of particular importance in transient operations. It has long been recognized that spray characteristics and droplet vaporization physics play a fundamental role in determining the stability behavior of liquid fuel rocket motors. This paper gives an overview of work in progress on design of a numerical algorithm for practical studies of combustion instabilities in liquid rocket motors. For flexibility, the algorithm is composed of semi-independent solution modules, accounting for different physical processes. Current findings are report and future work is indicated. The main emphasis of this research is the development of an efficient treatment to interactions between acoustic fields and liquid fuel/oxidizer sprays.

  12. Experimental study on spray characteristics of alternate jet fuels using Phase Doppler Anemometry

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2013-11-01

    Gas-to-Liquid (GTL) fuels have gained global attention due to their cleaner combustion characteristics. The chemical and physical properties of GTL jet fuels are different from conventional jet fuels owing to the difference in their production methodology. It is important to study the spray characteristics of GTL jet fuels as the change of physical properties can affect atomization, mixing, evaporation and combustion process, ultimately affecting emission process. In this work, spray characteristics of two GTL synthetic jet fuels are studied using a pressure-swirl nozzle at different injection pressures and atmospheric ambient condition. Phase Doppler Anemometry (PDA) measurements of droplet size and velocity are compared with those of regular Jet A-1 fuel at several axial and radial locations downstream of the nozzle exit. Experimental results show that although the GTL fuels have different physical properties such as viscosity, density, and surface tension, among each other the resultant change in the spray characteristics is insignificant. Furthermore, the presented results show that GTL fuel spray characteristics exhibit close similarity to those of Jet A-1 fuel. Funded by Qatar Science and Technology Park.

  13. Investigation of Critical Burning of Fuel Droplets. [of liquid rocket propellant

    NASA Technical Reports Server (NTRS)

    Chanin, S. P.; Shearer, A. J.; Faeth, G. M.

    1976-01-01

    An earlier analysis for the combustion response of a liquid monopropellant strand (hydrazine) was extended to consider individual droplets and sprays. While small drops gave low or negative response, large droplets provided response near unity at low frequencies, with the response declining at frequencies greater than the characteristic liquid phase frequency. Temperature gradients in the liquid phase resulted in response peaks greater than unity. A second response peak was found for large drops which corresponded to gas phase transient effects. Spray response was generally reduced from the response of the largest injected droplet, however, even a small percentage of large droplets can yield appreciable response. An apparatus was designed and fabricated to allow observation of bipropellant fuel spray combustion at elevated pressures. A locally homogeneous model was developed to describe this combustion process which allows for high pressure phenomena associated with the thermodynamic critical point.

  14. EUPDF: Eulerian Monte Carlo Probability Density Function Solver for Applications With Parallel Computing, Unstructured Grids, and Sprays

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    The success of any solution methodology used in the study of gas-turbine combustor flows depends a great deal on how well it can model the various complex and rate controlling processes associated with the spray's turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates, as well as convective and radiative heat transfer and other phenomena. The phenomena to be modeled, which are controlled by these processes, often strongly interact with each other at different times and locations. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. The influence of turbulence in a diffusion flame manifests itself in several forms, ranging from the so-called wrinkled, or stretched, flamelets regime to the distributed combustion regime, depending upon how turbulence interacts with various flame scales. Conventional turbulence models have difficulty treating highly nonlinear reaction rates. A solution procedure based on the composition joint probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices (such as extinction, blowoff limits, and emissions predictions) because it can account for nonlinear chemical reaction rates without making approximations. In an attempt to advance the state-of-the-art in multidimensional numerical methods, we at the NASA Lewis Research Center extended our previous work on the PDF method to unstructured grids, parallel computing, and sprays. EUPDF, which was developed by M.S. Raju of Nyma, Inc., was designed to be massively parallel and could easily be coupled with any existing gas-phase and/or spray solvers. EUPDF can use an unstructured mesh with mixed triangular, quadrilateral, and/or tetrahedral elements. The application of the PDF method showed favorable results when applied to several supersonic-diffusion flames and spray flames. The EUPDF source code will be available with the National Combustion Code (NCC) as a complete package.

  15. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  16. Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine

    DOEpatents

    Roth, Gregory T; Husted, Harry L; Sellnau, Mark C

    2015-04-07

    A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.

  17. The NACA Apparatus for Studying the Formation and Combustion of Fuel Sprays and the Results from Preliminary Tests

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    This report describes the apparatus as designed and constructed at the Langley Memorial Aeronautical Laboratory, for studying the formation and combustion of fuel sprays under conditions closely simulating those occurring in a high-speed compression-ignition engine. The apparatus consists of a single-cylinder modified test engine, a fuel-injection system so designed that a single charge of fuel can be injected into the combustion chamber of the engine, an electric driving motor, and a high-speed photographic apparatus. The cylinder head of the engine has a vertical-disk form of combustion chamber whose sides are glass windows. When the fuel is injected into the combustion chamber, motion pictures at the rate of 2,000 per second are taken of the spray formation by means of spark discharges. When combustion takes place the light of the combustion is recorded on the same photographic film as the spray photographs. The report includes the results of some tests to determine the effect of air temperature, air flow, and nozzle design on the spray formation.

  18. Radiation-Spray Coupling for Realistic Flow Configurations

    NASA Technical Reports Server (NTRS)

    El-Asrag, Hossam; Iannetti, Anthony C.

    2011-01-01

    Three Large Eddy Simulations (LES) for a lean-direct injection (LDI) combustor are performed and compared. In addition to the cold flow simulation, the effect of radiation coupling with the multi-physics reactive flow is analyzed. The flame let progress variable approach is used as a subgrid combustion model combined with a stochastic subgrid model for spray atomization and an optically thin radiation model. For accurate chemistry modeling, a detailed Jet-A surrogate mechanism is utilized. To achieve realistic inflow, a simple recycling technique is performed at the inflow section upstream of the swirler. Good comparison is shown with the experimental data mean and root mean square profiles. The effect of combustion is found to change the shape and size of the central recirculation zone. Radiation is found to change the spray dynamics and atomization by changing the heat release distribution and the local temperature values impacting the evaporation process. The simulation with radiation modeling shows wider range of droplet size distribution by altering the evaporation rate. The current study proves the importance of radiation modeling for accurate prediction in realistic spray combustion configurations, even for low pressure systems.

  19. Japan's research on particle clouds and sprays

    NASA Technical Reports Server (NTRS)

    Sato, Jun'ichi

    1995-01-01

    Most of energy used by us is generated by combustion of liquid and solid fuels. These fuels are burned in combustors mainly as liquid sprays and pulverized solids, respectively. A knowledge of the combustion processes in combustors is needed to achieve proper designs that have stable operation, high efficiency, and low emission levels. However, current understanding of liquid and solid particle cloud combustion is far from complete. If combustion experiments for these fuels are performed under a normal gravity field, some experimental difficulties are encountered. These difficulties encountered include, that since the particles fall by the force of gravity it is impossible to stop the particles in the air, the falling speeds of particles are different from each other, and are depend on the particle size, the flame is lifted up and deformed by the buoyancy force, and natural convection makes the flow field more complex. Since these experimental difficulties are attributable to the gravity force, a microgravity field can eliminate the above problems. This means that the flame propagation experiments in static homogeneous liquid and solid particle clouds can be carried out under a microgravity field. This will provide much information for the basic questions related to combustion processes of particle clouds and sprays. In Japan, flame propagation processes in the combustible liquid and solid particle clouds have been studied experimentally by using a microgravity field generated by a 4.5 s dropshaft, a 10 s dropshaft, and by parabolic flight. Described in this presentation are the recent results of flame propagations studies in a homogeneous liquid particle cloud, in a mixture of liquid particles/gas fuel/air, in a PMMA particle cloud, and in a pulverized coal particle cloud.

  20. Computational experience with a three-dimensional rotary engine combustion model

    NASA Astrophysics Data System (ADS)

    Raju, M. S.; Willis, E. A.

    1990-04-01

    A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.

  1. Computational experience with a three-dimensional rotary engine combustion model

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1990-01-01

    A new computer code was developed to analyze the chemically reactive flow and spray combustion processes occurring inside a stratified-charge rotary engine. Mathematical and numerical details of the new code were recently described by the present authors. The results are presented of limited, initial computational trials as a first step in a long-term assessment/validation process. The engine configuration studied was chosen to approximate existing rotary engine flow visualization and hot firing test rigs. Typical results include: (1) pressure and temperature histories, (2) torque generated by the nonuniform pressure distribution within the chamber, (3) energy release rates, and (4) various flow-related phenomena. These are discussed and compared with other predictions reported in the literature. The adequacy or need for improvement in the spray/combustion models and the need for incorporating an appropriate turbulence model are also discussed.

  2. Computational fluid dynamics combustion analysis evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Y. M.; Shang, H. M.; Chen, C. P.; Ziebarth, J. P.

    1992-01-01

    This study involves the development of numerical modelling in spray combustion. These modelling efforts are mainly motivated to improve the computational efficiency in the stochastic particle tracking method as well as to incorporate the physical submodels of turbulence, combustion, vaporization, and dense spray effects. The present mathematical formulation and numerical methodologies can be casted in any time-marching pressure correction methodologies (PCM) such as FDNS code and MAST code. A sequence of validation cases involving steady burning sprays and transient evaporating sprays will be included.

  3. Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors

    PubMed Central

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P. H.; Bedzyk, Michael J.; Ferragut, Rafael; Marks, Tobin J.; Facchetti, Antonio

    2015-01-01

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations. PMID:25733848

  4. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    PubMed

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  5. Mechanised spraying device a novel technology for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.V.K. Singh; V.K. Singh

    2004-10-15

    Spontaneous combustion in coal mines plays a vital role in occurrences of fire. Fire in coal, particularly in opencast mines, not only causes irreparable loss of national wealth but damages the surface structure and pollutes the environment. The problem of spontaneous combustion/fire in opencast coal benches is acute. Presently over 75% of the total production of coal in Indian mines is being carried out by opencast mining. Accordingly a mechanised spraying device has been developed for spraying the fire protective coating material for preventing spontaneous combustion in coal benches of opencast mines jointly by Central Mining Research Institute, Dhanbad andmore » M/s Signum Fire Protection (India) Pvt. Ltd., Nagpur under Science & Technology (S&T) project funded by Ministry of Coal, Govt. of India. The objective of this paper is to describe in detail about the mechanised spraying device and its application for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion/fire.« less

  6. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    NASA Astrophysics Data System (ADS)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  7. The study on the interdependence of spray characteristics and evaporation history of fuel spray in high temperature air crossflow

    NASA Astrophysics Data System (ADS)

    Zhu, J. Y.; Chin, J. S.

    1986-06-01

    A numerical calculation method is used to predict the variation of the characteristics of fuel spray moving in a high temperature air crossflow, mainly, Sauter mean diameter SMD, droplet size distribution index N of Rosin-Rammler distribution and evaporation percentage changing with downstream distance X from the nozzle. The effect of droplet heat-up period evaporation process and forced convection are taken into full account; thus, the calculation model is a very good approximation to the process of spray evaporation in a practical combustor, such as ramjet, aero-gas turbine, liquid propellant rocket, diesel and other liquid fuel-powered combustion devices. The changes of spray characteristics N, SMD and spray evaporation percentage with air velocity, pressure, temperature, fuel injection velocity, and the initial spray parameters are presented.

  8. Numerical parametric studies of spray combustion instability

    NASA Technical Reports Server (NTRS)

    Pindera, M. Z.

    1993-01-01

    A coupled numerical algorithm has been developed for studies of combustion instabilities in spray-driven liquid rocket engines. The model couples gas and liquid phase physics using the method of fractional steps. Also introduced is a novel, efficient methodology for accounting for spray formation through direct solution of liquid phase equations. Preliminary parametric studies show marked sensitivity of spray penetration and geometry to droplet diameter, considerations of liquid core, and acoustic interactions. Less sensitivity was shown to the combustion model type although more rigorous (multi-step) formulations may be needed for the differences to become apparent.

  9. An application of digital image processing techniques to the characterization of liquid petroleum gas (LPG) spray

    NASA Astrophysics Data System (ADS)

    Qi, Y. L.; Xu, B. Y.; Cai, S. L.

    2006-12-01

    To control fuel injection, optimize combustion and reduce emissions for LPG (liquefied petroleum gas) engines, it is necessary and important to understand the characteristics of LPG sprays. The present work investigates the geometry of LPG sprays, including spray tip penetration, spray angle, projected spray area and spray volume, by using schlieren photography and digital image processing techniques. Two types of single nozzle injectors were studied, with the same nozzle diameter, but one with and one without a double-hole flow-split head. A code developed to analyse the results directly from the digitized images is shown to be more accurate and efficient than manual measurement and analysis. Test results show that a higher injection pressure produces a longer spray tip penetration, a larger projected spray area and spray volume, but a smaller spray cone angle. The injector with the double-hole split-head nozzle produces better atomization and shorter tip penetration at medium and late injection times, but longer tip penetration in the early stage.

  10. The effect of local parameters on gas turbine emissions

    NASA Technical Reports Server (NTRS)

    Kauffman, C. W.; Correa, S. M.; Orozco, N. J.

    1980-01-01

    Gas turbine engine inlet parameters reflect changes in local atmospheric conditions. The pollutant emissions for the engine reflects these changes. In attempting to model the effect of the changing ambient conditions on the emissions it was found that these emissions exhibit an extreme sensitivity to some of the details of the combustion process such as the local fuel-air ratio and the size of the drops in the fuel spray. Fuel-air ratios have been mapped under nonburning conditions using a single JT8D-17 combustion can at simulated idle conditions, and significant variations in the local values have been found. Modelling of the combustor employs a combination of perfectly stirred and plug flow reactors including a finite rate vaporization treatment of the fuel spray. Results show that a small increase in the mean drop size can lead to a large increase in hydrocarbon emissions and decreasing the value of the CO-OH rate constant can lead to large increases in the carbon monoxide emissions. These emissions may also be affected by the spray characteristics with larger drops retarding the combustion process. Hydrocarbon, carbon monoxide, and oxides of nitrogen emissions calculated using the model accurately reflect measured emission variations caused by changing engine inlet conditions.

  11. The electrospray: Fundamentals and combustion applications

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro

    1993-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment. In view of the nearly unsurmountable difficulties of this two-phase flow, it would be useful to use an experimental arrangement that allow a systematic study of spray evolution and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones. An Electrostatic Spray (ES) of charged droplets lends itself to this type of combustion experiments under well-defined conditions and can be used to synthesize gradually more complex spray environments. In its simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip. This jet breaks up farther downstream into a fine spray of charged droplets. Several advantages distinguish the electrospray from alternative atomization techniques: the self-dispersion property of the spray due to coulombic repulsion; the absence of droplet coalescence; the potential control of the trajectories of charged droplets by suitable disposition of electrostatic fields; and the decoupling of atomization, which is strictly electrostatic, from gas flow processes. Furthermore, as recently shown in our laboratory, the electrospray can produce quasi-monodisperse droplets over a very broad size range (1-100 microns). The ultimate objective of this research project is to study the formation and burning of electrosprays of liquid fuels first in laminar regimes and then in turbulent ones. Combustion will eventually be investigated in conditions of three-dimensional droplet-droplet interaction, for which experimental studies have been limited to either qualitative observations in sprays or more quantitative observations on simplified systems consisting of a small number of droplets or droplet arrays. The compactness and potential controllability of this spray generaiton system makes it appealing for studies to be undertaken in the next two years on electrospray combustion in reduced-gravity environments such as those achievable at NASA microgravity test facilities.

  12. A multi-scalar PDF approach for LES of turbulent spray combustion

    NASA Astrophysics Data System (ADS)

    Raman, Venkat; Heye, Colin

    2011-11-01

    A comprehensive joint-scalar probability density function (PDF) approach is proposed for large eddy simulation (LES) of turbulent spray combustion and tests are conducted to analyze the validity and modeling requirements. The PDF method has the advantage that the chemical source term appears closed but requires models for the small scale mixing process. A stable and consistent numerical algorithm for the LES/PDF approach is presented. To understand the modeling issues in the PDF method, direct numerical simulation of a spray flame at three different fuel droplet Stokes numbers and an equivalent gaseous flame are carried out. Assumptions in closing the subfilter conditional diffusion term in the filtered PDF transport equation are evaluated for various model forms. In addition, the validity of evaporation rate models in high Stokes number flows is analyzed.

  13. Investigation of spray characteristics from a low-pressure common rail injector for use in a homogeneous charge compression ignition engine

    NASA Astrophysics Data System (ADS)

    Lee, Kihyung; Reitz, Rolf D.

    2004-03-01

    Homogeneous charge compression ignition (HCCI) combustion provides extremely low levels of pollutant emissions, and thus is an attractive alternative for future IC engines. In order to achieve a uniform mixture distribution within the engine cylinder, the characteristics of the fuel spray play an important role in the HCCI engine concept. It is well known that high-pressure common rail injection systems, mainly used in diesel engines, achieve poor mixture formation because of the possibility of direct fuel impingement on the combustion chamber surfaces. This paper describes spray characteristics of a low-pressure common rail injector which is intended for use in an HCCI engine. Optical diagnostics including laser diffraction and phase Doppler methods, and high-speed camera photography, were applied to measure the spray drop diameter and to investigate the spray development process. The drop sizing results of the laser diffraction method were compared with those of a phase Doppler particle analyser (PDPA) to validate the accuracy of the experiments. In addition, the effect of fuel properties on the spray characteristics was investigated using n-heptane, Stoddard solvent (gasoline surrogate) and diesel fuel because HCCI combustion is sensitive to the fuel composition. The results show that the injector forms a hollow-cone sheet spray rather than a liquid jet, and the atomization efficiency is high (small droplets are produced). The droplet SMD ranged from 15 to 30 µm. The spray break-up characteristics were found to depend on the fuel properties. The break-up time for n-heptane is shorter and the drop SMD is smaller than that of Stoddard solvent and diesel fuel.

  14. Atomization and combustion performance of antimisting kerosene and jet fuel

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Parikh, P.; Sarohia, V.

    1983-01-01

    Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.

  15. Spray combustion at normal and reduced gravity in counterflow and co-flow configurations

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1995-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment In view of the nearly insurmountable difficulties of this two-phase flow, a systematic study of spray evaporation and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones, would be useful. A few years ago we proposed to use an electrostatic spray of charged droplets for this type of combustion experiments under well-defined conditions. In the simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip (cone-jet mode). This jet breaks up farther downstream into a spray of charged droplets - the so-called ElectroSpray (ES). Several advantages distinguish the electrospray from alternative atomization techniques: (1) it can produce quasi-monodisperse droplets over a phenomenal size range; (2) the atomization, that is strictly electrostatic, is decoupled from gas flow processes, which provides some flexibility in the selection and control of the experimental conditions; (3) the Coulombic repulsion of homopolarly charged droplets induces spray self-dispersion and prevents droplet coalescence; (4) the ES provides the opportunity of studying regimes of slip between droplets and host gas without compromising the control of the spray properties; and (5) the compactness and potential controllability of this spray generation system makes it appealing for studies in reduced-gravity environments aimed at isolating the spray behavior from natural convection complications. With these premises, in March 1991 we initiated a series of experiments under NASA sponsorship (NAG3-1259 and 1688) in which the ES was used as a research tool to examine spray combustion in counter-flow and co-flow spray diffusion flames, as summarized below. The ultimate objective of this investigation is to examine the formation and burning of sprays of liquid fuels, at both normal and reduced gravity, first in laminar regimes and then in turbulent ones.

  16. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM, a computational model developed at Glenn, that simulates the cavitational collapse of a single bubble in a liquid (water) and the subsequent combustion of the gaseous contents inside the bubble. The model solves the time-dependent, compressible Navier-Stokes equations in one-dimension with finite-rate chemical kinetics using the CHEMKIN package. Specifically, parameters such as frequency, pressure, bubble radius, and the equivalence ratio were varied while examining their effect on the maximum temperature, radius, and chemical species. These studies indicate that the radius of the bubble is perhaps the most critical parameter governing bubble combustion dynamics and its efficiency. Based on the results of the parametric studies, we plan on conducting experiments to study the effect of ultrasonic perturbations on the bubble generation process with respect to the bubble radius and size distribution.

  17. Numerical modeling for dilute and dense sprays

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.; Ziebarth, J. P.; Wang, T. S.

    1992-01-01

    We have successfully implemented a numerical model for spray-combustion calculations. In this model, the governing gas-phase equations in Eulerian coordinate are solved by a time-marching multiple pressure correction procedure based on the operator-splitting technique. The droplet-phase equations in Lagrangian coordinate are solved by a stochastic discrete particle technique. In order to simplify the calculation procedure for the circulating droplets, the effective conductivity model is utilized. The k-epsilon models are utilized to characterize the time and length scales of the gas phase in conjunction with turbulent modulation by droplets and droplet dispersion by turbulence. This method entails random sampling of instantaneous gas flow properties and the stochastic process requires a large number of computational parcels to produce the satisfactory dispersion distributions even for rather dilute sprays. Two major improvements in spray combustion modelings were made. Firstly, we have developed a probability density function approach in multidimensional space to represent a specific computational particle. Secondly, we incorporate the Taylor Analogy Breakup (TAB) model for handling the dense spray effects. This breakup model is based on the reasonable assumption that atomization and drop breakup are indistinguishable processes within a dense spray near the nozzle exit. Accordingly, atomization is prescribed by injecting drops which have a characteristic size equal to the nozzle exit diameter. Example problems include the nearly homogeneous and inhomogeneous turbulent particle dispersion, and the non-evaporating, evaporating, and burning dense sprays. Comparison with experimental data will be discussed in detail.

  18. Vacuum Plasma Spraying Replaces Electrodeposition

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.

    1992-01-01

    Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.

  19. Symposium /International/ on Combustion, 18th, University of Waterloo, Waterloo, Ontario, Canada, August 17-22, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Problems related to combustion generated pollution are explored, taking into account the mechanism of NO formation from nitrogen compounds in hydrogen flames studied by laser fluorescence, the structure and similarity of nitric oxide production in turbulent diffusion flames, the effect of steam addition on NO formation, and the formation of NO2 by laminar flames. Other topics considered are concerned with propellant combustion, fluidized bed combustion, the combustion of droplets and sprays, premixed flame studies, fire studies, and flame stabilization. Attention is also given to coal flammability, chemical kinetics, turbulent combustion, soot, coal combustion, the modeling of combustion processes, combustion diagnostics, detonations and explosions, ignition, internal combustion engines, combustion studies, and furnaces.

  20. Flame Acceleration and Transition to Detonation in High Speed Turbulent Combustion

    DTIC Science & Technology

    2016-12-21

    gas mixtures and sprays is dif- ficult to overestimate, as it is the main process in all internal-combustion engines used for propulsion and energy...generation. These include piston engines, gas turbines, various types of jet engines, and some rocket engines . On the other hand , preventing high...speed combustion is critical for the safety of any human activities that involve handling of po- t entially explosive gases or volatile liquids . Thus

  1. Exhaust after-treatment system with in-cylinder addition of unburnt hydrocarbons

    DOEpatents

    Coleman, Gerald N.; Kesse, Mary L.

    2007-10-30

    Certain exhaust after-treatment devices, at least periodically, require the addition of unburnt hydrocarbons in order to create reductant-rich exhaust conditions. The present disclosure adds unburnt hydrocarbons to exhaust from at least one combustion chamber by positioning, at least partially within a combustion chamber, a mixed-mode fuel injector operable to inject fuel into the combustion chamber in a first spray pattern with a small average angle relative to a centerline of the combustion chamber and a second spray pattern with a large average angle relative to the centerline of the combustion chamber. An amount of fuel is injected in the first spray pattern into a non-combustible environment within the at least one combustion chamber during at least one of an expansion stroke and exhaust stroke. The exhaust with the unburnt amount of fuel is moved into an exhaust passage via an exhaust valve.

  2. Hydrogen-rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Cerini, D. J. (Inventor)

    1976-01-01

    A process and apparatus are described for producing hydrogen-rich product gases. A spray of liquid hydrocarbon is mixed with a stream of air in a startup procedure and the mixture is ignited for partial oxidation. The stream of air is then heated by the resulting combustion to reach a temperature such that a signal is produced. The signal triggers a two way valve which directs liquid hydrocarbon from a spraying mechanism to a vaporizing mechanism with which a vaporized hydrocarbon is formed. The vaporized hydrocarbon is subsequently mixed with the heated air in the combustion chamber where partial oxidation takes place and hydrogen-rich product gases are produced.

  3. Symposium on Combustion /International/, 16th, Massachusetts Institute of Technology, Cambridge, Mass., August 15-20, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aspects of combustion technology in power systems are considered, taking into account a combustion in large boilers, the control of over-all thermal efficiency of combustion heating systems, a comparison of mathematical models of the radiative behavior of a large-scale experimental furnace, a concentric multiannular swirl burner, and the effects of water introduction on diesel engine combustion and emissions. Attention is also given to combustion and related processes in energy production from coal, spray and droplet combustion, soot formation and growth, the kinetics of elementary reactions, flame structure and chemistry, propellant ignition and combustion, fire and explosion research, mathematical modeling, high output combustion systems, turbulent flames and combustion, and ignition, optical, and electrical properties.

  4. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  5. Prediction of high frequency combustion instability in liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Kim, Y. M.; Chen, C. P.; Ziebarth, J. P.; Chen, Y. S.

    1992-01-01

    The present use of a numerical model developed for the prediction of high-frequency combustion stabilities in liquid propellant rocket engines focuses on (1) the overall behavior of nonlinear combustion instabilities (2) the effects of acoustic oscillations on the fuel-droplet vaporization and combustion process in stable and unstable engine operating conditions, oscillating flowfields, and liquid-fuel trajectories during combustion instability, and (3) the effects of such design parameters as inlet boundary conditions, initial spray conditions, and baffle length. The numerical model has yielded predictions of the tangential-mode combustion instability; baffle length and droplet size variations are noted to have significant effects on engine stability.

  6. Computational Analysis of Spray Jet Flames

    NASA Astrophysics Data System (ADS)

    Jain, Utsav

    There is a boost in the utilization of renewable sources of energy but because of high energy density applications, combustion will never be obsolete. Spray combustion is a type of multiphase combustion which has tremendous engineering applications in different fields, varying from energy conversion devices to rocket propulsion system. Developing accurate computational models for turbulent spray combustion is vital for improving the design of combustors and making them energy efficient. Flamelet models have been extensively used for gas phase combustion because of their relatively low computational cost to model the turbulence-chemistry interaction using a low dimensional manifold approach. This framework is designed for gas phase non-premixed combustion and its implementation is not very straight forward for multiphase and multi-regime combustion such as spray combustion. This is because of the use of a conserved scalar and various flamelet related assumptions. Mixture fraction has been popularly employed as a conserved scalar and hence used to parameterize the characteristics of gaseous flamelets. However, for spray combustion, the mixture fraction is not monotonic and does not give a unique mapping in order to parameterize the structure of spray flames. In order to develop a flamelet type model for spray flames, a new variable called the mixing variable is introduced which acts as an ideal conserved scalar and takes into account the convection and evaporation of fuel droplets. In addition to the conserved scalar, it has been observed that though gaseous flamelets can be characterized by the conserved scalar and its dissipation, this might not be true for spray flamelets. Droplet dynamics has a significant influence on the spray flamelet and because of effects such as flame penetration of droplets and oscillation of droplets across the stagnation plane, it becomes important to accommodate their influence in the flamelet formulation. In order to recognize the droplet parameters needed, a rigorous parametric study is conducted for five different parameters in both physical as well as mixing variable space. The parametric study is conducted for a counterflow setup with n-heptane and inert nitrogen on the fuel side and oxygen with inert nitrogen on the oxidizer side. The computational setup (the temperature and velocity field) is validated against the experimental data from the Yale heptane counterflow flame. The five parameters that are investigated are: aerodynamic strain rate, initial droplet diameter, number of fuel droplets, droplet velocity slip ratio and pre-vaporization ratio. It is not the first time such a study has been accomplished but not a lot of research has been done for heavier fuels such as n-heptane (a very crucial reference fuel for the octane ratings in various applications). Also parameters such as droplet slip ratio and pre-vaporization ratio have not been prudently studied in the past. It is observed that though the slip ratio is not very significant in spray flamelet characterization, the pre-vaporization ratio is important to study and has an interesting influence on spray flamelet structure. In future, based on the current parametric study, the laminar spray flamelet library can be generated which will eventually be integrated to predict turbulent spray flames.

  7. Electro Spray Method for Flexible Display

    DTIC Science & Technology

    2016-05-12

    conditions which expensive and complicated.8-9) Kim et al. reported the fabrication of IZO thin films via combustion processing and obtained mobility values...metal nitrates as metal sources in solutions. Through the high self-generated energies by the combustion of acetylacetone or urea in solution...barrier to increase the mobility of solution-process-derived TFTs. Therefore, we used H2O as the solvent in our precursor solution. The use of H2O

  8. Evaporating Spray in Supersonic Streams Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.

    2006-01-01

    Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.

  9. Simulating flame lift-off characteristics of diesel and biodiesel fuels using detailed chemical-kinetic mechanisms and LES turbulence model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, S; Longman, D. E.; Luo, Z

    2012-01-01

    Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well asmore » Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.« less

  10. Diesel engine emissions and combustion predictions using advanced mixing models applicable to fuel sprays

    NASA Astrophysics Data System (ADS)

    Abani, Neerav; Reitz, Rolf D.

    2010-09-01

    An advanced mixing model was applied to study engine emissions and combustion with different injection strategies ranging from multiple injections, early injection and grouped-hole nozzle injection in light and heavy duty diesel engines. The model was implemented in the KIVA-CHEMKIN engine combustion code and simulations were conducted at different mesh resolutions. The model was compared with the standard KIVA spray model that uses the Lagrangian-Drop and Eulerian-Fluid (LDEF) approach, and a Gas Jet spray model that improves predictions of liquid sprays. A Vapor Particle Method (VPM) is introduced that accounts for sub-grid scale mixing of fuel vapor and more accurately and predicts the mixing of fuel-vapor over a range of mesh resolutions. The fuel vapor is transported as particles until a certain distance from nozzle is reached where the local jet half-width is adequately resolved by the local mesh scale. Within this distance the vapor particle is transported while releasing fuel vapor locally, as determined by a weighting factor. The VPM model more accurately predicts fuel-vapor penetrations for early cycle injections and flame lift-off lengths for late cycle injections. Engine combustion computations show that as compared to the standard KIVA and Gas Jet spray models, the VPM spray model improves predictions of in-cylinder pressure, heat released rate and engine emissions of NOx, CO and soot with coarse mesh resolutions. The VPM spray model is thus a good tool for efficiently investigating diesel engine combustion with practical mesh resolutions, thereby saving computer time.

  11. Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oran, E.S.; Boris, J.P.

    1991-01-01

    Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonationmore » transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.« less

  12. Fuel Spray Diagnostics

    NASA Technical Reports Server (NTRS)

    Humenik, F. M.; Bosque, M. A.

    1983-01-01

    Fundamental experimental data base for turbulent flow mixing models is provided and better prediction of the more complex turbulent chemical reacting flows. Analytical application to combustor design is provided and a better fundamental understanding of the combustion process.

  13. Experimental and Numerical Analysis of the Cooling Performance of Water Spraying Systems during a Fire

    PubMed Central

    Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie

    2015-01-01

    The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519

  14. Computation of Reacting Flows in Combustion Processes

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Chen, Kuo-Huey

    1997-01-01

    The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.

  15. Numerical Modeling of Suspension HVOF Spray

    NASA Astrophysics Data System (ADS)

    Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A.

    2016-02-01

    A three-dimensional two-way coupled Eulerian-Lagrangian scheme is used to simulate suspension high-velocity oxy-fuel spraying process. The mass, momentum, energy, and species equations are solved together with the realizable k-ɛ turbulence model to simulate the gas phase. Suspension is assumed to be a mixture of solid particles [mullite powder (3Al2O3·2SiO2)], ethanol, and ethylene glycol. The process involves premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. One-step global reaction is used for each mentioned reaction together with eddy dissipation model to compute the reaction rate. To simulate the droplet breakup, Taylor Analogy Breakup model is applied. After the completion of droplet breakup, and solvent evaporation/combustion, the solid suspended particles are tracked through the domain to determine the characteristics of the coating particles. Numerical simulations are validated against the experimental results in the literature for the same operating conditions. Seven or possibly eight shock diamonds are captured outside the nozzle. In addition, a good agreement between the predicted particle temperature, velocity, and diameter, and the experiment is obtained. It is shown that as the standoff distance increases, the particle temperature and velocity reduce. Furthermore, a correlation is proposed to determine the spray cross-sectional diameter and estimate the particle trajectories as a function of standoff distance.

  16. Method for treatment of tar-bearing fuel gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frauen, L.L.; Kasper, S.

    1986-01-07

    A process is described of producing a fuel gas which contains condensable tar vapor when it leaves a gasifier, the improvement wherein the tar-bearing gases are treated to remove tar therefrom. The process consists of: (a) continuously conducting hot fuel gas from a gasifier to and discharging it into a spray chamber where the hot tar-bearing gas is contacted with a fine spray of water thereby cooling the tar vapor and evaporating the water to produce a fog-like dispersion of tar in an atmosphere of fuel gas with the temperature in the spray chamber maintained above the dew point ofmore » water; (b) continuously transferring the fuel gas and the dispersion of tar and water to an electrostatic precipitator and precipitating therein at least most of the condensed tar as a liquid; (c) removing the liquid tar so precipitated and conducting at least most of it to a tar burner; (d) burning the tar with no more than the stoichiometric supply of oxygen provided by air to produce oxygen-free and tar-free hot combustion gases; (e) conducting the hot combustion gases directly into a mixer into which the fuel gas and water vapor flows from the precipitator, thereby adding to the fuel gas the sensible heat of the combustion gases; and (f) conducting the mixture so produced to a place of use as a hot fuel gas mixture.« less

  17. Predictions of spray combustion interactions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.

    1984-01-01

    Mean and fluctuating phase velocities; mean particle mass flux; particle size; and mean gas-phase Reynolds stress, composition and temperature were measured in stationary, turbulent, axisymmetric, and flows which conform to the boundary layer approximations while having well-defined initial and boundary conditions in dilute particle-laden jets, nonevaporating sprays, and evaporating sprays injected into a still air environment. Three models of the processes, typical of current practice, were evaluated. The local homogeneous flow and deterministic separated flow models did not provide very satisfactory predictions over the present data base. In contrast, the stochastic separated flow model generally provided good predictions and appears to be an attractive approach for treating nonlinear interphase transport processes in turbulent flows containing particles (drops).

  18. Optical study on thermal radiation energy of diesel spray combustion in a shock tube

    NASA Astrophysics Data System (ADS)

    Tsuboi, T.; Nagaya, K.; Ishii, K.

    . A ``tailored'' interface shock tube was used to measure the thermal energy radiated from diesel-spray combustion. Experiments were performed in a steel shock tube with a seven m long low-pressure section filled with air and a six m long high-pressure section. Pre-compressed fuel was injected through a throttling nozzle into air behind a reflected shock wave. Monochromatic emissive powers and emissive powers of the whole IR-wavelengths were followed with IR-detectors set along the central axis of the tube. Time-dependent-radii, where soot particles radiate, were also determined. Results were : (1) the tailored interface shock tube could be applied to a study of diesel-spray combustion. (2) thermal radiation energy could be described well from the ignition delay of the fuel spray.

  19. Droplet Vaporization In A Levitating Acoustic Field

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and levitated prior to ignition. Therefore, the droplets will begin to vaporize in the acoustic field thus forming the "initial conditions" for the combustion process. Understanding droplet vaporization in the acoustic field of this levitator is a necessary step that will help to interpret the experimental results obtained in low-gravity.

  20. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors

    PubMed Central

    Rudin, Thomas; Wegner, Karsten

    2013-01-01

    A new flame-assisted spray pyrolysis (FASP) reactor design is presented, which allows the use of inexpensive precursors and solvents (e.g., ethanol) for synthesis of nanoparticles (10–20 nm) with uniform characteristics. In this reactor design, a gas-assisted atomizer generates the precursor solution spray that is mixed and combusted with externally fed inexpensive fuel gases (acetylene or methane) at a defined height above the atomizing nozzle. The gaseous fuel feed can be varied to control the combustion enthalpy content of the flame and onset of particle formation. This way, the enthalpy density of the flame is decoupled from the precursor solution composition. Low enthalpy content precursor solutions are prone to synthesis of non-uniform particles (e.g., bimodal particle size distribution) by standard flame spray pyrolysis (FSP) processes. For example, metal nitrates in ethanol typically produce nanosized particles by gas-to-particle conversion along with larger particles by droplet-to-particle conversion. The present FASP design facilitates the use of such low enthalpy precursor solutions for synthesis of homogeneous nanopowders by increasing the combustion enthalpy density of the flame with low-cost, gaseous fuels. The effect of flame enthalpy density on product properties in the FASP configuration is explored by the example of Bi2O3 nanoparticles produced from bismuth nitrate in ethanol. Product powders were characterized by nitrogen adsorption, X-ray diffraction, X-ray disk centrifuge, and transmission electron microscopy. Homogeneous Bi2O3 nanopowders were produced both by increasing the gaseous fuel content and, most notably, by cutting the air entrainment prior to ignition of the spray. PMID:23408113

  1. Spray ignition measurements in a constant volume combustion vessel under engine-relevant conditions

    NASA Astrophysics Data System (ADS)

    Ramesh, Varun

    Pressure-based and optical diagnostics for ignition delay (ID) measurement of a diesel spray from a multi-hole nozzle were investigated in a constant volume combustion vessel (CVCV) at conditions similar to those in a conventional diesel engine at the start of injection (SOI). It was first hypothesized that compared to an engine, the shorter ID in a CVCV was caused by NO, a byproduct of premixed combustion. The presence of a significant concentration of NO+NO2 was confirmed experimentally and by using a multi-zone model of premixed combustion. Experiments measuring the effect of NO on ID were performed at conditions relevant to a conventional diesel engine. Depending on the temperature regime and the nature of the fuel, NO addition was found to advance or retard ignition. Constant volume ignition simulations were capable of describing the observed trends; the magnitudes were different due to the physical processes involved in spray ignition, not modeled in the current study. The results of the study showed that ID is sensitive to low NO concentrations (<100 PPM) in the low-temperature regime. A second source of uncertainty in pressure-based ID measurement is the systematic error associated with the correction used to account for the speed of sound. Simultaneous measurements of volumetric OH chemiluminescence (OHC) and pressure during spray ignition found the OHC to closely resemble the pressure-based heat release rate for the full combustion duration. The start of OHC was always found to be shorter than the pressure-based ID for all fuels and conditions tested by 100 ms. Experiments were also conducted measuring the location and timing of high-temperature ignition and the steady-state lift-off length by high-speed imaging of OHC during spray ignition. The delay period calculated using the measured ignition location and the bulk average speed of sound was in agreement with the delay between OHC and the pressure-based ID. Results of the study show that start of OHC is coupled to detectable heat release and the two measurements are correlated by the time required for the pressure wave to propagate at the speed of sound between the ignition site and the transducer.

  2. Simulation of preburner sprays, volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    The present study considered characteristics of sprays under a variety of conditions. Control of these sprays is important as the spray details can control both rocket combustion stability and efficiency. Under the present study Imperial College considered the following: (1) Measurement of the size and rate of spread of the sprays produced by single coaxial airblast nozzles with axial gaseous stream. The local size, velocity, and flux characteristics for a wide range of gas and liquid flowrates were measured, and the results were correlated with the conditions of the spray at the nozzle exit. (2) Examination of the effect of the geometry of single coaxial airblast atomizers on spray characteristics. The gas and liquid tube diameters were varied over a range of values, the liquid tube recess was varied, and the shape of the exit of the gaseous jet was varied from straight to converging. (3) Quantification of the effect of swirl in the gaseous stream on the spray characteristics produced by single coaxial airblast nozzles. (4) Quantification of the effect of reatomization by impingement of the spray on a flat disc positioned around 200 mm from the nozzle exit. This models spray impingement on the turbopump dome during the startup process of the preburner of the SSME. (5) Study of the interaction between multiple sprays without and with swirl in their gaseous stream. The spray characteristics of single nozzles were compared with that of three identical nozzles with their axis at a small distance from each other. This study simulates the sprays in the preburner of the SSME, where there are around 260 elements on the faceplate of the combustion chamber. (6) Design an experimental facility to study the characteristics of sprays at high pressure conditions and at supercritical pressure and temperature for the gas but supercritical pressure and subcritical temperature for the liquid.

  3. Heat Flux Analysis of a Reacting Thermite Spray Impingent on a Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric S. Collins; Michelle L. Pantoya; Michael A. Daniels

    2012-03-01

    Spray combustion from a thermite reaction is a new area of research relevant to localized energy generation applications, such as welding or cutting. In this study, we characterized the heat flux of combustion spray impinging on a target from a nozzle for three thermite mixtures. The reactions studied include aluminum (Al) with iron oxide (Fe2O3), Al with copper oxide (CuO), and Al with molybdenum oxide (MoO3). Several standoff distances (i.e., distance from the nozzle exit to the target) were analyzed. A fast response heat flux sensor was engineered for this purpose and is discussed in detail. Results correlated substrate damagemore » to a threshold heat flux of 4550 W/cm2 for a fixed-nozzle configuration. Also, higher gas-generating thermites were shown to produce a widely dispersed spray and be less effective at imparting kinetic energy damage to a target. These results provide an understanding of the role of thermal and physical properties (i.e., such as heat of combustion, gas generation, and particle size) on thermite spray combustion performance measured by damaging a target substrate.« less

  4. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; GTL jet fuel Consortium Team

    2012-11-01

    Gas-to-Liquid (GTL) Synthetic Paraffinic Kerosene (SPK) fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics. GTL fuels are expected to meet the vital qualities such as atomization, combustion and emission characteristics of conventional jet fuels. It is imperative to understand fuel atomization in order to gain insights on the combustion and emission aspects of an alternative fuel. In this work spray characteristics of GTL-SPK, which could be used as a drop-in fuel in aircraft gas turbine engines, is studied. This work outlines the spray experimental facility, the methodology used and the results obtained using two SPK's with different chemical compositions. The spray characteristics, such as droplet size and distribution, are presented at three differential pressures across a simplex nozzle and compared with that of the conventional Jet A-1 fuel. Experimental results clearly show that although the chemical composition is significantly different between SPK's, the spray characteristics are not very different. This could be attributed to the minimal difference in fluid properties between the SPK's. Also, the spray characteristics of SPK's show close resemblance to the spray characteristics of Jet A-1 fuel.

  5. Spray combustion under oscillatory pressure conditions

    NASA Technical Reports Server (NTRS)

    Jacobs, H. R.; Santoro, R. J.

    1991-01-01

    The performance and stability of liquid rocket engines is often argued to be significantly impacted by atomization and droplet vaporization processes. In particular, combustion instability phenomena may result from the interactions between the oscillating pressure field present in the rocket combustor and the fuel and oxidizer injection process. Few studies have been conducted to examine the effects of oscillating pressure fields on spray formation and its evolution under rocket engine conditions. The pressure study is intended to address the need for such studies. In particular, two potentially important phenomena are addressed in the present effort. The first involves the enhancement of the atomization process for a liquid jet subjected to an oscillating pressure field of known frequency and amplitude. The objective of this part of the study is to examine the coupling between the pressure field and or the resulting periodically perturbed velocity field on the breakup of the liquid jet. In particular, transverse mode oscillations are of interest since such modes are considered of primary importance in combustion instability phenomena. The second aspect of the project involves the effects of an oscillating pressure on droplet coagulation and secondary atomization. The objective of this study is to examine the conditions under which phenomena following the atomization process are affected by perturbations to the pressure or velocity fields. Both coagulation and represent a coupling mechanism between the pressure field and the energy release process in rocket combustors. It is precisely this coupling which drives combustion instability phenomena. Consequently, the present effort is intended to provide the fundamental insights needed to evaluate these processes as important mechanisms in liquid rocket instability phenomena.

  6. Numerical study of combustion processes in afterburners

    NASA Technical Reports Server (NTRS)

    Zhou, Xiaoqing; Zhang, Xiaochun

    1986-01-01

    Mathematical models and numerical methods are presented for computer modeling of aeroengine afterburners. A computer code GEMCHIP is described briefly. The algorithms SIMPLER, for gas flow predictions, and DROPLET, for droplet flow calculations, are incorporated in this code. The block correction technique is adopted to facilitate convergence. The method of handling irregular shapes of combustors and flameholders is described. The predicted results for a low-bypass-ratio turbofan afterburner in the cases of gaseous combustion and multiphase spray combustion are provided and analyzed, and engineering guides for afterburner optimization are presented.

  7. Spray Characteristics of a Hybrid Twin-Fluid Pressure-Swirl Atomizer

    NASA Technical Reports Server (NTRS)

    Durham, M. J.; Sojka, P. E.; Ashmore, C. B.

    2004-01-01

    The spray performance of a fuel injection system applicable for use in main combustion chamber of an oxidizer-rich staged combustion (ORSC) cycles is presented. The experimental data reported here include mean drop size and drop size distribution, spray cone half-angle, and momentum rate (directly related to spray penetration). The maximum entropy formalism, MEF, method to predict drop size distribution is applied and compared to the experimental data. Geometric variables considered include the radius of the injector inlet orifice plate through which oxidizer flows (&) and the exposed length from the fuel inlet to the injector exit plane (L2). Operating conditions that were varied include the liquid mass flow rate and air mass flow rate. For orifices B and C there is a significant dependence of D3Z on both the air and liquid mass flow rates, as well as on L2. For the A orifice, the momentum rate of the air flow appears to exceed a threshold value above which a constant D32 is obtained. Using the MEF method, a semi-analytical process was developed to model the spray distribution using two input parameters (q = 0.4 and Dso). The momentum rate of the spray is directly related to the air and liquid mass flow rates. The cone half angle of the spray ranges from 25 to 17 degrees. The data resulting from this project will eventually be used to develop advanced rocket systems.

  8. Catalytic ignitor for regenerative propellant gun

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Ferraro, Ned W. (Inventor)

    1994-01-01

    An ignitor initiates combustion of liquid propellant in a gun by utilizing a heated catalyst onto which the liquid propellant is sprayed in a manner which mitigates the occurrence of undesirable combustion chamber oscillations. The heater heats the catalyst sufficiently to provide the activation necessary to initiate combustion of the liquid propellant sprayed thereonto. Two embodiments of the ignitor and three alternative mountings thereof within the combustion chamber are disclosed. The ignitor may also be utilized to dispose of contaminated, excess, or waste liquid propellant in a safe, controlled, simple, and reliable manner.

  9. Catalytic Ignitor for Regenerative Propellant Gun

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Ferraro, Ned W. (Inventor)

    1997-01-01

    An ignitor initiates combustion of liquid propellant in a gun by utilizing a heated catalyst onto which the liquid propellant is sprayed in a manner which mitigates the occurrence of undesirable combustion chamber oscillations. The heater heats the catalyst sufficiently to provide the activation necessary to initiate combustion of the liquid propellant sprayed thereonto. Two embodiments of the igniter and three alternative mountings thereof within the combustion chamber are disclosed. The ignitor may also be utilized to dispose of contaminated, excess, or waste liquid propellant in a safe, controlled, simple, and reliable manner.

  10. Spray atomization of bio-oil/ethanol blends with externally mixed nozzles

    USDA-ARS?s Scientific Manuscript database

    Experiments were conducted to investigate the properties of sprays of pyrolysis oil from biomass (bio-oil) using an air assisted atomization nozzle operated without combustion to explore the potential of pyrolysis oil combustion in industrial and home furnaces. Bio-oil was blended with ethanol to im...

  11. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners while maintaining the superior CuCrNb properties are also presented.

  12. Numerical Study of Suspension HVOF Spray and Particle Behavior Near Flat and Cylindrical Substrates

    NASA Astrophysics Data System (ADS)

    Jadidi, M.; Yeganeh, A. Zabihi; Dolatabadi, A.

    2018-01-01

    In thermal spray processes, it is demonstrated that substrate shape and location have significant effects on particle in-flight behavior and coatings quality. In the present work, the suspension high-velocity oxygen fuel (HVOF) spraying process is modeled using a three-dimensional two-way coupled Eulerian-Lagrangian approach. Flat and cylindrical substrates are placed at different standoff distances, and particles characteristics near the substrates and upon impact are studied. Suspension is a mixture of ethanol, ethylene glycol, and mullite solid powder (3Al2O3·2SiO2) in this study. Suspension droplets with predefined size distribution are injected into the combustion chamber, and the droplet breakup phenomenon is simulated using Taylor analogy breakup model. Furthermore, the eddy dissipation model is used to model the premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. To simulate the gas phase turbulence, the realizable k-ɛ model is applied. In addition, as soon as the breakup and combustion phenomena are completed, the solid/molten mullite particles are tracked through the domain. It is shown that as the standoff distance increases the particle temperature and velocity decrease and the particle trajectory deviation becomes more significant. The effect of stagnation region on the particle velocity and temperature is also discussed in detail. The catch rate, which is defined as the ratio of the mass of landed particles to injected particles, is calculated for different substrate shapes and standoff distances in this study. The numerical results presented here is consistent with the experimental data in the literature for the same operating conditions.

  13. Shock tube studies of thermal radiation of diesel-spray combustion under a range of spray conditions

    NASA Astrophysics Data System (ADS)

    Tsuboi, T.; Kurihara, Y.; Takasaki, M.; Katoh, R.; Ishii, K.

    2007-05-01

    A tailored interface shock tube and an over-tailored interface shock tube were used to measure the thermal energy radiated during diesel-spray combustion of light oil, α-methylnaphthalene and cetane by changing the injection pressure. The ignition delay of methanol and the thermal radiation were also measured. Experiments were performed in a steel shock tube with a 7 m low-pressure section filled with air and a 6 m high-pressure section. Pre-compressed fuel was injected through a throttle nozzle into air behind a reflected shock wave. Monochromatic emissive power and the power emitted across all infrared wavelengths were measured with IR-detectors set along the central axis of the tube. Time-dependent radii where soot particles radiated were also determined, and the results were as follows. For diesel spray combustion with high injection pressures (from 10 to 80 MPa), the thermal radiation energy of light oil per injection increased with injection pressure from 10 to 30 MPa. The energy was about 2% of the heat of combustion of light oil at P inj = about 30 MPa. At injection pressure above 30 MPa the thermal radiation decreased with increasing injection pressure. This profile agreed well with the combustion duration, the flame length, the maximum amount of soot in the flame, the time-integrated soot volume and the time-integrated flame volume. The ignition delay of light oil was observed to decrease monotonically with increasing fuel injection pressure. For diesel spray combustion of methanol, the thermal radiation including that due to the gas phase was 1% of the combustion heat at maximum, and usually lower than 1%. The thermal radiation due to soot was lower than 0.05% of the combustion heat. The ignition delays were larger (about 50%) than those of light oil. However, these differences were within experimental error.

  14. Effect of Fuel Additives on Spray Performance of Alternative Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2015-11-01

    Role of alternative fuels on reducing the combustion pollutants is gaining momentum in both land and air transport. Recent studies have shown that addition of nanoscale metal particles as fuel additives to liquid fuels have a positive effect not only on their combustion performance but also in reducing the pollutant formation. However, most of those studies are still in the early stages of investigation with the addition of nanoparticles at low weight percentages. Such an addition can affect the hydrodynamic and thermo-physical properties of the fuel. In this study, the near nozzle spray performance of gas-to-liquid jet fuel with and without the addition of alumina nanoparticles are investigated at macro- and microscopic levels using optical diagnostic techniques. At macroscopic level, the addition of nanoparticles is seen to enhance the sheet breakup process when compared to that of the base fuel. Furthermore, the microscopic spray characteristics such as droplet size and velocity are also found to be affected. Although the addition of nanoscale metal particles at low weight percentages does not affect the bulk fluid properties, the atomization process is found to be affected in the near nozzle region. Funded by Qatar National Research Fund.

  15. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  16. Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric

    2015-12-01

    An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a detailed combustion model along with a dynamic structure LES model to evaluate its performance at engine-relevant conditions and understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a detailed combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of RANS predictions. The LES data suggests that the first ignition initiatesmore » in lean mixture and propagates to rich mixture, and the main ignition happens in rich mixture, preferable less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled and modulated by flame propagation. Soot predictions by LES present much better agreement with experiments compared to RANS both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 2 and 5 realizations can reach 99\\% of similarity to the target average of 16 realizations on the temperature and mixture fraction fields, respectively. However, more realizations are necessary for OH and soot mass fraction due to their high fluctuations.« less

  17. Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions

    DOE PAGES

    Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric; ...

    2015-10-14

    An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier—Stokes (RANS) predictions. Themore » LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. In conclusion, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.« less

  18. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  19. Development of a reduced tri-propylene glycol monomethyl ether– n -hexadecane–poly-aromatic hydrocarbon mechanism and its application for soot prediction

    DOE PAGES

    Park, Seunghyun; Ra, Youngchul; Reitz, Rolf D.; ...

    2016-03-01

    A reduced chemical kinetic mechanism for Tri-Propylene Glycol Monomethyl Ether (TPGME) has been developed and applied to computational fluid dynamics (CFD) calculations for predicting combustion and soot formation processes. The reduced TPGME mechanism was combined with a reduced n-hexadecane mechanism and a Poly-Aromatic Hydrocarbon (PAH) mechanism to investigate the effect of fuel oxygenation on combustion and soot emissions. The final version of the TPGME-n-hexadecane-PAH mechanism consists of 144 species and 730 reactions and was validated with experiments in shock tubes as well as in a constant volume spray combustion vessel (CVCV) from the Engine Combustion Network (ECN). The effects ofmore » ambient temperature, varying oxygen content in the tested fuels on ignition delay, spray liftoff length and soot formation under diesel-like conditions were analyzed and addressed using multidimensional reacting flow simulations and the reduced mechanism. Here, the results show that the present reduced mechanism gives reliable predictions of the combustion characteristics and soot formation processes. In the CVCV simulations, two important trends were identified. First, increasing the initial temperature in the CVCV shortens the ignition delay and lift-off length, reduces the fuel-air mixing, thereby increasing the soot levels. Secondly, fuel oxygenation introduces more oxygen into the central region of a fuel jet and reduces residence times of fuel rich area in active soot forming regions, thereby reducing soot levels.« less

  20. Development of a reduced tri-propylene glycol monomethyl ether– n -hexadecane–poly-aromatic hydrocarbon mechanism and its application for soot prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Seunghyun; Ra, Youngchul; Reitz, Rolf D.

    A reduced chemical kinetic mechanism for Tri-Propylene Glycol Monomethyl Ether (TPGME) has been developed and applied to computational fluid dynamics (CFD) calculations for predicting combustion and soot formation processes. The reduced TPGME mechanism was combined with a reduced n-hexadecane mechanism and a Poly-Aromatic Hydrocarbon (PAH) mechanism to investigate the effect of fuel oxygenation on combustion and soot emissions. The final version of the TPGME-n-hexadecane-PAH mechanism consists of 144 species and 730 reactions and was validated with experiments in shock tubes as well as in a constant volume spray combustion vessel (CVCV) from the Engine Combustion Network (ECN). The effects ofmore » ambient temperature, varying oxygen content in the tested fuels on ignition delay, spray liftoff length and soot formation under diesel-like conditions were analyzed and addressed using multidimensional reacting flow simulations and the reduced mechanism. Here, the results show that the present reduced mechanism gives reliable predictions of the combustion characteristics and soot formation processes. In the CVCV simulations, two important trends were identified. First, increasing the initial temperature in the CVCV shortens the ignition delay and lift-off length, reduces the fuel-air mixing, thereby increasing the soot levels. Secondly, fuel oxygenation introduces more oxygen into the central region of a fuel jet and reduces residence times of fuel rich area in active soot forming regions, thereby reducing soot levels.« less

  1. Fundamental Study of a Single Point Lean Direct Injector. Part I: Effect of Air Swirler Angle and Injector Tip Location on Spray Characteristics

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2014-01-01

    Lean direct injection (LDI) is a combustion concept to reduce oxides of nitrogen (NOx) for next generation aircraft gas turbine engines. These newer engines have cycles that increase fuel efficiency through increased operating pressures, which increase combustor inlet temperatures. NOx formation rates increase with higher temperatures; the LDI strategy avoids high temperature by staying fuel lean and away from stoichiometric burning. Thus, LDI relies on rapid and uniform fuel/air mixing. To understand this mixing process, a series of fundamental experiments are underway in the Combustion and Dynamics Facility at NASA Glenn Research Center. This first set of experiments examines cold flow (non-combusting) mixing using air and water. Using laser diagnostics, the effects of air swirler angle and injector tip location on the spray distribution, recirculation zone, and droplet size distribution are examined. Of the three swirler angles examined, 60 deg is determined to have the most even spray distribution. The injector tip location primarily shifts the flow without changing the structure, unless the flow includes a recirculation zone. When a recirculation zone is present, minimum axial velocity decreases as the injector tip moves downstream towards the venturi exit; also the droplets become more uniform in size and angular distribution.

  2. Fundamental Study of a Single Point Lean Direct Injector. Part I: Effect of Air Swirler Angle and Injector Tip Location on Spray Characteristics

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2015-01-01

    Lean direct injection (LDI) is a combustion concept to reduce oxides of nitrogen (NOx) for next generation aircraft gas turbine engines. These newer engines have cycles that increase fuel efficiency through increased operating pressures, which increase combustor inlet temperatures. NOx formation rates increase with higher temperatures; the LDI strategy avoids high temperature by staying fuel lean and away from stoichiometric burning. Thus, LDI relies on rapid and uniform fuel/air mixing. To understand this mixing process, a series of fundamental experiments are underway in the Combustion and Dynamics Facility at NASA Glenn Research Center. This first set of experiments examines cold flow (non-combusting) mixing using air and water. Using laser diagnostics, the effects of air swirler angle and injector tip location on the spray distribution, recirculation zone, and droplet size distribution are examined. Of the three swirler angles examined, 60 degrees is determined to have the most even spray distribution. The injector tip location primarily shifts the flow without changing the structure, unless the flow includes a recirculation zone. When a recirculation zone is present, minimum axial velocity decreases as the injector tip moves downstream towards the venturi exit; also the droplets become more uniform in size and angular distribution.

  3. Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jian; Moon, Seoksu; Nishida, Keiya

    This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The imagesmore » show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)« less

  4. Evaluation of a locally homogeneous flow model of spray combustion

    NASA Technical Reports Server (NTRS)

    Mao, C. P.; Szekely, G. A., Jr.; Faeth, G. M.

    1980-01-01

    A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made.

  5. Spray visualization of alternative fuels at hot ambient conditions

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2017-11-01

    Gas-to-Liquid (GTL) has gained significant interest as drop-in alternative jet fuel owing to its cleaner combustion characteristics. The physical and evaporation properties of GTL fuels are different from those of the conventional jet fuels. Those differences will have an effect on the spray, and in turn, the combustion performance. In this study, the non-reacting near nozzle spray dynamics such as spray cone angle, liquid sheet breakup and liquid velocity of GTL fuel will be investigated and compared with those of the conventional jet fuel. This work is a follow up of the preliminary study performed at atmospheric ambient conditions where differences were observed in the near nozzle spray characteristics between the fuels. Whereas, in this study the spray visualization will be performed in a hot and inert environment to account for the difference in evaporation characteristics of the fuels. The spray visualization images will be captured using the shadowgraph technique. A rigorous statistical analysis of the images will be performed to compare the spray dynamics between the fuels.

  6. Alternative Metal Hot Cutting Operations for Opacity

    DTIC Science & Technology

    2014-11-01

    Hydrogen regulator $232.00 1,250 $0.19 Cutting torch $453.00 1,250 $0.36 Fuel and oxygen hoses $148.00* 500 $0.30 Water hose & spray nozzle $56.00... spray nozzle $56* 500 $0.11 Black box $1088* 1,250 $0.87 4 Black box hoses $780* 500 $1.56 2 Full face respirator $310* 750 $0.42 Total: $3.22...compliance with air pollution and clean water requirements when used in combustion processes. To specifically investigate its visible PM emissions in

  7. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  8. Spray combustion experiments and numerical predictions

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Bulzan, Daniel L.; Chen, Kuo-Huey

    1993-01-01

    The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines.

  9. Method of burning lightly loaded coal-water slurries

    DOEpatents

    Krishna, C.R.

    1984-07-27

    In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.

  10. Review of alternative fuels data bases

    NASA Technical Reports Server (NTRS)

    Harsha, P. T.; Edelman, R. B.

    1983-01-01

    Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.

  11. CFD Analysis of Spray Combustion and Radiation in OMV Thrust Chamber

    NASA Technical Reports Server (NTRS)

    Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.; Gross, K.

    1993-01-01

    The Variable Thrust Engine (VTE), developed by TRW, for the Orbit Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The propellants are pressure fed into the combustion chamber through a single pintle injection element. The performance of this engine is dependent on the pintle geometry and a number of complex physical phenomena and their mutual interactions. The most important among these are (1) atomization of the liquid jets into fine droplets; (2) the motion of these droplets in the gas field; (3) vaporization of the droplets (4) turbulent mixing of the fuel and oxidizer; and (5) hypergolic reaction between MMH and NTO. Each of the above phenomena by itself poses a considerable challenge to the technical community. In a reactive flow field of the kind occurring inside the VTE, the mutual interactions between these physical processes tend to further complicate the analysis. The objective of this work is to develop a comprehensive mathematical modeling methodology to analyze the flow field within the VTE. Using this model, the effect of flow parameters on various physical processes such as atomization, spray dynamics, combustion, and radiation is studied. This information can then be used to optimize design parameters and thus improve the performance of the engine. The REFLEQS CFD Code is used for solving the fluid dynamic equations. The spray dynamics is modeled using the Eulerian-Lagrangian approach. The discrete ordinate method with 12 ordinate directions is used to predict the radiative heat transfer in the OMV combustion chamber, nozzle, and the heat shield. The hypergolic reaction between MMH and NTO is predicted using an equilibrium chemistry model with 13 species. The results indicate that mixing and combustion is very sensitive to the droplet size. Smaller droplets evaporate faster than bigger droplets, leading to a well mixed zone in the combustion chamber. The radiative heat flux at combustion chamber and nozzle walls are an order of negligible less than the conductive heat flux. Simulations performed with the heat shield show that a negligible amount of fluid is entrained into the heat shield region. However, the heat shield is shown to be effective in protecting the OMV structure surrounding the engine from the radiated heat.

  12. Combustion of liquid sprays at high pressures

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1977-01-01

    The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.

  13. Combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Claus, R. W.

    1985-01-01

    Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.

  14. The influence of fuel type to combustion characteristic in diffusion flame drying by computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Septiani, Eka Lutfi; Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2017-05-01

    Diffusion flame spray drying has become promising method in nanoparticles synthesis giving several advantages and low operation cost. In order to scale up the process which needs high experimentation time and cost, Computational Fluid Dynamics (CFD) by Ansys Fluent 15.0 software has been used. Combustion characteristic in diffusion flame reactor may affects particle size distribution. This study aims to observe influence of fuel type to combustion characteristic in the reactor. Large Eddy Simulation (LES) and non-premixed combustion model are selected for the turbulence and combustion model respectively. Methane, propane, and LPG in 0.5 L/min were used as type of fuel. While the oxidizer is air with 200% excess of O2. Simulation result shown that the maximum temperature was obtained from propane-air combustion in 2268 K. However, the stable temperature contour was achieved by methane-air combustion.

  15. The route of liquid precursor to ZnO nanoparticles in premixed combustion spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2018-04-01

    Zinc oxide nanoparticles had been successfully synthesized by premixed combustion spray pyrolysis. Zinc acetate was dissolved in distilled water was selected as a liquid precursor. Zinc nitrate was also used for comparison the effect of precursor type on the generated particles morphology and the crystallinity. The premixed combustion reaction used liquefied petroleum gas (LPG) mainly consisting of butane and propane as a fuel and compressed air used as an oxidizer. The liquid precursor was atomized using a custom two fluid nozzle to generate droplets. Then, the droplets were sprayed by the flow of air as a carrier gas into the premixed combustion reactor. The zinc precursor was decomposed to zinc oxide due to the high temperature as a result of combustion reaction inside the reactor resulting in nanoparticles formation. The particle size decreased with the increase of the fuel flow rate. In addition, it can be found that at the same flow rate of fuel, the particle size of zinc oxide synthesized using zinc nitrate is larger than that of the use of zinc acetate as a precursor.

  16. Spray Behavior and Atomization Characteristics of Biodiesel

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hun; Oh, Young-Taig

    Biodiesel has large amount of oxygen in itself, which make it very efficient in reducing exhaust emission by improving combustion inside an engine. But biodiesel has a low temperature flow problem because it has a high viscosity. In this study, the spray behavior and atomization characteristics were investigated to confirm of some effect for the combination of non-esterification biodiesel and fuel additive WDP and IPA. The process of spray was visualized through the visualization system composed of a halogen lamp and high speed camera, and atomization characteristics were investigated through LDPA. When blending WDP and IPA with biodiesel, atomization and spray characteristics were improved. Through this experimental result, SMD of blended fuel, WDP 25% and biodiesel 75%, was 33.9% reduced at distance 6cm from a nozzle tip under injection pressure 30MPa.

  17. Numerical Investigation Into Effect of Fuel Injection Timing on CAI/HCCI Combustion in a Four-Stroke GDI Engine

    NASA Astrophysics Data System (ADS)

    Cao, Li; Zhao, Hua; Jiang, Xi; Kalian, Navin

    2006-02-01

    The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes. The analyses show that the injection timing plays an important role in affecting the in-cylinder air/fuel mixing and mixture temperature, which in turn affects the CAI combustion and engine performance.

  18. CFD Simulation of Liquid Rocket Engine Injectors

    NASA Technical Reports Server (NTRS)

    Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)

    2001-01-01

    Detailed design issues associated with liquid rocket engine injectors and combustion chamber operation require CFD methodology which simulates highly three-dimensional, turbulent, vaporizing, and combusting flows. The primary utility of such simulations involves predicting multi-dimensional effects caused by specific injector configurations. SECA, Inc. and Engineering Sciences, Inc. have been developing appropriate computational methodology for NASA/MSFC for the past decade. CFD tools and computers have improved dramatically during this time period; however, the physical submodels used in these analyses must still remain relatively simple in order to produce useful results. Simulations of clustered coaxial and impinger injector elements for hydrogen and hydrocarbon fuels, which account for real fluid properties, is the immediate goal of this research. The spray combustion codes are based on the FDNS CFD code' and are structured to represent homogeneous and heterogeneous spray combustion. The homogeneous spray model treats the flow as a continuum of multi-phase, multicomponent fluids which move without thermal or velocity lags between the phases. Two heterogeneous models were developed: (1) a volume-of-fluid (VOF) model which represents the liquid core of coaxial or impinger jets and their atomization and vaporization, and (2) a Blob model which represents the injected streams as a cloud of droplets the size of the injector orifice which subsequently exhibit particle interaction, vaporization, and combustion. All of these spray models are computationally intensive, but this is unavoidable to accurately account for the complex physics and combustion which is to be predicted, Work is currently in progress to parallelize these codes to improve their computational efficiency. These spray combustion codes were used to simulate the three test cases which are the subject of the 2nd International Workshop on-Rocket Combustion Modeling. Such test cases are considered by these investigators to be very valuable for code validation because combustion kinetics, turbulence models and atomization models based on low pressure experiments of hydrogen air combustion do not adequately verify analytical or CFD submodels which are necessary to simulate rocket engine combustion. We wish to emphasize that the simulations which we prepared for this meeting are meant to test the accuracy of the approximations used in our general purpose spray combustion models, rather than represent a definitive analysis of each of the experiments which were conducted. Our goal is to accurately predict local temperatures and mixture ratios in rocket engines; hence predicting individual experiments is used only for code validation. To replace the conventional JANNAF standard axisymmetric finite-rate (TDK) computer code 2 for performance prediction with CFD cases, such codes must posses two features. Firstly, they must be as easy to use and of comparable run times for conventional performance predictions. Secondly, they must provide more detailed predictions of the flowfields near the injector face. Specifically, they must accurately predict the convective mixing of injected liquid propellants in terms of the injector element configurations.

  19. Experimental Study of Injection Characteristics of a Multi-hole port injector on various Fuel Injection pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Movahednejad, E.; Ommi, F.; Nekofar, K.

    2013-04-01

    The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.

  20. Rocket injector anomalies study. Volume 1: Description of the mathematical model and solution procedure

    NASA Technical Reports Server (NTRS)

    Przekwas, A. J.; Singhal, A. K.; Tam, L. T.

    1984-01-01

    The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.

  1. Warm Spraying of High-Strength Ni-Al-Bronze: Cavitation Characteristics and Property Prediction

    NASA Astrophysics Data System (ADS)

    Krebs, Sebastian; Kuroda, Seiji; Katanoda, Hiroshi; Gaertner, Frank; Klassen, Thomas; Araki, Hiroshi; Frede, Simon

    2017-01-01

    Bronze materials such as Ni-Al-bronze show exceptional performances against cavitation erosion, due to their high fatigue strength and high strength. These materials are used for ship propellers, pump systems or for applications with alternating stresses. Usually, the respective parts are cast. With the aim to use resources more efficiently and to reduce costs, this study aimed to evaluate opportunities to apply bronze as a coating to critical areas of respective parts. The coatings should have least amounts of pores and non-bonded areas and any contaminations that might act as crack nuclei and contribute to material damages. Processes with low oxidation and high kinetic impacts fulfill these criteria. Especially warm spraying, a nitrogen-cooled HVOF process, with similar impact velocities as cold gas spraying but enhanced process temperature, allows for depositing high-strength Ni-Al-bronze. This study systematically simulates and evaluates the formation and performance of warm-sprayed Ni-Al-bronze coatings for different combustion pressures and nitrogen flow rates. Substrate preheating was used to improve coating adhesion for lower spray parameter sets. Furthermore, this study introduces an energy-based concept to compare spray parameter sets and to predict coating properties. Coatings with low porosities and high mechanical strengths are obtained, allowing for a cavitation resistance similar to bulk material.

  2. Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer

    NASA Astrophysics Data System (ADS)

    Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore

    2017-11-01

    The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.

  3. Investigation of spray characteristics for flashing injection of fuels containing dissolved air and superheated fuels

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Chen, L. D.; Faeth, G. M.

    1982-01-01

    The flow, atomization and spreading of flashing injector flowing liquids containing dissolved gases (jet/air) as well as superheated liquids (Freon II) were considered. The use of a two stage expansion process separated by an expansion chamber, ws found to be beneficial for flashing injection particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.

  4. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... finishing material. (5) Dry spray booth. A spray booth not equipped with a water washing system as described in subparagraph (4) of this paragraph. A dry spray booth may be equipped with (i) distribution or... it enters the exhaust duct; or (ii) overspray dry filters to minimize dusts; or (iii) overspray dry...

  5. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... finishing material. (5) Dry spray booth. A spray booth not equipped with a water washing system as described in subparagraph (4) of this paragraph. A dry spray booth may be equipped with (i) distribution or... it enters the exhaust duct; or (ii) overspray dry filters to minimize dusts; or (iii) overspray dry...

  6. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... finishing material. (5) Dry spray booth. A spray booth not equipped with a water washing system as described in subparagraph (4) of this paragraph. A dry spray booth may be equipped with (i) distribution or... it enters the exhaust duct; or (ii) overspray dry filters to minimize dusts; or (iii) overspray dry...

  7. Recent progress in the joint velocity-scalar PDF method

    NASA Technical Reports Server (NTRS)

    Anand, M. S.

    1995-01-01

    This viewgraph presentation discusses joint velocity-scalar PDF method; turbulent combustion modeling issues for gas turbine combustors; PDF calculations for a recirculating flow; stochastic dissipation model; joint PDF calculations for swirling flows; spray calculations; reduced kinetics/manifold methods; parallel processing; and joint PDF focus areas.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, Sibendu; Wang, Zihan; Pei, Yuanjiang

    A state-of-the-art spray modeling methodology, recently presented by Senecal et al. [ , , ], is applied to Large Eddy Simulations (LES) of vaporizing gasoline sprays. Simulations of non-combusting Spray G (gasoline fuel) from the Engine Combustion Network are performed. Adaptive mesh refinement (AMR) with cell sizes from 0.09 mm to 0.5 mm are utilized to further demonstrate grid convergence of the dynamic structure LES model for the gasoline sprays. Grid settings are recommended to optimize the accuracy/runtime tradeoff for LES-based spray simulations at different injection pressure conditions typically encountered in gasoline direct injection (GDI) applications. The influence of LESmore » sub-grid scale (SGS) models is explored by comparing the results from dynamic structure and Smagorinsky based models against simulations without any SGS model. Twenty different realizations are simulated by changing the random number seed used in the spray sub-models. It is shown that for global quantities such as spray penetration, comparing a single LES simulation to experimental data is reasonable. Through a detailed analysis using the relevance index (RI) criteria, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of the gasoline sprays.« less

  9. Experimental study on the effect of nozzle hole-to-hole angle on the near-field spray of diesel injector using fast X-ray phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xusheng; Moon, Seoksu; Gao, Jian

    Fuel atomization and vaporization process play a critical role in determining the engine combustion and emission. The primary near-nozzle breakup is the vital link between the fuel emerging from the nozzle and the fully atomized spray. In this study, the near-nozzle spray characteristics of diesel injector with different umbrella angle (UA) were investigated using high-speed X-ray phase-contrast imaging and quantitative image processing. A classic ‘dumbbell’ profile of spray width (SW) composed of three stages: opening stage, semisteady stage and closing stage. The SW peak of two-hole injectors was more than twice of that of single-hole injector at the opening andmore » closing stages, corresponding to the hollow-cone spray. This indicated the vortex flow was formed with the increase of the UA. The higher injection pressure had little influence on the SW while led to earlier breakup closer to the nozzle. Significant fuel effect on the SW at higher needle lift was found. However, this effect could be neglect at lower needle lift due to the leading role of internal flow and cavitation on the near-field spray characteristics. In addition, the morphology-based breakup process was observed, which highlighted the important effect of internal flow on the spray development. The possibility of using hollow-cone spray in diesel injector was also discussed.« less

  10. Thermal Spray Formation of Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Coquill, Scott; Galbraith, Stephen L.; Tuss. Darren L.; Ivosevic, Milan

    2008-01-01

    This innovation forms a sprayable polymer film using powdered precursor materials and an in-process heating method. This device directly applies a powdered polymer onto a substrate to form an adherent, mechanically-sound, and thickness-regulated film. The process can be used to lay down both fully dense and porous, e.g., foam, coatings. This system is field-deployable and includes power distribution, heater controls, polymer constituent material bins, flow controls, material transportation functions, and a thermal spray apparatus. The only thing required for operation in the field is a power source. Because this method does not require solvents, it does not release the toxic, volatile organic compounds of previous methods. Also, the sprayed polymer material is not degraded because this method does not use hot combustion gas or hot plasma gas. This keeps the polymer from becoming rough, porous, or poorly bonded.

  11. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E. (Inventor)

    2014-01-01

    An apparatus and method for thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such as Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air, and a spark. Metal is inserted continuously in a high volume of metal into a combustion chamber of the pulsejet. The combustion is thereafter controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tailpipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  12. Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.

  13. A Nonlinear Model for Fuel Atomization in Spray Combustion

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave

    2003-01-01

    Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.

  14. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  15. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    NASA Technical Reports Server (NTRS)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  16. Fast and slow active control of combustion instabilities in liquid-fueled combustors

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yeon

    This thesis describes an experimental investigation of two different novel active control approaches that are employed to suppress combustion instabilities in liquid-fueled combustors. A "fast" active controller requires continuous modulation of the fuel injection rate at the frequency of the instability with proper phase and gain. Use of developed optical tools reveals that the "fast" active control system suppresses the instability by changing the nearly flat distribution of the phase between pressure and heat release oscillations to a gradually varying phase distribution, thus dividing the combustion zone into regions that alternately damp and drive combustor oscillations. The effects of these driving/damping regions tend to counter one another, which result in significant damping of the unstable oscillations. In contrast, a "slow" active controller operates at a rate commensurate with that at which operating conditions change during combustor operation. Consequently, "slow" controllers need infrequent activation in response to changes in engine operating conditions to assure stable operation at all times. Using two types of fuel injectors that can produce large controllable variation of fuel spray properties, it is shown that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Similar to the aforementioned result of the "fast" active control study, "slow" change of the fuel spray properties also modifies the nearly flat phase distribution during unstable operation to a gradually varying phase distribution, resulting in combustor "stabilization". Furthermore, deconvolutions of CH*-chemiluminescence images reveal the presence of vortex-flame interaction during unstable operation. Strong driving of instabilities occurs where the mean axial velocity of the flow is approximately zero, a short distance downstream of the flame holder where a significant fraction of the fuel burns in phase with the pressure oscillations. It is shown that the "fast" and "slow" active control approaches suppress combustion instabilities in a different manner. Nevertheless, the both control approaches successfully suppress combustion instabilities by modifying the temporal and spatial behavior of the combustion process heat release that is responsible for driving the instability.

  17. Numerical model of spray combustion in a single cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Acampora, Luigi; Sequino, Luigi; Nigro, Giancarlo; Continillo, Gaetano; Vaglieco, Bianca Maria

    2017-11-01

    A numerical model is developed for predicting the pressure cycle from Intake Valve Closing (IVC) to the Exhaust Valve Opening (EVO) events. The model is based on a modified one-dimensional (1D) Musculus and Kattke spray model, coupled with a zero-dimensional (0D) non-adiabatic transient Fed-Batch reactor model. The 1D spray model provides an estimate of the fuel evaporation rate during the injection phenomenon, as a function of time. The 0D Fed-Batch reactor model describes combustion. The main goal of adopting a 0D (perfectly stirred) model is to use highly detailed reaction mechanisms for Diesel fuel combustion in air, while keeping the computational cost as low as possible. The proposed model is validated by comparing its predictions with experimental data of pressure obtained from an optical single cylinder Diesel engine.

  18. 2011 Laser Diagnostics in Combustion Gordon Research Conference, (August 14-19, 2011, Waterville Valley Resort, Waterville Valley, NH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Settersten

    2011-08-19

    The vast majority of the world's energy needs are met by combustion of fossil fuels. Optimum utilization of limited resources and control of emissions of pollutants and greenhouse gases demand sustained improvement of combustion technology. This task can be satisfied only by detailed knowledge of the underlying physical and chemical processes. Non-intrusive laser diagnostics continuously contribute to our growing understanding of these complex and coupled multi-scale processes. The GRC on Laser Diagnostics in Combustion focuses on the most recent scientific advances and brings together scientists and engineers working at the leading edge of combustion research. Major tasks of the communitymore » are developing and applying methods for precise and accurate measurements of fluid motion and temperatures; chemical compositions; multi-phase phenomena appearing near walls, in spray and sooting combustion; improving sensitivities, precision, spatial resolution and tracking transients in their spatio-temporal development. The properties and behaviour of novel laser sources, detectors, optical systems that lead to new diagnostic capabilities are also part of the conference program.« less

  19. Combustion characteristics in the transition region of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Namer, I.; Tidona, R. J.

    1986-01-01

    A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.

  20. Spray characteristics of two combined jet atomizers

    NASA Astrophysics Data System (ADS)

    Tambour, Y.; Portnoy, D.

    The downstream changes in droplet volume concentration of a vaporizing fuel spray produced by two jet atomizers which form an overlapping zone of influence is theoretically analyzed, employing experimental data of Yule et al. (1982) for a single jet atomizer as initial conditions. One of the atomizers is located below the other at a certain distance downstream. Such an injection geometry can be found in afterburners of modern jet engines. The influence of various vertical and horizontal distances between the two atomizers on the downstream spray characteristics is investigated for a vaporizing kerosene spray in a 'cold' (293 K) and a 'hot' (450 K) environment. The analysis shows how one can control the downstream spray characteristics via the geometry of injection. Such geometrical considerations may be of great importance in the design of afterburner wall geometry and in the reduction of wall thermal damage. The injection geometry may also affect the intensity of the spray distribution which determines the mode of droplet group combustion. The latter plays an important role in improving afterburner combustion efficiency.

  1. Spray Combustion Modeling with VOF and Finite-Rate Chemistry

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Wang, Ten-See

    1996-01-01

    A spray atomization and combustion model is developed based on the volume-of-fluid (VOF) transport equation with finite-rate chemistry model. The gas-liquid interface mass, momentum and energy conservation laws are modeled by continuum surface force mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed range flows. The objectives of the present study are: (1) to develop and verify the fractional volume-of-fluid (VOF) cell partitioning approach into a predictor-corrector algorithm to deal with multiphase (gas-liquid) free surface flow problems; (2) to implement the developed unified algorithm in a general purpose computational fluid dynamics (CFD) code, Finite Difference Navier-Stokes (FDNS), with droplet dynamics and finite-rate chemistry models; and (3) to demonstrate the effectiveness of the present approach by simulating benchmark problems of jet breakup/spray atomization and combustion. Modeling multiphase fluid flows poses a significant challenge because a required boundary must be applied to a transient, irregular surface that is discontinuous, and the flow regimes considered can range from incompressible to highspeed compressible flows. The flow-process modeling is further complicated by surface tension, interfacial heat and mass transfer, spray formation and turbulence, and their interactions. The major contribution of the present method is to combine the novel feature of the Volume of Fluid (VOF) method and the Eulerian/Lagrangian method into a unified algorithm for efficient noniterative, time-accurate calculations of multiphase free surface flows valid at all speeds. The proposed method reformulated the VOF equation to strongly couple two distinct phases (liquid and gas), and tracks droplets on a Lagrangian frame when spray model is required, using a unified predictor-corrector technique to account for the non-linear linkages through the convective contributions of VOF. The discontinuities within the sharp interface will be modeled as a volume force to avoid stiffness. Formations of droplets, tracking of droplet dynamics and modeling of the droplet breakup/evaporation, are handled through the same unified predictor-corrector procedure. Thus the new algorithm is non-iterative and is flexible for general geometries with arbitrarily complex topology in free surfaces. The FDNS finite-difference Navier-Stokes code is employed as the baseline of the current development. Benchmark test cases of shear coaxial LOX/H2 liquid jet with atomization/combustion and impinging jet test cases are investigated in the present work. Preliminary data comparisons show good qualitative agreement between data and the present analysis. It is indicative from these results that the present method has great potential to become a general engineering design analysis and diagnostics tool for problems involving spray combustion.

  2. Computations of spray, fuel-air mixing, and combustion in a lean-premixed-prevaporized combustor

    NASA Technical Reports Server (NTRS)

    Dasgupta, A.; Li, Z.; Shih, T. I.-P.; Kundu, K.; Deur, J. M.

    1993-01-01

    A code was developed for computing the multidimensional flow, spray, combustion, and pollutant formation inside gas turbine combustors. The code developed is based on a Lagrangian-Eulerian formulation and utilizes an implicit finite-volume method. The focus of this paper is on the spray part of the code (both formulation and algorithm), and a number of issues related to the computation of sprays and fuel-air mixing in a lean-premixed-prevaporized combustor. The issues addressed include: (1) how grid spacings affect the diffusion of evaporated fuel, and (2) how spurious modes can arise through modelling of the spray in the Lagrangian computations. An upwind interpolation scheme is proposed to account for some effects of grid spacing on the artificial diffusion of the evaporated fuel. Also, some guidelines are presented to minimize errors associated with the spurious modes.

  3. Microgravity

    NASA Image and Video Library

    2001-01-24

    Dr. Forman Williams of the University of California, San Diego. He is principal investigator for Droplet Combustion Experiment (DCE/DCE-2) and High Pressure Combustion of Binary Fuel Sprays experiment.

  4. Partially premixed prevalorized kerosene spray combustion in turbulent flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrigui, M.; Ahmadi, W.; Sadiki, A.

    2010-04-15

    A detailed numerical simulation of kerosene spray combustion was carried out on a partially premixed, prevaporized, three-dimensional configuration. The focus was on the flame temperature profile dependency on the length of the pre-vaporization zone. The results were analyzed and compared to experimental data. A fundamental study was performed to observe the temperature variation and flame flashback. Changes were made to the droplet diameter, kerosene flammability limits, a combustion model parameter and the location of the combustion initialization. Investigations were performed for atmospheric pressure, inlet air temperature of 90 C and a global equivalence ratio of 0.7. The simulations were carriedmore » out using the Eulerian Lagrangian procedure under a fully two-way coupling. The Bray-Moss-Libby model was adjusted to account for the partially premixed combustion. (author)« less

  5. Method and Apparatus for Thermal Spraying of Metal Coatings Using Pulsejet Resonant Pulsed Combustion

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E. (Inventor)

    2010-01-01

    An apparatus and method [or thermal spraying a metal coating on a substrate is accomplished with a modified pulsejet and optionally an ejector to assist in preventing oxidation. Metal such a Aluminum or Magnesium may be used. A pulsejet is first initiated by applying fuel, air. and a spark. Metal is inserted continuously in a high volume of meta1 into a combustion chamber of the pulsejet. The combustion is thereafter. controlled resonantly at high frequency and the metal is heated to a molten state. The metal is then transported from the combustion chamber into a tail pipe of said pulsejet and is expelled therefrom at high velocity and deposited on a target substrate.

  6. Combustion of Drops and Sprays of Heavy Fuel Oils and Their Emulsions.

    DTIC Science & Technology

    1980-12-01

    Details of the Injector Mount .... .............. ... 144 5. Arrangement to Remove Soot from Windows .. ......... ... 145 6. Modified Injector Plug...the carbon deposits could be attributed to the increased residual carbon Residual fuel oils are known to contain polynuclear aromatic and naphthenic ...cleaned to remove the fine soot which clings to the windows and can- not be blown away by the jets. (iv ) For spray combustion tests, as the nozzles

  7. CFD Analysis of the 24-inch JIRAD Hybrid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan; Ungewitter, Ronald; Claflin, Scott

    1996-01-01

    A series of multispecies, multiphase computational fluid dynamics (CFD) analyses of the 24-inch diameter joint government industry industrial research and development (JIRAD) hybrid rocket motor is described. The 24-inch JIRAD hybrid motor operates by injection of liquid oxygen (LOX) into a vaporization plenum chamber upstream of ports in the hydroxyl-terminated polybutadiene (HTPB) solid fuel. The injector spray pattern had a strong influence on combustion stability of the JIRAD motor so a CFD study was initiated to define the injector end flow field under different oxidizer spray patterns and operating conditions. By using CFD to gain a clear picture of the flow field and temperature distribution within the JIRAD motor, it is hoped that the fundamental mechanisms of hybrid combustion instability may be identified and then suppressed by simple alterations to the oxidizer injection parameters such as injection angle and velocity. The simulations in this study were carried out using the General Algorithm for Analysis of Combustion SYstems (GALACSY) multiphase combustion codes. GALACSY consists of a comprehensive set of droplet dynamic submodels (atomization, evaporation, etc.) and a computationally efficient hydrocarbon chemistry package built around a robust Navier-Stokes solver optimized for low Mach number flows. Lagrangian tracking of dispersed particles describes a closely coupled spray phase. The CFD cases described in this paper represent various levels of simplification of the problem. They include: (A) gaseous oxygen with combusting fuel vapor blowing off the walls at various oxidizer injection angles and velocities, (B) gaseous oxygen with combusting fuel vapor blowing off the walls, and (C) liquid oxygen with combusting fuel vapor blowing off the walls. The study used an axisymmetric model and the results indicate that the injector design significantly effects the flow field in the injector end of the motor. Markedly different recirculation patterns are observed in the vaporization chamber as the oxygen velocity and/or spray pattern is varied. The ability of these recirculation patterns to stabilize the diffusion flame above the surface of the solid fuel gives a plausible explanation for the experimentally determined combustion stability characteristics of the JIRAD motor, and suggests how combustion stability can be assured by modifications to the injector design.

  8. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    NASA Astrophysics Data System (ADS)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  9. A comprehensive combustion model for biodiesel-fueled engine simulations

    NASA Astrophysics Data System (ADS)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel composition (palm vs. soy) and fuel blends (neat vs. B20). The model effectively reproduced the trends observed in the experiments.

  10. A Validation Summary of the NCC Turbulent Reacting/non-reacting Spray Computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, N.-S. (Technical Monitor)

    2000-01-01

    This pper provides a validation summary of the spray computations performed as a part of the NCC (National Combustion Code) development activity. NCC is being developed with the aim of advancing the current prediction tools used in the design of advanced technology combustors based on the multidimensional computational methods. The solution procedure combines the novelty of the application of the scalar Monte Carlo PDF (Probability Density Function) method to the modeling of turbulent spray flames with the ability to perform the computations on unstructured grids with parallel computing. The calculation procedure was applied to predict the flow properties of three different spray cases. One is a nonswirling unconfined reacting spray, the second is a nonswirling unconfined nonreacting spray, and the third is a confined swirl-stabilized spray flame. The comparisons involving both gas-phase and droplet velocities, droplet size distributions, and gas-phase temperatures show reasonable agreement with the available experimental data. The comparisons involve both the results obtained from the use of the Monte Carlo PDF method as well as those obtained from the conventional computational fluid dynamics (CFD) solution. Detailed comparisons in the case of a reacting nonswirling spray clearly highlight the importance of chemistry/turbulence interactions in the modeling of reacting sprays. The results from the PDF and non-PDF methods were found to be markedly different and the PDF solution is closer to the reported experimental data. The PDF computations predict that most of the combustion occurs in a predominantly diffusion-flame environment. However, the non-PDF solution predicts incorrectly that the combustion occurs in a predominantly vaporization-controlled regime. The Monte Carlo temperature distribution shows that the functional form of the PDF for the temperature fluctuations varies substantially from point to point. The results also bring to the fore some of the deficiencies associated with the use of assumed-shape PDF methods in spray computations.

  11. Burning Questions in Gravity-Dependent Combustion Science

    NASA Technical Reports Server (NTRS)

    Urban, David; Chiaramonte, Francis P.

    2012-01-01

    Building upon a long history of spaceflight and ground based research, NASA's Combustion Science program has accumulated a significant body of accomplishments on the ISS. Historically, NASAs low-gravity combustion research program has sought: to provide a more complete understanding of the fundamental controlling processes in combustion by identifying simpler one-dimensional systems to eliminate the complex interactions between the buoyant flow and the energy feedback to the reaction zone to provide realistic simulation of the fire risk in manned spacecraft and to enable practical simulation of the gravitational environment experienced by reacting systems in future spacecraft. Over the past two decades, low-gravity combustion research has focused primarily on increasing our understanding of fundamental combustion processes (e.g. droplet combustion, soot, flame spread, smoldering, and gas-jet flames). This research program was highly successful and was aided by synergistic programs in Europe and in Japan. Overall improvements were made in our ability to model droplet combustion in spray combustors (e.g. jet engines), predict flame spread, predict soot production, and detect and prevent spacecraft fires. These results provided a unique dataset that supports both an active research discipline and also spacecraft fire safety for current and future spacecraft. These experiments have been conducted using the Combustion Integrated Rack (CIR), the Microgravity Science Glovebox and the Express Rack. In this paper, we provide an overview of the earlier space shuttle experiments, the recent ISS combustion experiments in addition to the studies planned for the future. Experiments in combustion include topics such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes.

  12. Coupled Monte Carlo Probability Density Function/ SPRAY/CFD Code Developed for Modeling Gas-Turbine Combustor Flows

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The success of any solution methodology for studying gas-turbine combustor flows depends a great deal on how well it can model various complex, rate-controlling processes associated with turbulent transport, mixing, chemical kinetics, evaporation and spreading rates of the spray, convective and radiative heat transfer, and other phenomena. These phenomena often strongly interact with each other at disparate time and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and evaporation in many practical combustion devices. Turbulence manifests its influence in a diffusion flame in several forms depending on how turbulence interacts with various flame scales. These forms range from the so-called wrinkled, or stretched, flamelets regime, to the distributed combustion regime. Conventional turbulence closure models have difficulty in treating highly nonlinear reaction rates. A solution procedure based on the joint composition probability density function (PDF) approach holds the promise of modeling various important combustion phenomena relevant to practical combustion devices such as extinction, blowoff limits, and emissions predictions because it can handle the nonlinear chemical reaction rates without any approximation. In this approach, mean and turbulence gas-phase velocity fields are determined from a standard turbulence model; the joint composition field of species and enthalpy are determined from the solution of a modeled PDF transport equation; and a Lagrangian-based dilute spray model is used for the liquid-phase representation with appropriate consideration of the exchanges of mass, momentum, and energy between the two phases. The PDF transport equation is solved by a Monte Carlo method, and existing state-of-the-art numerical representations are used to solve the mean gasphase velocity and turbulence fields together with the liquid-phase equations. The joint composition PDF approach was extended in our previous work to the study of compressible reacting flows. The application of this method to several supersonic diffusion flames associated with scramjet combustor flow fields provided favorable comparisons with the available experimental data. A further extension of this approach to spray flames, three-dimensional computations, and parallel computing was reported in a recent paper. The recently developed PDF/SPRAY/computational fluid dynamics (CFD) module combines the novelty of the joint composition PDF approach with the ability to run on parallel architectures. This algorithm was implemented on the NASA Lewis Research Center's Cray T3D, a massively parallel computer with an aggregate of 64 processor elements. The calculation procedure was applied to predict the flow properties of both open and confined swirl-stabilized spray flames.

  13. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-guo; Wu, Liyin; Li, Qinglian; Li, Chun

    2014-09-01

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. The injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674-2686 (2008)] and Wang et al. [AIAA J. 50, 1360-1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.

  14. METHOD FOR THE PREPARATION OF STABLE ACTINIDE METAL OXIDE-CONTAINING SLURRIES AND OF THE OXIDES THEREFOR

    DOEpatents

    Hansen, R.S.; Minturn, R.E.

    1958-02-25

    This patent deals with a method of preparing actinide metal oxides of a very fine particle size and of forming stable suspensions therefrom. The process consists of dissolving the nitrate of the actinide element in a combustible organic solvent, converting the solution obtained into a spray, and igniting the spray whereby an oxide powder is obtained. The oxide powder is then slurried in an aqueous soiution of a substance which is adsorbable by said oxides, dspersed in a colloid mill whereby a suspension is obtained, and electrodialyzed until a low spectiic conductance is reached.

  15. Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC) Calculations Against Experimental Data for a Turbulent Reacting Flow

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.; Moder, Jeffery P.

    2010-01-01

    Developing physics-based tools to aid in reducing harmful combustion emissions, like Nitrogen Oxides (NOx), Carbon Monoxide (CO), Unburnt Hydrocarbons (UHC s), and Sulfur Dioxides (SOx), is an important goal of aeronautics research at NASA. As part of that effort, NASA Glenn Research Center is performing a detailed assessment and validation of an in-house combustion CFD code known as the National Combustion Code (NCC) for turbulent reacting flows. To assess the current capabilities of NCC for simulating turbulent reacting flows with liquid jet fuel injection, a set of Single Swirler Lean Direct Injection (LDI) experiments performed at the University of Cincinnati was chosen as an initial validation data set. This Jet-A/air combustion experiment operates at a lean equivalence ratio of 0.75 at atmospheric pressure and has a 4 percent static pressure drop across the swirler. Detailed comparisons of NCC predictions for gas temperature and gaseous emissions (CO and NOx) against this experiment are considered in a previous work. The current paper is focused on detailed comparisons of the spray characteristics (radial profiles of drop size distribution and at several radial rakes) from NCC simulations against the experimental data. Comparisons against experimental data show that the use of the correlation for primary spray break-up implemented by Raju in the NCC produces most realistic results, but this result needs to be improved. Given the single or ten step chemical kinetics models, use of a spray size correlation gives similar, acceptable results

  16. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhuri, Ahsan; Love, Norman

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials formore » corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray systems, there exists a lack of fundamental understanding of the effect of hardware characteristics and operating parameters on HVOF thermally sprayed coatings. Motivated by these issues, this study is devoted to investigate the effect of hardware characteristics (e.g. spraying distance) and operating parameters (e.g. combustion chamber pressure, equivalence ratio, and total gas flow rate) on HVOF sprayed coatings using Inconel 718 alloy. The current study provides extensive understanding of several key operating and process parameters to optimize the next generation of HVOF thermally sprayed coatings for high temperature and harsh environment applications. A facility was developed to support this endeavor in a safe and efficient way, including a HVOF thermal spray system with a Data Acquisition and Remote Controls system (DARCS). The coatings microstructure and morphology were examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Nanoindentation.« less

  17. Combustion of LOX with H2(sub g) under subcritical, critical, and supercritical conditions and experimental observation of dense spray and mixing of impinging jets

    NASA Technical Reports Server (NTRS)

    Kuo, Kenneth K.; Hsieh, W. H.; Yang, A. S.; Brown, J. J.; Cheung, F. B.; Woodward, R. D.; Kline, M. C.

    1992-01-01

    Progress made during the period of February 1 to October 15, 1992 is reported. The overall objective of Task 1 of the investigation is to achieve a better understanding of the combustion processes of liquid oxygen and gaseous hydrogen under subcritical, critical, and supercritical conditions. Specific objectives of the research program are: (1) to determine the evaporation- and burning-rate characteristics of LOX in hydrogen/helium environments under broad ranges of operating conditions; (2) to measure species concentration profile and surface temperature of LOX employing the gas chromatography and fine-wire thermocouples under non-reacting flow situations; (3) to perform a fugacity-based multicomponent thermodynamic phase equilibrium analysis for examining the high-pressure vapor-liquid equilibrium behavior at the liquid surface of LOX; (4) to formulate and solve a theoretical model for simulating the evaporation and combustion processes in a LOX/H2/He system; and (5) to validate the theoretical model with the measured experimental data. Task 2 of the investigation is described. Observation of a like-on-like injector element in the near-injector region performed in the previous phase of this project has identified the existence of a high Reynolds number regime in which the pre-impingement jets are fully turbulent and undergoing surface breakup. The new spray regime, which has not been observed by previous investigators, is characterized by the presence of many fine droplets and the disappearance of the well-defined liquid breakup wave pattern in the post-impingement region. It is speculated that a cavitating region may be present within the orifice so that it could induce strong turbulence, leading to an onset of atomization of the jets prior to impingement. To further investigate the dense spray behavior of the impinging jets in the high Reynolds number region, experiments were conducted using Plexiglas injector components for direct internal flow observation. The main objective is to determine under what conditions a cavitating region would form and whether or not the cavitation is reponsible for the development of the high Reynolds number spray regime. The procedure and major findings of the injector cavitation study are described.

  18. Investigations of two-phase flame propagation under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Gokalp, Iskender

    2016-07-01

    Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets uniformly distributed. Ethanol-air mixtures are used and the experiments are performed under reduced gravity conditions in the Airbus A310 ZERO-G of the CNES, during which a 10-2g gravity level is achieved. The experiments are conducted in a pressure-release type dual chamber which consists of a spherical combustion chamber of 1 L which is centered in a high pressure chamber of 11 L. Propagating flames under various mixture, droplet size and pressure conditions are investigated with various optical techniques. The collected flame images and the deduced flame propagation velocities enabled to establish various flame propagation and cellular instability regimes, mainly depending on the droplet size and droplet density. The experiments also permitted comparisons with gaseous flames having the same global equivalence ratio as the two-phase flames, therefore allowing analyzing clearly the role of the presence of the droplets in the flame propagation process.

  19. a Marker-Based Eulerian-Lagrangian Method for Multiphase Flow with Supersonic Combustion Applications

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng; Wang, Jiangfeng

    2016-06-01

    The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.

  20. Group evaporation

    NASA Technical Reports Server (NTRS)

    Shen, Hayley H.

    1991-01-01

    Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.

  1. The structure of dilute combusting sprays

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, F. M.

    1985-01-01

    An experimental and theoretical study of drop processes in a turbulent flame is described. The experiments involved a monodisperse (105 and 180 micro m initial diameter) stream of methanol drops injected at the base of a turbulent methane-fueled diffusion flame burning in still air. The following measurements were made: mean and fluctuating phase velocities, mean drop number flux, drop-size distributions and mean gas-phase temperatures. Measurements were compared with predictions of two separated flow models: (1) deterministic separated flow, where drop-turbulence interactions are ignored; and (2) stochastic separated flow, where drop-turbulence interactions are considered using random-walk computations. The stochastic separated flow analysis yielded best agreement with measurements, since it provides for turbulent dispersion of drops which was important for present test conditions (and probably for most combusting sprays as well). Distinguishing the presence or absence of envelope flames around the drops, however, was relatively unimportant for present test conditions, since the drops spent most of their lifetime in fuel-rich regions of the flow where this distinction is irrelevant.

  2. Experiments on Nitrogen Oxide Production of Droplet Arrays Burning under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Moesl, Klaus; Sattelmayer, Thomas; Kikuchi, Masao; Yamamoto, Shin; Yoda, Shinichi

    The optimization of the combustion process is top priority in current aero-engine and aircraft development, particularly from the perspectives of high efficiency, minimized fuel consumption, and a sustainable exhaust gas production. Aero-engines are exclusively liquid-fueled with a strong correlation between the combustion temperature and the emissions of nitric oxide (NOX ). Due to safety concerns, the progress in NOX reduction has been much slower than in stationary gas turbines. In the past, the mixing intensity in the primary zone of aero-engine combustors was improved and air staging implemented. An important question for future aero-engine combustors, consequently, is how partial vaporization influences the NOX emissions of spray flames? In order to address this question, the combustion of partially vaporized, linear droplet arrays was studied experimentally under microgravity conditions. The influence of fuel pre-vaporization on the NOX emissions was assessed in a wide range. The experiments were performed in a drop tower and a sounding rocket campaign. The microgravity environment provided ideal experiment conditions without the disturbing ef-fect of natural convection. This allowed the study of the interacting phenomena of multi-phase flow, thermodynamics, and chemical kinetics. This way the understanding of the physical and chemical processes related to droplet and spray combustion could be improved. The Bremen drop tower (ZARM) was utilized for the precursor campaign in July 2008, which was com-prised of 30 drops. The sounding rocket experiments, which totaled a microgravity duration of 6 minutes, were finally performed on the flight of TEXUS-46 in November 2009. On both campaigns the "Japanese Combustion Module" (JCM) was used. It is a cooperative experi-ment on droplet array combustion between the Japan Aerospace Exploration Agency (JAXA) and ESA's (European Space Agency) research team, working on the combustion properties of partially premixed sprays. One droplet array consisted of five droplets (for sounding rocket) and 9 -17 droplets (for drop tower) of the hydrocarbon n-decane (C10 H22 ). While keeping the pressure at 1.0 bar (+/-20 mbar), the combustion chamber temperature and the fuel vaporization time were varied in the range of 300 -500 K and 0.5 -18 s, respectively. Consequently, the total amount of fuel, the local equivalence ratio Φ along the droplet array, and the dimensionless droplet spacing S/d0 , with d0 being the initial droplet diameter, were adapted. Ignition was initiated by a hot-wire igniter from one end of the droplet array. Representative gas samples were collected from every single combustion sequence after flame extinction and stored in specially treated gas sampling cylinders for their succeeding analysis on ground. Visual observation of the combustion process, as well as temperature and pressure logging, supported the scientific interpretation of the gas analysis. With an increase of the preheating temperature, NOX emissions increase due to a higher effec-tive flame temperatures. However, with an increasing pre-vaporization, NOX emissions become lower due to the dropping number and the dropping size of burning droplets, acting as hot spots. A correction for the effect of the preheating temperature was developed. It reveals the effect of pre-vaporization and shows that the NOX emissions are almost independent of it for near-stoichiometric operation. At overall lean conditions the NOX emissions drop non-linearly with the degree of vaporization. Up to now, this leads to the conclusion that a high degree of vaporization is required in order to achieve substantial NOX abatement.

  3. Invited Review. Combustion instability in spray-guided stratified-charge engines. A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fansler, Todd D.; Reuss, D. L.; Sick, V.

    2015-02-02

    Our article reviews systematic research on combustion instabilities (principally rare, random misfires and partial burns) in spray-guided stratified-charge (SGSC) engines operated at part load with highly stratified fuel -air -residual mixtures. Results from high-speed optical imaging diagnostics and numerical simulation provide a conceptual framework and quantify the sensitivity of ignition and flame propagation to strong, cyclically varying temporal and spatial gradients in the flow field and in the fuel -air -residual distribution. For SGSC engines using multi-hole injectors, spark stretching and locally rich ignition are beneficial. Moreover, combustion instability is dominated by convective flow fluctuations that impede motion of themore » spark or flame kernel toward the bulk of the fuel, coupled with low flame speeds due to locally lean mixtures surrounding the kernel. In SGSC engines using outwardly opening piezo-electric injectors, ignition and early flame growth are strongly influenced by the spray's characteristic recirculation vortex. For both injection systems, the spray and the intake/compression-generated flow field influence each other. Factors underlying the benefits of multi-pulse injection are identified. Finally, some unresolved questions include (1) the extent to which piezo-SGSC misfires are caused by failure to form a flame kernel rather than by flame-kernel extinction (as in multi-hole SGSC engines); (2) the relative contributions of partially premixed flame propagation and mixing-controlled combustion under the exceptionally late-injection conditions that permit SGSC operation on E85-like fuels with very low NO x and soot emissions; and (3) the effects of flow-field variability on later combustion, where fuel-air-residual mixing within the piston bowl becomes important.« less

  4. Experimental study of flash boiling spray vaporization through quantitative vapor concentration and liquid temperature measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoming; Hung, David L. S.; Xu, Min

    2014-08-01

    Flash boiling sprays of liquid injection under superheated conditions provide the novel solutions of fast vaporization and better air-fuel mixture formation for internal combustion engines. However, the physical mechanisms of flash boiling spray vaporization are more complicated than the droplet surface vaporization due to the unique bubble generation and boiling process inside a superheated bulk liquid, which are not well understood. In this study, the vaporization of flash boiling sprays was investigated experimentally through the quantitative measurements of vapor concentration and liquid temperature. Specifically, the laser-induced exciplex fluorescence technique was applied to distinguish the liquid and vapor distributions. Quantitative vapor concentration was obtained by correlating the intensity of vapor-phase fluorescence with vapor concentration through systematic corrections and calibrations. The intensities of two wavelengths were captured simultaneously from the liquid-phase fluorescence spectra, and their intensity ratios were correlated with liquid temperature. The results show that both liquid and vapor phase of multi-hole sprays collapse toward the centerline of the spray with different mass distributions under the flash boiling conditions. Large amount of vapor aggregates along the centerline of the spray to form a "gas jet" structure, whereas the liquid distributes more uniformly with large vortexes formed in the vicinity of the spray tip. The vaporization process under the flash boiling condition is greatly enhanced due to the intense bubble generation and burst. The liquid temperature measurements show strong temperature variations inside the flash boiling sprays with hot zones present in the "gas jet" structure and vortex region. In addition, high vapor concentration and closed vortex motion seem to have inhibited the heat and mass transfer in these regions. In summary, the vapor concentration and liquid temperature provide detailed information concerning the heat and mass transfer inside flash boiling sprays, which is important for the understanding of its unique vaporization process.

  5. Results Outbrief from the 2014 CombustionLab Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2015-01-01

    On October 24-25, 2014, NASA Headquarters and the NASA Glenn Research Center sponsored the CombustionLab Workshop in Pasadena, CA as part of the 30th Annual Meeting of the American Society for Gravitational and Space Research. The two-day event brought together scientists and engineers from academia, industry, other government agencies, and international space agencies. The goal of the workshop was to identify key engineering drivers and research priorities, and to provide overall recommendations for the development of the next generation of combustion science experiments for the International Space Station (ISS). The workshop was divided in to 6 topical areas: Droplets, Sprays and Aerosols; Non-Premixed Flames; Premixed Flames; High Pressure and Supercritical Reacting Systems; Fire Safety; Heterogeneous Reaction Processes. Each of these areas produced summary findings which were assembled into a report and were integrated into the NASA budget planning process. The summary results of this process are presented with implementation plans and options for the future.

  6. An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Le; Torelli, Roberto; Zhu, Xiucheng

    Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at amore » density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGE framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation. A set of turbulence and spray break-up model constants was identified to properly match the aforementioned measurements of liquid penetration within their experimental confidence intervals. An accuracy study on varying the minimum mesh size was also performed to ensure the grid convergence of the numerical results. Experimentally validated computational fluid dynamics (CFD) simulations were then used to investigate the local spray characteristics in the vicinity of the wall with a particular focus on Sauter Mean Diameter (SMD) and Reynolds and Weber numbers. The analysis was performed by considering before- and after-impingement conditions in order to take in account the influence of the impinged wall on the spray morphology.« less

  7. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  8. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Arrieta, Victor M.

    2013-01-01

    A document describes the low-cost manufacturing of C103 niobium alloy combustion chambers, and the use of a high-temperature, oxidation-resistant coating that is superior to the standard silicide coating. The manufacturing process involved low-temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin, vapor-deposited platinum-indium coatings were shown to substantially improve oxidation resistance relative to the standard silicide coating. Development of different low-cost plastic thrust chamber mandrel materials and prototyping processes (selective laser sintering and stereolithography) yielded mandrels with good dimensional accuracy (within a couple of mils) for this stage of development. The feasibility of using the kinetic metallization cold-spray process for fabrication of free-standing C1O3 thrusters on removable plastic mandrels was also demonstrated. The ambient and elevated temperature mechanical properties of the material were shown to be reasonably good relative to conventionally processed C103, but the greatest potential benefit is that coldsprayed chambers require minimal post-process machining, resulting in substantially lower machining and material costs. The platinum-iridium coating was shown to provide greatly increased oxidation resistance over the silicide when evaluated through oxyacetylene torch testing to as high as 300 F (= 150 C). The iridium component minimizes reaction with the niobium alloy chamber at high temperatures, and provides the high-temperature oxidation resistance needed at the throat.

  9. Group Combustion Module (GCM) Installation

    NASA Image and Video Library

    2016-09-27

    ISS049e011638 (09/27/2016) --- Expedition 49 crewmember Takuya Onishi of JAXA works on the setup of the Group Combustion Module (GCM) inside the Japanese Experiment Module. The GCM will be used to house the Group Combustion experiment from the Japan Aerospace Exploration Agency (JAXA) to test a theory that fuel sprays change from partial to group combustion as flames spread across a cloud of droplets.

  10. Light extinction method on high-pressure diesel injection

    NASA Astrophysics Data System (ADS)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  11. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhen-guo, E-mail: wangzhenguo-wzg@163.com; Wu, Liyin; Li, Qinglian

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d < 15, owing to the strong gas-liquid interaction near the orifice. By contrast, the velocity grows slowly in the far-field region, where the liquid inside the spray is accelerated mainly by the continuous driven force provided by the mainstream with the gas-liquid shear. Themore » injection and atomization of liquid jet in a supersonic crossflow serves as a foundation of scramjet combustion process, by affecting the combustion efficiency and some other performances. With various forces acting on the liquid jet (Mashayek et al. [AIAA J. 46, 2674–2686 (2008)] and Wang et al. [AIAA J. 50, 1360–1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.« less

  12. Development of Tripropellant CFD Design Code

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Cheng, Gary C.; Anderson, Peter G.

    1998-01-01

    A tripropellant, such as GO2/H2/RP-1, CFD design code has been developed to predict the local mixing of multiple propellant streams as they are injected into a rocket motor. The code utilizes real fluid properties to account for the mixing and finite-rate combustion processes which occur near an injector faceplate, thus the analysis serves as a multi-phase homogeneous spray combustion model. Proper accounting of the combustion allows accurate gas-side temperature predictions which are essential for accurate wall heating analyses. The complex secondary flows which are predicted to occur near a faceplate cannot be quantitatively predicted by less accurate methodology. Test cases have been simulated to describe an axisymmetric tripropellant coaxial injector and a 3-dimensional RP-1/LO2 impinger injector system. The analysis has been shown to realistically describe such injector combustion flowfields. The code is also valuable to design meaningful future experiments by determining the critical location and type of measurements needed.

  13. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  14. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  15. A diagnostic for quantifying heat flux from a thermite spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. P. Nixon; M. L. Pantoya; D. J. Prentice

    2010-02-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors cannot survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that will allowmore » for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite sprays are reported. Results indicate that this newly designed heat flux sensor provides quantitative data with good repeatability suitable for characterizing energetic material combustion.« less

  16. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.

  17. Injector tip for an internal combustion engine

    DOEpatents

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  18. Method of producing thermally sprayed metallic coating

    DOEpatents

    Byrnes, Larry Edward [Rochester Hills, MI; Kramer, Martin Stephen [Clarkston, MI; Neiser, Richard A [Albuquerque, NM

    2003-08-26

    The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.

  19. Acoustical Detection Of Leakage In A Combustor

    NASA Technical Reports Server (NTRS)

    Puster, Richard L.; Petty, Jeffrey L.

    1993-01-01

    Abnormal combustion excites characteristic standing wave. Acoustical leak-detection system gives early warning of failure, enabling operating personnel to stop combustion process and repair spray bar before leak grows large enough to cause damage. Applicable to engines, gas turbines, furnaces, and other machines in which acoustic emissions at known frequencies signify onset of damage. Bearings in rotating machines monitored for emergence of characteristic frequencies shown in previous tests associated with incipient failure. Also possible to monitor for signs of trouble at multiple frequencies by feeding output of transducer simultaneously to multiple band-pass filters and associated circuitry, including separate trigger circuit set to appropriate level for each frequency.

  20. 29 CFR 1917.153 - Spray painting (See also § 1917.2, definition of Hazardous cargo, materials, substance, or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... partition. (ii) Hot surfaces shall not be located in spraying areas. (iii) Whenever combustible residues may... cleaning, paper may be used to cover the floor during painting operations if it is removed after the...

  1. 29 CFR 1917.153 - Spray painting (See also § 1917.2, definition of Hazardous cargo, materials, substance, or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... partition. (ii) Hot surfaces shall not be located in spraying areas. (iii) Whenever combustible residues may... cleaning, paper may be used to cover the floor during painting operations if it is removed after the...

  2. 29 CFR 1917.153 - Spray painting (See also § 1917.2, definition of Hazardous cargo, materials, substance, or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... partition. (ii) Hot surfaces shall not be located in spraying areas. (iii) Whenever combustible residues may... cleaning, paper may be used to cover the floor during painting operations if it is removed after the...

  3. 29 CFR 1917.153 - Spray painting (See also § 1917.2, definition of Hazardous cargo, materials, substance, or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... partition. (ii) Hot surfaces shall not be located in spraying areas. (iii) Whenever combustible residues may... cleaning, paper may be used to cover the floor during painting operations if it is removed after the...

  4. Droplet size effects on NO/x/ formation in a one-dimensional monodisperse spray combustion system

    NASA Technical Reports Server (NTRS)

    Sarv, H.; Nizami, A. A.; Cernansky, N. P.

    1982-01-01

    A one-dimensional monodisperse aerosol spray combustion facility is described and experimental results of post flame NO/NO(x) emissions are presented. Four different hydrocarbon fuels were studied: isopropanol, methanol, n-heptane, and n-octane. The results indicate an optimum droplet size in the range of 48-58 microns for minimizing NO/NO(x) production for all of the test fuels. This NO(x) behavior is associated with droplet interactions and the transition from diffusive type of spray burning to that of a prevaporized and premixed case. Decreasing the droplet size results in a trend of increasing droplet interactions, which suppresses temperatures and reduces NO(x). This trend continues until prevaporization effects begin to dominate and the system tends towards the premixed limit. The occurrence of the minimum NO(x) point at different droplet diameters for the different fuels appears to be governed by the extent of prevaporization of the fuel in the spray, and is consistent with theoretical calculations based on each fuel's physical properties.

  5. Droplet-turbulence interactions in subcritical and supercritical evaporating sprays

    NASA Technical Reports Server (NTRS)

    Santavicca, Domenic A.; Coy, Edward; Greenfield, Stuart; Song, Young-Hoon

    1991-01-01

    The objective of this research is to obtain an improved understanding of droplet turbulence interactions in vaporizing liquid sprays under conditions typical of those encountered in liquid fueled rocket engines. The interaction between liquid droplets and the surrounding turbulent gas flow affects droplet dispersion, droplet collisions, droplet vaporization and gas-phase, fuel-oxidant mixing, and therefore has a significant effect on the engine's combustion characteristics. An example of this is the role which droplet-turbulence interactions are believed to play in combustion instabilities. Despite their importance, droplet-turbulence interactions and their effect on liquid fueled rocket engine performance are not well understood. This is particularly true under supercritical conditions, where many conventional concepts, such as surface tension, no longer apply. Our limited understanding of droplet-turbulence interactions, under both subcritical conditions, represents a major limitation in our ability to design improved liquid previously unavailable information and valuable new insights which will directly impact the design of future liquid fueled rocket engines, as well as, allow for the development of significantly improved spray combustion models, making such models useful design tools.

  6. Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.

    Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less

  7. Ducted fuel injection: A new approach for lowering soot emissions from direct-injection engines

    DOE PAGES

    Mueller, Charles J.; Nilsen, Christopher W.; Ruth, Daniel J.; ...

    2017-07-18

    Designers of direct-injection compression-ignition engines use a variety of strategies to improve the fuel/charge-gas mixture within the combustion chamber for increased efficiency and reduced pollutant emissions. Strategies include the use of high fuel-injection pressures, multiple injections, small injector orifices, flow swirl, long-ignition-delay conditions, and oxygenated fuels. This is the first journal publication paper on a new mixing-enhancement strategy for emissions reduction: ducted fuel injection. The concept involves injecting fuel along the axis of a small cylindrical duct within the combustion chamber, to enhance the mixture in the autoignition zone relative to a conventional free-spray configuration (i.e., a fuel spray thatmore » is not surrounded by a duct). Finally, the results described herein, from initial proof-of-concept experiments conducted in a constant-volume combustion vessel, show dramatically lower soot incandescence from ducted fuel injection than from free sprays over a range of charge-gas conditions that are representative of those in modern direct-injection compression-ignition engines.« less

  8. RELATIONSHIPS BETWEEN LABORATORY AND PILOT-SCALE COMBUSTION OF SOME CHLORINATED HYDROCARBONS

    EPA Science Inventory

    Factors governing the occurence of trace amounts of residual organic substance emmissions (ROSEs) in full-scale incierators are not fully understood. Pilot-scale spray combustion expereiments involving some liquid chlorinated hydrocarbons (CHCs) and their dilute mixtures with hy...

  9. Evaluation of Innovative Volatile Organic Compound and Hazardous Air Pollutant Control Technologies for U.S. Air Force Paint Spray Booths

    DTIC Science & Technology

    1990-10-01

    adsorption/incineration * Membrane vapor separation/condensation * Supercritical fluid oxidation • UV/ozone destruction * Molten salt combustion process...separation/ separate air stream contaminants 9 Oxygenated solvents condensation * Chlorinated hydrocarbons Supercritical fluid * Technology utilizing high...testing or full-scale unit capacity; they are: * Supercritical fluid oxidation • UV/ozone destruction * Molten salt incineration * Infrared incineration

  10. Flame Acceleration and Transition to Detonation in High-Speed Turbulent Combustion

    DTIC Science & Technology

    2016-12-21

    Turbulent Combustion 1. Introduction to the Challenge Problem The importance of high-speed t urbulent combustion of gas mixtures and sprays is dif...engines, gas turbines, various types of jet engines, and some rocket engines . On the other hand , preventing high-speed combustion is critical for...the safety of any human activities that involve handling of po- t entially explosive gases or volatile liquids . Thus, the development of more fuel

  11. Characterization of High-Velocity Solution Precursor Flame-Sprayed Manganese Cobalt Oxide Spinel Coatings for Metallic SOFC Interconnectors

    NASA Astrophysics Data System (ADS)

    Puranen, Jouni; Laakso, Jarmo; Kylmälahti, Mikko; Vuoristo, Petri

    2013-06-01

    A modified high-velocity oxy-fuel spray (HVOF) thermal spray torch equipped with liquid feeding hardware was used to spray manganese-cobalt solutions on ferritic stainless steel grade Crofer 22 APU substrates. The HVOF torch was modified in such a way that the solution could be fed axially into the combustion chamber through 250- and 300-μm-diameter liquid injector nozzles. The solution used in this study was prepared by diluting nitrates of manganese and cobalt, i.e., Mn(NO3)2·4H2O and Co(NO3)2·6H2O, respectively, in deionized water. The as-sprayed coatings were characterized by X-ray diffraction and field-emission scanning electron microscopy operating in secondary electron mode. Chemical analyses were performed on an energy dispersive spectrometer. Coatings with remarkable density could be prepared by the novel high-velocity solution precursor flame spray (HVSPFS) process. Due to finely sized droplet formation in the HVSPFS process and the use of as delivered Crofer 22 APU substrate material having very low substrate roughness ( R a < 0.5 μm), thin and homogeneous coatings, with thicknesses lower than 10 μm could be prepared. The coatings were found to have a crystalline structure equivalent to MnCo2O4 spinel with addition of Co-oxide phases. Crystallographic structure was restored back to single-phase spinel structure by heat treatment.

  12. High-volume use of self-cementing spray dry absorber material for structural applications

    NASA Astrophysics Data System (ADS)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to Portland cement.

  13. Novel Techniques for Quantification of Correlation Between Primary Liquid Jet Breakup and Downstream Spray Characteristics

    DTIC Science & Technology

    2016-05-08

    unlimited. 5 1. Introduction Several liquid -fuelled combustion systems, such as liquid propellant rocket engines and gas turbines...AFRL-AFOSR-JP-TR-2016-0084 Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray characteristics...to 17 Apr 2016 4.  TITLE AND SUBTITLE Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray

  14. Novel Techniques for Quantification of Correlation Between Primary Liquid Jet Breakup and Downstream Spray Characteristics

    DTIC Science & Technology

    2016-10-05

    unlimited. 5 1. Introduction Several liquid -fuelled combustion systems, such as liquid propellant rocket engines and gas turbines...AFRL-AFOSR-JP-TR-2016-0084 Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray characteristics...to 17 Apr 2016 4.  TITLE AND SUBTITLE Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray

  15. The structure of evaporating and combusting sprays: Measurements and predictions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, F. M.

    1983-01-01

    The structure of particle-laden jets and nonevaporating and evaporating sprays was measured in order to evaluate models of these processes. Three models are being evaluated: (1) a locally homogeneous flow model, where slip between the phases is neglected and the flow is assumed to be in local thermodynamic equilibrium; (2) a deterministic separated flow model, where slip and finite interphase transport rates are considered but effects of particle/drop dispersion by turbulence and effects of turbulence on interphase transport rates are ignored; and (3) a stochastic separated flow model, where effects of interphase slip, turbulent dispersion and turbulent fluctuations are considered using random sampling for turbulence properties in conjunction with random-walk computations for particle motion. All three models use a k-e-g turbulence model. All testing and data reduction are completed for the particle laden jets. Mean and fluctuating velocities of the continuous phase and mean mixture fraction were measured in the evaporating sprays.

  16. Early direct-injection, low-temperature combustion of diesel fuel in an optical engine utilizing a 15-hole, dual-row, narrow-included-angle nozzle.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehrke, Christopher R.; Radovanovic, Michael S.; Milam, David M.

    2008-04-01

    Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70/mD and 5 holes x 35/mD) with 103-/gmm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70/mD before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around amore » 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with pool-fire activity. Smoke and NO/dx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.« less

  17. Notes on the KIVA-2 software and chemically reactive fluid mechanics

    NASA Astrophysics Data System (ADS)

    Holst, M. J.

    1992-09-01

    Working notes regarding the mechanics of chemically reactive fluids with sprays, and their numerical simulation with the KIVA-2 software are presented. KIVA-2 is a large FORTRAN program developed at Los Alamos National Laboratory for internal combustion engine simulation. It is our hope that these notes summarize some of the necessary background material in fluid mechanics and combustion, explain the numerical methods currently used in KIVA-2 and similar combustion codes, and provide an outline of the overall structure of KIVA-2 as a representative combustion program, in order to aid the researcher in the task of implementing KIVA-2 or a similar combustion code on a massively parallel computer. The notes are organized into three parts as follows. In Part 1, a brief introduction to continuum mechanics, to fluid mechanics, and to the mechanics of chemically reactive fluids with sprays is presented. In Part 2, a close look at the governing equations of KIVA-2 is taken, and the methods employed in the numerical solution of these equations is discussed. Some conclusions are drawn and some observations are made in Part 3.

  18. Study of Combustion Characteristics of Hydrocarbon Nanofuel Droplets

    DTIC Science & Technology

    2017-08-23

    conditions in a sacrificial pressure vessel. - Investigate combustion dynamics of nanofuel sprays under acoustic forcing at supercritical conditions...change in flame color and foaming of the fuel at the end. 24DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited PA 17513

  19. Suresh K. AggarwalQuantified Analysis of a Production Diesel Injector Using X-Ray Radiography and Engine Diagnostics

    NASA Astrophysics Data System (ADS)

    Ramirez, Anita I.

    The work presented in this thesis pursues further the understanding of fuel spray, combustion, performance, and emissions in an internal combustion engine. Various experimental techniques including x-ray radiography, injection rate measurement, and in-cylinder endoscopy are employed in this work to characterize the effects of various upstream conditions such as injection rate profile and fuel physical properties. A single non-evaporating spray from a 6-hole full-production Hydraulically Actuated Electronically Controlled Unit Injector (HEUI) nozzle is studied under engine-like ambient densities with x-ray radiography at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL). Two different injection pressures were investigated and parameters such as fuel mass distribution, spray penetration, cone angle, and spray velocity were obtained. The data acquired with x-ray radiography is used for the development and validation of improved Computational Fluid Dynamic (CFD) models. Rate of injection is studied using the same HEUI in a single cylinder Caterpillar test engine. The injection rate profile is altered to have three levels of initial injection pressure rise. Combustion behavior, engine performance, and emissions information was acquired for three rate profile variations. It is found that NOx emission reduction is achieved when the SOI timing is constant at the penalty of lower power generated in the cycle. However, if CA50 is aligned amongst the three profiles, the NOx emissions and power are constant with a slight penalty in CO emissions. The influence of physical and chemical parameters of fuel is examined in a study of the heavy alcohol, phytol (C20H40O), in internal combustion engine application. Phytol is blended with diesel in 5%, 10%, and 20% by volume. Combustion behavior is similar between pure diesel and the phytol/diesel blends with small differences noted in peak cylinder pressure, ignition delay, and heat release rate in the premix burn phase. Diesel/phytol blends yield marginally lower power values. In-cylinder soot radiation images show combustion instability at the start of the event for the 20% phytol/diesel blend. Overall, NOx emissions are comparable across the different fuels used and no discernible trend is found in CO emissions.

  20. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    PubMed

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle < 10 °) surfaces. The spray coated surfaces were found to exhibit much improved water jet resistance and thermal stability up to 400 °C compared to the surfaces fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  1. Extended lattice Boltzmann scheme for droplet combustion.

    PubMed

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  2. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... different types of coating materials, where the combination of materials may be conducive to spontaneous... radiation or conduction from the source of illumination. (c) Electrical and other sources of ignition—(1... to the requirements of paragraph (j) of this section; (iii) Automobile undercoating spray operations...

  3. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... different types of coating materials, where the combination of materials may be conducive to spontaneous... radiation or conduction from the source of illumination. (c) Electrical and other sources of ignition—(1... to the requirements of paragraph (j) of this section; (iii) Automobile undercoating spray operations...

  4. Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging

    NASA Astrophysics Data System (ADS)

    Morris, Steven; Eagle, Ethan; Wooldridge, Margaret

    2012-10-01

    Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.

  5. Method for simultaneously removing SO.sub.2 and NO.sub.X pollutants from exhaust of a combustion system

    DOEpatents

    Levendis, Yiannis A.; Wise, Donald L.

    1994-05-17

    A method is disclosed for removing pollutants from the exhaust of combustion systems burning fuels containing substantial amounts of sulfur and nitrogen. An exemplary method of the invention involves the formation and reaction of a sorbent comprising calcium magnesium acetate (CMA). The CMA is either dry-sprayed (in the form of a fine powder) or wet-sprayed in an aqueous solution in a high temperature environment such as a combustion chamber. The latter technique is feasible since CMA is a uniquely water-soluble form of calcium and magnesium. When the dispersed particles of CMA are heated to a high temperature, fine calcium and magnesium oxide particles, which are hollow with thin and highly porous walls are formed, affording optimum external and internal accessibility for reacting with toxic gaseous emissions such as SO.sub.2. Further, the combustion of the organic acetate portion of the sorbent results in the conversion of NO.sub.x to N.sub.2.

  6. Liquid rocket combustion computer model with distributed energy release. DER computer program documentation and user's guide, volume 1

    NASA Technical Reports Server (NTRS)

    Combs, L. P.

    1974-01-01

    A computer program for analyzing rocket engine performance was developed. The program is concerned with the formation, distribution, flow, and combustion of liquid sprays and combustion product gases in conventional rocket combustion chambers. The capabilities of the program to determine the combustion characteristics of the rocket engine are described. Sample data code sheets show the correct sequence and formats for variable values and include notes concerning options to bypass the input of certain data. A seperate list defines the variables and indicates their required dimensions.

  7. Ceramic Matrix Characterization Under a Gas Turbine Combustion and Loading Environment

    DTIC Science & Technology

    2014-03-17

    carrier gas is injected into the jet and melts the powder to create a coating on the material. Figure 11 shows the nozzle of the HVOF spray gun when used...CERAMIC MATRIX COMPOSITE CHARACTERIZATION UNDER A GAS TURBINE COMBUSTION AND LOADING ENVIRONMENT...the United States. AFIT-ENY-14-M-08 CERAMIC MATRIX COMPOSITE CHARACTERIZATION UNDER A GAS TURBINE COMBUSTION AND LOADING ENVIRONMENT

  8. Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1993-01-01

    A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions.

  9. Atomization characteristics of swirl injector sprays

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.

    1996-01-01

    Stable combustion within rocket engines is a continuing concern for designers of rocket engine systems. The swirl-coaxial injector has demonstrated effectiveness in achieving atomization and mixing, and therefore stable combustion. Swirl-coaxial injector technology is being deployed in the American RL1OA rocket design and Russian engine systems already make wide spread use of this technology. The present requirement for swirl injector research is derived from NASA's current Reusable Launch Vehicle (RLV) technology program. This report describes some of the background and literature on this topic including drop size measurements, comparison with theoretical predictions, the effect of surface tension on the atomization process, and surface wave characteristics of liquid film at the exit of the injector.

  10. Quantification of sauter mean diameter in diesel sprays using scattering-absorption extinction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Gabrielle L; Magnotti, Gina M; Knox, Benjamin W

    Quantitative measurements of the primary breakup process in diesel sprays are lacking due to a range of experimental and diagnostic challenges, including: high droplet number density environments, very small characteristic drop size scales (~1-10 μm), and high characteristic velocities in the primary breakup region (~600 m/s). Due to these challenges, existing measurement techniques have failed to resolve a sufficient range of the temporal and spatial scales involved and much remains unknown about the primary atomization process in practical diesel sprays. To gain a better insight into this process, we have developed a joint visible and x-ray extinction measurement technique tomore » quantify axial and radial distributions of the path-integrated Sauter Mean Diameter (SMD) and Liquid Volume Fraction (LVF) for diesel-like sprays. This technique enables measurement of the SMD in regions of moderate droplet number density, enabling construction of the temporal history of drop size development within practical diesel sprays. The experimental campaign was conducted jointly at the Georgia Institute of Technology and Argonne National Laboratory using the Engine Combustion Network “Spray D” injector. X-ray radiography liquid absorption measurements, conducted at the Advanced Photon Source at Argonne, quantify the liquid-fuel mass and volume distribution in the spray. Diffused back-illumination liquid scattering measurements were conducted at Georgia Tech to quantify the optical thickness throughout the spray. By application of Mie-scatter equations, the ratio of the absorption and scattering extinction measurements is demonstrated to yield solutions for the SMD. This work introduces the newly developed scattering-absorption measurement technique and highlights the important considerations that must be taken into account when jointly processing these measurements to extract the SMD. These considerations include co-alignment of measurements taken at different institutions, identification of viable regions where the measurement ratio can be accurately interpreted, and uncertainty analysis in the measurement ratio and resulting SMD. Because the measurement technique provides the spatial history of the SMD development, it is expected to be especially informative to the diesel spray modeling community. Results from this work will aid in understanding the effect of ambient densities and injection pressures on primary breakup and help assess the appropriateness of spray submodels for engine computational fluid dynamics codes.« less

  11. Suppression of the Thermal Decomposition Reaction of Forest Combustible Materials in Large-Area Fires

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2018-05-01

    Experimental investigations on the characteristic time of suppression of the thermal decomposition reaction of typical forest combustible materials (aspen twigs, birch leaves, spruce needles, pine chips, and a mixture of these materials) and the volume of water required for this purpose have been performed for model fire hotbeds of different areas: SFCM = 0.0003-0.007 m2 and SFCM = 0.045-0.245 m2. In the experiments, aerosol water flows with droplets of size 0.01-0.25 mm were used for the spraying of model fire hotbeds, and the density of spraying was 0.02 L/(m2·s). It was established that the characteristics of suppression of a fire by an aerosol water flow are mainly determined by the sizes of the droplets in this flow. Prognostic estimates of changes in the dispersivity of a droplet cloud, formed from large (as large as 0.5 L) "drops" (water agglomerates) thrown down from a height, have been made. It is shown that these changes can influence the conditions and characteristics of suppression of a forest fire. Dependences, allowing one to forecast the characteristics of suppression of the thermal decomposition of forest combustible materials with the use of large water agglomerates thrown down from an aircraft and aerosol clouds formed from these agglomerates in the process of their movement to the earth, are presented.

  12. Suppression of the Thermal Decomposition Reaction of Forest Combustible Materials in Large-Area Fires

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2018-03-01

    Experimental investigations on the characteristic time of suppression of the thermal decomposition reaction of typical forest combustible materials (aspen twigs, birch leaves, spruce needles, pine chips, and a mixture of these materials) and the volume of water required for this purpose have been performed for model fire hotbeds of different areas: SFCM = 0.0003-0.007 m2 and SFCM = 0.045-0.245 m2. In the experiments, aerosol water flows with droplets of size 0.01-0.25 mm were used for the spraying of model fire hotbeds, and the density of spraying was 0.02 L/(m2·s). It was established that the characteristics of suppression of a fire by an aerosol water flow are mainly determined by the sizes of the droplets in this flow. Prognostic estimates of changes in the dispersivity of a droplet cloud, formed from large (as large as 0.5 L) "drops" (water agglomerates) thrown down from a height, have been made. It is shown that these changes can influence the conditions and characteristics of suppression of a forest fire. Dependences, allowing one to forecast the characteristics of suppression of the thermal decomposition of forest combustible materials with the use of large water agglomerates thrown down from an aircraft and aerosol clouds formed from these agglomerates in the process of their movement to the earth, are presented.

  13. Combustion Characteristics of Hydrocarbon Droplets Induced by Photoignition of Aluminum Nanoparticles (Conference Paper with Briefing Charts)

    DTIC Science & Technology

    2017-04-23

    192. 4. Chehroudi, B., Davis, D.W., and Talley, D.G., "The Effects of Pressure and Acoustic Field on a Cryogenic Coaxial Jet", 42nd AIAA Aerospace...the Presence of Acoustic Excitation", Combustion and Flame, 2014; 6, 161, pp. 1604-1619. 15. Glassman, I., and Yetter, R.A., Combustion: Fourth...pressure vessel. - Investigate combustion dynamics of nanofuel sprays under acoustic forcing at supercritical conditions (>600 psi). 3 DISTRIBUTION A

  14. Spray-dry desulfurization of flue gas from heavy oil combustion.

    PubMed

    Scala, Fabrizio; Lancia, Amedeo; Nigro, Roberto; Volpicelli, Gennaro

    2005-01-01

    An experimental investigation on sulfur dioxide removal in a pilot-scale spray dryer from the flue gas generated by combustion of low-sulfur (S) heavy oil is reported. A limewater slurry was sprayed through an ultrasonic two-fluid atomizer in the spray-dry chamber, and the spent sorbent was collected downstream in a pulse-jet baghouse together with fly ash. Flue gas was sampled at different points to measure the desulfurization efficiency after both the spray-dry chamber and the baghouse. Parametric tests were performed to study the effect of the following variables: gas inlet temperature, difference between gas outlet temperature and adiabatic saturation temperature, lime-to-S ratio, and average size of lime particles in the slurry. Results indicated that spray drying is an effective technology for the desulfurization of low-S fuel oil flue gas, provided operating conditions are chosen carefully. In particular, the lowest gas inlet and outlet temperatures compatible with baghouse operation should be selected, as should a sufficiently high lime-to-S ratio. The attainment of a small lime particle size in the slurry is critical for obtaining a high desulfurization efficiency. A previously presented spray-dry flue gas desulfurization model was used to simulate the pilot-scale desulfurization tests, to check the ability of the model to predict the S capture data and its usefulness as a design tool, minimizing the need for pilot-scale experimentation. Comparison between model and experimental results was fairly good for the whole range of calcium/S ratios considered.

  15. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutland, Christopher J.

    2009-04-26

    The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less

  16. Application of Chimera Grid Scheme to Combustor Flowfields at all Speeds

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Chen, Kuo-Huey

    1997-01-01

    A CFD method for solving combustor flowfields at all speeds on complex configurations is presented. The approach is based on the ALLSPD-3D code which uses the compressible formulation of the flow equations including real gas effects, nonequilibrium chemistry and spray combustion. To facilitate the analysis of complex geometries, the chimera grid method is utilized. To the best of our knowledge, this is the first application of the chimera scheme to reacting flows. In order to evaluate the effectiveness of this numerical approach, several benchmark calculations of subsonic flows are presented. These include steady and unsteady flows, and bluff-body stabilized spray and premixed combustion flames.

  17. Atomization of a liquid by a spray nozzle

    NASA Technical Reports Server (NTRS)

    Kutateladze, S. S. (Editor)

    1980-01-01

    The theory of atomization by mechanical and pneumatic (or vapor) spray nozzles is discussed. Basic design recommendations resulting from generalization of the material and confirmed by experiments are given. Sprayers which are widely used in the furnaces of stationary steam boilers, the combustion chambers of gas turbines, and industrial furnaces are examined.

  18. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  19. Droplet evaporation and combustion in a liquid-gas multiphase system

    NASA Astrophysics Data System (ADS)

    Muradoglu, Metin; Irfan, Muhammad

    2017-11-01

    Droplet evaporation and combustion in a liquid-gas multiphase system are studied computationally using a front-tracking method. One field formulation is used to solve the flow, energy and species equations with suitable jump conditions. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase change at the interface. Both temperature and species gradient driven phase change processes are simulated. Extensive validation studies are performed using the benchmark cases: The Stefan and the sucking interface problems, d2 law and wet bulb temperature comparison with the psychrometric chart values. The phase change solver is then extended to incorporate the burning process following the evaporation as a first step towards the development of a computational framework for spray combustion. We used detailed chemistry, variable transport properties and ideal gas behaviour for a n-heptane droplet combustion; the chemical kinetics being handled by the CHEMKIN. An operator-splitting approach is used to advance temperature and species mass fraction in time. The numerical results of the droplet burning rate, flame temperature and flame standoff ratio show good agreement with the experimental and previous numeric.

  20. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  1. Development of ultrasonic atomizer and its application to S. I. engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namiyama, K.; Nakamura, H.; Kokubo, K.

    1989-01-01

    This paper describes a fuel atomizer developed for S.I. engines based on ultrasonic vibrations. As the spray is characterized by fine droplet size and low penetration, it facilitates fuel movement and the formation of a homogeneous mixture. The spray behavior of this atomizer is easily influenced by ambient air motion. Therefore, the spray is most effectively delivered to the cylinders by precise injection timing. The ultrasonic atomizer disperses a fine spray over a wide flow rate range. A single cylinder engine fitted with the atomizer showed advantages in combustion speed and transient response performance.

  2. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less

  3. The role of spray-enhanced swirl flow for combustion stabilization in a stratified-charge DISI engine

    DOE PAGES

    Zeng, Wei; Sjöberg, Magnus; Reuss, David L.; ...

    2016-06-01

    Implementing spray-guided stratified-charge direct-injection spark-ignited (DISI) engines is inhibited by the occurrence of misfire and partial burns. Engine-performance tests demonstrate that increasing engine speed induces combustion instability, but this deterioration can be prevented by generating swirling flow during the intake stroke. In-cylinder pressure-based heat-release analysis reveals that the appearance of poor-burn cycles is not solely dependent on the variability of early flame-kernel growth. Moreover, cycles can experience burning-rate regression during later combustion stages and may or may not recover before the end of the cycle. Thermodynamic analysis and optical diagnostics are used here to clarify why swirl improves the combustionmore » repeatability from cycle to cycle. The fluid dynamics of swirl/spray interaction was previously demonstrated using high-speed PIV measurements of in-cylinder motored flow. It was found that the sprays of the multi-hole injector redistribute the intake-generated swirl flow momentum, thereby creating a better-centered higher angular-momentum vortex with reduced variability. The engine operation with high swirl was found to have significant improvement in cycle-to-cycle variations of both flow pattern and flow momentum. This paper is an extension of the previous work. Here, PIV measurements and flame imaging are applied to fired operation for studying how the swirl flow affects variability of ignition and subsequent combustion phases. PIV results for fired operation are consistent with the measurements made of motored flow. They demonstrate that the spark-plasma motion is highly correlated with the direction of the gas flow in the vicinity of the spark-plug gap. Without swirl, the plasma is randomly stretched towards either side of the spark plug, causing variability in the ignition of the two spray plumes that are straddling the spark plug. Conversely, swirl flow always convects the spark plasma towards one spray plume, causing a more repeatable ignition. The swirl decreases local RMS velocity, consistent with an observed reduction of early-burn variability. Broadband flame imaging demonstrates that with swirl, the flame consistently propagates in multiple directions to consume fuel–air mixtures within the piston bowl. In contrast, operation without swirl displays higher variability of flame-spread patterns, occasionally causing the appearance of partial-burn cycles.« less

  4. Structure of Monopropellant Spray Flames at Elevated Pressures

    DTIC Science & Technology

    1990-01-15

    process were developed , both ignoring and considering effects of separated flow, and evaluated using the new measurements. Supercritical combustion...McliJUTV CL*.S’a»’ iCAr ’ON 0’ Igj iadf REPORT DOCUMENTATION PAGE i*. Kiwwr Jicjmry CLASSiFiCATtow unclsssified i*. sicumrr cuusiwcAnoN AUTHORITY...separated flow. Deterministic and stochastic separated flow models were developed which yielded predictions that were similar to each other and were

  5. United States Air Force Summer Faculty Research Program - Management Report - 1985.

    DTIC Science & Technology

    1985-12-01

    Properties and Processing of a Dr. Vernon R. Allen Perfluorinated Polyalkylene Linked Polyimide 4 Quantifying Experience in the Cost Dr. Jihad A. Alsadek...Dr. Terrill D. Smith Compounds 127 Studies on Combustion of Liquid Fuel Dr. Siavash H. Sohrab Sprays in Stagnation Flows 128 Monitoring Environmental...Trafton Various Dinitrotoluenes and the Synthesis of Azo Compounds . 125 e 0 Ka 140 A Comparison of Measured and Calculated Dr. Larry Vardiman

  6. A Planar-Fluorescence Imaging Technique for Studying Droplet-Turbulence Interactions in Vaporizing Sprays

    NASA Technical Reports Server (NTRS)

    Santavicca, Dom A.; Coy, E.

    1990-01-01

    Droplet turbulence interactions directly affect the vaporization and dispersion of droplets in liquid sprays and therefore play a major role in fuel oxidizer mixing in liquid fueled combustion systems. Proper characterization of droplet turbulence interactions in vaporizing sprays require measurement of droplet size velocity and size temperature correlations. A planar, fluorescence imaging technique is described which is being developed for simultaneously measuring the size, velocity, and temperature of individual droplets in vaporizing sprays. Preliminary droplet size velocity correlation measurements made with this technique are presented. These measurements are also compared to and show very good agreement with measurements made in the same spray using a phase Doppler particle analyzer.

  7. Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors

    NASA Technical Reports Server (NTRS)

    VanOverbeke, Thomas J.

    1998-01-01

    The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except for peak temperature and tangential velocity. The hybrid pdf method did take longer and required more memory, but has a theoretical basis to extend to many reaction steps which cannot be said of current turbulent combustion models.

  8. Computational analysis of liquid hypergolic propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Krishnan, A.; Przekwas, A. J.; Gross, K. W.

    1992-01-01

    The combustion process in liquid rocket engines depends on a number of complex phenomena such as atomization, vaporization, spray dynamics, mixing, and reaction mechanisms. A computational tool to study their mutual interactions is developed to help analyze these processes with a view of improving existing designs and optimizing future designs of the thrust chamber. The focus of the article is on the analysis of the Variable Thrust Engine for the Orbit Maneuvering Vehicle. This engine uses a hypergolic liquid bipropellant combination of monomethyl hydrazine as fuel and nitrogen tetroxide as oxidizer.

  9. The atomization and burning of biofuels in the combustion chambers of gas turbine engines

    NASA Astrophysics Data System (ADS)

    Maiorova, A. I.; Vasil'ev, A. Yu; Sviridenkov, A. A.; Chelebyan, O. G.

    2017-11-01

    The present work analyzes the effect of physical properties of liquid fuels with high viscosity (including biofuels) on the spray and burning characteristics. The study showed that the spray characteristics behind devices well atomized fuel oil, may significantly deteriorate when using biofuels, until the collapse of the fuel bubble. To avoid this phenomenon it is necessary to carry out the calculation of the fuel film form when designing the nozzles. As a result of this calculation boundary curves in the coordinates of the Reynolds number on fuel - the Laplace number are built, characterizing the transition from sheet breakup to spraying. It is shown that these curves are described by a power function with the same exponent for nozzles of various designs. The swirl of air surrounding the nozzle in the same direction, as the swirl of fuel film, can significantly improve the performance of atomization of highly viscous fuel. Moreover the value of the tangential air velocity has the determining influence on the film shape. For carrying out of hot tests in aviation combustor some embodiments of liquid fuels were proved and the most preferred one was chosen. Fire tests of combustion chamber compartment at conventional fuel has shown comprehensible characteristics, in particular wide side-altars of the stable combustion. The blended biofuel application makes worse combustion stability in comparison with kerosene. A number of measures was recommended to modernize the conventional combustors when using biofuels in gas turbine engines.

  10. Internal and near nozzle measurements of Engine Combustion Network “Spray G” gasoline direct injectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, Daniel J.; Kastengren, Alan L.; Matusik, Katarzyna E.

    Gasoline direct injection (GDI) sprays are complex multiphase flows. When compared to multi-hole diesel sprays, the plumes are closely spaced, and the sprays are more likely to interact. The effects of multi-jet interaction on entrainment and spray targeting can be influenced by small variations in the mass fluxes from the holes, which in turn depend on transients in the needle movement and small-scale details of the internal geometry. In this paper, we present a comprehensive overview of a multi-institutional effort to experimentally characterize the internal geometry and near-nozzle flow of the Engine Combustion Network (ECN) Spray G gasoline injector. Inmore » order to develop a complete picture of the near-nozzle flow, a standardized setup was shared between facilities. A wide range of techniques were employed, including both X-ray and visible-light diagnostics. The novel aspects of this work include both new experimental measurements, and a comparison of the results across different techniques and facilities. The breadth and depth of the data reveal phenomena which were not apparent from analysis of the individual data sets. We show that plume-to-plume variations in the mass fluxes from the holes can cause large-scale asymmetries in the entrainment field and spray structure. Both internal flow transients and small-scale geometric features can have an effect on the external flow. The sharp turning angle of the flow into the holes also causes an inward vectoring of the plumes relative to the hole drill angle, which increases with time due to entrainment of gas into a low-pressure region between the plumes. In conclusion, these factors increase the likelihood of spray collapse with longer injection durations.« less

  11. Internal and near nozzle measurements of Engine Combustion Network “Spray G” gasoline direct injectors

    DOE PAGES

    Duke, Daniel J.; Kastengren, Alan L.; Matusik, Katarzyna E.; ...

    2017-07-25

    Gasoline direct injection (GDI) sprays are complex multiphase flows. When compared to multi-hole diesel sprays, the plumes are closely spaced, and the sprays are more likely to interact. The effects of multi-jet interaction on entrainment and spray targeting can be influenced by small variations in the mass fluxes from the holes, which in turn depend on transients in the needle movement and small-scale details of the internal geometry. In this paper, we present a comprehensive overview of a multi-institutional effort to experimentally characterize the internal geometry and near-nozzle flow of the Engine Combustion Network (ECN) Spray G gasoline injector. Inmore » order to develop a complete picture of the near-nozzle flow, a standardized setup was shared between facilities. A wide range of techniques were employed, including both X-ray and visible-light diagnostics. The novel aspects of this work include both new experimental measurements, and a comparison of the results across different techniques and facilities. The breadth and depth of the data reveal phenomena which were not apparent from analysis of the individual data sets. We show that plume-to-plume variations in the mass fluxes from the holes can cause large-scale asymmetries in the entrainment field and spray structure. Both internal flow transients and small-scale geometric features can have an effect on the external flow. The sharp turning angle of the flow into the holes also causes an inward vectoring of the plumes relative to the hole drill angle, which increases with time due to entrainment of gas into a low-pressure region between the plumes. In conclusion, these factors increase the likelihood of spray collapse with longer injection durations.« less

  12. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet trajectory analysis overpredicts the liquid mass penetration, and indicates a need for a more rigorous model to account for the three-dimensional mixing field induced by the jet-crossflow interaction. Nonetheless, the general procedures and criteria that are outlined can be used to efficiently assess and compare the quality of sprays formed under different conditions.

  13. Combustion Research aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Astrophysics Data System (ADS)

    Sutliff, T. J.; Otero, A. M.; Urban, D. L.

    2002-01-01

    The Physical Sciences Research Program of NASA has chartered a broad suite of peer-reviewed research investigating both fundamental combustion phenomena and applied combustion research topics. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). The applied research benefit humans living and working in space through its fire safety program. The Combustion Science Discipline is implementing a structured flight research program utilizing the International Space Station (ISS) and two of its premier facilities, the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox to conduct this space-based research. This paper reviews the current vision of Combustion Science research planned for International Space Station implementation from 2003 through 2012. A variety of research efforts in droplets and sprays, solid-fuels combustion, and gaseous combustion have been independently selected and critiqued through a series of peer-review processes. During this period, while both the ISS carrier and its research facilities are under development, the Combustion Science Discipline has synergistically combined research efforts into sub-topical areas. To conduct this research aboard ISS in the most cost effective and resource efficient manner, the sub-topic research areas are implemented via a multi-user hardware approach. This paper also summarizes the multi-user hardware approach and recaps the progress made in developing these research hardware systems. A balanced program content has been developed to maximize the production of fundamental and applied combustion research results within the current budgetary and ISS operational resource constraints. Decisions on utilizing the Combustion Integrated Rack and the Microgravity Science Glovebox are made based on facility capabilities and research requirements. To maximize research potential, additional research objectives are specified as desires a priori during the research design phase. These expanded research goals, which are designed to be achievable even with late addition of operational resources, allow additional research of a known, peer-endorsed scope to be conducted at marginal cost. Additional operational resources such as upmass, crewtime, data downlink bandwidth, and stowage volume may be presented by the ISS planners late in the research mission planning process. The Combustion Discipline has put in place plans to be prepared to take full advantage of such opportunities.

  14. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov Websites

    detection of compounds at sub-parts per billion by volume levels. A high-performance liquid chromatograph ) platform; a high-pressure (1,200- bar) direct-injection system to minimize spray physics effects; and an combustion chamber. A high-speed pressure transducer measures chamber pressure to detect fuel ignition. Air

  15. Use of aromatic salts for simultaneously removing SO.sub.2 and NO.sub.x pollutants from exhaust of a combustion system

    DOEpatents

    Levendis, Yiannis A.; Wise, Donald L.

    1994-10-04

    A method is disclosed for removing pollutants from the exhaust of combustion systems burning fuels containing substantial amounts of sulfur and nitrogen. An exemplary method of the invention involves the formation and reaction of a sorbent comprising calcium benzoate. The calcium benzoate is either dry-sprayed (in the form of a fine powder) or wet-sprayed in an aqueous solution in a high temperature environment such as a combustion chamber. The latter technique is feasible since calcium benzoate is a water-soluble form of calcium. When the dispersed particles of calcium benzoate are heated to a high temperature, the organic benzoate burns off and fine calcium oxide particles are formed. These particles are cenospheric (hollow) and have thin and highly porous walls, thus, affording optimum external and internal accessibility for reacting with toxic gaseous emissions such as SO.sub.2. Further, the combustion of the organic benzoate portion of the sorbent results in the conversion of NO.sub.x to N.sub.2.

  16. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  17. Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1990-01-01

    A new computer code was developed for predicting the turbulent and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.

  18. Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1989-01-01

    A new computer code was developed for predicting the turbulent, and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, 3-D Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.

  19. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  20. Combustion Characteristics of Sprays

    DTIC Science & Technology

    1989-08-01

    Lin. T. H.. and Sohrab. S. H. (1987). On the transition oi’diffusion to premixed I’lames in consers.ed ssstem Cornhusio. Flume 68. 73. Mlizutani. Y ...and Nakauima. A. (1973a). Combustion of fuel vapor-drop-air systems: Part 1-Open burner flames. Combust. F/ante 21.14. Mizutani. Y .. and Nakajima. A...AFOSR LES Final Report. AFRPL. Sohrab. S. H.. Ye. Z. Y .. and Law~k C. K. (1984). An experimenial investication on ilame interaction ano the

  1. Facile synthesis of multi-shell structured binary metal oxide powders with a Ni/Co mole ratio of 1:2 for Li-Ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Park, Sun Kyu; Lee, Jung-Kul; Kang, Yun Chan

    2015-06-01

    Multi-shell structured binary transition metal oxide powders with a Ni/Co mole ratio of 1:2 are prepared by a simple spray drying process. Precursor powder particles prepared by spray drying from a spray solution of citric acid and ethylene glycol have completely spherical shape, fine size, and a narrow size distribution. The precursor powders turn into multi-shell powders after a post heat-treatment at temperatures between 250 and 800 °C. The multi-shell structured powders are formed by repeated combustion and contraction processes. The multi-shell powders have mixed crystal structures of Ni1-xCo2O4-x and NiO phases regardless of the post-treatment temperature. The reversible capacities of the powders post-treated at 250, 400, 600, and 800 °C after 100 cycles are 584, 913, 808, and 481 mA h g-1, respectively. The low charge transfer resistance and high lithium ion diffusion rate of the multi-shell powders post-treated at 400 °C with optimum grain size result in superior electrochemical properties even at high current densities.

  2. Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.

    NASA Astrophysics Data System (ADS)

    Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias

    2015-11-01

    Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.

  3. Evaluation and optimisation of phenomenological multi-step soot model for spray combustion under diesel engine-like operating conditions

    NASA Astrophysics Data System (ADS)

    Pang, Kar Mun; Jangi, Mehdi; Bai, Xue-Song; Schramm, Jesper

    2015-05-01

    In this work, a two-dimensional computational fluid dynamics study is reported of an n-heptane combustion event and the associated soot formation process in a constant volume combustion chamber. The key interest here is to evaluate the sensitivity of the chemical kinetics and submodels of a semi-empirical soot model in predicting the associated events. Numerical computation is performed using an open-source code and a chemistry coordinate mapping approach is used to expedite the calculation. A library consisting of various phenomenological multi-step soot models is constructed and integrated with the spray combustion solver. Prior to the soot modelling, combustion simulations are carried out. Numerical results show that the ignition delay times and lift-off lengths exhibit good agreement with the experimental measurements across a wide range of operating conditions, apart from those in the cases with ambient temperature lower than 850 K. The variation of the soot precursor production with respect to the change of ambient oxygen levels qualitatively agrees with that of the conceptual models when the skeletal n-heptane mechanism is integrated with a reduced pyrene chemistry. Subsequently, a comprehensive sensitivity analysis is carried out to appraise the existing soot formation and oxidation submodels. It is revealed that the soot formation is captured when the surface growth rate is calculated using a square root function of the soot specific surface area and when a pressure-dependent model constant is considered. An optimised soot model is then proposed based on the knowledge gained through this exercise. With the implementation of optimised model, the simulated soot onset and transport phenomena before reaching quasi-steady state agree reasonably well with the experimental observation. Also, variation of spatial soot distribution and soot mass produced at oxygen molar fractions ranging from 10.0 to 21.0% for both low and high density conditions are reproduced.

  4. Baseline Computational Fluid Dynamics Methodology for Longitudinal-Mode Liquid-Propellant Rocket Combustion Instability

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.

    2005-01-01

    A computational method for the analysis of longitudinal-mode liquid rocket combustion instability has been developed based on the unsteady, quasi-one-dimensional Euler equations where the combustion process source terms were introduced through the incorporation of a two-zone, linearized representation: (1) A two-parameter collapsed combustion zone at the injector face, and (2) a two-parameter distributed combustion zone based on a Lagrangian treatment of the propellant spray. The unsteady Euler equations in inhomogeneous form retain full hyperbolicity and are integrated implicitly in time using second-order, high-resolution, characteristic-based, flux-differencing spatial discretization with Roe-averaging of the Jacobian matrix. This method was initially validated against an analytical solution for nonreacting, isentropic duct acoustics with specified admittances at the inflow and outflow boundaries. For small amplitude perturbations, numerical predictions for the amplification coefficient and oscillation period were found to compare favorably with predictions from linearized small-disturbance theory as long as the grid exceeded a critical density (100 nodes/wavelength). The numerical methodology was then exercised on a generic combustor configuration using both collapsed and distributed combustion zone models with a short nozzle admittance approximation for the outflow boundary. In these cases, the response parameters were varied to determine stability limits defining resonant coupling onset.

  5. Aerothermal modeling program, phase 1

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Reynolds, R.; Ball, I.; Berry, R.; Johnson, K.; Mongia, H.

    1983-01-01

    Aerothermal submodels used in analytical combustor models are analyzed. The models described include turbulence and scalar transport, gaseous full combustion, spray evaporation/combustion, soot formation and oxidation, and radiation. The computational scheme is discussed in relation to boundary conditions and convergence criteria. Also presented is the data base for benchmark quality test cases and an analysis of simple flows.

  6. Critical evaluation of Jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-2

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Ying, S.-J.

    1990-01-01

    Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.

  7. Computational Investigation of Combustion Dynamics in a Lean-Direct Injection Gas Turbine Combustor

    DTIC Science & Technology

    2012-11-01

    variable vector which includes turbulence kinetic energy and specific dissipation, k and w; In the viscous flux, D is the molecular diffusion coefficient...for the liquid particle. This equation assumes the uniform temperature inside the liquid particle. The source term consist of the net sensible ...Spray Characteristics on Diesel Engine Combustion and Emission, SAE 980131, 1998 24 Fu, Y., “Aerodynamics and Combustion of Axial Swirlers,” Ph . D. dissertation from the University of Cincinnati, 2008.

  8. Combustion synthesis method and products

    DOEpatents

    Holt, J.B.; Kelly, M.

    1993-03-30

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  9. Combustion synthesis method and products

    DOEpatents

    Holt, J. Birch; Kelly, Michael

    1993-01-01

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  10. EUPDF: An Eulerian-Based Monte Carlo Probability Density Function (PDF) Solver. User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    EUPDF is an Eulerian-based Monte Carlo PDF solver developed for application with sprays, combustion, parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with the coding required to couple the PDF code to any given flow code and a basic understanding of the EUPDF code structure as well as the models involved in the PDF formulation. The source code of EUPDF will be available with the release of the National Combustion Code (NCC) as a complete package.

  11. Progress in Advanced Spray Combustion Code Integration

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1993-01-01

    A multiyear project to assemble a robust, muitiphase spray combustion code is now underway and gradually building up to full speed. The overall effort involves several university and government research teams as well as Rocketdyne. The first part of this paper will give an overview of the respective roles of the different participants involved, the master strategy, the evolutionary milestones, and an assessment of the state-of-the-art of various key components. The second half of this paper will highlight the progress made to date in extending the baseline Navier-Stokes solver to handle multiphase, multispecies, chemically reactive sub- to supersonic flows. The major hurdles to overcome in order to achieve significant speed ups are delineated and the approaches to overcoming them will be discussed.

  12. Fragmentation of structural energetic materials: implications for performance

    NASA Astrophysics Data System (ADS)

    Aydelotte, B.; Braithwaite, C. H.; Thadhani, N. N.

    2014-05-01

    Fragmentation results for structural energetic materials based on intermetallic forming mixtures are reviewed and the implications of the fragment populations are discussed. Cold sprayed Ni+Al and explosively compacted mixtures of Ni+Al+W and Ni+Al+W+Zr powders were fabricated into ring shaped samples and explosively fragmented. Ring velocity was monitored and fragments were soft captured in order to study the fragmentation process. It was determined that the fragments produced by these structural energetic materials are much smaller than those typically produced by ductile metals such as steel or aluminum. This has implications for combustion processes that may occur subsequent to the fragmentation process.

  13. A method for aircraft afterburner combustion without flameholders

    NASA Astrophysics Data System (ADS)

    Birmaher, Shai

    2009-12-01

    State of the art aircraft afterburners employ spray bars to inject fuel and flameholders to stabilize the combustion process. Such afterburner designs significantly increase the length (and thus weight), pressure losses, and observability of the engine. This thesis presents a feasibility study of a compact 'prime and trigger' (PAT) afterburner concept that eliminates the fuel spray bars and flameholders and, thus, eliminates the above-mentioned problems. In this concept, afterburner fuel is injected just upstream or in between the turbine stages. As the fuel travels through the turbine stages, it evaporates, mixes with the bulk flow, and undergoes some chemical reactions without any significant heat release, a process referred to as 'priming'. Downstream of the turbine stages, combustion could take place through autoignition. However, if fuel autoignition does not occur or if autoignition does not produce a combustion zone that is stable and highly efficient, then a low power pilot, or 'trigger', can be used to control the combustion process. The envisioned trigger for the PAT concept is a jet of product gas from ultra-rich hydrocarbon/air combustion that is injected through the afterburner liner. This 'partial oxidation' (POx) gas, which consists mostly of H2, CO, and diluents, rapidly produces radicals and heat that accelerate the autoignition of the primed mixture and, thus, provide an anchor point for the afterburner combustion process. The objective of this research was to demonstrate the feasibility of the PAT concept by showing that (1) combustion of fuel injected within or upstream of turbine stages can occur only downstream of the turbine stages, and (2) the combustion zone is compact, stable and efficient. This was accomplished using two experimental facilities, a developed theoretical model, and Chemkin simulations. The first facility, termed the Afterburner Facility (AF), simulated the bulk flow temperature, velocity and O2 content through a turbojet combustor, turbine stage and afterburner. To model the PAT concept, Jet-A was injected upstream of the simulated turbine stage and a H2 jet was used to trigger the primed Jet-A combustion process downstream of the turbine stage. H2 was used because POx gas was not available for experiments. The second facility, termed the Propane Autoignition Combustor (PAC), was essentially a scaled-down, simplified version of the AF. The PAC experiments focused on the trigger stage of the PAT concept, using H 2 in lieu of POx gas and employing measurement techniques that were in some ways more detailed than in the AF experiments. The developed model simulated the physics of fuel priming in the AF and predicted the Jet-A autoignition location. It was used to predict and interpret the AF results and to study the feasibility of the PAT concept at pressures outside the AF operating range. Finally, the Chemkin simulations were used to examine the effect of several POx gas compositions on the Jet-A/vitiated-air autoignition process; to compare the POx and H2 triggers; and to explore several reasons for why POx gas and H2 are suitable trigger mechanisms. he experimental, theoretical, and numerical results obtained in this investigation indicated that the PAT concept provides a feasible approach to afterburner combustion. The experiments in the AF showed that the ignition delay of Jet-A is sufficiently long to allow fuel injection within turbine stages without significant heat release upstream of the afterburner. In the AF experiments without the H2 trigger, Jet-A combustion was achieved through autoignition; however, the autoignition combustion zone exhibited large axial fluctuations and low combustion efficiency. The H2 trigger was able to shift the combustion zone upstream, make it more compact, reduce fluctuations in its axial position, and raise the combustion efficiency to nearly 100%. The PAC experiments also showed that a H2 trigger can shift the combustion zone upstream, make it more compact, and increase the combustion efficiency. The PAC results were obtained with lower O 2 content and higher equivalence ratios than in the AF. Therefore, the combined AF and PAC results suggested that the PAT concept is feasible over a wide range of operating conditions. The developed model showed good agreement with the AF results. It also predicted that the PAT concept is feasible at bulk flow pressures outside the AF operating range. Finally, the Chemkin results showed that both the H2 and POx gas triggers can significantly reduce the ignition delay time of primed Jet-A/vitiated air mixtures. Thus, POx gas is a suitable trigger for the PAT concept and should be tested in future experimental investigations.

  14. Combustion of LOX with H2(sub g) under subcritical, critical, and supercritical conditions (Task 1) and experimental observation of dense spray and mixing of impinging jets (Task 2)

    NASA Technical Reports Server (NTRS)

    Kuo, K. K.; Hsieh, W. H.; Cheung, F. B.; Yang, A. S.; Brown, J. J.; Woodward, R. D.; Kline, M. C.; Burch, R. L.

    1992-01-01

    The objective was to achieve a better understanding of the combustion processes of liquid oxygen and gaseous hydrogen under broad range of pressure covering subcritical, critical, and supercritical conditions. The scope of the experimental work falls into the following areas: (1) design of the overall experimental setup; (2) modification of an existing windowed high pressure chamber; (3) design of the LOX feeding system; (4) provision of the safety features in the test rig design; (5) LOX cleanliness requirements; (6) cold shock testing; (7) implementation of data acquisition systems; (8) preliminary tests for system checkout; (9) modification of LOX feeding system; and (10) evaporation tests. Progress in each area is discussed.

  15. Multiple Ignition, Normal and Catalytic Combustion and Quenching of Fuel/Air Mixtures.

    DTIC Science & Technology

    1980-05-10

    spray ignition results. Spray systems will be produced using a TSI vibrating orifice aerosol generator. From a small liquid reservoir under high pressure...Liebman used laser ignition of electromagnetically -15- levitated particles. An interesting contradiction presents itself in Figures 7 and 8. Because...the substrate surface has been developed and tested. When the experimental wall temperature is used as boundary condition for the gas- phase equations

  16. Measurement of intact-core length of atomizing liquid jets by image deconvolution

    NASA Technical Reports Server (NTRS)

    Woodward, Roger; Burch, Robert; Kuo, Kenneth; Cheung, Fan-Bill

    1993-01-01

    The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their high liquid load fractions and hence their optical opacity. Focus was on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact-liquid core. The specific application considered is that of shear-coaxial-type rocket engine injectors in which liquid oxygen is injected through the center post while high velocity gaseous hydrogen is injected through a concentric annulus, providing a shear force to the liquid jet surface. Real-time x ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, is used to make the measurements. The intact-liquid-core length data were obtained and interpreted using two conceptually different methods to illustrate the effects of chamber pressure, gas-to-liquid momentum ratio, and cavitation.

  17. DNS Study of the Ignition of n-Heptane Fuel Spray under HCCI Conditions

    NASA Astrophysics Data System (ADS)

    Wang, Yunliang; Rutland, Christopher J.

    2004-11-01

    Direct numerical simulations are carried out to investigate the mixing and auto-ignition processes of n-heptane fuel spray in a turbulent field using a skeletal chemistry mechanism with 44 species and 112 reactions. For the solution of the carrier gas fluid, we use the Eulerian method, while for the fuel spray, the Lagrangian method is used. We use an eighth-order finite difference scheme to calculate spacial derivatives and a fourth-order Runge-Kutta scheme for the time integration. The initial gas temperature is 926 K and the initial gas pressure is 30 atmospheres. The initial global equivalence ratio based on the fuel concentration is around 0.4. The initial droplet diameter is 60 macrons and the droplet temperature is 300 K. Evolutions of averaged temperature, species mass fraction, heat release and reaction rate are presented. Contours of temperature and species mass fractions are presented. The objective is to understand the mechanism of ignition under Homogeneous Charged Compression Ignition (HCCI) conditions, aiming at providing some useful information of HCCI combustion, which is one of the critical issues to be resolved.

  18. Measurement of intact-core length of atomizing liquid jets by image deconvolution

    NASA Astrophysics Data System (ADS)

    Woodward, Roger; Burch, Robert; Kuo, Kenneth; Cheung, Fan-Bill

    1993-11-01

    The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their high liquid load fractions and hence their optical opacity. Focus was on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact-liquid core. The specific application considered is that of shear-coaxial-type rocket engine injectors in which liquid oxygen is injected through the center post while high velocity gaseous hydrogen is injected through a concentric annulus, providing a shear force to the liquid jet surface. Real-time x ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, is used to make the measurements. The intact-liquid-core length data were obtained and interpreted using two conceptually different methods to illustrate the effects of chamber pressure, gas-to-liquid momentum ratio, and cavitation.

  19. Experimental spray atomization studies of uni-element shear coaxial injector plate geometry for LOX/CH4 combustion and propulsion research

    NASA Astrophysics Data System (ADS)

    Dorado, Vanessa

    The Center for Space Exploration Technology Research (cSETR) has developed a set of shear coaxial injectors as part of a system-level approach to study LOX/CH4 combustion. This thesis describes the experimental studies involved in the characterization of the effects produced by two design injection face plate variables: post thickness and recession length. A testing program was developed to study the injectors' atomization process using LN2 as a substitute for LOX in cold flow and the flame anchoring mechanisms in hot firings. The cold flow testing stage was conducted to obtain liquid core measurements and compare its behavior between the different geometric configurations. Shadowgraph technique was used during this testing stage to obtain these measurements and compare them to previously published data and core length mathematical models. The inlet conditions were selected to obtain mixture ratios in the 2-4 range and a wide range of high momentum flux ratios (30-150). Particle Image Velocimetry (PIV) was also used in the testing of the three injectors to assess their atomization performance and their fragmentation behaviors. Results show that changes in central post thickness and co-annular orifice recession length with respect to the injection plate have quantifiable effects in the generated spray flow field, despite not being accounted for in traditional break up calculations. The observations and results of this investigation lead to a proof of concept demonstration in a combustion setting to support the study of flame anchoring mechanisms, also discussed in this work.

  20. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  1. EUPDF-II: An Eulerian Joint Scalar Monte Carlo PDF Module : User's Manual

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, Nan-Suey (Technical Monitor)

    2004-01-01

    EUPDF-II provides the solution for the species and temperature fields based on an evolution equation for PDF (Probability Density Function) and it is developed mainly for application with sprays, combustion, parallel computing, and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase CFD and spray solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type. The manual provides the user with an understanding of the various models involved in the PDF formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers. The source code of EUPDF-II will be available with National Combustion Code (NCC) as a complete package.

  2. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  3. Photoignition Torch Applied to Cryogenic H2/O2 Coaxial Jet

    DTIC Science & Technology

    2016-12-06

    suitable for certain thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas ...turbines, gas generators, liquid rocket engines, and multi grain solid rocket motors. photoignition, fuel spray ignition, high pressure ignition...thrusters and liquid rocket engines. This ignition system is scalable for applications in different combustion chambers such as gas turbines, gas

  4. Development of an Impinging-jet Fuel-injection Valve Nozzle

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hemmeter, G H

    1931-01-01

    During an investigation to determine the possibilities and limitations of a two-stroke-cycle engine and ignition, it was necessary to develop a fuel injection valve nozzle to produce a disk-shaped, well dispersed spray. Preliminary tests showed that two smooth jets impinging upon each other at an angle of 74 degrees gave a spray with the desired characteristics. Nozzles were built on this basis and, when used in fuel-injection valves, produced a spray that fulfilled the original requirements. The spray is so well dispersed that it can be carried along with an air stream of comparatively low velocity or entrained with the fuel jet from a round-hole orifice. The characteristics of the spray from an impinging-jet nozzle limits its application to situations where wide dispersion is required by the conditions in the engine cylinder and the combustion chamber.

  5. A Comparison of Shadowgraphy and X-ray Computed Tomography in Liquid Spray Analysis

    DTIC Science & Technology

    2014-11-14

    atomizers and downstream of the nozzle exit gives insight into optimizing atomizers, particularly for combustion applications. The performance of gas ...regions near the spray nozzle [9, 10]. Because light refraction by liquid sheets is significant, these areas all cast a full shadow on the camera...hollow-cone pressure swirl design. Within this nozzle design, liquid swirls around an air-cored vortex. Upon exiting, the fluid expands due to its

  6. Robust Low Cost Aerospike/RLV Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie

    1999-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques. Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 1,200 F than NARloy-Z does at 1,000 F. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost, VPS process to deposit Cu-8Cr-4Nb with mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on following scheduled hot firing tests at NASA-Lewis.

  7. Combustion of interacting droplet arrays in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.

    1995-01-01

    This research program involves the study of one and two dimensional arrays of droplets in a buoyant-free environment. The purpose of the work is to extend the database and theories that exist for single droplets into the regime where droplet interactions are important. The eventual goal being to use the results of this work as inputs to models on spray combustion where droplets seldom burn individually; instead the combustion history of a droplet is strongly influenced by the presence of the neighboring droplets. Throughout the course of the work, a number of related aspects of isolated droplet combustion have also been investigated. This paper will review our progress in microgravity droplet array combustion, advanced diagnostics (specifically L2) applied to isolated droplet combustion, and radiative extinction large droplet flames. A small-scale droplet combustion experiment being developed for the Space Shuttle will also be described.

  8. Computational Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surfacemore » and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.« less

  9. Subgrid Combustion Modeling for the Next Generation National Combustion Code

    NASA Technical Reports Server (NTRS)

    Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher

    2003-01-01

    In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.

  10. Critical evaluation of Jet-A spray combustion using propane chemical kinetics in gas turbine combustion simulated by KIVA-II

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Ying, S.-J.

    1990-01-01

    Numerical solutions of the Jet-A spray combustion were obtained by means of the KIVA-II computer code after Jet-A properties were added to the 12 chemical species the program had initially contained. Three different reaction mechanism models are considered. The first model consists of 131 reactions and 45 species; it is evaluated by comparing calculated ignition delay times with available shock tube data, and it is used in the evaluation of the other two simplified models. The simplified mechanisms consider 45 reactions and 27 species and 5 reactions and 12 species, respectively. In the prediction of pollutants NOx and CO, the full mechanism of 131 reactions is considered to be more reliable. The numerical results indicate that the variation of the maximum flame temperature is within 20 percent as compared with that of the full mechanism of 131 reactions. The chemical compositions of major components such as C3H8, H2O, O2, CO2, and N2 are of the same order of magnitude. However, the concentrations of pollutants are quite different.

  11. Study of Spray Disintegration in Accelerating Flow Fields

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1972-01-01

    An analytical and experimental investigation was conducted to perform "proof of principlem experiments to establish the effects of propellant combustion gas velocity on propella'nt atomization characteristics. The propellants were gaseous oxygen (GOX) and Shell Wax 270. The fuel was thus the same fluid used in earlier primary cold-flow atomization studies using the frozen wax method. Experiments were conducted over a range in L* (30 to 160 inches) at two contraction ratios (2 and 6). Characteristic exhaust velocity (c*) efficiencies varied from SO to 90 percent. The hot fire experimental performance characteristics at a contraction ratio of 6.0 in conjunction with analytical predictions from the drovlet heat-up version of the Distributed Energy Release (DER) combustion computer proDam showed that the apparent initial dropsize compared well with cold-flow predictions (if adjusted for the gas velocity effects). The results also compared very well with the trend in perfomnce as predicted with the model. significant propellant wall impingement at the contraction ratio of 2.0 precluded complete evaluation of the effect of gross changes in combustion gas velocity on spray dropsize.

  12. Photographic combustion characterization of LOX/hydrocarbon type propellants

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1979-01-01

    Single element injectors and two fuels were tested with the aim of photographically characterizing observed combustion phenomena. The three injectors tested were the O-F-O triplet, the transverse like on like (TLOL), and the rectangular unlike doublet (RUD). The fuels tested were RP-1 and propane. The hot firings were conducted in a specifically constructed chamber fitted with quartz windows for photographically viewing the impingement spray field. All LOX/HC testing demonstrated coking with the RP-1 fuel leaving far more soot than the propane fuel. No fuel freezing or popping was experienced under the test conditions evaluated. Carbon particle emission and combustion light brilliance increased with Pc for both fuels although RP-1 was far more energetic in this respect. The RSS phenomena appear to be present in the high Pc tests as evidenced by striations in the spray pattern and by separate fuel rich and oxidizer rich areas. The RUD element was also tested as a fuel rich gas generator element by switching the propellant circuits. Excessive sooting occurred at this low mixture ratio (0.55), precluding photographic data.

  13. Ethanol turbulent spray flame response to gas velocity modulation

    NASA Astrophysics Data System (ADS)

    Fratalocchi, Virginia; Kok, Jim B. W.

    2018-01-01

    A numerical investigation of the interaction between a spray flame and an acoustic forcing of the velocity field is presented in this paper. In combustion systems, a thermoacoustic instability is the result of a process of coupling between oscillations in heat released and acoustic waves. When liquid fuels are used, the atomisation and the evaporation process also undergo the effects of such instabilities, and the computational fluid dynamics of these complex phenomena becomes a challenging task. In this paper, an acoustic perturbation is applied to the mass flow of the gas phase at the inlet and its effect on the evaporating fuel spray and on the flame front is investigated with unsteady Reynolds averaged Navier-Stokes numerical simulations. Two flames are simulated: a partially premixed ethanol/air spray flame and a premixed pre-vaporised ethanol/air flame, with and without acoustic forcing. The frequencies used to perturb the flames are 200 and 2500 Hz, which are representative for two different regimes. Those regimes are classified based on the Strouhal number St = (D/U)ff: at 200 Hz, St = 0.07, and at 2500 Hz, St = 0.8. The exposure of the flame to a 200 Hz signal results in a stretching of the flame which causes gas field fluctuations, a delay of the evaporation and an increase of the reaction rate. The coupling between the flame and the flow excitation is such that the flame breaks up periodically. At 2500 Hz, the evaporation rate increases but the response of the gas field is weak and the flame is more stable. The presence of droplets does not play a crucial role at 2500 Hz, as shown by a comparison of the discrete flame function in the case of spray and pre-vaporised flame. At low Strouhal number, the forced response of the pre-vaporised flame is much higher compared to that of the spray flame.

  14. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  15. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  16. An experimental study of air-assist atomizer spray flames

    NASA Technical Reports Server (NTRS)

    Mao, Chien-Pei; Wang, Geng; Chigier, Norman

    1988-01-01

    It is noted that air-assisted atomizer spray flames encountered in furnaces, boilers, and gas turbine combustors possess a more complex structure than homogeneous turbulent diffusion flames, due to the swirling motion introduced into the fuel and air flows for the control of flame stability, length, combustion intensity, and efficiency. Detailed comparisons are presented between burning and nonburning condition measurements of these flames obtained by nonintrusive light scattering phase/Doppler detection. Spray structure is found to be drastically changed within the flame reaction zone, with changes in the magnitude and shape of drop number density, liquid flux, mean drop size diameter, and drop mean axial velocity radial distributions.

  17. An Overview of the NCC Spray/Monte-Carlo-PDF Computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, Nan-Suey (Technical Monitor)

    2000-01-01

    This paper advances the state-of-the-art in spray computations with some of our recent contributions involving scalar Monte Carlo PDF (Probability Density Function), unstructured grids and parallel computing. It provides a complete overview of the scalar Monte Carlo PDF and Lagrangian spray computer codes developed for application with unstructured grids and parallel computing. Detailed comparisons for the case of a reacting non-swirling spray clearly highlight the important role that chemistry/turbulence interactions play in the modeling of reacting sprays. The results from the PDF and non-PDF methods were found to be markedly different and the PDF solution is closer to the reported experimental data. The PDF computations predict that some of the combustion occurs in a predominantly premixed-flame environment and the rest in a predominantly diffusion-flame environment. However, the non-PDF solution predicts wrongly for the combustion to occur in a vaporization-controlled regime. Near the premixed flame, the Monte Carlo particle temperature distribution shows two distinct peaks: one centered around the flame temperature and the other around the surrounding-gas temperature. Near the diffusion flame, the Monte Carlo particle temperature distribution shows a single peak. In both cases, the computed PDF's shape and strength are found to vary substantially depending upon the proximity to the flame surface. The results bring to the fore some of the deficiencies associated with the use of assumed-shape PDF methods in spray computations. Finally, we end the paper by demonstrating the computational viability of the present solution procedure for its use in 3D combustor calculations by summarizing the results of a 3D test case with periodic boundary conditions. For the 3D case, the parallel performance of all the three solvers (CFD, PDF, and spray) has been found to be good when the computations were performed on a 24-processor SGI Origin work-station.

  18. NOx formation from the combustion of monodisperse n-heptane sprays doped with fuel-nitrogen additives

    NASA Technical Reports Server (NTRS)

    Sarv, Hamid; Cernansky, Nicholas P.

    1989-01-01

    A series of experiments with simulated synthetic fuels were conducted in order to investigate the effect of droplet size on the conversion of fuel-nitrogen to NOx. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives and burned as monodisperse fuel droplets under various operating conditions in a spray combustion facility. The experimental results indicate that under stoichiometric and fuel-rich conditions, reducing the droplet size increases the efficiency of fuel-N conversion to NOx. This observation is associated with improved oxidation of the pyrolysis fragments of the additive by better oxygen penetration through the droplet flame zone. The dominant reactions by which fuel-N is transformed to NOx were also considered analytically by a premixed laminar flame code. The calculations are compared to the small droplet size results.

  19. Ethylene glycol assisted spray pyrolysis for the synthesis of hollow BaFe12O19 spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X; Park, J; Hong, YK

    2015-04-01

    Hollow spherical BaFe12O19 particles were synthesized by spray pyrolysis from a solution containing ethylene glycol (EG) and precursors at 1000 degrees C. The effects of EG concentration on particle morphology, crystallinity and magnetic properties were investigated. The hollow spherical particles were found to consist of primary particles, and higher EG concentration led to a bigger primary particle size. EG concentration did not show much effect on the hollow particle size. Better crystallinity and higher magnetic coercivity were obtained with higher EG concentration, which is attributed to further crystallization with the heat produced from EG combustion. Saturation magnetization (emu/g) decreased withmore » increasing EG concentration due to residual carbon from EG incomplete combustion, contributing as a non-magnetic phase to the particles. Published by Elsevier B.V.« less

  20. Effect of flame-tube head structure on combustion chamber performance

    NASA Technical Reports Server (NTRS)

    Gu, Minqqi

    1986-01-01

    The experimental combustion performance of a premixed, pilot-type flame tube with various head structures is discussed. The test study covers an extensive area: efficiency of the combustion chamber, quality of the outlet temperature field, limit of the fuel-lean blowout, ignition performance at ground starting, and carbon deposition. As a result of these tests, a nozzle was found which fits the premixed pilot flame tube well. The use of this nozzle optimized the performance of the combustion chamber. The tested models had premixed pilot chambers with two types of air-film-cooling structures, six types of venturi-tube structures, and secondary fuel nozzles with two small spray-cone angles.

  1. Spray formation processes of impinging jet injectors

    NASA Technical Reports Server (NTRS)

    Anderson, W. E.; Ryan, H. M.; Pal, S.; Santoro, R. J.

    1993-01-01

    A study examining impinging liquid jets has been underway to determine physical mechanisms responsible for combustion instabilities in liquid bi-propellant rocket engines. Primary atomization has been identified as an important process. Measurements of atomization length, wave structure, and drop size and velocity distribution were made under various ambient conditions. Test parameters included geometric effects and flow effects. It was observed that pre-impingement jet conditions, specifically whether they were laminar or turbulent, had the major effect on primary atomization. Comparison of the measurements with results from a two dimensional linear aerodynamic stability model of a thinning, viscous sheet were made. Measured turbulent impinging jet characteristics were contrary to model predictions; the structure of waves generated near the point of jet impingement were dependent primarily on jet diameter and independent of jet velocity. It has been postulated that these impact waves are related to pressure and momentum fluctuations near the impingement region and control the eventual disintegration of the liquid sheet into ligaments. Examination of the temporal characteristics of primary atomization (ligament shedding frequency) strongly suggests that the periodic nature of primary atomization is a key process in combustion instability.

  2. Study of Mechanisms of Filamentary Pulse Electric Discharge Interaction with Gaseous Flow of Nonuniform Composition

    DTIC Science & Technology

    2013-06-01

    dynamic and localization in subsonic and supersonic airflow also at presence of second gas jet and spray jet of liquid hydrocarbons. The experiments...the specific localization of pulse filamentary discharge in vicinity of boundary between two gases and between liquid spray and gas . The...17, 1, 2010 3. M. A. Deminsky, I. V. Kochetov, S. B. Leonov, А. P. Napartovich, “Modeling of plasma assisted combustion in premixed supersonic gas

  3. Droplet-Wall/Film Impact in IC Engine Applications

    DTIC Science & Technology

    2017-08-14

    Report: Droplet-Wall/Film Impact in IC Engine Applications (ARO Topic 1.4.1 under ARO’s Dr. Ralph A. Anthenien) The views, opinions and/or findings...in IC Engine Applications (ARO Topic 1.4.1 under ARO’s Dr. Ralph A. Anthenien) Report Term: 0-Other Email: cklaw@princeton.edu Distribution Statement...associated with spraying in internal combustion engines (ICEs). Fuels sprayed inside engines can impact with the internal surfaces and thus not only

  4. Numerical Simulations of Evaporating Sprays in High Pressure and Temperature Operating Conditions (Engine Combustion Network [ECN])

    DTIC Science & Technology

    2014-05-01

    temperature effect in nonreacting and reacting diesel sprays using a novel injector , and imaging diagnostics for liquid phase penetration, light-off...ambient conditions. A single hole, modern common rail injector with an injector diameter of 90 µ (Bosch CRIN 2.4) is used at typical diesel injection... diesel engine operating conditions. The objective of this report is to demonstrate the modeling capability of a recently adopted 3D-Computational Fluid

  5. Importance of turbulence-chemistry interactions at low temperature engine conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Prithwish; Ameen, Muhsin M.; Som, Sibendu

    The role of turbulence-chemistry interaction in autoignition and flame stabilization is investigated for spray flames at low temperature combustion (LTC) conditions by performing high-fidelity three-dimensional computational fluid dynamics (CFD) simulations. A recently developed Tabulated Flamelet Model (TFM) is coupled with a large eddy simulation (LES) framework and validated across a range of Engine Combustion Network (ECN) ambient temperature conditions for n-dodecane fuel. High resolution grids with 0.0625 mm minimum cell size and 25 million total cell count are implemented using adaptive mesh refinement over the spray and combustion regions. Simulations with these grids and multiple LES realizations, with a 103more » species n-dodecane mechanism show good agreement with experimental data for all the ambient conditions investigated. This modeling approach with the computational cost advantage of tabulated chemistry is then extended towards understanding the auto-ignition and flame stabilization at an ambient temperature of 750 K. These low temperature conditions lead to substantially higher ignition delays and flame liftoff lengths, and significantly leaner combustion compared to conventional high temperature diesel combustion. These conditions also require the simulations to span significantly larger temporal and spatial dimensions thereby increasing the computational cost. The TFM approach is able to capture autoignition and flame liftoff length at the low temperature conditions. Significant differences with respect to mixing, species formation and flame stabilization are observed under low temperature compared to conventional diesel combustion. At higher ambient temperatures, formation of formaldehyde is observed in the rich region (phi > 1) followed by the formation of OH in the stoichiometric regions. Under low temperature conditions, formaldehyde is observed to form at leaner regions followed by the onset of OH formation in significantly lean regions of the flame. Qualitative differences between species formation and transient flame development for the high and low temperature conditions are presented. The two stage ignition process is further investigated by studying the species formation in mixture fraction space by solving 1D flamelet equations for different scalar dissipation rates and homogeneous reactor assumption. Results show that scalar dissipation causes these radicals to diffuse within the mixture fraction space. As a result, this significantly enhances ignition and plays a dominant role at such low temperature conditions which cannot be captured by the homogeneous reaction assumption based model.« less

  6. Importance of turbulence-chemistry interactions at low temperature engine conditions

    DOE PAGES

    Kundu, Prithwish; Ameen, Muhsin M.; Som, Sibendu

    2017-06-08

    The role of turbulence-chemistry interaction in autoignition and flame stabilization is investigated for spray flames at low temperature combustion (LTC) conditions by performing high-fidelity three-dimensional computational fluid dynamics (CFD) simulations. A recently developed Tabulated Flamelet Model (TFM) is coupled with a large eddy simulation (LES) framework and validated across a range of Engine Combustion Network (ECN) ambient temperature conditions for n-dodecane fuel. High resolution grids with 0.0625 mm minimum cell size and 25 million total cell count are implemented using adaptive mesh refinement over the spray and combustion regions. Simulations with these grids and multiple LES realizations, with a 103more » species n-dodecane mechanism show good agreement with experimental data for all the ambient conditions investigated. This modeling approach with the computational cost advantage of tabulated chemistry is then extended towards understanding the auto-ignition and flame stabilization at an ambient temperature of 750 K. These low temperature conditions lead to substantially higher ignition delays and flame liftoff lengths, and significantly leaner combustion compared to conventional high temperature diesel combustion. These conditions also require the simulations to span significantly larger temporal and spatial dimensions thereby increasing the computational cost. The TFM approach is able to capture autoignition and flame liftoff length at the low temperature conditions. Significant differences with respect to mixing, species formation and flame stabilization are observed under low temperature compared to conventional diesel combustion. At higher ambient temperatures, formation of formaldehyde is observed in the rich region (phi > 1) followed by the formation of OH in the stoichiometric regions. Under low temperature conditions, formaldehyde is observed to form at leaner regions followed by the onset of OH formation in significantly lean regions of the flame. Qualitative differences between species formation and transient flame development for the high and low temperature conditions are presented. The two stage ignition process is further investigated by studying the species formation in mixture fraction space by solving 1D flamelet equations for different scalar dissipation rates and homogeneous reactor assumption. Results show that scalar dissipation causes these radicals to diffuse within the mixture fraction space. As a result, this significantly enhances ignition and plays a dominant role at such low temperature conditions which cannot be captured by the homogeneous reaction assumption based model.« less

  7. Ignition and combustion of metallized propellants

    NASA Technical Reports Server (NTRS)

    Turns, Stephen R.

    1991-01-01

    The overall objective is the development of a fundamental understanding of the ignition and combustion of aluminum-based slurry (or gel) propellant droplets using a combination of experiment and analysis. Specific objectives are the following: (1) The development and application of a burner/spray rig and single particle optical diagnosis to study the detailed ignition and combustion behavior of small droplets; (2) Understanding the role of surfactants and gellants (or other additives) in promoting or inhibiting secondary atomization of propellant droplets; and (3) The extension of previously developed analytical models and the development of new models to address the phenomena associated with microexplosions (secondary atomization).

  8. Computational Investigation of Combustion Instabilities in a Laboratory-Scale LDI Gas Turbine Engine

    DTIC Science & Technology

    2013-06-01

    combustor by the insertion of a slotted inlet and an exit nozzle , whereas the reduced geometry is acoustically open. Table 2 Summary of Cases Considered... nozzle located at the right-end surface, an outlet condition is imposed by a characteristic back pressure condition. The fuel spray is injected at the...Computational Mesh visualized around the fuel nozzle and swirler III. Decomposition Methods For Combustion Dynamics Diagnostics To understand the

  9. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  10. Simulation of low temperature combustion mechanism of different combustion-supporting agents in close-coupled DOC and DPF system.

    PubMed

    Jiao, Penghao; Li, Zhijun; Li, Qiang; Zhang, Wen; He, Li; Wu, Yue

    2018-07-01

    In the coupled Diesel Oxidation Catalyst (DOC) and Diesel Particular Filter (DPF) system, soot cannot be completely removed by only using the passive regeneration. And DPF active regeneration is necessary. The research method in this paper is to spray different kinds of combustion-supporting agents to the DOC in the front of the DPF. Therefore, the low temperature combustion mechanism of different kinds of combustion-supporting agents in DOC was studied, in order to grasp the law of combustion in DOC, and the influence of follow-up emission on DPF removal of soot. During the study, CH 4 H 2 mixture and diesel (n-heptane + toluene) were used as combustion-supporting agents respectively. The simplified mechanisms of two kinds of gas mixtures used as the combustion-supporting agents in DPF have been constructed and testified in the paper. In this paper, the combustion and emission conditions of the two combustion-supporting agents were analyzed so as to meet the practical requirements of different working conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Ignition and combustion characteristics of metallized propellants

    NASA Technical Reports Server (NTRS)

    Turns, S. R.; Mueller, D. C.; Scott, M. J.

    1990-01-01

    Research designed to develop detailed knowledge of the secondary atomization and ignition characteristics of aluminum slurry propellants was started. These processes are studied because they are the controlling factors limiting the combustion efficiency of aluminum slurry propellants in rocket applications. A burner and spray rig system allowing the study of individual slurry droplets having diameters from about 10 to 100 microns was designed and fabricated. The burner generates a near uniform high temperature environment from the merging of 72 small laminar diffusion flames above a honeycomb matrix. This design permits essentially adiabatic operation over a wide range of stoichiometries without danger of flashback. A single particle sizing system and velocimeter also were designed and assembled. Light scattered from a focused laser beam is related to the particle (droplet) size, while the particle velocity is determined by its transit time through the focal volume. Light from the combustion of aluminum is also sensed to determine if ignition was achieved. These size and velocity measurements will allow the determination of disruption and ignition times as functions of drop sizes and ambient conditions.

  12. Comparative Study of Microstructure and Properties of Thermal Sprayed MCrAlY Bond Coatings

    NASA Astrophysics Data System (ADS)

    Inglima, Michael William

    A series of experiments were performed in order to observe certain process-property trends in thermally sprayed MCrAlY bond coatings for thermal barrier coating (TBC) applications in gas-turbine engines. Firstly, the basis of gas-turbine operation and design is discussed with a focus on the Brayton cycle and basic thermodynamic properties with respect to both the thermal and fuel efficiency of the turbine. The high-temperature environment inside the gas-turbine engine creates an extremely corrosive medium in which the engineering components must operate with sufficient operating life times. These engineering constraints, both thermal/fuel efficiency and operating life, pose a serious problem during long operation as well as thermal cycling of a civil aerospace engine. The concept of a thermal barrier coating is introduced along with how these coatings protect the internal engineering components, mostly in the hot-section of the turbine, and increase both the efficiency as well as the operating life of the components. The method used to create TBC's is then introduced being thermal spray processing along with standard operating procedures (SOP) used during coating deposition. The main focus of the experiments was to quantify the process-property trends seen during thermal spray processing of TBC's with respect to the adhesion and thermally grown oxide (TGO) layer, as well as how sensitive these properties are to changing variables during coating deposition. The design of experiment (DOE) method was used in order to have sufficient statistical process control over the output as well as a standard method for quantifying the results. A total of three DOE's were performed using two main types of thermal spray processes being high-velocity oxygen fuel (HVOF) and atmospheric plasma spray (APS), with a total of five different types of torches which are categorized by liquid-fuel, gas-fuel, and single cathode plasma. The variables used in the proceeding experiments were mainly spray distance, air/fuel ratio, raster speed, powder feed rate, combustion pressure, current, primary and secondary gas flow, as well as three different powder chemistries. The results of the experiments showed very clear process-property trends with respect to mean bond strength of the coatings as well as TGO growth on the as-sprayed coating surface. The effect of either increasing/decreasing the melting index of the powder as well as increasing/decreasing the kinetic energy of the particles is shown with corresponding cross-sectional microstructures of the coating interfaces. The temperature and velocity of the particles were measured with spray diagnostic sensors as well as using an in-situ curvature property sensor (ICP) to monitor the stress-states of the coatings both during deposition as well as residual stresses, and how these might affect the bond strength. An SOP referred to as furnace cycling was used to quantify the TGO growth of the bond coatings by measuring the thickness via a scanning electron microscope (SEM) as well as performing energy dispersive x-ray spectroscopy (EDX) on the coatings to measure chemical changes.

  13. Microstructure, Morphology, and Nanomechanical Properties Near Fine Holes Produced by Electro-Discharge Machining

    NASA Astrophysics Data System (ADS)

    Blau, P. J.; Howe, J. Y.; Coffey, D. W.; Trejo, R. M.; Kenik, E. D.; Jolly, B. C.; Yang, N.

    2012-08-01

    Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emission diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.

  14. Dna Sequencing

    DOEpatents

    Hetrick, Robert Eugene; Hilbert, Harold Sean; Parsons, Michael Howard; Stockhausen, William Francis

    1997-10-07

    A fuel injection system used in the intake air passageway of an internal combustion engine has a strategy for reducing cold start hydrocarbon emissions. The fuel injector has an actuator which allows the fuel spray pattern to be varied from one which is widely dispersed and atomized to one which is only weakly dispersed. A strategy for varying the spray pattern during the engine warm-up period after cold start is disclosed. The strategy increases evaporation within the passageway so that cold start overfuelling and attendant hydrocarbon emissions are reduced.

  15. Fragmentation of Structural Energetic Materials: Implications for Performance

    NASA Astrophysics Data System (ADS)

    Aydelotte, Brady; Braithwaite, Christopher; Thadhani, Naresh

    2013-06-01

    Fragmentation results for structural energetic materials based on intermetallic forming mixtures are reviewed and the implications of the fragment populations are discussed. Cold Sprayed Ni+Al and explosively compacted mixtures of Ni+Al+W and Ni+Al+W+Zr powders were fabricated into ring shaped samples and subjected to fragmentation tests. Ring velocity was monitored and fragments were soft captured in order to study the fragmentation process. It was determined that the fragments produced by these structural energetic materials are much smaller than those typically produced by ductile metals such as steel or aluminum. This has implications for combustion processes that may occur subsequent to the fragmentation process. ONR/MURI grant No. N00014-07-1-0740 Dr. Cliff Bedford PM.

  16. CSE - International Workshop on Photon Tools for Combustion and Energy

    Science.gov Websites

    participants. A defining feature of the workshops is the promotion of free discussion about cutting edge and ; particle formation; sprays and applications of new technologies, e.g. free-electron laser sources

  17. Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas

    2011-01-01

    A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.

  18. Droplet breakup in accelerating gas flows. Part 2: Secondary atomization

    NASA Technical Reports Server (NTRS)

    Zajac, L. J.

    1973-01-01

    An experimental investigation to determine the effects of an accelerating gas flow on the atomization characteristics of liquid sprays was conducted. The sprays were produced by impinging two liquid jets. The liquid was molten wax and the gas was nitrogen. The use of molten wax allowed for a quantitative measure of the resulting dropsize distribution. The results of this study, indicate that a significant amount of droplet breakup will occur as a result of the action of the gas on the liquid droplets. Empirical correlations are presented in terms of parameters that were found to affect the mass median dropsize most significantly, the orifice diameter, the liquid injection velocity, and the maximum gas velocity. An empirical correlation for the normalized dropsize distribution is also presented. These correlations are in a form that may be incorporated readily into existing combustion model computer codes for the purpose of calculating rocket engine combustion performance.

  19. An experimental study of combustion of the Shen-Mu CWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lifang, C.; Zhan Huanqing; Sun Wenchao

    1993-12-31

    Self-stabilized combustion for Shen-Mu CWS is provided by a combustion facility with outstanding characteristics. Experimental results show that the Shen-Mu CWS of about 65% concentrations possesses still a good flow property and it is easy to atomize. The atomized particles were measured by use of a Malvern setup. The Sauter mean diameters of the slurry spray are 56 {mu}m, while the air/fuel mass ratio is 0.21. It gives the evidence that the atomizer has excellent atomization performance. Self-stabilized combustion is preserved under the condition of unpreheated air and no say addition of auxiliary fuel is required. Experimental study of combustionmore » was carried out in the combustion chambers of 360mm {times} 540mm {times} 1400mm, the rates of CWS flow were 320kg/h.« less

  20. Computational Analysis of End-of-Injection Transients and Combustion Recession

    NASA Astrophysics Data System (ADS)

    Jarrahbashi, Dorrin; Kim, Sayop; Knox, Benjamin W.; Genzale, Caroline L.; Georgia Institute of Technology Team

    2016-11-01

    Mixing and combustion of ECN Spray A after end of injection are modeled with different chemical kinetics models to evaluate the impact of mechanism formulation and low-temperature chemistry on predictions of combustion recession. Simulations qualitatively agreed with the past experimental observations of combustion recession. Simulations with the Cai mechanism show second-stage ignition in distinct regions near the nozzle, initially spatially separated from the lifted diffusion flame, but then rapidly merge with flame. By contrast, the Yao mechanism fails to predict sufficient low-temperature chemistry in mixtures upstream of the diffusion flame and combustion recession. The effects of the shape and duration of the EOI transient on the entrainment wave near the nozzle, the likelihood of combustion recession, and the spatiotemporal development of mixing and chemistry in near-nozzle mixtures are also investigated. With a more rapid ramp-down injection profile, a weaker combustion recession occurs. For extremely fast ramp-down, the entrainment flux varies rapidly near the nozzle and over-leaning of the mixture completely suppresses combustion recession. For a slower ramp-down profile complete combustion recession back toward the nozzle is observed.

  1. On the Ignition and Combustion Variances of Jet Propellant-8 and Diesel Fuel in Military Diesel Engines

    DTIC Science & Technology

    2008-09-22

    NA Displacement (cc) 1357 6468 Operating speeds (rpm) 800 – 3000 1500 – 3400 IMEP range (bar) 5 – 27 2 – 10 Boost system Shop air Turbocharger ...Council Diesel Fuel Workshop. Pickett, L.M. and Hoogterp, L., “ Fundamental Spray and Combustion Measurements of JP-8 at Diesel Conditions”, SAE...N., 1981, "Transient Performance Simulation and Analysis of Turbocharged Diesel Engines", SAE Paper 810338.

  2. Effects of Fuel Spray Modeling on Combustion Instability Predictions in a Single-Element Lean Direct Injection (LDI) Gas Turbine Combustor

    DTIC Science & Technology

    2014-09-01

    evaporation in the vicinity of the injector . Recently, Kim and Menon 9 applied the same approach to study the characteristics of longitudinal...phenomena that govern the occurrence of combustion instabilities. The experiments involve a single injector element in a longitudinal mode combustor with...well characterized inflow conditions and a choked nozzle exit condition. Varying parameters such as the length of the air plenum, the combustor length

  3. Modeling the influence of nozzle-generated turbulence on diesel sprays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnotti, G M; Matusik, K E; Duke, D J

    The physical mechanisms governing spray breakup in direct injection engines, such as aerodynamic induced instabilities and nozzle-generated cavitation and turbulence, are not well understood due to the experimental and computational limitations in resolving these processes. Recent x-ray and visible extinction measurements have been con-ducted with a targeted interest in the spray formation region in order to characterize the distribution of droplet sizes throughout the spray. Detailed analysis of these measurements shows promise of yielding insight into likely mechanisms governing atomization, which can inform the improvement of spray models for engine computational fluid dynamic (CFD) codes. In order to investigate potentialmore » atomization mechanisms, we employ a joint experimental and computational approach to characterize the structure of the spray formation region using the Engine Combustion Network Spray D injector. X-ray tomography, radiography and ultra-small angle x-ray scattering measurements conducted at the Advanced Photon Source at Argonne National Laboratory quantify the injector geometry, liquid fuel mass and Sauter mean diameter (SMD) distributions under non-vaporizing conditions. Diffused back-illumination imaging measurements, conducted at the Georgia Institute of Technology, characterize the asymmetry of the spray structure. The selected range of injection pressures (50 – 150 MPa) and ambient densities (1.2 – 22.8 kg/m3) allow for the influence of aerodynamic forces on the spray to be studied in a controlled and systematic manner, while isolating the atomization process from the effects of vaporization. In comparison to high ambient density conditions, the spray is observed to be more asymmetric at low ambient density conditions. Although several mechanisms may cause asymmetries in the nozzle exit flow conditions and ultimately the spray distribution, irregularities in the internal nozzle geometry were identified, suggesting an increased sensitivity of the spray structure to internal nozzle surface finish imperfections at such conditions. The presence of these asymmetries may influence the ability to interpret line-of-sight measurements and their derived SMD values and trends from a single viewing angle of the spray. With this consideration in mind, the measured local sensitivities to ambient density suggest that for ambient densities less than 2.4 kg/m3, aerodynamic effects are likely suppressed, allowing the influence of turbulent-induced breakup to be isolated. In concert with the experimental measurements, we utilize three-dimensional, CFD Lagrangian-Eulerian spray simulations in CONVERGE to evaluate the details of the predicted spray structure. In particular, we compare measured and predicted sensitivities of the SMD distribution to changes in injection and ambient conditions from three different atomization models, namely Kelvin Helmholtz (KH), KH Aerodynamics Cavitation Turbulence (KH-ACT), and the newly developed KH-Faeth hybrid model. While none of the existing hybrid spray models were able to replicate the experimentally observed sensitivities, it was found that the scales characterizing the KH-Faeth model show promise of capturing the experimentally observed trends if the effects of secondary droplet breakup are neglected. These results inform recommendations for future experiments and computational studies that can guide the development of an improved spray breakup model.« less

  4. Novel design for transparent high-pressure fuel injector nozzles.

    PubMed

    Falgout, Z; Linne, M

    2016-08-01

    The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.

  5. Combustion response to acoustic perturbation in liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Ghafourian, Akbar

    An experimental study of the effect of acoustic perturbations on combustion behavior of a model liquid propellant rocket engine has been carried out. A pair of compression drivers were used to excite transverse and longitudinal acoustic fields at strengths of up to 156.6 dB and 159.5 dB respectively in the combustion chamber of the experimental rocket engine. Propellant simulants were injected into the combustion chamber through a single element shear coaxial injector. Water and air were used in cold flow studies and ethanol and oxygen-enriched air were used as fuel and oxidizer in reacting hot flow studies. In cold flow studies an imposed transverse acoustic field had a more pronounced effect on the spray pattern than a longitudinal acoustic fields. A transverse acoustic field widened the spray by as much as 33 percent and the plane of impingement of the spray with chamber walls moved up closer to the injection plane. The behavior was strongly influenced by the gas phase velocity but was less sensitive to changes in the liquid phase velocity. In reacting hot flow studies the effects of changes in equivalence ratio, excitation amplitude, excitation frequency, liquid and gas phase velocity and chamber pressure on the response of the injector to imposed high frequency transverse acoustic excitation were measured. Reducing the equivalence ratio from 7.4 to 3.8 increased the chamber pressure response to the imposed excitation at 3000 Hz. Increasing the excitation amplitude from 147 dB to 155.6 dB at 3000 Hz increased the chamber pressure response to the excitation. In the frequency range of 1240 Hz to 3220 Hz, an excitation frequency of 3000 Hz resulted in the largest response of the chamber pressure indicating the importance of fluid dynamic coupling. Increasing the liquid phase velocity from 9.2 m/sec to 22.7 m/sec, did not change the amplitude of the chamber pressure response to excitation. This implied the importance of local equivalence ratio and not the overall equivalence ratio on chamber pressure response to excitation. Increasing the chamber pressure from 1.5 atm to 3.1 atm and gas phase velocity from 93.2 m/sec to 105.1 m/sec significantly increased the chamber pressure response to acoustic excitation. This emphasized the significance of the gas phase density and velocity. Measurements of the free radical C2 emission zone and Schlieren images indicated that transverse acoustic excitation moved the combustion zone closer to the injection plane and longitudinal acoustic excitation widened the combustion zone. The histogram of these images indicates that the area over which combustion takes place in the chamber increases under imposed acoustic excitation. This implied that more propellants combust prior to exiting from the exhaust nozzle under unsteady conditions.

  6. Analysis of Lean Premixed/Prevaporized Combustion with KIVA-2

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Kundu, K. P.; Darling, D. D.; Cline, M. C.; Micklow, G. J.; Harper, M. R.; Simons, T. A.

    1994-01-01

    Requirements to reduce the emissions of pollutants from gas turbines used in aircraft propulsion and ground based power generation have led to consideration of lean premixed/prevaporized (LPP) combustion concept. This paper describes some of the LPP flame tube analyses performed at the NASA Research Center with KIVA-2, a well-known multi-dimensional CFD code for problems including sprays, turbulence, and combustion. Modifications to KIVA-2's boundary condition and chemistry treatments have been made to meet the needs of the present study. The study itself focuses on two key aspects of the LPP concept, low emissions and flame stability (including flashback and lean blowoff.

  7. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogatemore » fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends.« less

  8. Injector element characterization methodology

    NASA Technical Reports Server (NTRS)

    Cox, George B., Jr.

    1988-01-01

    Characterization of liquid rocket engine injector elements is an important part of the development process for rocket engine combustion devices. Modern nonintrusive instrumentation for flow velocity and spray droplet size measurement, and automated, computer-controlled test facilities allow rapid, low-cost evaluation of injector element performance and behavior. Application of these methods in rocket engine development, paralleling their use in gas turbine engine development, will reduce rocket engine development cost and risk. The Alternate Turbopump (ATP) Hot Gas Systems (HGS) preburner injector elements were characterized using such methods, and the methodology and some of the results obtained will be shown.

  9. Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release

    NASA Astrophysics Data System (ADS)

    Park, Sammy Ace

    Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.

  10. Engine-Level Simulation of Liquid Rocket Combustion Instabilities: Transcritical Combustion Simulations in Single Injector Configurations

    DTIC Science & Technology

    2012-03-01

    simple 1-step mechanism taking into account 4 species: CH4, O2, CO2 and H2O. Figure 2. Multiblock grid for the CVRC experiment. Left: Overall view, Right... Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays. Progress in Energy and...hydrogen shear-coaxial jet flames at supercritical pressure. Com- bustion science and technology, 178(1-3):229–252, 2006. 12 B. E. Poling, J. M. Prausnitz

  11. Supercritical fuel injection system

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  12. Studies of oscillatory combustion and fuel vaporization

    NASA Technical Reports Server (NTRS)

    Borman, G. L.; Myers, P. S.; Uyehara, O. A.

    1972-01-01

    Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

  13. Characterisation of aerosol combustible mixtures generated using condensation process

    NASA Astrophysics Data System (ADS)

    Saat, Aminuddin; Dutta, Nilabza; Wahid, Mazlan A.

    2012-06-01

    An accidental release of a liquid flammable substance might be formed as an aerosol (droplet and vapour mixture). This phenomenon might be due to high pressure sprays, pressurised liquid leaks and through condensation when hot vapour is rapidly cooled. Such phenomena require a fundamental investigation of mixture characterisation prior to any subsequent process such as evaporation and combustion. This paper describes characterisation study of droplet and vapour mixtures generated in a fan stirred vessel using condensation technique. Aerosol of isooctane mixtures were generated by expansion from initially a premixed gaseous fuel-air mixture. The distribution of droplets within the mixture was characterised using laser diagnostics. Nearly monosized droplet clouds were generated and the droplet diameter was defined as a function of expansion time. The effect of changes in pressure, temperature, fuel-air fraction and expansion ratio on droplet diameter was evaluated. It is shown that aerosol generation by expansion was influenced by the initial pressure and temperature, equivalence ratio and expansion rates. All these parameters affected the onset of condensation which in turn affected the variation in droplet diameter.

  14. The structure of evaporating and combusting sprays: Measurements and predictions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.

    1982-01-01

    An apparatus was constructed to provide measurements in open sprays with no zones of recirculation, in order to provide well-defined conditions for use in evaluating spray models. Measurements were completed in a gas jet, in order to test experimental methods, and are currently in progress for nonevaporating sprays. A locally homogeneous flow (LHF) model where interphase transport rates are assumed to be infinitely fast; a separated flow (SF) model which allows for finite interphase transport rates but neglects effects of turbulent fluctuations on drop motion; and a stochastic SF model which considers effects of turbulent fluctuations on drop motion were evaluated using existing data on particle-laden jets. The LHF model generally overestimates rates of particle dispersion while the SF model underestimates dispersion rates. The stochastic SF flow yield satisfactory predictions except at high particle mass loadings where effects of turbulence modulation may have caused the model to overestimate turbulence levels.

  15. Laser velocimetry measurements in a gas turbine research combustor

    NASA Technical Reports Server (NTRS)

    Driscoll, J. F.; Pelaccio, D. G.

    1979-01-01

    The effects of turbulence on the production of pollutant species in a gas-turbine research combustor are studied using laser diffraction velocimetry (LDV) techniques. Measurements that were made in the primary combustion zone include mean velocity, rms velocity fluctuations, velocity probability distributions, and autocorrelation functions. A unique combustor design provides relatively uniform flow conditions and independent control of drop size, equivalence ratio, inlet temperature, and combustor pressure. Parameters which characterize the nature of the spray combustion (i.e., whether single droplet or group combustion occurs), were determined from the LDV data. Turbulent diffusivity (eddy viscosity) reaches a value of 2930 sq cm/sec, corresponding to a convective integral length scale of 1.8 cm. The group combustion number, based on turbulent diffusivity, is measured to be 6.2

  16. Reliability and effective thermal conductivity of three metallic-ceramic composite insulating coatings on cooled hydrogen-oxygen rockets

    NASA Technical Reports Server (NTRS)

    Price, H. G., Jr.; Schacht, R. L.; Quentmeyer, R. J.

    1973-01-01

    An experimental investigation of the structural integrity and effective thermal conductivity of three metallic-ceramic composite coatings was conducted. These coatings were plasma sprayed onto the combustion side of water-cooled, 12.7-centimeter throat diameter, hydrogen-oxygen rocket thrust chambers operating at 2.07 to 4.14 meganewtons per square meter chamber pressure. The metallic-ceramic composites functioned for six to 17 cycles and for as long as 213 seconds of rocket operations and could have probably provided their insulating properties for many additional cycles. The effective thermal conductivity of all the coatings was in the range of 0.7472 to 4.483 w/(m)(K), which makes the coatings a very effective thermal barrier. Photomicrographic studies of cross-sectioned coolant tubes seem to indicate that the effective thermal conductivity of the coatings is controlled by contact resistance between the particles, as a result of the spraying process, and not the thermal conductivity of the bulk materials.

  17. Numerical investigation of spray ignition of a multi-component fuel surrogate

    NASA Astrophysics Data System (ADS)

    Backer, Lara; Narayanaswamy, Krithika; Pepiot, Perrine

    2014-11-01

    Simulating turbulent spray ignition, an important process in engine combustion, is challenging, since it combines the complexity of multi-scale, multiphase turbulent flow modeling with the need for an accurate description of chemical kinetics. In this work, we use direct numerical simulation to investigate the role of the evaporation model on the ignition characteristics of a multi-component fuel surrogate, injected as droplets in a turbulent environment. The fuel is represented as a mixture of several components, each one being representative of a different chemical class. A reduced kinetic scheme for the mixture is extracted from a well-validated detailed chemical mechanism, and integrated into the multiphase turbulent reactive flow solver NGA. Comparisons are made between a single-component evaporation model, in which the evaporating gas has the same composition as the liquid droplet, and a multi-component model, where component segregation does occur. In particular, the corresponding production of radical species, which are characteristic of the ignition of individual fuel components, is thoroughly analyzed.

  18. On the dispersion of liquid in coaxial supersonic gas jet

    NASA Astrophysics Data System (ADS)

    Poplavski, S. V.; Boiko, V. M.; Lotov, V. V.; Nesterov, A. U.

    2017-10-01

    The aim of this work was to study the dispersion of liquids in gas jets in connection with the creation of high productivity nozzles. For effective combustion of fuel, systems with intensive air supply to the spray of a liquid are promising. In connection with this, a supersonic coaxial jet was experimentally studied with a central supply of liquid beyond the slit of the confuser nozzle at the modes Npr = 4 and Npr = 6. New data are obtained on the structure of the gas-liquid jet: the gas velocity field, the shadow visualization of the geometry and wave structure of the jet with and without liquid, the velocity profiles of the liquid phase, the dispersion of the droplets. The spatial distribution of the concentration of the spray was first determined. From these data, the parameters of the dispersion processes are obtained in terms the We numbers. A physical model of a supersonic coaxial gas-liquid jet with a central fluid supply is proposed.

  19. CFD Simulation on the J-2X Engine Exhaust in the Center-Body Diffuser and Spray Chamber at the B-2 Facility

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert

    2009-01-01

    A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.

  20. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with no apparent wear. Material physical properties and the hot firing tests are reviewed.

  1. Liquid-feed flame spray pyrolysis synthesis of oxide nanopowders for the processing of ceramic composites

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan John

    In the liquid-feed flame spray pyrolysis (LF-FSP) process, alcohol solutions of metalloorganic precursors are aerosolized by O2 and combusted. The metal oxide combustion products are rapidly quenched (< 10 ms) from flame temperatures of 1500°C to temperatures < 400° C, limiting particle growth. The resulting nanopowders are typically agglomerated but unaggregated. Here, we demonstrate two processing approaches to dense materials: nanopowders with the exact composition, and mixed single metal oxide nanopowders. The effect of the initial degree of phase separation on the final microstructures was determined by sintering studies. Our first studies included the production of yttrium aluminum garnet, Y3Al5O12 (YAG), tubes which we extruded from a thermoplastic/ceramic blend. At equivalent final densities, we found finer grain sizes in the from the mixed Y2O3 and Al2 O3 nanopowders, which was attributed to densification occurring before full transformation to the YAG phase. The enhanced densification in production of pure YAG from the reactive sintering process led us to produce composites in the YAG/alpha-Al 2O3 system. Finally, a third Y2O3 stabilized ZrO2 (YSZ) phase was added to further refine grain sizes using the same two processing approaches. In a separate study, single-phase metastable Al2O3 rich spinels with the composition MO•3Al 2O3 where M = Mg, Ni, and Co were sintered to produce dense MAl2O4/alpha-Al2O3 composites. All of these studies provide a test of the bottom-up approach; that is, how the initial length scale of mixing affects the final composite microstructure. Overall, the length scale of mixing is highly dependent upon the specific oxide composites studied. This work provides a processing framework to be adopted by other researchers to further refine microstructural size. LF-FSP flame temperatures were mapped using different alcohols with different heats of combustion: methanol, ethanol, 1-propanol, and n-butanol. The effect of different alcohols on particle size and phase was determined through studies on Al2O3, Y2O3 and TiO2 nanopowders. The final studies describe the morphology of composite nanopowders produced in the WO3-TiO2 and CuO-TiO2 systems. The composite nanopowders have novel morphology, and may offer novel electronic, optical, or catalytic properties.

  2. Ultra-high efficiency moving wire combustion interface for on-line coupling of HPLC

    PubMed Central

    Thomas, Avi T.; Ognibene, Ted; Daley, Paul; Turteltaub, Ken; Radousky, Harry; Bench, Graham

    2011-01-01

    We describe a 100% efficient moving-wire interface for on-line coupling of high performance liquid chromatography which transmits 100% of carbon in non-volatile analytes to a CO2 gas accepting ion source. This interface accepts a flow of analyte in solvent, evaporates the solvent, combusts the remaining analyte, and directs the combustion products to the instrument of choice. Effluent is transferred to a periodically indented wire by a coherent jet to increase efficiency and maintain peak resolution. The combustion oven is plumbed such that gaseous combustion products are completely directed to an exit capillary, avoiding the loss of combustion products to the atmosphere. This system achieves the near complete transfer of analyte at HPLC flow rates up to 125 μL/min at a wire speed of 6 cm/s. This represents a 30x efficiency increase and 8x maximum wire loading compared to the spray transfer technique used in earlier moving wire interfaces. PMID:22004428

  3. Synthesis of Zn1- x Co x Al2O4 Spinel Nanoparticles by Liquid-Feed Flame Spray Pyrolysis: Ceramic Pigments Application

    NASA Astrophysics Data System (ADS)

    Betancur Granados, Natalia; Yi, Eongyu; Laine, Richard M.; Restrepo Baena, Oscar Jaime

    2016-01-01

    Zn1- x Co x Al2O4 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) spinel nanoparticles were synthesized by a liquid-feed flame spray pyrolysis (LF-FSP) method by combusting metallorganic precursor solutions to produce nanopowders with precise composition control. The precursor solutions were aerosolized into a methane/oxygen flame where it was combusted in an oxygen-rich environment to result in nanopowders at a single step. The nanopowders were analyzed by x-ray diffraction, Fourier transform infrared spectroscopy, colorimetry, field emission scanning electron microscopy, transmission electron microscopy, and BET (Brunauer-Emmett-Teller) N2 adsorption. Results show formation of spherical nanopowders with specific surface areas of 42 m2/g to 50 m2/g, which correspond to average particle sizes of 26 nm to 31 nm. Single-phase materials were obtained with a high control of composition, which indicates that LF-FSP is an excellent method to produce mixed-metal oxides for applications in which powder homogeneity is crucial. The products were evaluated for ceramic pigment application, where the ratio of Zn to Co was gradually changed to observe the color change in the structure with the increase of cobalt concentration. The resulting pigments were calcined at 1200°C, which aimed to identify the color stability after a high-temperature process, whereby the colors were measured using the color space CIE L*a*b* under standardized light, D65. Finally, the powders were tested for ceramic decoration using transparent glazes and ceramic bodies. The application was carried out at 1250°C to evaluate the color performance after a decoration process.

  4. Conditional moment closure for two-phase flows - A review of recent developments and application to various spray combustion configurations

    NASA Astrophysics Data System (ADS)

    Wright, Y. M.; Bolla, M.; Boulouchos, K.; Borghesi, G.; Mastorakos, E.

    2015-01-01

    Energy conversion devices of practical interest such as engines or combustors operate in highly turbulent flow regimes. Due to the nature of the hydrocarbon fuels employed, the oxidation chemistry involves a broad range of time-scales some of which cannot be decoupled from the flow. Among the approaches utilised to tackle the modelling of turbulent combustion, Conditional Moment Closure (CMC), belonging to the computationally efficient class of presumed PDF methods, has shown great potential. For single-phase flows it has been demonstrated on non-premixed turbulent lifted and opposed jets, lifted flames and auto-igniting jets. Here we seek to review recent advances in both modelling and application of CMC for auto-ignition of fuel sprays. The experiments chosen for code validation and model improvement include generic spray test rigs with dimensions of passenger car as well as large two-stroke marine engines. Data for a broad range of operating conditions of a heavy-duty truck engine is additionally employed to assess the predictive capability of the model with respect to NOx emissions. An outlook on future enhancements including e.g. LES-CMC formulation also for two-phase flows as well as developments in the field of soot emissions are summarised briefly.

  5. Escaping the Tyranny of Carbothermal Reduction: Fumed Silica from Sustainable, Green Sources without First Having to Make SiCl4.

    PubMed

    Yi, Eongyu; Hyde, Clare E; Sun, Kai; Laine, Richard M

    2016-02-12

    Fumed silica is produced in 1000 tons per year quantities by combusting SiCl4 in H2 /O2 flames. Given that both SiCl4 and combustion byproduct HCl are corrosive, toxic and polluting, this route to fumed silica requires extensive safeguards that may be obviated if an alternate route were found. Silica, including rice hull ash (RHA) can be directly depolymerized using hindered diols to generate distillable spirocyclic alkoxysilanes or Si(OEt)4 . We report here the use of liquid-feed flame spray pyrolysis (LF-FSP) to combust the aforementioned precursors to produce fumed silica very similar to SiCl4 -derived products. The resulting powders are amorphous, necked, <50 nm average particle sizes, with specific surface areas (SSAs) of 140-230 m(2)  g(-1) . The LF-FSP approach does not require the containment constraints of the SiCl4 process and given that the RHA silica source is produced in million ton per year quantities worldwide, the reported approach represents a sustainable, green and potentially lower-cost alternative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Combustion of Interacting Droplet Arrays in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Nagaishi, H.; Honma, S.; Ikeda, K.

    2001-01-01

    Investigations into droplet interactions date back to Rex et al. Annamalai and Ryan and Annamalai published extensive reviews of droplet array and cloud combustion studies. In the majority of the reviewed studies, the authors examined the change in the burning rate constant, k, (relative to that of the single droplet) that results from interactions. More recently, Niioka and co-workers have examined ignition and flame propagation along arrays of interacting droplets with the goal of relating these phenomena in this simplified geometry to the more practical spray configuration. Our work has focussed on droplet interactions under conditions where flame extinction occurs at a finite droplet diameter. In our previous work, we reported that in normal gravity, reduced pressure conditions, droplet interactions improved flame stability and extended flammability limits (by inference). In our recent work, we examine droplet interactions under conditions where the flame extinguishes at a finite droplet diameter in microgravity. The microgravity experiments were in the NASA GRC 2.2 and 5.2 second drop towers, and the JAMIC (Japan Microgravity Center) 10 second drop tower. We also present progress on a numerical model of single droplet combustion that is in the process of being extended to model a binary droplet array.

  7. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee

    1989-01-01

    The flow field, spray penetration, and combustion in two-stroke diesel engines are described. Fuel injection begins at 345 degrees after top dead center (ATDC) and n-dodecane is used as the liquid fuel. Arrhenius kinetics is used to calculate the reaction rate term in the quasi-global combustion model. When the temperature, fuel, and oxygen mass fraction are within suitable flammability limits, combustion begins spontaneously. No spark is necessary to ignite a localized high temperature region. Compression is sufficient to increase the gaseous phase temperature to a point where spontaneous chemical reactions occur. Results are described for a swirl angle of 22.5 degrees.

  8. Theory of droplet. Part 1: Renormalized laws of droplet vaporization in non-dilute sprays

    NASA Technical Reports Server (NTRS)

    Chiu, H. H.

    1989-01-01

    The vaporization of a droplet, interacting with its neighbors in a non-dilute spray environment is examined as well as a vaporization scaling law established on the basis of a recently developed theory of renormalized droplet. The interacting droplet consists of a centrally located droplet and its vapor bubble which is surrounded by a cloud of droplets. The distribution of the droplets and the size of the cloud are characterized by a pair-distribution function. The vaporization of a droplet is retarded by the collective thermal quenching, the vapor concentration accumulated in the outer sphere, and by the limited percolative passages for mass, momentum and energy fluxes. The retardation is scaled by the local collective interaction parameters (group combustion number of renormalized droplet, droplet spacing, renormalization number and local ambient conditions). The numerical results of a selected case study reveal that the vaporization correction factor falls from unity monotonically as the group combustion number increases, and saturation is likely to occur when the group combustion number reaches 35 to 40 with interdroplet spacing of 7.5 diameters and an environment temperature of 500 K. The scaling law suggests that dense sprays can be classified into: (1) a diffusively dense cloud characterized by uniform thermal quenching in the cloud; (2) a stratified dense cloud characterized by a radial stratification in temperature by the differential thermal quenching of the cloud; or (3) a sharply dense cloud marked by fine structure in the quasi-droplet cloud and the corresponding variation in the correction factor due to the variation in the topological structure of the cloud characterized by a pair-distribution function of quasi-droplets.

  9. Soot and Spectral Radiation Modeling in ECN Spray A and in Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haworth, Daniel C; Ferreyro-Fernandez, Sebastian; Paul, Chandan

    The amount of soot formed in a turbulent combustion system is determined by a complex system of coupled nonlinear chemical and physical processes. Different physical subprocesses can dominate, depending on the hydrodynamic and thermochemical environments. Similarly, the relative importance of reabsorption, spectral radiation properties, and molecular gas radiation versus soot radiation varies with thermochemical conditions, and in ways that are difficult to predict for the highly nonhomogeneous in-cylinder mixtures in engines. Here it is shown that transport and mixing play relatively more important roles as rate-determining processes in soot formation at engine-relevant conditions. It is also shown that molecular gasmore » radiation and spectral radiation properties are important for engine-relevant conditions.« less

  10. Current Status on the use of Parallel Computing in Turbulent Reacting Flow Computations Involving Sprays, Monte Carlo PDF and Unstructured Grids. Chapter 4

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    1998-01-01

    The state of the art in multidimensional combustor modeling as evidenced by the level of sophistication employed in terms of modeling and numerical accuracy considerations, is also dictated by the available computer memory and turnaround times afforded by present-day computers. With the aim of advancing the current multi-dimensional computational tools used in the design of advanced technology combustors, a solution procedure is developed that combines the novelty of the coupled CFD/spray/scalar Monte Carlo PDF (Probability Density Function) computations on unstructured grids with the ability to run on parallel architectures. In this approach, the mean gas-phase velocity and turbulence fields are determined from a standard turbulence model, the joint composition of species and enthalpy from the solution of a modeled PDF transport equation, and a Lagrangian-based dilute spray model is used for the liquid-phase representation. The gas-turbine combustor flows are often characterized by a complex interaction between various physical processes associated with the interaction between the liquid and gas phases, droplet vaporization, turbulent mixing, heat release associated with chemical kinetics, radiative heat transfer associated with highly absorbing and radiating species, among others. The rate controlling processes often interact with each other at various disparate time 1 and length scales. In particular, turbulence plays an important role in determining the rates of mass and heat transfer, chemical reactions, and liquid phase evaporation in many practical combustion devices.

  11. Effect of Operating Parameters on a Dual-Stage High Velocity Oxygen Fuel Thermal Spray System

    NASA Astrophysics Data System (ADS)

    Khan, Mohammed N.; Shamim, Tariq

    2014-08-01

    High velocity oxygen fuel (HVOF) thermal spray systems are being used to apply coatings to prevent surface degradation. The coatings of temperature sensitive materials such as titanium and copper, which have very low melting points, cannot be applied using a single-stage HVOF system. Therefore, a dual-stage HVOF system has been introduced and modeled computationally. The dual-spray system provides an easy control of particle oxidation by introducing a mixing chamber. In addition to the materials being sprayed, the thermal spray coating quality depends to a large extent on flow behavior of reacting gases and the particle dynamics. The present study investigates the influence of various operating parameters on the performance of a dual-stage thermal spray gun. The objective is to develop a predictive understanding of various parameters. The gas flow field and the free jet are modeled by considering the conservation of mass, momentum, and energy with the turbulence and the equilibrium combustion sub models. The particle phase is decoupled from the gas phase due to very low particle volume fractions. The results demonstrate the advantage of a dual-stage system over a single-stage system especially for the deposition of temperature sensitive materials.

  12. Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiagvik, Alaska

    DOE PAGES

    Gunsch, Matthew J.; Kirpes, Rachel M.; Kolesar, Katheryn R.; ...

    2017-09-14

    Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aerosol sources and compare to natural conditions. From August to September 2015 in Utqiagvik (Barrow), AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (0.13–4 µm projected area diameter) and real-time single-particle mass spectrometry (0.2–1.5 µm vacuum aerodynamic diameter). During periods influenced by the Arctic Ocean (70 %more » of the study), our results show that fresh sea spray aerosol contributed ~20 %, by number, of particles between 0.13 and 0.4 µm, 40–70 % between 0.4 and 1 µm, and 80–100 % between 1 and 4 µm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 % of the study), the third largest oil field in North America, there was a strong influence from submicron (0.13–1 µm) combustion-derived particles (20–50 % organic carbon, by number; 5–10% soot by number). While sea spray aerosol still comprised a large fraction of particles (90 % by number from 1 to 4 µm) detected under Prudhoe Bay influence, these particles were internally mixed with sulfate and nitrate indicative of aging processes during transport. In addition, the overall mode of the particle size number distribution shifted from 76 nm during Arctic Ocean influence to 27 nm during Prudhoe Bay influence, with particle concentrations increasing from 130 to 920 cm -3 due to transported particle emissions from the oil fields. The increased contributions of carbonaceous combustion products and partially aged sea spray aerosol should be considered in future Arctic atmospheric composition and climate simulations.« less

  13. Contributions of transported Prudhoe Bay oil field emissions to the aerosol population in Utqiagvik, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsch, Matthew J.; Kirpes, Rachel M.; Kolesar, Katheryn R.

    Loss of sea ice is opening the Arctic to increasing development involving oil and gas extraction and shipping. Given the significant impacts of absorbing aerosol and secondary aerosol precursors emitted within the rapidly warming Arctic region, it is necessary to characterize local anthropogenic aerosol sources and compare to natural conditions. From August to September 2015 in Utqiagvik (Barrow), AK, the chemical composition of individual atmospheric particles was measured by computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy (0.13–4 µm projected area diameter) and real-time single-particle mass spectrometry (0.2–1.5 µm vacuum aerodynamic diameter). During periods influenced by the Arctic Ocean (70 %more » of the study), our results show that fresh sea spray aerosol contributed ~20 %, by number, of particles between 0.13 and 0.4 µm, 40–70 % between 0.4 and 1 µm, and 80–100 % between 1 and 4 µm particles. In contrast, for periods influenced by emissions from Prudhoe Bay (10 % of the study), the third largest oil field in North America, there was a strong influence from submicron (0.13–1 µm) combustion-derived particles (20–50 % organic carbon, by number; 5–10% soot by number). While sea spray aerosol still comprised a large fraction of particles (90 % by number from 1 to 4 µm) detected under Prudhoe Bay influence, these particles were internally mixed with sulfate and nitrate indicative of aging processes during transport. In addition, the overall mode of the particle size number distribution shifted from 76 nm during Arctic Ocean influence to 27 nm during Prudhoe Bay influence, with particle concentrations increasing from 130 to 920 cm -3 due to transported particle emissions from the oil fields. The increased contributions of carbonaceous combustion products and partially aged sea spray aerosol should be considered in future Arctic atmospheric composition and climate simulations.« less

  14. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    NASA Astrophysics Data System (ADS)

    Doisneau, François; Arienti, Marco; Oefelein, Joseph C.

    2017-01-01

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier-Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle-particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.

  15. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barelymore » influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.« less

  16. Radiation-transparent windows, method for imaging fluid transfers

    DOEpatents

    Shu, Deming [Darien, IL; Wang, Jin [Burr Ridge, IL

    2011-07-26

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  17. Custom-designed nanomaterial libraries for testing metal oxide toxicity

    PubMed Central

    Pokhrel, Suman; Nel, André E.; Mädler, Lutz

    2014-01-01

    Conspectus Advances in aerosol technology over the past 10 years have provided methods that enable the generation and design of ultrafine nanoscale materials for different applications. The particles are produced combusting a precursor solution and its chemical reaction in the in the gas phase. Flame spray pyrolysis (FSP) is a highly versatile technique for single step and scalable synthesis of nanoscale materials. New innovations in particle synthesis using FSP technology and its precursor chemistry have enabled flexible dry synthesis of loosely-agglomerated highly crystalline ultrafine powders (porosity ≥ 90%) of binary, ternary and mixed binary or ternary oxides. The flame spray pyrolysis lies at the intersection of combustion science, aerosols technology and materials chemistry. The interdisciplinary research is not only inevitable but is becoming increasingly crucial in the design of nanoparticles (NPs) made in the gas phase. The increasing demand especially in the bio-applications for particles with specific material composition, high purity and crystallinity can be often fulfilled with the fast, single step FSP technique. PMID:23194152

  18. Thermal Shock Damage and Microstructure Evolution of Thermal Barrier Coatings on Mar-M247 Superalloy in a Combustion Gas Environment

    NASA Astrophysics Data System (ADS)

    Mei, Hui

    2012-06-01

    The effect of preoxidation on the thermal shock of air plasma sprayed thermal barrier coatings (TBCs) was completely investigated in a combustion gas environment by burning jet fuel with high speed air. Results show that with increasing cycles, the as-oxidized TBCs lost more weight and enlarged larger spallation area than the as-sprayed ones. Thermally grown oxide (TGO) growth and thermal mismatch stress were proven to play critical roles on the as-oxidized TBC failure. Two types of significant cracks were identified: the type I crack was vertical to the TGO interface and the type II crack was parallel to the TGO interface. The former accelerated the TGO growth to develop the latter as long as the oxidizing gas continuously diffused inward and then oxidized the more bond coat (BC). The preoxidation treatment directly increased the TGO thickness, formed the parallel cracks earlier in the TGO during the thermal shocks, and eventually resulted in the worse thermal shock resistance.

  19. Afterburner Performance of Circular V-Gutters and a Sector of Parallel V-Gutters for a Range of Inlet Temperatures to 1255 K (1800 F)

    NASA Technical Reports Server (NTRS)

    Brandstetter, J. Robert; Reck, Gregory M.

    1973-01-01

    Combustion tests of two V-gutter types were conducted in a 19.25-in. diameter duct using vitiated air. Fuel spraybars were mounted in line with the V-gutters. Combustor length was set by flame-quench water sprays which were part of a calorimeter for measuring combustion efficiency. Although the levels of performance of the parallel and circular array afterburners were different, the trends with geometry variations were consistent. Therefore, parallel arrays can be used for evaluating V-gutter geometry effects on combustion performance. For both arrays, the highest inlet temperature produced combustion efficiencies near 100 percent. A 5-in. spraybar - to - V-gutter spacing gave higher efficiency and better lean blowout performance than a spacing twice as large. Gutter durability was good.

  20. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  1. QUANTIFICATION OF HEAT FLUX FROM A REACTING THERMITE SPRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric Nixon; Michelle Pantoya

    2009-07-01

    Characterizing the combustion behaviors of energetic materials requires diagnostic tools that are often not readily or commercially available. For example, a jet of thermite spray provides a high temperature and pressure reaction that can also be highly corrosive and promote undesirable conditions for the survivability of any sensor. Developing a diagnostic to quantify heat flux from a thermite spray is the objective of this study. Quick response sensors such as thin film heat flux sensors can not survive the harsh conditions of the spray, but more rugged sensors lack the response time for the resolution desired. A sensor that willmore » allow for adequate response time while surviving the entire test duration was constructed. The sensor outputs interior temperatures of the probes at known locations and utilizes an inverse heat conduction code to calculate heat flux values. The details of this device are discussed and illustrated. Temperature and heat flux measurements of various thermite spray conditions are reported. Results indicate that this newly developed energetic material heat flux sensor provides quantitative data with good repeatability.« less

  2. Fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Abraham, J.; Bracco, F. V.

    1989-01-01

    A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6 percent at higher loads and 2 percent at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.

  3. Effects of thermoacoustic oscillations on spray combustion dynamics with implications for lean direct injection systems

    NASA Astrophysics Data System (ADS)

    Chishty, Wajid Ali

    Thermoacoustic instabilities in modern high-performance, low-emission gas turbine engines are often observable as large amplitude pressure oscillations and can result in serious performance and structural degradations. These acoustic oscillations can cause oscillations in combustor through-flows and given the right phase conditions, can also drive unsteady heat release. To curb the potential harms caused by the existence of thermoacoustic instabilities, recent efforts have focused on the active suppression of these instabilities. Intuitively, development of effective active combustion control methodologies is strongly dependent on the knowledge of the onset and sustenance of thermoacoustic instabilities. Specially, non-premixed spray combustion environment pose additional challenges due to the inherent unstable dynamics of sprays. The understanding of the manner in which the combustor acoustics affect the spray characteristics, which in turn result in heat release oscillation, is therefore, of paramount importance. The experimental investigations and the modeling studies conducted towards achieving this knowledge have been presented in this dissertation. Experimental efforts comprise both reacting and non-reacting flow studies. Reacting flow experiments were conducted on a overall lean direct injection, swirl-stabilized combustor rig. The investigations spanned combustor characterization and stability mapping over the operating regime. The onset of thermoacoustic instability and the transition of the combustor to two unstable regimes were investigated via phase-locked chemiluminescence imaging and measurement and phase-locked acoustic characterization. It was found that the onset of the thermoacoustic instability is a function of the energy gain of the system, while the sustenance of instability is due to the in-phase relationship between combustor acoustics and unsteady heat release driven by acoustic oscillations. The presence of non-linearities in the system between combustor acoustic and heat release and also between combustor acoustics and air through-flow were found to exist. The impact of high amplitude limit-cycle pressure on droplet breakdown under very low mean airflow and the localized effects of forced primary fuel modulations on heat release were also investigated. The non-reacting flow experiments were conducted to study the spray behavior under the presence of an acoustic field. An isothermal acoustic rig was specially fabricated, where the pressure oscillations were generated using an acoustic driver. Phase Doppler Anemometry was used to measure the droplet velocities and sizes under varying acoustic forcing conditions and spray feed pressures. Measurements made at different locations in the spray were related to these variations in mean and unsteady inputs. The droplet velocities were found to show a second order response to acoustic forcing with the cut-off frequency equal to the relaxation time corresponding to mean droplet size. It was also found that under acoustic forcing the droplets migrate radially away from the spray centerline and show oscillatory excursions in their movement. Modeling efforts were undertaken to gain physical insights of spray dynamics under the influence of acoustic forcing and to explain the experimental findings. The radial migration of droplets and their oscillatory movement were validated. The flame characteristics in the two unstable regimes and the transition between them were explained. It was found that under certain acoustic and mean air-flow condition, bands of high droplet densities were formed which resulted in diffusion type group burning of droplets. It was also shown that very high acoustic amplitudes cause secondary breakup of droplets.

  4. SNL/JAEA Collaborations on Sodium Fire Benchmarking.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Andrew Jordan; Denman, Matthew R; Takata, Takashi

    Two sodium spray fire experiments performed by Sandia National Laboratories (SNL) were used for a code - to - code comparison between CONTAIN - LMR and SPHINCS. Both computer codes are used for modeling sodium accidents in sodium fast reactors. The comparison between the two codes provides insights into the ability of both codes to model sodium spray fires. The SNL T3 and T4 experiments are 20 kg sodium spray fires with sodium spray temperature s of 200 deg C and 500 deg C, respe ctively. Given the relatively low sodium temperature in the SNL T3 experiment, the sodium spraymore » experienced a period of non - combustion. The vessel in the SNL T4 experiment experienced a rapid pressurization that caused of the instrumentation ports to fail during the sodium spray. Despite these unforeseen difficulties, both codes were shown in good agreement with the experiment s . The subsequent pool fire that develops from the unburned sodium spray is a significant characteristic of the T3 experiment. SPHIN CS showed better long - term agreement with the SNL T3 experiment than CONTAIN - LMR. The unexpected port failure during the SNL T4 experiment presented modelling challenges. The time at which the port failure occurred is unknown, but is believed to have occur red at about 11 seconds into the sodium spray fire. The sensitivity analysis for the SNL T4 experiment shows that with a port failure, the sodium spray fire can still maintain elevated pressures during the spray.« less

  5. Ensemble Diffraction Measurements of Spray Combustion in a Novel Vitiated Coflow Turbulent Jet Flame Burner

    NASA Technical Reports Server (NTRS)

    Cabra, R.; Hamano, Y.; Chen, J. Y.; Dibble, R. W.; Acosta, F.; Holve, D.

    2000-01-01

    An experimental investigation is presented of a novel vitiated coflow spray flame burner. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces; additionally, since the vitiated gases are coflowing, the burner allows exploration of the chemistry of recirculation without the corresponding fluid mechanics of recirculation. As such, this burner allows for chemical kinetic model development without obscurations caused by fluid mechanics. The burner consists of a central fuel jet (droplet or gaseous) surrounded by the oxygen rich combustion products of a lean premixed flame that is stabilized on a perforated, brass plate. The design presented allows for the reacting coflow to span a large range of temperatures and oxygen concentrations. Several experiments measuring the relationships between mixture stoichiometry and flame temperature are used to map out the operating ranges of the coflow burner. These include temperatures as low 300 C to stoichiometric and oxygen concentrations from 18 percent to zero. This is achieved by stabilizing hydrogen-air premixed flames on a perforated plate. Furthermore, all of the CO2 generated is from the jet combustion. Thus, a probe sample of NO(sub X) and CO2 yields uniquely an emission index, as is commonly done in gas turbine engine exhaust research. The ability to adjust the oxygen content of the coflow allows us to steadily increase the coflow temperature surrounding the jet. At some temperature, the jet ignites far downstream from the injector tube. Further increases in the coflow temperature results in autoignition occurring closer to the nozzle. Examples are given of methane jetting into a coflow that is lean, stoichiometric, and even rich. Furthermore, an air jet with a rich coflow produced a normal looking flame that is actually 'inverted' (air on the inside, surrounded by fuel). In the special case of spray injection, we demonstrate the efficacy of this novel burner with a methanol spray in a vitiated coflow. As a proof of concept, an ensemble light diffraction (ELD) optical instrument was used to conduct preliminary measurements of droplet size distribution and liquid volume fraction.

  6. Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection diesel engine by using linear raman spectroscopy.

    PubMed

    Taschek, Marco; Egermann, Jan; Schwarz, Sabrina; Leipertz, Alfred

    2005-11-01

    Optimum fuel preparation and mixture formation are core issues in the development of modern direct-injection (DI) Diesel engines, as these are crucial for defining the border conditions for the subsequent combustion and pollutant formation process. The local fuel/air ratio can be seen as one of the key parameters for this optimization process, as it allows the characterization and comparison of the mixture formation quality. For what is the first time to the best of our knowledge, linear Raman spectroscopy is used to detect the fuel/air ratio and its change along a line of a few millimeters directly and nonintrusively inside the combustion bowl of a DI Diesel engine. By a careful optimization of the measurement setup, the weak Raman signals could be separated successfully from disturbing interferences. A simultaneous measurement of the densities of air and fuel was possible along a line of about 10 mm length, allowing a time- and space-resolved measurement of the local fuel/air ratio. This could be performed in a nonreacting atmosphere as well as during fired operating conditions. The positioning of the measurement volume next to the interaction point of one of the spray jets with the wall of the combustion bowl allowed a near-wall analysis of the mixture formation process for a six-hole nozzle under varying injection and engine conditions. The results clearly show the influence of the nozzle geometry and preinjection on the mixing process. In contrast, modulation of the intake air temperature merely led to minor changes of the fuel concentration in the measurement volume.

  7. Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Taschek, Marco; Egermann, Jan; Schwarz, Sabrina; Leipertz, Alfred

    2005-11-01

    Optimum fuel preparation and mixture formation are core issues in the development of modern direct-injection (DI) Diesel engines, as these are crucial for defining the border conditions for the subsequent combustion and pollutant formation process. The local fuel/air ratio can be seen as one of the key parameters for this optimization process, as it allows the characterization and comparison of the mixture formation quality. For what is the first time to the best of our knowledge, linear Raman spectroscopy is used to detect the fuel/air ratio and its change along a line of a few millimeters directly and nonintrusively inside the combustion bowl of a DI Diesel engine. By a careful optimization of the measurement setup, the weak Raman signals could be separated successfully from disturbing interferences. A simultaneous measurement of the densities of air and fuel was possible along a line of about 10 mm length, allowing a time- and space-resolved measurement of the local fuel/air ratio. This could be performed in a nonreacting atmosphere as well as during fired operating conditions. The positioning of the measurement volume next to the interaction point of one of the spray jets with the wall of the combustion bowl allowed a near-wall analysis of the mixture formation process for a six-hole nozzle under varying injection and engine conditions. The results clearly show the influence of the nozzle geometry and preinjection on the mixing process. In contrast, modulation of the intake air temperature merely led to minor changes of the fuel concentration in the measurement volume.

  8. Overview of the NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey

    2001-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between then NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Glenn Research Center (LeRC), and Pratt & Whitney (P&W). The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration. The development of the NCC beta version was essentially completed in June 1998. Technical details of the NCC elements are given in the Reference List. Elements such as the baseline flow solver, turbulence module, and the chemistry module, have been extensively validated; and their parallel performance on large-scale parallel systems has been evaluated and optimized. However the scalar PDF module and the Spray module, as well as their coupling with the baseline flow solver, were developed in a small-scale distributed computing environment. As a result, the validation of the NCC beta version as a whole was quite limited. Current effort has been focused on the validation of the integrated code and the evaluation/optimization of its overall performance on large-scale parallel systems.

  9. The influence of droplet evaporation on fuel-air mixing rate in a burner

    NASA Technical Reports Server (NTRS)

    Komiyama, K.; Flagan, R. C.; Heywood, J. B.

    1977-01-01

    Experiments involving combustion of a variety of hydrocarbon fuels in a simple atmospheric pressure burner were used to evaluate the role of droplet evaporation in the fuel/air mixing process in liquid fuel spray flames. Both air-assist atomization and pressure atomization processes were studied; fuel/air mixing rates were determined on the basis of cross-section average oxygen concentrations for stoichiometric overall operation. In general, it is concluded that droplets act as point sources of fuel vapor until evaporation, when the fuel jet length scale may become important in determining nonuniformities of the fuel vapor concentration. In addition, air-assist atomizers are found to have short droplet evaporation times with respect to the duration of the fuel/air mixing process, while for the pressure jet atomizer the characteristic evaporation and mixing times are similar.

  10. Emission characteristics of kerosene-air spray combustion with plasma assistance

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; He, Liming; Zeng, Hao; Jin, Tao; Chen, Yi; Zhang, Yihan; Liu, Pengfei

    2015-09-01

    A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.

  11. Biocidal Energetic Materials for the Destruction of Spore Forming Bacteria

    DTIC Science & Technology

    2015-07-01

    Bacteria Spore Gas Antibacterial Thermal Unclassified Unclassified Unclassified SAR 47 Suhithi Peiris...naturally antibacterial and biocidal properties using combustion synthesis of mildly energetic reactants; and, (2) engineering an aerosolized spray...of biocidal gases using unique a deflagration synthesis approach. Accomplishments for all years: Major Activity 1: Creating highly porous

  12. Combustion of droplets and sprays

    NASA Astrophysics Data System (ADS)

    Eigenbrod, Christian; Sattelmayer, Thomas; Bäßler, Stefan; Mauss, Fabian; Meisl, Jürgen; Oomens, Bas; Rackwitz, Leif; Tait, Nigel; Angelberger, Christian; Eilts, Peter; Magnusson, Ingemar; Lauvergne, Romain; Tatschl, Reinhard

    2005-10-01

    The combustion of liquid hydrocarbon fuels in internal combustion engines and gas turbines for energy production and aircraft propulsion is intrinsically tied to the formation of pollutants. Apart from aiming for the highest combustion efficiencies in order to lower the operational costs and the emission of CO2, the reduction of poisonous and environmentally harmful exhaust constituents is a challenging task for scientists and engineers. The most prominent pollutants are soot, identified to trigger respiratory diseases and cancer, and nitric oxides such as NO and NO2, which promote the formation of ozone affecting the cardiovascular system when released in the lower atmosphere. Soot and nitric oxides are greenhouse pollutants in the upper atmosphere. Even though only 2-3% of the anthropogenic emission of nitric oxides are contributed by aircraft, it is the only emission at high altitudes. Unfortunately, it has the greatest impact on climate there and it does not matter whether the fuels are fossil or, in the future, biomass.

  13. Spray combustion modeling

    NASA Technical Reports Server (NTRS)

    Bellan, J.

    1997-01-01

    Concern over the future availability of high quality liquid fuels or use in furnaces and boilers prompted the U. S. Department of Energy (DOE) to consider alternate fuels as replacements for the high grade liquid fuels used in the 1970's and 1980's. Alternate fuels were defined to be combinations of a large percentage of viscous, low volatility fuels resulting from the low end of distillation mixed with a small percentage of relatively low viscosity, high volatility fuels yielded by the high end of distillation. The addition of high volatility fuels was meant to promote desirable characteristics to a fuel that would otherwise be difficult to atomize and burn and whose combustion would yield a high amount of pollutants. Several questions thus needed to be answered before alternate fuels became commercially viable. These questions were related to fuel atomization, evaporation, ignition, combustion and pollutant formation. This final report describes the results of the most significant studies on ignition and combustion of alternative fuels.

  14. Formation of Sprays From Conical Liquid Sheets

    NASA Technical Reports Server (NTRS)

    Peck, Bill; Mansour, N. N.; Koga, Dennis (Technical Monitor)

    1999-01-01

    Our objective is to predict droplet size distributions created by fuel injector nozzles in Jet turbines. These results will be used to determine the initial conditions for numerical simulations of the combustion process in gas turbine combustors. To predict the droplet size distribution, we are currently constructing a numerical model to understand the instability and breakup of thin conical liquid sheets. This geometry serves as a simplified model of the liquid jet emerging from a real nozzle. The physics of this process is difficult to study experimentally as the time and length scales are very short. From existing photographic data, it does seem clear that three-dimensional effects such as the formation of streamwise ligaments and the pulling back of the sheet at its edges under the action of surface tension are important.

  15. Experimental investigation of aerodynamics and combustion properties of a multiple-swirler array

    NASA Astrophysics Data System (ADS)

    Kao, Yi-Huan

    An annular combustor is one of the popular configurations of a modern gas turbine combustor. Since the swirlers are arranged as side-by-side in an annular combustor, the swirling flow interaction should be considered for the design of an annular gas turbine combustor. The focus of this dissertation is to investigate the aerodynamics and the combustion of a multiple-swirler array which features the swirling flow interaction. A coaxial counter-rotating radial-radial swirler was used in this work. The effects of confinement and dome recession on the flow field of a single swirler were conducted for understanding the aerodynamic characteristic of this swirler. The flow pattern generated by single swirler, 3-swirler array, and 5-swirler array were evaluated. As a result, the 5-swirler array was utilized in the remaining of this work. The effects of inter-swirler spacing, alignment of swirler, end wall distance, and the presence of confinement on the flow field generated by a 5-swirler array were investigated. A benchmark of aerodynamics performance was established. A phenomenological description was proposed to explain the periodically non-uniform flow pattern of a 5-swirler array. The non-reacting spray distribution measurements were following for understanding the effect of swirling flow interaction on the spray distribution issued out by a 5-swirler array. The spray distribution from a single swirler/ fuel nozzle was measured and treated as a reference. The spray distribution from a 5-swriler array was periodically non-uniform and somehow similar to what observed in the aerodynamic result. The inter-swirler spacing altered not only the topology of aerodynamics but also the flame shape of a 5-swirler array. As a result, the distribution of flame shape strongly depends on the inter-swirler spacing.

  16. The structure of evaporating and combusting sprays: Measurements and predictions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Faeth, G. M.

    1984-01-01

    An apparatus developed, to allow observations of monodisperse sprays, consists of a methane-fueled turbulent jet diffusion flame with monodisperse methanol drops injected at the burner exit. Mean and fluctuating-phase velocities, drop sizes, drop-mass fluxes and mean-gas temperatures were measured. Initial drop diameters of 100 and 180 microns are being considered in order to vary drop penetration in the flow and effects of turbulent dispersion. Baseline tests of the burner flame with no drops present were also conducted. Calibration tests, needed to establish methods for predicting drop transport, involve drops supported in the post-flame region of a flat-flame burner operated at various mixture ratios. Spray models which are being evaluated include: (1) locally homogeneous flow (LFH) analysis, (2) deterministic separated flow (DSF) analysis and (3) stochastic separated flow (SSF) analysis.

  17. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    NASA Astrophysics Data System (ADS)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  18. An Overview of Spray Modeling With OpenNCC and its Application to Emissions Predictions of a LDI Combustor at High Pressure

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2016-01-01

    The open national combustion code (Open- NCC) is developed with the aim of advancing the current multi-dimensional computational tools used in the design of advanced technology combustors. In this paper we provide an overview of the spray module, LSPRAY-V, developed as a part of this effort. The spray solver is mainly designed to predict the flow, thermal, and transport properties of a rapidly evaporating multi-component liquid spray. The modeling approach is applicable over a wide-range of evaporating conditions (normal, superheat, and supercritical). The modeling approach is based on several well-established atomization, vaporization, and wall/droplet impingement models. It facilitates large-scale combustor computations through the use of massively parallel computers with the ability to perform the computations on either structured & unstructured grids. The spray module has a multi-liquid and multi-injector capability, and can be used in the calculation of both steady and unsteady computations. We conclude the paper by providing the results for a reacting spray generated by a single injector element with 600 axially swept swirler vanes. It is a configuration based on the next-generation lean-direct injection (LDI) combustor concept. The results include comparisons for both combustor exit temperature and EINOX at three different fuel/air ratios.

  19. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  20. Air/fuel ratio visualization in a diesel spray

    NASA Astrophysics Data System (ADS)

    Carabell, Kevin David

    1993-01-01

    To investigate some features of high pressure diesel spray ignition, we have applied a newly developed planar imaging system to a spray in an engine-fed combustion bomb. The bomb is designed to give flow characteristics similar to those in a direct injection diesel engine yet provide nearly unlimited optical access. A high pressure electronic unit injector system with on-line manually adjustable main and pilot injection features was used. The primary scalar of interest was the local air/fuel ratio, particularly near the spray plumes. To make this measurement quantitative, we have developed a calibration LIF technique. The development of this technique is the key contribution of this dissertation. The air/fuel ratio measurement was made using biacetyl as a seed in the air inlet to the engine. When probed by a tripled Nd:YAG laser the biacetyl fluoresces, with a signal proportional to the local biacetyl concentration. This feature of biacetyl enables the fluorescent signal to be used as as indicator of local fuel vapor concentration. The biacetyl partial pressure was carefully controlled, enabling estimates of the local concentration of air and the approximate local stoichiometry in the fuel spray. The results indicate that the image quality generated with this method is sufficient for generating air/fuel ratio contours. The processes during the ignition delay have a marked effect on ignition and the subsequent burn. These processes, vaporization and pre-flame kinetics, very much depend on the mixing of the air and fuel. This study has shown that poor mixing and over-mixing of the air and fuel will directly affect the type of ignition. An optimal mixing arrangement exists and depends on the swirl ratio in the engine, the number of holes in the fuel injector and the distribution of fuel into a pilot and main injection. If a short delay and a diffusion burn is desired, the best mixing parameters among those surveyed would be a high swirl ratio, a 4-hole nozzle and a small pilot. This arrangement provided the best combination of short ignition delay and diffusion burn for the majority of cases.

  1. Formation of high heat resistant coatings by using gas tunnel type plasma spraying.

    PubMed

    Kobayashi, A; Ando, Y; Kurokawa, K

    2012-06-01

    Zirconia sprayed coatings are widely used as thermal barrier coatings (TBC) for high temperature protection of metallic structures. However, their use in diesel engine combustion chamber components has the long run durability problems, such as the spallation at the interface between the coating and substrate due to the interface oxidation. Although zirconia coatings have been used in many applications, the interface spallation problem is still waiting to be solved under the critical conditions such as high temperature and high corrosion environment. The gas tunnel type plasma spraying developed by the author can make high quality ceramic coatings such as Al2O3 and ZrO2 coating compared to other plasma spraying method. A high hardness ceramic coating such as Al2O3 coating by the gas tunnel type plasma spraying, were investigated in the previous study. The Vickers hardness of the zirconia (ZrO2) coating increased with decreasing spraying distance, and a higher Vickers hardness of about Hv = 1200 could be obtained at a shorter spraying distance of L = 30 mm. ZrO2 coating formed has a high hardness layer at the surface side, which shows the graded functionality of hardness. In this study, ZrO2 composite coatings (TBCs) with Al2O3 were deposited on SS304 substrates by gas tunnel type plasma spraying. The performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the functionally graded TBCs was investigated and discussed. The resultant coating samples with different spraying powders and thickness are compared in their corrosion resistance with coating thickness as variables. Corrosion potential was measured and analyzed corresponding to the microstructure of the coatings. High Heat Resistant Coatings, Gas Tunnel Type Plasma Spraying, Hardness,

  2. Fundamental modeling of pulverized coal and coal-water slurry combustion in a gas turbine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatwani, A.; Turan, A.; Hals, F.

    1988-01-01

    This work describes the essential features of a coal combustion model which is incorporated into a three-dimensional, steady-state, two-phase, turbulent, reactive flow code. The code is a modified and advanced version of INTERN code originally developed at Imperial College which has gone through many stages of development and validation. Swithenbank et al have reported spray combustion model results for an experimental can combustor. The code has since then been modified by and made public under a US Army program. A number of code modifications and improvements have been made at ARL. The earlier version of code was written for amore » small CDC machine which relied on frequent disk/memory transfer and overlay features to carry the computations resulting in loss of computational speed. These limitations have now been removed. For spray applications, the fuel droplet vaporization generates gaseous fuel of uniform composition; hence the earlier formulation relied upon the use of conserved scalar approximation to reduce the number of species equations to be solved. In applications related to coal fuel, coal pyrolysis leads to the formation of at least two different gaseous fuels and a solid fuel of different composition. The authors have therefore removed the conserved scalar formulation for the sake of generality and easy adaptability to complex fuel situations.« less

  3. Carbonaceous fuel combustion with improved desulfurization

    DOEpatents

    Yang, Ralph T.; Shen, Ming-shing

    1980-01-01

    Lime utilization for sulfurous oxides adsorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. The iron oxide present in the spent limestone is found to catalyze the regeneration rate of the spent limestone in a reducing environment. Thus both the calcium and iron components may be recycled.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zihan; Swantek, Andrew; Scarcelli, Riccardo

    This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence ismore » ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated. Additional parametric studies under different ambient and injection conditions were performed to study their influence on global and local flow structures for gasoline sprays. It is concluded that LES can generally well capture all experimental trends and comes close to matching the x-ray data. Discrepancies between experimental and simulation results can be correlated to uncertainties in boundary and initial conditions such as rate of injection and spray and turbulent dispersion sub-model constants.« less

  5. On the formulation and assessment of flamelet-generated manifolds applied to two-phase turbulent combustion

    NASA Astrophysics Data System (ADS)

    Bojko, Brian T.

    Accounting for the effects of finite rate chemistry in reacting flows is intractable when considering the number of species and reactions to be solved for during a large scale flow simulation. This is especially complicated when solid/liquid fuels are also considered. While modeling the reacting boundary layer with the use of finite-rate chemistry may allow for a highly accurate description of the coupling between the flame and fuel surface, it is not tractable in large scale simulations when considering detailed chemical kinetics. It is the goal of this research to investigate a Flamelet-Generated Manifold (FGM) method in order to reduce the finite rate chemistry to a lookup table cataloged by progress variables and queried during runtime. In this study, simplified unsteady 1D flames with mass blowing are considered for a solid biomass fuel where the FGM method is employed as a model reduction strategy for potential application to multidimensional calculations. Two types of FGM are considered. The first are a set of steady-state flames differentiated by their scalar dissipation rate. Results show the use of steady flames produce unacceptable errors compared to the finite-rate chemistry solution, with temperature errors in excess of 45%. To avoid these errors, a new methodology for developing an unsteady FGM (UFGM) is presented that accounts for unsteady diffusion effects and greatly reduces errors in temperature with differences that are under 10%. The FGM modeling is then extended to individual droplet combustion with the development of a Droplet Flamelet-Generated Manifold (DFGM) to account for the effects of finite-rate chemistry of individual droplets. A spherically symmetric droplet model is developed for methanol and aluminum. The inclusion of finite-rate chemistry allows the capturing of the transition from diffusion to kinetically controlled combustion as the droplet diameter decreases. The droplet model is then used to create a DFGM by successively solving the 1D flame equations at varying drop sizes, where the source terms for energy, mixture fraction, and progress variable are cataloged as a function of normalized diameter. A unique coupling of the DFGM and planar UFGM is developed and is used to account for individual and gas phase combustion processes in turbulent combustion situations, such as spray flames, particle laden blasts, etc. The DFGM for the methanol and aluminum droplets are used in mixed Eulerian and Eulerian-Lagrangian formulations of compressible multiphase flows. System level simulations are conducted and compared experimental data for a methanol spray flame and an aluminized blast studied at the Explosives Components Facility (ECF) at Sandia National Laboratories.

  6. Liquid and gelled sprays for mixing hypergolic propellants using an impinging jet injection system

    NASA Astrophysics Data System (ADS)

    James, Mark D.

    The characteristics of sprays produced by liquid rocket injectors are important in understanding rocket engine ignition and performance. The includes, but is not limited to, drop size distribution, spray density, drop velocity, oscillations in the spray, uniformity of mixing between propellants, and the spatial distribution of drops. Hypergolic ignition and the associated ignition delay times are also important features in rocket engines, providing high reliability and simplicity of the ignition event. The ignition delay time is closely related to the level and speed of mixing between a hypergolic fuel and oxidizer, which makes the injection method and conditions crucial in determining the ignition performance. Although mixing and ignition of liquid hypergolic propellants has been studied for many years, the processes for injection, mixing, and ignition of gelled hypergolic propellants are less understood. Gelled propellants are currently under investigation for use in rocket injectors to combine the advantages of solid and liquid propellants, although not without their own difficulties. A review of hypergolic ignition has been conducted for selected propellants, and methods for achieving ignition have been established. This research is focused on ignition using the liquid drop-on-drop method, as well as the doublet impinging jet injector. The events leading up to ignition, known as pre-ignition stage are discussed. An understanding of desirable ignition and combustion performance requires a study of the effects of injection, temperature, and ambient pressure conditions. A review of unlike-doublet impinging jet injection mixing has also been conducted. This includes mixing factors in reactive and non-reactive sprays. Important mixing factors include jet momentum, jet diameter and length, impingement angle, mass distribution, and injector configuration. An impinging jet injection system is presented using an electro-mechanically driven piston for injecting liquid and gelled hypergolic propellants. A calibration of the system is done with water in preparation for hypergolic injection, and characteristics of individual water and gelled JP-8 jets are studied at velocities in the range of 3 ft/s to 61 ft/s. The piston response is also analyzed to characterize the startup and steady state liquid jet velocities using orifices of 0.02" in diameter. Using this injection system, water and gelled JP-8 sprays are formed and compared across injection velocities of 30 ft/s to 121 ft/s. The comparison includes sheet shape and disintegration, total number of drops, drop size distributions, drop eccentricity, most populated drop bin size, and mean drop sizes. A test matrix for investigating the effects of mixing on ignition of MMH and IRFNA through different injection conditions are presented. First, water and IRFNA are injected to create a spray in the combustion chamber in order to verify effectiveness of test procedures and the test hardware. Next, injection of the hypergolic propellants MMH and IRFNA are done in accordance to the test matrix, although ignition was not observed as expected. These injections are followed by simple drop-on-drop tests to investigate propellant quality and ignition delay. Drop tests are performed with propellants IRFNA/MMH, and again with H2O2/Block 0 as possible propellant replacements for the proposed test plan.

  7. Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerle, Wayne; Rutland, Chris; Rohlfing, Eric

    This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accountsmore » for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not suffice. Current market penetration of new engine technologies is simply too slow—it must be dramatically accelerated. These challenges present a unique opportunity to marshal U.S. leadership in science-based simulation to develop predictive computational design tools for use by the transportation industry. The use of predictive simulation tools for enhancing combustion engine performance will shrink engine development timescales, accelerate time to market, and reduce development costs, while ensuring the timely achievement of energy security and emissions targets and enhancing U.S. industrial competitiveness. In 2007 Cummins achieved a milestone in engine design by bringing a diesel engine to market solely with computer modeling and analysis tools. The only testing was after the fact to confirm performance. Cummins achieved a reduction in development time and cost. As important, they realized a more robust design, improved fuel economy, and met all environmental and customer constraints. This important first step demonstrates the potential for computational engine design. But, the daunting complexity of engine combustion and the revolutionary increases in efficiency needed require the development of simulation codes and computation platforms far more advanced than those available today. Based on these needs, a Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE) convened over 60 U.S. leaders in the engine combustion field from industry, academia, and national laboratories to focus on two critical areas of advanced simulation, as identified by the U.S. automotive and engine industries. First, modern engines require precise control of the injection of a broad variety of fuels that is far more subtle than achievable to date and that can be obtained only through predictive modeling and simulation. Second, the simulation, understanding, and control of these stochastic in-cylinder combustion processes lie on the critical path to realizing more efficient engines with greater power density. Fuel sprays set the initial conditions for combustion in essentially all future transportation engines; yet today designers primarily use empirical methods that limit the efficiency achievable. Three primary spray topics were identified as focus areas in the workshop: The fuel delivery system, which includes fuel manifolds and internal injector flow, The multi-phase fuel–air mixing in the combustion chamber of the engine, and The heat transfer and fluid interactions with cylinder walls. Current understanding and modeling capability of stochastic processes in engines remains limited and prevents designers from achieving significantly higher fuel economy. To improve this situation, the workshop participants identified three focus areas for stochastic processes: Improve fundamental understanding that will help to establish and characterize the physical causes of stochastic events, Develop physics-based simulation models that are accurate and sensitive enough to capture performance-limiting variability, and Quantify and manage uncertainty in model parameters and boundary conditions. Improved models and understanding in these areas will allow designers to develop engines with reduced design margins and that operate reliably in more efficient regimes. All of these areas require improved basic understanding, high-fidelity model development, and rigorous model validation. These advances will greatly reduce the uncertainties in current models and improve understanding of sprays and fuel–air mixture preparation that limit the investigation and development of advanced combustion technologies. The two strategic focus areas have distinctive characteristics but are inherently coupled. Coordinated activities in basic experiments, fundamental simulations, and engineering-level model development and validation can be used to successfully address all of the topics identified in the PreSICE workshop. The outcome will be: New and deeper understanding of the relevant fundamental physical and chemical processes in advanced combustion technologies, Implementation of this understanding into models and simulation tools appropriate for both exploration and design, and Sufficient validation with uncertainty quantification to provide confidence in the simulation results. These outcomes will provide the design tools for industry to reduce development time by up to 30% and improve engine efficiencies by 30% to 50%. The improved efficiencies applied to the national mix of transportation applications have the potential to save over 5 million barrels of oil per day, a current cost savings of $500 million per day.« less

  8. NLS propulsion - Government view

    NASA Technical Reports Server (NTRS)

    Smelser, Jerry W.

    1992-01-01

    The paper discusses the technology development for the Space Transportation Main Engine (STME). The STME is a liquid oxygen/liquid hydrogen engine with 650,000 pounds of thrust, which may be flown in single-engine or multiple-engine configurations, depending upon the payload and mission requirements. The technological developments completed so far include a vacuum plasma spray process, the liquid interface diffusion bonding, and a thin membrane platelet technology for the combustion chamber fabrication; baseline designs for the hydrogen turbopump and the oxygen pump; and the engine control system. The family of spacecraft for which this engine is being developed includes a 20,000 pound payload to LEO and a 150,000 pound to LEO vehicle.

  9. One-Dimensional Spontaneous Raman Measurements of Temperature Made in a Gas Turbine Combustor

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; DeGroot, Wilhelmus A.; Anderson, Robert C.

    2002-01-01

    The NASA Glenn Research Center is working with the aeronautics industry to develop highly fuel-efficient and environmentally friendly gas turbine combustor technology. This effort includes testing new hardware designs at conditions that simulate the high-temperature, high-pressure environment expected in the next-generation of high-performance engines. Glenn has the only facilities in which such tests can be performed. One aspect of these tests is the use of nonintrusive optical and laser diagnostics to measure combustion species concentration, fuel/air ratio, fuel drop size, and velocity, and to visualize the fuel injector spray pattern and some combustion species distributions. These data not only help designers to determine the efficacy of specific designs, but provide a database for computer modelers and enhance our understanding of the many processes that take place within a combustor. Until recently, we lacked one critical capability, the ability to measure temperature. This article summarizes our latest developments in that area. Recently, we demonstrated the first-ever use of spontaneous Raman scattering to measure combustion temperatures within the Advanced Subsonics Combustion Rig (ASCR) sector rig. We also established the highest rig pressure ever achieved for a continuous-flow combustor facility, 54.4 bar. The ASCR facility can provide operating pressures from 1 to 60 bar (60 atm). This photograph shows the Raman system setup next to the ASCR rig. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of air inlet temperatures, pressures, and fuel/air ratios.

  10. Adaptation of Advanced Diesel Engines for Military Requirements Under Severe Environmental Conditions

    DTIC Science & Technology

    2004-10-15

    Fuel Injection," SAE 910489. Density and Vaporization on Penetration and 7. Shundoh, S., Komori, M., Tsujimura , K., and Dispersion of Diesel Sprays...of a 3-D Engines", SAE 920725. multi-zone combustion model for the prediction 12. Kakegawa, T., Suzuki, T., Tsujimura , K., of a DI diesel engines

  11. Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    DTIC Science & Technology

    2012-09-30

    the CS2 was contained in a rectangular colorimeter cell with a custom built Teflon cap to alleviate the evaporation of the hazardous chemical...6: A comparison of the image quality between the older colorimeter cell (a) and the new containment cell (b). 2.5 Autocorrelation-Based Pulse Length

  12. Argonne research expanding from injectors to inhalers | Argonne National

    Science.gov Websites

    could lead to better medical sprays that are more effective and deliver more types of drugs There is a , Argonne's scientists are using decades of experience analyzing vehicle fuel injectors to study medical & Combustion were working with the Woolcock Institute of Medical Research in Sydney and Chiesi

  13. NATIONAL INCINERATOR TESTING AND EVALUATION PROGRAM: THE ENVIRONMENTAL CHARACTERIZATION OF REFUSE-DERIVED FUEL (RDF) COMBUSTION TECHNOLOGY - MID-CONNECTICUT FACILITY,

    EPA Science Inventory

    The report gives results of an environmental characterization of refuse-derived, semi-suspension burning technology at a facility in Hartford, CT, that represents state-of-the-art technology, including a spray dryer/fabric filter flue gas cleaning (FGC) system for each unit. The ...

  14. Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.

  15. Droplet-turbulence interactions in sprays exposed to supercritical environmental conditions

    NASA Technical Reports Server (NTRS)

    Santavicca, Domenic A.

    1993-01-01

    The goal of this research was to experimentally characterize the behavior of droplets in vaporizing sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag and lift, droplet dispersion, droplet heating, and droplet vaporization under both subcritical and supercritical conditions. A summary of the major accomplishments achieved during the period from June 1990 through June 1993, a brief description and status report on five research areas, which were directly or indirectly supported by this grant, and a list of publications and personnel associated with this research is included.

  16. Visualisation of diesel injector with neutron imaging

    NASA Astrophysics Data System (ADS)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  17. Three-Dimensional Analysis and Modeling of a Wankel Engine

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Willis, E. A.

    1991-01-01

    A new computer code, AGNI-3D, has been developed for the modeling of combustion, spray, and flow properties in a stratified-charge rotary engine (SCRE). The mathematical and numerical details of the new code are described by the first author in a separate NASA publication. The solution procedure is based on an Eulerian-Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas-mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite-volume, Steger-Warming flux vector splitting scheme. The liquid-phase equations are solved in Lagrangian coordinates. The engine configuration studied was similar to existing rotary engine flow-visualization and hot-firing test rigs. The results of limited test cases indicate a good degree of qualitative agreement between the predicted and measured pressures. It is conjectured that the impulsive nature of the torque generated by the observed pressure nonuniformity may be one of the mechanisms responsible for the excessive wear of the timing gears observed during the early stages of the rotary combustion engine (RCE) development. It was identified that the turbulence intensities near top-dead-center were dominated by the compression process and only slightly influenced by the intake and exhaust processes. Slow mixing resulting from small turbulence intensities within the rotor pocket and also from a lack of formation of any significant recirculation regions within the rotor pocket were identified as the major factors leading to incomplete combustion. Detailed flowfield results during exhaust and intake, fuel injection, fuel vaporization, combustion, mixing and expansion processes are also presented. The numerical procedure is very efficient as it takes 7 to 10 CPU hours on a CRAY Y-MP for one entire engine cycle when the computations are performed over a 31 x16 x 20 grid.

  18. On the Experimental and Theoretical Investigations of Lean Partially Premixed Combustion, Burning Speed, Flame Instability and Plasma Formation of Alternative Fuels at High Temperatures and Pressures

    NASA Astrophysics Data System (ADS)

    Askari, Omid

    This dissertation investigates the combustion and injection fundamental characteristics of different alternative fuels both experimentally and theoretically. The subjects such as lean partially premixed combustion of methane/hydrogen/air/diluent, methane high pressure direct-injection, thermal plasma formation, thermodynamic properties of hydrocarbon/air mixtures at high temperatures, laminar flames and flame morphology of synthetic gas (syngas) and Gas-to-Liquid (GTL) fuels were extensively studied in this work. These subjects will be summarized in three following paragraphs. The fundamentals of spray and partially premixed combustion characteristics of directly injected methane in a constant volume combustion chamber have been experimentally studied. The injected fuel jet generates turbulence in the vessel and forms a turbulent heterogeneous fuel-air mixture in the vessel, similar to that in a Compressed Natural Gas (CNG) Direct-Injection (DI) engines. The effect of different characteristics parameters such as spark delay time, stratification ratio, turbulence intensity, fuel injection pressure, chamber pressure, chamber temperature, Exhaust Gas recirculation (EGR) addition, hydrogen addition and equivalence ratio on flame propagation and emission concentrations were analyzed. As a part of this work and for the purpose of control and calibration of high pressure injector, spray development and characteristics including spray tip penetration, spray cone angle and overall equivalence ratio were evaluated under a wide range of fuel injection pressures of 30 to 90 atm and different chamber pressures of 1 to 5 atm. Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the statistical thermodynamics was developed to calculate the ultra-high temperature plasma composition and thermodynamic properties. The method was applied to compute the thermodynamic properties of hydrogen/air and methane/air plasma mixtures for a wide range of temperatures (1,000-100,000 K), pressures (10-6-100 atm) and different equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function. A new differential-based multi-shell model was developed in conjunction with Schlieren photography to measure laminar burning speed and to study the flame instabilities for different alternative fuels such as syngas and GTL. Flame instabilities such as cracking and wrinkling were observed during flame propagation and discussed in terms of the hydrodynamic and thermo-diffusive effects. Laminar burning speeds were measured using pressure rise data during flame propagation and power law correlations were developed over a wide range of temperatures, pressures and equivalence ratios. As a part of this work, the effect of EGR addition and substitution of nitrogen with helium in air on flame morphology and laminar burning speed were extensively investigated. The effect of cell formation on flame surface area of syngas fuel in terms of a newly defined parameter called cellularity factor was also evaluated. In addition to that the experimental onset of auto-ignition and theoretical ignition delay times of premixed GTL/air mixture were determined at high pressures and low temperatures over a wide range of equivalence ratios.

  19. Internal flow characteristics in scaled pressure-swirl atomizer

    NASA Astrophysics Data System (ADS)

    Malý, Milan; Sapík, Marcel; Jedelský, Jan; Janáčková, Lada; Jícha, Miroslav; Sláma, Jaroslav; Wigley, Graham

    2018-06-01

    Pressure-swirl atomizers are used in a wide range of industrial applications, e.g.: combustion, cooling, painting, food processing etc. Their spray characteristics are closely linked to the internal flow which predetermines the parameters of the liquid sheet formed at the discharge orifice. To achieve a better understanding of the spray formation process, the internal flow was characterised using Laser Doppler Anemometry (LDA) and high-speed imaging in a transparent model made of cast PMMA (Poly(methyl methacrylate)). The design of the transparent atomizer was derived from a pressure-swirl atomizer as used in a small gas turbine. Due to the small dimensions, it was manufactured in a scale of 10:1. It has modular concept and consists of three parts which were ground, polished and bolted together. The original kerosene-type jet A-1 fuel had to be replaced due to the necessity of a refractive index match. The new working liquid should also be colourless, non-aggressive to the PMMA and have the appropriate viscosity to achieve the same Reynolds number as in the original atomizer. Several liquids were chosen and tested to satisfy these requirements. P-Cymene was chosen as the suitable working liquid. The internal flow characteristics were consequently examined by LDA and high-speed camera using p-Cymene and Kerosene-type jet A-1 in comparative manner.

  20. Evaluation of a Consistent LES/PDF Method Using a Series of Experimental Spray Flames

    NASA Astrophysics Data System (ADS)

    Heye, Colin; Raman, Venkat

    2012-11-01

    A consistent method for the evolution of the joint-scalar probability density function (PDF) transport equation is proposed for application to large eddy simulation (LES) of turbulent reacting flows containing evaporating spray droplets. PDF transport equations provide the benefit of including the chemical source term in closed form, however, additional terms describing LES subfilter mixing must be modeled. The recent availability of detailed experimental measurements provide model validation data for a wide range of evaporation rates and combustion regimes, as is well-known to occur in spray flames. In this work, the experimental data will used to investigate the impact of droplet mass loading and evaporation rates on the subfilter scalar PDF shape in comparison with conventional flamelet models. In addition, existing model term closures in the PDF transport equations are evaluated with a focus on their validity in the presence of regime changes.

  1. Investigation of spray dispersion and particulate formation in diesel fuel flames

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Bankston, C. P.; Kwack, E. Y.; Bellan, J.; Harstad, K.

    1988-01-01

    An experimental study of electrostatical atomized and dispersed diesel fuel jets was conducted at various back pressures to 40 atm. A new electrostatic injection technique was utilized to generate continuous, stable fuel sprays at charge densities of 1.5 to 2.0 C/m3 of fluid at one atm, and about 1.0 C/m3 at 40 atm. Flowrates were varied from 0.5 to 2.5 ml/s and electric potentials to -18 kV. Visual observations showed that significant enhanced dispersion of charged fuel jets occurred at high back pressures compared to aerodynamic breakup and dispersion. The average drop size was about the same as the spray triode orifice diameter, and was between the Kelly theory and the Rayleigh limit. The ignition tests, done only at one atm, indicated stable combustion of the electrostatically dispersed fuel jets.

  2. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  3. Investigation of Atomization and Combustion Performance of Renewable Biofuels and the Effects of Ethanol Blending in Biodiesel

    NASA Astrophysics Data System (ADS)

    Silver, Adam Gregory

    This thesis presents results from an experimental investigation of the macroscopic and microscopic atomization and combustion behavior of B99 biodiesel, ethanol, B99-ethanol blends, methanol, and an F-76-Algae biodiesel blend. In addition, conventional F-76 and Diesel #2 sprays were characterized as a base case to compare with. The physical properties and chemical composition of each fuel were measured in order to characterize and predict atomization performance. A variety of B99-ethanol fuel blends were used which demonstrate a tradeoff between lower density, surface tension, and viscosity with a decrease in the air to liquid ratio. A plain jet air-blast atomizer was used for both non-reacting and reacting tests. The flow rates for the alternative fuels were set by matching the power input provided by the baseline fossil fuels in order to simulate use as a drop in replacement. For this study, phase Doppler interferometry is employed to gain information on drop size, SMD, velocity, and volume flux distribution across the spray plume. A high speed camera is used to gather high speed cinematography of the sprays for observing breakup characteristics and providing additional insight. Reacting flow tests captured NOx, CO, and UHC emissions along with high speed footage used to predict soot levels based on flame luminosity. The results illustrate how the fuel type impacts the atomization and spray characteristics. The air-blast atomizer resulted in similar atomization performance among the DF2, F-76, and the F-76/Algae blend. While methanol and ethanol are not suitable candidates for this air-blast configuration and B99 produces significantly larger droplets, the addition of ethanol decreased drop sizes for all B99-ethanol blends by approximately 5 microns. In regards to reacting conditions, increased ethanol blending to B99 consistently lowered NOx emissions while decreasing combustion efficiency. Overall, lower NOx and CO emissions were achieved with the fuel blends than for conventional diesels, while the neat biofuels emitted overall less NOx per CO than the baseline fuels. This research clearly demonstrated that blends of two renewable fuels (B99 and ethanol improved (1) atomization and (2) emissions performance for the burner studied when compared to the baseline fossil fuels DF2 and F-76.

  4. Combustion Of Interacting Droplet Arrays In Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Xu, G.

    2003-01-01

    Theory and experiments involving single droplet combustion date back to 1953, with the first microgravity work appearing in 1956. The problem of a spherical droplet burning in an infinite, quiescent microgravity environment is a classical problem in combustion research with the classical solution appearing in nearly every textbook on combustion. The microgravity environment offered by ground-based facilities such as drop towers and space-based facilities is ideal for studying the problem experimentally. A recent review by Choi and Dryer shows significant advances in droplet combustion have been made by studying the problem experimentally in microgravity and comparing the results to one dimensional theoretical and numerical treatments of the problem. Studying small numbers of interacting droplets in a well-controlled geometry represents a logical step in extending single droplet investigations to more practical spray configurations. Studies of droplet interactions date back to Rex and co-workers, and were recently summarized by Annamalai and Ryan. All previous studies determined the change in the burning rate constant, k, or the flame characteristics as a result of interactions. There exists almost no information on how droplet interactions a effect extinction limits, and if the extinction limits change if the array is in the diffusive or the radiative extinction regime. Thus, this study examined experimentally the effect that droplet interactions have on the extinction process by investigating the simplest array configuration, a binary droplet array. The studies were both in normal gravity, reduced pressure ambients and microgravity facilities. The microgravity facilities were the 2.2 and 5.2 second drop towers at the NASA Glenn Research Center and the 10 second drop tower at the Japan Microgravity Center. The experimental apparatus and the data analysis techniques are discussed in detail elsewhere.

  5. Understanding the ignition mechanism of high-pressure spray flames

    DOE PAGES

    Dahms, Rainer N.; Paczko, Günter A.; Skeen, Scott A.; ...

    2016-10-25

    A conceptual model for turbulent ignition in high-pressure spray flames is presented. The model is motivated by first-principles simulations and optical diagnostics applied to the Sandia n-dodecane experiment. The Lagrangian flamelet equations are combined with full LLNL kinetics (2755 species; 11,173 reactions) to resolve all time and length scales and chemical pathways of the ignition process at engine-relevant pressures and turbulence intensities unattainable using classic DNS. The first-principles value of the flamelet equations is established by a novel chemical explosive mode-diffusion time scale analysis of the fully-coupled chemical and turbulent time scales. Contrary to conventional wisdom, this analysis reveals thatmore » the high Damköhler number limit, a key requirement for the validity of the flamelet derivation from the reactive Navier–Stokes equations, applies during the entire ignition process. Corroborating Rayleigh-scattering and formaldehyde PLIF with simultaneous schlieren imaging of mixing and combustion are presented. Our combined analysis establishes a characteristic temporal evolution of the ignition process. First, a localized first-stage ignition event consistently occurs in highest temperature mixture regions. This initiates, owed to the intense scalar dissipation, a turbulent cool flame wave propagating from this ignition spot through the entire flow field. This wave significantly decreases the ignition delay of lower temperature mixture regions in comparison to their homogeneous reference. This explains the experimentally observed formaldehyde formation across the entire spray head prior to high-temperature ignition which consistently occurs first in a broad range of rich mixture regions. There, the combination of first-stage ignition delay, shortened by the cool flame wave, and the subsequent delay until second-stage ignition becomes minimal. A turbulent flame subsequently propagates rapidly through the entire mixture over time scales consistent with experimental observations. As a result, we demonstrate that the neglect of turbulence-chemistry-interactions fundamentally fails to capture the key features of this ignition process.« less

  6. PIV measurement of internal structure of diesel fuel spray

    NASA Astrophysics Data System (ADS)

    Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.

    2000-12-01

    This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.

  7. PIV measurement of internal structure of diesel fuel spray

    NASA Astrophysics Data System (ADS)

    Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.

    This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.

  8. Matching refractive indices of two fluids and finding interfacial tension for the purpose of fuel spray imaging

    NASA Astrophysics Data System (ADS)

    Liang, Y. H.

    2017-06-01

    This study attempts to prepare a fluid pair for use in spray dynamics investigations. Better understanding the behavior of fuel sprays is one of the things that can help improve the efficiency of internal combustion engines. To address the scattering issue in current imaging methods, the refractive index difference between the injected fluid and the medium that it is injected into is eliminated. Two immiscible fluids (sucrose solution and silicone oil) with the same refractive index was identified, their surface tension to build a model fluid engine system injection was also studied. At the same time, Weber number is found to help correct the difference. Results show that 63.7% mass sucrose solution has the same refractive index as silicone oil, and the sucrose solution/silicone oil interface has a surface tension of 0.08941 N/m, which is roughly four times larger than that of ethanol/air. This means using the sucrose/silicone oil fluid pair to model fuel spray will involve some adjustments to be accurate.

  9. Prediction of the structure of fuel sprays in gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.

    1985-01-01

    The structure of fuel sprays in a combustion chamber is theoretically investigated using computer models of current interest. Three representative spray models are considered: (1) a locally homogeneous flow (LHF) model, which assumes infinitely fast interphase transport rates; (2) a deterministic separated flow (DSF) model, which considers finite rates of interphase transport but ignores effects of droplet/turbulence interactions; and (3) a stochastic separated flow (SSF) model, which considers droplet/turbulence interactions using random sampling for turbulence properties in conjunction with random-walk computations for droplet motion and transport. Two flow conditions are studied to investigate the influence of swirl on droplet life histories and the effects of droplet/turbulence interactions on flow properties. Comparison of computed results with the experimental data show that general features of the flow structure can be predicted with reasonable accuracy using the two separated flow models. In contrast, the LHF model overpredicts the rate of development of the flow. While the SSF model provides better agreement with measurements than the DSF model, definitive evaluation of the significance of droplet/turbulence interaction is not achieved due to uncertainties in the spray initial conditions.

  10. Layered growth with bottom-spray granulation for spray deposition of drug.

    PubMed

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  11. Investigation of the effect of pilot burner on lean blow out performance of a staged injector

    NASA Astrophysics Data System (ADS)

    Yang, Jinhu; Zhang, Kaiyu; Liu, Cunxi; Ruan, Changlong; Liu, Fuqiang; Xu, Gang

    2014-12-01

    The staged injector has exhibited great potential to achieve low emissions and is becoming the preferable choice of many civil airplanes. Moreover, it is promising to employ this injector design in military engine, which requires most of the combustion air enters the combustor through injector to reduce smoke emission. However, lean staged injector is prone to combustion instability and extinction in low load operation, so techniques for broadening its stable operation ranges are crucial for its application in real engine. In this work, the LBO performance of a staged injector is assessed and analyzed on a single sector test section. The experiment was done in atmospheric environment with optical access. Kerosene-PLIF technique was used to visualize the spray distribution and common camera was used to record the flame patterns. Emphasis is put on the influence of pilot burner on LBO performance. The fuel to air ratios at LBO of six injectors with different pilot swirler vane angle were evaluated and the obtained LBO data was converted into data at idle condition. Results show that the increase of pilot swirler vane angle could promote the air assisted atomization, which in turn improves the LBO performance slightly. Flame patterns typical in the process of LBO are analyzed and attempts are made to find out the main factors which govern the extinction process with the assistance of spray distribution and numerical flow field results. It can be learned that the flame patterns are mainly influenced by structure of the flow field just behind the pilot burner when the fuel mass flow rate is high; with the reduction of fuel, atomization quality become more and more important and is the main contributing factor of LBO. In the end of the paper, conclusions are drawn and suggestions are made for the optimization of the present staged injector.

  12. Large-Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuanjiang; Hu, Bing; Som, Sibendu

    2016-03-16

    An n-dodecane spray flame was simulated using a dynamic structure large eddy simulation (LES) model coupled with a detailed chemistry combustion model to understand the ignition processes and the quasi-steady state flame structures. This study focuses on the effect of different ambient oxygen concentrations, 13%, 15% and 21% at an ambient temperature of 900 K and an ambient density of 22.8 kg/m3, which are typical diesel-engine relevant conditions with different levels of exhaust gas recirculation (EGR). The liquid spray was treated with a traditional Lagrangian method. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. It ismore » observed that the main ignitions occur in rich mixture and the flames are thickened around 35 to 40 mm off the spray axis due to the enhanced turbulence induced by the strong recirculation upstream, just behind the head of the flames at different oxygen concentrations. At 1 ms after the start of injection, the soot production is dominated by the broader region of high temperature in rich mixture instead of the stronger oxidation of the high peak temperature. Multiple realizations were performed for the 15% O2 condition to understand the realization to realization variation and to establish best practices for ensembleaveraging diesel spray flames. Two indexes are defined. The structure-similarity index analysis suggests at least 5 realizations are needed to obtain 99% similarity for mixture fraction if the average of 16 realizations are used as the target at 0.8 ms. However, this scenario may be different for different scalars of interest. It is found that 6 realizations would be enough to reach 99% of similarity for temperature, while 8 and 14 realizations are required to achieve 99% similarity for soot and OH mass fraction, respectively. Similar findings are noticed at 1 ms. More realizations are needed for the magnitude-similarity index for the similar level of similarity as the structure-similarity index« less

  13. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have resulted from this feedback. Alternate diagnostic methods are constantly being evaluated as to their suitability as a diagnostic tool in these environments. A new method currently under examination is background oriented Schlieren (BOS) for examining the fuel/air mixing processes. While ratioing the Stokes and anti-Stokes nitrogen lines obtained from spontaneous Raman is being refined for temperature measurement. While the primary focus of the GRC diagnostic work remains optical species measurement and flow stream characterization, an increased emphasis has been placed on our involvement in flame code validation efforts. A functional combustor code should shorten and streamline future combustor design. Quantitative measurements of flow parameters such as temperature, species concentration, drop size and velocity using such methods as Raman and phase Doppler anemometry will provide data necessary in this effort.

  14. Preparation and Ablating Behavior of FGM used in a Heat Flux Rocket Engine

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Han, Jiecai; Zhang, Xinghong

    2002-01-01

    Functionally Graded Material (FGM) is a new kind of nonhomogeneous materials, which composition varies gradually and continuously from metals to ceramics, thus excellence of both ceramic and metal is brought fully into play. The impetus for the development of FGM was to make thermal barrier materials for space shuttles and structure such as combustion chamber, gas vane, air vane, nose cone, fuel valve sheets and piston crown. There are several main techniques for making FGMs including chemical vapor deposition (CVD), powder metallurgy, plasma spraying and self-propagating high temperate synthesis (SHS). SHS Technology is the process by which condensed phases are produced by self - sustaining exothermic chemical reaction. Demonstrated advantages of SHS as a method for the preparation of materials include higher purity of the products, low energy requirements, and the relative simplicity of the process. SHS is particularly well suited to fabricating FGM. Due to the rapidity of the combustion reaction, the initial arrangement of the constituent in the green body is unchanged during combustion. In this paper, TiB2-Cu FGM and homogeneous cermets have been prepared by combing forced compaction with SHS. The experimental results show that process parameters significantly influence the combustion synthesis procedure of Ti-B-Cu system. Optimal process parameters have been gained for preparing TiB2-Cu FGM and cermets. TiB2-Cu FGM by SHS has a continuous distribution in microstructure along its thickness. The macroscopic interface of ceramic/metal joint is elemented. Mechanical properties of TiB2-Cu cermets were investigated at room and high temperature. The thermal stress of TiC-Ni FGM prepared by SHS are simulated at working condition, as well as comparing with a layered TiB2-Cu Non- FGM. Obviously, the TiB2-Cu FGM has the function of distortion and thermal stress relation. TiB2-Cu FGM was tested in the limited wind tunnel simulating the real condition of the heat flux rocket engine. As a result, TiB2-Cu FGM showed excellent resistant ablating properties. There is only a little loss of the mass after heated for 40 seconds in the wind tunnel. Meanwhile no cracks and breakup appeared in the FGM under the sharp thermal shock condition. Key words: functionally graded materials, combustion synthesis, ablation, thermal shock, thermal stress

  15. Air Force Research Laboratory Technology Milestones 2007

    DTIC Science & Technology

    2007-01-01

    Propulsion Fuel Pumps and Fuel Systems Liquid Rockets and Combustion Gas Generators Micropropulsion Gears Monopropellants High-Cycle Fatigue and Its... Systems Electric Propulsion Engine Health Monitoring Systems High-Energy-Density Matter Exhaust Nozzles Injectors and Spray Measurements Fans Laser...of software models to drive development of component-based systems and lightweight domain-specific specification and verification technology. Highly

  16. Multiple Ignition, Combustion and Quenching of Hydrocarbon Fuel Sprays.

    DTIC Science & Technology

    1984-08-01

    Its stochiometry and measuring the droplet diameter optically or with the * Impact method , the conditions of two phase mixtures in the vicinity of the...I 1 !!! II I-x 0 20 0 60 s0 100 DISTMCE FROM OT SURFt WACE In Figure 4: Hot surface temperature as function of single droplet stream distance for

  17. NASA Propulsion Engineering Research Center, Volume 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the second volume in the 1994 annual report for the NASA Propulsion Engineering Research Center's Sixth Annual Symposium. This conference covered: (1) Combustors and Nozzles; (2) Turbomachinery Aero- and Hydro-dynamics; (3) On-board Propulsion systems; (4) Advanced Propulsion Applications; (5) Vaporization and Combustion; (6) Heat Transfer and Fluid Mechanics; and (7) Atomization and Sprays.

  18. Coating Hydrostatic Bearings To Resist Ignition In Oxygen

    NASA Technical Reports Server (NTRS)

    Funkhouser, Merle E.

    1993-01-01

    Coats of superalloy MA754 plasma-sprayed onto occasionally rubbing surfaces of hydrostatic journal bearings operating in liquid and/or gaseous oxygen, according to proposal. Prevents ignition and combustion occurring when components made of stainless steels or other conventional bearing alloys rub against each other in oxygen. Eliminates need for runner and enhances control over critical bearing clearance.

  19. Combustion of interacting droplet arrays in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Haggard, John B.

    1993-01-01

    This research program involves the study of one and two dimensional arrays of droplets in a buoyant-free environment. The purpose of the work is to extend the database and theories that exist for single droplets into the regime where droplet interactions are important. The eventual goal being to use the results of this work as inputs to models on spray combustion where droplets seldom burn individually; instead the combustion history of a droplet is strongly influenced by the presence of the neighboring droplets. The emphasis of the present investigation is experimental, although comparison will be made to existing theoretical and numerical treatments when appropriate. Both normal gravity and low gravity testing will be employed, and the results compared. The work to date will be summarized in the next section, followed by a section detailing the future plans.

  20. Photographic combustion characterization of LOX/Hydrocarbon type propellants

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1980-01-01

    One hundred twenty-seven tests were conducted over a chamber pressure range of 125-1500 psia, a fuel temperature range of -245 F to 158 F, and a fuel velocity range of 48-707 ft/sec to demonstrate the advantages and limitations of using high speed photography to identify potential combustion anomalies such as pops, fuel freezing, reactive stream separation and carbon formations. Combustion evaluation criteria were developed to guide selection of the fuels, injector elements, and operating conditions for testing. Separate criteria were developed for fuel and injector element selection and evaluation. The photographic test results indicated conclusively that injector element type and design directly influence carbon formation. Unlike spray fan, impingement elements reduce carbon formation because they induce a relatively rapid near zone fuel vaporization rate. Coherent jet impingement elements, on the other hand, exhibit increased carbon formation.

  1. Advanced Main Combustion Chamber structural jacket strength analysis

    NASA Astrophysics Data System (ADS)

    Johnston, L. M.; Perkins, L. A.; Denniston, C. L.; Price, J. M.

    1993-04-01

    The structural analysis of the Advanced Main Combustion Chamber (AMCC) is presented. The AMCC is an advanced fabrication concept of the Space Shuttle Main Engine main combustion chamber (MCC). Reduced cost and fabrication time of up to 75 percent were the goals of the AMCC with cast jacket with vacuum plasma sprayed or platelet liner. Since the cast material for the AMCC is much weaker than the wrought material for the MCC, the AMCC is heavier and strength margins much lower in some areas. Proven hand solutions were used to size the manifolds cutout tee areas for combined pressure and applied loads. Detailed finite element strength analyses were used to size the manifolds, longitudinal ribs, and jacket for combined pressure and applied local loads. The design of the gimbal actuator strut attachment lugs were determined by finite element analyses and hand solutions.

  2. Passivated iodine pentoxide oxidizer for potential biocidal nanoenergetic applications.

    PubMed

    Feng, Jingyu; Jian, Guoqiang; Liu, Qing; Zachariah, Michael R

    2013-09-25

    Iodine pentoxide (I2O5), also known as diiodine pentoxide, is a strong oxidizer which has been recently proposed as an iodine-rich oxidizer in nanoenergetic formulations, whose combustion products lead to molecular iodine as a biocidal agent. However, its highly hygroscopic nature hinders its performance as a strong oxidizer and an iodine releasing agent and prevents its implementation. In this work, we developed a gas phase assisted aerosol spray pyrolysis which enables creation of iron oxide passivated I2O5. Transmission electron microscopy elemental imaging as well as temperature-jump mass spectrometry confirmed the core shell nature of the material and the fact that I2O5 could be encapsulated in pure unhydrated form. Combustion performance finds an optimal coating thickness that enables combustion performance similar to a high performing CuO based thermite.

  3. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOEpatents

    Shen, Ming-Shing; Yang, Ralph T.

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  4. Analytical investigation of thermal barrier coatings for advanced power generation combustion turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.

  5. Arc spray process for the aircraft and stationary gas turbine industry

    NASA Astrophysics Data System (ADS)

    Sampson, E. R.; Zwetsloot, M. P.

    1997-06-01

    Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.

  6. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  7. Experimental and computation study of liquid droplets impinging on an afterburner

    NASA Astrophysics Data System (ADS)

    Lavergne, G.; Hebrard, P.; Donnadille, Ph.

    The actual development of three-dimensional computation codes of internal reactive flows in combustion chambers needs, for the liquid phase, accurate boundary conditions. A series of experiments was undertaken to identify and then to analyze physical phenomena occurring during spray transport and spray boundary interaction. The purpose of this paper is to investigate drop wall interaction, drop impingement, the liquid film, and the liquid flow rate captured by a flameholder. The experimental approach is divided in two parts: a parametric study on the captured fuel flow rate by a flameholder in an isothermal two-dimensional square facility, and a fundamental study of monosized droplet impingement on a hot plate to determine rebound criteria.

  8. Charge-induced secondary atomization in diffusion flames of electrostatic sprays

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1994-01-01

    The combustion of electrostatic sprays of heptane in laminar counterflow diffusion flames was experimentally studied by measuring droplet size and velocity distributions, as well as the gas-phase temperature. A detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets interact with the flame, an initially monodisperse size distribution becomes bimodal. A secondary sharp peak in the size histogram develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than that of the parent. Other evidence in support of this interpretation is offered by the measurements of droplet size-velocity correlation and velocity component distributions, showing that, as a consequence of the ejection process, the droplets responsible for the secondary peak have velocities uncorrelated with the mean flow. The fission is induced by the electric charge. When a droplet evaporates, in fact, the electric charge density on the droplet surface increases while the droplet shrinks, until the so-called Rayleigh limit is reached at which point the repulsion of electric charges overcomes the surface tension cohesive force, ultimately leading to a disintegraton into finer fragments. We report on the first observation of such fissions in combustion environments. If, on the other hand, insufficient evaporation has occurred before droplets enter the high temperature region, there appears to be no significant evidence of bimodality in their size distribution. In this case, in fact, the concentration of flame chemi-ions or, in the case of positively charged droplets, electrons may be sufficient for them to neutralize the charge on the droplets and to prevent disruption.

  9. Motion of water droplets in the counter flow of high-temperature combustion products

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Strizhak, P. A.

    2018-01-01

    This paper presents the experimental studies of the deceleration, reversal, and entrainment of water droplets sprayed in counter current flow to a rising stream of high-temperature (1100 K) combustion gases. The initial droplets velocities 0.5-2.5 m/s, radii 10-230 μm, relative volume concentrations 0.2·10-4-1.8·10-4 (m3 of water)/(m3 of gas) vary in the ranges corresponding to promising high-temperature (over 1000 K) gas-vapor-droplet applications (for example, polydisperse fire extinguishing using water mist, fog, or appropriate water vapor-droplet veils, thermal or flame treatment of liquids in the flow of combustion products or high-temperature air; creating coolants based on flue gas, vapor and water droplets; unfreezing of granular media and processing of the drossed surfaces of thermal-power equipment; ignition of liquid and slurry fuel droplets). A hardware-software cross-correlation complex, high-speed (up to 105 fps) video recording tools, panoramic optical techniques (Particle Image Velocimetry, Particle Tracking Velocimetry, Interferometric Particle Imagine, Shadow Photography), and the Tema Automotive software with the function of continuous monitoring have been applied to examine the characteristics of the processes under study. The scale of the influence of initial droplets concentration in the gas flow on the conditions and features of their entrainment by high-temperature gases has been specified. The dependencies Red = f(Reg) and Red' = f(Reg) have been obtained to predict the characteristics of the deceleration of droplets by gases at different droplets concentrations.

  10. Oscillatory bursting of gel fuel droplets in a reacting environment.

    PubMed

    Miglani, Ankur; Nandagopalan, Purushothaman; John, Jerin; Baek, Seung Wook

    2017-06-12

    Understanding the combustion behavior of gel fuel droplets is pivotal for enhancing burn rates, lowering ignition delay and improving the operational performance of next-generation propulsion systems. Vapor jetting in burning gel fuel droplets is a crucial process that enables an effective transport (convectively) of unreacted fuel from the droplet domain to the flame zone and accelerates the gas-phase mixing process. Here, first we show that the combusting ethanol gel droplets (organic gellant laden) exhibit a new oscillatory jetting mode due to aperiodic bursting of the droplet shell. Second, we show how the initial gellant loading rate (GLR) leads to a distinct shell formation which self-tunes temporally to burst the droplet at different frequencies. Particularly, a weak-flexible shell is formed at low GLR that undergoes successive rupture cascades occurring in same region of the droplet. This region weakens due to repeated ruptures and causes droplet bursting at progressively higher frequencies. Contrarily, high GLRs facilitate a strong-rigid shell formation where consecutive cascades occur at scattered locations across the droplet surface. This leads to droplet bursting at random frequencies. This method of modulating jetting frequency would enable an effective control of droplet trajectory and local fuel-oxidizer ratio in any gel-spray based energy formulation.

  11. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  12. High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, Daniel J.; Finney, Charles E. A.; Kastengren, Alan

    Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. Furthermore, the pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offsmore » in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution. Here, we present results from a joint effort to characterize a gasoline direct injector representative of the Spray G injector as defined by the Engine Combustion Network. High-resolution (1.2 to 3 µm) x-ray CT measurements from the Advanced Photon Source at Argonne National Laboratory were combined with moderate-resolution (40 µm) neutron CT measurements from the High Flux Isotope Reactor at Oak Ridge National Laboratory to generate a complete internal geometry for the injector. This effort combined the strengths of both facilities’ capabilities, with extremely fine spatially resolved features in the nozzles and injector tips and fine resolution of internal features of the needle along the length of injector. Analysis of the resulting surface model of the internal fluid flow volumes of the injector reveals how the internal cross-sectional area and nozzle hole geometry differs slightly from the design dimensions. A simplified numerical simulation of the internal flow shows how deviations from the design geometry can alter the flow inside the sac and holes. Our results of this study will provide computational modelers with very accurate solid and surface models for use in computational fluid dynamics studies and experimentalists with increased insight into the operating characteristics of their injectors.« less

  13. High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

    DOE PAGES

    Duke, Daniel J.; Finney, Charles E. A.; Kastengren, Alan; ...

    2017-03-14

    Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. Furthermore, the pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offsmore » in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution. Here, we present results from a joint effort to characterize a gasoline direct injector representative of the Spray G injector as defined by the Engine Combustion Network. High-resolution (1.2 to 3 µm) x-ray CT measurements from the Advanced Photon Source at Argonne National Laboratory were combined with moderate-resolution (40 µm) neutron CT measurements from the High Flux Isotope Reactor at Oak Ridge National Laboratory to generate a complete internal geometry for the injector. This effort combined the strengths of both facilities’ capabilities, with extremely fine spatially resolved features in the nozzles and injector tips and fine resolution of internal features of the needle along the length of injector. Analysis of the resulting surface model of the internal fluid flow volumes of the injector reveals how the internal cross-sectional area and nozzle hole geometry differs slightly from the design dimensions. A simplified numerical simulation of the internal flow shows how deviations from the design geometry can alter the flow inside the sac and holes. Our results of this study will provide computational modelers with very accurate solid and surface models for use in computational fluid dynamics studies and experimentalists with increased insight into the operating characteristics of their injectors.« less

  14. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME III: APPENDICES G-N

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  15. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME II: APPENDICES A-F

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  16. An equivalent dissipation rate model for capturing history effects in non-premixed flames

    DOE PAGES

    Kundu, Prithwish; Echekki, Tarek; Pei, Yuanjiang; ...

    2016-11-11

    The effects of strain rate history on turbulent flames have been studied in the. past decades with 1D counter flow diffusion flame (CFDF) configurations subjected to oscillating strain rates. In this work, these unsteady effects are studied for complex hydrocarbon fuel surrogates at engine relevant conditions with unsteady strain rates experienced by flamelets in a typical spray flame. Tabulated combustion models are based on a steady scalar dissipation rate (SDR) assumption and hence cannot capture these unsteady strain effects; even though they can capture the unsteady chemistry. In this work, 1D CFDF with varying strain rates are simulated using twomore » different modeling approaches: steady SDR assumption and unsteady flamelet model. Comparative studies show that the history effects due to unsteady SDR are directly proportional to the temporal gradient of the SDR. A new equivalent SDR model based on the history of a flamelet is proposed. An averaging procedure is constructed such that the most recent histories are given higher weights. This equivalent SDR is then used with the steady SDR assumption in 1D flamelets. Results show a good agreement between tabulated flamelet solution and the unsteady flamelet results. This equivalent SDR concept is further implemented and compared against 3D spray flames (Engine Combustion Network Spray A). Tabulated models based on steady SDR assumption under-predict autoignition and flame lift-off when compared with an unsteady Representative Interactive Flamelet (RIF) model. However, equivalent SDR model coupled with the tabulated model predicted autoignition and flame lift-off very close to those reported by the RIF model. This model is further validated for a range of injection pressures for Spray A flames. As a result, the new modeling framework now enables tabulated models with significantly lower computational cost to account for unsteady history effects.« less

  17. An equivalent dissipation rate model for capturing history effects in non-premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Prithwish; Echekki, Tarek; Pei, Yuanjiang

    The effects of strain rate history on turbulent flames have been studied in the. past decades with 1D counter flow diffusion flame (CFDF) configurations subjected to oscillating strain rates. In this work, these unsteady effects are studied for complex hydrocarbon fuel surrogates at engine relevant conditions with unsteady strain rates experienced by flamelets in a typical spray flame. Tabulated combustion models are based on a steady scalar dissipation rate (SDR) assumption and hence cannot capture these unsteady strain effects; even though they can capture the unsteady chemistry. In this work, 1D CFDF with varying strain rates are simulated using twomore » different modeling approaches: steady SDR assumption and unsteady flamelet model. Comparative studies show that the history effects due to unsteady SDR are directly proportional to the temporal gradient of the SDR. A new equivalent SDR model based on the history of a flamelet is proposed. An averaging procedure is constructed such that the most recent histories are given higher weights. This equivalent SDR is then used with the steady SDR assumption in 1D flamelets. Results show a good agreement between tabulated flamelet solution and the unsteady flamelet results. This equivalent SDR concept is further implemented and compared against 3D spray flames (Engine Combustion Network Spray A). Tabulated models based on steady SDR assumption under-predict autoignition and flame lift-off when compared with an unsteady Representative Interactive Flamelet (RIF) model. However, equivalent SDR model coupled with the tabulated model predicted autoignition and flame lift-off very close to those reported by the RIF model. This model is further validated for a range of injection pressures for Spray A flames. As a result, the new modeling framework now enables tabulated models with significantly lower computational cost to account for unsteady history effects.« less

  18. Mass-Mobility Characterization of Flame-made ZrO2 Aerosols: Primary Particle Diameter & Extent of Aggregation

    PubMed Central

    Eggersdorfer, M.L.; Gröhn, A.J.; Sorensen, C.M.; McMurry, P.H.; Pratsinis, S.E.

    2013-01-01

    Gas-borne nanoparticles undergoing coagulation and sintering form irregular or fractal-like structures affecting their transport, light scattering, effective surface area and density. Here, zirconia (ZrO2) nanoparticles are generated by scalable spray combustion, and their mobility diameter and mass are obtained nearly in-situ by differential mobility analyzer (DMA) and aerosol particle mass (APM) measurements. Using these data, the density of ZrO2 and a power law between mobility and primary particle diameters, the structure of fractal-like particles is determined (mass-mobility exponent, prefactor and average number and surface area mean diameter of primary particles, dva). The dva determined by DMA-APM measurements and this power law is in good agreement with the dva obtained by ex-situ nitrogen adsorption and microscopic analysis. Using this combination of measurements and above power law, the effect of flame spray process parameters (e.g. precursor solution and oxygen flow rate as well as zirconium concentration) on fractal-like particle structure characteristics is investigated in detail. This reveals that predominantly agglomerates (physically-bonded particles) and aggregates (chemically- or sinter-bonded particles) of nanoparticles are formed at low and high particle concentrations, respectively. PMID:22959835

  19. Development of Apparatus for Microgravity Experiments on Evaporation and Combustion of Palm Methyl Ester Droplet in High-Pressure Environments

    NASA Astrophysics Data System (ADS)

    Suzuki, Masato; Nomura, Hiroshi; Hashimoto, Nozomu

    New apparatus for microgravity experiments was developed in order to obtain fundamental data of single droplet evaporation and combustion of palm methyl ester (PME) for understanding PME spray combustion in internal combustion engines. n-hexadecane droplet combustion and evaporation experiments were also performed to obtain single-component fuel data. Combustion experiments were performed at atmospheric pressure and room temperature. For droplet evaporation experiments, ambient temperature and pressure were varied from 473 to 873 K and 0.10 to 4.0 MPa, respectively. Microgravity conditions were employed for evaporation experiments to prevent natural convection. Droplet diameter history of a burning PME droplet is similar to that of n-hexadecane. Droplet diameter history of an evaporating PME droplet is different from that of n-hexadecane at low ambient temperatures. In the latest stage of PME droplet evaporation, temporal evaporation constant decreases remarkably. At ambient temperatures sufficiently above the boiling temperature of PME components, droplet diameter history of PME and n-hexadecane are similar to each other. Corrected evaporation lifetime τ of PME at 873 K as a function of ambient pressure was obtained at normal and microgravity. At normal gravity, τ monotonically decreases with ambient pressure. On the other hand, at microgravity, τ increases with ambient pressure, and then decreases.

  20. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  1. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    NASA Astrophysics Data System (ADS)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  2. Cooperative Research Projects in the Microgravity Combustion Science Programs Sponsored by NASA and NEDO

    NASA Technical Reports Server (NTRS)

    Ross, Howard (Compiler)

    2000-01-01

    This document contains the results of a collection of selected cooperative research projects between principal investigators in the microgravity combustion science programs, sponsored by NASA and NEDO. Cooperation involved the use of drop towers in Japan and the United States, and the sharing of subsequent research data and findings. The topical areas include: (1) Interacting droplet arrays, (2) high pressure binary fuel sprays, (3) sooting droplet combustion, (4) flammability limits and dynamics of spherical, premixed gaseous flames and, (5) ignition and transition of flame spread across thin solid fuel samples. All of the investigators view this collaboration as a success. Novel flame behaviors were found and later published in archival journals. In some cases the experiments provided verification of the design and behavior in subsequent experiments performed on the Space Shuttle. In other cases, the experiments provided guidance to experiments that are expected to be performed on the International Space Station.

  3. Combustion Instability Analysis and the Effects of Drop Size on Acoustic Driving Rocket Flow

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Ellison, L. Renea; Moser, Marlow D.

    2004-01-01

    High frequency combustion instability, the most destructive kind, is generally solved on a per engine basis. The instability often is the result of compounding acoustic oscillations, usually from the propellant combustion itself. To counteract the instability the chamber geometry can be changed and/or the method of propellant injection can be altered. This experiment will alter the chamber dimensions slightly; using a cylindrical shape of constant diameter and the length will be varied from six to twelve inches in three-inch increments. The main flowfield will be the products of a high OF hydrogen/oxygen flow. The liquid fuel will be injected into this flowfield using a modulated injector. It will allow for varied droplet size, feed rate, spray pattern, and location for the mixture within the chamber. The response will be deduced from the chamber pressure oscillations.

  4. Stratified charge rotary engine - Internal flow studies at the MSU engine research laboratory

    NASA Technical Reports Server (NTRS)

    Hamady, F.; Kosterman, J.; Chouinard, E.; Somerton, C.; Schock, H.; Chun, K.; Hicks, Y.

    1989-01-01

    High-speed visualization and laser Doppler velocimetry (LDV) systems consisting of a 40-watt copper vapor laser, mirrors, cylindrical lenses, a high speed camera, a synchronization timing system, and a particle generator were developed for the study of the fuel spray-air mixing flow characteristics within the combustion chamber of a motored rotary engine. The laser beam is focused down to a sheet approximately 1 mm thick, passing through the combustion chamber and illuminates smoke particles entrained in the intake air. The light scattered off the particles is recorded by a high speed rotating prism camera. Movies are made showing the air flow within the combustion chamber. The results of a movie showing the development of a high-speed (100 Hz) high-pressure (68.94 MPa, 10,000 psi) fuel jet are also discussed. The visualization system is synchronized so that a pulse generated by the camera triggers the laser's thyratron.

  5. The Cold Gas-Dynamic Spray and Characterization of Microcrystalline and Nanocrystalline Copper Alloys

    DTIC Science & Technology

    2012-12-01

    cold gas-dynamic spray process are well understood, the effects of feedstock powder microstructure and composition on the deposition process remain...The Relationship between Powder Zinc Content and Porosity .....74  5.  Compositional Variability as a Side Effect of the Cold Spray Deposition Process ...to expect in cold spray deposited copper coatings based on common spray parameters. Ning et

  6. A Numerical Study of Spray Injected in a Gas Turbine Lean Pre-Mixed Pre-Vaporized Combustor

    NASA Astrophysics Data System (ADS)

    Amoresano, Amedeo; Cameretti, Maria Cristina; Tuccillo, Raffaele

    2015-04-01

    The authors have performed a numerical study to investigate the spray evolution in a modern gas turbine combustor of the Lean Pre-Mixed Pre-vaporized type. The CFD tool is able to simulate the injection conditions, by isolating and studying some specific phenomena. The calculations have been performed by using a 3-D fluid dynamic code, the FLUENT flow solver, by choosing the injection models on the basis of a comparative analysis with some experimental data, in terms of droplet diameters, obtained by PDA technique. In a first phase of the investigation, the numerical simulation refers to non-evaporating flow conditions, in order to validate the estimation of the fundamental spray parameters. Next, the calculations employ boundary conditions close to those occurring in the actual combustor operation, in order to predict the fuel vapour distribution throughout the premixing chamber. The results obtained allow the authors to perform combustion simulation in the whole domain.

  7. Current Status of Superheat Spray Modeling With NCC

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Bulzan, Dan L.

    2012-01-01

    An understanding of liquid fuel behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA's supersonics project office initiative on high altitude emissions, we have undertaken an effort to assess the accuracy of various existing CFD models used in the modeling of superheated sprays. As a part of this investigation, we have completed the implementation of a modeling approach into the national combustion code (NCC), and then applied it to investigate the following three cases: (1) the validation of a flashing jet generated by the sudden release of pressurized R134A from a cylindrical nozzle, (2) the differences between two superheat vaporization models were studied based on both hot and cold flow calculations of a Parker-Hannifin pressure swirl atomizer, (3) the spray characteristics generated by a single-element LDI (Lean Direct Injector) experiment were studied to investigate the differences between superheat and non-superheat conditions. Further details can be found in the paper.

  8. Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists

    NASA Astrophysics Data System (ADS)

    Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.

    1993-10-01

    A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.

  9. High-temperature erosion of plasma-sprayed, yttria-stabilized zirconia in a simulated turbine environment

    NASA Technical Reports Server (NTRS)

    Hanschuh, R. F.

    1984-01-01

    A series of rig calibration and high temperature tests simulating gas path seal erosion in turbine engines were performed at three impingement angles and at three downstream locations. Plasma sprayed, yttria stablized zirconia specimens were tested. Steady state erosion curves presented for 19 test specimens indicate a brittle type of material erosion despite scanning electron microscopy evidence of plastic deformation. Steady state erosion results were not sensitive to downstream location but were sensitive to impingement angle. At difference downstream locations specimen surface temperature varied from 1250 to 1600 C (2280 to 2900 F) and particle velocity varied from 260 to 320 m/s (850 to 1050 ft/s). The mass ratio of combustion products to erosive grit material was typically 240.

  10. On the Measurements of Particles Smaller than 20 μM by Global Rainbow Refractometry

    NASA Astrophysics Data System (ADS)

    Saengkaew, S.; Bonin, D.; Gréh, G.

    2007-06-01

    The measurement of the thermo-chemical characteristics of particles under evaporation or cooling is a challenge. Among others techniques, Global Rainbow Refractometry (GRR) is potentially applicable to a large variety of realistic media. This paper is focused on refractive index measurements of particles smaller than 20 μm which are especially important to extract droplet temperature in spray combustion.

  11. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, RE- FUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME I: SUMMARY OF RESULTS

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  12. Evaluation of peanut fatty acid methyl ester sprays, combustion, and emissions, for use in an indirect injection diesel engine

    USDA-ARS?s Scientific Manuscript database

    The paper provides an analysis of 100% peanut fatty acid methyl esters (FAMEs) and peanut FAME/ULSD#2 blends (P20, P35, and P50) in an indirect injection (IDI) diesel engine (for auxiliary power unit applications) in comparison to ultralow sulfur diesel no. 2 (ULSD#2) at various speeds and 100% load...

  13. Emissions Control in Swirl Stabilized Spray Combusters, an Experimental and Computational Study

    DTIC Science & Technology

    2007-02-01

    dynamics and thus provide an attractive alternative for application in aircraft gas turbine engines. Triple Annular Research Swirler, which has been...octagonal combustor because it provided optical access for flame imaging while avoiding difficulty of drilling thermocouple access holes on the...indicated by the temperature distribution. c. OH* chemiluminescence image It is commonly accepted that CH* and OH* chemiluminescence represents reaction or

  14. String flash-boiling in gasoline direct injection simulations with transient needle motion

    DOE PAGES

    Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.; ...

    2016-09-06

    A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less

  15. String flash-boiling in gasoline direct injection simulations with transient needle motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.

    A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less

  16. Experimental studies of characteristic combustion-driven flows for CFD validation

    NASA Technical Reports Server (NTRS)

    Santoro, R. J.; Moser, M.; Anderson, W.; Pal, S.; Ryan, H.; Merkle, C. L.

    1992-01-01

    A series of rocket-related studies intended to develop a suitable data base for validation of Computational Fluid Dynamics (CFD) models of characteristic combustion-driven flows was undertaken at the Propulsion Engineering Research Center at Penn State. Included are studies of coaxial and impinging jet injectors as well as chamber wall heat transfer effects. The objective of these studies is to provide fundamental understanding and benchmark quality data for phenomena important to rocket combustion under well-characterized conditions. Diagnostic techniques utilized in these studies emphasize determinations of velocity, temperature, spray and droplet characteristics, and combustion zone distribution. Since laser diagnostic approaches are favored, the development of an optically accessible rocket chamber has been a high priority in the initial phase of the project. During the design phase for this chamber, the advice and input of the CFD modeling community were actively sought through presentations and written surveys. Based on this procedure, a suitable uni-element rocket chamber was fabricated and is presently under preliminary testing. Results of these tests, as well as the survey findings leading to the chamber design, were presented.

  17. The effect of process parameters on Twin Wire Arc spray pattern shape

    DOE PAGES

    Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne

    2015-04-20

    A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less

  18. The effect of process parameters on Twin Wire Arc spray pattern shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne

    A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less

  19. Simulation of integrated pollutant removal (IPR) water-treatment system using ASPEN Plus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harendra, Sivaram; Oryshcyhn, Danylo; Ochs, Thomas

    2013-01-01

    Capturing CO2 from fossil fuel combustion provides an opportunity for tapping a significant water source which can be used as service water for a capture-ready power plant and its peripherals. Researchers at the National Energy Technology Laboratory (NETL) have patented a process—Integrated Pollutant Removal (IPR®)—that uses off-the-shelf technology to produce a sequestration ready CO2 stream from an oxy-combustion power plant. Water condensed from oxy-combustion flue gas via the IPR system has been analyzed for composition and an approach for its treatment—for in-process reuse and for release—has been outlined. A computer simulation model in ASPEN Plus has been developed to simulatemore » water treatment of flue gas derived wastewater from IPR systems. At the field installation, water condensed in the IPR process contains fly ash particles, sodium (largely from spray-tower buffering) and sulfur species as well as heavy metals, cations, and anions. An IPR wastewater treatment system was modeled using unit operations such as equalization, coagulation and flocculation, reverse osmosis, lime softening, crystallization, and pH correction. According to the model results, 70% (by mass) of the inlet stream can be treated as pure water, the other 20% yields as saleable products such as gypsum (CaSO4) and salt (NaCl) and the remaining portion is the waste. More than 99% of fly ash particles are removed in the coagulation and flocculation unit and these solids can be used as filler materials in various applications with further treatment. Results discussed relate to a slipstream IPR installation and are verified experimentally in the coagulation/flocculation step.« less

  20. Croton megalocarpus oil-fired micro-trigeneration prototype for remote and self-contained applications: experimental assessment of its performance and gaseous and particulate emissions

    PubMed Central

    Wu, Dawei; Roskilly, Anthony P.; Yu, Hongdong

    2013-01-01

    According to the International Energy Agency's World Energy Outlook 2011, 60 per cent of the population in Africa, some 587 million people, mostly in sub-Saharan Africa, lacked access to electricity in 2009. We developed a 6.5 kWe micro-trigeneration prototype, on the basis of internal combustion engine with pure Croton megalocarpus oil (CMO) fuelling, which configures a distributed energy system to generate power, heating and cooling from a single sustainable fuel source for remote users. Croton megalocarpus is an indigenous tree in East and South Africa which has recently attracted lots of interests as a biofuel source because of its high oil-yield rate. The direct and local use of CMO, instead of CMO biodiesel converted by the transesterification process, minimizes the carbon footprints left behind because of the simple fuel production of CMO. The experimental assessment proves that the prototype fuelled with CMO achieves similar efficiency as with diesel. Also, with the elevation of the oil injection temperature, the gaseous and particulate emissions of CMO could be ameliorated to some extent as improvement of the atomization in the spray and the combustion in the engine cylinder. PMID:24427514

  1. Modeling of SSME fuel preburner ASI

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1992-01-01

    The Augmented Spark Ignitor (ASI) is a LOX/H2/electrical spark system that functions as an ignition source and sustainer for stable combustion. It is used in the Space Shuttle Main Engine (SSME) preburner combustor, the SMME main combustion chamber, the J-1 and J-2 engines, as well as proposed designs of the Space Transportation Main Engine (STME) main combustor and gas generators. An undertaking to characterize the flow of the ASI is documented. The code consists of a marriage of the Implicit-Continuous Eulerian/Arbitrary Lagrangian Code (ICE-ALE) Navier-Stokes solver with the Volume-of-Fluid (VOF) Methodology for tracking of two immiscible fluids with sharp discontinuities. Spray droplets are represented by discrete numerical parcels tracked in a Lagrangian fashion. Numerous physical sub-models are also incorporated to describe the processes of atomization, droplet collision, droplet breakup, evaporation, and droplet and gas phase turbulence. An equilibrium chemistry model accounting for 8 active gaseous species is also used. Taking advantage of this symmetry plane, half of the actual ASI is modeled with a 3-D grid that geometrically resolves the LOX ports, the spark plug locations, and the hydrogen injection slots.

  2. EVALUATION OF CONVERGENT SPRAY TECHNOLOGYTM SPRAY PROCESS FOR ROOF COATING APPLICATION

    EPA Science Inventory

    The overall goal of this project was to demonstrate the feasibility of Convergent Spray TechnologyTM for the roofing industry. This was accomplished by producing an environmentally compliant coating utilizing recycled materials, a CSTTM spray process portable application cart, a...

  3. Evaluation of Convergent Spray Technology(TM) Spray Process for Roof Coating Application

    NASA Technical Reports Server (NTRS)

    Scarpa, J.; Creighton, B.; Hall, T.; Hamlin, K.; Howard, T.

    1998-01-01

    The overall goal of this project was to demonstrate the feasibility of(CST) Convergent Spray Technology (Trademark) for the roofing industry. This was accomplished by producing an environmentally compliant coating utilization recycled materials, a CST(Trademark) spray process portable application cart, and hand-held applicator with a CST(Trademark) spray process nozzle. The project culminated with application of this coating to a nine hundred sixty square foot metal for NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama.

  4. VPS GRCop-84 Liner Development Efforts

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Holmes, Richard; McKechnie, Tim; Hickman, Robert; Pickens, Tim

    2003-01-01

    For the past several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc. (PPI) to fabricate combustion chamber liners using the Vacuum Plasma Spray (VPS) process. Multiple liners of a variety of shapes and sizes have been created. Each liner has been fabricated with GRCop-84 (a copper alloy with chromium and niobium) and a functional gradient coating (FGC) on the hot wall. While the VPS process offers versatility and a reduced fabrication schedule, the material system created with VPS allows the liners to operate at higher temperatures, with maximum blanch resistance and improved cycle life. A subscal unit (5K lbf thrust class) is being cycle tested in a LOX/Hydrogen thrust chamber assembly at MSFC. To date, over 75 hot-fire tests have been accumulated on this article. Tests include conditions normally detrimental to conventional materials, yet the VPS GRCop-84 liner has yet to show any signs of degradation. A larger chamber (15K lbf thrust class) has also been fabricated and is being prepared for hot-fire testing at MSFC near the end of 2003. Linear liners have been successfully created to further demonstrate the versatility of the process. Finally, scale up issues for the VPS process are being tackled with efforts to fabricate a full size, engine class liner. Specifically, a liner for the SSME's Main Combustion Chamber (MCC) has recently been attempted. The SSME size was chosen for convenience, since its design was readily available and its size was sufficient to tackle specific issues. Efforts to fabricate these large liners have already provided valuable lessons for using this process for engine programs. The material quality for these large units is being evaluated with destructive analysis and these results will be available by the end of 2003.

  5. PM 10, PM 2.5 and PM 1.0—Emissions from industrial plants—Results from measurement programmes in Germany

    NASA Astrophysics Data System (ADS)

    Ehrlich, C.; Noll, G.; Kalkoff, W.-D.; Baumbach, G.; Dreiseidler, A.

    Emission measurement programmes were carried out at industrial plants in several regions of Germany to determine the fine dust in the waste gases; the PM 10, PM 2.5 and PM 1.0 fractions were sampled using a cascade impactor technique. The installations tested included plants used for: combustion (brown coal, heavy fuel oil, wood), cement production, glass production, asphalt mixing, and processing plants for natural stones and sand, ceramics, metallurgy, chemical production, spray painting, wood processing/chip drying, poultry farming and waste treatment. In addition waste gas samples were taken from small-scale combustion units, like domestic stoves, firing lignite briquettes or wood. In total 303 individual measurement results were obtained during 106 different measurement campaigns. In the study it was found that in more than 70% of the individual emission measurement results from industrial plants and domestic stoves the PM 10 portion amounted to more than 90% and the PM 2.5 portion between 50% and 90% of the total PM (particulate matter) emission. For thermal industrial processes the PM 1.0 portion constituted between 20% and 60% of the total PM emission. Typical particle size distributions for different processes were presented as cumulative frequency distributions and as frequency distributions. The particle size distributions determined for the different plant types show interesting similarities and differences depending on whether the processes are thermal, mechanical, chemical or mixed. Consequently, for the groups of plant investigated, a major finding of this study has been that the particle size distribution is a characteristic of the industrial process. Attempts to correlate particle size distributions of different plants to different gas cleaning technologies did not lead to usable results.

  6. Microstructure and Mechanical Properties of Microwave Post-processed Ni Coating

    NASA Astrophysics Data System (ADS)

    Zafar, Sunny; Sharma, Apurbba Kumar

    2017-03-01

    Flame-sprayed coatings are widely used in the industries attributed to their low cost and simple processing. However, the presence of porosity and poor adhesion with the substrate requires suitable post-processing of the as-sprayed deposits. In the present work, post-processing of the flame-sprayed Ni-based coating has been successfully attempted using microwave hybrid heating. Microwave post-processing of the flame-sprayed coatings was carried out at 2.45 GHz in a 1 kW multimode industrial microwave applicator. The microwave-processed and as-sprayed deposits were characterized for their microstructure, porosity, fracture toughness and surface roughness. The properties of the coatings were correlated with their abrasive wear behavior using a sliding abrasion test on a pin-on-disk tribometer. Microwave post-processing led to healed micropores and microcracks, thus causing homogenization of the microstructure in the coating layer. Therefore, microwave post-processed coating layer exhibits improved mechanical and tribological properties compared to the as-sprayed coating layer.

  7. Worldwide Environmental Compliance Assessment and Management Program (ECAMP)

    DTIC Science & Technology

    1991-01-01

    shop is derived as follows: 1. The paint shop has many enviromnntal concerns: -wi - - emissions from painting activities -proper storae of flammable and...stripping compounds, and paint solids into the storm or sanitary systems. Protocols tit apply are: -Air Emissions M en n -Haarous Materials Mr~nn...in Air Emissions an ~enr spray painiM or surface coating operations questions - in Hazarious Materials Mas enx storage of flanmble/combustible

  8. Ballistic Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    DTIC Science & Technology

    2016-04-01

    polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are...The impact of spatial filtering , temporal filtering , and scattering path length on image resolution are reported. The technique is demonstrated...cell filled with polystyrene spheres in a water suspension. The impact of spatial filtering , temporal filtering , and scattering path length on image

  9. Protective Clothing Part 4. Industrial Environments (A Bibliography with Abstracts)

    DTIC Science & Technology

    1976-04-01

    Synthetic rubber, Textiles, Sprays, Gas detectors, Damage control , Propellants IDENTIFIERS: Chlorine trifluoride AD-661 333...and Petroleum (107) Apr 75 Excludes flue gas and other post-combustion sulfur con- trol NTIS/PS-75/381/4GSB Coal Gasification and Liquefaction... desulfurization NTIS/PS-75/455/6GSB Sulfur Dioxide Control . Vol 1. 1964-1972 (159) May 75 NTIS/PS-75/456/4GSB Activated Carbon (221) May

  10. Comprehensive Fuel Spray Modeling and Impacts on Chamber Acoustics in Combustion Dynamics Simulations

    DTIC Science & Technology

    2013-05-01

    multiple swirler configurations and fuel injector locations at atmospheric pressure con- ditions. Both single-element and multiple-element LDI...the swirl number, Reynolds’ number and injector location in the LDI element. Besides the multi-phase flow characteristics, several experimen- tal...region downstream of the fuel injector on account of a sta- ble and compact precessing vortex core. Recent ex- periments conducted by the Purdue group have

  11. Size and Velocity Distributions of Particles and Droplets in Spray Combustion Systems.

    DTIC Science & Technology

    1984-11-01

    constructed, calibrated, and successfully applied. Our efforts to verify the performance and accuracy of this diagnostic led to a parallel research...array will not be an acceptable detection system for size distribution measurements by this method. VI. Conclusions This study has led to the following...radiation is also useful particle size analysis by ensemble multiangle scattering. One problem for all multiwavelength or multiaricle diagnostics for

  12. Oxides of Nitrogen Emissions from the Combustion of Monodisperse Liquid Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sarv, H.

    1985-01-01

    A study of NO sub x formation in a one dimensional monodisperse spray combustion system, which allowed independent droplet size variation, was conducted. Temperature, NO and NO sub x concentrations were measured in the transition region, encompassing a 26 to 74 micron droplet size range. Emission measurements of hydrocarbons, carbon monoxide, carbon dioxide and oxygen were also made. The equivalence ratio was varied between 0.8 and 1.2 for the fuels used, including methanol, isopropanaol, n-heptane and n-octane. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives in order to simulate synthetic fuels. Results obtained from the postflame regions using the pure fuels indicate an optimum droplet size in the range of 43 to 58 microns for minimizing NO sub x production. For the fuels examined, the maximum NO sub x reductions relative to the small droplet size limit were about 10 to 20% for lean and 20 to 30% for stoichiometric and rich mixtures. This behavior is attributed to droplet interactions and the transition from diffusive to premixed type of burning. Preflame vaporization controls the gas phase stoichiometry which has a significant effect on the volume of the hot gases surrounding a fuel droplet, where NO sub x is formed.

  13. Investigation of the spray characteristics for a secondary fuel injection nozzle using a digital image processing method

    NASA Astrophysics Data System (ADS)

    Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji

    2007-05-01

    There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.

  14. Experimental and Computational Study of Trapped Vortex Combustor Sector Rig With Tri-Pass Diffuser

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Shouse, D. T.; Roquernore, W. M.; Burrus, D. L.; Duncan, B. S.; Ryder, R. C.; Brankovic, A.; Liu, N.-S.; Gallagher, J. R.; Hendricks, J. A.

    2004-01-01

    The Trapped Vortex Combustor (TVC) potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL modes of combustion. The present work describes the operational principles of the TVC, and extends diffuser velocities toward choked flow and provides system performance data. Performance data include EINOx results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO) performance. Computational fluid dynamics (CFD) simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable compared to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.

  15. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    NASA Astrophysics Data System (ADS)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  16. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    NASA Astrophysics Data System (ADS)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  17. The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Roemer, Timothy John; Hirschfeld, Deidre A.

    2004-11-01

    Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10; Valimet H-20; and Brodmann Flomaster. ASTM E8 tensile specimens were machinedmore » from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300 C, 22 h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulk-forming process.« less

  18. The effect of a simple annealing heat treatement on the mechanical properties of cold-sprayed aluminium.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Roemer, Timothy John; Hirschfeld, Deidre A.

    2005-08-01

    Cold spray, a new member of the thermal spray process family, can be used to prepare dense, thick metal coatings. It has tremendous potential as a spray-forming process. However, it is well known that significant cold work occurs during the cold spray deposition process. This cold work results in hard coatings but relatively brittle bulk deposits. This work investigates the mechanical properties of cold-sprayed aluminum and the effect of annealing on those properties. Cold spray coatings approximately 1 cm thick were prepared using three different feedstock powders: Valimet H-10: Valimet H-20: and Brodmann Flomaster. ASTM E8 tensile specimens were machinedmore » from these coatings and tested using standard tensile testing procedures. Each material was tested in two conditions: as-sprayed; and after a 300 C, 22h air anneal. The as-sprayed material showed high ultimate strength and low ductility, with <1% elongation. The annealed samples showed a reduction in ultimate strength but a dramatic increase in ductility, with up to 10% elongation. The annealed samples exhibited mechanical properties that were similar to those of wrought 1100 H14 aluminum. Microstructural examination and fractography clearly showed a change in fracture mechanism between the as-sprayed and annealed materials. These results indicate good potential for cold spray as a bulkforming process.« less

  19. Quality Designed Twin Wire Arc Spraying of Aluminum Bores

    NASA Astrophysics Data System (ADS)

    König, Johannes; Lahres, Michael; Methner, Oliver

    2015-01-01

    After 125 years of development in combustion engines, the attractiveness of these powerplants still gains a great deal of attention. The efficiency of engines has been increased continuously through numerous innovations during the last years. Especially in the field of motor engineering, consequent friction optimization leads to cost-effective fuel consumption advantages and a CO2 reduction. This is the motivation and adjusting lever of NANOSLIDE® from Mercedes-Benz. The twin wire arc-spraying process of the aluminum bore creates a thin, iron-carbon-alloyed coating which is surface-finished through honing. Due to the continuous development in engines, the coating strategies must be adapted in parallel to achieve a quality-conformed coating result. The most important factors to this end are the controlled indemnification of a minimal coating thickness and a homogeneous coating deposition of the complete bore. A specific system enables the measuring and adjusting of the part and the central plunging of the coating torch into the bore to achieve a homogeneous coating thickness. Before and after measurement of the bore diameter enables conclusions about the coating thickness. A software tool specifically developed for coating deposition can transfer this information to a model that predicts the coating deposition as a function of the coating strategy.

  20. Fuel Injector: Air swirl characterization aerothermal modeling, phase 2, volume 2

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Mcdonell, V. G.; Samuelson, G. S.

    1993-01-01

    A well integrated experimental/analytical investigation was conducted to provide benchmark quality data relevant to prefilming type airblast fuel nozzle and its interaction with combustor dome air swirler. The experimental investigation included a systematic study of both single-phase flows that involved single and twin co-axial jets with and without swirl. A two-component Phase Doppler Particle Analyzer (PDPA) equipment was used to document the interaction of single and co-axial air jets with glass beads that simulate nonevaporating spray and simultaneously avoid the complexities associated with fuel atomization processes and attendant issues about the specification of relevant boundary conditions. The interaction of jets with methanol spray produced by practical airblast nozzle was also documented in the spatial domain of practical interest. Model assessment activities included the use of three turbulence models (k-epsilon, algebraic second moment (ASM) and differential second moment (DSM)) for the carrier phase, deterministic or stochastic Lagrangian treatment of the dispersed phase, and advanced numerical schemes. Although qualitatively good comparison with data was obtained for most of the cases investigated, the model deficiencies in regard to modeled dissipation rate transport equation, single length scale, pressure-strain correlation, and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems.

  1. Fuel injector: Air swirl characterization aerothermal modeling, phase 2, volume 1

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Mcdonell, V. G.; Samuelsen, G. S.

    1993-01-01

    A well integrated experimental/analytical investigation was conducted to provide benchmark quality relevant to a prefilming type airblast fuel nozzle and its interaction with the combustor dome air swirler. The experimental investigation included a systematic study of both single-phase flows that involved single and twin co-axial jets with and without swirl. A two-component Phase Doppler Particle Analyzer (PDPA) was used to document the interaction of single and co-axial air jets with glass beads that simulate nonevaporating spray and simultaneously avoid the complexities associated with fuel atomization processes and attendant issues about the specification of relevant boundary conditions. The interaction of jets with methanol spray produced by practical airblast nozzle was also documented in the spatial domain of practical interest. Model assessment activities included the use of three turbulence models (k-epsilon, algebraic second moment (ASM), and differential second moment (DSM)) for the carrier phase, deterministic or stochastic Lagrangian treatment of the dispersed phase, and advanced numerical schemes. Although qualitatively good comparison with data was obtained for most of the cases investigated, the model deficiencies in regard to modeled dissipation rate transport equation, single length scale, pressure-strain correlation, and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems.

  2. Warm spraying-a novel coating process based on high-velocity impact of solid particles.

    PubMed

    Kuroda, Seiji; Kawakita, Jin; Watanabe, Makoto; Katanoda, Hiroshi

    2008-07-01

    In recent years, coating processes based on the impact of high-velocity solid particles such as cold spraying and aerosol deposition have been developed and attracting much industrial attention. A novel coating process called 'warm spraying' has been developed, in which coatings are formed by the high-velocity impact of solid powder particles heated to appropriate temperatures below the melting point of the powder material. The advantages of such process are as follows: (1) the critical velocity needed to form a coating can be significantly lowered by heating, (2) the degradation of feedstock powder such as oxidation can be significantly controlled compared with conventional thermal spraying where powder is molten, and (3) various coating structures can be realized from porous to dense ones by controlling the temperature and velocity of the particles. The principles and characteristics of this new process are discussed in light of other existing spray processes such as high-velocity oxy-fuel spraying and cold spraying. The gas dynamics of particle heating and acceleration by the spraying apparatus as well as the high-velocity impact phenomena of powder particles are discussed in detail. Several examples of depositing heat sensitive materials such as titanium, metallic glass, WC-Co cermet and polymers are described with potential industrial applications.

  3. Simulation of a GOX-kerosene subscale rocket combustion chamber

    NASA Astrophysics Data System (ADS)

    Höglauer, Christoph; Kniesner, Björn; Knab, Oliver; Kirchberger, Christoph; Schlieben, Gregor; Kau, Hans-Peter

    2011-12-01

    In view of future film cooling tests at the Institute for Flight Propulsion (LFA) at Technische Universität München, the Astrium in-house spray combustion CFD tool Rocflam-II was validated against first test data gained from this rocket test bench without film cooling. The subscale rocket combustion chamber uses GOX and kerosene as propellants which are injected through a single double swirl element. Especially the modeling of the double swirl element and the measured wall roughness were adapted on the LFA hardware. Additionally, new liquid kerosene fluid properties were implemented and verified in Rocflam-II. Also the influences of soot deposition and hot gas radiation on the wall heat flux were analytically and numerically estimated. In context of reviewing the implemented evaporation model in Rocflam-II, the binary diffusion coefficient and its pressure dependency were analyzed. Finally simulations have been performed for different load points with Rocflam-II showing a good agreement compared to test data.

  4. Boosted performance of a compression-ignition engine with a displaced piston

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1936-01-01

    Performance tests were made using a rectangular displacer arranged so that the combustion air was forced through equal passages at either end of the displacer into the vertical-disk combustion chamber of a single-cylinder, four-stroke-cycle compression-ignition test engine. After making tests to determine optimum displacer height, shape, and fuel-spray arrangement, engine-performance tests were made at 1,500 and 2,000 r.p.m. for a range of boost pressures from 0 to 20 inches of mercury and for maximum cylinder pressures up to 1,150 pounds per square inch. The engine operation for boosted conditions was very smooth, there being no combustion shock even at the highest maximum cylinder pressures. Indicated mean effective pressures of 240 pounds per square inch for fuel consumptions of 0.39 pound per horsepower-hour have been readily reproduced during routine testing at 2,000 r.p.m. at a boost pressure of 20 inches of mercury.

  5. Aviation-fuel property effects on combustion

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    The fuel chemical property influence on a gas turbine combustor was studied using 25 test fuels. Fuel physical properties were de-emphasized by using fuel injectors which produce highly-atomized, and hence rapidly vaporizing sprays. A substantial fuel spray characterization effort was conducted to allow selection of nozzles which assured that such sprays were achieved for all fuels. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15 (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. standard fuels (e.g., Jet A, JP4), speciality products (e.g., decalin, xylene tower bottoms) and special fuel blends were included. The latter group included six, 4-component blends prepared to achieve parametric variations in fuel hydrogen, total aromatics and naphthalene contents. The principle influences of fuel chemical properties on the combustor behavior were reflected by the radiation, liner temperature, and exhaust smoke number (or equivalently, soot number density) data. Test results indicated that naphthalene content strongly influenced the radiative heat load while parametric variations in total aromatics did not.

  6. Ultrafast X-ray Imaging of Fuel Sprays

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    2007-01-01

    Detailed analysis of fuel sprays has been well recognized as an important step for optimizing the operation of internal combustion engines to improve efficiency and reduce emissions. Ultrafast radiographic and tomographic techniques have been developed for probing the fuel distribution close to the nozzles of direct-injection diesel and gasoline injectors. The measurement was made using x-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution on the order of 1 μs. Furthermore, an accurate 3-dimensional fuel-density distribution, in the form of fuel volume fraction, was obtained by the time-resolved computed tomography. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date. With high-energy and high-brilliance x-ray beams available at the Advanced Photon Source, propagation-based phase-enhanced imaging was developed as a unique metrology technique to visualize the interior of an injection nozzle through a 3-mm-thick steel with a 10-μs temporal resolution, which is virtually impossible by any other means.

  7. Deposition of Electrically Conductive Coatings on Castable Polyurethane Elastomers by the Flame Spraying Process

    NASA Astrophysics Data System (ADS)

    Ashrafizadeh, H.; McDonald, A.; Mertiny, P.

    2016-02-01

    Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green's function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.

  8. Researching the Possibility of Creating Highly Effective Catalysts for the Thermochemical Heat Regeneration and Hydrocarbon Reforming

    DTIC Science & Technology

    2006-11-01

    PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS The sprayed -on material is formed by gradual deposition of separate discretely solidifying with great... deposition processes and their ecological purity. Essentially, the method of ion-plasma spraying is evaporation of a metal (or alloy ) atoms from the...29 5.1 PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS ...................34 6. CATALYST SUPPORTERS FOR THE 1ST STAGE OF

  9. Near-net-shape manufacturing: Spray-formed metal matrix composites and tooling

    NASA Technical Reports Server (NTRS)

    Mchugh, Kevin M.

    1994-01-01

    Spray forming is a materials processing technology in which a bulk liquid metal is converted to a spray of fine droplets and deposited onto a substrate or pattern to form a near-net-shape solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g. refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. The Idaho National Engineering Laboratory is developing a unique spray-forming method, the Controlled Aspiration Process (CAP), to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Results from two spray-accompanying technical and economic benefits. These programs involved spray forming aluminum strip reinforced with SiC particulate, and the production of tooling, such as injection molds and dies, using low-melting-point metals.

  10. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  11. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  12. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  13. Thermal and mechanical analysis of major components for the advanced adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The proposed design for the light duty diesel is an in-line four cylinder spark assisted diesel engine mounted transversely in the front of the vehicle. The engine has a one piece cylinder head, with one intake valve and one exhaust valve per cylinder. A flat topped piston is used with a cylindrical combustion chamber recessed into the cylinder head directly under the exhaust valve. A single ceramic insert is cast into the cylinder head to insulate both the combustion chamber and the exhaust port. A similar ceramic insert is cast into the head to insulate the intake port. A ceramic faceplate is pressed into the combustion face of the head to insulate the face of the head from hot combustion gas. The valve seats are machined directly into the ceramic faceplate for the intake valve and into the ceramic exhaust pot insert for the exhaust valve. Additional ceramic applications in the head are the use of ceramic valve guides and ceramic insulated valves. The ceramic valve guides are press fit into the head and are used for increased wear resistance. The ceramic insulated valves are conventional valves with the valve faces plasma spray coated with ceramic for insulation.

  14. Quality characteristic of spray-drying egg white powders.

    PubMed

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  15. Temporal evolution of ultrafine particles and of alveolar deposited surface area from main indoor combustion and non-combustion sources in a model room.

    PubMed

    Manigrasso, Maurizio; Vitali, Matteo; Protano, Carmela; Avino, Pasquale

    2017-11-15

    Aerosol number size distributions, PM mass concentrations, alveolar deposited surface areas (ADSAs) and VOC concentrations were measured in a model room when aerosol was emitted by sources frequently encountered in indoor environments. Both combustion and non-combustion sources were considered. The most intense aerosol emission occurred when combustion sources were active (as high as 4.1×10 7 particlescm -3 for two meat grilling sessions; the first with exhaust ventilation, the second without). An intense spike generation of nucleation particles occurred when appliances equipped with brush electric motors were operating (as high as 10 6 particlescm -3 on switching on an electric drill). Average UFP increments over the background value were highest for electric appliances (5-12%) and lowest for combustion sources (as low as -24% for tobacco cigarette smoke). In contrast, average increments in ADSA were highest for combustion sources (as high as 3.2×10 3 μm 2 cm -3 for meat grilling without exhaust ventilation) and lowest for electric appliances (20-90μm 2 cm -3 ). The health relevance of such particles is associated to their ability to penetrate cellular structures and elicit inflammatory effects mediated through oxidative stress in a way dependent on their surface area. The highest VOC concentrations were measured (PID probe) for cigarette smoke (8ppm) and spray air freshener (10ppm). The highest PM mass concentration (PM 1 ) was measured for citronella candle burning (as high as 7.6mgm -3 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Experimental investigation and modeling of an aircraft Otto engine operating with gasoline and heavier fuels

    NASA Astrophysics Data System (ADS)

    Saldivar Olague, Jose

    A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of simulations using performance models show that the engine can deliver up to 178% improvement in fuel efficiency and operating range, and reduce the specific fuel consumption to 58% when compared to gasoline. Directions for future research and other modifications to the proposed spark assisted cycle are also described.

  17. Plasma Spraying of Ceramics with Particular Difficulties in Processing

    NASA Astrophysics Data System (ADS)

    Mauer, G.; Schlegel, N.; Guignard, A.; Jarligo, M. O.; Rezanka, S.; Hospach, A.; Vaßen, R.

    2015-01-01

    Emerging new applications and growing demands of plasma-sprayed coatings initiate the development of new materials. Regarding ceramics, often complex compositions are employed to achieve advanced material properties, e.g., high thermal stability, low thermal conductivity, high electronic and ionic conductivity as well as specific thermo-mechanical properties and microstructures. Such materials however, often involve particular difficulties in processing by plasma spraying. The inhomogeneous dissociation and evaporation behavior of individual constituents can lead to changes of the chemical composition and the formation of secondary phases in the deposited coatings. Hence, undesired effects on the coating characteristics are encountered. In this work, examples of such challenging materials are investigated, namely pyrochlores applied for thermal barrier coatings as well as perovskites for gas separation membranes. In particular, new plasma spray processes like suspension plasma spraying and plasma spray-physical vapor deposition are considered. In some cases, plasma diagnostics are applied to analyze the processing conditions.

  18. Deposition of Na2SO4 from salt-seeded combustion gases of a high velocity burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. A.

    1985-01-01

    With a view to developing simulation criteria for the laboratory testing of high-temperature materials for gas turbine engines, the deposition rates of sodium sulfate from sodium salt-seeded combustion gases were determined experimentally using a well instrumented high-velocity burner. In the experiments, Na2SO4, NaCl, NaNO3, and simulated sea salt solutions were injected into the combustor of the Mach 0.3 burner rig operating at constant fuel/air ratios. The deposits formed on an inert rotating collector were then weighed and analyzed. The experimental results are compared to Rosner's vapor diffusion theory. Some additional test results, including droplet size distribution of an atomized salt spray, are used in interpreting the deposition rate data.

  19. Investigations of a Combustor Using a 9-Point Swirl-Venturi Fuel Injector: Recent Experimental Results

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Heath, Christopher M.; Anderson, Robert C.; Tacina, Kathleen M.

    2012-01-01

    This paper explores recent results obtained during testing in an optically-accessible, JP8-fueled, flame tube combustor using baseline Lean Direct Injection (LDI) research hardware. The baseline LDI geometry has nine fuel/air mixers arranged in a 3 x 3 array. Results from this nine-element array include images of fuel and OH speciation via Planar Laser-Induced Fluorescence (PLIF), which describe fuel spray pattern and reaction zones. Preliminary combustion temperatures derived from Stokes/Anti-Stokes Spontaneous Raman Spectroscopy are also presented. Other results using chemiluminescence from major combustion radicals such as CH* and C2* serve to identify the primary reaction zone, while OH PLIF shows the extent of reaction further downstream. Air and fuel velocities and fuel drop size results are also reported.

  20. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOEpatents

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  1. Rapid Evaporation in Fuel Injection

    NASA Astrophysics Data System (ADS)

    McCahan, S.; Kessler, C.

    1997-11-01

    Preheating fuel prior to injection through a nozzle can induce a superheated state during expansion. The resulting rapid evaporation improves atomization of the fluid and, therefore, may improve combustion efficiency. A sufficient degree of superheat im posed on a fuel with a high specific heat (retrograde fluid) can theoretically result in complete evaporation. In the work done by Sloss and McCahan (APS/DFD meeting 1996), dodecane, fuel oil, kerosene, and diesel oil were studied. In this continuation of the same study, decane and tetradecane are preheated to temperatures ranging from 20^oC to 330^oC at a p ressure of 10 bar and injected into a chamber at 1 bar. A simple converging nozzle is used. Photographs taken of the resulting sprays are used to determine cone angles and make qualitative observations of droplet size and spray structure.

  2. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  3. Technical characteristics of rigid sprayed PUR and PIR foams used in construction industry

    NASA Astrophysics Data System (ADS)

    Gravit, Marina; Kuleshin, Aleksey; Khametgalieva, Elina; Karakozova, Irina

    2017-10-01

    The article describes the distinctive properties of rigid polyurethane foam and polyisocyanurate (PUR and PIR). A brief review of the research was carried out on their modification with an objective to improve the thermal insulation properties and reducing the combustibility. A comparative analysis of the technical characteristics of rigid PUR and PIR foams of various manufacturers is presented. The problems of the state of the market for the production of polyurethane foam and polyisocyanurate in Russia have been marked. It is established that the further development of the fabrication technology of heat-insulating sprayed rigid PUR and PIR foams requires uniformity of technical characteristics of original components and finished products. Moreover, it requires the creation of unified information base for raw materials and auxiliary materials used in the production of PUR and PIR foam.

  4. Improved Orifice Plate for Spray Gun

    NASA Technical Reports Server (NTRS)

    Cunningham, W.

    1986-01-01

    Erratic spray pattern of commercial spray gun changed to repeatable one by simple redesign of two parts. In modified spray gun orifice plate and polytetrafluoroethylene bushing redesigned to assure centering and alignment with nozzle. Such improvement useful in many industrial applications requiring repeatable spray patterns. Might include spraying of foam insulation, paint, other protective coatings, detergents, abrasives, adhesives, process chemicals, or fuels. Unmodified spray gun produces erratic spray because lateral misalignment between orifice plate and nozzle.

  5. Thermal Spray Maps: Material Genomics of Processing Technologies

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Sanpo, Noppakun; Sesso, Mitchell L.; Kim, Sun Yung; Berndt, Christopher C.

    2013-10-01

    There is currently no method whereby material properties of thermal spray coatings may be predicted from fundamental processing inputs such as temperature-velocity correlations. The first step in such an important understanding would involve establishing a foundation that consolidates the thermal spray literature so that known relationships could be documented and any trends identified. This paper presents a method to classify and reorder thermal spray data so that relationships and correlations between competing processes and materials can be identified. Extensive data mining of published experimental work was performed to create thermal spray property-performance maps, known as "TS maps" in this work. Six TS maps will be presented. The maps are based on coating characteristics of major importance; i.e., porosity, microhardness, adhesion strength, and the elastic modulus of thermal spray coatings.

  6. Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Dudziak, T.; Simms, N. J.; Nicholls, J. R.

    2013-06-01

    This article presents a systematic evaluation of coatings for advanced fossil fuel plants and addresses fireside corrosion in coal/biomass-derived flue gases. A selection of four candidate coatings: alloy 625, NiCr, FeCrAl and NiCrAlY were deposited onto superheaters/reheaters alloy (T91) using high-velocity oxy-fuel (HVOF) and plasma spraying. A series of laboratory-based fireside corrosion exposures were carried out on these coated samples in furnaces under controlled atmosphere for 1000 h at 650 °C. The tests were carried out using the "deposit-recoat" test method to simulate the environment that was anticipated from air-firing 20 wt.% cereal co-product mixed with a UK coal. The exposures were carried out using a deposit containing Na2SO4, K2SO4, and Fe2O3 to produce alkali-iron tri-sulfates, which had been identified as the principal cause of fireside corrosion on superheaters/reheaters in pulverized coal-fired power plants. The exposed samples were examined in an ESEM with EDX analysis to characterize the damage. Pre- and post-exposure dimensional metrologies were used to quantify the metal damage in terms of metal loss distributions. The thermally sprayed coatings suffered significant corrosion attack from a combination of aggressive combustion gases and deposit mixtures. In this study, all the four plasma-sprayed coatings studied performed better than the HVOF-sprayed coatings because of a lower level of porosity. NiCr was found to be the best performing coating material with a median metal loss of ~87 μm (HVOF sprayed) and ~13 μm (plasma sprayed). In general, the median metal damage for coatings had the following ranking (in the descending order: most to the least damage): NiCrAlY > alloy 625 > FeCrAl > NiCr.

  7. Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties

    NASA Astrophysics Data System (ADS)

    Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.

    2007-12-01

    Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.

  8. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    NASA Astrophysics Data System (ADS)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  9. Characterization of Diesel and Gasoline Compression Ignition Combustion in a Rapid Compression-Expansion Machine using OH* Chemiluminescence Imaging

    NASA Astrophysics Data System (ADS)

    Krishnan, Sundar Rajan; Srinivasan, Kalyan Kumar; Stegmeir, Matthew

    2015-11-01

    Direct-injection compression ignition combustion of diesel and gasoline were studied in a rapid compression-expansion machine (RCEM) using high-speed OH* chemiluminescence imaging. The RCEM (bore = 84 mm, stroke = 110-250 mm) was used to simulate engine-like operating conditions at the start of fuel injection. The fuels were supplied by a high-pressure fuel cart with an air-over-fuel pressure amplification system capable of providing fuel injection pressures up to 2000 bar. A production diesel fuel injector was modified to provide a single fuel spray for both diesel and gasoline operation. Time-resolved combustion pressure in the RCEM was measured using a Kistler piezoelectric pressure transducer mounted on the cylinder head and the instantaneous piston displacement was measured using an inductive linear displacement sensor (0.05 mm resolution). Time-resolved, line-of-sight OH* chemiluminescence images were obtained using a Phantom V611 CMOS camera (20.9 kHz @ 512 x 512 pixel resolution, ~ 48 μs time resolution) coupled with a short wave pass filter (cut-off ~ 348 nm). The instantaneous OH* distributions, which indicate high temperature flame regions within the combustion chamber, were used to discern the characteristic differences between diesel and gasoline compression ignition combustion. The authors gratefully acknowledge facilities support for the present work from the Energy Institute at Mississippi State University.

  10. Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with Tri-pass Diffuser

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Shouse, D. T.; Roquemore, W. M.; Burrus, D. L.; Duncan, B. S.; Ryder, R. C.; Brankovic, A.; Liu, N.-S.; Gallagher, J. R.; Hendricks, J. A.

    2001-01-01

    The Trapped Vortex Combustor (TVC) potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL (Rich burn/Quick mix/Lean burn) modes of combustion. The present work describes the operational principles of the TVC, and provides detailed performance data on a configuration featuring a tri-pass diffusion system. Performance data include EINOx (NO(sub x) emission index) results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO) performance. Computational fluid dynamics (CFD) simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable in comparison to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.

  11. Development of wear resistant ceramic coatings for diesel engine components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselkorn, M.H.

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at thesemore » more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.« less

  12. Development of wear resistant ceramic coatings for diesel engine components. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselkorn, M.H.

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at thesemore » more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.« less

  13. Optimization of the inter-tablet coating uniformity for an active coating process at lab and pilot scale.

    PubMed

    Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter

    2013-11-30

    The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Spray Deposition: A Fundamental Study of Droplet Impingement, Spreading and Consolidation

    DTIC Science & Technology

    1989-12-01

    low alloy (HSLA) steel. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened HSLA steel...manufacturing process. Specifically, HSLA-100, a copper precipitation strengthened high-strength, low - alloy steel was spray cast via the Osprey’ m process...by spray casting. Preforms of HSLA-100, a low carbon bainitic, copper precipitation strengthened steel, were spray cast under differing conditions

  15. Optimization of the bake-on siliconization of cartridges. Part I: Optimization of the spray-on parameters.

    PubMed

    Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2016-07-01

    Biopharmaceutical products are increasingly commercialized as drug/device combinations to enable self-administration. Siliconization of the inner syringe/cartridge glass barrel for adequate functionality is either performed at the supplier or drug product manufacturing site. Yet, siliconization processes are often insufficiently investigated. In this study, an optimized bake-on siliconization process for cartridges using a pilot-scale siliconization unit was developed. The following process parameters were investigated: spray quantity, nozzle position, spray pressure, time for pump dosing and the silicone emulsion concentration. A spray quantity of 4mg emulsion showed best, immediate atomization into a fine spray. 16 and 29mg of emulsion, hence 4-7-times the spray volume, first generated an emulsion jet before atomization was achieved. Poor atomization of higher quantities correlated with an increased spray loss and inhomogeneous silicone distribution, e.g., due to runlets forming build-ups at the cartridge lower edge and depositing on the star wheel. A prolonged time for pump dosing of 175ms led to a more intensive, long-lasting spray compared to 60ms as anticipated from a higher air-to-liquid ratio. A higher spray pressure of 2.5bar did not improve atomization but led to an increased spray loss. At a 20mm nozzle-to-flange distance the spray cone exactly reached the cartridge flange, which was optimal for thicker silicone layers at the flange to ease piston break-loose. Initially, 10μg silicone was sufficient for adequate extrusion in filled cartridges. However, both maximum break-loose and gliding forces in filled cartridges gradually increased from 5-8N to 21-22N upon 80weeks storage at room temperature. The increase for a 30μg silicone level from 3-6N to 10-12N was moderate. Overall, the study provides a comprehensive insight into critical process parameters during the initial spray-on process and the impact of these parameters on the characteristics of the silicone layer, also in context of long-term product storage. The presented experimental toolbox may be utilized for development or evaluation of siliconization processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Spray and Combustion of Gelled Hypergolic Propellants for Future Rocket and Missile Engines

    DTIC Science & Technology

    2014-08-13

    Another aspect of the project was to develop cost- effective viscosity and surface tension determinations as a function of temperature up to 500 K. In...flow rates had an effect on the temperature observed in the stagnation zone with temperature trends from the numerical simulations being similar to...for the single step in the reaction mechanism was varied so as to provide information on the effect of reaction rates on the temperature 137 99

  17. Droplet turbulence interactions under subcritical and supercritical conditions

    NASA Technical Reports Server (NTRS)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-01-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  18. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.

    PubMed

    Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam

    2014-01-01

    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.

  19. Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase

    NASA Astrophysics Data System (ADS)

    von Niessen, Konstantin; Gindrat, Malko

    2011-06-01

    Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.

  20. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    NASA Astrophysics Data System (ADS)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

Top