Science.gov

Sample records for spray drying technique

  1. Taste masking by spray-drying technique.

    PubMed

    Bora, Divyakumar; Borude, Priyanka; Bhise, Kiran

    2008-01-01

    The purpose of this research was to develop the taste-masked microspheres of intensely bitter drug ondansetron hydrochloride (OSH) by spray-drying technique. The bitter taste threshold value of OSH was determined. Three different polymers viz. Chitosan, Methocel E15 LV, and Eudragit E100 were used for microsphere formation, and the effect of different polymers and drug-polymer ratios on the taste masking and release properties of microspheres was investigated. The microspheres were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, Drug loading, in vitro bitter taste evaluation, and drug-release properties. The taste masking was absent in methocel microspheres at all the drug-polymer ratios. The Eudragit microspheres depicted taste masking at 1:2 drug-polymer ratio whereas with Chitosan microspheres the taste masking was achieved at 1:1 drug-polymer ratio. The drug release was about 96.85% for eudragit microspheres and 40.07% for Chitosan microspheres in 15 min.

  2. Spray drying technique. I: Hardware and process parameters.

    PubMed

    Cal, Krzysztof; Sollohub, Krzysztof

    2010-02-01

    Spray drying is a transformation of feed from a fluid state into a dried particulate form by spraying the feed into a hot drying medium. The main aim of drying by this method in pharmaceutical technology is to obtain dry particles with desired properties. This review presents the hardware and process parameters that affect the properties of the dried product. The atomization devices, drying chambers, air-droplet contact systems, the collection of dried product, auxiliary devices, the conduct of the spray drying process, and the significance of the individual parameters in the drying process, as well as the obtained product, are described and discussed.

  3. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections

    PubMed Central

    Leung, Sharon S.Y.; Parumasivam, Thaigarajan; Gao, Fiona G.; Carrigy, Nicholas B.; Vehring, Reinhard; Finlay, Warren H.; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2016-01-01

    Purpose The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. Method A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. Results A significant titer loss (~ 2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 104 pfu and SD-F2 = 11.0 ± 1.4 × 104 pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 104 pfu and SFD-F2 = 2.1 ± 0.3 × 104 pfu). Conclusion Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2. PMID:26928668

  4. Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization.

    PubMed

    Bruschi, M L; Cardoso, M L C; Lucchesi, M B; Gremião, M P D

    2003-10-02

    Gelatin microparticles containing propolis extractive solution (PES) were prepared by spray-drying technique. The optimization of the spray-drying operating conditions and the proportions of gelatin and mannitol were investigated. Regular particle morphology was obtained when mannitol was used, whereas mannitol absence produced a substantial number of coalesced and agglomerated microparticles. Microparticles had a mean diameter of 2.70 microm without mannitol and 2.50 microm with mannitol. The entrapment efficiency for propolis of the microparticles was upto 41% without mannitol and 39% with mannitol. The microencapsulation by spray-drying technique maintained the activity of propolis against Staphylococcus aureus. These gelatin microparticles containing propolis would be useful for developing intermediary or eventual propolis dosage form without the PES' strong and unpleasant taste, aromatic odour, and presence of ethanol.

  5. Utilization of spray drying technique for improvement of dissolution and anti-inflammatory effect of Meloxicam.

    PubMed

    Shazly, Gamal; Badran, Mohamed; Zoheir, Khairy; Alomrani, Abdullah

    2015-01-01

    Meloxicam (MLX) is a poorly water-soluble non steroidal anti-inflammatory drug (NSAID). The main objective of the present work was to enhance the dissolution of MLX and thus its bioavailability by the aid of additives. The novelty of this work rises from the utilization of spray drying technology to produce micro particulates solid dispersion systems containing MLX in the presence of small amount of additives. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and Scan Electron Microscope (SEM) were used for studying the physico-chemical and morphological properties of MLX samples. The dissolution of MLX samples was investigated in two different pH media. The morphology of MLX solid dispersion micro-particles was spherical in shape according to SEM. FT-IR profiles indicated that a complex was formed between MLX and the additives. DSC patterns of the MLX micro-particles suggested a reduction in the crystallinity of MLX and probability of presence of an interaction between MLX and the additives. The rate of dissolution of the spray-dried MLX enhanced as compared with the unprocessed MLX in both acidic and neutral media. It was found that 100% of the added MLX released within 5 min in phosphate buffer dissolution medium (pH 7.4) compared to that of the unprocessed MLX (15% in 60 min). Such increase rate in the dissolution of the spray dried MLX could be attributed to the increase in wettability of MLX particles and the hydrophilic nature of the additives. The anti-inflammatory effect of the spray dried MLX was explored using formalin induced rat paw edema model. The spray-dried samples showed an increase in the anti-inflammatory activity of MLX as compared to the unprocessed MLX. This work reveals that the spray drying technique is suitable for preparation of micro-particles with improved dissolution and anti-inflammatory effect of MLX.

  6. Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles.

    PubMed

    Ali, Mohamed Ehab; Lamprecht, Alf

    2017-01-10

    The use of nanoparticles for drug delivery is still restricted by their limited stability when stored in an aqueous medium. Freeze drying is the standard method for long-term storage of colloidal nanoparticles; however the method needs to be elaborated for each formulation. Spray freeze drying (SFD) is proposed here as a promising alternative for lyophilizing colloidal nanoparticles. Different types of polymeric and lipid nanoparticles were prepared and characterized. Afterwards, samples were spray freeze dried by spraying into a column of cold air with a constant concentration of different cryoprotectants, and the frozen spherules were collected for further freeze drying. Similar samples were prepared using the commonly used technique, freeze drying, as controls. Using SFD, fast-dissolving, spherical and porous nanocomposite microparticles with remarkably high flowability (CI≤10) were produced. On the contrary to similar samples prepared using the freeze drying technique, the investigated polymeric and lipid nanoparticles were completely reconstituted (Sf/Si ratio <1.5) after SFD. SFD proved to be an effective platform for improving the long-term stability of colloidal nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent.

    PubMed

    Tran, Tuan Hiep; Poudel, Bijay K; Marasini, Nirmal; Chi, Sang-Cheol; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2013-02-25

    The aim of this study was to improve the physicochemical properties and bioavailability of a poorly water-soluble drug, raloxifene by solid dispersion (SD) nanoparticles using the spray-drying technique. These spray-dried SD nanoparticles were prepared with raloxifene (RXF), polyvinylpyrrolidone (PVP) and Tween 20 in water. Reconstitution of optimized RXF-loaded SD nanoparticles in pH 1.2 medium showed a mean particle size of approximately 180 nm. X-ray diffraction and differential scanning calorimetry indicated that RXF existed in an amorphous form within spray-dried nanoparticles. The optimized formulation showed an enhanced dissolution rate of RXF at pH 1.2, 4.0, 6.8 and distilled water as compared to pure RXF powder. The improved dissolution of raloxifene from spray-dried SD nanoparticles appeared to be well correlated with enhanced oral bioavailability of raloxifene in rats. Furthermore, the pharmacokinetic parameters of the spray-dried SD nanoparticles showed increased AUC(0-∞) and C(max) of RXF by approximately 3.3-fold and 2.3-fold, respectively. These results suggest that the preparation of RXF-SD nanoparticles using the spray drying technique without organic solvents might be a promising approach for improving the oral bioavailability of RXF.

  8. Development of raloxifene-solid dispersion with improved oral bioavailability via spray-drying technique.

    PubMed

    Tran, Tuan Hiep; Poudel, Bijay Kumar; Marasini, Nirmal; Woo, Jong Soo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2013-01-01

    The purpose of this study was to develop a raloxifene-loaded solid dispersion with enhanced dissolution rate and bioavailability via spray-drying technique. Solid dispersions of raloxifene (RXF) were prepared with PVP K30 at weight ratios of 1:4, 1:6 and 1:8 using a spray-drying method, and characterized by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, and solubility and dissolution tests. The bioavailability of the solid dispersion in rats was also evaluated compared to those of RXF powder and commercial product. Results showed that the RXF-loaded solid dispersion was in amorphous form with increased solubility and dissolution rate. The absorption of RXF from solid dispersion resulted in approximately 2.6-fold enhanced bioavailability compared to pure drug. Moreover, RXF-loaded solid dispersion gave similar AUC, C(max) and T(max) values to the commercial product, suggesting that it was bioequivalent to the commercial product in rats. These findings suggest that an amorphous solid dispersion of RXF could be a viable option for enhancing the oral bioavailability of RXF.

  9. Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres.

    PubMed

    Bittner, B; Kissel, T

    1999-01-01

    Bovine serum albumin (BDA) loaded microspheres with a spherical shape and smooth surface structure were successfully prepared from poly(lactide-co-glycolide) using an ultrasonic nozzle installed in a Niro laboratory spray dryer. Process and formulation parameters were investigated with respect to their influence on microsphere characteristics, such as particle size, loading capacity, and release properties. Preparation of microspheres in yields of more than 50% was achieved using an ultrasonic atomizer connected to a stream of carrier air. Microsphere characteristics could be modified by changing several technological parameters. An increased polymer concentration of the feed generated larger particles with a significantly reduced initial release of the protein. Moreover, microspheres with a smooth surface structure were obtained from the organic polymer solution with the highest viscosity. Microparticles with a low BSA loading showed a large central cavity surrounded by a thin polymer layer in scanning electron microspheres. A high protein loading led to an enlargement of the shell layer, or even to dense particles without any cavities. A continuous in vitro release pattern of BSA was obtained from the particles with low protein loading. Glass transition temperatures (Tg) of the microspheres before and after lyophilization did not differ from those of the BSA loaded particles prepared by spray drying with a rotary atomizer. Analysis of the polymer by gel permeation chromatography indicated that ultrasonication had no effect on polymer molecular weight. Molecular weight and polydispersity of the pure polymer, placebo microspheres prepared by spray drying, and placebo microspheres prepared using the ultrasonic nozzle were in the same range. In conclusion, ultrasonic atomization represents a versatile and reliable technique for the production of protein loaded biodegradable microspheres without inducing a degradation of the polymer matrix. Particle characteristics

  10. EVALUATION OF ALGINATE MICROSPHERES WITH METRONIDAZOLE OBTAINED BY THE SPRAY DRYING TECHNIQUE.

    PubMed

    Szekalska, Marta; Winnicka, Katarzyna; Czajkowska-Kośnik, Anna; Sosnowska, Katarzyna; Amelian, Aleksandra

    2015-01-01

    In the present study, nine formulations (F1-F9) of alginate microspheres with metronidazole were prepared by the spray drying technique with using different drug:polymer ratio (1:2, 1:1, 2:1) and different sodium alginate concentration (1, 2, 3%). The obtained microspheres were characterized for size, morphology, drug loading, (potential and swelling degree. Mucoadhesive properties were examined using texture analyzer and three different models of adhesive layers--gelatin discs, mucin gel and porcine vaginal mucosa. In vitro drug release, mathematical release profile and physical state of microspheres were also evaluated. The obtained results indicate that sodium alginate is a suitable polymer for developing mucoadhesive dosage forms of metronidazole. The optimal formulation F3 (drug:polymer ratio 1:2 and 1% alginate solution) was characterized by the highest metronidazole loading and sustained drug release. The results of this study indicate promising potential of ALG microspheres as alternative dosage forms for metronidazole delivery.

  11. SEM studies on BSCCO superconducting ceramic produced by spray frozen, freeze drying technique

    NASA Astrophysics Data System (ADS)

    Bunescu, M.-C.; Aldica, G.; Badica, P.; Vasiliu, F.; Nita, P.; Mandache, S.

    1997-02-01

    Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) have been used to evidence the occurrence, morphology and microcomposition of the superconducting phases (Bi,Pb) 2Sr 2Ca 2Cu 3O 10 + δ (2223) and (Bi,Pb) 2Sr 2CaCu 2O 8 + δ (2212), and of other non-superconducting phases, in the sintered pellets obtained from nitrate solution by spray frozen, freeze drying technique. For decomposition of the nitrate powder four different heat treatments were used. Superconducting and structure properties of the pellets have been tested by AC susceptibility measurments (610 Hz, 0.5 Oe) and X-ray diffraction analysis, respectively. A correlation between the SEM and EDS observations and the superconducting properties has been established.

  12. Synthesis of nanostructured magnetic photocatalyst by colloidal approach and spray-drying technique.

    PubMed

    Costa, A L; Ballarin, B; Spegni, A; Casoli, F; Gardini, D

    2012-12-15

    Nanostructured particles with a magnetic core and a photocatalytic shell are very interesting systems for their properties to be magnetically separable (and so reusable) in photocatalytic water depuration implant. Here, a robust, low time-consuming, easily scale up method to produce Fe(3)O(4)/SiO(2)/TiO(2) hierarchical nanostructures starting from commercial precursors (i.e. Fe(3)O(4), SiO(2)) by employing a colloidal approach (i.e. heterocoagulation) coupled with the spray-drying technique is presented. In particular, a self-assembled layer-by-layer methodology based on the coagulation of dissimilar colloidal particles was applied. First, a passive layer of silica (SiO(2), amorphous) was created on magnetite in order to avoid detrimental phenomena arising from the direct contact between magnetite and titania, then the deposition of titania onto silica-coated-magnetite was promoted. TiO(2), SiO(2) and Fe(3)O(4) nanosols were characterized in terms of zeta potential, optimized and a self-assembled layer-by-layer approach was followed in order to promote the heterocoagulation of silica onto magnetite surface and of titania onto silica coated magnetite. Once optimized the colloidal route, the mixture was then spray-dried to obtain a granulated powder with nano-scale reactivity, easier to handle and re-disperse in comparison to starting nanopowders with the same surface properties. The nanostructured particles have been characterized by different techniques such as SEM, TEM, XDR and their magnetic properties have been investigated. Moreover, preliminary photocatalytic texts have been performed.

  13. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique.

    PubMed

    Chauhan, Bhaskar; Shimpi, Shyam; Paradkar, Anant

    2005-10-01

    Solid dispersions (SDs) of glibenclamide (GBM); a poorly water-soluble drug and polyglycolized glycerides (Gelucire with the aid of silicon dioxide (Aerosil 200); as an adsorbent, were prepared by spray drying technique. SDs and spray dried GBM in comparison with pure GBM and corresponding physical mixtures (PMs) were initially characterized and then subjected to ageing study up to 3 months. Initial characterization of SDs and spray dried GBM by DSC and XRPD showed that GBM was present in its amorphous form (AGBM). Improvement in the solubility and dissolution rate was observed for all samples. DRIFT spectroscopy revealed presence of hydrogen bonding in SDs. During ageing study, almost no decrease of in vitro drug dissolution was observed, over the period of 3 months as compare with freshly prepared SDs. Slight crystallinity in SDs was observed in the DSC and XRPD studies during ageing. Moreover in vivo study in Swiss Albino mice also justified the improvement in the therapeutic efficacy of amorphous GBM in SDs over pure GBM. Thus, present study demonstrated the high potential of spray drying technique for obtaining stable free flowing SDs of poorly water-soluble drugs using polyglycolized glycerides carriers with the aid of silicon dioxide as an adsorbent.

  14. Preparation of sustained-release coated particles by novel microencapsulation method using three-fluid nozzle spray drying technique.

    PubMed

    Kondo, Keita; Niwa, Toshiyuki; Danjo, Kazumi

    2014-01-23

    We prepared sustained-release microcapsules using a three-fluid nozzle (3N) spray drying technique. The 3N has a unique, three-layered concentric structure composed of inner and outer liquid nozzles, and an outermost gas nozzle. Composite particles were prepared by spraying a drug suspension and an ethylcellulose solution via the inner and outer nozzles, respectively, and mixed at the nozzle tip (3N-PostMix). 3N-PostMix particles exhibited a corrugated surface and similar contact angles as ethylcellulose bulk, thus suggesting encapsulation with ethylcellulose, resulting in the achievement of sustained release. To investigate the microencapsulation process via this approach and its usability, methods through which the suspension and solution were sprayed separately via two of the four-fluid nozzle (4N) (4N-PostMix) and a mixture of the suspension and solution was sprayed via 3N (3N-PreMix) were used as references. It was found that 3N can obtain smaller particles than 4N. The results for contact angle and drug release corresponded, thus suggesting that 3N-PostMix particles are more effectively coated by ethylcellulose, and can achieve higher-level controlled release than 4N-PostMix particles, while 3N-PreMix particles are not encapsulated with pure ethylcellulose, leading to rapid release. This study demonstrated that the 3N spray drying technique is useful as a novel microencapsulation method. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Enhancement of solubility and antidiabetic effects of Repaglinide using spray drying technique in STZ-induced diabetic rats.

    PubMed

    Varshosaz, Jaleh; Minayian, Mohsen; Ahmadi, Mahdieh; Ghassami, Erfaneh

    2016-02-19

    The purpose of the study was to enhance the solubility of the poorly water-soluble drug, Repaglinide using spray drying based solid dispersion technique by different carriers including Eudragit E100, hydroxyl propyl cellulose Mw 80 000 and poly vinyl pyrollidone K30. Optimization of the best formulation was carried out according to drug solubility, release profile, particle size and angle of repose of the solid dispersions. The optimized sample was characterized using X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). The morphology of the dispersions was studied by SEM. The blood glucose lowering effect of spray dried solid dispersions was studied in normal and streptozocin-induced diabetic rats. The results showed that Eudragit E100 in 1:3 ratio could enhance drug solubility by 100-fold. DSC studies indicated a marked change in melting point of the drug possibly due to strong hydrogen bonds between the drug and Eudragit, while FT-IR study did not show obvious interactions between them. According to XRPD results Repaglinide converted to an amorphous state in the spray dried dispersions. Spray dried Repaglinide reduced the blood glucose level significantly during the 8 h of obtaining blood samples in comparison with untreated drug (p < 0.05).

  16. Preparation and characterization of fast dissolving flurbiprofen and esomeprazole solid dispersion using spray drying technique.

    PubMed

    Pradhan, Roshan; Tran, Tuan Hiep; Kim, Sung Yub; Woo, Kyu Bong; Choi, Yong Joo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-11

    We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept.

  17. Spray drying formulation of amorphous solid dispersions.

    PubMed

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed.

  18. Formulation of inhalable lipid-based salbutamol sulfate microparticles by spray drying technique

    PubMed Central

    2014-01-01

    Background The aim of this work was to develop dry powder inhaler (DPI) formulations of salbutamol sulfate (SS) by the aid of solid lipid microparticles (SLmPs), composed of biocompatible phospholipids or cholesterol. Methods The SLmPs were prepared by using two different solvent systems (ethanol and water-ethanol) and lipid carriers (dipalmitoylphosphatidylcholine (DPPC) and cholesterol) with/without L-leucine in the spray drying process. The spray-dried microparticles were physically-mixed with coarse lactose monohydrate in order to make our final DPI formulations and were investigated in terms of physical characteristics as well as in vitro drug release profile and aerosolization behavior. Results We observed significant differences in the sizes, morphologies, and in vitro pulmonary depositions between the formulations. In particular, the SS-containing SLmPs prepared with water-ethanol (30:70 v/v) solution of DPPC and L-leucine which had then been blended with coarse lactose (1:9 w/w) exhibited the highest emitted dose (87.9%) and fine particle fraction (42.7%) among the formulations. In vitro drug release study indicated that despite of having a significant initial burst release for both cholesterol and DPPC-based microparticles, the remained drug released more slowly than the pure drug. Conclusion This study demonstrated the potential of using lipid carriers as well as L-leucine in DPI formulations of SS to improve its aerosolization behavior and retard the release profile of the drug. PMID:24919924

  19. Improvement of Physico-mechanical Properties of Partially Amorphous Acetaminophen Developed from Hydroalcoholic Solution Using Spray Drying Technique

    PubMed Central

    Sadeghi, Fatemeh; Torab, Mansour; Khattab, Mostafa; Homayouni, Alireza; Afrasiabi Garekani, Hadi

    2013-01-01

    Objective(s): This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen. Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water) of acetaminophen (5% w/v) in the presence of small amounts of polyninylpyrrolidone K30 (PVP) (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight) was carried out. The properties of spray dried particles namely morphology, surface characteristics, particle size, crystallinity, dissolution rate and compactibility were evaluated. Results: Spray drying process significantly changed the morphology of acetaminophen crystals from acicular (rod shape) to spherical microparticle. Differential scanning calorimetery (DSC) and x-ray powder diffraction (XRPD) studies ruled out any polymorphism in spray dried samples, however, a major reduction in crystallinity up to 65%, especially for those containing 5% w/w PVP was observed. Spray dried acetaminophen particles especially those obtained in the presence of PVP exhibited an obvious improvement of the dissolution and compaction properties. Tablets produced from spray dried samples exhibited excellent crushing strengths and no tendency to cap. Conclusions: The findings of this study revealed that spray drying of acetaminophen from hydroalcoholic solution in the presence of small amount of PVP produced partially amorphous particles with improved dissolution and excellent compaction properties. PMID:24379968

  20. Development of biodegradable methylprednisolone microparticles for treatment of articular pathology using a spray-drying technique

    PubMed Central

    Tobar-Grande, Blanca; Godoy, Ricardo; Bustos, Paulina; von Plessing, Carlos; Fattal, Elias; Tsapis, Nicolas; Olave, Claudia; Gómez-Gaete, Carolina

    2013-01-01

    In this work, microparticles were prepared by spray-drying using albumin, chondroitin sulfate, and hyaluronic acid as excipients to create a controlled-release methylprednisolone system for use in inflammatory disorders such as arthritis. Scanning electron microscopy demonstrated that these microparticles were almost spherical, with development of surface wrinkling as the methylprednisolone load in the formulation was increased. The methylprednisolone load also had a direct influence on the mean diameter and zeta potential of the microparticles. Interactions between formulation excipients and the active drug were evaluated by x-ray diffraction, differential scanning calorimetry, and thermal gravimetric analysis, showing limited amounts of methylprednisolone in a crystalline state in the loaded microparticles. The encapsulation efficiency of methylprednisolone was approximately 89% in all formulations. The rate of methylprednisolone release from the microparticles depended on the initial drug load in the formulation. In vitro cytotoxic evaluation using THP-1 cells showed that none of the formulations prepared triggered an inflammatory response on release of interleukin-1β, nor did they affect cellular viability, except for the 9.1% methylprednisolone formulation, which was the maximum test concentration used. The microparticles developed in this study have characteristics amenable to a therapeutic role in inflammatory pathology, such as arthritis. PMID:23737670

  1. Development of biodegradable methylprednisolone microparticles for treatment of articular pathology using a spray-drying technique.

    PubMed

    Tobar-Grande, Blanca; Godoy, Ricardo; Bustos, Paulina; von Plessing, Carlos; Fattal, Elias; Tsapis, Nicolas; Olave, Claudia; Gómez-Gaete, Carolina

    2013-01-01

    In this work, microparticles were prepared by spray-drying using albumin, chondroitin sulfate, and hyaluronic acid as excipients to create a controlled-release methylprednisolone system for use in inflammatory disorders such as arthritis. Scanning electron microscopy demonstrated that these microparticles were almost spherical, with development of surface wrinkling as the methylprednisolone load in the formulation was increased. The methylprednisolone load also had a direct influence on the mean diameter and zeta potential of the microparticles. Interactions between formulation excipients and the active drug were evaluated by x-ray diffraction, differential scanning calorimetry, and thermal gravimetric analysis, showing limited amounts of methylprednisolone in a crystalline state in the loaded microparticles. The encapsulation efficiency of methylprednisolone was approximately 89% in all formulations. The rate of methylprednisolone release from the microparticles depended on the initial drug load in the formulation. In vitro cytotoxic evaluation using THP-1 cells showed that none of the formulations prepared triggered an inflammatory response on release of interleukin-1β, nor did they affect cellular viability, except for the 9.1% methylprednisolone formulation, which was the maximum test concentration used. The microparticles developed in this study have characteristics amenable to a therapeutic role in inflammatory pathology, such as arthritis.

  2. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor

    PubMed Central

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin. PMID:24729702

  3. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor.

    PubMed

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin.

  4. Nano Spray Drying Technique as a Novel Approach To Formulate Stable Econazole Nitrate Nanosuspension Formulations for Ocular Use.

    PubMed

    Maged, Amr; Mahmoud, Azza A; Ghorab, Mahmoud M

    2016-09-06

    The effect of using methyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin as carriers for econazole nitrate nanoparticles prepared by nano spray dryer was explored in this work. Stabilizers, namely, poly(ethylene oxide), polyvinylpyrrolidone k30, poloxamer 407, Tween 80, and Cremophor EL, were used. The nano spray dried formulations revealed almost spherical particles with an average particle size values ranging from 121 to 1565 nm and zeta potential values ranging from -0.8 to -2.5 mV. The yield values for the obtained formulations reached 80%. The presence of the drug in the amorphous state within the nanosuspension matrix system significantly improved drug release compared to that for pure drug. Combination of hydroxypropyl-β-cyclodextrin with Tween 80 achieved an important role for preserving the econazole nanosuspension from aggregation during storage for one year at room temperature as well as improving drug release from the nanosuspension. This selected formulation was suspended in chitosan HCl to increase drug release and bioavailability. The in vivo evaluation on albino rabbit's eyes demonstrated distinctly superior bioavailability of the selected formulation suspended in chitosan compared to its counterpart formulation suspended in buffer and crude drug suspension due to its mucoadhesive properties and nanosize. The nano spray dryer could serve as a one step technique toward formulating stable and effective nanosuspensions.

  5. No Heat Spray Drying Technology

    SciTech Connect

    Beetz, Charles

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  6. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation

    PubMed Central

    Peng, Tingting; Zhang, Xuejuan; Huang, Ying; Zhao, Ziyu; Liao, Qiuying; Xu, Jing; Huang, Zhengwei; Zhang, Jiwen; Wu, Chuan-yu; Pan, Xin; Wu, Chuanbin

    2017-01-01

    An optimum carrier rugosity is essential to achieve a satisfying drug deposition efficiency for the carrier based dry powder inhalation (DPI). Therefore, a non-organic spray drying technique was firstly used to prepare nanoporous mannitol with small asperities to enhance the DPI aerosolization performance. Ammonium carbonate was used as a pore-forming agent since it decomposed with volatile during preparation. It was found that only the porous structure, and hence the specific surface area and carrier density were changed at different ammonium carbonate concentration. Furthermore, the carrier density was used as an indication of porosity to correlate with drug aerosolization. A good correlation between the carrier density and fine particle fraction (FPF) (r2 = 0.9579) was established, suggesting that the deposition efficiency increased with the decreased carrier density. Nanoporous mannitol with a mean pore size of about 6 nm exhibited 0.24-fold carrier density while 2.16-fold FPF value of the non-porous mannitol. The enhanced deposition efficiency was further confirmed from the pharmacokinetic studies since the nanoporous mannitol exhibited a significantly higher AUC0-8h value than the non-porous mannitol and commercial product Pulmicort. Therefore, surface modification by preparing nanoporous carrier through non-organic spray drying showed to be a facile approach to enhance the DPI aerosolization performance. PMID:28462948

  7. Preparation of functional composite particles of salbutamol sulfate using a 4-fluid nozzle spray-drying technique.

    PubMed

    Chen, Richer; Okamoto, Hirokazu; Danjo, Kazumi

    2008-03-01

    A previous study on spray-drying demonstrated that it could promote the solubility of poorly water-soluble drugs using water-soluble polymers. Here, the preparation of composite particles of salbutamol sulfate (Sb) with water-insoluble polymers, such as Eudragit RS (RS) or Eudragit RL (RL) as a carrier, was examined. Despite the water insolubility of both polymers, the permeability of water was low in the former but high in the latter. We attempted to prepare controlled release composite particles by exploiting the characteristics of these carriers. The composite particles of the three components (Sb, RS, and RL) were prepared using a 4-fluid nozzle spray-dryer, and their physico-chemical and dissolution properties were compared with physical mixtures. Examination of particle morphology by scanning electron microscopy (SEM) revealed that the particles from the spray-drying process had atomized to several microns and were spherical. Analysis by X-ray diffraction and differential scanning calorimetry revealed that diffraction peaks and heat of fusion of Sb in the spray-dried samples decreased, indicating that the drug was amorphous and formed a solid dispersion. FT-IR analysis suggested that the amino group of Sb and a carbonyl group of the polymers formed a hydrogen bond. A dissolution test of Sb-RS-RL particles prepared using the 4-fluid nozzle spray-drying method showed that release rates were depressed significantly compared to the physical mixture at pH 1.2 and 6.8, and the depression was greater when RS was used instead of RL, presumably because of the permeability difference. The compression of these particles into tablets revealed that desirable controlled released dosage forms could be prepared. In addition, Sb was used to simulate an anti-asthmatic drug. For this an Andersen cascade impactor for dry powder inhalers was used to investigate delivery to the lungs.

  8. Particle design using a 4-fluid-nozzle spray-drying technique for sustained release of acetaminophen.

    PubMed

    Chen, Richer; Okamoto, Hirokazu; Danjo, Kazumi

    2006-07-01

    We prepared matrix particles of acetaminophen (Act) with chitosan (Cht) as a carrier using a newly developed 4-fluid-nozzle spray dryer. Cht dissolves in acid solutions and forms a gel, but it does not dissolve in alkaline solutions. Therefore, we tested the preparation of controlled release matrix particles using the characteristics of this carrier. Act and Cht mixtures in prescribed ratios were dissolved in an acid solution. We evaluated the matrix particles by preparing a solid dispersion using a 4-fluid-nozzle spray dryer. Observation of the particle morphology by scanning electron microscopy (SEM) revealed that the particles from the spray drying process had atomized to several microns, and that they had become spherical. We investigated the physicochemical properties of the matrix particles by powder X-ray diffraction, differential scanning calorimetry, and dissolution rate analyses with a view to clarifying the effects of crystallinity on the dissolution rate. The powder X-ray diffraction peaks and the heat of the Act fusion in the spray-dried samples decreased with the increase of the carrier content, indicating that the drug was amorphous. These results indicate that the system formed a solid dispersion. Furthermore, we investigated the interaction between the drug and carrier using FT-IR analysis. The FT-IR spectroscopy for the Act solid dispersions suggested that the Act carboxyl group and the Cht amino group formed a hydrogen bond. In addition, the measurement results of the 13C CP/MAS solid-state NMR, indicated that a hydrogen bond had been formed between the Act carbonyl group and the Cht amino group. In the Act-Cht system, the 4-fluid-nozzle spray-dried preparation with a mixing ratio of 1 : 5 obtained a sustained release preparation in all pH test solutions.

  9. Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique

    SciTech Connect

    Ryu, C.K.; Lee, J.B.; Ahn, D.H.; Kim, J.J.; Yi, C.K.

    2002-09-19

    Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermic nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.

  10. Preparation and evaluation of solid dispersion of atorvastatin calcium with Soluplus® by spray drying technique.

    PubMed

    Ha, Eun-Sol; Baek, In-hwan; Cho, Wonkyung; Hwang, Sung-Joo; Kim, Min-Soo

    2014-01-01

    The aim of the present study was to investigate the effect of Soluplus® on the solubility of atorvastatin calcium and to develop a solid dispersion formulation that can improve the oral bioavailability of atorvastatin calcium. We demonstrated that Soluplus® increases the aqueous solubility of atorvastatin calcium. Several solid dispersion formulations of atorvastatin calcium with Soluplus® were prepared at various drug : carrier ratios by spray drying. Physicochemical analysis demonstrated that atorvastatin calcium is amorphous in each solid dispersion, and the 2 : 8 drug : carrier ratio provided the highest degree of sustained atorvastatin supersaturation. Pharmacokinetic analysis in rats revealed that the 2 : 8 dispersion significantly improved the oral bioavailability of atorvastatin. This study demonstrates that spray-dried Soluplus® solid dispersions can be an effective method for achieving higher atorvastatin plasma levels.

  11. Preparation and characterization of microparticles of piroxicam by spray drying and spray chilling methods

    PubMed Central

    Dixit, M.; Kini, A.G.; Kulkarni, P.K.

    2010-01-01

    Piroxicam, an anti-inflammatory drug, exhibits poor water solubility and flow properties, poor dissolution and poor wetting. Consequently, the aim of this study was to improve the dissolution of piroxicam. Microparticles containing piroxicam were produced by spray drying, using isopropyl alcohol and water in the ratio of 40:60 v/v as solvent system, and spray chilling technology by melting the drug and chilling it with a pneumatic nozzle to enhance dissolution rate. The prepared formulations were evaluated for in vitro dissolution and solubility. The prepared drug particles were characterized by scanning electron microscopy (SEM), differential scanning calorimeter, X-ray diffraction and Fourier transform infrared spectroscopy. Dissolution profile of the spray dried microparticles was compared with spray-chilled microparticles, pure and recrystallized samples. Spray dried microparticles and spray chilled microparticles exhibited decreased crystallinity and improved micromeritic properties. The dissolution of the spray dried microparticle and spray chilled particles were improved compared with recrystallized and pure sample of piroxicam. Consequently, it was believed that spray drying of piroxicam is a useful tool to improve dissolution but not in case of spray chilling. This may be due to the degradation of drug or variations in the resonance structure or could be due to minor distortion of bond angles. Hence, this spray drying technique can be used for formulation of tablets of piroxicam by direct compression with directly compressible tablet excipients. PMID:21589797

  12. Particle design of three-component system for sustained release using a 4-fluid nozzle spray-drying technique.

    PubMed

    Chen, Richer; Takahashi, Hirokazu; Okamoto, Hirokazu; Danjo, Kazumi

    2006-11-01

    We prepared composite particles of acetaminophen (Act) with chitosan (Cht) and hydroxypropylmethylcellulose phthalate (HPMCP) as a carrier using a newly developed 4-fluid nozzle spray-dryer. Cht dissolves in acid solutions and forms a gel, but it is insoluble in alkaline solutions. On the other hand, HPMCP is insoluble in acid solutions, but it dissolves in alkaline solutions. Therefore, we tested a preparation of controlled release composite particles using the characteristics of these carriers. Act and Cht mixtures in prescribed ratios were dissolved in an acid solution. Composite particles of Act and HPMCP in prescribed ratios were dissolved in alkaline solutions. We evaluated the composite particles of the three components (Act, Cht, and HPMCP) by preparing solid dispersions using a 4-fluid nozzle spray-dryer. Observation of particle morphology by scanning electron microscopy (SEM) revealed that the particles from the spray-drying process had atomized to several microns and had all become spherical. We investigated the physical properties of the composite particles by powder X-ray diffraction, differential scanning calorimetry, and dissolution rate analysis to clarify the effects of crystallinity on the dissolution rate. Powder X-ray diffraction peaks and the heat of fusion of Act in the spray-dried samples decreased in proportion to the carrier content, indicating that the drug was amorphous. These results indicate that the Act-Cht-HPMCP system formed a solid dispersion. Furthermore, we investigated the interaction between the drug and the carrier using FT-IR analysis. FT-IR spectroscopy of the Act solid dispersions suggested that the Act carbonyl and Cht amino groups formed a hydrogen bond. On the other hand, interaction by hydrogen bond was observed between the carbonyl group of HPMCP with the amino group of Act. In the three-component Act-Cht-HPMCP system, the 4-fluid nozzle spray-dried preparation with a mixing ratio of 1 : 2.5 : 2.5 obtained sustained

  13. Spray Drying as a Processing Technique for Syndiotactic Polystyrene to Powder Form for Part Manufacturing Through Selective Laser Sintering

    NASA Astrophysics Data System (ADS)

    Mys, N.; Verberckmoes, A.; Cardon, L.

    2017-03-01

    Selective laser sintering (SLS) is a rapidly expanding field of the three-dimensional printing concept. One stumbling block in the evolution of the technique is the limited range of materials available for processing with SLS making the application window small. This article aims at identifying syndiotactic polystyrene (sPS) as a promising material. sPS pellets were processed into powder form with a lab-scale spray dryer with vibrating nozzle. This technique is the focus of this scope as it almost eliminates the agglomeration phenomenon often encountered with the use of solution-based processing techniques. Microspheres obtained were characterized in shape and size by scanning electron microscopy and evaluation of the particle size distribution. The effect the processing technique imparts on the intrinsic properties of the material was examined by differential scanning calorimetry analysis.

  14. Spray Drying as a Processing Technique for Syndiotactic Polystyrene to Powder Form for Part Manufacturing Through Selective Laser Sintering

    NASA Astrophysics Data System (ADS)

    Mys, N.; Verberckmoes, A.; Cardon, L.

    2016-11-01

    Selective laser sintering (SLS) is a rapidly expanding field of the three-dimensional printing concept. One stumbling block in the evolution of the technique is the limited range of materials available for processing with SLS making the application window small. This article aims at identifying syndiotactic polystyrene (sPS) as a promising material. sPS pellets were processed into powder form with a lab-scale spray dryer with vibrating nozzle. This technique is the focus of this scope as it almost eliminates the agglomeration phenomenon often encountered with the use of solution-based processing techniques. Microspheres obtained were characterized in shape and size by scanning electron microscopy and evaluation of the particle size distribution. The effect the processing technique imparts on the intrinsic properties of the material was examined by differential scanning calorimetry analysis.

  15. Spray drying as a fast and simple technique for the preparation of extended release dipyridamole (DYP) microparticles in a fixed dose combination (FDC) product with aspirin.

    PubMed

    Hamishehkar, H; Valizadeh, H; Alasty, P; Monajjemzadeh, F

    2014-02-01

    Recent advances have proven that the combinational therapy of extended release dipyridamole (DYP) and fast release aspirin (ASP) can improve clinical indices of heart failure in several vascular disorders. Although pharmaceutical industries always supported fast, simple and cost saving techniques in their productions, there is no simple reported method available for this purpose. The aim of this study was to check the possibility of preparing a FDC product, containing individual dosage units of extended release DYP microparticles and fast release ASP, using the spray-drying technique as a practice compatible with pharmaceutical industries. Solid dispersions of DYP in different polymeric substances (ethyl cellulose, carnauba wax, and Eudragit PO 100), were prepared using the spray-drying method. The physicochemical properties and structure of the prepared microparticles were analyzed using different techniques, such as the particle size analyzer (PSA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X ray diffraction (XRD), and USP dissolution tester. ASP tablets were prepared individually and tested according to pharmacopeia. Results showed that prepared microparticles measured about 2.3 µm in size. Statistical analysis of the release data revealed that there is no significant difference in the mean release amount of the selected formulation compared to the innovative brand (Aggrenox®). Findings proposed a new formulation (F7) as an alternative to innovative brand and proved spray drying as a practice compatible with pharmaceutical industries and as a successful method for sustaining the DYP release rate from prepared microparticles in a FDC dosage form. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Novel spray freeze-drying technique using four-fluid nozzle-development of organic solvent system to expand its application to poorly water soluble drugs.

    PubMed

    Niwa, Toshiyuki; Shimabara, Hiroko; Danjo, Kazumi

    2010-02-01

    Spray freeze-drying (SFD) technique using four-fluid nozzle (4N), which is a novel particle design technique previously developed by authors, has been further developed to expand its application in pharmaceutical industry. The organic solvent was utilized as a spray solvent to dissolve the poorly soluble drug instead of conventional aqueous solution. Acetonitrile solution of the drug and aqueous solution of the polymeric carrier were separately and simultaneously atomized through 4N, and collided each other at the tip of nozzle edge. The spray mists were immediately frozen in the liquid nitrogen to form a suspension. Then, the iced droplets were freeze-dried to prepare the composite particles of the drug and carrier according to our proprietary method developed before. The resultant composite particles with phenytoin prepared by using acetonitrile (4N-SFD-MeCN system) were deeply characterized compared to those using aqueous solution (4N-SFD-aqua system) from morphological and physicochemical perspectives. The characteristic porous structure was observed in 4N-SFD-MeCN particles as well as 4N-SFD-aqua particles. However, it was found that the size and quantity of pore in 4N-SFD-MeCN particles were smaller than those of 4N-SFD-aqua particles. As a result, the former particles had 2- to 3-times smaller specific surface area than the latter particles independent of the type of carrier loaded. The slight difference of release profiles from the particles prepared between both systems was discussed from the microscopically structural viewpoint. In addition, ciclosporin was applied to organic solvent SFD system because this drug was poorly water soluble and cannot be applied to conventional aqueous SFD system. The release profiles from SFD particles were dramatically improved compared to the bulk material, suggesting that the new SFD technique using organic solvent has potential to develop the novel solubilized formulation for poorly water-soluble active pharmaceutical

  17. Nanoencapsulation of water-soluble drug, lamivudine, using a double emulsion spray-drying technique for improving HIV treatment

    NASA Astrophysics Data System (ADS)

    Tshweu, Lesego; Katata, Lebogang; Kalombo, Lonji; Swai, Hulda

    2013-11-01

    Current treatments available for human immunodeficiency virus, namely antiretrovirals, do not completely eradicate the virus from the body, leading to life-time commitment. Many antiretrovirals suffer drawbacks from toxicity and unpleasant side effects, causing patience non-compliance. To minimize challenges associated with the antiretrovirals, biodegradable nanoparticles used as drug delivery systems hold tremendous potential to enhance patience compliance. The main objective of this work was to load lamivudine (LAM) into poly(epsilon-caprolactone) (PCL) nanoparticles. LAM is a hydrophilic drug with low plasma half-life of 5-7 h and several unpleasant side effects. LAM was nanoencapsulated into PCL polymer via the double emulsion spray-drying method. Formulation parameters such as the effect of solvent, excipient and drug concentration were optimized for the synthesis of the nanoparticles. Spherical nanoparticles with an average size of 215 ± 3 nm and polydispersity index (PDI) of 0.227 ± 0.01 were obtained, when ethyl acetate and lactose were used in the preparation. However, dichloromethane presented sizes larger than 454 ± 11 nm with PDI of more than 0.4 ± 0.05, irrespective of whether lactose or trehalose was used in the preparation. Some of the nanoparticles prepared with trehalose resulted in crystal formation. UV spectroscopy showed encapsulation efficiency ranging from 68 ± 4 to 78 ± 4 % for LAM depending on the starting drug concentration. Fourier transform infrared spectroscopy and X-ray diffraction confirmed the possibility of preparing amorphous PCL nanoparticles containing LAM. Drug release extended for 4 days in pH 1.3, pH 4.5 and pH 6.8. These results indicated that LAM-loaded PCL nanoparticles show promise for controlled delivery.

  18. A new approach to prepare well-dispersed CaF(2) nanoparticles by spray drying technique.

    PubMed

    Sun, Limin; Chow, Laurence C; Bonevich, John E; Wang, Tongxin; Mitchell, James W

    2011-08-01

    Previously, nano-sized calcium fluoride (CaF₂) particles were prepared using a spray drying method by simultaneously feeding Ca(OH)₂ and NH₄F solutions to a two-liquid nozzle. The aim of the present study was to prepare better-dispersed nano-CaF₂ particles by co-forming a soluble salt, sodium chloride (NaCl). NaCl of various concentrations were added to the NH(4) F solution, leading to formation of (CaF₂ +NaCl) composites with CaF₂ /NaCl molar ratios of 4/1, 4/4, and 4/16. Pure nano-CaF₂ was also prepared as the control. Powder X-ray diffraction analysis showed that the products contained crystalline CaF₂ and NaCl. Scanning electron microscopy examinations showed that both the CaF₂ /NaCl composite and pure CaF₂ particles were about (50-800) nm in size and consisted of primary CaF₂ particles of < 50 nm in size. BET surface area measurements showed similar primary particle sizes for all samples. Dynamic light scattering measurements showed that the washed (CaF₂+NaCl) particles were much smaller than the pure CaF₂ as the dissolution of NaCl "freed" most of the primary CaF₂ particles, leading to a greater degree of particle dispersion. The well-dispersed nano-CaF₂ may be expected to be a more effective anticaries agent than NaF by providing longer lasting elevations of fluoride concentrations in oral fluids.

  19. Fabrication of FOX-7 quasi-three-dimensional grids of one-dimensional nanostructures via a spray freeze-drying technique and size-dependence of thermal properties.

    PubMed

    Huang, Bing; Qiao, Zhiqiang; Nie, Fude; Cao, Minhua; Su, Jing; Huang, Hui; Hu, Changwen

    2010-12-15

    1,1-Diamino-2,2-dinitroethylene (C(2)H(4)N(4)O(4), FOX-7) quasi-three-dimensional (3D) grids, a promising high-energy-density material with superior sensitivity properties, were synthesized by a spray freeze-drying technique. The FOX-7 3D grids were constructed from one-dimensional nanostructures. The sizes and structures of the FOX-7 3D grids strongly depend on the concentration of the aqueous solution of FOX-7. A possible formation mechanism of this structure was proposed in detail. Thermal analysis reveals that decrease in average particle sizes of FOX-7 grids results in a lower decomposition temperature and a much higher decomposition rate, which is in agreement with those reported about inorganic nanomaterials. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Spray Drying of Mosambi Juice in Lab

    NASA Astrophysics Data System (ADS)

    Singh, S. V.; Verma, A.

    2014-01-01

    The studies on spray drying of mosambi juice were carried out with Laboratory spray dryer set-up (LSD-48 MINI SPRAY DRYER-JISL). Inlet and outlet air temperature and maltodextrin (drying agent) concentration was taken as variable parameters. Experiments were conducted by using 110 °C to 140 °C inlet air temperature, 60 °C to 70 °C outlet air temperature and 5-7 % maltodextrin concentration. The free flow powder of mosambi juice was obtained with 7 % maltodextrin at 140 °C inlet air temperature and 60 °C outlet air temperature. Fresh and reconstituted juices were evaluated for vitamin C, titrable acidity and sensory characteristics. The reconstituted juice was found slightly acceptable by taste panel.

  1. Pharmaceutical Particle Engineering via Spray Drying

    PubMed Central

    2007-01-01

    This review covers recent developments in the area of particle engineering via spray drying. The last decade has seen a shift from empirical formulation efforts to an engineering approach based on a better understanding of particle formation in the spray drying process. Microparticles with nanoscale substructures can now be designed and their functionality has contributed significantly to stability and efficacy of the particulate dosage form. The review provides concepts and a theoretical framework for particle design calculations. It reviews experimental research into parameters that influence particle formation. A classification based on dimensionless numbers is presented that can be used to estimate how excipient properties in combination with process parameters influence the morphology of the engineered particles. A wide range of pharmaceutical application examples—low density particles, composite particles, microencapsulation, and glass stabilization—is discussed, with specific emphasis on the underlying particle formation mechanisms and design concepts. PMID:18040761

  2. Spray freeze drying of YSZ nanopowder

    NASA Astrophysics Data System (ADS)

    Raghupathy, Bala P. C.; Binner, J. G. P.

    2012-07-01

    Spray freeze drying of yttria stabilised zirconia nanopowders with a primary particle size of 16 nm has been undertaken using different solids content starting suspensions, with the effect of the latter on the flowability and crushability of the granules being investigated. The flowability and fill density of the granules increased with an increase in the solid content of the starting suspension, whilst the crushability decreased. The powder flowability, measured using a Hall flowmeter and model shoe-die filling tests, showed that the flowability of otherwise poorly flowable nanopowders can be improved to match that of the commercial spray dried submicron powder. The 5.5 vol.% solid content based suspension yielded soft agglomerates whilst a 28 vol.% solid content suspension formed hard agglomerates on spray freeze drying; the granule relics were visible in the fracture surface of the die pressed green compact in the latter case. The increase in granule strength is explained by the reduction in inter-particle distance based on the theories developed by Rumpf and Kendall. The flaw sizes computed using the Kendall model are comparable with those seen in the micrographs of the granule. With an optimum solid content, it is possible to have a granulated nanopowder with reasonable flowability and compactability resulting in homogeneous green bodies with 54 % of theoretical density.

  3. Detailed fuel spray analysis techniques

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Bosque, M. A.; Humenik, F. M.

    1983-01-01

    Detailed fuel spray analyses are a necessary input to the analytical modeling of the complex mixing and combustion processes which occur in advanced combustor systems. It is anticipated that by controlling fuel-air reaction conditions, combustor temperatures can be better controlled, leading to improved combustion system durability. Thus, a research program is underway to demonstrate the capability to measure liquid droplet size, velocity, and number density throughout a fuel spray and to utilize this measurement technique in laboratory benchmark experiments. The research activities from two contracts and one grant are described with results to data. The experiment to characterize fuel sprays is also described. These experiments and data should be useful for application to and validation of turbulent flow modeling to improve the design systems of future advanced technology engines.

  4. Factors affecting viability of Bifidobacterium bifidum during spray drying.

    PubMed

    Shokri, Zahra; Fazeli, Mohammad Reza; Ardjmand, Mehdi; Mousavi, Seyyed Mohammad; Gilani, Kambiz

    2015-01-25

    There is substantial clinical data supporting the role of Bifidobacterium bifidum in human health particularly in benefiting the immune system and suppressing intestinal infections. Compared to the traditional lyophilization, spray-drying is an economical process for preparing large quantities of viable microorganisms. The technique offers high production rates and low operating costs but is not usually used for drying of substances prone to high temperature. The aim of this study was to establish the optimized environmental factors in spray drying of cultured bifidobacteria to obtain a viable and stable powder. The experiments were designed to test variables such as inlet air temperature, air pressure and also maltodextrin content. The combined effect of these variables on survival rateand moisture content of bacterial powder was studied using a central composite design (CCD). Sub-lethal heat-adaptation of a B. bifidum strain which was previously adapted to acid-bile-NaCl led to much more resistance to high outlet temperature during spray drying. The resistant B. bifidum was supplemented with cost friendly permeate, sucrose, yeast extract and different amount of maltodextrin before it was fed into a Buchi B-191 mini spray-dryer. Second-order polynomials were established to identify the relationship between the responses andthe three variables. Results of verification experiments and predicted values from fitted correlations were in close agreement at 95% confidence interval. The optimal values of the variables for maximum survival and minimum moisture content of B. bifidum powder were as follows: inlet air temperature of 111.15°C, air pressure of 4.5 bar and maltodextrin concentration of 6%. Under optimum conditions, the maximum survival of 28.38% was achieved while moisture was maintained at 4.05%. Viable and cost effective spray drying of Bifidobacterium bifidum could be achieved by cultivating heat and acid adapted strain into the culture media containing

  5. Encapsulation of orange oil in a spray dried double emulsion.

    PubMed

    Edris, A; Bergnståhl, B

    2001-04-01

    Encapsulation is an important technique being used to protect sensitive food materials like flavours from deterioration. The capsule wall isolates them from the atmospheric oxygen, moisture, temperature and light. Encapsulation also masks some objectionable flavours, e.g. fish oil and some bitter antibiotics. In this study orange oil was encapsulated in the inner compartment of a double emulsion belonging to the type O1-W-O2 where O1 is orange oil, W is water and O2 is vegetable oil. In order to make orange oil double emulsion suitable for use in dry mixes, it was secondarily coated with wall materials of lactose and caseinate using spray drying technique. Entrapment of orange oil in such structure is also expected to slow down the release of volatiles and guarantee more protection for orange oil against atmospheric conditions. This method may have a potential application in different types of food or pharmaceutical products where maximum protection for flavours or slow release are required. This study includes detailed preparation of the spray dried double emulsion, evaluation of the encapsulation efficiency using light and scanning electron microscope and calculation of the yield percent of the encapsulated oil. In a separate paper we will examine the efficiency of spray dried double emulsion to control the release of orange oil by GC.

  6. Quality characteristic of spray-drying egg white powders.

    PubMed

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  7. Spray drying of fruit and vegetable juices--a review.

    PubMed

    Verma, Anjali; Singh, Satya Vir

    2015-01-01

    The main cause of spray drying is to increase the shelf life and easy handling of juices. In the present paper, the studies carried out so far on spray drying of various fruits and vegetables are reported. The major fruit juices dried are mango, banana, orange, guava, bayberry, watermelon, pineapple, etc. However, study on vegetable juices is limited. In spray drying, the major optimized parameters are inlet air temperature, relative humidity of air, outlet air temperature, and atomizer speed that are given for a particular study. The juices in spray drying require addition of drying agents that include matlodextrin, liquid glucose, etc. The drying agents are added to increase the glass transition temperature. Different approaches for spray dryer design have also been discussed in the present work.

  8. Microencapsulation of Lactobacillus casei by spray drying.

    PubMed

    Dos Santos, Rebeka Cristiane Silva; Finkler, Leandro; Finkler, Christine Lamenha Luna

    2014-01-01

    This study evaluates the use of spray drying to produce microparticles of Lactobacillus casei. Microorganism was cultivated in shaken flasks and the microencapsulation process was performed using a laboratory-scale spray dryer. A rotational central composite design was employed to optimise the drying conditions. High cell viability (1.1 × 10(10) CFU/g) was achieved using an inlet air temperature of 70 °C and 25% (w/v) of maltodextrin. Microparticles presented values of solubility, wettability, water activity, hygroscopicity and humidity corresponding to 97.03 ± 0.04%, 100% (in 1.16 min), 0.14 ± 0.0, 35.20 g H2O/100 g and 4.80 ± 0.43%, respectively. The microparticles were spherical with a smooth surface and thermally stable. Encapsulation improved the survival of L. casei during storage. After 60 days, the samples stored at -8 °C showed viable cell concentrations of 1.0 × 10(9) CFU/g.

  9. A comparison between use of spray and freeze drying techniques for preparation of solid self-microemulsifying formulation of valsartan and in vitro and in vivo evaluation.

    PubMed

    Singh, Sanjay Kumar; Vuddanda, Parameswara Rao; Singh, Sanjay; Srivastava, Anand Kumar

    2013-01-01

    The objective of the present study was to develop self micro emulsifying formulation (SMEF) of valsartan to improve its oral bioavailability. The formulations were screened on the basis of solubility, stability, emulsification efficiency, particle size and zeta potential. The optimized liquid SMEF contains valsartan (20% w/w), Capmul MCM C8 (16% w/w), Tween 80 (42.66% w/w) and PEG 400 (21.33% w/w) as drug, oil, surfactant and co-surfactant, respectively. Further, Liquid SMEF was adsorbed on Aerosol 200 by spray and freeze drying methods in the ratio of 2 : 1 and transformed into free flowing powder. Both the optimized liquid and solid SMEF had the particle size <200 nm with rapid reconstitution properties. Both drying methods are equally capable for producing stable solid SMEF and immediate release of drug in in vitro and in vivo conditions. However, the solid SMEF produced by spray drying method showed high flowability and compressibility. The solid state characterization employing the FTIR, DSC and XRD studies indicated insignificant interaction of drug with lipid and adsorbed excipient. The relative bioavailability of solid SMEF was approximately 1.5 to 3.0 folds higher than marketed formulation and pure drug. Thus, the developed solid SMEF illustrates an alternative delivery of valsartan as compared to existing formulations with improved bioavailability.

  10. A Comparison between Use of Spray and Freeze Drying Techniques for Preparation of Solid Self-Microemulsifying Formulation of Valsartan and In Vitro and In Vivo Evaluation

    PubMed Central

    Singh, Sanjay Kumar; Vuddanda, Parameswara Rao; Singh, Sanjay; Srivastava, Anand Kumar

    2013-01-01

    The objective of the present study was to develop self micro emulsifying formulation (SMEF) of valsartan to improve its oral bioavailability. The formulations were screened on the basis of solubility, stability, emulsification efficiency, particle size and zeta potential. The optimized liquid SMEF contains valsartan (20% w/w), Capmul MCM C8 (16% w/w), Tween 80 (42.66% w/w) and PEG 400 (21.33% w/w) as drug, oil, surfactant and co-surfactant, respectively. Further, Liquid SMEF was adsorbed on Aerosol 200 by spray and freeze drying methods in the ratio of 2 : 1 and transformed into free flowing powder. Both the optimized liquid and solid SMEF had the particle size <200 nm with rapid reconstitution properties. Both drying methods are equally capable for producing stable solid SMEF and immediate release of drug in in vitro and in vivo conditions. However, the solid SMEF produced by spray drying method showed high flowability and compressibility. The solid state characterization employing the FTIR, DSC and XRD studies indicated insignificant interaction of drug with lipid and adsorbed excipient. The relative bioavailability of solid SMEF was approximately 1.5 to 3.0 folds higher than marketed formulation and pure drug. Thus, the developed solid SMEF illustrates an alternative delivery of valsartan as compared to existing formulations with improved bioavailability. PMID:23971048

  11. Combined control of morphology and polymorph in spray drying of mannitol for dry powder inhalation

    NASA Astrophysics Data System (ADS)

    Lyu, Feng; Liu, Jing J.; Zhang, Yang; Wang, Xue Z.

    2017-06-01

    The morphology and polymorphism of mannitol particles were controlled during spray drying with the aim of improving the aerosolization properties of inhalable dry powders. The obtained microparticles were characterized using scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation impactor. Mannitol particles of varied α-mannitol content and surface roughness were prepared via spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the fine particle fraction was increased by the rough surface of carriers and the high α-mannitol content. Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective method to engineer particles for dry powder inhalation.

  12. The preparation of steatite suspension for spray drying

    NASA Technical Reports Server (NTRS)

    Jirousek, L.; Spicak, K.

    1983-01-01

    Liquifying agents were investigated for preparation of highly concentrated steatite suspensions which are to be spray-dried. Organic additives for improving the molding properties and strength of green compacts are described. Demands on properties of the spray-dried granules are defined with regard to shrinkage of the molded compacts.

  13. Preparation of nanoscale pulmonary drug delivery formulations by spray drying.

    PubMed

    Bohr, Adam; Ruge, Christian A; Beck-Broichsitter, Moritz

    2014-01-01

    Advances in preparation technologies for nanomedicines have provided novel formulations for pulmonary drug delivery. Application of drugs via the lungs can be considered as one of the most attractive implementations of nanoparticles for therapeutic use due to the unique anatomy and physiology of the lungs. The colloidal nature of nanoparticles provides important advantages to the formulation of drugs, which are normally difficult to administer due to poor stability or uptake, partly because nanoparticles protect the drug from the physiological milieu, facilitate transport across biological barriers and can offer controlled drug release. There are numerous methods for producing therapeutic nanoparticles, each with their own advantages and suitable application. Liquid atomization techniques such as spray drying can produce nanoparticle formulations in a dry powder form suitable for pulmonary administration in a direct one-step process. This chapter describes the different state-of-the-art techniques used to prepare drug nanoparticles (with special emphasize on spray drying techniques) and the strategies for administering such unique formulations to the pulmonary environment.

  14. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  15. A statistical approach to optimize the spray drying of starch particles: application to dry powder coating.

    PubMed

    Bilancetti, Luca; Poncelet, Denis; Loisel, Catherine; Mazzitelli, Stefania; Nastruzzi, Claudio

    2010-09-01

    This article describes the preparation of starch particles, by spray drying, for possible application to a dry powder coating process. Dry powder coating consists of spraying a fine powder and a plasticizer on particles. The efficiency of the coating is linked to the powder morphological and dimensional characteristics. Different experimental parameters of the spray-drying process were analyzed, including type of solvent, starch concentration, rate of polymer feeding, pressure of the atomizing air, drying air flow, and temperature of drying air. An optimization and screening of the experimental parameters by a design of the experiment (DOE) approach have been done. Finally, the produced spray-dried starch particles were conveniently tested in a dry coating process, in comparison to the commercial initial starch. The obtained results, in terms of coating efficiency, demonstrated that the spray-dried particles led to a sharp increase of coating efficiency value.

  16. Developments in the Formulation and Delivery of Spray Dried Vaccines.

    PubMed

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-09-19

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.

  17. Carotenoids microencapsulation by spray drying method and supercritical micronization.

    PubMed

    Janiszewska-Turak, Emilia

    2017-09-01

    Carotenoids are used as natural food colourants in the food industry. As unstable natural pigments they need protection. This protection can involve the microencapsulation process. There are numerous techniques that can be used for carotenoid protection, but two of them -spray drying and supercritical micronization - are currently the most commonly used. The objective of this paper is to describe these two techniques for carotenoid microencapsulation. In this review information from articles from the last five years was taken into consideration. Pigments described in the review are all carotenoids. Short summary of carotenoids sources was presented. For the spray drying technique, a review of carrier material and process conditions was made. Moreover, a short description of some of the most suitable processes involving supercritical fluids for carotenoids (astaxanthin, β-carotene, lutein and lycopene) encapsulation was given. These include the Supercritical Antisolvent process (SAS), Particles from Gas-Saturated Solutions (PGSS), Supercritical Fluid Extraction From an Emulsion (SFEE) and Solution Enhanced Dispersion by Supercritical fluids (SEDS). In most cases the studies, independently of the described method, were conducted on the laboratory scale. In some a scale-up was also tested. In the review a critical assessment of the used methods was made. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.

    PubMed

    Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi

    2013-04-15

    Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes.

  19. Encapsulation of alcohol dehydrogenase in mannitol by spray drying.

    PubMed

    Shiga, Hirokazu; Joreau, Hiromi; Neoh, Tze Loon; Furuta, Takeshi; Yoshii, Hidefumi

    2014-03-24

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably due to the quick crystallization of mannitol during spray drying that resulted in the impairment of enzyme protection ability in comparison to its amorphous form. Maltodextin (dextrose equivalent = 11) was used to reduce the crystallization of mannitol. The addition of maltodextrin increased ADH activity and drastically changed the powder X-ray diffractogram of the spray-dried powders.

  20. Microencapsulation of soybean oil by spray drying using oleosomes

    NASA Astrophysics Data System (ADS)

    Maurer, S.; Ghebremedhin, M.; Zielbauer, B. I.; Knorr, D.; Vilgis, T. A.

    2016-02-01

    The food industry has discovered that oleosomes are beneficial as carriers of bioactive ingredients. Oleosomes are subcellular oil droplets typically found in plant seeds. Within seeds, they exist as pre-emulsified oil high in unsaturated fatty acids, stabilised by a monolayer of phospholipids and proteins, called oleosins. Oleosins are anchored into the oil core with a hydrophobic domain, while the hydrophilic domains remain on the oleosome surface. To preserve the nutritional value of the oil and the function of oleosomes, microencapsulation by means of spray drying is a promising technique. For the microencapsulation of oleosomes, maltodextrin was used. To achieve a high oil encapsulation efficiency, optimal process parameters needed to be established. In order to better understand the mechanisms of drying behind powder formation and the associated powder properties, the findings obtained using different microscopic and spectroscopic measurements were correlated with each other. By doing this, it was found that spray drying of pure oleosome emulsions resulted in excessive component segregation and thus in a poor encapsulation efficiency. With the addition of maltodextrin, the oil encapsulation efficiency was significantly improved.

  1. Preservation of probiotic strains isolated from kefir by spray drying.

    PubMed

    Golowczyc, M A; Silva, J; Abraham, A G; De Antoni, G L; Teixeira, P

    2010-01-01

    This work aims to investigate the survival of Lactobacillus kefir CIDCA 8348, Lactobacillus plantarum CIDCA 83114 and Saccharomyces lipolytica CIDCA 812, all isolated from kefir, during spray drying and subsequent storage. Micro-organisms were grown in De Man, Rogosa, Sharpe (MRS) or yeast medium (YM) medium and harvested in the stationary phase of growth. The thermotolerance in skim milk (D and Z values), the survival of spray drying at different outlet air temperatures and subsequent storage in different conditions during 150 days were studied. The resistance to the heat treatments was higher in Lact. plantarum compared to Lact. kefir and S. lipolytica. The three micro-organisms studied varied considerably in their ability to survive to spray drying processes. Lactobacillus plantarum showed the highest survival rate for all the tested outlet air temperatures and also to the further storage in the dried state. The survival rates of Lact. kefir and S. lipolytica through drying and subsequent storage in the dried state decreased when the drying outlet air temperatures increased. Spray drying is a suitable method to preserve micro-organisms isolated from kefir grains. A high proportion of cells were still viable after 80 days of storage at refrigerated temperatures. It is the first report about spray-dried probiotic strains isolated from kefir grain and contributes to the knowledge about these micro-organisms for their future application in novel dehydrated products.

  2. Cellulose acetate butyrate and polycaprolactone for ketoprofen spray-dried microsphere preparation.

    PubMed

    Giunchedi, P; Conti, B; Maggi, L; Conte, U

    1994-01-01

    Ketoprofen-loaded microspheres made with a polymeric blend were prepared by a spray-drying technique. Organic solutions of two polymers, cellulose acetate butyrate (CAB) and poly(epsilon-caprolactone) (PCL), in different weight ratios, and of ketoprofen (Ket) were prepared and sprayed, in different experimental conditions, achieving drug-loaded microspheres. The obtained spray-dried microspheres were characterized in terms of yield of production, shape, size, surface properties and drug content, and their in vitro drug release behaviours were determined at different pH values.

  3. Fungitoxicity of lyophilized and spray-dried garlic extracts.

    PubMed

    Tedeschi, Paola; Maietti, Annalisa; Boggian, Marisa; Vecchiati, Giorgio; Brandolini, Vincenzo

    2007-01-01

    Among the compounds discussed for anti-microbial and anti-fungal use allicin (allylthiosulfinate, diallyl disulfide-S-monoxide), an active ingredient of garlic, has attracted considerable attention. The objective of this study is to determine the antifungal activity of a local garlic ecotype (Voghiera) extracts against different pathogens. Primary screening was carried out by the agar plates technique using ethanol garlic extract at four final concentrations against the following organisms: Alternaria alternata, Aspergillus spp., Colletotrichum acutatum, Didymella bryoniae, Fusarium culmorum, Fusarium avenaceum, Fusarium gramineareum, Gliocladium roseum 47, Pythium splendens, Rhizoctonia solani, Sclerotium rolfsii, Stemphylium vesicarium, Trichoderma longibranchiatum, and Botrytis cinerea. Secondary screening was carried out using a lyophilized and a spray-dried preparation at different concentrations against the organisms selected for the high inhibition garlic effect in the primary screening and compared with the commercial fungicides mancozeb and iprodione. The best results were observed for the spray-dried garlic compound that showed a good fungicidal activity at the concentration of 1.5 g/10 mL while lyophilized garlic at the same concentration exhibited less inhibition activity against the four fungi analyzed in the second screening.

  4. Spray drying of siRNA-containing PLGA nanoparticles intended for inhalation.

    PubMed

    Jensen, Ditte Marie Krohn; Cun, Dongmei; Maltesen, Morten Jonas; Frokjaer, Sven; Nielsen, Hanne Mørck; Foged, Camilla

    2010-02-25

    Local delivery of small interfering RNA (siRNA) to the lungs constitutes a promising new area in drug delivery. The present study evaluated parameters of importance for spray drying of siRNA-loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) into nanocomposite microparticles intended for inhalation. The spray drying process was optimised using a statistical design of experiment and by evaluating powder characteristics upon systematic variation of the formulation parameters. Concentration, carbohydrate excipient (trehalose, lactose and mannitol) and the ratio of NP to excipient were varied to monitor the effects on moisture content, particle morphology, particle size and powder yield. The identified optimum conditions were applied for spray drying of siRNA-loaded nanocomposite microparticles, resulting in a product with a low water content (0.78% w/w) and an aerodynamic particle diameter considered suitable for inhalation. The use of mannitol in the formulation allowed a significantly lower moisture content than trehalose and lactose. The inclusion of 50% (w/w) or higher amounts of NPs resulted in a marked change in the surface morphology of the spray-dried particles. Importantly, the integrity and biological activity of the siRNA were preserved during the spray drying process. In conclusion, the present results show that spray drying is a suitable technique for producing nanocomposite microparticles comprising siRNA-containing PLGA NPs for potential use in inhalation therapy.

  5. Effect of cholesterol on the properties of spray-dried lysozyme-loaded liposomal powders.

    PubMed

    Charnvanich, Dusadee; Vardhanabhuti, Nontima; Kulvanich, Poj

    2010-06-01

    The influence of cholesterol (Chol) in the liposomal bilayer on the properties of inhalable protein-loaded liposomal powders prepared by spray-drying technique was investigated. Lysozyme (LSZ) was used as a model protein. Feed solution for spray drying was prepared by direct mixing of aqueous solution of LSZ with mannitol solution and empty liposome dispersions composed of hydrogenated phosphatidylcholine and Chol at various molar ratios. The spray-dried powders were characterized with respect to morphology, thermal property, and crystallinity using scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction, respectively. Most formulations gave slightly aggregated, spherical particles, and percentage yields of the spray-dried powders decreased with increasing Chol content. Degree of particle aggregation depended on the powder composition. The powders spontaneously formed liposomes which efficiently entrapped LSZ after reconstitution with HEPES buffered saline (HBS) at 37 degrees C. Lysozyme entrapment efficiency and size distribution of the reconstituted liposomes were evaluated after the powders were reconstituted with HBS. Increasing Chol content resulted in a decrease in size of the reconstituted liposomes and an increase in entrapment efficiency of LSZ. These results correlated with thermal behaviors of the reconstituted liposomes. Biological activity of LSZ was not affected by the spray-drying process. It was also demonstrated that LSZ-loaded liposomal powders could be produced without the need to preload the LSZ into liposomes prior to spray-drying process.

  6. Encapsulation of shiitake (Lenthinus edodes) flavors by spray drying.

    PubMed

    Shiga, Hirokazu; Yoshii, Hidefumi; Ohe, Hisashi; Yasuda, Masahumi; Furuta, Takeshi; Kuwahara, Hiroshige; Ohkawara, Masaaki; Linko, Pekka

    2004-01-01

    Powdery encapsulation of shiitake flavors, extracted from dried shiitake, was investigated by spray drying. Flavor retention increased with an increase in drying air temperature and solid content, and decreased with an increase in dextrose equivalents of maltodextrin. A heat-treatment of the extract liquid made the lenthionine concentration increase, but did not influence the concentrations of the other flavors. The formation of lenthionine with heat-treatment could be described by the consecutive unimolecular-type first order reaction. Lenthionine content in a spray-dried powder prepared with the heated extracted liquid significantly increased. alpha-Cyclodextrin was the most suitable encapsulant of alpha-, beta-, and gamma-cyclodextrins to prepare the spray-dried powder, including lenthionine. The flavor retentions were markedly increased by using of alpha-cyclodextrin and maltodextrin in combination as an encapsulant.

  7. Presence of electrostatically adsorbed polysaccharides improves spray drying of liposomes.

    PubMed

    Karadag, Ayse; Özçelik, Beraat; Sramek, Martin; Gibis, Monika; Kohlus, Reinhard; Weiss, Jochen

    2013-02-01

    Spray drying of liposomes with conventional wall materials such as maltodextrins often yields nonfunctional powders, that is, liposomes break down during drying and rehydration. Electrostatically coating the surface of liposomes with a charged polymer prior to spray drying may help solve this problem. Anionic lecithin liposomes (approximately 400 nm) were coated with lower (approximately 500 kDa, LMW-C) or higher (approximately 900 kDa, HMW-C) molecular weight cationic chitosan using the layer-by-layer depositing method. Low (DE20, LMW-MD) or high molecular weight (DE2, HMW-MD) maltodextrin was added as wall material to facilitate spray drying. If surfaces of liposomes (1%) were completely covered with chitosan (0.4%), no bridging or depletion flocculation would occur, and mean particle diameters would be approximately 500 nm. If maltodextrins (20%) were added to uncoated liposomes, extensive liposomal breakdown would occur making the system unsuitable for spray drying. No such aggregation or breakdown was observed when maltodextrin was added to chitosan-coated liposomes. Size changed little or even decreased slightly depending on the molecular weight of maltodextrin added. Scanning electron microscopy images of powders containing chitosan-coated liposomes revealed that their morphologies depended on the type of maltodextrin added. Powders prepared with LMW-MD contained mostly spherical particles while HMW-MD powders contained particles with concavities and dents. Upon redispersion, coated liposomes yielded back dispersions with particle size distributions similar to the original ones, except for LMW-C coated samples that had been spray dried with HMW-MD which yielded aggregates (approximately 30 μm). Results show that coating of liposomes with an absorbing polymer allows them to be spray dried with conventional maltodextrin wall materials. Liposomes have attracted considerable attention in the food and agricultural, biomedical industries for the delivery of

  8. Development of spraying agent for reducing drying shrinkage of mortar

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hiromi; Maruoka, Masanori; Liu, Lingling

    2017-02-01

    Mortar used to repair is sometimes exposed to drying state in early ages after construction and a few days later water is sprayed frequently on the surface of the mortar in order to prevent cracks. This research studied on shrinkage characteristic of mortar subjected to drying conditions like this. The result showed that the water spraying on the mortar after initial drying did not have any effect to prevent shrinkage, but increased. And it also showed when various chemical agents are mixed and used in watersprayingit had the prevention effect on shrinkage. This report was to understand this kind of phenomenon and clarify the mechanism. In addition, based on the results, the new spraying agent was developed to reduce drying shrinkage.

  9. Spray granulation: importance of process parameters on in vitro and in vivo behavior of dried nanosuspensions.

    PubMed

    Figueroa, Carlos E; Bose, Sonali

    2013-11-01

    The use of fluid bed granulation for drying of pharmaceutical nanoparticulates on micron-sized granule substrates is a relatively new technique, with limited understanding in the current literature of the effects of process parameters on the physical properties of the dried nanoparticle powders. This work evaluated the effects of spray mode, spray rate and atomizing pressure for spray granulation of drug nanosuspensions through a systematic study. Naproxen and a proprietary Novartis compound were converted into nanosuspensions through wet media milling and dried onto a mannitol based substrate using spray granulation. For naproxen, various physical properties of the granules, as well as the in vitro re-dispersion and dissolution characteristics of the nano-crystals, were measured. It was found that the spray mode had the most drastic effect, where top spray yielded smaller re-dispersed particle sizes and faster release rates of drug from granules than bottom spray. This was attributed to the co-current spraying in bottom spray resulting in denser, homogenous films on the substrate. Similar in vitro results were obtained for the proprietary molecule, Compound A. In vivo studies in beagle dogs with Compound A showed no significant difference between the liquid and the dried forms of the nanosuspension in terms of overall AUC, differences were observed in the tmax which correlated with the rank ordering observed from the in vitro dissolution profiles. These findings make spray granulation amenable to the production of powders with desired processing and handling properties, without compromising the overall exposure of the compound under investigation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. [Dissolution characteristics of composite particles using a spray freeze drying].

    PubMed

    Kondo, Masahiro; Niwa, Toshiyuki; Danjo, Kazumi

    2011-01-01

    A spray freeze drying (SFD) method, using a spray nozzle, liquid N(2) and a lyophilizer, was developed to prepare composite particles of a poorly water-soluble drug. The resultant particles were found to have a porous structure. The purpose of the present research was to prepare a sustained release formulation using the SFD technique. Tolbutamide (TBM)and Eudragit S were used as model drugs and pH-dependent carrier, respectively. Eudragit S is a polymer that is soluble at or above pH 7.0. Morphological evaluation of the composite particles revealed that they had a porous structure with a significantly larger specific surface area than bulk TBM. The physicochemical properties of the particles were found to be dependent on the drug to carrier ratio, with the crystallinity of the TBM decreasing as the proportion of Eudragit S increased. Dissolution tests in solutions of pH 1.2 and pH 6.8 showed that the release profiles of TBM from the SFD composite particles were improved compared to bulk TBM, through the use of the pH-dependent carrier. On the other hand, following compression of the composite particles, sustained release was observed in a solution of pH 6.8, whereas almost no dissolution occurred in a solution of pH 1.2.

  11. The impact of atomization on the surface composition of spray-dried milk droplets.

    PubMed

    Foerster, Martin; Gengenbach, Thomas; Woo, Meng Wai; Selomulya, Cordelia

    2016-04-01

    The dominant presence of fat at the surface of spray-dried milk powders has been widely reported in the literature and described as resulting in unfavourable powder properties. The mechanism(s) causing this phenomenon are yet to be clearly identified. A systematic investigation of the component distribution in atomized droplets and spray-dried particles consisting of model milk systems with different fat contents demonstrated that atomization strongly influences the final surface composition. Cryogenic flash-freezing of uniform droplets from a microfluidic jet nozzle directly after atomization helped to distinguish the influence of the atomization stage from the drying stage. It was confirmed that the overrepresentation of fat on the surface is independent of the atomization technique, including a pressure-swirl single-fluid spray nozzle and a pilot-scale rotary disk spray dryer commonly used in industry. It is proposed that during the atomization stage a disintegration mechanism along the oil-water interface of the fat globules causes the surface predominance of fat. X-ray photoelectron spectroscopic measurements detected the outermost fat layer and some adjacent protein present on both atomized droplets and spray-dried particles. Confocal laser scanning microscopy gave a qualitative insight into the protein and fat distribution throughout the cross-sections, and confirmed the presence of a fat film along the particle surface. The film remained on the surface in the subsequent drying stage, while protein accumulated underneath, driven by diffusion. The results demonstrated that atomization induces component segregation and fat-rich surfaces in spray-dried milk powders, and thus these cannot be prevented by adjusting the spray drying conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Encapsulation of black carrot juice using spray and freeze drying.

    PubMed

    Murali, S; Kar, Abhijit; Mohapatra, Debabandya; Kalia, Pritam

    2015-12-01

    Black carrot juice extracted using pectinase enzyme was encapsulated in three different carrier materials (maltodextrin 20DE, gum arabic and tapioca starch) using spray drying at four inlet temperatures (150, 175, 200 and 225 ℃) and freeze drying at a constant temperature of - 53 ℃ and vacuum of 0.22-0.11 mbar with the constant feed mixture. The products were analyzed for total anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and total colour change. For both the drying methods followed in this study, maltodextrin 20DE as the carrier material has proven to be better in retaining maximum anthocyanin and antioxidant activity compared to gum arabic and tapioca starch. The best spray dried product, was obtained at 150 ℃. The most acceptable was the freeze dried product with maximum anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and colour change.

  13. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation.

    PubMed

    Bittner, B; Mäder, K; Kroll, C; Borchert, H H; Kissel, T

    1999-05-01

    Tetracycline-HCl (TCH)-loaded microspheres were prepared from poly(lactide-co-glycolide) (PLGA) by spray drying. The drug was incorporated in the polymer matrix either in solid state or as w/o emulsion. The spin probe 4-hydroxy-2,2,6, 6-tetramethyl-piperidine-1-oxyl (TEMPOL) and the spin trap tert-butyl-phenyl-nitrone (PBN) were co-encapsulated into the TCH-loaded and placebo particles. We investigated the effects of gamma-irradiation on the formation of free radicals in polymer and drug and the mechanism of chain scission after sterilization. Gamma-Irradiation was performed at 26.9 and 54.9 kGy using a 60Co source. The microspheres were characterized especially with respect to the formation of radicals and in vitro polymer degradation. Electron paramagnetic resonance (EPR) spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectroscopy (GC-MS), and scanning electron microscopy (SEM) were used for characterization of the microspheres. Using EPR spectroscopy, we successfully detected gamma-irradiation induced free radicals within the TCH-loaded microspheres, while unloaded PLGA did not contain radicals under the same conditions. The relatively low glass transition temperature of the poly(dl-lactide-co-glycolide) (37-39 degrees C) seems to favor subsequent reactions of free radicals due to the high mobility of the polymeric chains. Because of the high melting point of TCH (214 degrees C), the radicals can only be stabilized in drug loaded microspheres. In order to determine the mechanism of polymer degradation after exposure to gamma-rays, the spin trap PBN and the spin probe TEMPOL were encapsulated in the microspheres. gamma-Irradiation of microspheres containing PBN resulted in the formation of a lipophilic spin adduct, indicating that a polymeric radical was generated by random chain scission. Polymer degradation by an unzipping mechanism would have

  14. Generation of 1:1 Carbamazepine:Nicotinamide cocrystals by spray drying.

    PubMed

    Patil, Shashank P; Modi, Sameer R; Bansal, Arvind K

    2014-10-01

    The present study investigates the potential of spray drying as a technique for generation of pharmaceutical cocrystals. Carbamazepine-Nicotinamide cocrystal (CNC) was chosen as model cocrystal system for this study. Firstly, CNC was generated using liquid assisted grinding and used for generation of phase solubility diagram (PSD) and ternary phase diagram (TPD). Both PSD and TPD were carefully evaluated for phase behavior of CNC when equilibrated with solvent. The undersaturated region with respect to CNC, as depicted by TPD, was selected as target region to initiate cocrystallization experiments. Various points in this region, representative of different compositions of Carbamazepine, Nicotinamide and CNC, were selected and spray drying was carried out. The spray dried product was characterized for solid state properties and was compared with CNC generated by liquid assisted grinding. Spray drying successfully generated CNC of similar quality as those generated by liquid assisted grinding. Moreover, there was no significant impact of process variables on formation of CNC. Spray drying, owing to its simplicity and industrial scalability, can be a promising method for large scale cocrystal generation.

  15. Using complexation for the microencapsulation of nisin in biopolymer matrices by spray-drying.

    PubMed

    Ben Amara, Chedia; Kim, Lanhee; Oulahal, Nadia; Degraeve, Pascal; Gharsallaoui, Adem

    2017-12-01

    The aim of this study is to investigate the potential of complexation to encapsulate nisin (5g/L concentration) using spray-drying technique and to evaluate how complexation with pectin or alginate (2g/L concentration) can preserve nisin structure and antimicrobial activity. Spray-drying of nisin-low methoxyl pectin or nisin-alginate electrostatic complexes has led to the microencapsulation of the peptide in different networks that were highly influenced by the polysaccharide type. Turbidity and particle size measurements indicated that while spray-drying promoted the aggregation of nisin-pectin complexes, it favored the dissociation of nisin-alginate aggregates to form individual complexes. Structural changes of nisin induced by complexation with pectin or alginate and spray-drying were studied by using UV-Vis absorption and fluorescence spectroscopy. The results showed that complexation with pectin or alginate preserved nisin structure as well as its antimicrobial activity during spray-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Protective effect of sucrose on spray drying of oxyhemoglobin.

    PubMed

    Labrude, P; Rasolomanana, M; Vigneron, C; Thirion, C; Chaillot, B

    1989-03-01

    As far as we know, spray drying has previously not been applied to oxyhemoglobin, undoubtedly because of the sensitivity of oxyhemoglobin to temperature and oxidation. Our experience with freeze drying encouraged us to perform spray-drying trials in order to compare the results of the two methods, in the absence and the presence of protective compounds. Spray drying of hemoglobin without a protective compound led, as in freeze drying, to formation of a percentage of methemoglobin (50%) that makes it unsuitable for transporting oxygen. In the presence of 0.25 M sucrose (optimum) and at 80-100 degrees C, the functional properties of the hemoglobin were well preserved (methemoglobin approximately 4%), and the residual humidity was limited to approximately 3%. Structural investigation by optical circular dichroism confirmed the results obtained by freeze drying: in the presence of an effective protector, the spectra were similar to those of control hemoglobin and the immediate environment of the heme did not undergo any major change. Electron spin resonance absorption bands in all samples were similar for each value of the spectral decomposition factor, g. This suggests that the structure of the heme is not altered by desiccation and that the protector does not penetrate into the heme pocket since it would have disturbed the symmetry of the crystalline field. Fundamentally, these results are equivalent or similar to those observed with freeze drying; since spray drying is a different process of dehydration, the results indicate a lack of specificity in the phenomena of oxidation or of protection affecting hemoglobin.

  17. Powder compression mechanics of spray-dried lactose nanocomposites.

    PubMed

    Hellrup, Joel; Nordström, Josefina; Mahlin, Denny

    2017-02-25

    The aim of this study was to investigate the structural impact of the nanofiller incorporation on the powder compression mechanics of spray-dried lactose. The lactose was co-spray-dried with three different nanofillers, that is, cellulose nanocrystals, sodium montmorillonite and fumed silica, which led to lower micron-sized nanocomposite particles with varying structure and morphology. The powder compression mechanics of the nanocomposites and physical mixtures of the neat spray-dried components were evaluated by a rational evaluation method with compression analysis as a tool, using the Kawakita equation and the Shapiro-Konopicky-Heckel equation. Particle rearrangement dominated the initial compression profiles due to the small particle size of the materials. The strong contribution of particle rearrangement in the materials with fumed silica continued throughout the whole compression profile, which prohibited an in-depth material characterization. However, the lactose/cellulose nanocrystals and the lactose/sodium montmorillonite nanocomposites demonstrated high yield pressure compared with the physical mixtures indicating increased particle hardness upon composite formation. This increase has likely to do with a reinforcement of the nanocomposite particles by skeleton formation of the nanoparticles. In summary, the rational evaluation of mechanical properties done by applying powder compression analysis proved to be a valuable tool for mechanical evaluation for this type of spray-dried composite materials, unless they demonstrate particle rearrangement throughout the whole compression profile.

  18. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    PubMed

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules.

  19. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.

    PubMed

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla

    2013-05-10

    Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations.

  20. Effect of drying parameters on physiochemical and sensory properties of fruit powders processed by PGSS-, Vacuum- and Spray-drying.

    PubMed

    Feguš, Urban; Žigon, Uroš; Petermann, Marcus; Knez, Željko

    2015-01-01

    Aim of this experimental work was to investigate the possibility of producing fruit powders without employing drying aid and to investigate the effect of drying temperatures on the final powder characteristics. Raw fruit materials (banana puree, strawberry puree and blueberry concentrate) were processed using three different drying techniques each operating at a different temperature conditions: vacuum-drying (-27-17 °C), Spray-drying (130-160 °C) and PGSS-drying (112-152 °C). Moisture content, total colour difference, antioxidant activity and sensory characteristics of the processed fruit powders were analysed. The results obtained from the experimental work indicate that investigated fruit powders without or with minimal addition of maltodextrin can be produced. Additionally, it was observed that an increase in process temperature results in a higher loss of colour, antioxidant activity and intensity of the flavour profile.

  1. Crystallization of spray-dried lactose/protein mixtures in humid air

    NASA Astrophysics Data System (ADS)

    Shawqi Barham, A.; Kamrul Haque, Md.; Roos, Yrjö H.; Kieran Hodnett, B.

    2006-10-01

    An in situ crystallization technique with X-ray diffraction analysis complemented by ex situ scanning electron microscopy and chromatographic analysis of the α/( α+ β) solid-state anomeric ratios has been developed to study the crystallization of lactose/protein mixtures in humid air. This technique was used to determine changes in phase composition and morphology during crystallization. Following an induction period during which water is sorbed, crystallization is rapid and the predominant phase observed using the in situ method in spray-dried lactose/sodium-caseinate, albumin and gelatin is α-lactose monohydrate. However, in the case of spray-dried lactose/whey protein isolate (WPI) the predominant phase that appears is the α/ β mixed phase with smaller amounts of α-lactose monohydrate. With pure lactose the α/ β mixed phase appears as a transient shortly after the onset of crystallization and α-lactose monohydrate and β-lactose both appear as stable crystalline phases at longer times. Another transient phase with 2 θ=12.2°, 20.7° and 21.8° was observed in spray-dried lactose/albumin. This phase decomposed as α-lactose monohydrate developed. Three phases seem to persist in the case of spray-dried lactose/gelatin, namely the phase with peaks at 2 θ=12.2°, 20.7° and 21.8°, α-lactose monohydrate and β-lactose for the duration of the in situ experiment.

  2. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus.

    PubMed

    Lavra, Zênia Maria Maciel; Pereira de Santana, Davi; Ré, Maria Inês

    2017-01-01

    Efavirenz (EFV), a first-line anti-HIV drug largely used as part of antiretroviral therapies, is practically insoluble in water and belongs to BCS class II (low solubility/high permeability). The aim of this study was to improve the solubility and dissolution performances of EFV by formulating an amorphous solid dispersion of the drug in polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus(®)) using spray-drying technique. To this purpose, spray-dried dispersions of EFV in Soluplus(®) at different mass ratios (1:1.25, 1:7, 1:10) were prepared and characterized using particle size measurements, SEM, XRD, DSC, FTIR and Raman microscopy mapping. Solubility and dissolution were determined in different media. Stability was studied at accelerated conditions (40 °C/75% RH) and ambient conditions for 12 months. DSC and XRD analyses confirmed the EFV amorphous state. FTIR spectroscopy analyses revealed possible drug-polymer molecular interaction. Solubility and dissolution rate of EFV was enhanced remarkably in the developed spray-dried solid dispersions, as a function of the polymer concentration. Spray-drying was concluded to be a proper technique to formulate a physically stable dispersion of amorphous EFV in Soluplus(®), when protected from moisture.

  3. [Study on totai flavonoids of Epimedium assisted with soybean polysaccharide spray-drying powder].

    PubMed

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Deng, Jia-hui

    2015-08-01

    In order to evaluate the characteristics of the spray drying of total flavonoids of Epimedium extracts assisted with soybean polysaccharide, a certain percentage of soybean polysaccharide or polyvidone were added to the total flavonoids of Epimedium extract to conduct the spray drying. The effect of soybean polysaccharides against the wall sticking effect of the spray drying was detected, as well as the powder property of total flavonoids of Epimedium spray drying powder and the dissolution in vitro behavior of the effective component. Compared with the total flavonoids of Epimedium spray drying powder, soybean polysaccharide revealed a significant anti-wall sticking effect. The spray drying power which had no notable change in the grain size made a increase in the fluidity, improvement in the moisture absorption and remarkable rise in the dissolution in vitro behavior. It was worth further studying the application of soybean polysaccharide in spray drying power of traditional Chinese medicine.

  4. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    PubMed

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations.

  5. Crystal coating via spray drying to improve powder tabletability.

    PubMed

    Vanhoorne, V; Peeters, E; Van Snick, B; Remon, J P; Vervaet, C

    2014-11-01

    A continuous crystal coating method was developed to improve both flowability and tabletability of powders. The method includes the introduction of solid, dry particles into an atomized spray during spray drying in order to coat and agglomerate individual particles. Paracetamol was used as a model drug as it exhibits poor flowability and high capping tendency upon compaction. The particle size enlargement and flowability were evaluated by the mean median particle size and flow index of the resulting powders. The crystal coating coprocessing method was successful for the production of powders containing 75% paracetamol with excellent tableting properties. However, the extent of agglomeration achieved during coprocessing was limited. Tablets compressed on a rotary tablet press in manual mode showed excellent compression properties without capping tendency. A formulation with 75% paracetamol, 5% PVP and 20% amorphous lactose yielded a tensile strength of 1.9 MPa at a compression pressure of 288 MPa. The friability of tablets compressed at 188 MPa was only 0.6%. The excellent tabletability of this formulation was attributed to the coating of paracetamol crystals with amorphous lactose and PVP through coprocessing and the presence of brittle and plastic components in the formulation. The coprocessing method was also successfully applied for the production of directly compressible lactose showing improved tensile strength and friability in comparison to a spray dried direct compression lactose grade.

  6. Review of patents and application of spray drying in pharmaceutical, food and flavor industry.

    PubMed

    Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis

    2014-04-01

    Spray drying has always remained an energetic field of innovation in pharmaceutical, food and flavor industry since last couple of decades. The current communication embodies an in-depth application of spray drying in pulmonary drug delivery for production of uniform and respirable size particles suitable for nebulizers, dry powder inhalers (DPI) and pressurized metered dose inhalers (pMDI). The review also highlights spray drying application in the manufacturing of mucoadhesive formulation suitable for nasal cavities to improve the drug absorption and bioavailability. Recent research works and patents filed by various researchers on spray drying technology for solubility enhancement have also been accentuated. Benefits of spray drying in production of dry flavorings to meet a product with maximum yield and least flavor loss are also discussed. The use of spray drying in production of various food products like milk or soymilk powder, tomato pulp, dry fruit juice etc, and in encapsulation of vegetable oil or fish oil and dry creamer has been discussed. Current review also highlights the application of spray drying in the biotechnology field like production of dry influenza or measles vaccine as well as application in ceramic industry. Spray drying based patents issued by the U.S. Patent and Trademark Office in the area of drug delivery have also been included in the current review to emphasize importance of spray drying in the recent research scenario.

  7. Design of self-dispersible dry nanosuspension through wet milling and spray freeze-drying for poorly water-soluble drugs.

    PubMed

    Niwa, Toshiyuki; Danjo, Kazumi

    2013-11-20

    The purpose of the present research is to establish a novel nanosizing technique starting from wet nano-milling, named "dry nanosuspension" technique for poorly water-soluble drugs. The spray freeze-drying (SFD) method was applied instead of the spray-drying one previously developed. Drug particles were milled in the aqueous solution of dispersing agents using an oscillating beads-milling apparatus. The milled nanosuspension was sprayed to the surface of liquid nitrogen, and the resultant iced droplets were freeze-dried to obtain the powdery product. The loading ratio of a dispersing agent was investigated to enhance its redispersing property. Dry nanosuspension, which could be spontaneously dispersed into original nanosuspension in water, was obtained by SFD process. It was assumed that self dispersion property would be attributed to its structure with porous network, in which the primary milled drug crystals were embedded. Such unique structure contributed greatly to immediate release behaviors of the drug in gastrointestinal buffered media. These pharmaceutical properties were enhanced by increasing the ratio of the dispersing agent to the drug and the solid content in suspension to be sprayed. The present technique via wet milling and spray freeze-drying processes would be a novel dissolution-enhanced technology for poorly water-soluble drugs.

  8. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    PubMed

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively.

  9. Predicting the physical state of spray dried composites: salbutamol sulphate/lactose and salbutamol sulphate/polyethylene glycol co-spray dried systems.

    PubMed

    Corrigan, Deirdre O; Corrigan, Owen I; Healy, Anne Marie

    2004-04-01

    The effect of spray drying salbutamol sulphate, salbutamol sulphate/lactose and salbutamol sulphate/polyethylene glycol (PEG) solutions was investigated. Co-spray drying salbutamol sulphate with lactose, which is amorphous when spray dried alone, resulted in amorphous composites. Co-spray drying salbutamol sulphate with PEG 4000 and PEG 20,000, which do not form amorphous systems when spray dried alone, resulted in systems of varying crystallinity, the crystallinity depending on the weight ratio of polymer to drug. Examination of the physical properties of these salbutamol sulphate co-spray dried systems and those of bendroflumethiazide/PEG and lactose/PEG composites suggested that the formation and physical stability of amorphous composites prepared by spray drying is dependent on whether the glass transition temperature, Tg, of one of the two components is high enough to result in a Tg of the composite sufficiently high that the Kauzmann temperature of the mix is greater than the temperature of storage. The modified Gordon-Taylor equation proved to be useful in predicting the likelihood that a two-component composite will be amorphous on spray drying. Furthermore, the Gordon-Taylor equation was also useful in predicting the likely physical stability of amorphous two component composites and predicted that even polymers with apparently low Tgs, such as PEGs, may be stabilised in an amorphous composite by a suitable additive having a sufficiently high Tg.

  10. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    PubMed

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying.

  11. Preparation and characterization of spray-dried tobramycin powders containing nanoparticles for pulmonary delivery.

    PubMed

    Pilcer, Gabrielle; Vanderbist, Francis; Amighi, Karim

    2009-01-05

    Using high-pressure homogenization and spray-drying techniques, novel formulations were developed for manufacturing dry powder for inhalation, composed of a mixture of micro- and nanoparticles in order to enhance lung deposition. Particle size analysis was performed by laser diffraction. Spray-drying was applied in order to retrieve nanoparticles in dried-powder state from tobramycin nanosuspensions. The aerolization properties of the different formulations were evaluated by a multi-stage liquid impinger. Suspensions of nanoparticles of tobramycin containing Na glycocholate at 2% (w/w) relative to tobramycin content and presenting a mean particle size about 200 nm were produced. The results from the spray-dried powders showed that the presence of nanoparticles in the formulations improved particle dispersion properties during inhalation. The fine particle fraction (percentage of particles below 5 microm) increased from 36% for the raw micronized tobramycin material to about 61% for the most effective formulation. These new nanoparticle-containing tobramycin DPI formulations, based on the use of very low level of excipient and presenting high lung deposition properties, offer very important perspectives for improving the delivery of drugs to the pulmonary tract.

  12. Preparation and In vitro / In vivo characterization of spray dried microsphere formulation encapsulating 4-chlorocurcumin

    PubMed Central

    Gogu, P. K.; Jithan, A. V.

    2010-01-01

    The objective of the present study was to prepare and characterize in vitro and in vivo performance of a sustained release microsphere formulation of 4-chlorocurcumin, a novel curcumin analogue. A spray dried technique with ethylcellulose as the polymer was used in the preparation of these microspheres. Microspheres were characterized for drug content, particle size and shape, in vitro drug release and the drug-polymer interaction. To assess in vivo performance, both pharmacokinetics and hepatoprotective activity were investigated. Results were compared with an equivalent i.v. solution. The microspheres of 4-chlorocurcumin with ethylcellulose were successfully prepared using a spray-dried technique. These microspheres were able to sustain the release of the drug both in vitro as well as in vivo. Microspheres offered better pharmacokinetic and hepatoprotective properties to the drug compared to its solution form. PMID:21188044

  13. Crystallization and X-ray diffraction of spray-dried and freeze-dried amorphous lactose.

    PubMed

    Haque, Md Kamrul; Roos, Yrjö H

    2005-02-07

    Crystallization of spray-dried and freeze-dried amorphous lactose over different relative vapor pressures (RVP) and storage times was studied. Crystallization was observed from increasing peak intensities in X-ray diffraction patterns. Lactose was crystallized in the samples stored at RVP of 44.1% and above in both types of dehydrated powders. The rate of crystallization increased with increasing RVP and storage time. Similar crystallization behavior of both spray-dried and freeze-dried lactose was observed. Lactose crystallized as alpha-lactose monohydrate, anhydrous beta-lactose, and the anhydrous form of alpha- and beta-lactose in a molar ratio of 5:3 and 4:1 in both spray-dried and freeze-dried forms. Peak intensities of X-ray diffraction patterns for anhydrous beta-lactose were decreased, and for alpha-lactose monohydrate increased with increasing storage RVP and time. The crystallization data were successfully modeled using Avrami equation at RVP of 54.5% and above. The crystallization data obtained is helpful in understanding and predicting storage stability of lactose-containing food and pharmaceutical products.

  14. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.

    PubMed

    Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam

    2014-01-01

    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.

  15. [Study on Xinyueshu spray drying assisted with copovidone and its effect on powder property].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Yan, Hong-Mei; Hu, Shao-Ying; Jia, Xiao-Bin

    2013-12-01

    To study the application characteristics of copovidone (PVP-S630) in Xinyueshu extracts during the spray drying process, and its effect on such pharmaceutical properties as micromeritics and drug release behavior. PVP-S630 was added into Xinyueshu extracts to study on the spray drying, the effect of different dosages of PVP-S630 against the wall sticking effect of the spray drying, as well as the power property of Xinyueshu spray drying power and the dissolution in vitro behavior of the effective component of hyperoside. The results showed that PVP-S630 revealed a significant anti-wall sticking effect, with no notable change in the grain size of the spray drying power, increase in the fluidity, improvement in the moisture absorption and remarkable rise in the dissolution in vitro behavior of hyperoside. It was worth further studying the application of PVP-S630 in spray drying power of traditional Chinese medicine.

  16. Characterization of Phase Separation Propensity for Amorphous Spray Dried Dispersions.

    PubMed

    McNamara, Daniel; Yin, Shawn; Pan, Duohai; Crull, George; Timmins, Peter; Vig, Balvinder

    2017-02-06

    A generalized screening approach, applying isothermal calorimetry at 37 °C 100% RH, to formulations of spray dried dispersions (SDDs) for two active pharmaceutical ingredients (APIs) (BMS-903452 and BMS-986034) is demonstrated. APIs 452 and 034, with similar chemotypes, were synthesized and promoted during development for oral dosing. Both APIs were formulated as SDDs for animal exposure studies using the polymer hydroxypropylmethlycellulose acetyl succinate M grade (HPMCAS-M). 452 formulated at 30% (wt/wt %) was an extremely robust SDD that was able to withstand 40 °C 75% RH open storage conditions for 6 months with no physical evidence of crystallization or loss of dissolution performance. Though 034 was a chemical analogue with similar physical chemical properties to 452, a physically stable SDD of 034 could not be formulated in HPMCAS-M at any of the drug loads attempted. This study was used to develop experience with specific physical characterization laboratory techniques to evaluate the physical stability of SDDs and to characterize the propensity of SDDs to phase separate and possibly crystallize. The screening strategy adopted was to stress the formulated SDDs with a temperature humidity screen, within the calorimeter, and to apply orthogonal analytical techniques to gain a more informed understanding of why these SDDs formulated with HPMCAS-M demonstrated such different physical stability. Isothermal calorimetry (thermal activity monitor, TAM) was employed as a primary stress screen wherein the SDD formulations were monitored for 3 days at 37 °C 100% RH for signs of phase separation and possible crystallization of API. Powder X-ray diffraction (pXRD), modulated differential scanning calorimetry (mDSC), Fourier transform infrared spectroscopy (FTIR), and solid state nuclear magnetic resonance (ssNMR) were all used to examine formulated SDDs and neat amorphous drug. 452 SDDs formulated at 30% (wt/wt %) or less did not show phase separation behavior upon

  17. Effects of spray drying on antioxidant capacity and anthocyanidin content of blueberry by-products.

    PubMed

    Lim, Kar; Ma, Mitzi; Dolan, Kirk D

    2011-09-01

    The effect of spray drying on degradation of nutraceutical components in cull blueberry extract was investigated. Samples collected before and after spray drying were tested for antioxidant capacity using oxygen radical absorbance capacity (ORAC(FL) ) and total phenolics; and for individual anthocyanidins. In Study 1, four different levels of maltodextrin (blueberry solids to maltodextrin ratios of 5: 95, 10: 90, 30: 70, and 50: 50) were spray dried a pilot-scale spray dryer. There was significantly higher retention of nutraceutical components with increased levels of maltodextrin indicating a protective effect of maltodextrin on the nutraceutical components during spray drying. In Study 2, the air inlet temperature of the spray dryer was kept constant for all runs at 150 °C, with 2 different outlet temperatures of 80 and 90 °C. The degradation of nutraceutical components was not significantly different at the 2 selected outlet temperatures. ORAC(FL) reduction for blueberry samples after spray drying was 66.3% to 69.6%. After spray drying, total phenolics reduction for blueberry was 8.2% to 17.5%. Individual anthocyanidin reduction for blueberry was 50% to 70%. The experimental spray dried powders compared favorably to commercial blueberry powders. Results of the study show that use of blueberry by-products is feasible to make a value-added powder. Results can be used by producers to estimate final nutraceutical content of spray-dried blueberry by-products. © 2011 Institute of Food Technologists®

  18. Ilex paraguariensis Pellets from a Spray-Dried Extract: Development, Characterization, and Stability.

    PubMed

    Yatsu, Francini K J; Borghetti, Greice S; Magalhães, Fagner; Ferraz, Humberto G; Schenkel, Eloir Paulo; Bassani, Valquiria L

    2016-04-01

    Several studies have shown the potential use of Ilex paraguariensis in developing products with the aim to protect biological systems against oxidative stress-mediated damages. In the same way, technological studies have demonstrated the feasibility of obtaining dry products, by spray-drying process, from aqueous extracts of I. paraguariensis in laboratory. The present work was designed to develop pellets by extrusion/spheronization process, from an I. paraguariensis spray-dried powder. The pellets were characterized with respect to their chemical, physical, and technological properties, and the thermal and the photostability of the main polyphenol constituents were investigated. The pellets exhibited adequate size, shape, and high process yield (78.7%), as well as a good recovery of the total polyphenols (>95%) and a good dissolution in water (89.44 to 100.05%). The polyphenols were stable against light when conditioned in amber glass bottles; unstable against heat when the samples were conditioned either in open glass bottles or in hermetically sealed glass bottles and demonstrated to be hygroscopic and sensible to the temperature, especially when stored in permeable flasks. These findings pointed to the relevance of reducing the residual moisture content of pellets as well as of conditioning them in opaque humidity tight packages under low temperatures. The feasibility of obtaining pellets from an I. paraguariensis spray-dried powder using extrusion/spheronization technique was, for the first time, demonstrated. This finding represents a novelty for the herbal products in both pharmaceutical and food fields.

  19. A Model-Based Methodology for Spray-Drying Process Development.

    PubMed

    Dobry, Dan E; Settell, Dana M; Baumann, John M; Ray, Rod J; Graham, Lisa J; Beyerinck, Ron A

    2009-09-01

    Solid amorphous dispersions are frequently used to improve the solubility and, thus, the bioavailability of poorly soluble active pharmaceutical ingredients (APIs). Spray-drying, a well-characterized pharmaceutical unit operation, is ideally suited to producing solid amorphous dispersions due to its rapid drying kinetics. This paper describes a novel flowchart methodology based on fundamental engineering models and state-of-the-art process characterization techniques that ensure that spray-drying process development and scale-up are efficient and require minimal time and API. This methodology offers substantive advantages over traditional process-development methods, which are often empirical and require large quantities of API and long development times. This approach is also in alignment with the current guidance on Pharmaceutical Development Q8(R1). The methodology is used from early formulation-screening activities (involving milligrams of API) through process development and scale-up for early clinical supplies (involving kilograms of API) to commercial manufacturing (involving metric tons of API). It has been used to progress numerous spray-dried dispersion formulations, increasing bioavailability of formulations at preclinical through commercial scales.

  20. Solid-state, triboelectrostatic and dissolution characteristics of spray-dried piroxicam-glucosamine solid dispersions.

    PubMed

    Adebisi, Adeola O; Kaialy, Waseem; Hussain, Tariq; Al-Hamidi, Hiba; Nokhodchi, Ali; Conway, Barbara R; Asare-Addo, Kofi

    2016-10-01

    This work explores the use of both spray drying and d-glucosamine HCl (GLU) as a hydrophilic carrier to improve the dissolution rate of piroxicam (PXM) whilst investigating the electrostatic charges associated with the spray drying process. Spray dried PXM:GLU solid dispersions were prepared and characterised (XRPD, DSC, SEM). Dissolution and triboelectric charging were also conducted. The results showed that the spray dried PXM alone, without GLU produced some PXM form II (DSC results) with no enhancement in solubility relative to that of the parent PXM. XRPD results also showed the spray drying process to decrease the crystallinity of GLU and solid dispersions produced. The presence of GLU improved the dissolution rate of PXM. Spray dried PXM: GLU at a ratio of 2:1 had the most improved dissolution. The spray drying process generally yielded PXM-GLU spherical particles of around 2.5μm which may have contributed to the improved dissolution. PXM showed a higher tendency for charging in comparison to the carrier GLU (-3.8 versus 0.5nC/g for untreated material and -7.5 versus 3.1nC/g for spray dried materials). Spray dried PXM and spray dried GLU demonstrated higher charge densities than untreated PXM and untreated GLU, respectively. Regardless of PXM:GLU ratio, all spray dried PXM:GLU solid dispersions showed a negligible charge density (net-CMR: 0.1-0.3nC/g). Spray drying of PXM:GLU solid dispersions can be used to produce formulation powders with practically no charge and thereby improving handling as well as dissolution behaviour of PXM.

  1. Instability of bacteriophages in spray-dried trehalose powders is caused by crystallization of the matrix.

    PubMed

    Vandenheuvel, Dieter; Meeus, Joke; Lavigne, Rob; Van den Mooter, Guy

    2014-09-10

    Spray drying is a valuable technique in pharmaceutical dosage formulation, capable of producing amorphous, spherical powders, suitable for pulmonary deposition and further downstream processing. In this study, we show that spray drying bacteriophages together with trehalose results in an amorphous powder matrix with high glass transition temperature (between 116 and 118°C), typical for amorphous trehalose. These powders are stable at low temperatures (4°C) and relative humidity (0%). However, high humidity causes crystallization of the amorphous matrix, destroying the embedded phages. Furthermore, storage at higher temperature (25°C) causes thermal instability of the embedded phages. The results show that storage conditions are important parameters to take into account in phage therapy development. The resulting particles are hollow spheres, with suitable aerodynamic diameters for deposition into the deep lungs. This opens possibilities to use these phage-containing powder formulations to tackle pulmonary infectious diseases, especially caused by antibiotic resistant pathogens.

  2. Spray Dried Formulation of 5-Fluorouracil Embedded with Probiotic Biomass: In Vitro and In Vivo Studies.

    PubMed

    Sharma, Anshul; Arora, Malika; Goyal, Amit K; Rath, Goutam

    2017-03-08

    The present study is utilizing the targeted therapeutic approach and antioxidant potential of selected probiotic biomass in mitigating toxic side effects of chemotherapeutic agents. Multicomponent carrier system consisting of 5-fluorouracil (5-FU) and selected probiotic strain with higher free radical scavenging activity was prepared using spray drying technique. Prepared spray dried microparticles were characterized for various physical, pharmaceutical, and biopharmaceutical properties including particle size, moisture content, entrapment efficiency, in vitro drug release, DSC, XRD, cell uptake, histopathology, and pharmacokinetic studies. In addition to the above, optimized formulation was subjected to in vivo targeting efficacy studies using radiographic technique. Optimized formulation meets the necessary physical requirement for pharmaceutical powder. X-ray studies revealed that the prepared spray dried formulations are able to target the colon. Pharmacokinetic endpoints with an extended t 1/2 and lower C max indicate lower systemic toxicity. Intact nature of colonic epithelium in experimental formulation clearly demonstrates the protective role of Lactobacillus rhamnosus in minimizing the harmful consequence induced by 5-FU. Existing outcomes provide the basis for a combination of targeted therapeutic approach with natural antioxidant capacity of potential probiotic strain which could help to mitigate the problems associated with traditional chemotherapy.

  3. Tracking Amazonian cheese microbial diversity: Development of an original, sustainable, and robust starter by freeze drying/spray drying.

    PubMed

    Ferreira, A A; Huang, S; Perrone, Í T; Schuck, P; Jan, G; Carvalho, A F

    2017-09-01

    Marajó cheese made with raw buffalo milk in the Amazon region of Brazil can be considered a good source of wild lactic acid bacteria strains with unexplored and promising characteristics. The aim of this study was to develop a potential probiotic starter culture for industrial applications using freeze drying and spray drying. A decrease in the survival rates of freeze-dried samples compared with spray-dried samples was noted. The spray-dried cultures remained approximately 10(9) cfu·g(-1), whereas the freeze-dried samples showed 10(7) cfu·g(-1) after 60 d of storage at 4°C. All of the spray-dried samples showed a greater ability to decrease the pH in 10% skim milk over 24 h compared with the freeze-dried samples. The spray-dried samples showed a greater resistance to acidic conditions and to the presence of bile salts. In addition, under heat stress conditions, reduction was under 2 log cycles in all samples. Although the survival rate was similar among the evaluated samples after drying, the technological performance for skim milk showed some differences. This study may direct further investigations into how to preserve lactic acid bacteria probiotics to produce spray-dried starters that have a high number of viable cells that can then be used for industrial applications in a cost-effective way. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Production of monodisperse epigallocatechin gallate (EGCG) microparticles by spray drying for high antioxidant activity retention.

    PubMed

    Fu, Nan; Zhou, Zihao; Jones, Tyson Byrne; Tan, Timothy T Y; Wu, Winston Duo; Lin, Sean Xuqi; Chen, Xiao Dong; Chan, Peggy P Y

    2011-07-15

    Epigallocatechin gallate (EGCG) originated from green tea is well-known for its pharmaceutical potential and antiproliferating effect on carcinoma cells. For drug delivery, EGCG in a micro-/nanoparticle form is desirable for their optimized chemopreventive effect. In this study, first time reports that EGCG microparticles produced by low temperature spray drying can maintain high antioxidant activity. A monodisperse droplet generation system was used to realize the production of EGCG microparticles. EGCG microparticles were obtained with narrow size distribution and diameter of 30.24 ± 1.88 μM and 43.39 ± 0.69 μM for pure EGCG and lactose-added EGCG, respectively. The EC50 value (the amount of EGCG necessary to scavenge 50% of free radical in the medium) of spray dried pure EGCG particles obtained from different temperature is in the range of 3.029-3.075 μM compared to untreated EGCG with EC50 value of 3.028 μM. Varying the drying temperatures from 70°C and 130°C showed little detrimental effect on EGCG antioxidant activity. NMR spectrum demonstrated the EGCG did not undergo chemical structural change after spray drying. The major protective mechanism was considered to be: (1) the use of low temperature and (2) the heat loss from water evaporation that kept the particle temperature at low level. With further drier optimization, this monodisperse spray drying technique can be used as an efficient and economic approach to produce EGCG micro-/nanoparticles.

  5. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    PubMed

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  6. A user-friendly model for spray drying to aid pharmaceutical product development.

    PubMed

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.

  7. A User-Friendly Model for Spray Drying to Aid Pharmaceutical Product Development

    PubMed Central

    Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2013-01-01

    The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach. PMID:24040240

  8. Spray-Dried Multiscale Nano-biocomposites Containing Living Cells.

    PubMed

    Johnson, Patrick E; Muttil, Pavan; MacKenzie, Debra; Carnes, Eric C; Pelowitz, Jennifer; Mara, Nathan A; Mook, William M; Jett, Stephen D; Dunphy, Darren R; Timmins, Graham S; Brinker, C Jeffrey

    2015-07-28

    Three-dimensional encapsulation of cells within nanostructured silica gels or matrices enables applications as diverse as biosensors, microbial fuel cells, artificial organs, and vaccines; it also allows the study of individual cell behaviors. Recent progress has improved the performance and flexibility of cellular encapsulation, yet there remains a need for robust scalable processes. Here, we report a spray-drying process enabling the large-scale production of functional nano-biocomposites (NBCs) containing living cells within ordered 3D lipid-silica nanostructures. The spray-drying process is demonstrated to work with multiple cell types and results in dry powders exhibiting a unique combination of properties including highly ordered 3D nanostructure, extended lipid fluidity, tunable macromorphologies and aerodynamic diameters, and unexpectedly high physical strength. Nanoindentation of the encasing nanostructure revealed a Young's modulus and hardness of 13 and 1.4 GPa, respectively. We hypothesized this high strength would prevent cell growth and force bacteria into viable but not culturable (VBNC) states. In concordance with the VBNC state, cellular ATP levels remained elevated even over eight months. However, their ability to undergo resuscitation and enter growth phase greatly decreased with time in the VBNC state. A quantitative method of determining resuscitation frequencies was developed and showed that, after 36 weeks in a NBC-induced VBNC, less than 1 in 10,000 cells underwent resuscitation. The NBC platform production of large quantities of VBNC cells is of interest for research in bacterial persistence and screening of drugs targeting such cells. NBCs may also enable long-term preservation of living cells for applications in cell-based sensing and the packaging and delivery of live-cell vaccines.

  9. Spray drying for preservation of erythrocytes: effect of atomization on hemolysis.

    PubMed

    McLean, Mary; Han, Xiao-Yue; Higgins, Adam Z

    2013-04-01

    Spray drying has the potential to enable storage of erythrocytes at room temperature in the dry state. The spray drying process involves atomization of a liquid into small droplets and drying of the droplets in a gas stream. In this short report, we focus on the atomization process. To decouple atomization from drying, erythrocyte suspensions were sprayed with a two-fluid atomizer nozzle using humid nitrogen as the atomizing gas. The median droplet size was less than 100 μm for all of the spray conditions investigated, indicating that the suspensions were successfully atomized. Hemolysis was significantly affected by the hematocrit of the erythrocyte suspension, the suspension flow rate, and the atomizing gas flow rate (p<0.01 in all cases). Under appropriate conditions, it was possible to achieve less than 2% hemolysis, suggesting that spray drying may be a feasible option for erythrocyte biopreservation.

  10. Clay as a matrix former for spray drying of drug nanosuspensions.

    PubMed

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2014-04-25

    Utilization of sugars (e.g. lactose, sucrose) as matrix formers for spray drying of drug nanosuspensions is associated with two drawbacks: (1) sugars are incapable of preventing agglomeration of drug nanoparticles (NPs) in the suspension state; and (2) the spray-dried sugars are usually amorphous and hygroscopic. This work aimed to apply a clay, montmorillonite (MMT) as an alternative matrix former for spray drying of drug nanosuspensions with fenofibrate (feno) as a model compound. Drug nanosuspensions were synthesized by liquid antisolvent precipitation with different amount of MMT followed by spray drying. It is found that MMT is able to reduce the agglomeration of drug nanoparticles in the suspension state, as observed from the gradual alleviation of the clogging with the increased clay during the spray drying. The spray-dried feno NPs/MMT powders exhibited a much lower moisture sorption than spray-dried feno NPs/lactose powders as evidenced by the dynamic vapor sorption (DVS) analysis. The dissolution within 5 min for the spray-dried feno NPs/MMT powders at drug:MMT weight ratio of 1:3 was 81.4 ± 1.8% and the total dissolution within 60 min was 93.4 ± 0.9%. Our results demonstrate that MMT is a useful matrix former for preservation of the high dissolution rate of nanosized drug particles after drying.

  11. Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality.

    PubMed

    Ezhilarasi, Perumal Natarajan; Indrani, Dasappa; Jena, Bhabani Sankar; Anandharamakrishnan, Chinnaswamy

    2014-04-01

    (-)-Hydroxycitric acid (HCA) is the major acid present in the fruit rinds of certain species of Garcinia. HCA has been reported to have several health benefits. As HCA is highly hygroscopic in nature and thermally sensitive, it is difficult to incorporate in foodstuffs. Hence, Garcinia cowa fruit extract was microencapsulated using three different wall materials such as whey protein isolate (WPI), maltodextrin (MD) and a combination of whey protein isolate and maltodextrin (WPI + MD) by spray drying. Further, these microencapsulated powders were evaluated for their impact on bread quality and HCA retention. Maltodextrin (MD) encapsulates had higher free (86%) and net HCA (90%) recovery. Microencapsulates incorporated breads had enhanced qualitative characteristics and higher HCA content than water extract incorporated bread due to efficient encapsulation during bread baking. Comparatively, bread with MD encapsulates showed softer crumb texture, desirable sensory attributes with considerable volume and higher HCA content. The higher HCA contents of encapsulate incorporated breads were sufficient to claim for functionality of HCA in bread. Comparatively, MD had efficiently encapsulated Garcinia fruit extract during spray drying and bread baking. Spray drying proved to be an excellent encapsulation technique for incorporation into the food system. © 2013 Society of Chemical Industry.

  12. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation

    PubMed Central

    Wu, Xiao; Hayes, Don; Zwischenberger, Joseph B; Kuhn, Robert J; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design, develop, and optimize respirable tacrolimus microparticles and nanoparticles and multifunctional tacrolimus lung surfactant mimic particles for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced at different pump rates by advanced spray-drying particle engineering design from organic solution in closed mode. In addition, multifunctional tacrolimus lung surfactant mimic dry powder particles were prepared by co-dissolving tacrolimus and lung surfactant mimic phospholipids in methanol, followed by advanced co-spray-drying particle engineering design technology in closed mode. The lung surfactant mimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-[phosphor-rac-1-glycerol]. Laser diffraction particle sizing indicated that the particle size distributions were suitable for pulmonary delivery, whereas scanning electron microscopy imaging indicated that these particles had both optimal particle morphology and surface morphology. Increasing the pump rate percent of tacrolimus solution resulted in a larger particle size. X-ray powder diffraction patterns and differential scanning calorimetry thermograms indicated that spray drying produced particles with higher amounts of amorphous phase. X-ray powder diffraction and differential scanning calorimetry also confirmed the preservation of the phospholipid bilayer structure in the solid state for all engineered respirable particles. Furthermore, it was observed in hot-stage micrographs that raw tacrolimus displayed a liquid crystal transition following the main phase transition, which is consistent with its interfacial properties. Water vapor uptake and lyotropic phase transitions in the solid state at varying levels of relative humidity were determined by gravimetric vapor sorption technique. Water content in the various powders was very low and well within the levels necessary

  13. Development of a rapid screening protocol for selection of strains resistant to spray drying and storage in dry powder.

    PubMed

    Reimann, S; Grattepanche, F; Baggenstos, C; Rezzonico, E; Berger, B; Arigoni, F; Lacroix, C

    2010-06-01

    An efficient screening method for selection of Bifidobacterium longum strains resistant to spray drying and storage was developed based on randomly amplified polymorphic DNA (RAPD) for identification of the best survivors in mixed strains bacterial preparations. Three different primers were used to generate RAPD profiles of 22 B. longum strains. All strains were distinguished according to their RAPD profiles except for the strain NCC2705 and its H(2)O(2) resistant derivative variant. The 22 strains were grouped in 3 batches of 7, 7 and 8 strains and subjected to spray drying and storage at 30 and 37 °C under anaerobic conditions. Batch survival rates after spray drying reached 17.1±4.4%. Strains showing the highest prevalence and/or resistance to storage at 37 °C were selected from individual batches for subsequent spray drying and storage testing. After 67 days of storage, NCC572 was identified as the dominant strain in powder. The stability of strain NCC572 was confirmed by performing single spray drying and storage tests. Out of 22 B. longum strains, a robust strain was identified by combining RAPD with a simultaneous screening test for survival under spray drying and storage. The method allowed a fast screening of B. longum strains in mixture for resistance to spray drying and storage compared to traditional screening procedures carried out with individual strains, in the same conditions. This approach could be applied to other stress conditions.

  14. Thermal behavior and stability of biodegradable spray-dried microparticles containing triamcinolone.

    PubMed

    da Silva, Arnóbio Antônio; de Matos, Jivaldo Rosário; Formariz, Thalita Pedroni; Rossanezi, Gustavo; Scarpa, Maria Virginia; do Egito, Eryvaldo Sócrates Tabosa; de Oliveira, Anselmo Gomes

    2009-02-23

    Thermal analysis has been widely used for obtaining information about drug-polymer interactions and for pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles of poly (d,L-lactide-co-glycolide) (PLGA) containing triamcinolone (TR) in various drug:polymer ratios were produced by spray drying. The main purpose of this study was to study the effect of the spray-drying process not only on the drug-polymer interactions but also on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG), X-ray analysis (XRD), and infrared spectroscopy (IR). The evaluation of drug-polymer interactions and the pre-formulation studies were assessed using the DSC, TG and DTG, and IR. The quantitative analysis of drugs entrapped in PLGA microparticles was performed by the HPLC method. The results showed high levels of drug-loading efficiency for all used drug:polymer ratio, and the polymorph used for preparing the microparticles was the form B. The DSC and TG/DTG profiles for drug-loaded microparticles were very similar to those for the physical mixtures of the components. Therefore, a correlation between drug content and the structural and thermal properties of drug-loaded PLGA microparticles was established. These data indicate that the spray-drying technique does not affect the physico-chemical stability of the microparticle components. These results are in agreement with the IR analysis demonstrating that no significant chemical interaction occurs between TR and PLGA in both physical mixtures and microparticles. The results of the X-ray analysis are in agreement with the thermal analysis data showing that the amorphous form of TR prevails over a small fraction of crystalline phase of the drug also present in the TR-loaded microparticles. From the pre-formulation studies, we have found that the spray-drying methodology is an efficient process for obtaining TR

  15. Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying

    PubMed Central

    Okuda, Tomoyuki; Suzuki, Yumiko; Kobayashi, Yuko; Ishii, Takehiko; Uchida, Satoshi; Itaka, Keiji; Kataoka, Kazunori; Okamoto, Hirokazu

    2015-01-01

    In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-μm diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us. PMID:26343708

  16. Effect of spray drying on the properties of amylose-hexadecylammonium chloride inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Water soluble amylose-hexadecyl ammonium chloride complexes were prepared from high amylose corn starch and hexadecyl ammonium chloride by excess steam jet cooking. Amylose inclusion complexes were spray dried to determine the viability of spray drying as a production method. The variables tested in...

  17. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Spray Dried Detergents Subcategory § 417.150 Applicability...

  18. Amorphous and nanostructured silica and aluminosilicate spray-dried microspheres

    NASA Astrophysics Data System (ADS)

    Todea, M.; Turcu, R. V. F.; Frentiu, B.; Tamasan, M.; Mocuta, H.; Ponta, O.; Simon, S.

    2011-08-01

    Amorphous silica and aluminosilicate microspheres with diameters in the 0.1-20 μm range were produced by spray drying method. SEM, TEM and AFM images showed the spherical shape of the obtained particles. Based on thermal analysis data, several heat treatments have been applied on the as-prepared samples in order to check the amorphous state stability of the microspheres and to develop nanosized crystalline phases. As-prepared microspheres remain amorphous up to 1400 °C. By calcination at 1400 °C, cristobalite type nanocrystals are developed on silica sample, while in aluminosilicate sample first are developed mullite type nanocrystals and only after prolonged treatment are developed also cristobalite type nanocrystals. 29Si and 27Al MAS NMR results show that the local order around aluminum and silicon atoms strongly depend on the thermal history of the microspheres.

  19. Spray drying for making covalent chemistry II: synthesis of covalent-organic framework superstructures and related composites.

    PubMed

    Garzón-Tovar, Luis; Avci-Camur, Ceren; Rodríguez-San-Miguel, David; Imaz, Inhar; Zamora, Félix; Maspoch, Daniel

    2017-10-04

    Here we report a method that combines the spray-drying technique with a dynamic covalent chemistry process to synthesize zero-dimensional, spherical and microscale superstructures made from the assembly of imine-based COF nanocrystals. This methodology also enables the integration of other functional materials into these superstructures forming COF-based composites.

  20. Pulsed spray structure and atomisation techniques

    NASA Astrophysics Data System (ADS)

    Yule, A. J.

    1987-08-01

    The process of atomisation from diesel injectors is found to persist for a significant proportion of the spray length before impaction on the cylinder wall. Both aerodynamic shear and cavitation appear to be of importance for the liquid jet breakdown. In addition cyclic variations are found in the atomisation and penetration of sprays. The transient nature of the spray initial conditions can cause pile up and coagulation of droplets at the leading edge of the spray pulse for certain cases. Improved modeling of diesel injection requires recognition of these phenomena and this is supported by both modeling and experimental data which have been obtained under realistic engine conditions in a specially developed rig.

  1. Effect of spray drying on the properties of amylose-hexadecylammonium chloride inclusion complexes.

    PubMed

    Hay, William T; Behle, Robert W; Fanta, George F; Felker, Frederick C; Peterson, Steven C; Selling, Gordon W

    2017-02-10

    Water soluble amylose-hexadecyl ammonium chloride complexes were prepared from high amylose corn starch and hexadecyl ammonium chloride by excess steam jet cooking. Amylose inclusion complexes were spray dried to determine the viability of spray drying as a production method. The variables tested in the spray drying process were the% solids of the amylose-hexadecyl ammonium chloride complex being fed into the spray dryer, feed rate and the spray dryer outlet temperature. The amylose-inclusion complexes remained intact in all spray drying conditions tested as determined by X-ray diffraction. The rheological properties of solutions of the spray dried amylose-complexes remained unchanged when compared with the freeze dried control. Particle density and moisture content decreased with increased outlet temperature while particle size increased. X-ray diffraction and DSC analysis confirmed the formation of type II amylose inclusion complexes. Spray drying is a high throughput, low cost continuous commercial production method, which when coupled with excess steam jet cooking allows for the industrial scale production of cationic amylose-hexadecyl ammonium chloride complexes which may have value as flocculating and filtration enhancing agents and other aspects of paper production.

  2. Survival of Beijerinckia sp. microencapsulated in carbohydrates by spray-drying.

    PubMed

    Boza, Y; Barbin, D; Scamparini, A R P

    2004-02-01

    The encapsulation of Beijerinckia sp. cell suspension in different wall materials using the spray drying technique was performed. Mat dextrin, dehydrated glucose syrups, gum acacia and modified starch materials were tested. Cell viability assays were carried out before and after drying and during storage of the products. The surface area and characteristics of the encapsulated powders were examined using BET adsorption of N(2) and scanning electron microscopy, respectively. The residual moisture content and water activity of the powders were also determined. The best results were obtained with the dehydrated glucose syrup, which resulted in products with the greatest per cent survival during the drying process and subsequent storage period. The products obtained with the dehydrated glucose syrup showed more uniform microcapsule surfaces at lower A(w) values and residual moisture content.

  3. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.

    PubMed

    Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie

    2012-06-01

    Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.

  4. Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.

    PubMed

    Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka

    2015-12-03

    In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.

  5. Scalable synthesis of mesoporous titania microspheres via spray-drying method.

    PubMed

    Pal, Manas; Wan, Li; Zhu, Yongheng; Liu, Yupu; Liu, Yang; Gao, Wenjun; Li, Yuhui; Zheng, Gengfeng; Elzatahry, Ahmed A; Alghamdi, Abdulaziz; Deng, Yonghui; Zhao, Dongyuan

    2016-10-01

    Mesoporous TiO2 has several potential applications due to its unique electronic and optical properties, although its structures and morphologies are typically difficult to tune because of its uncontrollable and fast sol-gel reaction. In this study we have coupled the template-directed-sol-gel-chemistry with the low-cost, scalable, and environmentally benign aerosol (spray-drying) one-pot preparation technique for the fabrication of hierarchically mesoporous TiO2 microspheres and Fe3O4@mesoporous TiO2-x microspheres in a large scale. Parameters during the pre-hydrolysis and spray-drying treatment were varied to successfully control the bead diameter, morphology, monodispersity, surface area and pore size for improving their effectiveness for better application. Unlike to the previous aerosol synthetic approaches, where mainly quite a high temperature gradient with the strict control of spray-drying precursor concentration is implied, our strategy is lying on comparatively low drying temperature with an additional post-ultrasonication (further hydrolysis and condensation) route of the pre-calcined TiO2 samples. As-synthesized mesoporous microspheres have a size distribution from 500nm to 5μm, specific surface areas ranging from 150 to 162m(2)g(-1) and mean pore sizes of several nanometers (4-6nm). Further Fe3O4@mesoporous TiO2-x microspheres were observed to show remarkable selective phosphopeptide-enrichment activity which might have significant importance in disease diagnosis and other biomedical applications.

  6. Fabrication of polyacrylate core-shell nanoparticles via spray drying method

    NASA Astrophysics Data System (ADS)

    Chen, Pengpeng; Cheng, Zenghui; Chu, Fuxiang; Xu, Yuzhi; Wang, Chunpeng

    2016-05-01

    Fine polyacrylate particles are thought to be environmental plastisols for car industry. However, these particles are mainly dried through demulsification of the latexes, which is not reproducible and hard to be scaled up. In this work, a spray drying method had been applied to the plastisols-used acrylate latex. By adjusting the core/shell ratio, spray drying process of the latex was fully studied. Scanning electronic microscopy observation of the nanoparticles before and after spray drying indicated that the core-shell structures could be well preserved and particles were well separated by spray drying if the shell was thick enough. Otherwise, the particles fused into each other and core-shell structures were destroyed. Polyacrylate plastisols were developed using diisononylphthalate as a plasticizer, and plastigels were obtained after heat treatment of the sols. Results showed that the shell thickness also had a great influence on the storage stability of the plastisols and mechanical properties of the plastigels.

  7. Effect of storage conditions on compaction behavior of two grades of spray-dried lactose.

    PubMed

    Atassi, Faraj; Almaya, Ahmad; Aburub, Aktham

    2008-01-01

    In this work we examine the effect of storage conditions (moisture exposure) on the compression behavior of 2 grades of spray-dried lactose (Pharmatose DCL 11 and Pharmatose DCL 14) under 2 different circumstances. The first was to expose powder samples to moisture, then compress them. The second was to expose precompressed tablets to moisture. We clearly show that the effect of moisture exposure and amorphous content crystallization in spray-dried lactoses on compaction behavior depends on whether this moisture exposure takes place before or after compression. In addition, the impact of storage conditions depends on the grade of spray-dried lactose.

  8. Aerosol delivery of nanoparticles in uniform mannitol carriers formulated by ultrasonic spray freeze drying.

    PubMed

    D'Addio, Suzanne M; Chan, John Gar Yan; Kwok, Philip Chi Lip; Benson, Bryan R; Prud'homme, Robert K; Chan, Hak-Kim

    2013-11-01

    While most examples of nanoparticle therapeutics have involved parenteral or IV administration, pulmonary delivery is an attractive alternative, especially to target and treat local infections and diseases of the lungs. We describe a successful dry powder formulation which is capable of delivering nanoparticles to the lungs with good aerosolization properties, high loadings of nanoparticles, and limited irreversible aggregation. Aerosolizable mannitol carrier particles that encapsulate nanoparticles with dense PEG coatings were prepared by a combination of ultrasonic atomization and spray freeze drying. This process was contrasted to particle formation by conventional spray drying. Spray freeze drying a solution of nanoparticles and mannitol (2 wt% solids) resulted in particles with an average diameter of 21 ± 1.7 μm, regardless of the fraction of nanoparticles loaded (0-50% of total solids). Spray freeze dried (SFD) powders with a 50% nanoparticle loading had a fine particle fraction (FPF) of 60%. After formulation in a mannitol matrix, nanoparticles redispersed in water to < 1 μm with hand agitation and to < 250 nm with the aid of sonication. Powder production by spray drying was less successful, with low powder yields and extensive, irreversible aggregation of nanoparticles evident upon rehydration. This study reveals the unique advantages of processing by ultrasonic spray freeze drying to produce aerosol dry powders with controlled properties for the delivery of therapeutic nanoparticles to the lungs.

  9. Evaluation of some water-miscible organic solvents for spray-drying enzymes and carbohydrates.

    PubMed

    Sass, Anke; Lee, Geoffrey

    2014-06-01

    The spray-drying behaviour of 16 water-miscible organic solvents on a bench-scale machine (Büchi B290 with inert loop) was determined under mild-to-moderate process conditions, namely inlet gas temperature of 130 °C and liquid feed flow rate of ≤3 mL/min. The solvents with boiling points below the inlet gas temperature could be fully dried (Group 1 solvents). The two exceptions were DMSO and DMF which despite their higher boiling points could be fully dried. The remaining solvents with boiling points above the inlet gas temperature were not fully dried during passage through the spray-dryer (Group 2 solvents). Trypsin and lysozyme when spray-dried from Group 1 solvent binary mixtures with water showed similar inactivation and residual water content, independent of solvent. The level of residual solvent was, however, strongly dependent on solvent. Trehalose (20%) and mannitol (10%) could be spray-dried from DMSO/water binary mixtures, but the amorphous disaccharide required higher inlet gas temperature. Trehalose/trypsin and mannitol/trypsin formulations showed differing degrees of protection against enzyme inactivation when spray-dried from Group 1 solvent binary mixtures with water. In all solvents the mannitol protected as well, if not better, than the trehalose. This study identifies some suitable organic solvents for spray-drying protein formulations, but also shows the difficulties of remaining organic solvent under the moderate inlet gas temperature used.

  10. A comparison between spray drying and spray freeze drying for dry powder inhaler formulation of drug-loaded lipid-polymer hybrid nanoparticles.

    PubMed

    Wang, Yajie; Kho, Katherine; Cheow, Wean Sin; Hadinoto, Kunn

    2012-03-15

    Lipid-polymer hybrid nanoparticles - polymeric nanoparticles enveloped by lipid layers - have emerged as a potent therapeutic nano-carrier alternative to liposomes and polymeric nanoparticles. Herein we perform comparative studies of employing spray drying (SD) and spray freeze drying (SFD) to produce inhalable dry-powder form of drug-loaded lipid-polymer hybrid nanoparticles. Poly(lactic-co-glycolic acid), lecithin, and levofloxacin are employed as the polymer, lipid, and drug models, respectively. The hybrid nanoparticles are transformed into micro-scale nanoparticle aggregates (or nano-aggregates) via SD and SFD, where the effects of (1) different excipients (i.e. mannitol, polyvinyl alcohol (PVA), and leucine), and (2) nanoparticle to excipient ratio on nano-aggregate characteristics (e.g. size, flowability, aqueous reconstitution, aerosolization efficiency) are examined. In both methods, PVA is found more effective than mannitol for aqueous reconstitution, whereas hydrophobic leucineis needed to achieve effective aerosolization as it reduces nano-aggregate agglomeration. Using PVA, both methods are equally capable of producing nano-aggregates having size, density, flowability, yield and reconstitutibility in the range ideal for inhaled delivery. Nevertheless, nano-aggregates produced by SFD are superior to SD in terms of their aerosolization efficiency manifested in the higher emitted dose and fine particle fraction with lower mass median aerodynamic diameter.

  11. Competition of thermodynamic and dynamic factors during formation of multicomponent particles via spray drying.

    PubMed

    Kawakami, Kohsaku; Hasegawa, Yusuke; Deguchi, Kenzo; Ohki, Shinobu; Shimizu, Tadashi; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide

    2013-02-01

    As psicose cannot be spray dried because of its low glass transition temperature (T(g)), additives have been used to manufacture spray-dried particles. Its thermodynamic miscibility with each additive was evaluated by thermal analysis and C solid-state nuclear magnetic resonance. Aspartame was miscible with psicose at all ratios, and spray-dried particles were obtained when T(g) of the mixture was higher than the outlet temperature of the spray dryer, where 30 wt % of psicose was loaded. poly(vinylpyrrolidone) and cluster dextrin were partially miscible with psicose, with a maximum loading of 40 wt %. When polymeric excipients were used, their mixing behavior with psicose was affected by the dynamic factor during the spray drying, that is, enhanced phase separation due to the molecular-weight difference. The T(g) value of the polymer-rich phases, which were likely to form shell layers on the surfaces, played an important role in determining availability of the spray-dried particles. Hydroxypropyl methylcellulose (HPMC) offered a very effective loading capacity of 80 wt %, due to distinct phase separation to form shell phase with a very high T(g). Because molecular weight of HPMC was the smallest among the polymeric excipients, the thermodynamic miscibility seemed to affect the dynamic phase separation. These results provide useful information for preparing multicomponent spray-dried particles.

  12. Spray drying of poorly soluble drugs from aqueous arginine solution.

    PubMed

    Ojarinta, Rami; Lerminiaux, Louise; Laitinen, Riikka

    2017-09-08

    Co-amorphous drug-amino acid mixtures have shown potential for improving the solid-state stability and dissolution behavior of amorphous drugs. In previous studies, however these mixtures have been produced mainly with small-scale preparation methods, or with methods that have required the use of organic solvents or other dissolution enhancers. In the present study, co-amorphous ibuprofen-arginine and indomethacin-arginine mixtures were spray dried from water. The mixtures were prepared at two drug-arginine molar ratios (1:1 and 1:2). The properties of the prepared mixtures were investigated with differential scanning calorimetry, X-ray powder diffractometry, Fourier-transform infrared spectroscopy and a 24h, non-sink, dissolution study. All mixtures exhibited a single glass transition temperature (Tg), evidence of the formation of homogenous single-phase systems. Fourier transform infrared spectroscopy revealed strong interactions (mainly salt formation) that account for the positive deviation between measured and estimated Tg values. No crystallization was observed during a 1-year stability study in either 1:1 or 1:2 mixtures, but in the presence of moisture, handling difficulties were encountered. The formation of co-amorphous salts led to improved dissolution characteristics when compared to the corresponding physical mixtures or to pure crystalline drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Influence of granule characteristics on microstructure quality of compacts made from spray-dried powders

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Sreeram

    Powder compaction is a widely used technique for the manufacture of high volume of ceramic components that have simple shapes and sizes. However, this technique is inherently prone to strength-limiting defects like large intergranular pores and remnants of the initial granule structure. These defects are a major obstacle that hinder the use of powder compaction to fabricate parts for applications where strength is an important criterion. The objective of this work is to understand the important factors that control the elimination of strength-limiting defects in compacts made from spray dried powders. The influence of granule density, internal lubricants, particle shape and external application of a plasticizer to already spray dried powders on compaction behavior was investigated. Emphasis was placed on role of these factors in the elimination of large intergranular pores and persistent granule interfaces. The powders were spray dried under varying conditions to tailor the granule characteristics, including granule density, granule size distribution, binder content and lubricant content. These powders were compacted at different pressures, and the microstructures of green and sintered compacts were then evaluated, and strength-limiting features were quantified. Comparisons were made on the basis of compaction curves, green strength, green density and microstructure quality at different pressures. Lowering the granule density reduced the number of granule relics and large intergranular pores. The presence of an internal lubricant improved particle packing and yielded compacts with higher green density and fewer large intergranular pores at comparable pressures. Spray dried powders with the externally applied plasticizer deformed at lower compaction pressures. This allowed easier knitting of particles across granule interfaces and elimination of large intergranular pores and persistent granule interfaces. Spherical (equiaxed) particles rearranged better at granule

  14. New approach for dry formulation techniques for rhizobacteria

    NASA Astrophysics Data System (ADS)

    Elchin, A. A.; Mashinistova, A. V.; Gorbunova, N. V.; Muratov, V. S.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    Two beneficial Pseudomonas isolates selected from rhizosphere of abundant weed - couch-grass Elytrigia repens L. Nevski have been found to have biocontrol activity. An adequate biocontrol effect requires high yield and long stability of the bacterial preparation [1], which could be achieved by an effective and stable formulation. This study was aimed to test various approaches to dry formulation techniques for Pseudomonas- based preparations. To reach this goal, two drying formulation techniques have been tested: the first one, spray drying and the second, low-temperature contact-convective drying in fluidized bed. The optimal temperature parameters for each technique were estimated. Main merits of the selected approach to dry technique are high yield, moderate specific energy expenditures per 1 kg of evaporated moisture, minimal time of contact of the drying product with drying agent. The technological process for dry formulation included the following stages: the obtaining of cell liquids, the low-temperature concentrating and the subsequent drying of a concentrate. The preliminary technological stages consist in cultivation of the rhizobacteria cultures and concentrating the cell liquids. The following requirements for cultivation regime in laboratory conditions were proposed: optimal temperatures are 26-28°С in 3 days, concentration of viable cells in cell liquid makes 1010-1011 cell/g of absolutely dry substance (ADS). For concentrating the cell liquids the method of a vacuum evaporation, which preserves both rhizobacteria cells and the secondary metabolites of cell liquid, has been used. The process of concentrating was conducted at the minimum possible temperature, i.e. not above 30-33°С. In this case the concentration of viable cells has decreased up to 109-1010 cell/g of ADS. For spray drying the laboratory up-dated drier BUCHI 190, intended for the drying of thermolabile products, was used. The temperatures of an in- and outcoming air did not exceed

  15. Formulation development of the biocontrol agent Bacillus subtilis strain CPA-8 by spray-drying.

    PubMed

    Yánez-Mendizábal, V; Viñas, I; Usall, J; Torres, R; Solsona, C; Abadias, M; Teixidó, N

    2012-05-01

    To prepare commercially acceptable formulations of Bacillus subtilis CPA-8 by spray-drying with long storage life and retained efficacy to control peach and nectarine brown rot caused by Monilinia spp. CPA-8 24-h- and 72-h-old cultures were spray dried using 10% skimmed milk, 10% skimmed milk plus 10% MgSO(4) , 10% MgSO(4) and 20% MgSO(4) as carriers/protectants. All carriers/protectants gave good percentages of powder recovery (28-38%) and moisture content (7-13%). CPA-8 survival varied considerably among spray-dried 24-h- and 72-h-old cultures. Seventy-two hours culture spray dried formulations showed the highest survival (28-32%) with final concentration products of 1·6-3·3 × 10(9) CFU g(-1) , while viability of 24-h-old formulations was lower than 1%. Spray-dried 72-h-old formulations were selected to subsequent evaluation. Rehydration of cells with water provided a good recovery of CPA-8 dried cells, similar to other complex rehydration media tested. Spray-dried formulations stored at 4 ± 1 and 20 ± 1°C showed good shelf life during 6 months, and viability was maintained or slightly decreased by 0·2-0·3-log. CPA-8 formulations after 4- and 6 months storage were effective in controlling brown rot caused by Monilinia spp. on nectarines and peaches resulting in a 90-100% reduction in disease incidence. Stable and effective formulations of biocontrol agent B. subtilis CPA-8 could be obtained by spray-drying. New shelf-stable and effective formulations of a biocontrol agent have been obtained by spray-drying to control brown rot on peach. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  16. Preparation of polyaniline/sodium alanate hybrid using a spray-drying process

    SciTech Connect

    Moreira, B. R. E-mail: fabiopassador@gmail.com Passador, F. R. E-mail: fabiopassador@gmail.com Pessan, L. A. E-mail: fabiopassador@gmail.com

    2014-05-15

    Nowadays, hydrogen is highly interesting as an energy source, in particular in the automotive field. In fact, hydrogen is attractive as a fuel because it prevents air pollution and greenhouse emissions. One of the main problems with the utilization of hydrogen as a fuel is its on-board storage. The purpouse of this work was to develop a new hybrid material consisting of a polyaniline matrix with sodium alanate (NaAlH{sub 4}) using a spray-drying process. The polyaniline used for this experiment was synthesized by following a well-established method for the synthesis of the emeraldine base form of polyaniline using dodecylbenzenesulfonic acid as dopant. Micro particles of polyaniline/sodium alanate hybrids with 30 and 50 wt% of sodium alanate were prepared by using a spray-drying technique. Dilute solutions of polyaniline/sodium alanate were first prepared, 10g of the solid materials were mixed with 350 ml of toluene under stirring at room temperature for 24h and the solutions were dried using spray-dryer (Büchi, Switzerland) with 115°C of an inlet temperature. The hybrids were analyzed by differential scanning calorimetry, FT-IR and scanning electron microscopy (SEM). The addition of sodium alanate decreased the glass transition temperature of the hybrids when compared to neat polyaniline. FT-IR spectrum analysis was performed to identify the bonding environment of the synthesized material and was observed that simply physically mixture occurred between polyaniline and sodium alanate. The SEM images of the hybrids showed the formation of microspheres with sodium alanate dispersed in the polymer matrix.

  17. Preparation of polyaniline/sodium alanate hybrid using a spray-drying process

    NASA Astrophysics Data System (ADS)

    Moreira, B. R.; Passador, F. R.; Pessan, L. A.

    2014-05-01

    Nowadays, hydrogen is highly interesting as an energy source, in particular in the automotive field. In fact, hydrogen is attractive as a fuel because it prevents air pollution and greenhouse emissions. One of the main problems with the utilization of hydrogen as a fuel is its on-board storage. The purpouse of this work was to develop a new hybrid material consisting of a polyaniline matrix with sodium alanate (NaAlH4) using a spray-drying process. The polyaniline used for this experiment was synthesized by following a well-established method for the synthesis of the emeraldine base form of polyaniline using dodecylbenzenesulfonic acid as dopant. Micro particles of polyaniline/sodium alanate hybrids with 30 and 50 wt% of sodium alanate were prepared by using a spray-drying technique. Dilute solutions of polyaniline/sodium alanate were first prepared, 10g of the solid materials were mixed with 350 ml of toluene under stirring at room temperature for 24h and the solutions were dried using spray-dryer (Büchi, Switzerland) with 115°C of an inlet temperature. The hybrids were analyzed by differential scanning calorimetry, FT-IR and scanning electron microscopy (SEM). The addition of sodium alanate decreased the glass transition temperature of the hybrids when compared to neat polyaniline. FT-IR spectrum analysis was performed to identify the bonding environment of the synthesized material and was observed that simply physically mixture occurred between polyaniline and sodium alanate. The SEM images of the hybrids showed the formation of microspheres with sodium alanate dispersed in the polymer matrix.

  18. Spray Drying as a Reliable Route to Produce Metastable Carbamazepine Form IV.

    PubMed

    Halliwell, Rebecca A; Bhardwaj, Rajni M; Brown, Cameron J; Briggs, Naomi E B; Dunn, Jaclyn; Robertson, John; Nordon, Alison; Florence, Alastair J

    2017-07-01

    Carbamazepine (CBZ) is an active pharmaceutical ingredient used in the treatment of epilepsy that can form at least 5 polymorphic forms. Metastable form IV was originally discovered from crystallization with polymer additives; however, it has not been observed from subsequent solvent-only crystallization efforts. This work reports the reproducible formation of phase pure crystalline form IV by spray drying of methanolic CBZ solution. Characterization of the material was carried out using diffraction, scanning electron microscopy, and differential scanning calorimetry. In situ Raman spectroscopy was used to monitor the spray-dried product during the spray drying process. This work demonstrates that spray drying provides a robust method for the production of form IV CBZ, and the combination of high supersaturation and rapid solid isolation from solution overcomes the apparent limitation of more traditional solution crystallization approaches to produce metastable crystalline forms. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii.

    PubMed

    Duongthingoc, Diep; George, Paul; Katopo, Lita; Gorczyca, Elizabeth; Kasapis, Stefan

    2013-12-01

    This work investigates the effect of whey protein agglomeration on the survivability of Saccharomyces boulardii within spray dried microcapsules. It attempts to go beyond phenomenological observations by establishing a relationship between physicochemical characteristics of the polymeric matrix and its effect on probiotic endurance upon spray drying. It is well known that this type of thermal shock has lethal consequences on the yeast cells. To avoid such undesirable outcome, we take advantage of the early agglomeration phenomenon observed for whey protein by adjusting the pH value of preparations close to isoelectric point (pH 4-5). During the subsequent process of spray drying, development of whey protein agglomerates induces formation of an early crust, and the protein in this molten globular state creates a cohesive network encapsulating the yeast cells. It appears that the early crust formation at a given sample pH and temperature regime during spray drying benefits the survivability of S. boulardii within microcapsules.

  20. Effect of oil droplet size on the oxidative stability of spray-dried flaxseed oil powders.

    PubMed

    Shiga, Hirokazu; Loon Neoh, Tze; Ninomiya, Ai; Adachi, Sae; Pasten, Ignacio Lopez; Adachi, Shuji; Yoshii, Hidefumi

    2017-04-01

    The effect of the size of oil droplets on the oxidative stability of flaxseed oil in spray-dried powders was investigated. Maltodextrin with a dextrose equivalent of 25 was used as a wall material, and sodium caseinate and transglutaminase-polymerized sodium caseinate were used as emulsifiers. The oxidative stability of flaxseed oil encapsulated in the spray-dried powders was evaluated using lipid oxidation and conductometric determination tests at 105 °C. The powders containing larger oil droplets exhibited higher surface oil content after spray drying, and higher peroxide value and conductivity after storage at 105 °C. Removal of the surface oil from the powders by washing with hexane significantly decreased the conductivity. The results indicated that the surface oil of the spray-dried flaxseed oil powders affected the oxidation stability.

  1. An optimized formulation of a thermostable spray dried virus-like particles vaccine against human papillomavirus

    PubMed Central

    Saboo, Sugandha; Tumban, Ebenezer; Peabody, Julianne; Wafula, Denis; Peabody, David S.; Chackerian, Bryce; Muttil, Pavan

    2016-01-01

    Existing vaccines against human papillomavirus (HPV) require continuous cold-chain storage. Previously, we developed a bacteriophage virus-like particle (VLP) based vaccine for Human Papillomavirus (HPV) infection, which elicits broadly neutralizing antibodies against diverse HPV types. Here, we formulated these VLPs into a thermostable dry powder using a multi-component excipient system and by optimizing the spray drying parameters using a half-factorial design approach. Dry powder VLPs were stable after spray drying and after long-term storage at elevated temperatures. Immunization of mice with a single dose of reconstituted dry powder VLPs that were stored at 37°C for more than a year elicited high anti-L2 IgG antibody titers. Spray dried thermostable, broadly protective L2 bacteriophage VLPs vaccine could be accessible to remote regions of the world (where ~84% of cervical cancer patients reside) by eliminating the cold-chain requirement during transportation and storage. PMID:27019231

  2. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90.

    PubMed

    Li, Xiang; Anton, Nicolas; Arpagaus, Cordin; Belleteix, Fabrice; Vandamme, Thierry F

    2010-10-15

    Spray drying technology is widely known and used to transform liquids (solutions, emulsions, suspension, slurries, pastes or even melts) into solid powders. Its main applications are found in the food, chemical and materials industries to enhance ingredient conservation, particle properties, powder handling and storage etc. However, spray drying can also be used for specific applications in the formulation of pharmaceuticals for drug delivery (e.g. particles for pulmonary delivery). Büchi is a reference in the development of spray drying technology, notably for laboratory scale devices. This study presents the Nano Spray Dryer B-90, a revolutionary new sprayer developed by Büchi, use of which can lower the size of the produced dried particles by an order of magnitude attaining submicron sizes. In this paper, results are presented with a panel of five representative polymeric wall materials (arabic gum, whey protein, polyvinyl alcohol, modified starch, and maltodextrin) and the potentials to encapsulate nano-emulsions, or to formulate nano-crystals (e.g. from furosemide) are also shown. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Critical processing parameters of carbon dioxide spray drying for the production of dried protein formulations: A study with myoglobin.

    PubMed

    Nuchuchua, O; Every, H A; Jiskoot, W

    2016-06-01

    The aim of this study was to gain fundamental insight into protein destabilization induced by supercritical CO2 spray drying processing parameters. Myoglobin was used as a model protein (5mg/ml with 50mg/ml trehalose in 10mM phosphate buffer, pH 6.2). The solution was exposed to sub- and supercritical CO2 conditions (65-130bar and 25-50°C), and CO2 spray drying under those conditions. The heme binding of myoglobin was determined by UV/Vis, fluorescence, and circular dichroism spectroscopy, while myoglobin aggregation was studied by using size-exclusion chromatography and flow imaging microscopy. It was found that pressure and temperature alone did not influence myoglobin's integrity. However, when pressurized CO2 was introduced into myoglobin solutions at any condition, the pH of the myoglobin formulation shifted to about 5 (measured after depressurization), resulting in heme binding destabilization and aggregation of myoglobin. When exposed to CO2, these degradation processes were enhanced by increasing temperature. Heme binding destabilization and myoglobin aggregation were also seen after CO2 spray drying, and to a greater extent. Moreover, the CO2 spray drying induced the partial loss of heme. In conclusion, pressurized CO2 destabilizes the myoglobin, leading to heme loss and protein aggregation upon spray drying.

  4. Spray-dried adjunct cultures of autochthonous non-starter lactic acid bacteria.

    PubMed

    Peralta, Guillermo H; Bergamini, Carina V; Audero, Gabriela; Páez, Roxana; Wolf, I Verónica; Perotti, M Cristina; Hynes, Erica R

    2017-08-16

    Spray-drying of lactic cultures provides direct-to-vat starters, which facilitate their commercialization and use. However, this process may alter the metabolic activity and deteriorate technological features. In this work, we assessed the influence of spray-drying on the survival and aroma production of two strains of mesophilic lactobacilli: Lactobacillus paracasei 90 and Lactobacillus plantarum 91, which have already been characterized as good adjunct cultures. The spray-drying was carried out using a laboratory scale spray and the dried cultures were monitored during the storage for the survival rate. The dried cultures were applied to two cheese models: sterile cheese extract and miniature soft cheese. The influence on the carbohydrate metabolism and the production of organic acids and volatile compounds was determined. Both strains retained high levels of viable counts in the powder after drying and during the storage at 5°C for twelve months. In addition, they also remained at high level in both cheese models during incubation or ripening. Similar profiles of carbohydrate fermentation and bioformation of volatile compounds were observed in the cheese extracts for each of the strains when tested as both fresh and dried cultures. In addition, the ability of Lb. paracasei 90 to increase the production of acetoin and diacetyl remarkably in cheese models was also confirmed for the spray-dried culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.

    PubMed

    Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel

    2014-08-01

    The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).

  6. Spray drying of lipid-based systems loaded with Camellia sinensis polyphenols.

    PubMed

    Secolin, Vanessa A; Souza, Claudia R F; Oliveira, Wanderley P

    2017-03-01

    In this work, spray-dried lipid systems based on soy phosphatidylcholine, cholesterol and lauroyl polyoxylglycerides for entrapping Green tea polyphenols were produced. The aim was to study the effects of the encapsulating composition and spray drying conditions on the system performance and physicochemical product properties. The spray dryer powder production yield falls around 50.7 ± 2.8%, which is typical for lab scale spray dryers. Wrinkled and rounded particles, with low surface porosities were generated, independent of the drying carriers (trehalose or lactose) used. The product showed high encapsulation efficiency of Green tea polyphenols, which was promptly redispersible in water. It presented low density, and good compressive and flow properties. The results herein reported confirm the feasibility of the entrapment of Green tea polyphenols in lipid-based compositions by spray drying in presence of the drying carriers evaluated. The spray-dried microparticles show high potential to be used as additive in food, nutraceutical and pharmaceutical products.

  7. Effect of liquid retentate storage on flavor of spray-dried whey protein concentrate and isolate.

    PubMed

    Whitson, M; Miracle, R E; Bastian, E; Drake, M A

    2011-08-01

    The objective of this study was to determine the effects of holding time of liquid retentate on flavor of spray-dried whey proteins: Cheddar whey protein isolate (WPI) and Mozzarella 80% whey protein concentrate (WPC80). Liquid WPC80 and WPI retentate were manufactured and stored at 3°C. After 0, 6, 12, 24, and 48h, the product was spray-dried (2kg) and the remaining retentate held until the next time point. The design was replicated twice for each product. Powders were stored at 21°C and evaluated every 4 mo throughout 12 mo of storage. Flavor profiles of rehydrated proteins were documented by descriptive sensory analysis. Volatile components were analyzed with solid phase microextraction coupled with gas chromatography mass spectrometry. Cardboard flavors increased in both spray-dried products with increased retentate storage time and cabbage flavors increased in WPI. Concurrent with sensory results, lipid oxidation products (hexanal, heptanal, octanal) and sulfur degradation products (dimethyl disulfide, dimethyl trisulfide) increased in spray-dried products with increased liquid retentate storage time, whereas diacetyl decreased. Shelf stability was decreased in spray-dried products from longer retentate storage times. For maximum quality and shelf life, liquid retentate should be held for less than 12h before spray drying.

  8. Spray dried glyceryl monooleate-magnesium trisilicate dry powder as cubic phase precursor.

    PubMed

    Shah, Manish H; Biradar, Shailesh V; Paradkar, Anant R

    2006-10-12

    Glyceryl monooleate (GMO) is a polar amphiphilic lipid, which forms different sequential lyotropic liquid crystals upon hydration. GMO has been utilized for various delivery systems and routes of administrations. Owing to sticky and waxy nature of GMO, preparation of oral solid dosage form utilizing GMO is still a challenge for pharmaceutical researchers. Therefore, the objective of the present work was to fabricate dry powder precursors using GMO, which upon hydration in situ forms cubic phase and can be wisely used for fabrication of oral solid dosage forms. In addition to this, dry powder precursor was evaluated for drug loading, in vitro release behavior and in vivo performance of model drug diclofenac sodium (DiNa). The dry powder precursor was obtained by spray-drying GMO with DiNa using magnesium trisilicate (MTS) as adsorbent. The percent drug entrapment of various batches of powder precursor was in the range of 84-93% indicating high content uniformity. SEM and image analysis showed that as the amount of MTS in powder precursor was increased, the particle size decreased. Furthermore, the viscosity of powder precursor was function of amount of MTS. The rate of water uptake of powder precursor was higher due to uniform layer of GMO on the MTS surface, which led to faster transformation of lamellar phase into cubic phase. The polarizing light microscopy confirmed that cubic phase was formed upon hydration of powder precursor. The drug released from powder precursor was initially governed by the cubic phase formed and in later stage it depends upon dynamic swelling behavior of hexagonally packed cylindrical aggregates. The drug loaded powder precursor was found to have more effective and prolonged anti-inflammatory and analgesic activity as compared to pure drug. Thus the dry powder precursor of cubic phase was prepared in which drug release was entirely governed by the mesophases formed.

  9. The spray-drying process is sufficient to inactivate infectious porcine epidemic diarrhea virus in plasma.

    PubMed

    Gerber, Priscilla F; Xiao, Chao-Ting; Chen, Qi; Zhang, Jianqiang; Halbur, Patrick G; Opriessnig, Tanja

    2014-11-07

    Porcine epidemic diarrhea virus (PEDV) is considered an emergent pathogen associated with high economic losses in many pig rearing areas. Recently it has been suggested that PEDV could be transmitted to naïve pig populations through inclusion of spray-dried porcine plasma (SDPP) into the nursery diet which led to a ban of SDPP in several areas in North America and Europe. To determine the effect of spray-drying on PEDV infectivity, 3-week-old pigs were intragastrically inoculated with (1) raw porcine plasma spiked with PEDV (RAW-PEDV-CONTROL), (2) porcine plasma spiked with PEDV and then spray dried (SD-PEDV-CONTROL), (3) raw plasma from PEDV infected pigs (RAW-SICK), (4) spray-dried plasma from PEDV infected pigs (SD-SICK), or (5) spray-dried plasma from PEDV negative pigs (SD-NEG-CONTROL). For the spray-drying process, a tabletop spray-dryer with industry-like settings for inlet and outlet temperatures was used. In the RAW-PEDV-CONTROL group, PEDV RNA was present in feces at day post infection (dpi) 3 and the pigs seroconverted by dpi 14. In contrast, PEDV RNA in feces was not detected in any of the pigs in the other groups including the SD-PEDV-CONTROL group and none of the pigs had seroconverted by termination of the project at dpi 28. This work provides direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious PEDV in the plasma. Additionally, plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV. These findings suggest that the risk for PEDV transmission through commercially produced SDPP is minimal.

  10. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers.

    PubMed

    Sosnik, Alejandro; Seremeta, Katia P

    2015-09-01

    Spray-drying is a rapid, continuous, cost-effective, reproducible and scalable process for the production of dry powders from a fluid material by atomization through an atomizer into a hot drying gas medium, usually air. Often spray-drying is considered only a dehydration process, though it also can be used for the encapsulation of hydrophilic and hydrophobic active compounds within different carriers without substantial thermal degradation, even of heat-sensitive substances due to fast drying (seconds or milliseconds) and relatively short exposure time to heat. The solid particles obtained present relatively narrow size distribution at the submicron-to-micron scale. Generally, the yield% of spray-drying at laboratory scale with conventional spray-dryers is not optimal (20-70%) due to the loss of product in the walls of the drying chamber and the low capacity of the cyclone to separate fine particles (<2 μm). Aiming to overcome this crucial drawback in early development stages, new devices that enable the production of submicron particles with high yield, even for small sample amounts, have been introduced into the market. This review describes the most outstanding advantages and challenges of the spray-drying method for the production of pure drug particles and drug-loaded polymeric particles and discusses the potential of this technique and the more advanced equipment to pave the way toward reproducible and scalable processes that are critical to the bench-to-bedside translation of innovative pharmaceutical products.

  11. Spray dried inhalable ciprofloxacin powder with improved aerosolisation and antimicrobial activity.

    PubMed

    Osman, Rihab; Kan, Pei Lee; Awad, Gehanne; Mortada, Nahed; El-Shamy, Abd-Elhameed; Alpar, Oya

    2013-06-05

    In this study, the spray drying technique was used to prepare ciprofloxacin microparticles (CFX-MPs) for pulmonary administration. By virtue of its amphoteric properties, CFX was dissolved in either a slightly alkaline or acidic solution depending on the used polymer. Dextran and chitosan were used to prepare the MPs and modify the release characteristics of the drug. Particle surface modification was done with either DPPC or PEG. The effects of the manufacturing and formulation parameters on the drug-polymer interactions were investigated by thermal analysis and infrared spectroscopy. CFX-MPs showed improved aerosolisation properties and the encapsulated drug possessed high antimicrobial activity against two of the common and resistant respiratory pathogens: Pseudomonas aeruginosa and Staphylococus aureus. MPs were safe on the lung epithelial cells. Modulation of particle characteristics and drug release was possible by altering not only the polymer but also the type of the acid from which the powders were spray dried. MPs prepared with glutamic and aspartic acids showed better characteristics than those prepared with acetic and hydrochloric acids. Dextran modified particles showed improved aerosolisation properties and safety on lung epithelial cells.

  12. Stabilisation of proteins via mixtures of amino acids during spray drying.

    PubMed

    Ajmera, Ankur; Scherließ, Regina

    2014-03-10

    Biologicals are often formulated as solids in an effort to preserve stability which generally requires stabilising excipients for proper drying. The purpose of this study was to screen amino acids and their combinations for their stabilising effect on proteins during spray drying. Catalase, as model protein, was spray dried in 1+1 or 1+2 ratios with amino acids. Some amino acids namely arginine, glycine and histidine showed good retention of catalase functionality after spray drying and subsequent storage stress. A 1+1 combination of arginine and glycine in a 1+2 ratio with catalase resulted in a tremendously good stabilising effect. Storage at high temperature/humidity also showed beneficial effects of this combination. To evaluate whether this was a general principle, these findings were transferred to an antigenic protein of comparable size and supramolecular structure (haemagglutinin) as well as to a smaller enzyme (lysozyme). Upon spray drying with the combination of amino acids it could be shown that both proteins remain more stable especially after storage compared to the unprotected protein. The combination of arginine and glycine is tailored to the needs of protein stabilisation during spray drying and may hence be utilised in dry powder formulation of biomolecules with superior stability characteristics.

  13. Quantitative optical techniques for dense sprays investigation: A survey

    NASA Astrophysics Data System (ADS)

    Coghe, A.; Cossali, G. E.

    2012-01-01

    The experimental study of dense sprays by optical techniques poses many challenges and no methods have proven to be completely reliable when accurate quantitative data are required, for example to validate breakup models and CFD simulations. The present survey is aimed to a critical analysis of optical techniques capable to provide quantitative and reliable data in dense sprays and to point out the conditions necessary to safely obtain such measurements. A single parameter, the optical depth, is proposed to quantify the concept of dense spray and to indicate when multiple scattering becomes predominant and could make the experimental results questionable. Many available optical techniques are divided into two categories: the "classical" ones, like PDA, LDV, PIV, etc., that work well in dilute sprays but show many limitations in dense sprays, and the "emerging" ones more suitable for dense sprays. Among the last ones, those considered more promising are discussed in detail. A number of significant applications are also presented and discussed to better clarify the nature of such complex problem and the feasibility of the new proposed approaches.

  14. Quantitative characterization of diesel sprays using digital imaging techniques

    NASA Astrophysics Data System (ADS)

    Shao, J.; Yan, Y.; Greeves, G.; Smith, S.

    2003-07-01

    This paper presents the application of digital imaging and image processing techniques for the quantitative characterization of diesel sprays. An optically accessible, constant volume chamber was configured to allow direct photographic imaging of diesel sprays, which were generated from a six-hole nozzle in a non-evaporating and pressurized environment. A high-resolution CCD camera and a flash light source were used to capture the images of the sprays. Dedicated image processing software has been developed to quantify a set of macroscopic, characteristic parameters of the sprays including tip penetration, near-and far-field angles. The spray parameters produced using this software are compared with those obtained using manual methods. The results obtained under typical spray conditions demonstrate that the software is capable of producing more accurate, consistent and efficient results than the manual methods. An application of the imaging processing software to the characterization of diesel sprays for a valve covered orifice nozzle is also presented and discussed.

  15. Solubility enhancement of BCS Class II drug by solid phospholipid dispersions: Spray drying versus freeze-drying.

    PubMed

    Fong, Sophia Yui Kau; Ibisogly, Asiye; Bauer-Brandl, Annette

    2015-12-30

    The poor aqueous solubility of BCS Class II drugs represents a major challenge for oral dosage form development. Using celecoxib (CXB) as model drug, the current study adopted a novel solid phospholipid nanoparticle (SPLN) approach and compared the effect of two commonly used industrial manufacturing methods, spray- and freeze-drying, on the solubility and dissolution enhancement of CXB. CXB was formulated with Phospholipoid E80 (PL) and trehalose at different CXB:PL:trehalose ratios, of which 1:10:16 was the optimal formulation. Spherical amorphous SPLNs with average diameters <1μm were produced by spray-drying; while amorphous 'matrix'-like structures of solid PL dispersion with larger particle sizes were prepared by freeze-drying. Formulations from both methods significantly enhanced the dissolution rates, apparent solubility, and molecularly dissolved concentration of CXB in phosphate buffer (PBS, pH 6.5) and in biorelevant fasted state simulated intestinal fluid (FaSSIF, pH 6.5) (p<0.05). While similar dissolution rates were found, the spray-dried SPLNs had a larger enhancement in apparent solubility (29- to 132-fold) as well as molecular solubility (18-fold) of CXB at equilibrium (p<0.05). The strong capability of the spray-dried SPLNs to attain 'true' supersaturation state makes them a promising approach for bioavailability enhancement of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Formulation parameters of crystalline nanosuspensions on spray drying processing: a DoE approach.

    PubMed

    Kumar, Sumit; Xu, Xiaoming; Gokhale, Rajeev; Burgess, Diane J

    2014-04-10

    Nanocrystalline suspensions offer a promising approach to improve dissolution of BCS class II/IV compounds. Spray drying was utilized as a downstream process to improve the physical and chemical stability of dried nanocrystals. The effect of nanocrystalline suspension formulation variables on spray-drying processing was investigated. Naproxen and indomethacin nanocrystalline formulations were formulated with either Dowfax 2A1 (small molecule) or HPMC E15 (high molecular weight polymer) and spray drying was performed. A DoE approach was utilized to understand the effect of critical formulation variables, i.e. type of stabilizer, type of drug, ratio of drug-to-stabilizer and drug concentration. The powders were analyzed for particle size, moisture content, powder X-ray diffraction and dissolution. A dialysis sac adapter for USP apparatus II was developed which provided good discrimination between aggregated and non-aggregated formulations. Nanocrystal aggregation was dependent on the drug-to-stabilizer ratio. The glass transition temperature and the charge effect played a dominant role on spray-dried powder yield. Those formulations with low drug-to-excipient ratios were less aggregating and showed faster dissolution compared to those formulations with high drug-to-excipient ratios. All stable (less aggregated) formulations were subjected to accelerated storage stability testing. The Flory-Huggins interaction parameter (between drug and excipients) correlated with the spray-dried nanocrystal formulations stability. Published by Elsevier B.V.

  17. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery.

    PubMed

    Bi, Ru; Shao, Wei; Wang, Qun; Zhang, Na

    2008-11-01

    Nowadays, growing attention has been paid to the pulmonary region as a target for the delivery of peptide and protein drugs, especially macromolecules with systemic effect like insulin, since the pulmonary route exhibits numerous benefits to be an alternative for repeated injection. Furthermore, encapsulation of insulin into liposomal carriers is an attractive way to increase drug retention time and control the drug release in the lung; however, its long-term stability during storage in the reservoir and the process of aerosolization might be suspected when practically applied. Thus, the aim of this study was to design and characterize dry powder inhalation of insulin-loaded liposomes prepared by novel spray-freeze-drying method for enhanced pulmonary delivery. Process variables such as compressed air pressure, pump speed, and concentration were optimized for parameters such as mean particle diameter, moisture content, and fine particle fraction of the produced powders. Influence of different kinds and amounts of lyoprotectants was also evaluated for the best preservation of the drug entrapped in the liposome bilayers after the dehydration-rehydration cycle. The in vivo study of intratracheal instillation of insulin-loaded liposomes to diabetic rats showed successful hypoglycemic effect with low blood glucose level and long-lasting period and a relative pharmacological bioavailability as high as 38.38% in the group of 8 IU/kg dosage.

  18. Arrhenius activation energy of damage to catalase during spray-drying.

    PubMed

    Schaefer, Joachim; Lee, Geoffrey

    2015-07-15

    The inactivation of catalase during spray-drying over a range of outlet gas temperatures could be closely represented by the Arrhenius equation. From this an activation energy for damage to the catalase could be calculated. The close fit to Arrhenius suggests that the thermally-induced part of inactivation of the catalase during the complex drying and particle-formation processes takes place at constant temperature. These processes are rapid compared with the residence time of the powder in the collecting vessel of the cyclone where dried catalase is exposed to a constant temperature equal to approximately the drying gas outlet temperature. A lower activation energy after spray drying with the ultrasonic nozzle was found than with the 2-fluid nozzle under otherwise identical spray drying conditions. It is feasible that the ultrasonic nozzle when mounted in the lid of the spray dryer heats up toward the drying gas inlet temperature much more that the air-cooled 2-fluid nozzle. Calculation of the Arrhenius activation energy also showed how the stabilizing efficacy of trehalose and mannitol on the catalase varies in strength across the range of drying gas inlet and outlet temperatures examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Innovative approach to produce submicron drug particles by vibrational atomization spray drying: influence of the type of solvent and surfactant.

    PubMed

    Durli, T L; Dimer, F A; Fontana, M C; Pohlmann, A R; Beck, R C R; Guterres, S S

    2014-08-01

    Spray drying is a technique used to produce solid particles from liquid solutions, emulsions or suspensions. Buchi Labortechnik developed the latest generation of spray dryers, Nano Spray Dryer B-90. This study aims to obtain, directly, submicron drug particles from an organic solution, employing this equipment and using dexamethasone as a model drug. In addition, we evaluated the influence of both the type of solvent and surfactant on the properties of the powders using a 3(2) full factorial analysis. The particles were obtained with high yields (above 60%), low water content (below 2%) and high drug content (above 80%). The surface tension and the viscosity were strongly influenced by the type of solvent. The highest powder yields were obtained for the highest surface tension and the lowest viscosity of the drug solutions. The use of ionic surfactants led to higher process yields. The laser diffraction technique revealed that the particles deagglomerate into small ones with submicrometric size, (around 1 µm) that was also observed by scanning electron microscopy. Interaction between the raw materials in the spray-dried powders was verified by calorimetric analysis. Thus, it was possible to obtain dexamethasone submicrometric particles by vibrational atomization from organic solution.

  20. 9 CFR 590.542 - Spray process drying operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Drying units, conveyors, sifters, and packaging systems shall be cleaned whenever wet powder is..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of... of the drying unit. (1) Sifters and conveyors used for other than dried albumen shall be cleared of...

  1. 9 CFR 590.542 - Spray process drying operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Drying units, conveyors, sifters, and packaging systems shall be cleaned whenever wet powder is..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of... of the drying unit. (1) Sifters and conveyors used for other than dried albumen shall be cleared of...

  2. 9 CFR 590.542 - Spray process drying operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Drying units, conveyors, sifters, and packaging systems shall be cleaned whenever wet powder is..., including sifters, conveyors, and powder coolers shall be either wet washed or dry cleaned. A combination of... of the drying unit. (1) Sifters and conveyors used for other than dried albumen shall be cleared...

  3. Influence of emulsion composition and spray-drying conditions on microencapsulation of tilapia oil.

    PubMed

    Huang, Hui; Hao, Shuxian; Li, Laihao; Yang, Xianqing; Cen, Jianwei; Lin, Wanling; Wei, Ya

    2014-09-01

    The influence of processing conditions on the microencapsulation of tilapia oil by spray drying was studied. Trehalose, gelatin, sucrose and xanthan were used as emulsion composition. The experimental parameters of spray drying such as inlet air temperature, solid content, drying air flow rate and atomizing pressure were optimized using a central composite design. Encapsulation efficiency and lipid oxidation were determined. Bulk density, powder morphology and particle size were also analyzed. Trehalose improved the glass transition temperature of wall material significantly and prevented the oxidation of the fish oil. Encapsulation efficiency reached a maximum of 90 % under optimum conditions with an inlet air temperature of 121 °C, a drying air flow rate of 0.65 m(3)/min and a spray pressure of 100 kPa.

  4. Retention of Polyphenolic Species in Spray-Dried Blackberry Extract Using Mannitol as a Thermoprotectant

    PubMed Central

    Eldridge, Joshua A.; Repko, Debra

    2014-01-01

    Abstract The purpose of these studies was to determine if a Büchi Mini Spray Dryer B-290 (Büchi Corporation, New Castle, DE, USA) could be used to prepare blackberry extract powders containing mannitol as a thermoprotectant without extensively degrading anthocyanins and polyphenols in the resulting powders. Three blackberry puree extract samples were each prepared by sonication of puree in 30/70% ethanol/water containing 0.003% HCl. Blackberry puree extract sample 1 (S1) contained no mannitol, while blackberry puree extract sample 2 (S2) contained 3.0:1 (w/w) mannitol:berry extract, and blackberry puree extract sample 3 (S3) contained 6.3:1 (w/w) mannitol:berry extract. The levels of anthocyanins and polyphenols in reconstituted spray-dried powders produced from S1–S3 were compared to solutions of S1–S3 that were held at 4°C as controls. All extract samples could be spray-dried using the Büchi Mini Spray Dryer B-290. S1, with no mannitol, showed a 30.8% decrease in anthocyanins and a 24.1% decrease in polyphenols following spray-drying. However, S2 had a reduction in anthocyanins of only 13.8%, while polyphenols were reduced by only 6.1%. S3, with a ratio of mannitol to berry extract of 6.3:1, exhibited a 12.5% decrease in anthocyanins while the decrease in polyphenols after spray-drying was not statistically significant (P=.16). Collectively, these data indicate that a Büchi Mini Spray Dryer B-290 is a suitable platform for producing stable berry extract powders, and that mannitol is a suitable thermoprotectant that facilitates retention of thermosensitive polyphenolic species in berry extracts during spray-drying. PMID:24892214

  5. Retention of polyphenolic species in spray-dried blackberry extract using mannitol as a thermoprotectant.

    PubMed

    Eldridge, Joshua A; Repko, Debra; Mumper, Russell J

    2014-10-01

    The purpose of these studies was to determine if a Büchi Mini Spray Dryer B-290 (Büchi Corporation, New Castle, DE, USA) could be used to prepare blackberry extract powders containing mannitol as a thermoprotectant without extensively degrading anthocyanins and polyphenols in the resulting powders. Three blackberry puree extract samples were each prepared by sonication of puree in 30/70% ethanol/water containing 0.003% HCl. Blackberry puree extract sample 1 (S1) contained no mannitol, while blackberry puree extract sample 2 (S2) contained 3.0:1 (w/w) mannitol:berry extract, and blackberry puree extract sample 3 (S3) contained 6.3:1 (w/w) mannitol:berry extract. The levels of anthocyanins and polyphenols in reconstituted spray-dried powders produced from S1-S3 were compared to solutions of S1-S3 that were held at 4°C as controls. All extract samples could be spray-dried using the Büchi Mini Spray Dryer B-290. S1, with no mannitol, showed a 30.8% decrease in anthocyanins and a 24.1% decrease in polyphenols following spray-drying. However, S2 had a reduction in anthocyanins of only 13.8%, while polyphenols were reduced by only 6.1%. S3, with a ratio of mannitol to berry extract of 6.3:1, exhibited a 12.5% decrease in anthocyanins while the decrease in polyphenols after spray-drying was not statistically significant (P=.16). Collectively, these data indicate that a Büchi Mini Spray Dryer B-290 is a suitable platform for producing stable berry extract powders, and that mannitol is a suitable thermoprotectant that facilitates retention of thermosensitive polyphenolic species in berry extracts during spray-drying.

  6. Preparation of polymer-blended quinine nanocomposite particles by spray drying and assessment of their instrumental bitterness-masking effect using a taste sensor.

    PubMed

    Taki, Moeko; Tagami, Tatsuaki; Ozeki, Tetsuya

    2017-05-01

    The development of taste-masking technologies for foods and drugs is essential because it would enable people to consume and receive healthy and therapeutic effect without distress. In the current study, in order to develop a novel method to prepare nanocomposite particles (microparticles containing bitter nanoparticles) in only one step, by using spray drying, a two-solution mixing nozzle-equipped spray dryer that we previously reported was used. The nanocomposite particles with or without poorly water-soluble polymers prepared using our spray-drying technique were characterized. (1) The organic solution containing quinine, a model of bitter compound and poorly water-soluble polymers and (2) sugar alcohol (mannitol) aqueous solution were separately flown in tubes and two solutions were spray dried through two-solution type spray nozzle to prepare polymer-blended quinine nanocomposite particles. Mean diameters of nanoparticles, taste-masking effect and dissolution rate of quinine were evaluated. The results of taste masking by taste sensor suggested that the polymer (Eudragit EPO, Eudragit S100 or Ethyl cellulose)-blended quinine nanocomposite particles exhibited marked masking of instrumental quinine bitterness compared with the quinine nanocomposite particles alone. Quinine nanocomposite formulations altered the quinine dissolution rate, indicating that they can control intestinal absorption of quinine. These results suggest that polymer-blended quinine composite particles prepared using our spray-drying technique are useful for masking bitter tastes in the field of food and pharmaceutical industry.

  7. Spray drying as a strategy for biosurfactant recovery, concentration and storage.

    PubMed

    Barcelos, Gisely S; Dias, Lívia C; Fernandes, Péricles L; Fernandes, Rita de Cássi R; Borges, Arnaldo C; Kalks, Karlos Hm; Tótola, Marcos R

    2014-01-01

    The objective of this study was to analyze the use of Spray Drying for concentration and preservation of biosurfactants produced by Bacillus subtilis LBBMA RI4914 isolated from a heavy oil reservoir. Kaolinite and maltodextrin 10DE or 20DE were tested as drying adjuvants. Surface activity of the biosurfactant was analyzed by preparing dilution x surface activity curves of crude biosurfactant, crude biosurfactant plus adjuvants and of the dried products, after their reconstitution in water. The shelf life of the dried products was also evaluated. Spray drying was effective in the recovery and concentration of biosurfactant, while keeping its surface activity. Drying adjuvants were required to obtain a solid product with the desired characteristics. These compounds did not interfere with tensoactive properties of the biosurfactant molecules. The dehydrated product maintained its surfactant properties during storage at room temperature during the evaluation period (120 days), with no detectable loss of activity.

  8. Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections.

    PubMed

    Vandenheuvel, Dieter; Singh, Abhishek; Vandersteegen, Katrien; Klumpp, Jochen; Lavigne, Rob; Van den Mooter, Guy

    2013-08-01

    The use of bacterial viruses for antibacterial treatment (bacteriophage therapy) is currently being reevaluated. In this study, we analyze the potential of processing bacteriophages in a dry powder formulation, using a laboratory spray dryer. The phages were dried in the presence of lactose, trehalose or dextran 35, serving as an excipient to give the resulting powder the necessary bulk mass and offer protection to the delicate phage structure. Out of the three excipients tested, trehalose was found to be the most efficient in protecting the phages from temperature and shear stress throughout the spray drying process. A low inlet air temperature and atomizing force appeared to be the best parameter conditions for phage survival. Pseudomonas podovirus LUZ19 was remarkably stable, suffering less than 1 logarithmic unit reduction in phage titer. The phage titer of Staphyloccus phage Romulus-containing powders, a member of the Myoviridae family, showed more than 2.5 logarithmic units reduction. On the other hand, Romulus-containing powders showed more favorable characteristics for pulmonary delivery, with a high percentage of dry powder particles in the pulmonary deposition fraction (1-5 μm particle diameter). Even though the parameters were not optimized for spray drying all phages, it was demonstrated that spray drying phages with this industrial relevant and scalable set up was possible. The resulting powders had desirable size ranges for pulmonary delivery of phages with dry powder inhalers (DPIs).

  9. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement.

    PubMed

    Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis; Shukla, Dali

    2015-09-01

    Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale.

  10. Standardization of spray-dried powder of Piper betle hot water extract.

    PubMed

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-04-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle.

  11. Nano-amorphous spray dried powder to improve oral bioavailability of itraconazole.

    PubMed

    Kumar, Sumit; Shen, Jie; Burgess, Diane J

    2014-10-28

    The objective of this study was to formulate nano-amorphous spray-dried powders of itraconazole to enhance its oral bioavailability. A combination approach of solvent-antisolvent precipitation followed by spray drying was used. DoE studies were utilized to understand the critical processing parameters: antisolvent-to-solvent ratio, drug concentration and stabilizer concentration. Particle size was the critical quality attribute. Spray drying of the nano-precipitated formulation was performed with several auxiliary excipients to obtain nano-sized amorphous powder formulations. PLM, DSC and PXRD were utilized to characterize the spray-dried powders. In vitro dissolution and in vivo bioavailability studies of the nano-amorphous powders were performed. The particle size of the nano-formulations was dependent on the drug concentration. The smallest size precipitates were obtained with low drug concentration. All high molecular weight auxiliary excipients and mannitol containing formulations were unstable and crystallized during spray drying. Formulations containing disaccharides were amorphous and non-aggregating. In vitro dissolution testing and in vivo studies showed the superior performance of nano-amorphous formulations compared to melt-quench amorphous and crystalline itraconazole formulations. This study shows superior oral bioavailability of nano-amorphous powders compared to macro-amorphous powders. The nano-amorphous formulation showed similar bioavailability to the nano-crystalline formulation but with a faster absorption profile.

  12. Optimization and dissolution performance of spray-dried naproxen nano-crystals.

    PubMed

    Kumar, Sumit; Shen, Jie; Zolnik, Banu; Sadrieh, Nakissa; Burgess, Diane J

    2015-01-01

    The purpose of this study was to investigate the in vitro dissolution performance of the different sized spray-dried nano-crystalline powders of naproxen. A DoE approach was used to formulate and optimize nano-crystalline suspensions. The critical wet milling operation parameters were i.e., drug concentration, drug-to-stabilizer ratio, stabilizer type (HPMC E15 or Tween 80) and milling intensity. The nano-crystalline suspensions were optimized for size and physical stability and then spray-dried to obtain nano-crystalline powders. Trehalose and lactose were investigated as spray-drying auxiliary excipients to achieve non-aggregating powders. Particle size, DSC and PXRD were utilized for characterization of powder formulations. A modified USP apparatus II was utilized to determine the in vitro release/dissolution of powder formulations. The size of the nano-crystalline suspensions was dependent on drug concentration and milling intensity. HPMC E15 containing formulations were better in terms of the spray-dried powder yield compared to Tween 80 containing formulations. Trehalose was selected to formulate non-aggregating nano-crystalline powders. No polymorphic changes were observed following the wet milling and spray-drying processes. Size dependent in vitro dissolution profiles, utilizing a dialysis sac method were obtained for the crystalline powders. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement

    PubMed Central

    Patel, Bhavesh B.; Patel, Jayvadan K.; Chakraborty, Subhashis; Shukla, Dali

    2013-01-01

    Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale. PMID:27134535

  14. The design and scale-up of spray dried particle delivery systems.

    PubMed

    Al-Khattawi, Ali; Bayly, Andrew; Phillips, Andrew; Wilson, David

    2017-05-04

    The rising demand for pharmaceutical particles with tailored physicochemical properties has opened new markets for spray drying especially for solubility enhancement, improving inhalation medicines and stabilization of biopharmaceuticals. Despite this, the spray drying literature is scattered and often does not address the principles underpinning robust development of pharmaceuticals. It is therefore necessary to present clearer picture of the field and highlight the factors influencing particle design and scale-up. Areas covered: The review presents a systematic analysis of the trends in development of particle delivery systems using spray drying. This is followed by exploring the mechanisms governing particle formation in the process stages. Particle design factors including those of equipment configurations and feed/process attributes were highlighted. Finally, the review summarises the current industrial approaches for upscaling pharmaceutical spray drying. Expert opinion: Spray drying provides the ability to design particles of the desired functionality. This greatly benefits the pharmaceutical sector especially as product specifications are becoming more encompassing and exacting. One of the biggest barriers to product translation remains one of scale-up/scale-down. A shift from trial and error approaches to model-based particle design helps to enhance control over product properties. To this end, process innovations and advanced manufacturing technologies are particularly welcomed.

  15. Standardization of spray-dried powder of Piper betle hot water extract

    PubMed Central

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-01-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle. PMID:21716924

  16. Design of spray dried ternary solid dispersions comprising itraconazole, soluplus and HPMCP: Effect of constituent compositions.

    PubMed

    Davis, Mark T; Potter, Catherine B; Mohammadpour, Maryam; Albadarin, Ahmad B; Walker, Gavin M

    2017-03-15

    A range of 17 ternary formulations of itraconazole (ITZ), HPMCP and Soluplus have been manufactured using spray drying. These amorphous solid dispersions (ASDs) were very stable against crystallisation and ITZ was found to be amorphous in all formulations after one year at 40°C/75% RH. A number of solid state analytical techniques including PXRD, DSC, small angle X-ray scattering, FTIR and solid state NMR were used to characterise the physicochemical properties of the ASDs following processing and storage and to assess any interactions between components. Microtrac laser scattering analysis revealed a relationship between polymer levels and particle size distribution (PSD). Dissolution studies indicated that higher Soluplus content in the formulation resulted in higher concentrations of ITZ in acidic media. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Spray-dried solid dispersions of nifedipine and vinylcaprolactam/vinylacetate/PEG₆₀₀₀ for compacted oral formulations.

    PubMed

    Soulairol, Ian; Tarlier, Nicolas; Bataille, Bernard; Cacciaguerra, Thomas; Sharkawi, Tahmer

    2015-03-15

    The aim of this work was to investigate an alternative processing technology for a new polymeric solubilizer used mainly in hot melt extrusion. Poorly soluble nifedipine was co-processed through spray-drying with poly(vinyl caprolactam-co-vinyl acetate-co-ethylene glycol) (PVCVAEG) in different ratios. The resulting spray-dried powders were formulated and compacted into tablets forms. Spray drying produced reduced smooth spherical particles with PVCVAEG and more rough surfaces without PVCVAEG. Crystallinity of the co-processed nifedipine with the polymeric solubilizer was reduced. Plasticization of the polymeric solubilizer was observed with increasing drug content. Diffraction patterns in the small angle region as well as transmission electron microscopy showed results supporting phase separation throughout the spray dried particles of high drug content. Compaction with PVCVAEG improved cohesiveness of spray-dried compacts. Heckel modeling showed that deformation of PVCVAEG containing powders was more plastic compared than brittle nifedipine powders. Dissolution kinetics of all spray-dried samples was improved compared to original nifedipine crystals. Co-processed nifedipine with PVCVAEG did not show improved dissolution rate when compared to spray drying nifedipine alone. All though PVCVAEG is more commonly co-processed with drugs by hot melt extrusion to produce solid dispersions, the results show that it also can be processed by spray drying to produce solid dispersions. PVCVAEG improved compactibility of formulated spray dried powders. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Physicochemical and in vitro deposition properties of salbutamol sulphate/ipratropium bromide and salbutamol sulphate/excipient spray dried mixtures for use in dry powder inhalers.

    PubMed

    Corrigan, Deirdre O; Corrigan, Owen I; Healy, Anne Marie

    2006-09-28

    The physicochemical and aerodynamic properties of spray dried powders of the drug/drug mixture salbutamol sulphate/ipratropium bromide were investigated. The in vitro deposition properties of spray dried salbutamol sulphate and the spray dried drug/excipient mixtures salbutamol sulphate/lactose and salbutamol sulphate/PEG were also determined. Spray drying ipratropium bromide monohydrate resulted in a crystalline material from both aqueous and ethanolic solution. The product spray dried from aqueous solution consisted mainly of ipratropium bromide anhydrous. There was evidence of the presence of another polymorphic form of ipratropium bromide. When spray dried from ethanolic solution the physicochemical characterisation suggested the presence of an ipratropium bromide solvate with some anhydrous ipratropium bromide. Co-spray drying salbutamol sulphate with ipratropium bromide resulted in amorphous composites, regardless of solvent used. Particles were spherical and of a size suitable for inhalation. Twin impinger studies showed an increase in the fine particle fraction (FPF) of spray dried salbutamol sulphate compared to micronised salbutamol sulphate. Co-spray dried salbutamol sulphate:ipratropium bromide 10:1 and 5:1 systems also showed an increase in FPF compared to micronised salbutamol sulphate. Most co-spray dried salbutamol sulphate/excipient systems investigated demonstrated FPFs greater than that of micronised drug alone. The exceptions to this were systems containing PEG 4000 20% or PEG 20,000 40% both of which had FPFs not significantly different from micronised salbutamol sulphate. These two systems were crystalline unlike most of the other spray dried composites examined which were amorphous in nature.

  19. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  20. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying method.

    PubMed

    Hundre, Swetank Y; Karthik, P; Anandharamakrishnan, C

    2015-05-01

    Vanillin flavour is highly volatile in nature and due to that application in food incorporation is limited; hence microencapsulation of vanillin is an ideal technique to increase its stability and functionality. In this study, vanillin was microencapsulated for the first time by non-thermal spray-freeze-drying (SFD) technique and its stability was compared with other conventional techniques such as spray drying (SD) and freeze-drying (FD). Different wall materials like β-cyclodextrin (β-cyd), whey protein isolate (WPI) and combinations of these wall materials (β-cyd + WPI) were used to encapsulate vanillin. SFD microencapsulated vanillin with WPI showed spherical shape with numerous fine pores on the surface, which in turn exhibited good rehydration ability. On the other hand, SD powder depicted spherical shape without pores and FD encapsulated powder yielded larger particle sizes with flaky structure. FTIR analysis confirmed that there was no interaction between vanillin and wall materials. Moreover, spray-freeze-dried vanillin + WPI sample exhibited better thermal stability than spray dried and freeze-dried microencapsulated samples.

  1. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    PubMed

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances.

  2. Particle size and density in spray drying-effects of carbohydrate properties.

    PubMed

    Elversson, Jessica; Millqvist-Fureby, Anna

    2005-09-01

    The purpose of this study was to examine some fundamental aspects of the particle formation during spray drying, related to particle size and density. Particles were prepared in a laboratory spray dryer from carbohydrates with different solubility and crystallization propensity, such as lactose, mannitol, and sucrose/dextran 4:1. The feed concentrations ranged from 1% w/w to saturated and the size of droplets and particles were measured by laser diffraction. Particles were also characterized by various microscopy techniques (i.e., scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and light microscopy), differential scanning calorimetry (DSC), gas adsorption, and gas pycnometry. As demonstrated larger particles could be obtained by either increasing the droplet size during atomization; increasing the concentration of the feed solution; or decreasing the solubility of the solute. The apparent particle density, measured by gas pycnometry, was found negatively correlated to the feed concentration. Due to the nonlinear relationship between the feed concentration and the particle size, it was concluded that higher solids load would cause an increase in the effective particle density and that the reduction in the apparent particle density was a result of a gradually less permeable particle surface. Further, the crystallization propensity of the carbohydrate influenced the particle formation and resulted in either hollow or porous particles.

  3. Dermal exposure to dry powder spray paints using PXRF and the method of Dirichlet tesselations.

    PubMed

    Roff, Martin; Bagon, David A; Chambers, Helen; Dilworth, E Martin; Warren, Nicholas

    2004-04-01

    This paper describes workplace dermal exposure measurements that were carried out by the Health and Safety Laboratory as part of the EU RISKOFDERM project to measure dust contamination. Exposure to dry powder spray paints was measured at five sites on 12 subjects. Twenty-two samples were obtained, of which eight contained triglycidyl isocyanurate (TGIC) and 14 did not. All subjects wore Tyvek whole body oversuits and some wore sampling gloves. These were either analysed in their entirety to extract the TGIC or surface scanned over representative areas using a portable X-ray fluorescence spectrometer (PXRF) to detect barium or titanium in the fillers of the paints. The method of Dirichlet tessellation was used to map the scans and the technique was developed further for these studies to extend measurements to gloves and to take limits of detection into consideration. The PXRF allowed dusts to be measured in situ that would otherwise be difficult to extract from the material and analyse by other means. The geometric mean surface loading rate of the 22 oversuits was 43 micro g/cm/(2)/h (GSD = 6.0) and of the 23 pairs of sampling gloves was 970 micro g/cm(2)/h (GSD = 8.6). Exposure patterns could be attributed to the arrangements of the subjects, spray booths and the workpieces. Similar exposures were found for TGIC and titanium fillers in factories with similar methods of ventilation.

  4. Tailored Crumpling and Unfolding of Spray-Dried Pristine Graphene and Graphene Oxide Sheets.

    PubMed

    Parviz, Dorsa; Metzler, Shane D; Das, Sriya; Irin, Fahmida; Green, Micah J

    2015-06-10

    For the first time, pristine graphene can be controllably crumpled and unfolded. The mechanism for graphene is radically different than that observed for graphene oxide; a multifaced crumpled, dimpled particle morphology is seen for pristine graphene in contrast to the wrinkled, compressed surface of graphene oxide particles, showing that surface chemistry dictates nanosheet interactions during the crumpling process. The process demonstrated here utilizes a spray-drying technique to produce droplets of aqueous graphene dispersions and induce crumpling through rapid droplet evaporation. For the first time, the gradual dimensional transition of 2D graphene nanosheets to a 3D crumpled morphology in droplets is directly observed; this is imaged by a novel sample collection device inside the spray dryer itself. The degree of folding can be tailored by altering the capillary forces on the dispersed sheets during evaporation. It is also shown that the morphology of redispersed crumpled graphene powder can be controlled by solvent selection. This process is scalable, with the ability to rapidly process graphene dispersions into powders suitable for a variety of engineering applications.

  5. Development of Orodispersible Tizanidine HCl Tablets Using Spray Dried Coprocessed Exipient Bases

    PubMed Central

    Masareddy, Rajashree; Kokate, A.; Shah, V.

    2011-01-01

    Tizanidine HCl is a centrally acting α-2 adrenergic agonist muscle relaxant with a slightly bitter taste having short half-life of 2.5 h. In the present study effect of co-processed excipient bases in formulation of orodispersible tizanidine HCl tablets by direct compression method was investigated. Co-processed excipient of microcrystalline cellulose with SSL-hydroxypropylcellulose was prepared using spray drier in 1:1, 1:2 and 1:3 ratio. Formulated tablets were evaluated for hardness, friability, in vitro disintegration time and in vitro drug release. Formulation F-3 prepared by addition of co-processed excipient base in ratio of 1:3 showed minimum disintegration time of 9.15±0.04 s and higher amount of drug release of 93.75% at the end of 15 min. Granules obtained by spray drying technique were found to be more spherical which improved its flow property and was supported by scanning electron microscope studies. Thermal studies indicated change in amorphous state, compatibility of drug in formulation was confirmed by fourier transform infrared studies. Analyses of drug release data indicated formulation followed first order kinetics. Inclusion of co-processed excipient base in formulation of orodispersible tablets enhanced disintegration significantly. PMID:22707822

  6. Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme.

    PubMed

    Ji, Shuying; Thulstrup, Peter Waaben; Mu, Huiling; Hansen, Steen Honoré; van de Weert, Marco; Rantanen, Jukka; Yang, Mingshi

    2016-11-20

    In the spray drying process, organic solvents can be added to facilitate drying, accommodate certain functional excipients, and modify the final particle characteristics. In this study, lysozyme was used as a model pharmaceutical protein to study the effect of ethanol as a co-solvent on the stability and aerosol performance of spray-dried protein. Lysozyme was dissolved in solutions with various ratios of ethanol and water, and subsequently spray-dried. A change from spherical particles into wrinkled and folded particles was observed upon increasing the ratio of ethanol in the feed. The aerosol performance of the spray-dried lysozyme from ethanol-water solution was improved compared to that from pure water. The conformation of lysozyme in the ethanol-water solution and spray dried powder was altered, but the native structure of lysozyme was restored upon reconstitution in water after the spray drying process. The enzymatic activities of the spray-dried lysozyme showed no significant impact of ethanol; however, the lysozyme enzymatic activity was ca. 25% lower compared to the starting material. In conclusion, the addition of ethanol as a co-solvent in the spray drying feed for lysozyme did not compromise the conformation of the protein after drying, while it improved the inhaled aerosol performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting

    NASA Astrophysics Data System (ADS)

    Song, Bo; Dong, Shujuan; Coddet, Pierre; Hansz, Bernard; Grosdidier, Thierry; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The performance of atmospheric plasma sprayed FeAl coatings has been remarkably limited because of oxidation and phase transformation during the high-temperature process of preparation. In the present work, FeAl intermetallic coatings were prepared by atmospheric plasma spraying combined with dry-ice blasting. The microstructure, oxidation, porosity, and surface roughness of FeAl intermetallic coatings were investigated. The results show that a denser FeAl coating with a lower content of oxide and lower degree of phase transformation can be achieved because of the cryogenic, the cleaning, and the mechanical effects of dry-ice blasting. The surface roughness value decreased, and the adhesive strength of FeAl coating increased after the application of dry-ice blasting during the atmospheric plasma spraying process. Moreover, the microhardness of the FeAl coating increased by 72%, due to the lower porosity and higher dislocation density.

  8. Curcumin encapsulation in submicrometer spray-dried chitosan/Tween 20 particles.

    PubMed

    O'Toole, Martin G; Henderson, Richard M; Soucy, Patricia A; Fasciotto, Brigitte H; Hoblitzell, Patrick J; Keynton, Robert S; Ehringer, William D; Gobin, Andrea S

    2012-08-13

    Optimal curcumin delivery for medicinal applications requires a drug delivery system that both solubilizes curcumin and prevents degradation. To achieve this, curcumin has been encapsulated in submicrometer chitosan/Tween 20 particles via a benchtop spray-drying process. Spray-drying parameters have been optimized using a Taguchi statistical approach to minimize particle size and to favor spheroid particles with smooth surfaces, as evaluated with scanning electron microscopy (SEM) imaging. Nearly spherical particles with 285 ± 30 nm diameter and 1.21 axial ratio were achieved. Inclusion of curcumin in the spray-drying solution results in complete encapsulation of curcumin within the chitosan/Tween 20 particles. Release studies confirm that curcumin can be released completely from the particles over a 2 h period.

  9. Optimising the Encapsulation of an Aqueous Bitter Melon Extract by Spray-Drying.

    PubMed

    Tan, Sing Pei; Kha, Tuyen Chan; Parks, Sophie; Stathopoulos, Costas; Roach, Paul D

    2015-09-09

    Our aim was to optimise the encapsulation of an aqueous bitter melon extract by spray-drying with maltodextrin (MD) and gum Arabic (GA). The response surface methodology models accurately predicted the process yield and retentions of bioactive concentrations and activity (R² > 0.87). The optimal formulation was predicted and validated as 35% (w/w) stock solution (MD:GA, 1:1) and a ratio of 1.5:1 g/g of the extract to the stock solution. The spray-dried powder had a high process yield (66.2% ± 9.4%) and high retention (>79.5% ± 8.4%) and the quality of the powder was high. Therefore, the bitter melon extract was well encapsulated into a powder using MD/GA and spray-drying.

  10. Use of spray-dried zirconia microspheres in the separation of immunoglobulins from cell culture supernatant.

    PubMed

    Subramanian, A; Carr, P W; McNeff, C V

    2000-08-18

    A method suitable for the isolation of monoclonal antibodies (MAbs) on novel zirconia microspheres (20-30 microm) is described. Zirconia microspheres were generated by spray drying colloidal zirconia. Spray-dried zirconia microspheres were further classified and characterized by X-ray diffraction, BET porosimetry and scanning electron microscopy. Spray-dried zirconia microspheres were modified with ethylenediamine-N,N'-tetra(methylenephosphonic) acid (EDTPA) to create a cation-exchange chromatographic support. The chromatographic behavior of a semi-preparative column packed with EDTPA-modified zirconia microspheres was evaluated and implications for scale-up are provided. EDTPA-modified zirconia microspheres were further used to purify MAbs from cell culture supernatant. Analysis by enzyme linked immunosorbent assay and gel electrophoresis demonstrate that MAbs can be recovered from a cell culture supernatant at high yield (92-98%) and high purity (>95%) in a single chromatographic step.

  11. Optimising the Encapsulation of an Aqueous Bitter Melon Extract by Spray-Drying

    PubMed Central

    Tan, Sing Pei; Kha, Tuyen Chan; Parks, Sophie; Stathopoulos, Costas; Roach, Paul D.

    2015-01-01

    Our aim was to optimise the encapsulation of an aqueous bitter melon extract by spray-drying with maltodextrin (MD) and gum Arabic (GA). The response surface methodology models accurately predicted the process yield and retentions of bioactive concentrations and activity (R2 > 0.87). The optimal formulation was predicted and validated as 35% (w/w) stock solution (MD:GA, 1:1) and a ratio of 1.5:1 g/g of the extract to the stock solution. The spray-dried powder had a high process yield (66.2% ± 9.4%) and high retention (>79.5% ± 8.4%) and the quality of the powder was high. Therefore, the bitter melon extract was well encapsulated into a powder using MD/GA and spray-drying. PMID:28231214

  12. Effect of emulsification and spray-drying microencapsulation on the antilisterial activity of transcinnamaldehyde.

    PubMed

    Trinh, Nga-Thi-Thanh; Lejmi, Raja; Gharsallaoui, Adem; Dumas, Emilie; Degraeve, Pascal; Thanh, Mai Le; Oulahal, Nadia

    2015-01-01

    Spray-dried redispersible transcinnamaldehyde (TC)-in-water emulsions were prepared in order to preserve its antibacterial activity; 5% (w/w) TC emulsions were first obtained with a rotor-stator homogeniser in the presence of either soybean lecithin or sodium caseinate as emulsifiers. These emulsions were mixed with a 30% (w/w) maltodextrin solution before feeding a spray-dryer. The antibacterial activity of TC alone, TC emulsions with and without maltodextrin before and after spray-drying were assayed by monitoring the growth at 30 °C of Listeria innocua in their presence and in their absence (control). Whatever the emulsifier used, antilisterial activity of TC was increased following its emulsification. However, reconstituted spray-dried emulsions stabilised by sodium caseinate had a higher antibacterial activity suggesting that they better resisted to spray-drying. This was consistent with observation that microencapsulation efficiencies were 27.6% and 78.7% for emulsions stabilised by lecithin and sodium caseinate, respectively.

  13. The role of co-spray-drying procedure in the preformulation of intranasal propranolol hydrochloride.

    PubMed

    Ambrus, Rita; Gergely, Matild; Zvonar, Alenka; Szabó-Révész, Piroska; Sipos, Emese

    2014-01-01

    The use of dry powder formulations presents an alternative through which to achieve better deposition and residence time in the nasal cavity, increased stability and possible absorption enhancement. The most important factors involved in the preformulation are particle size and physical stability. Propranolol hydrochloride a model drug was subjected to spray-drying technology to form an intranasal dry powder. Particle size reduction of the drug was carried out by integration (spray-drying) methods, using different excipients. The micrometric properties were characterized by size and morphology. The structure was determined through the use of differential scanning calorimetry, X-ray powder diffraction and Fourier transform infrared spectroscopy investigations. It was concluded that the intranasal dry powder formulation of propranolol hydrochloride can be achieved with a suitable particle size without polymorph modification or chemical decomposition.

  14. Development of spray-dried co-precipitate of amorphous celecoxib containing storage and compression stabilizers.

    PubMed

    Dhumal, Ravindra S; Shimpi, Shamkant L; Paradkar, Anant R

    2007-09-01

    The purpose of this study was to obtain an amorphous system with minimum unit operations that will prevent recrystallization of amorphous drugs since preparation, during processing (compression) and further storage. Amorphous celecoxib, solid dispersion (SD) of celecoxib with polyvinyl pyrrollidone (PVP) and co-precipitate with PVP and carrageenan (CAR) in different ratios were prepared by the spray drying technique and compressed into tablets. Saturation solubility and dissolution studies were performed to differentiate performance after processing. Differential scanning calorimetry and X-ray powder difraction revealed the amorphous form of celecoxib, whereas infrared spectroscopy revealed hydrogen bonding between celecoxib and PVP. The dissolution profile of the solid dispersion and co-precipitate improved compared to celecoxib and amorphous celecoxib. Amorphous celecoxib was not stable on storage whereas the solid dispersion and co-precipitate powders were stable for 3 months. Tablets of the solid dispersion of celecoxib with PVP and physical mixture with PVP and carrageenan showed better resistance to recrystallization than amorphous celecoxib during compression but recrystallized on storage. However, tablets of co-precipitate with PVP and carageenan showed no evidence of crystallinity during stability studies with comparable dissolution profiles. This extraordinary stability of spray-dried co-precipitate tablets may be attributed to the cushioning action provided by the viscoelastic polymer CAR and hydrogen bonding interaction between celecoxib and PVP. The present study demonstrates the synergistic effect of combining two types of stabilizers, PVP and CAR, on the stability of amorphous drug during compression and storage as compared to their effect when used alone.

  15. Microencapsulation of superoxide dismutase into biodegradable microparticles by spray-drying.

    PubMed

    Youan, Bi-Botti Célestin

    2004-01-01

    The aim of this work was to encapsulate superoxide dismutase (SOD) into biodegradable microparticles by spray-drying technique. The nature of the organic solvent to dissolve the polymer, the method of incorporation of the drug in the organic phase (with or without a surfactant, namely sucrose ester of HLB = 6), the surfactant/polymer ratio, and the nature of the biodegradable polyesters were investigated as formulation variables. The polyesters investigated as matrix were poly(epsilon-caprolactone) (PCL), poly(d, l, lactide-co-glycolide) (PLG-RG756), and poly(d, l-lactide) (PLA-R207) of respective molecular weight 78.2 kDa, 84.8 kDa, and 199.8 kDa. At surfactant/polymer ratio of 1/10, the SOD-retained enzymatic activities were higher (> 95%) for PLG-RG756 and PLA-R207 but relatively lower for the PCL (approximately 85%) probably due to the PCL relatively higher hydrophobicity. The obtained microparticles exhibited average volume mean diameter of 4-10 microm, the smaller for PCL and the larger for PLG-RG756 polymeric matrix. The in vitro release profile showed that SOD was completely (100%) released from PLA-R207 in 48 hr and from PLG-RG756 and PCL within 72 hr. These results showed that spray-drying with incorporation of surfactant such as sucrose ester may efficiently encapsulate SOD into biodegradable microparticles. Such formulations may improve the bioavailability of SOD and similar biopharmaceuticals.

  16. Microencapsulation of Lactobacillus plantarum (mtcc 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions.

    PubMed

    Dolly, Priyanka; Anishaparvin, A; Joseph, G S; Anandharamakrishnan, C

    2011-01-01

    Spray-drying (SD) and freeze-drying (FD) are widely used methods for microencapsulation of heat-sensitive materials like probiotics for long-term preservation and transport. Spray-freeze-drying (SFD) is relatively a new technique that involves spraying a solution into a cold medium and removal of solvent (water) by conventional vacuum FD method. In this study, the SFD microencapsulated Lactobacillus plantarum powder (1:1 and 1:1.5 core-to-wall ratios of whey protein) is compared with the microencapsulated powders produced by FD and SD methods. The SFD and FD processed microencapsulated powder show 20% higher cell viability than the SD samples. In simulated gastrointestinal conditions, the SFD and FD cells show up to 4 h better tolerance than SD samples and unencapsulated cells in acidic and pepsin condition. The morphology of SFD samples shows particles almost in spherical shape with numerous fine pores, which in turn results in good rehydration behaviour of the powdered product.

  17. Cetirizine dihydrochloride loaded microparticles design using ionotropic cross-linked chitosan nanoparticles by spray-drying method.

    PubMed

    Li, Feng-Qian; Ji, Rui-Rui; Chen, Xu; You, Ben-Ming; Pan, Yong-Hua; Su, Jia-Can

    2010-12-01

    To control the release rate and mask the bitter taste, cetirizine dihydrochloride (CedH) was entrapped within chitosan nanoparticles (CS-NPs) using an ionotropic gelation process, followed by microencapsulation to produce CS matrix microparticles using a spray-drying method. The aqueous colloidal CS-NPs dispersions with a drug encapsulation efficiency (EE) of <15%, were then spray dried to produce a powdered nanoparticles-in-microparticles system with an EE of >70%. The resultant spherical CS microparticles had a smooth surface, were free of organic solvent residue and showed a diameter range of 0.5~5 μm. The in vitro drug release properties of CedH encapsulated microparticles showed an initial burst effect during the first 2 h. Drug release from the matrix CS microparticles could be retarded by the crosslinking agent pentasodium tripolyphosphate or the wall material. The technique of 'ionotropic gelation' combined with 'spray-drying' could be applicable for preparation of CS nanoparticlesin-microparticles drug delivery systems. CS-NPs based microparticles might provide a potential micro-carrier for oral administration of the freely water-soluble drug--CedH.

  18. Application of spray granulation for conversion of mixed phospholipid-bile salt micelles to dry powder form: influence of drug hydrophobicity on nanoparticle reagglomeration

    PubMed Central

    Lv, Qingyuan; Li, Xianyi; Shen, Baode; Xu, He; Shen, Chengying; Dai, Ling; Bai, Jinxia; Yuan, Hailong; Han, Jin

    2014-01-01

    The aim of this study was to investigate the feasibility of using spray granulation as a drying method to convert phospholipid (PL)-sodium deoxycholate (SDC)-mixed micelles (MMs) containing a water-insoluble drug to a solid dosage form and to evaluate how drugs with significantly different physicochemical properties affect the spray granulation process and subsequent in vitro and in vivo processes. Cucurbitacin B (Cu B) and glycyrrhizin (GL) were used as the model drugs. After spray granulation, the dried Cu B-PL/SDC-MM powder was completely redispersible within 15 minutes in vitro. Meanwhile, the area under the curve during 24 hours (AUC0–24) and peak serum concentration from the dried powder were significantly (P<0.05) lower than the values from Cu B-PL/SDC-MMs in vivo. However, a better result was obtained for GL, ie, the drug was redispersed completely within 5 minutes in vitro. Further, absorption from the dried GL-PL/SDC-MM powder was increased to the same level as that for GL-PL/SDC-MMs in vivo compared with the control group. The difference in these results can be found in Cu B and GL. Cu B nanoparticles reagglomerated when released, resulting in slower redispersibility and less absorption compared with the original PL-SDC-MMs. However, no agglomeration or delay was observed for GL. A possible explanation is the difference in surface hydrophobicity between Cu B and GL. The results of this study not only show that spray granulation is an effective drying technique that can complement spray-drying and freeze-drying, but also confirm that the physicochemical properties of a drug have a significant influence on the in vitro and in vivo performance of the dried powder obtained after spray granulation. PMID:24531119

  19. Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey.

    PubMed

    Jantzen, M; Göpel, A; Beermann, C

    2013-10-01

    Formulations of dietary probiotics have to be robust against process conditions and have to maintain a sufficient survival rate during gastric transit. To increase efficiency of the encapsulation process and the viability of applied bacteria, this study aimed at developing spray drying and encapsulation of Lactobacillus reuteri with whey directly from slurry fermentation. Lactobacillus reuteri was cultivated in watery 20% (w/v) whey solution with or without 0·5% (w/v) yeast extract supplementation in a submerged slurry fermentation. Growth enhancement with supplement was observed. Whey slurry containing c. 10(9)  CFU g(-1) bacteria was directly spray-dried. Cell counts in achieved products decreased by 2 log cycles after drying and 1 log cycle during 4 weeks of storage. Encapsulated bacteria were distinctively released in intestinal milieu. Survival rate of encapsulated bacteria was 32% higher compared with nonencapsulated ones exposed to artificial digestive juice. Probiotic L. reuteri proliferate in slurry fermentation with yeast-supplemented whey and enable a direct spray drying in whey. The resulting microcapsules remain stable during storage and reveal adequate survival in simulated gastric juices and a distinct release in intestinal juices. Exploiting whey as a bacterial substrate and encapsulation matrix within a coupled fermentation and spray-drying process offers an efficient option for industrial production of vital probiotics. © 2013 The Society for Applied Microbiology.

  20. Effect of vegetable proteins on physical characteristics of spray-dried tomato powders.

    PubMed

    Tontul, Ismail; Topuz, Ayhan; Ozkan, Ceren; Karacan, Merve

    2016-09-01

    In the present study, the effectiveness of different vegetable proteins (pea protein isolate, soy protein isolate and zein from maize) at two different ratios (1% and 5%) on product yield and physical properties of spray-dried pulpy tomato juice was investigated. Additionally, these proteins were compared with whey protein concentrate which has a superior effect on spray dried products at the same concentrations. Additionally, plain tomato juice was also spray dried for comparison with vegetable proteins. The product yield of the tomato powders dried with the vegetable proteins was lower than with the whey protein concentrate. Among vegetable proteins, the highest product yield was produced with 1% soy protein isolate. In all products, there was a slight colour difference between the reconstituted tomato powders and the raw tomato juice, which indicated that pulpy tomato juice can be spray dried with minor colour change. All powders had unique free-flowing properties estimated as Carr index and Hausner ratio due to their large particles. © The Author(s) 2016.

  1. How surface composition of high milk proteins powders is influenced by spray-drying temperature.

    PubMed

    Gaiani, C; Morand, M; Sanchez, C; Tehrany, E Arab; Jacquot, M; Schuck, P; Jeantet, R; Scher, J

    2010-01-01

    High milk proteins powders are common ingredients in many food products. The surface composition of these powders is expected to play an essential role during their storage, handling and/or final application. Therefore, an eventual control of the surface composition by modifying the spray-drying temperature could be very useful in the improvement of powder quality and the development of new applications. For this purpose, the influence of five spray-drying temperatures upon the surface composition of the powders was investigated by X-ray photoelectron spectroscopy. The major milk proteins were studied: native micellar casein and native whey, both more or less enriched in lactose. The results show a surface enrichment in lipids for all the powders and in proteins for many powders. Whatever the drying temperature, lipids and proteins are preferentially located near the surface whereas lactose is found in the core. This surface enrichment is also highly affected by the spray-drying temperature. More lipids, more proteins and less lactose are systematically observed at the surface of powders spray-dried at lower outlet air temperatures. The nature of proteins is also found essential; surface enrichment in lipids being much stronger for whey proteins containing powders than for casein containing powders. Additionally, we found a direct correlation between the lipids surface concentration and the wetting ability for the 25 powders studied.

  2. Aerosolization properties, surface composition and physical state of spray-dried protein powders.

    PubMed

    Bosquillon, Cynthia; Rouxhet, Paul G; Ahimou, François; Simon, Denis; Culot, Christine; Préat, Véronique; Vanbever, Rita

    2004-10-19

    Powder aerosols made of albumin, dipalmitoylphosphatidylcholine (DPPC) and a protein stabilizer (lactose, trehalose or mannitol) were prepared by spray-drying and analyzed for aerodynamic behavior, surface composition and physical state. The powders exited a Spinhaler inhaler as particle aggregates, the size of which depending on composition, spray-drying parameters and airflow rate. However, due to low bulk powder tap density (<0.15 g/cm3), the aerodynamic size of a large fraction of aggregates remained respirable (<5 microm). Fine particle fractions ranged between 21% and 41% in an Andersen cascade impactor operated at 28.3 l/min, with mannitol and lactose providing the most cohesive and free-flowing powders, respectively. Particle surface analysis by X-ray photoelectron spectroscopy (XPS) revealed a surface enrichment with DPPC relative to albumin for powders prepared under certain spray-drying conditions. DPPC self-organized in a gel phase in the particle and no sugar or mannitol crystals were detected by X-ray diffraction. Water sorption isotherms showed that albumin protected lactose from moisture-induced crystallization. In conclusion, a proper combination of composition and spray-drying parameters allowed to obtain dry powders with elevated fine particle fractions (FPFs) and a physical environment favorable to protein stability.

  3. Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections.

    PubMed

    Matinkhoo, Sadaf; Lynch, Karlene H; Dennis, Jonathan J; Finlay, Warren H; Vehring, Reinhard

    2011-12-01

    Myoviridae bacteriophages were processed into a dry powder inhalable dosage form using a low-temperature spray-drying process. The phages were incorporated into microparticles consisting of trehalose, leucine, and optionally a third excipient (either a surfactant or casein sodium salt). The particles were designed to have high dispersibility and a respirable particle size, and to preserve the phages during processing. Bacteriophages KS4- M, KS14, and cocktails of phages ΦKZ/D3 and ΦKZ/D3/KS4-M were spray-dried with a processing loss ranging from 0.4 to 0.8 log pfu. The aerosol performance of the resulting dry powders as delivered from an Aerolizer® dry powder inhaler (DPI) exceeded the performance of commercially available DPIs; the emitted mass and the in vitro total lung mass of the lead formulation were 82.7% and 69.7% of filled capsule mass, respectively. The total lung mass had a mass median aerodynamic diameter of 2.5-2.8 µm. The total in vitro lung doses of the phages, delivered from a single actuation of the inhaler, ranged from 10(7) to 10(8) pfu, levels that are expected to be efficacious in vivo. Spray drying of bacteriophages into a respirable dry powder was found to be feasible. Copyright © 2011 Wiley-Liss, Inc.

  4. Effects of ethanol to water ratio in feed solution on the crystallinity of spray-dried lactose.

    PubMed

    Harjunen, Päivi; Lehto, Vesa-Pekka; Välisaari, Jouni; Lankinen, Tapio; Paronen, Petteri; Järvinen, Kristiina

    2002-09-01

    In the present study, the effects of ethanol to water ratio in feed solution on the physical properties of spray-dried alpha-lactose monohydrate were evaluated. Crystallinity of the spray-dried lactose was determined by isothermal microcalorimetry (IMC) and by differential scanning calorimetry (DSC). Water content of the spray-dried lactose was determined by thermogravimetric analysis and the surface area was evaluated by Brunauer, Emmett, and Teller (BET) method. The crystallinity of spray-dried lactose varied from 0% to 100%, depending on the ratio of ethanol to water in the feed solution. Lactose spray dried from pure ethanol was 100% crystalline and contained hydrate water. Lactose spray dried from pure water was 100% amorphous. The feed solution substantially affected the ratio of surface water to hydrate water, as the content of surface water increased and hydrate water decreased, while the crystallinity of spray-dried lactose decreased. Surface area of the spray-dried lactose increased as a function of amorphous content.

  5. Measurement of fuel spray vaporisation by laser techniques

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Seng, C. A.; Felton, P. G.; Ungut, A.; Chigier, N. A.

    1980-01-01

    Comparison of fuel spray structures in heated and in cold environments is made by using a new laser tomographic technique and laser anemometry. The tomography technique is shown to give accurate and rapid 'point' measurements of droplet sizes and concentrations. Experimental results show acceleration of droplets to the local gas velocity, preferential vaporisation of the smallest droplets and the dispersion of droplets by the turbulence.

  6. Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace.

    PubMed

    Souza, Volnei Brito de; Fujita, Alice; Thomazini, Marcelo; da Silva, Edson Roberto; Lucon, João Francisco; Genovese, Maria Inés; Favaro-Trindade, Carmen Sílvia

    2014-12-01

    The stability of anthocyanin and phenolic compounds, the antioxidant capacity, the antimicrobial activity and the capacity to inhibit arginase from Leishmania were evaluated in spray-dried powders from Bordo grape winemaking pomace extract. The pigments were produced using maltodextrin as the carrier agent at concentrations varying from 10% to 30% and air entrance temperatures varying from 130 to 170°C. A sample of freeze-dried extract without the carrier was also evaluated. The anthocyanins in the spray-dried samples showed good stability during storage, better than the freeze-dried and liquid extracts. The samples were capable of inhibiting the growth of Staphylococcus aureus and Listeria monocytogenes and showed high inhibitory capacity against the enzyme arginase from Leishmania. These results provide evidence that Bordo grapes from the winemaking process have the potential to be used as natural pigments with functional properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of spray-dried whole egg and biotin in calf milk replacer.

    PubMed

    Quigley, J D

    2002-01-01

    Holstein bull calves (n = 120) were fed milk replacers containing 0, 10, or 20% of the formulation (0, 22, or 44% of crude protein) as spray-dried whole egg powder in a 56-d feeding trial. Milk replacer was medicated with oxytetracycline and neomycin and was fed from d 1 to 42 of the study in a phase-fed program. All experimental milk replacers were supplemented with B vitamins, except biotin. One half of all calves were supplemented with 1 mg/kg of supplemental biotin to determine whether avidin in the egg protein product inhibited growth. Increasing spray-dried whole egg caused a linear reduction in body weight, body weight gain at 28 and 56 d of the study, calf starter intake, and feed efficiency. Calves fed milk replacers containing 0, 10, and 20% spray-dried whole egg gained an average of 486, 369, and 302 g/d, respectively, during the 56-d trial. Efficiency of feed utilization was 446, 318, and 231 g of body weight gain per kilogram of dry matter intake. Improvement in body weight and feed efficiency occurred when calves began consuming calf starter on d 29. Digestibility of protein or fat from egg may have been reduced during the trial; however, the addition of biotin to the milk replacer did not influence animal performance, suggesting that avidin in spray-dried whole egg was not responsible for impaired performance. The spray-dried whole egg product used in this study did not provide nutrients to support adequate growth of milk-fed calves.

  8. Formulation Development, Process Optimization, and In Vitro Characterization of Spray-Dried Lansoprazole Enteric Microparticles

    PubMed Central

    Vora, Chintan; Patadia, Riddhish; Mittal, Karan; Mashru, Rajashree

    2016-01-01

    This research focuses on the development of enteric microparticles of lansoprazole in a single step by employing the spray drying technique and studies the effects of variegated formulation/process variables on entrapment efficiency and in vitro gastric resistance. Preliminary trials were undertaken to optimize the type of Eudragit and its various levels. Further trials included the incorporation of plasticizer triethyl citrate and combinations of other polymers with Eudragit S 100. Finally, various process parameters were varied to investigate their effects on microparticle properties. The results revealed Eudragit S 100 as the paramount polymer giving the highest gastric resistance in comparison to Eudragit L 100-55 and L 100 due to its higher pH threshold and its polymeric backbone. Incorporation of plasticizer not only influenced entrapment efficiency, but diminished gastric resistance severely. On the contrary, polymeric combinations reduced entrapment efficiency for both sodium alginate and glyceryl behenate, but significantly influenced gastric resistance for only sodium alginate and not for glyceryl behenate. The optimized process parameters were comprised of an inlet temperature of 150°C, atomizing air pressure of 2 kg/cm2, feed solution concentration of 6% w/w, feed solution spray rate of 3 ml/min, and aspirator volume of 90%. The SEM analysis revealed smooth and spherical shape morphologies. The DSC and PXRD study divulged the amorphous nature of the drug. Regarding stability, the product was found to be stable under 3 months of accelerated and long-term stability conditions as per ICH Q1A(R2) guidelines. Thus, the technique offers a simple means to generate polymeric enteric microparticles that are ready to formulate and can be directly filled into hard gelatin capsules. PMID:27222612

  9. Formulation Development, Process Optimization, and In Vitro Characterization of Spray-Dried Lansoprazole Enteric Microparticles.

    PubMed

    Vora, Chintan; Patadia, Riddhish; Mittal, Karan; Mashru, Rajashree

    2016-01-01

    This research focuses on the development of enteric microparticles of lansoprazole in a single step by employing the spray drying technique and studies the effects of variegated formulation/process variables on entrapment efficiency and in vitro gastric resistance. Preliminary trials were undertaken to optimize the type of Eudragit and its various levels. Further trials included the incorporation of plasticizer triethyl citrate and combinations of other polymers with Eudragit S 100. Finally, various process parameters were varied to investigate their effects on microparticle properties. The results revealed Eudragit S 100 as the paramount polymer giving the highest gastric resistance in comparison to Eudragit L 100-55 and L 100 due to its higher pH threshold and its polymeric backbone. Incorporation of plasticizer not only influenced entrapment efficiency, but diminished gastric resistance severely. On the contrary, polymeric combinations reduced entrapment efficiency for both sodium alginate and glyceryl behenate, but significantly influenced gastric resistance for only sodium alginate and not for glyceryl behenate. The optimized process parameters were comprised of an inlet temperature of 150°C, atomizing air pressure of 2 kg/cm(2), feed solution concentration of 6% w/w, feed solution spray rate of 3 ml/min, and aspirator volume of 90%. The SEM analysis revealed smooth and spherical shape morphologies. The DSC and PXRD study divulged the amorphous nature of the drug. Regarding stability, the product was found to be stable under 3 months of accelerated and long-term stability conditions as per ICH Q1A(R2) guidelines. Thus, the technique offers a simple means to generate polymeric enteric microparticles that are ready to formulate and can be directly filled into hard gelatin capsules.

  10. Properties of chitosan microencapsulated orange oil prepared by spray-drying and its stability to detergents

    USDA-ARS?s Scientific Manuscript database

    Fragrance encapsulated in small particles of less than 20 µm diameter is preferred for use in textiles. In this study, aromatic orange oil was emulsified in a continuous phase of chitosan and spray-dried to produce microcapsules. The most effective combination of emulsifiers, ratio of chitosan to oi...

  11. Towards an aerogel-based coating for aerospace applications: reconstituting aerogel particles via spray drying

    NASA Astrophysics Data System (ADS)

    Bheekhun, N.; Abu Talib, A. R.; Mustapha, S.; Ibrahim, R.; Hassan, M. R.

    2016-10-01

    Silica aerogel is an ultralight and highly porous nano-structured ceramic with its thermal conductivity being the lowest than any solids. Although aerogels possess fascinating physical properties, innovative solutions to tackle today's problems were limited due to their relative high manufacturing cost in comparison to conventional materials. Recently, some producers have brought forward quality aerogels at competitive costs, and thereby opening a panoply of applied research in this field. In this paper, the feasibility of spray-drying silica aerogel to tailor its granulometric property is studied for thermal spraying, a novel application of aerogels that is never tried before in the academic arena. Aerogel-based slurries with yttria stabilised zirconia as a secondary ceramic were prepared and spray-dried according to modified T aguchi experimental design in order to appreciate the effect of both the slurry formulation and drying conditions such as the solid content, the ratio of yttria stabilised zirconia:aerogel added, the amount of dispersant and binder, inlet temperature, atomisation pressure and feeding rate on the median particle size of the resulting spray-dried powder. The latter was found to be affected by all the aforementioned independent variables at different degree of significance and inclination. Based on the derived relationships, an optimised condition to achieve maximum median particle size was then predicted.

  12. Spray drying of Pomegranate Juice using maltodextrin/cyclodextrin blends as the wall material

    USDA-ARS?s Scientific Manuscript database

    Microencapsulation protects sensitive nutrients for preservation, masking flavors, or to enhance delivery. Ratios of maltodextrin and '-cyclodextrin (20:0, 19:1, and 17:3 % w/w) were dissolved in water and mixed with pomegranate juice for spray drying with inlet temperatures of 120, 140 and 160°C. ...

  13. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Applicability; description of the manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING...

  14. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING...

  15. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Applicability; description of the manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING...

  16. 40 CFR 417.150 - Applicability; description of the manufacture of spray dried detergents subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the manufacture of spray dried detergents subcategory. 417.150 Section 417.150 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING...

  17. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    PubMed

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine.

  18. Effects of Wet-Blending on Detection of Melamine in Spray-Dried Lactose.

    PubMed

    Yakes, Betsy Jean; Bergana, Marti M; Scholl, Peter F; Mossoba, Magdi M; Karunathilaka, Sanjeewa R; Ackerman, Luke K; Holton, Jason D; Gao, Boyan; Moore, Jeffrey C

    2017-07-19

    During the development of rapid screening methods to detect economic adulteration, spray-dried milk powders prepared by dissolving melamine in liquid milk exhibited an unexpected loss of characteristic melamine features in the near-infrared (NIR) and Raman spectra. To further characterize this "wet-blending" phenomenon, spray-dried melamine and lactose samples were produced as a simplified model and investigated by NIR spectroscopy, Raman spectroscopy, proton nuclear magnetic resonance ((1)H NMR), and direct analysis in real time Fourier transform mass spectrometry (DART-FTMS). In contrast to dry-blended samples, characteristic melamine bands in NIR and Raman spectra disappeared or shifted in wet-blended lactose-melamine samples. Subtle shifts in melamine (1)H NMR spectra between wet- and dry-blended samples indicated differences in melamine hydrogen-bonding status. Qualitative DART-FTMS analysis of powders detected a greater relative abundance of lactose-melamine condensation product ions in the wet-blended samples, which supported a hypothesis that wet-blending facilitates early Maillard reactions in spray-dried samples. Collectively, these data indicated that the formation of weak, H bonded complexes and labile, early Maillard reaction products between lactose and melamine contribute to spectral differences observed between wet- and dry-blended milk powder samples. These results have implications for future evaluations of adulterated powders and emphasize the important role of sample preparation methods on adulterant detection.

  19. Characteristics of bovine lactoferrin powders produced through spray and freeze drying processes.

    PubMed

    Wang, Bo; Timilsena, Yakindra Prasad; Blanch, Ewan; Adhikari, Benu

    2017-02-01

    Bovine lactoferrin (LFb) powders were produced using spray drying and freeze drying. Industrially obtained fresh liquid-LFb was used as starting material. The antioxidant capacity, solubility in water, moisture sorption behaviour, the extent of denaturation and changes in the secondary structural features of spray-dried (SDLFb) and freeze-dried bovine lactoferrin (FDLFb) powders were determined. The residual moisture content, water activity, particle size and amorphous/crystalline nature of the SDLFb and FDLFb were also measured. Results showed that both SDLFb and FDLFb powders had negligible denaturation and conformation changes compared to the liquid-LFb. Both SDLFb and FDLFb showed type II sorption behaviour with almost identical monolayer moisture content. The SDLFb powders were amorphous in nature with >98% solubility in water. The antioxidant activity of SDLFb was similar to that of the liquid-LFb while it was ∼6% less in FDLFb. Based on the residual moisture content, water activity, solubility and preservation of secondary structure of LFb in resultant powders, a spray drying process with 180°C inlet and 95°C outlet temperature was found to produce similar or better quality LFb powders compared to the ones produced through a freeze drying process. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The effect of spray-drying parameters on the flavor of nonfat dry milk and milk protein concentrate 70.

    PubMed

    Park, Curtis W; Stout, Mark A; Drake, MaryAnne

    2016-12-01

    Unit operations during production influence the sensory properties of nonfat dry milk (NFDM) and milk protein concentrate (MPC). Off-flavors in dried dairy ingredients decrease consumer acceptance of ingredient applications. Previous work has shown that spray-drying parameters affect physical and sensory properties of whole milk powder and whey protein concentrate. The objective of this study was to determine the effect of inlet temperature and feed solids concentration on the flavor of NFDM and MPC 70% (MPC70). Condensed skim milk (50% solids) and condensed liquid MPC70 (32% solids) were produced using pilot-scale dairy processing equipment. The condensed products were then spray dried at either 160, 210, or 260°C inlet temperature and 30, 40, or 50% total solids for NFDM and 12, 22, or 32% for MPC70 in a randomized order. The entire experiment was replicated 3 times. Flavor of the NFDM and MPC70 was evaluated by sensory and instrumental volatile compound analyses. Surface free fat, particle size, and furosine were also analyzed. Both main effects (30, 40, and 50% solids and 160, 210, and 260°C inlet temperature) and interactions between solids concentration and inlet temperature were investigated. Interactions were not significant. In general, results were consistent for NFDM and MPC70. Increasing inlet temperature and feed solids concentration increased sweet aromatic flavor and decreased cardboard flavor and associated lipid oxidation products. Increases in furosine with increased inlet temperature and solids concentration indicated increased Maillard reactions during drying. Particle size increased and surface free fat decreased with increasing inlet temperature and solids concentration. These results demonstrate that increasing inlet temperatures and solids concentration during spray drying decrease off-flavor intensities in NFDM and MPC70 even though the heat treatment is greater compared with low temperature and low solids.

  1. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    PubMed

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon(®) VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon(®) VA 64, Soluplus(®) and Eudragit(®) E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon(®) VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon(®) VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  2. Physicochemical characterization and water vapor sorption of organic solution advanced spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery.

    PubMed

    Li, Xiaojian; Mansour, Heidi M

    2011-12-01

    Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. Hot-stage microscopy was used to visualize the presence/absence of birefringency before and following particle engineering design pharmaceutical processing, as well as phase transition behavior upon heating. Water content in the solid state was quantified by Karl Fisher (KF) coulometric titration. Solid-state phase transitions and degree of molecular order were examined by differential scanning calorimetry (DSC) and powder X-ray diffraction, respectively. Scanning electron microscopy showed a correlation between particle morphology, surface morphology, and spray drying pump rate. All advanced spray-dried microparticulate/nanoparticulate trehalose powders were in the respirable size range and exhibited a unimodal distribution. All spray-dried powders had very low water content, as quantified by KF. The absence of crystallinity in spray-dried particles was reflected in the powder X-ray diffractograms and confirmed by thermal analysis. DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.

  3. Atmospheric Spray Freeze-Drying: Numerical Modeling and Comparison With Experimental Measurements.

    PubMed

    Borges Sebastião, Israel; Robinson, Thomas D; Alexeenko, Alina

    2017-01-01

    Atmospheric spray freeze-drying (ASFD) represents a novel approach to dry thermosensitive solutions via sublimation. Tests conducted with a second-generation ASFD equipment, developed for pharmaceutical applications, have focused initially on producing a light, fine, high-grade powder consistently and reliably. To better understand the heat and mass transfer physics and drying dynamics taking place within the ASFD chamber, 3 analytical models describing the key processes are developed and validated. First, by coupling the dynamics and heat transfer of single droplets sprayed into the chamber, the velocity, temperature, and phase change evolutions of these droplets are estimated for actual operational conditions. This model reveals that, under typical operational conditions, the sprayed droplets require less than 100 ms to freeze. Second, because understanding the heat transfer throughout the entire freeze-drying process is so important, a theoretical model is proposed to predict the time evolution of the chamber gas temperature. Finally, a drying model, calibrated with hygrometer measurements, is used to estimate the total time required to achieve a predefined final moisture content. Results from these models are compared with experimental data.

  4. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs: a particle engineering approach.

    PubMed

    Bohr, Adam; Boetker, Johan P; Rades, Thomas; Rantanen, Jukka; Yang, Mingshi

    2014-01-01

    Solid dispersions have been widely studied as an attractive formulation strategy for the increasingly prevalent poorly water-soluble drug compounds, including herbal medicines, often leading to improvements in drug dissolution rate and bioavailability. However, several challenges are encountered with solid dispersions, for instance regarding their physical stability, and the full potential of these formulations has yet to be reached. Solid dispersions have mainly been used to produce immediate release systems using water-soluble polymers but an extended release system may provide equal or better performance due to enhancement in the pharmacokinetics and low variability in plasma concentration. Progress in processing technologies and particle engineering provides new opportunities to prepare particle-based solid dispersions with control of physical characteristics and tailored drug release kinetics. Spray-drying and electrospraying are both technologies that allow production and continuous manufacturing of particle-based amorphous solid dispersions in a single step process and electrospinning further allows the production of fiber based systems. This review presents the use of spray drying and electrospraying/electrospinning as techniques for preparing particle-based solid dispersions, describes the particle formation processes via numerical and experimental models and discusses particle engineering using these techniques. Examples are given on the applications of these techniques for preparing solid dispersions and the challenges associated with the techniques such as stability, preparation of final dosage form and scale-up are also discussed.

  5. The effect of vehicle on physical properties and aerosolisation behaviour of disodium cromoglycate microparticles spray dried alone or with L-leucine.

    PubMed

    Najafabadi, Abdolhossien Rouholamini; Gilani, Kambiz; Barghi, Mohammadali; Rafiee-Tehrani, Morteza

    2004-11-05

    The aim of this study was to improve the aerosolisation behaviour of disodium cromogycate (DSCG), using spray drying technique. The effect of vehicle on the drug particle properties was investigated. L-leucine was selected as a natural antiadherent amino acid to improve the deagglomeration of DSCG particles. Spray dried samples of DSCG alone or with L-leucine were prepared from water and ethanol under the same conditions. The powder properties of the samples were examined by laser diffraction, helium densitometer, X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. The in vitro deposition was determined, using an Andersen cascade impactor with a Spinhaler at a flow rate of 60 l/min. An amorphous form of the drug was obtained when water was used. However, crystal transformation of original DSCG in the presence of ethanol during spray drying resulted in production of elongated particles. These particles exhibited improved aerodynamic properties, compared to the amorphous and commercial materials. Significant differences in fine particle fraction were observed using the two vehicles. Co-spray drying of DSCG and L-leucine improved the deposition profiles of the drug. These results indicated that the change in crystal structure of DSCG during spray drying process was susceptible to the nature of the vehicle. A crystalline form of DSCG with good aerodynamic properties was achieved during spray drying process. In addition, the processing of DSCG with L-leucine in a single step using ethanol resulted in an improvement in dispersion properties of the drug particles. copyright 2004 Elsevier B.V.

  6. Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process.

    PubMed

    Agrawal, Anjali M; Dudhedia, Mayur S; Patel, Ashwinkumar D; Raikes, Michelle S

    2013-11-30

    The present study investigated effect of manufacturing methods such as hot melt extrusion (HME) and spray drying (SD) on physicochemical properties, manufacturability, physical stability and product performance of solid dispersion. Solid dispersions of compound X and PVP VA64 (1:2) when prepared by SD and HME process were amorphous by polarized light microscopy, powder X-ray diffractometry, and modulated differential scanning calorimetry analyses with a single glass transition temperature. Fourier transform infrared (FT-IR) and Raman spectroscopic analyses revealed similar molecular level interactions between compound X and PVP VA64 as evident by overlapping FT-IR and FT Raman spectra in SD and HME solid dispersions. The compactibility, tabletability, disintegration and dissolution performance were similar for solid dispersions prepared by both processing techniques. Differences in material properties such as surface area, morphological structure, powder densities, and flow characteristics were observed between SD and HME solid dispersion. The SD solid dispersion was physically less stable compared to HME solid dispersion under accelerated stability conditions. Findings from this study suggest that similar product performance could be obtained if the molecular properties of the solid dispersion processed by two different techniques are similar. However differences in material properties might affect the physical stability of the solid dispersions.

  7. Preparation and characterization of spray-dried inhalable powders containing nanoaggregates for pulmonary delivery of anti-tubercular drugs.

    PubMed

    Kaur, Ranjot; Garg, Tarun; Das Gupta, Umesh; Gupta, Pushpa; Rath, Goutam; Goyal, Amit Kumar

    2016-01-01

    This study aims to prepare spray-dried inhalable powders containing anti-tubercular drugs-loaded HPMC nanoaggregates for sustained delivery of drugs to the lung. Nanoaggregates were prepared by precipitation technique. Results showed that the powders obtained had excellent aerosolization property. High drug encapsulation efficiency was achieved in HPMC nano aggregates, ranging from 60% to 70%. A single pulmonary dose resulted in therapeutic drug concentrations 40% to 60% in the lungs and in other organs (< 5%) for 24 h. From this study, we can conclude that delivering drugs through pulmonary route is advantageous for local action in lungs.

  8. The effect of excipients on the stability and aerosol performance of salmon calcitonin dry powder inhalers prepared via the spray freeze drying process.

    PubMed

    Poursina, Narges; Vatanara, Alireza; Rouini, Mohammad Reza; Gilani, Kambiz; Najafabadi, Abdolhossein Rouholamini

    2016-06-01

    Spray freeze drying was developed to produce dry powders suitable for applications such as inhalation delivery. In the current study, the spray freeze drying technique was employed to produce inhalable salmon calcitonin microparticles. Effects of the carrier type, concentration of hydroxyl propyl-β-cyclodextrin and the presence of Tween 80 on the chemical and structural stability, as well as on the aerosol performance of the particles were investigated. The results indicated that hydroxyl propyl-β-cyclodextrin had the most important effect on the chemical stability of the powder and strongly increased its stability by increasing its concentration in the formulation. Chemically stable formulations (over 90 % recovery) were selected for further examinations. Fluorescence spectroscopy and circular dichroism suggested that the formulations were structurally stable. Aerosol performance showed that the Tween-free powders produced higher fine particle fraction values than the formulations containing Tween (53.7 vs. 41.92 % for trehalose content and 52.85 vs. 43.06 % for maltose content).

  9. Comparisons of three dry application autoradiographic techniques

    SciTech Connect

    Parson, M.J.; Parker, B.C. )

    1987-06-01

    We compared three common dry application techniques applied for the first time to phytoplankton taking up water-soluble radioisotopically labeled substrates. Following incubation of live phytoplankton communities in oligotrophic, nitrogen-limited Mountain Lake, Virginia, with Carbon-14 labeled methylamine-hydrochloride, an ammomium analog, we concentrated cells on 0.8 um pore size Millipore filters, then preserved filters in liquid nitrogen, and freeze-dried. Differences in the techniques are application of stripping film, preparation of freshly prepared film by dipping loops into liquid emulsion, and dipping cover slips in liquid emulsion. Following dark-incubation and development, autoradiographs were evaluated microscopically for reproducibility, fine resolution of silver grains, background scatter, and eaes of technique.

  10. Development of "all natural" layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xia, Yan; Nieh, Mu-Ping; Luo, Yangchao

    2016-10-01

    Solid lipid nanoparticles (SLNs) have gained tremendous attraction as carriers for controlled drug delivery. Despite numerous advances in the field, one long-standing historical challenge for their practical applications remains unmet: redispersibility after drying. In this work, a novel design of SLNs using a layer-by-layer (LbL) technique was developed and the formulations were optimized by surface response methodology (Box-Behnken design). To the best of our knowledge, this is the first study reporting the fabrication of SLNs from all natural ingredients in the absence of any synthetic surfactants or coatings. The SLNs were prepared by a combined solvent-diffusion and hot homogenization method, with soy lecithin as natural emulsifier (first layer), followed by the subsequent coating with sodium caseinate (second layer) and pectin (third layer), both of which are natural food biopolymers. The adsorption of pectin coating onto caseinate was reinforced by hydrophobic and electrostatic interactions induced by a pH-driven process along with thermal treatment. The innovative nano spray drying technology was further explored to obtain ultra-fine powders of SLNs. Compared to uncoated or single-layer coated SLNs powders, which showed severe aggregation after spray drying, the well-separated particles with spherical shape and smooth surface were obtained for layer-by-layer (LbL) SLNs, which were redispersible into water without variation of dimension, shape and morphology. The SLNs were characterized by Fourier transform infrared and high-performance differential scanning calorimetry for their physical properties. The LbL-coated SLNs based on all natural ingredients have promising features for future applications as drug delivery systems, overcoming the major obstacles in conventional spray drying and redispersing SLNs-based formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Influence of microencapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains.

    PubMed

    Goderska, Kamila; Czarnecki, Zbigniew

    2008-01-01

    Improved production methods of starter cultures, which constitute the most important element of probiotic preparations, were investigated. The aim of the presented research was to analyse changes in the viability of Lactobacillus. acidophilus and Bifidobacterium bifidum after stabilization (spray drying, liophilization, fluidization drying) and storage in refrigerated conditions for 4 months. The highest numbers of live cells, up to the fourth month of storage in refrigerated conditions, of the order of 10(7) cfu/g preparation were recorded for the B. bifidum DSM 20239 bacteria in which the N-Tack starch for spray drying was applied. Fluidization drying of encapsulated bacteria allowed obtaining a preparation of the comparable number of live bacterial cells up to the fourth month of storage with those encapsulated bacteria, which were subjected to freeze-drying but the former process was much shorter. The highest survivability of the encapsulated L. acidophilus DSM 20079 and B. bifidum DSM 20239 cells subjected to freeze-drying was obtained using skimmed milk as the cryoprotective substance. Stabilization of bacteria by microencapsulation can give a product easy to store and apply to produce dried food composition.

  12. Quality by Design approach to spray drying processing of crystalline nanosuspensions.

    PubMed

    Kumar, Sumit; Gokhale, Rajeev; Burgess, Diane J

    2014-04-10

    Quality by Design (QbD) principles were explored to understand spray drying process for the conversion of liquid nanosuspensions into solid nano-crystalline dry powders using indomethacin as a model drug. The effects of critical process variables: inlet temperature, flow and aspiration rates on critical quality attributes (CQAs): particle size, moisture content, percent yield and crystallinity were investigated employing a full factorial design. A central cubic design was employed to generate the response surface for particle size and percent yield. Multiple linear regression analysis and ANOVA were employed to identify and estimate the effect of critical parameters, establish their relationship with CQAs, create design space and model the spray drying process. Inlet temperature was identified as the only significant factor (p value <0.05) to affect dry powder particle size. Higher inlet temperatures caused drug surface melting and hence aggregation of the dried nano-crystalline powders. Aspiration and flow rates were identified as significant factors affecting yield (p value <0.05). Higher yields were obtained at higher aspiration and lower flow rates. All formulations had less than 3% (w/w) moisture content. Formulations dried at higher inlet temperatures had lower moisture compared to those dried at lower inlet temperatures.

  13. Enhancing the viability of Lactobacillus rhamnosus GG after spray drying and during storage.

    PubMed

    Broeckx, Géraldine; Vandenheuvel, Dieter; Henkens, Tim; Kiekens, Shari; van den Broek, Marianne F L; Lebeer, Sarah; Kiekens, Filip

    2017-10-03

    Increasing knowledge about the human microbiome has led to a growing awareness of the potential of applying probiotics to improve our health. The pharmaceutical industry shows an emerging interest in pharmaceutical formulations containing these beneficial microbes, the so-called pharmabiotics. An important manufacturing step is the drying of the probiotics, as this can increase the stability and shelf life of the finished pharmabiotic product. Unfortunately, drying also puts stress on microbial cells, thus causing a decrease in viability. We aimed to examine the effect of different drying media and protective excipients on the viability of the prototype probiotic strain Lactobacillus rhamnosus GG after spray drying and during subsequent storage for 28 weeks. The presence of phosphates in the drying medium showed to have a superior protective effect, especially during long-term storage at room temperature. Addition of lactose or trehalose resulted in significantly improved survival rates after drying as well as during long-term storage for the tested excipients. Both disaccharides are characterized by a high glass transition temperature. Maltodextrin showed less protective capacities compared to lactose and trehalose in all tested conditions. The usage of mannitol or dextran resulted in sticky powders and low yields, so further testing was not possible. In addition to optimizing the viability, future research will also explore the functionality of cellular probiotic components after spray drying in order to safeguard the probiotic activity of the formulated pharmabiotics. Copyright © 2017. Published by Elsevier B.V.

  14. Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8.

    PubMed

    Yánez-Mendizabal, V; Viñas, I; Usall, J; Cañamás, T; Teixidó, N

    2012-04-01

    The role of endospore production by Bacillus subtilis CPA-8 on survival during spray-drying was investigated by comparison with a non-spore-forming biocontrol agent Pantoea agglomerans CPA-2. Endospore formation promoted heat resistance in CPA-8 depending on growth time (72 h cultures were more resistant than 24 h ones). The survival of CPA-8 and CPA-2 after spray-drying was determined after being grown in optimised media for 24 and 72 h. Spray-dried 72 h CPA-8 had the best survival (32%), while CPA-2 viability was less than 2%. CPA-8 survival directly related with its ability to produce endospores. Spray-dried CPA-8 reduced Monilinia fructicola conidia germination similarly to fresh cells, demonstrating that spray-drying did not adversely affect biocontrol efficacy. Endospore production thus improves CPA-8 resistance to spray-drying. These results can provide a reliable basis for optimising of the spray-drying formulation process for CPA-8 and other microorganisms.

  15. Spray coating as a powerful technique in preparation of solid dispersions with enhanced desloratadine dissolution rate.

    PubMed

    Kolašinac, Nemanja; Kachrimanis, Kyriakos; Djuriš, Jelena; Homšek, Irena; Grujić, Branka; Ibrić, Svetlana

    2013-07-01

    Solid dispersion systems have been widely used to enhance dissolution rate and oral bioavailability of poorly water-soluble drugs. However, the formulation process development and scale-up present a number of difficulties which has greatly limited their commercial applications. In this study, solid dispersions (SDs) of desloratadine (DSL) with povidone (PVP) and crospovidone (cPVP) were prepared by spray coating technique. The process involved the spray application of 96% ethanol solution of DSL and PVP/cPVP, and subsequent deposition of the coprecipitates onto microcrystalline cellulose pellets during drying by air flow in a mini spray coater. The results from the present study demonstrated that the spray coating process is efficient in preparing SDs with enhanced drug dissolution rate and it is highly efficient in organic solvent removal. Both PVP and cPVP greatly improved drug dissolution rate by SDs, with PVP showing better solubilization capability. Very fast drug dissolution rate is achieved from SDs containing PVP regardless of differences in K grade. SD with smaller particles of cPVP have higher drug dissolution rate in comparison to the cPVP with larger particles. Results from physical state characterization indicate that DSL in SDs exist in the amorphous (high free-energy) state which is probably stabilized by PVP/cPVP. After 6-month accelerated stability study, DSL remains amorphous, while PVP and cPVP act as anti-plasticizing agents, offering efficient steric hindrance for nucleation and crystal growth.

  16. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery.

    PubMed

    Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj

    2013-01-01

    The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation.

  17. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery

    PubMed Central

    Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj

    2013-01-01

    Purpose The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. Methods The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. Results sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. Conclusion The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation. PMID:24039397

  18. The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders.

    PubMed

    Lao, Fei; Giusti, M Monica

    2017-07-15

    Spray drying is an economic technique to produce anthocyanin-based colorants. High pigments yields with minimum color degradation are desirable to maximize quality and profits. This study evaluated the impacts of purple corncob (PCC) anthocyanin extraction matrices (hot water, 40% ethanol, C18 purified), drying inlet temperature (130, 150, 170°C) and amount of carrier (2%, 5%, 10% maltodextrin) on the yields and quality of PCC anthocyanin powders. Monomeric and polymeric anthocyanins, color properties (CIELch, haze), and pigments composition before and after spray drying were determined. The yield and final color quality of spray dried PCC anthocyanins were affected (p<0.05) by all parameters evaluated. The pigment matrix, inlet temperature, and carrier amount had biggest impacts on product water solubility, pigments degradation and yield, respectively. The optimal combination of hot water extracts spray dried with 5% maltodextrin at 150°C gave the highest pigment yield (∼90%) with good solubility with the least color loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Roll compaction of mannitol: compactability study of crystalline and spray-dried grades.

    PubMed

    Wagner, Carl Moritz; Pein, Miriam; Breitkreutz, Jörg

    2013-09-10

    Purpose of this project was to investigate the roll compaction behavior of various mannitol grades. Therefore, five spray-dried grades as well as unprocessed β-d-mannitol were roll compacted with different compaction forces. The resulting granules were characterized with regard to their particle size distribution, flow properties, and BET surface area and compressed to tablets. Granules of unprocessed mannitol, even when applying high compaction forces during dry granulation, were characterized by a high amount of fines (about 21%), a small surface area (0.83 m(2)/g), and solely fair flowability (ffc=7.2). Tablets revealed either high friability or insufficient disintegration behavior. However, the use of spray-dried mannitol led to better results. Granules showed improved flow properties and a reduced amount of fines. Robust tablets with low friability were produced. Within the various spray-dried grades huge differences concerning the compactability were observed. Large BET surface areas of the granules resulted in advanced tensile strengths of the tablets, but acceptable disintegration behavior was maintained. These findings are relevant for the development of mannitol based drug formulations, in particular (oro)dispersible tablets containing a low dose or poor flowing active pharmaceutical ingredient, where direct compression is inappropriate and a granulation process prior to tableting is mandatory.

  20. Optimization of spray drying process for developing seabuckthorn fruit juice powder using response surface methodology.

    PubMed

    Selvamuthukumaran, Meenakshisundaram; Khanum, Farhath

    2014-12-01

    The response surface methodology was used to optimize the spray drying process for development of seabuckthorn fruit juice powder. The independent variables were different levels of inlet air temperature and maltodextrin concentration. The responses were moisture, solubility, dispersibility, vitamin C and overall color difference value. Statistical analysis revealed that independent variables significantly affected all the responses. The Inlet air temperature showed maximum influence on moisture and vitamin C content, while the maltodextrin concentration showed similar influence on solubility, dispersibility and overall color difference value. Contour plots for each response were used to generate an optimum area by superimposition. The seabuckthorn fruit juice powder was developed using the derived optimum processing conditions to check the validity of the second order polynomial model. The experimental values were found to be in close agreement to the predicted values and were within the acceptable limits indicating the suitability of the model in predicting quality attributes of seabuckthorn fruit juice powder. The recommended optimum spray drying conditions for drying 100 g fruit juice slurry were inlet air temperature and maltodextrin concentration of 162.5 °C and 25 g, respectively. The spray dried juice powder contains higher amounts of antioxidants viz., vitamin C, vitamin E, total carotenoids, total anthocyanins and total phenols when compared to commercial fruit juice powders and they are also found to be free flowing without any physical alterations such as caking, stickiness, collapse and crystallization by exhibiting greater glass transition temperature.

  1. Stability of spray-dried tuna oil emulsions encapsulated with two-layered interfacial membranes.

    PubMed

    Klinkesorn, Utai; Sophanodora, Pairat; Chinachoti, Pavinee; McClements, D Julian; Decker, Eric A

    2005-10-19

    omega-3 Fatty acids have numerous health benefits, but their addition to foods is limited by oxidative rancidity. Spray-drying tuna oil-in-water emulsion droplets with a coating of lecithin and chitosan multilayer system could produce emulsion droplet interfacial membranes that are cationic and thick, both factors that can help control lipid oxidation. Physicochemical and oxidative stability of the spray-dried emulsions were determined as a function of storage temperature and relative humidity (RH). The combination of ethylenediaminetetraacetic acid (EDTA) and mixed tocopherols was able to increase the oxidative stability of dried emulsions. Lipid oxidation was more rapid during storage at low relative humidity (11% and 33% compared to 52% RH). At high moisture, physical modifications in the sample were observed, including reduced dispersibility and formation of brown pigments. Sugar crystallization or Maillard products produced at the higher humidities may have inhibited oxidation. Overall, spray-dried tuna oil-in-water emulsions stabilized by lecithin-chitosan membranes were more oxidatively stable than bulk oils and thus have excellent potential as an omega-3 fatty acid ingredient for functional foods.

  2. Microencapsulation of Corn Wastewater (Nejayote) Phytochemicals by Spray Drying and Their Release Under Simulated Gastrointestinal Digestion.

    PubMed

    Villela-Castrejón, Javier; Acosta-Estrada, Beatriz A; Gutiérrez-Uribe, Janet A

    2017-07-01

    Corn lime cooking generates a large amount of wastewater known as nejayote that is composed of suspended solids and solubilized phytochemicals. Spray drying can be an alternative to recover bioactive molecules, such as ferulic acid, from nejayote. Besides the yield, the physicochemical properties (solubility, water activity, pH, moisture, hygroscopicity, total phenolic content, and distribution of free and bound hydroxycinnamic acids) of spray-dried nejayote powders were analyzed. The powders were obtained at 200 °C/100 °C or 150 °C/75 °C (inlet/outlet) air temperatures with the addition of maltodextrin (MD) or 2-hydroxypropyl-beta-cyclodextrin (HBCD) as encapsulating agents. Even when no carrier agent was used, a spray-dried nejayote powder was produced. The use of MD or HBCD as carrier increased the yield from 60.26% to 68.09% or 71.83%, respectively. As expected, a high inlet temperature (200 °C) allowed a satisfactory yield (>70%) and a low powder moisture (2.5%) desired by the industry. Water activity was reduced from 0.586 to 0.307 when HBCD was used in combination with a drying inlet temperature of 150 °C; and from 0.488 to 0.280 when the inlet temperature was set at 200 °C. Around 100% bioaccessibility of the compounds was observed after in vitro digestion. The addition of HBCD increased the release time (P < 0.05). Under simulated physiological conditions, there was no reduction of total phenolics, suggesting a good stability. This paper showed the feasibility to engage the spray drying technology to the corn industry to minimize their residues and reuse their by-products. © 2017 Institute of Food Technologists®.

  3. A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine.

    PubMed

    Kanojia, Gaurav; Willems, Geert-Jan; Frijlink, Henderik W; Kersten, Gideon F A; Soema, Peter C; Amorij, Jean-Pierre

    2016-09-25

    Spray dried vaccine formulations might be an alternative to traditional lyophilized vaccines. Compared to lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The current study provides an approach that utilizes Design of Experiments for spray drying process to stabilize whole inactivated influenza virus (WIV) vaccine. The approach included systematically screening and optimizing the spray drying process variables, determining the desired process parameters and predicting product quality parameters. The process parameters inlet air temperature, nozzle gas flow rate and feed flow rate and their effect on WIV vaccine powder characteristics such as particle size, residual moisture content (RMC) and powder yield were investigated. Vaccine powders with a broad range of physical characteristics (RMC 1.2-4.9%, particle size 2.4-8.5μm and powder yield 42-82%) were obtained. WIV showed no significant loss in antigenicity as revealed by hemagglutination test. Furthermore, descriptive models generated by DoE software could be used to determine and select (set) spray drying process parameter. This was used to generate a dried WIV powder with predefined (predicted) characteristics. Moreover, the spray dried vaccine powders retained their antigenic stability even after storage for 3 months at 60°C. The approach used here enabled the generation of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentially used for pulmonary administration.

  4. Polymorphism of spray-dried microencapsulated sulfamethoxazole with cellulose acetate phthalate and colloidal silica, montmorillonite, or talc.

    PubMed

    Takenaka, H; Kawashima, Y; Lin, S Y

    1981-11-01

    Sulfamethoxazole was microencapsulated with cellulose acetate phthalate and talc, colloidal silica, or montmorillonite clay by a spray-drying technique. The surface topography of the products varied with the type of excipient used and the pH of the suspending medium. The products without the excipient were coated with flake-like crusts, while the products containing the excipient tended to become well-rounded spheres. In addition, the crystalline form of sulfamethoxazole converted from Form I to an amorphism and Form II during the spray-drying process. This polymorphic transformation was attributed to the interaction of cellulose acetate phthalate with sulfamethoxazole. Increasing the concentration of cellulose acetate phthalate in the formulation increased the attainment of amorphism. Form II was also obtained by freeze and vacuum drying. Talc was the only excipient that contributed to polymorphism, which occurred in the alkaline suspension medium. Montmorillonite products prepared from the acidic medium exhibited an exothermic differential scanning calorimetry thermogram, which might be interpreted in terms of adsorption of the fused sulfamethoxazole with the internal surface of montmorillonite,

  5. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure.

    PubMed

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5-15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery.

  6. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure

    PubMed Central

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5–15 μm were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery. PMID:26347257

  7. Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions.

    PubMed

    Gu, Bing; Linehan, Brian; Tseng, Yin-Chao

    2015-08-01

    A central composite design approach was applied to study the effect of polymer concentration, inlet temperature and air flow rate on the spray drying process of the Büchi B-90 nano spray dryer (B-90). Hypromellose acetate succinate-LF was used for the Design of Experiment (DoE) study. Statistically significant models to predict the yield, spray rate, and drying efficiency were generated from the study. The spray drying conditions were optimized according to the models to maximize the yield and efficiency of the process. The models were further validated using a poorly water-soluble investigational compound (BI064) from Boehringer Ingelheim Pharmaceuticals. The polymer/drug ratio ranged from 1/1 to 3/1w/w. The spray dried formulations were amorphous determined by differential scanning calorimetry and X-ray powder diffraction. The particle size of the spray dried formulations was 2-10 μm under polarized light microscopy. All the formulations were physically stable for at least 3h when suspended in an aqueous vehicle composed of 1% methyl cellulose. This study demonstrates that DoE is a useful tool to optimize the spray drying process, and the B-90 can be used to efficiently produce amorphous solid dispersions with a limited quantity of drug substance available during drug discovery stages.

  8. Production and characterization of aluminium oxide nanoshells on spray dried lactose.

    PubMed

    Hellrup, Joel; Rooth, Mårten; Johansson, Anders; Mahlin, Denny

    2017-08-30

    Atomic layer deposition (ALD) enables deposition of dense nanometer thick metal oxide nanoshells on powder particles with precise thickness control. This leads to products with low weight fraction coating, also when depositing on nano- or micron sized powder particles. This study aimed at investigating the aluminium oxide nanoshell thickness required to prevent moisture sorption. The nanoshells were produced with ALD on spray-dried lactose, which is amorphous and extremely hygroscopic. The particles were studied with dynamic vapor sorption between 0 and 50% RH, light scattering, scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, and polarized light microscopy. The ALD did not induce any recrystallization of the amorphous lactose. The dynamic vapor sorption indicated that the moisture sorption was almost completely inhibited by the nanoshell. Neat amorphous lactose rapidly recrystallized upon moisture exposure. However, only ca. 15% of the amorphous lactose particles recrystallized of a sample with 9% (by weight) aluminium oxide nanoshell at storage for six months upon 75% RH/40°C, which indicate that the moisture sorption was completely inhibited in the majority of the particles. In conclusion, the aluminium oxide nanoshells prevented moisture sorption and dramatically improved the long term physical stability of amorphous lactose. This shows the potential of the ALD-technique to protect drug microparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sodium and Lithium Storage Properties of Spray-Dried Molybdenum Disulfide-Graphene Hierarchical Microspheres

    PubMed Central

    Kalluri, Sujith; Seng, Kuok Hau; Guo, Zaiping; Du, Aijun; Konstantinov, Konstantin; Liu, Hua Kun; Dou, Shi Xue

    2015-01-01

    Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (−2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g−1 and 640 mAh g−1 at 0.1 A g−1. PMID:26173985

  10. Silica coated paper substrate for paper-spray analysis of therapeutic drugs in dried blood spots.

    PubMed

    Zhang, Zhiping; Xu, Wei; Manicke, Nicholas E; Cooks, R Graham; Ouyang, Zheng

    2012-01-17

    Paper spray is a newly developed ambient ionization method that has been applied for direct qualitative and quantitative analysis of biological samples. The properties of the paper substrate and spray solution have a significant impact on the release of chemical compounds from complex sample matrices, the diffusion of the analytes through the substrate, and the formation of ions for mass spectrometry analysis. In this study, a commercially available silica-coated paper was explored in an attempt to improve the analysis of therapeutic drugs in dried blood spots (DBS). The dichloromethane/isopropanol solvent has been identified as an optimal spray solvent for the analysis. The comparison was made with paper spray using chromatography paper as substrate with methanol/water as solvent for the analysis of verapamil, citalopram, amitriptyline, lidocaine, and sunitinib in dried blood spots. It has been demonstrated that the efficiency of recovery of the analytes was notably improved with the silica coated paper and the limit of quantitation (LOQ) for the drug analysis was 0.1 ng mL(-1) using a commercial triple quadrupole mass spectrometer. The use of silica paper substrate also resulted in a sensitivity improvement of 5-50-fold in comparison with chromatography papers, including the Whatman ET31 paper used for blood cards. Analysis using a hand-held miniature mass spectrometer Mini 11 gave LOQs of 10-20 ng mL(-1) for the tested drugs, which is sufficient to cover the therapeutic ranges of these drugs.

  11. Silica Coated Paper Substrate for Paper-Spray Analysis of Therapeutic Drugs in Dried Blood Spots

    PubMed Central

    Zhang, Zhiping; Xu, Wei; Manicke, Nicholas E.; Cooks, R. Graham; Ouyang, Zheng

    2011-01-01

    Paper spray is a newly developed ambient ionization method that has been applied for direct qualitative and quantitative analysis of biological samples. The properties of the paper substrate and spray solution have a significant impact on the release of chemical compounds from complex sample matrices, the diffusion of the analytes through the substrate, and the formation of ions for mass spectrometry analysis. In this study, a commercially available silica-coated paper was explored in an attempt to improve the analysis of therapeutic drugs in dried blood spots (DBS). The dichloromethane/isopropanol solvent has been identified as an optimal spray solvent for the analysis. The comparison was made with paper spray using chromatography paper as substrate with methanol/water as solvent for the analysis of verapamil, citalopram, amitriptyline, lidocaine and sunitinib in dried blood spots. It has been demonstrated the efficiency of recovery of the analytes was notably improved with the silica coated paper and the limit of quantitation (LOQ) for the drug analysis was 0.1 ng mL−1 using a commercial triple quadrupole mass spectrometer. The use of silica paper substrate also resulted in a sensitivity improvement of 5-50 fold in comparison with chromatography papers, including the Whatmann ET31 paper used for blood card. Analysis using a handheld miniature mass spectrometer Mini 11 gave LOQs of 10~20 ng mL−1 for the tested drugs, which is sufficient to cover the therapeutic ranges of these drugs. PMID:22145627

  12. Effect of sucrose on physical properties of spray-dried whole milk powder.

    PubMed

    Ma, U V Lay; Ziegler, G R; Floros, J D

    2008-11-01

    Spray-dried whole milk powders were prepared from whole condensed milk with various sucrose concentrations (0%, 2.5%, 5%, 7.5%, and 10% w/w), and their glass transition temperature and some physical properties of importance in chocolate manufacture were evaluated. In milk powder samples, the glass transition temperature and free-fat content decreased in a nonlinear manner with sucrose addition. Moreover, increasing sucrose concentration reduced the formation of dents on the particle surface. Addition of sucrose in whole condensed milk increased linearly the apparent particle density and in a nonlinear manner the particle size of spray-dried milk powders. The particle size volume distribution of milk powders with the highest sucrose concentration differed from the log-normal distribution of the other samples due to the formation of large agglomerates. Neither vacuole volume, nor the amorphous state of milk powders was affected by sucrose addition.

  13. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations.

    PubMed

    Paudel, Amrit; Worku, Zelalem Ayenew; Meeus, Joke; Guns, Sandra; Van den Mooter, Guy

    2013-08-30

    Spray drying is an efficient technology for solid dispersion manufacturing since it allows extreme rapid solvent evaporation leading to fast transformation of an API-carrier solution to solid API-carrier particles. Solvent evaporation kinetics certainly contribute to formation of amorphous solid dispersions, but also other factors like the interplay between the API, carrier and solvent, the solution state of the API, formulation parameters (e.g. feed concentration or solvent type) and process parameters (e.g. drying gas flow rate or solution spray rate) will influence the final physical structure of the obtained solid dispersion particles. This review presents an overview of the interplay between manufacturing process, formulation parameters, physical structure, and performance of the solid dispersions with respect to stability and drug release characteristics.

  14. Microencapsulation of bioactives in cross-linked alginate matrices by spray drying.

    PubMed

    Santa-Maria, Monica; Scher, Herbert; Jeoh, Tina

    2012-01-01

    Microencapsulation of biomolecules, cells and chemicals is widely used in the food and pharmaceutical industries to improve stability, delivery and to control the release of encapsulated moieties. Among encapsulation matrices, alginate is preferred due to its low cost, biodegradability and biocompatibility. Current methods for producing stable alginate gels involve dropping alginate suspensions into divalent cation solutions. This procedure is difficult to scale-up and produces undesirably large alginate beads. In our novel encapsulation method, alginate gelation occurs during spray drying upon volatilisation of a base and rapid release of otherwise unavailable calcium ions. The resulting particles, with median particle sizes in the range 15-120 µm, are insoluble in solution. Cellulase and hemicellulase activities encapsulated by this method were not compromised during spray drying and remained stable over prolonged storage. The procedure described here offers a one-step alternative to other encapsulation methods that are costly and difficult to scale-up.

  15. Starch/Carbopol spray-dried mixtures as excipients for oral sustained drug delivery.

    PubMed

    Pringels, E; Ameye, D; Vervaet, C; Foreman, P; Remon, J P

    2005-04-18

    The present study evaluated if mixtures prepared by spray-drying an aqueous dispersion of Amioca starch and Carbopol 974P could be used as matrix for oral sustained drug delivery. The influence of the Amioca/Carbopol 974P ratio (0/100, 25/75, 50/50, 60/40, 85/15, 90/10, 95/5 and 100/0) and the pH and ionic strength (mu) of the dissolution medium on the drug release was investigated. The matrices composed of the spray-dried mixtures with 10% or 15% Carbopol 974P sustained the drug release over the longest time period. At this Carbopol concentration, shear viscosity measurements indicated the formation of an optimal network between the polymer chains of Amioca starch and Carbopol 974P, forming a rigid gel layer offering resistance to erosion during the dissolution experiments.

  16. Application of cashew tree gum on the production and stability of spray-dried fish oil.

    PubMed

    Botrel, Diego Alvarenga; Borges, Soraia Vilela; Fernandes, Regiane Victória de Barros; Antoniassi, Rosemar; de Faria-Machado, Adelia Ferreira; Feitosa, Judith Pessoa de Andrade; de Paula, Regina Celia Monteiro

    2017-04-15

    Evaluation of cashew gum compared to conventional materials was conducted regarding properties and oxidative stability of spray-dried fish oil. Emulsions produced with cashew gum showed lower viscosity when compared to Arabic gum. The particle size was larger (29.9μm) when cashew gum was used, and the encapsulation efficiency reached 76%, similar to that of modified starch but higher than that for Arabic gum (60%). The oxidation process for the surface oil was conducted and a relative lower formation of oxidation compounds was observed for the cashew gum treatment. GAB model was chosen to describe the moisture adsorption isotherm behaviours. Microparticles produced using Arabic and cashew gums showed greater water adsorption when exposed to higher relative humidities. Microparticles produced using cashew gum were more hygroscopic however encapsulation efficiency were higher and surface oil oxidation were less pronounced. Cashew gum can be further explored as an encapuslant material for spray drying processes.

  17. A study of a new co-processed dry binder based on spray-dried lactose and microcrystalline cellulose.

    PubMed

    Mužíková, Jitka; Sináglová, Pavla

    2013-06-01

    The paper studies the compressibility and disintegration time of tablets from the co-processed dry binder DisintequikTM MCC in combination with two lubricants at two concentrations in dependence on compression force. It also compares identical parameters in the physical mixtures of the spray-dried lactose Flowlac® 100 and the microcrystalline cellulose Microcel® MC-102 in the ratios of 9 : 1, 8 : 2 and 7 : 3, again in combination with two lubricants of two concentrations at one compression force. The lubricants employed are magnesium stearate and poloxamer 407 in concentrations of 1% and 2%. Compressibility is evaluated by means of energy balance of compression and tensile strength of tablets. DisintequikTM MCC shows higher values of total energy of compression due to higher values of the energy accumulated by the tablet, higher plasticity, higher strength and a longer disintegration time of tablets than the physical mixture of spray-dried lactose and microcrystalline cellulose of a corresponding content. .

  18. The spray drying of acetazolamide as method to modify crystal properties and to improve compression behaviour.

    PubMed

    Di Martino, P; Scoppa, M; Joiris, E; Palmieri, G F; Andres, C; Pourcelot, Y; Martelli, S

    2001-02-01

    Acetazolamide shows a very poor compression ability and tablets must usually be produced through a wet granulation process. However, the possibility to obtain pure acetazolamide for direct compression could be interesting for industrial application. With the scope to obtain a material for direct compression, three different crystallisation methods were chosen, with respect to acetazolamide solvent solubility. (a) Acetazolamide was dissolved in an ammonia solution and then spray dried. It was possible to characterise the spherical particles as a mixture of two polymorphic forms, I and II by Powder X-ray diffraction study. (b) Pure form I was obtained by slowly cooling to room temperature a boiling water solution. (c) Pure form II, the marketed form, was obtained by neutralisation of an ammonia solution. Their compression behaviour was investigated firstly by a rotary press. Whilst pure polymorphic forms I and II could not be compressed, the spray dried particles showed very good compression properties. In fact, tablets were obtained only by spray dried particles, which show very good properties under compression and the absence of capping tendency. On the other hand, it was impossible to obtain tablets from polymorphic forms I and II, whatever compression pressures were used. In order to explain their densification mechanism, a single-punch tablet machine, equipped for the measurement of the upper punch displacement in the die, was used. From calculated Heckel's parameters, it was demonstrated that the spray dried material shows a greater particle rearrangement in the initial stage of compression due to its spherical habit and minor wrinkledness of particle surface. The crystalline structure due to the presence of polymorphic forms I and II concur to lowering the intrinsic elasticity of the material. This fact avoids the risk of the rupturing the interpaticulate bonds, which are formed during the compression, concurring to the consolidation of the tablet.

  19. Preparation and Characterization of Celecoxib Dispersions in Soluplus®: Comparison of Spray Drying and Conventional Methods

    PubMed Central

    Homayouni, Alireza; Sadeghi, Fatemeh; Nokhodchi, Ali; Varshosaz, Jaleh; Afrasiabi Garekani, Hadi

    2015-01-01

    The present study deals with characterization of dispersions of a poorly water-soluble drug, celecoxib (CLX) in polyvinyl caprolactame–polyvinyl acetate–polyethylene glycol graft copolymer (Soluplus® (SOL)) prepared by different techniques. Dispersions of CLX in SOL at different ratios (2:1, 1:1, 1:2, 1:4 and 1:6) were prepared by spray drying, conventional solvent evaporation and melting methods. The solid states of samples were characterized using particle size measurements, optical and scanning electron microscopy, XRPD, DSC and FT-IR. The Gordon-Taylor equation was used to predict the Tg of samples and the possibility of interaction between CLX and SOL. The solubility and dissolution rate of all samples were determined. Stability of samples was studied at ambient conditions for a period of 12 months. DSC and XRPD analyses confirmed amorphous state of drug in samples. Surprisingly dispersions of CLX:SOL with the ratio of 2:1 and 1:1 showed slower dissolution rate than CLX while other samples showed higher dissolution rate. At 1:2 ratio the spray dried samples exhibited higher dissolution rate than corresponding samples prepared by other methods. However at higher SOL content (1:4 and 1:6), samples prepared by different methods showed similar dissolution profiles. The stability studies showed that there were no remarkable changes in the dissolution profiles and solid state of the drug after 12 months storage at ambient conditions. It was concluded that SOL was a proper carrier to enhance the dissolution rate of CLX. At high SOL ratios the method of preparation of dispersed samples had no effect on dissolution rate, whilst at low SOL content spray drying was more efficient method. PMID:25561910

  20. USERS GUIDE FOR THE CONVERSION OF NAVY PAINT SPRAY BOOTH PARTICULATE EMISSION CONTROL SYSTEMS FROM WET TO DRY OPERATION

    EPA Science Inventory

    The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...

  1. USERS GUIDE FOR THE CONVERSION OF NAVY PAINT SPRAY BOOTH PARTICULATE EMISSION CONTROL SYSTEMS FROM WET TO DRY OPERATION

    EPA Science Inventory

    The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...

  2. The effect of spray drying on sucrose-glycine caramel powder preparation.

    PubMed

    Huang, Kai; Zhang, Ping-Jun; Hu, Biao; Yu, Shu-Juan

    2016-05-01

    Caramel is used as food colorant in many parts of the world. However, there have been no studies investigating the effects of spray drying on sucrose and glycine solutions. In this study, model sucrose and glycine solutions at different pH levels (pH 4, 3, 2 and 1) were treated with different inlet air temperatures (160, 180, 200, 220 and 240 °C) for durations of 50 s in the spray drying process. With increasing inlet temperatures and decreasing pH, the morphology of the caramel agglomerates tended to be more scattered; however, the solubility of the caramel decreased. With increasing inlet temperature, the glycine and sucrose contents decreased but the fructose and glucose contents increased. The content of the intermediate products, browning intensity and amount of 5-hydroxymethyl-2-furaldehyde (HMF) increased with increasing inlet temperature and decreasing pH. Therefore, the amount of sucrose degradation and the change in pH can be used to evaluate caramel properties in the spray drying process. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Atomized sludges via spray-drying at low temperatures: an alternative to conventional wastewater treatment plants.

    PubMed

    Cusidó, Joan A; Cremades, Lázaro V

    2012-08-30

    Removal of sludges from Wastewater Treatment Plants (WWTP) represents a serious worldwide environmental problem for which alternatives other than their simple incineration are investigated. In this work the treatment of raw sludge from urban WWTP by means of a minimization process through spray-drying is analyzed as well as some proposals for revaluating the resulting dry product. Analysis is supported by some experimental results obtained with a laboratory spray dryer. The experimental procedure at laboratory scale is extrapolated to an industrial plant scale. An economic analysis of the proposal in relation to other possible sludge treatments is presented, taking into account in this case the comparison between the costs of the processes of sludge thickening, stabilization and dehydratation and the costs of spray-drying (especially power consumption), minimization of the final waste and reuse options. Finally, an environmental balance of the process is presented. In contrast with the classical treatment line, this alternative allows transforming sludges, i.e., a waste, into a valuable product with several applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Spray-dried voriconazole-cyclodextrin complexes: solubility, dissolution rate and chemical stability.

    PubMed

    Miletic, Tijana; Kyriakos, Kachrimanis; Graovac, Adrijana; Ibric, Svetlana

    2013-10-15

    The present work investigates the effect of complexation with hydroxypropyl-beta-cyclodextrin (HPBCD) and 2-O-methyl-beta-cyclodextrin (2-O-MBCD), on voriconazole solubility, dissolution rate and chemical stability. Drug-cyclodextrin complexes were prepared as aqueous solutions, which were spray-dried, and their properties were compared to wet ground samples and physical mixtures. DSC analysis revealed absence of crystalline voriconazole from spray-dried complexes. FTIR spectroscopy indicated changes in the H-bonding network of the hydroxyl groups of cyclodextrin following drug inclusion. Dissolution rate of voriconazole was significantly higher from spray-dried complexes with either cyclodextrin in comparison with free drug, physical mixtures, or wet ground mixtures. However, two degradation impurities were found in aged samples, with slightly higher impurity level with HPBCD. Performed solubility studies suggested that 2-O-MBCD is more efficient solubilizer. Molecular docking simulations showed a difference in the 1:1 binding affinities and sites, with HPBCD surprisingly forming complexes of much lower energy, thus suggesting a multiple rather than a 1:1 complexation.

  5. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    PubMed

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Confinement of Amorphous Lactose in Pores Formed Upon Co-Spray Drying With Nanoparticles.

    PubMed

    Hellrup, Joel; Mahlin, Denny

    2017-01-01

    This study aims at investigating factors influencing humidity-induced recrystallization of amorphous lactose, produced by co-spray drying with particles of cellulose nanocrystals or sodium montmorillonite. In particular, the focus is on how the nanoparticle shape and surface properties influence the nanometer to micrometer length scale nanofiller arrangement in the nanocomposites and how the arrangements influence the mechanisms involved in the inhibition of the amorphous to crystalline transition. The nanocomposites were produced by co-spray drying. Solid-state transformations were analyzed at 60%-94% relative humidity using X-ray powder diffraction, microcalorimetry, and light microscopy. The recrystallization rate constant for the lactose/cellulose nanocrystals and lactose/sodium montmorillonite nanocomposites was lowered at nanofiller contents higher than 60% and was stable for months at 80% nanofiller. The most likely explanation to these results is spontaneous formations of mesoporous particle networks that the lactose is confined upon co-spray drying at high filler content. Compartmentalization and rigidification of the amorphous lactose proved to be less important mechanisms involved in the stabilization of lactose in the nanocomposites. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Production of spray-dried honey jackfruit (Artocarpus heterophyllus) powder from enzymatic liquefied puree.

    PubMed

    Wong, Chen Wai; Tan, Hong Hock

    2017-02-01

    This paper presents the enzymatic liquefaction process for honey jackfruit optimized with Pectinex(®) Ultra SP-L and Celluclast(®) 1.5 L individually or in combinations at different concentrations (0-2.5% v/w) and incubation time (0-2.5 h). Treatment with combinations of enzymes showed a greater effect in the reduction of viscosity (83.9-98.8%) as compared to single enzyme treatment (64.8-87.3%). The best parameter for enzymatic liquefaction was obtained with 1.0% (v/w) Pectinex(®) Ultra SP-L and 0.5% (v/w) Celluclast(®) 1.5 L for 1.5 h. Spray drying process was carried out using different inlet temperatures (140-180 °C) and maltodextrin concentrations (10-30% w/w). Results indicated that the spray-dried honey jackfruit powder produced at 160 °C with 30% w/w maltodextrin gave the highest product yield (66.90%) with good powder qualities in terms of water activity, solubility, moisture content, hygroscopicity, color and bulk density. The spray-dried honey jackfruit powder could potentially be incorporated into various food products.

  8. [Effect of spray drying process on physical properties and dissolution of tanshinone].

    PubMed

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Yan, Hong-Mei; Sun, E; Jia, Xiao-Bin

    2014-03-01

    In order to improve the dissolution in vitro of components by processing tanshinone with the pray drying method, the physical properties of tanshinone power was analyzed by BET, differential scanning calorimetry, scanning electron microscopy and X-ray powder diffraction, and its dissolution in vitro was also investigated. The results of characterization showed decreased power size and increased specific surface area of tanshinone powder, and its existence in an amorphous state. Within 4 h, the accumulated dissolutions of tanshinone I and tanshinone II(A) in components of tanshinone reached 78.3%, 81.9%, respectively. Therefore, the spray-drying method was conducive to enhance the dissolution of components of tanshinone.

  9. Optimization of Sour Cherry Juice Spray Drying as
Affected by Carrier Material and Temperature.

    PubMed

    Garofulić, Ivona Elez; Zorić, Zoran; Pedisić, Sandra; Dragović-Uzelac, Verica

    2016-12-01

    Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4-7 and 13-17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4-7 DE were found to be the most suitable for production of sour cherry Marasca powder.

  10. Nutritional Profile and Carbohydrate Characterization of Spray-Dried Lentil, Pea and Chickpea Ingredients

    PubMed Central

    Tosh, Susan M.; Farnworth, Edward R.; Brummer, Yolanda; Duncan, Alison M.; Wright, Amanda J.; Boye, Joyce I.; Marcotte, Michèle; Benali, Marzouk

    2013-01-01

    Although many consumers know that pulses are nutritious, long preparation times are frequently a barrier to consumption of lentils, dried peas and chickpeas. Therefore, a product has been developed which can be used as an ingredient in a wide variety of dishes without presoaking or precooking. Dried green peas, chickpeas or lentils were soaked, cooked, homogenized and spray-dried. Proximate analyses were conducted on the pulse powders and compared to an instant mashed potato product. Because the health benefits of pulses may be due in part to their carbohydrate content, a detailed carbohydrate analysis was carried out on the pulse powders. Pulse powders were higher in protein and total dietary fibre and lower in starch than potato flakes. After processing, the pulse powders maintained appreciable amounts of resistant starch (4.4%–5.2%). Total dietary fibre was higher in chickpeas and peas (26.2% and 27.1% respectively) than lentils (21.9%), whereas lentils had the highest protein content (22.7%). Pulse carbohydrates were rich in glucose, arabinose, galactose and uronic acids. Stachyose, a fermentable fibre, was the most abundant oligosaccharide, making up 1.5%–2.4% of the dried pulse powders. Spray-drying of cooked, homogenized pulses produces an easy to use ingredient with strong nutritional profile. PMID:28239119

  11. Inhalable siRNA-loaded nano-embedded microparticles engineered using microfluidics and spray drying.

    PubMed

    Agnoletti, Monica; Bohr, Adam; Thanki, Kaushik; Wan, Feng; Zeng, Xianghui; Peter Boetker, Johan; Yang, Mingshi; Foged, Camilla

    2017-08-02

    Medicines based on small interfering RNA (siRNA) are promising for the treatment of a number of lung diseases. However, efficient delivery systems and design of stable dosage forms are required for inhalation therapy, as well as cost-effective methods for manufacturing of the final product. In this study, a 3D-printed micromixer was used for preparation of siRNA-dendrimer nanocomplexes, which were subsequently processed into microparticle-based dry powders for inhalation using spray drying. By applying the disposable micromixer, nanocomplexes were prepared of an average hydrodynamic diameter comparable to that of nanocomplexes prepared by manual mixing, but with narrower size distribution and low batch-to-batch variation. The nanocomplexes were processed into nanoembedded microparticles using different saccharide excipients. Data showed that siRNA integrity and bioactivity are retained after processing, and nanocomplexes could be reconstituted from the dry powders. The amorphous saccharide excipients trehalose and inulin provided better stabilization than crystalline mannitol, and they enabled full reconstitution of the nanocomplexes. In particular, a binary mixture of trehalose and inulin showed optimal stabilization, and enhanced cellular uptake and gene silencing efficiency. This study demonstrates that inexpensive and scalable micromixers can be used to optimize the production of siRNA-dendrimer nanocomplexes, and they can be applied in combination with spray drying for the engineering of dry powder formulations suitable for delivery of siRNA to the therapeutic target site. Copyright © 2017. Published by Elsevier B.V.

  12. Nutritional Profile and Carbohydrate Characterization of Spray-Dried Lentil, Pea and Chickpea Ingredients.

    PubMed

    Tosh, Susan M; Farnworth, Edward R; Brummer, Yolanda; Duncan, Alison M; Wright, Amanda J; Boye, Joyce I; Marcotte, Michèle; Benali, Marzouk

    2013-07-25

    Although many consumers know that pulses are nutritious, long preparation times are frequently a barrier to consumption of lentils, dried peas and chickpeas. Therefore, a product has been developed which can be used as an ingredient in a wide variety of dishes without presoaking or precooking. Dried green peas, chickpeas or lentils were soaked, cooked, homogenized and spray-dried. Proximate analyses were conducted on the pulse powders and compared to an instant mashed potato product. Because the health benefits of pulses may be due in part to their carbohydrate content, a detailed carbohydrate analysis was carried out on the pulse powders. Pulse powders were higher in protein and total dietary fibre and lower in starch than potato flakes. After processing, the pulse powders maintained appreciable amounts of resistant starch (4.4%-5.2%). Total dietary fibre was higher in chickpeas and peas (26.2% and 27.1% respectively) than lentils (21.9%), whereas lentils had the highest protein content (22.7%). Pulse carbohydrates were rich in glucose, arabinose, galactose and uronic acids. Stachyose, a fermentable fibre, was the most abundant oligosaccharide, making up 1.5%-2.4% of the dried pulse powders. Spray-drying of cooked, homogenized pulses produces an easy to use ingredient with strong nutritional profile.

  13. Spray drying of budesonide, formoterol fumarate and their composites-II. Statistical factorial design and in vitro deposition properties.

    PubMed

    Tajber, L; Corrigan, O I; Healy, A M

    2009-02-09

    The aim of this study was to investigate the effect of changing spray drying parameters on the production of a budesonide/formoterol fumarate 100:6 (w/w) composite. The systems were spray dried as solutions from 95% ethanol/5% water (v/v) using a Büchi 191-Mini Spray Dryer. A 2(5-1) factorial design study was undertaken to assess the consequence of altering spray drying processing variables on particle characteristics. The processing parameters that were studied were inlet temperature, spray drier airflow rate, pump rate, aspirator setting and feed concentration. Each batch of the resulting powder was characterised in terms of thermal and micromeritic properties as well as an in vitro deposition by twin impinger analysis. Overall, the parameter that had the greatest influence on each response investigated was production yield - airflow (higher airflow giving greater yields), median particle size - airflow (higher airflow giving smaller particle sizes) and Carr's compressibility index - feed concentration (lower feed concentration giving smaller Carr's indices). A six- to seven-fold difference in respirable fraction can be observed by changing the spray drying process parameters. The co-spray dried composite system which displayed best in vitro deposition characteristics, showed a 2.6-fold increase in respirable fraction in the twin impinger experiments and better dose uniformity compared with the physical mix of micronised powders.

  14. Microencapsulation of menadione sodium bisulphite with polydimethylsiloxane by the spray-drying process: characterization by thermal analysis.

    PubMed

    Gronchi, P; Del Rosso, R; Centola, P; Cosentino, R F

    1992-01-01

    Menadione sodium bisulphite was microencapsulated with a polydimethylsiloxane membrane using spray-drying technology. Tests were performed using laboratory equipment and a Niro Atomizer pilot plant to scale up the process. The products were characterized with differential thermal analysis (DTA) and chemical and physical methods. Many differences between raw material and microencapsulated powder result from DTA data. The thermal characterization confirms that the spray-drying microcoating could be used to protect powder from the oxidative actions of the atmosphere.

  15. High-volume use of self-cementing spray dry absorber material for structural applications

    NASA Astrophysics Data System (ADS)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  16. Formulation and process considerations for the design of sildenafil-loaded polymeric microparticles by vibrational spray-drying.

    PubMed

    Beck-Broichsitter, Moritz; Bohr, Adam; Aragão-Santiago, Leticia; Klingl, Andreas; Kissel, Thomas

    2017-09-01

    The current study reports the preparation and characterization of sildenafil-loaded poly(lactide-co-glycolide) (PLGA)-based microparticles (MPs) by means of vibrational spray-drying. Emphasis was placed on relevant formulation and process parameters with influence on the properties of obtained powders. Materials and methods, results and discussion: The solid state solubility of sildenafil in spray-dried PLGA-MPs amounted to 17 wt.%. Thus, a drug loading below and above the determined solubility limit resulted in solid solutions and phase separation (i.e. solid dispersions), respectively. Furthermore, interactions between sildenafil and the PLGA matrix were observed for the spray-dried MPs. Optimization of spray-drying conditions allowed for a fabrication of defined MPs (size range of ∼4-8 μm) displaying a high sildenafil encapsulation efficiency (>90%) and sustained sildenafil release (from ∼4 to >12 h). The individual drug release rates from the spray-dried formulations were mainly a function of the drug loading, applied polymer and MP size. Finally, a scale-up of the preparation process did not result in a relevant change of the physicochemical and in vitro drug release properties of the prepared powders. Identification of relevant formulation and spray-drying parameters enabled the fabrication of tailored sildenafil-loaded PLGA-based MPs, which meet the needs of the individual application (e.g. controlled drug delivery to the lungs).

  17. Effects of spray drying and size reduction of edible bird's nest on in-vitro digestibility

    NASA Astrophysics Data System (ADS)

    Muslim, Masitah; Babji, Abdul Salam; Mustapha, Wan Aida Wan

    2015-09-01

    The purpose of this study is to determine the effects of spray drying and size reduction of edible bird's nest (EBN) on in-vitro digestibility respectively. Sample prepared were EBN microparticulates; 710 µm (EBN710), 300 µm (EBN300) and 38 µm (EBN38), EBN spray died (EBNSD) and raw EBN (EBNraw) as control. Protein content and solubility were determined before the samples being subjected to in-vitro digestibility. Protein content of EBN710 (55.37±0.269%), EBN300 (56.57±0.163%) EBN38 (56.77±0.021%) and EBNraw (55.46±0.269%) was not significantly different (p>0.05) but EBNSD (60.33b+0.346%) was the highest (p<0.05). Solubility results showed that EBNSD had the highest solubility (94.38±1.24%) in water significantly (p<0.05) compared to EBNraw (16.01±0.231%), EBN710 (21.89+0.41%), EBN300 (22.52+0.072%) and EBN38 (27.51±0.321%). Digestibility of EBN300 (88.43±0.95%) was higher (p<0.05) compared to EBNSD (85.23±0.27%). However, treatment of microparticulates and spray drying were not significantly different with EBNraw (85.38±1.12%). Digestibility of EBN microparticulates and spray dried powder were all lower (p<0.05) than casein (98.36+0.95%). Lower EBN digestibility could be due to the nature of EBN protein as glycoprotein. Proteolytic (tryptic) digestion of native glycoprotein is often incomplete due to ste aric hindrance from the presence of bulky oligosaccharides.

  18. Effects of spray-drying on w/o/w multiple emulsions prepared from a stearic acid matrix

    PubMed Central

    Mlalila, Nichrous; Swai, Hulda; Kalombo, Lonji; Hilonga, Askwar

    2014-01-01

    The goal of this study was to explore the effects of spray-drying on w/o/w double emulsions of methyltestosterone (MT) loaded in a stearic acid matrix. MT-loaded nanoparticles were formulated by a water-in-oil-in-water emulsion technique using 50, 75, and 100 mg of stearic acid, 2% and 3% w/v polyvinyl alcohol, 5% w/v lactose, and 0.2% w/v chitosan. The emulsions were immediately spray-dried based on an optimized model of inlet temperature and pump rate, and characterized for optimized responses with regard to particle size, polydispersity index, and zeta potential, for both emulsion and powder samples. Dynamic light scattering analysis shown that the nanoparticles increased in size with increasing concentrations of polyvinyl alcohol and stearic acid. Scanning electron microscopy indicated that the MT-loaded nanoparticles were spherical in shape, had a smooth surface, and were in an amorphous state, which was confirmed by differential scanning calorimetry. These MT-loaded nanoparticles are a promising candidate carrier for the delivery of MT; however, further studies are needed in order to establish the stability of the system and the cargo release profile under normal conditions of use. PMID:25489238

  19. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2014-05-05

    A simple and general method for the large-scale production of yolk-shell powders with various compositions by a spray-drying process is reported. Metal salt/dextrin composite powders with a spherical and dense structure were obtained by spray drying and transformed into yolk-shell powders by simple combustion in air. Dextrin plays a key role in the preparation of precursor powders for fabricating yolk-shell powders by spray drying. Droplets containing metal salts and dextrin show good drying characteristics even in a severe environment of high humidity. Sucrose, glucose, and polyvinylpyrrolidone are widely used as carbon sources in the preparation of metal oxide/carbon composite powders; however, they are not appropriate for large-scale spray-drying processes because of their caramelization properties and adherence to the surface of the spray dryer. SnO2 yolk-shell powders were studied as the first target material in the spray-drying process. Combustion of tin oxalate/dextrin composite powders at 600 °C in air produced single-shelled SnO2 yolk-shell powders with the configuration SnO2 @void@SnO2 . The SnO2 yolk-shell powders prepared by the simple spray-drying process showed superior electrochemical properties, even at high current densities. The discharge capacities of the SnO2 yolk-shell powders at a current density of 2000 mA g(-1) were 645 and 570 mA h g(-1) for the second and 100th cycles, respectively; the corresponding capacity retention measured for the second cycle was 88 %. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials.

    PubMed

    Ballesteros, Lina F; Ramirez, Monica J; Orrego, Carlos E; Teixeira, José A; Mussatto, Solange I

    2017-12-15

    Freeze-drying and spray-drying techniques were evaluated for encapsulation of phenolic compounds (PC) extracted from spent coffee grounds. Additionally, the use of maltodextrin, gum arabic and a mixture of these components (ratio 1:1) as wall material to retain the PC and preserve their antioxidant activity was also assessed. The contents of PC and flavonoids (FLA), as well as the antioxidant activity of the encapsulated samples were determined in order to verify the efficiency of each studied condition. Additional analyses for characterization of the samples were also performed. Both the technique and the coating material greatly influenced the encapsulation of antioxidant PC. The best results were achieved when PC were encapsulated by freeze-drying using maltodextrin as wall material. Under these conditions, the amount of PC and FLA retained in the encapsulated sample corresponded to 62% and 73%, respectively, and 73-86% of the antioxidant activity present in the original extract was preserved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Design of salmon calcitonin particles for nasal delivery using spray-drying and novel supercritical fluid-assisted spray-drying processes.

    PubMed

    Cho, Wonkyung; Kim, Min-Soo; Jung, Min-Sook; Park, Junsung; Cha, Kwang-Ho; Kim, Jeong-Soo; Park, Hee Jun; Alhalaweh, Amjad; Velaga, Sitaram P; Hwang, Sung-Joo

    2015-01-15

    The overall aim of this study was to prepare a nasal powder formulation of salmon calcitonin (sCT) using an absorption enhancer to improve its bioavailability. In this work, powder formulations for nasal delivery of sCT were studied using various absorption enhancers and stabilizers. Powders were prepared by two different methods: conventional spray-drying (SD) and novel supercritical fluid-assisted spray-drying (SASD) to investigate the role of CO2 in the particle formation process. The prepared sCT powder formulations were characterized by several analyses; powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), and the Fourier transform infrared (FT-IR) spectroscopy method. The particle size distribution was also evaluated. In vivo absorption tests were carried out in Sprague-Dawley rat using the prepared powder formulations, and the results were compared to those of raw sCT. Quantitative analysis by high-performance liquid chromatography (HPLC) indicated that sCT was chemically stable after both the SD and SASD processes. Results of PXRD, SEM, and FT-IR did not indicate a strong interaction or defragmentation of sCT. The in vivo absorption test showed that SD- and SASD-processed sCT powders increased the bioavailability of the drug when compared to the nasal administration of raw sCT. In addition, SASD-processed sCT exhibited higher nasal absorption when compared with SD-processed sCT in all formulations due to a reduction of particle size. The results from this study illustrate that the preparation of nasal powders using the SASD process could be a promising approach to improve nasal absorption of sCT.

  2. Accelerated ketoprofen release from spray-dried polymeric particles: importance of phase transitions and excipient distribution.

    PubMed

    Gue, Emilie; Muschert, Susanne; Willart, Jean-Francois; Danede, Florence; Delcourt-Debruyne, Elisabeth; Descamps, Marc; Siepmann, Juergen

    2015-05-01

    HPMC-, PVPVA- and PVP-based microparticles loaded with 30% ketoprofen were prepared by spray drying suspensions or solutions in various water:ethanol blends. The inlet temperature, drying gas and feed flow rates were varied. The resulting differences in the ketoprofen release rates in 0.1 M HCl could be explained based on X-ray diffraction, mDSC, SEM and particle size analysis. Importantly, long term stable drug release could be provided, being much faster than: (i) drug release from a commercial reference product, (ii) the respective physical drug:polymer mixtures, as well as (iii) the dissolution of ketoprofen powder as received. In addition, highly supersaturated release media were obtained, which did not show any sign for re-crystallization during the observation period. Surprisingly, spraying suspensions resulted in larger microparticles exhibiting faster drug release compared to spraying solutions, which resulted in smaller particles exhibiting slower drug release. These effects could be explained based on the physico-chemical characteristics of the systems.

  3. Spray drying of a poorly water-soluble drug nanosuspension for tablet preparation: formulation and process optimization with bioavailability evaluation.

    PubMed

    Sun, Wei; Ni, Rui; Zhang, Xin; Li, Luk Chiu; Mao, Shirui

    2015-06-01

    Spray drying experiments of an itraconazole nanosuspension were conducted to generate a dry nanocrystal powder which was subsequently formulated into a tablet formulation for direct compression. The nanosuspension was prepared by high pressure homogenization and characterized for particle-size distribution and surface morphology. A central composite statistical design approach was applied to identify the optimal drug-to-excipient ratio and spray drying temperature. It was demonstrated that the spray drying of a nanosuspension with a mannitol-to-drug mass ratio of 4.5 and at an inlet temperature of 120 °C resulted in a dry powder with the smallest increase in particle size as compared with that of the nanosuspension. X-ray diffraction results indicated that the crystalline structure of the drug was not altered during the spray-drying process. The tablet formulation was identified by determining the micromeritic properties such as flowability and compressibility of the powder mixtures composed of the spray dried nanocrystal powder and other commonly used direct compression excipients. The dissolution rate of the nanocrystal tablets was significantly enhanced and was found to be comparable to that of the marketed Sporanox®. No statistically significant difference in oral absorption between the nanocrystal tablets and Sporanox® capsules was found. In conclusion, the nanosuspension approach is feasible to improve the oral absorption of a BCS Class II drug in a tablet formulation and capable of achieving oral bioavailability equivalent to other well established oral absorption enhancement method.

  4. Experiment and numerical simulation of heat and mass transfer during a spray freeze-drying process of ovalbumin in a tray

    NASA Astrophysics Data System (ADS)

    Song, Chi-Sung; Yeom, Geum-Su

    2009-11-01

    Spray freeze-drying is a promising technology for producing high-quality porous particles primarily for pharmaceutical uses. The advantages of freeze-drying in the production of pharmaceuticals and biomedical products, such as minimization of thermal and chemical degradation, retention of volatile components, preservation of high porosity, and a very low content of residual water after drying, are mostly retained in spray freeze-drying. In this study, we performed spray freeze-drying of a 3% (w/w) chicken egg ovalbumin solution in a tray with a batch-type spray freeze-dryer that we developed. The physical characteristics of the spray freeze-dried particles were qualitatively evaluated by means of scanning electron microscopy. The freeze-drying behavior of spray-frozen particles was experimentally investigated by measuring the histories of product temperatures and numerically studied by developing an analysis model based on the finite volume method in a fixed grid system.

  5. The effect of water to ethanol feed ratio on physical properties and aerosolization behavior of spray dried cromolyn sodium particles.

    PubMed

    Gilani, Kambiz; Najafabadi, Abdolhossien Rouholamini; Barghi, Mohammadali; Rafiee-Tehrani, Morteza

    2005-05-01

    Cromolyn sodium (CS) was spray dried under constant operation conditions from different water to ethanol feed ratios (50:50-0:100). The spray dried CS samples were characterized for their physicochemical properties including crystallinity, particle size distribution, morphology, density, and water/ethanol content. To determine quantitatively the crystallinity of the powders, an X-ray diffraction (XRD) method was developed using samples with different crystallinity prepared by physical mixing of 100% amorphous and 100% crystalline CS materials. The aerodynamic behavior of the CS samples was determined using an Andersen Cascade Impactor (ACI) with a Spinhaler at an air flow of 60 L/min. Binary mixtures of each spray dried CS powder and Pharmatose 325, a commercial alpha-lactose monohydrate available for DPI formulations, were prepared and in vitro aerosol deposition of the drug from the mixtures was analyzed using ACI to evaluate the effect of carrier on deposition profiles of the spray dried samples. CS spray dried from absolute ethanol exhibited XRD pattern characteristic for crystalline materials and different from patterns of the other samples. The crystallinity of spray dried CS obtained in the presence of water varied from 0% to 28.37%, depending on the ratio of water to ethanol in the feed suspensions. All samples presented different particle size, water/ethanol content, and bulk density values. CS particles spray dried from absolute ethanol presented uniform elongated shape whereas the other samples consisted mainly of particles with irregular shape. Overall, fine particle fraction increased significantly (p < 0.01) with decreasing d50% and water and ethanol content of spray dried CS samples. Significant difference (p < 0.01) in deposition profiles of the drug were observed between corresponding carrier free and carrier blended formulations. The difference in deposition profiles of CS aerosolized from various spray dried samples were described according to

  6. Influence of Excipients and Spray Drying on the Physical and Chemical Properties of Nutraceutical Capsules Containing Phytochemicals from Black Bean Extract.

    PubMed

    Guajardo-Flores, Daniel; Rempel, Curtis; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O

    2015-12-03

    Black beans (Phaseolus vulgaris L.) are a rich source of flavonoids and saponins with proven health benefits. Spray dried black bean extract powders were used in different formulations for the production of nutraceutical capsules with reduced batch-to-batch weight variability. Factorial designs were used to find an adequate maltodextrin-extract ratio for the spray-drying process to produce black bean extract powders. Several flowability properties were used to determine composite flow index of produced powders. Powder containing 6% maltodextrin had the highest yield (78.6%) and the best recovery of flavonoids and saponins (>56% and >73%, respectively). The new complexes formed by the interaction of black bean powder with maltodextrin, microcrystalline cellulose 50 and starch exhibited not only bigger particles, but also a rougher structure than using only maltodextrin and starch as excipients. A drying process prior to capsule production improved powder flowability, increasing capsule weight and reducing variability. The formulation containing 25.0% of maltodextrin, 24.1% of microcrystalline cellulose 50, 50% of starch and 0.9% of magnesium stearate produced capsules with less than 2.5% weight variability. The spray drying technique is a feasible technique to produce good flow extract powders containing valuable phytochemicals and low cost excipients to reduce the end-product variability.

  7. Compare and contrast the effects of surfactants (PluronicF-127 and CremophorEL) and sugars (β-cyclodextrin and inulin) on properties of spray dried and crystallised lysozyme.

    PubMed

    Haj-Ahmad, Rita Rochdy; Elkordy, Amal Ali; Chaw, Cheng Shu; Moore, Adrian

    2013-07-16

    promising protectant of proteins. The improved stability of the spray dried and crystallised protein containing PluronicF-127 shows promise for delivery of proteins via inhalation (in a spray dried form which has particle size range suitable for inhalation as revealed by particle size analysis and SEM) and injectable routes (in spray dried and crystallised forms). The way excipients react with proteins is different in the case of spray drying and crystallisation techniques, hence the choice of the additives and the processing techniques play a great role in controlling protein properties, activity and stability as shown in this study.

  8. The Production of a Stable Infliximab Powder: The Evaluation of Spray and Freeze-Drying for Production

    PubMed Central

    Kanojia, Gaurav; Have, Rimko ten; Bakker, Arjen; Wagner, Koen; Frijlink, Henderik W.; Kersten, Gideon F. A.; Amorij, Jean-Pierre

    2016-01-01

    In prospect of developing an oral dosage form of Infliximab, for treatment of Crohn’s disease and rheumatoid arthritis, freeze-drying (vial vs Lyoguard trays) and spray-drying were investigated as production method for stable powders. Dextran and inulin were used in combination with sucrose as stabilizing excipients. The drying processes did not affect Infliximab in these formulations, i.e. both the physical integrity and biological activity (TNF binding) were retained. Accelerated stability studies (1 month at 60°C) showed that the TNF binding ability of Infliximab was conserved in the freeze-dried formulations, whereas the liquid counterpart lost all TNF binding. After thermal treatment, the dried formulations showed some chemical modification of the IgG in the dextran-sucrose formulation, probably due to Maillard reaction products. This study indicates that, with the appropriate formulation, both spray-drying and freeze-drying may be useful for (bulk) powder production of Infliximab. PMID:27706175

  9. Spray-dried powders improve the controlled release of antifungal tioconazole-loaded polymeric nanocapsules compared to with lyophilized products.

    PubMed

    Ribeiro, Roseane Fagundes; Motta, Mariana Heldt; Härter, Andréia Pisching Garcia; Flores, Fernanda Cramer; Beck, Ruy Carlos Ruver; Schaffazick, Scheila Rezende; de Bona da Silva, Cristiane

    2016-02-01

    This work aimed to obtain solid formulations from polymeric nanocapsules and nanoemulsions containing tioconazole, a broad spectrum antifungal drug. Two dehydration methods were used: spray-drying and freeze drying, using lactose as adjuvant (10%, w/v). The liquid formulations had a mean particle size around 206 nm and 182 nm for nanocapsules and nanoemulsions, respectively, and an adequate polydispersity index. Tioconazole content was close to the theoretical amount (1.0 mg/mL). After drying, the content ranged between 98 and 102%with a mean nanometric size of the dried products after redispersion. Scanning electron microscopy showed that the particles are rounded, sphere-shaped for the dried products obtained by spray-drying, and shapeless and irregular shapes for those obtained by freeze-drying. In the microbiological evaluation, all dried products remained active against the yeast Candida albicans when compared to the original systems. The dried products obtained by spray-drying from nanocapsules presented better control of the tioconazole release when compared to the freeze-drying products.

  10. Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass.

    PubMed

    Raposo, Maria Filomena J; Morais, Alcina M M B; Morais, Rui M S C

    2012-03-01

    The main objective of this study was to evaluate the stability of astaxanthin after drying and storage at different conditions during a 9-week period. Recovery of astaxanthin was evaluated by extracting pigments from the dried powders and analysing extracts by HPLC. The powders obtained were stored under different conditions of temperature and oxygen level and the effects on the degradation of astaxanthin were examined. Under the experimental conditions conducted in this study, the drying temperature that yielded the highest content of astaxanthin was 220°C, as the inlet, and 120°C, as the outlet temperature of the drying chamber. The best results were obtained for biomass dried at 180/110°C and stored at -21°C under nitrogen, with astaxanthin degradation lower than 10% after 9 weeks of storage. A reasonable preservation of astaxanthin can be achieved by conditions 180/80°C, -21°C nitrogen, 180/110°C, 21°C nitrogen, and 220/80°C, 21°C vacuum: the ratio of astaxanthin degradation is equal or inferior to 40%. In order to prevent astaxanthin degradation of Haematococcus pluvialis biomass, it is recommended the storage of the spray dried carotenized cells (180/110ºC) under nitrogen and -21°C.

  11. Spray dried amikacin powder for inhalation in cystic fibrosis patients: a quality by design approach for product construction.

    PubMed

    Belotti, Silvia; Rossi, Alessandra; Colombo, Paolo; Bettini, Ruggero; Rekkas, Dimitrios; Politis, Stavros; Colombo, Gaia; Balducci, Anna Giulia; Buttini, Francesca

    2014-08-25

    An amikacin product for convenient and compliant inhalation in cystic fibrosis patients was constructed by spray-drying in order to produce powders of pure drug having high respirability and flowability. An experimental design was applied as a statistical tool for the characterization of amikacin spray drying process, through the establishment of mathematical relationships between six Critical Quality Attributes (CQAs) of the finished product and five Critical Process Parameters (CPPs). The surface-active excipient, PEG-32 stearate, studied for particle engineering, in general did not benefit the CQAs of the spray dried powders for inhalation. The spray drying feed solution required the inclusion of 10% (v/v) ethanol in order to reach the desired aerodynamic performance of powders. All desirable function solutions indicated that the favourable concentration of amikacin in the feed solution had to be kept at 1% w/v level. It was found that when the feed rate of the sprayed solution was raised, an increase in the drying temperature to the maximum value (160 °C) was required to maintain good powder respirability. Finally, the increase in drying temperature always led to an evident increase in emitted dose (ED) without affecting the desirable fine particle dose (FPD) values. The application of the experimental design enabled us to obtain amikacin powders with both ED and FPD, well above the regulatory and scientific references. The finished product contained only the active ingredient, which keeps low the mass to inhale for dose requirement.

  12. Spray Dried Sodium Zirconate: A Rapid Absorption Powder for CO2 Capture with Superior Cyclic Stability.

    PubMed

    Bamiduro, Faith; Ji, Guozhao; Brown, Andy P; Valerie A Dupont, Valerie A; Zhao, Ming; Milne, Steve J

    2017-04-03

    Improved powders for capturing CO2 at high temperatures are required for H2 production using sorption enhanced steam reforming. This paper examines the relationship between particle structure and carbonation rate for two types of Na2ZrO3 powder. Hollow spray-dried micro-granules with a wall thickness of 100-300 nm corresponding to the dimensions of the primary acetate derived particles gave ~75 wt % theoretical CO2 conversion after a process-relevant 5 min exposure to 15 vol % CO2. A conventional powder prepared by solid state reaction carbonated more slowly, only achieving 50 % conversion due to a greater proportion of the reaction requiring bulk diffusion through the densely agglomerated particles. The hollow granular structure of the spray dried powder was retained post-carbonation but chemical segregation resulted in islands of an amorphous Na-rich phase (Na2CO3) within a crystalline ZrO2 particle matrix. Despite this phase separation, the reverse reaction to re-form Na2ZrO3 could be achieved by heating each powder to 900 °C in N2 (no dwell time). This resulted in a very stable multicycle performance in 40 cycle tests using TGA for both powders. Kinetic analysis of TGA data showed the carbonation process fits an Avrami-Erofeyev 2-D nucleation and nuclei growth model, consistent with microstructural evidence of a surface driven transformation. Thus, we demonstrate that spray-drying is a viable processing route to enhance the carbon capture performance of Na2ZrO3 powder.

  13. Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules.

    PubMed

    Campos, Daniela C; Acevedo, Francisca; Morales, Eduardo; Aravena, Javiera; Amiard, Véronique; Jorquera, Milko A; Inostroza, Nitza G; Rubilar, Mónica

    2014-09-01

    Plant growth promoting bacteria and nitrogen-fixing bacteria (NFB) used for crop inoculation have important biotechnological potential as a sustainable fertilization tool. However, the main limitation of this technology is the low inoculum survival rate under field conditions. Microencapsulation of bacterial cells in polymer matrices provides a controlled release and greater protection against environmental conditions. In this context, the aim of this study was to isolate and characterize putative NFB associated with lupin nodules and to evaluate their microencapsulation by spray drying. For this purpose, 21 putative NFB were isolated from lupin nodules and characterized (16S rRNA genes). Microencapsulation of bacterial cells by spray drying was studied using a mixture of sodium alginate:maltodextrin at different ratios (0:15, 1:14, 2:13) and concentrations (15 and 30% solids) as the wall material. The microcapsules were observed under scanning electron microscopy to verify their suitable morphology. Results showed the association between lupin nodules of diverse known NFB and nodule-forming bacteria belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Bacteroidetes. In microencapsulation assays, the 1:14 ratio of sodium alginate:maltodextrin (15% solids) showed the highest cell survival rate (79%), with a microcapsule yield of 27% and spherical microcapsules of 5-50 µm in diameter. In conclusion, diverse putative NFB genera and nodule-forming bacteria are associated with the nodules of lupine plants grown in soils in southern Chile, and their microencapsulation by spray drying using sodium alginate:maltodextrin represents a scalable process to generate a biofertilizer as an alternative to traditional nitrogen fertilization.

  14. Spray Drying Ternary Amorphous Solid Dispersions of Ibuprofen - An Investigation into Critical Formulation and Processing Parameters.

    PubMed

    Ziaee, Ahmad; Albadarin, Ahmad B; Padrela, Luis; Faucher, Alexandra; O'Reilly, Emmet; Walker, Gavin

    2017-08-16

    A design of experiment (DoE) approach was used to investigate the critical formulation and processing parameters in spray drying ternary amorphous solid dispersions (ASDs) of ibuprofen. A range of 16 formulations of ibuprofen, HPMCP-HP55 and Kollidon VA 64 were spray dried. Statistical analysis revealed the interrelation of various spray drying process conditions and formulation factors, namely solution feed rate, inlet temperature, Active Pharmaceutical Ingredient (API)/excipients ratio and dichloromethane (DCM) /methanol (MeOH) ratio. Powder X-Ray diffraction analysis (PXRD) showed that all the samples with the lowest API/excipient ratio (1:4) were amorphous, while others were crystalline. Moreover, differential scanning calorimetry (DSC) analysis was employed to investigate ASD formulation more in-depth. The glass transition temperatures (Tg) of all ASDs were in the range 70-79 °C, while crystalline formulations displayed an endothermic peak of melting of crystalline ibuprofen in the range of 50-80 °C. The high Tg of ASDs was an indication of highly stable ASD formulations as verified via PXRD at zero day and afterward at 1, 1.5, 3 and 6 month intervals. The intermolecular interactions between ibuprofen molecule and excipients were studied by Fourier transform infrared spectroscopy (FTIR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. FTIR and Carbon-13 ssNMR analysis indicated that hydrogen bond formation involving the carboxyl group in ibuprofen within the ASDs is likely. More importantly, the solubility of ibuprofen in ASD formulations is improved compared to pure ibuprofen. This was due to both the amorphous structure of ibuprofen and of the existence of amphiphilic excipient, Kollidon VA64, in the formulation. Copyright © 2017. Published by Elsevier B.V.

  15. Jet-vortex spray freeze drying for the production of inhalable lyophilisate powders.

    PubMed

    Wanning, Stefan; Süverkrüp, Richard; Lamprecht, Alf

    2017-01-01

    Spray-freeze-dried powders were suggested for nasal, epidermal (needle-free injection) or pulmonary application of proteins, peptides or nucleic acids. In spray-freeze-drying processes an aqueous solution is atomized into a refrigerant medium and subsequently dried by sublimation. Droplet-stream generators produce a fast stream of monodisperse droplets, where droplets are subject to collisions and therefore the initial monodispersity is lost and droplets increase in diameter, which reduces their suitability for pulmonary application. In jet-vortex-freezing, a droplet-stream is injected into a vortex of cold process gas to prevent droplet collisions. Both the injection position of the droplet-stream and the velocity of the cold gas vortex have an impact on the size distributions of the resulting powders. A model solution containing mannitol (1.5%m/V) and maltodextrin (1.5%m/V) was sprayed at 5 droplet-stream positions at distances between 1mm and 30mm from the gas jet nozzle and 5 gas velocities (0.8-6.8m/s) at a process temperature of -100°C. Mean geometric diameters of the highly porous particles (bulk density: 0.012±0.007g/cm3) ranged between 55±4 and 98±4μm. Evaluation of the aerodynamic properties by Next-Generation-Impactor (NGI) analysis showed that all powders had high emitted doses (98±1%) and fine-particle fractions ranged between 4±1% and 21±2%. It was shown that jet-vortex freezing is a suitable method for the reproducible production of lyophilized powders with excellent dispersibility in air, which has a high potential for nasal and pulmonary drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Optimization of the Automated Spray Layer-by-Layer Technique for Thin Film Deposition

    DTIC Science & Technology

    2010-06-01

    SUPPLEMENTARY NOTES 14. ABSTRACT The operational parameters of the automated Spray- LbL technique for thin film deposition have been investigated in...order to-identify their effects on film thickness and roughness. We use the automated Spray- LbL system developed at MIT by the Hammond lab to build...This interdiffusion is investigated using both the conventional dipped LbL and Spray- LbL deposition techniques. Interdiffusion is shown to be dependent

  17. Characterization and aerosol dispersion performance of advanced spray-dried chemotherapeutic PEGylated phospholipid particles for dry powder inhalation delivery in lung cancer.

    PubMed

    Meenach, Samantha A; Anderson, Kimberly W; Zach Hilt, J; McGarry, Ronald C; Mansour, Heidi M

    2013-07-16

    Pulmonary inhalation chemotherapeutic drug delivery offers many advantages for lung cancer patients in comparison to conventional systemic chemotherapy. Inhalable particles are advantageous in their ability to deliver drug deep in the lung by utilizing optimally sized particles and higher local drug dose delivery. In this work, spray-dried and co-spray dried inhalable lung surfactant-mimic PEGylated lipopolymers as microparticulate/nanoparticulate dry powders containing paclitaxel were rationally designed via organic solution advanced spray drying (no water) in closed-mode from dilute concentration feed solution. Dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) with varying PEG chain length were mixed with varying amounts of paclitaxel in methanol to produce co-spray dried microparticles and nanoparticles. Scanning electron microscopy showed the spherical particle morphology of the inhalable particles. Thermal analysis and X-ray powder diffraction confirmed the retention of the phospholipid bilayer structure in the solid-state following spray drying, the degree of solid-state molecular order, and solid-state phase transition behavior. The residual water content of the particles was very low as quantified analytically Karl Fisher titration. The amount of paclitaxel loaded into the particles was quantified which indicated high encapsulation efficiencies (43-99%). Dry powder aerosol dispersion performance was measured in vitro using the Next Generation Impactor (NGI) coupled with the Handihaler dry powder inhaler device and showed mass median aerodynamic diameters in the range of 3.4-7 μm. These results demonstrate that this novel microparticulate/nanoparticulate chemotherapeutic PEGylated phospholipid dry powder inhalation aerosol platform has great potential in lung cancer drug delivery.

  18. Novel budesonide particles for dry powder inhalation (DPI) prepared using a microfluidic reactor coupled with ultrasonic spray freeze drying.

    PubMed

    Saboti, Denis; Maver, Uroš; Chan, Hak-Kim; Planinšek, Odon

    2017-03-09

    Budesonide is a potent active pharmaceutical ingredient, often administered using respiratory devices such as metered dose inhalers (MDI), nebulizers and dry powder inhalers (DPI). Inhalable drug particles are conventionally produced by crystallization followed by milling. This approach tends to generate partially amorphous materials that require post-processing to improve the formulations' stability. Other methods involve homogenization or precipitation and often require the use of stabilizers, mostly surfactants. The purpose of this study was therefore to develop a novel method for preparation of fine budesonide particles using a microfluidic reactor coupled with ultrasonic spray freeze drying, and hence avoiding the need of additional homogenization or stabilizer use. A T-junction microfluidic reactor was employed to produce particle suspension (using an ethanol-water, methanol-water and an acetone-water system), which was directly fed into an ultrasonic atomization probe, followed by direct feeding to liquid nitrogen. Freeze drying was the final preparation step. The result were fine crystalline budesonide powders which, when blended with lactose and dispersed in an Aerolizer at 100 L/min, generated fine particle fraction in the range 47.6±2.8% to 54.9±1.8%, thus exhibiting a good aerosol performance. Subsequent sample analysis confirmed the suitability of the developed method to produce inhalable drug particles without additional homogenization or stabilizers. The developed method provides a viable solution for particle isolation in microfluidics in general.

  19. Drug nano-domains in spray-dried ibuprofen-silica microspheres.

    PubMed

    Fatnassi, Mohamed; Tourné-Péteilh, Corine; Mineva, Tzonka; Devoisselle, Jean-Marie; Gaveau, Philippe; Fayon, Franck; Alonso, Bruno

    2012-09-21

    Silica microspheres encapsulating ibuprofen in separated domains at the nanometre scale are formed by spray-drying and sol-gel processes. A detailed (1)H and (13)C NMR study of these microspheres shows that ibuprofen molecules are mobile and are interacting through hydrogen bonds with other ibuprofen molecules. (1)H magnetisation exchange NMR experiments were employed to characterize the size of the ibuprofen domains at the nanometre scale. These domains are solely formed by ibuprofen, and their diameters are estimated to be ∼40 nm in agreement with TEM observations. The nature and formation of these particular texture and drug dispersion are discussed.

  20. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries

    NASA Astrophysics Data System (ADS)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  1. Culture and spray-drying of Tsukamurella paurometabola C-924: stability of formulated powders.

    PubMed

    Hernández, Armando; Weekers, Fréderic; Mena, Jesús; Pimentel, Eulogio; Zamora, Jesús; Borroto, Carlos; Thonart, Philippe

    2007-11-01

    The nematocidal agent, Tsukamurella paurometabola C-924, was cultured in a 300 l bioreactor. Spray-dried formulations of this microorganism were prepared using sucrose. At an outlet temperature 62 degrees C, survival rates between 12 and 85% were reached with sucrose up to 10% (w/w). The stability study of the powders showed that the best storage condition was at 4 degrees C under vacuum. A new method for the calculation of cell death order for bacteria stored at low temperatures was developed. Powders stored under vacuum showed an Arrhenius behavior in relation to cell death kinetics.

  2. The Wear Behavior of HVOF Sprayed Near-Nanostructured WC-17%Ni(80/20)Cr Coatings in Dry and Slurry Wear Conditions

    NASA Astrophysics Data System (ADS)

    Ben Mahmud, Tarek A.; Atieh, Anas M.; Khan, Tahir I.

    2017-07-01

    The ability to deposit nanostructured feedstock by using high-velocity oxygen-fuel (HVOF) spray offers potential improvements in coating hardness, wear resistance and toughness for applications in the oil sands industry. In this study, the wear behavior of a near-nanostructured coating was compared under dry and slurry abrasive wear test using an uncoated AISI-1018 low-carbon steel substrate as a reference. The coating microstructures were analyzed in the as-sprayed, dry and slurry test conditions using scanning electron microscopy, x-ray diffraction and microhardness measurements. Wear behavior of the steel and coating surfaces were assessed using a pin-on-plate wear test under various loads. The results showed that a coating could be successfully deposited using the HVOF spraying technique and with retention of the near-nanosized WC dispersion within the coating structure. The wear rate under dry test conditions was greater for the steel and coating compared to tests performed under slurry conditions. Examination of the wear tracks revealed that the wear mechanism was different for the two test conditions. Wear in the dry test condition resulted from 2-body abrasion, while 3-body abrasion dominated wear in slurry conditions. The latter showed lower wear rates due to a lubricating effect of the oil.

  3. Optimisation of spray-drying process variables for dry powder inhalation (DPI) formulations of corticosteroid/cyclodextrin inclusion complexes.

    PubMed

    Cabral-Marques, Helena; Almeida, Rita

    2009-09-01

    This study aims to develop and characterise a beclomethasone diproprionate:gamma-cyclodextrin (BDP:gamma-CYD) complex and to optimise the variables on the spray-drying process, in order to obtain a powder with the most suitable characteristics for lung delivery. The spray-dried powder--in a mass ratio of 2:5 (BDP:gamma-CYD)--was physically mixed with three carriers of different particle sizes and in different ratios. Particle-size distribution, shape and morphology, moisture content, and uniformity in BDP content of formulations were studied. In vitro aerolisation behaviour of the formulations was evaluated using the Rotahaler, and the performance was characterised based on the uniformity of emitted dose and aerodynamic particle-size distribution (respirable fraction (RF), as a percentage of nominal dose (RFN) and emitted dose (RFE)). The most suitable conditions for the preparation of BDP:gamma-CYD complexes were obtained with the solution flow of 5 ml/min, T(in) of 70 degrees C and T(out) of 50 degrees C. Statistically significant differences in the aerodynamic performances were obtained for formulations containing BDP:gamma-CYD complexes prepared using different solution flows and different T(in) (p<0.05). RFN and RFE vary in direct proportion with T(in), while an inverse relationship was observed for the solution flow. A direct correlation between the RFE and the T(out) was identified. Performance of the formulations was compared with an established commercial product (Beclotaide Rotacaps 100 microg) with improved performance of RF: formulations with respitose carrier attained RFN and RFE twofold greater, and formulations based on 63-90 microm fraction lactose and trehalose achieved a threefold improvement; also, all formulations showed that the percentage of dose of BDP deposited in the "oropharynx" compartment was reduced to half.

  4. Aerodynamic properties, solubility and in vitro antibacterial efficacy of dry powders prepared by spray drying: Clarithromycin versus its hydrochloride salt.

    PubMed

    Manniello, Michele Dario; Del Gaudio, Pasquale; Porta, Amalia; Aquino, Rita Patrizia; Russo, Paola

    2016-07-01

    Antibiotic therapy for a direct administration to the lung in cystic fibrosis patients has to provide suitable availability, possibly in the lower respiratory tract, characterized by the presence of thick secretions. One of the crucial steps in the therapeutic management of the respiratory disease could be the drug solubilization directly in this site of action. The aim of the study was to prepare respirable powders of clarithromycin, while improving drug aqueous solubility. With this aim, several batches of micronized particles were prepared by spray drying different feed solutions, varying the solvent composition (water/isopropyl alcohol ratio), the drug concentration and pH of the liquid feeds. Particle size distribution of raw materials and engineered particles was determined using a light-scattering laser granulometer while particle morphology was assessed by scanning electron microscopy. The in vitro deposition of the micronized clarithromycin powders was evaluated by means of a Single-Stage Glass Impinger using the RS01 model7 by Plastiape® as device for the aerosolization. Solubility measurements of raw and spray-dried (SD) drug were carried out at 37°C in phosphate buffer (0.05M, pH 6.8). Results indicate that morphology and aerodynamic properties of SD particles were strongly influenced by organic solvent concentration and pH of the liquid feeds processed, both modifying drug solubility. Spherical particles and crystals were obtained at higher pH and lower organic solvent content, while wrinkled particles with very interesting aerodynamic properties and higher drug solubility were obtained at lower pH values. Thanks to a fine tuning of the process parameters and liquid feed composition, we produced SD powders with good aerodynamic properties, without using any excipients. Furthermore, SD powders of clarithromycin hydrochloric salt showed higher activity against Pseudomonas aeruginosa growth, compared to clarithromycin raw material. Copyright © 2016

  5. Dry Sliding Behavior of Sub-Micrometer-Sized Suspension Plasma Sprayed Ceramic Oxide Coatings

    NASA Astrophysics Data System (ADS)

    Darut, Geoffrey; Ben-Ettouil, Fadhel; Denoirjean, Alain; Montavon, Ghislain; Ageorges, Hélène; Fauchais, Pierre

    2010-01-01

    Almost half of the energy produced by an automotive engine is dissipated by friction in the cylinders, the clutch, etc. In the context of reduction of the emissions of greenhouse gases (GHGs) to mitigate climate global warming (CGW), reduction of energy losses due to friction is a critical issue. Surface treatments appear in such a context, as never than before, to be able to provide pertinent solutions to improve sliding behavior of mechanical parts. Numerous studies have clearly shown that decreasing the scale of coating structure below the micrometer scale was leading to an improvement of its tribological behavior in terms of friction coefficient and wear rate thanks to improved mechanical properties, the toughness in particular. Suspension Plasma Spraying (SPS) appears as a thermal spray process to be able to manufacture thick (i.e., a few tens of micrometers) coatings exhibiting a sub-micrometer-sized or even a nanometer-sized architecture, while keeping the versatility and flexibility of the thermal spray routes: i.e., the ability to process a wide range of material natures onto a wide range of substrate materials of various geometries. This article aims at studying the tribological behavior of several ceramic oxide composite coatings under dry conditions. The structural scale and the effect of composition are considered in particular.

  6. Techniques for drying thick southern pine veneer

    Treesearch

    Peter Koch

    1964-01-01

    Thick veneers cut from southern pine are relatively easy to dry, but they are not easy to dry free of distortion. The research reported here was undertaken to compare five drying systems. Factors evaluated included rate of water loss, degree of distortion, and the effect on strength. Effects on gluability were also briefly studied.

  7. Preparation of a dispersible PEGylate nanostructured lipid carriers (NLC) loaded with 10-hydroxycamptothecin by spray-drying.

    PubMed

    Zhang, Xinxin; Pan, Weisan; Gan, Li; Zhu, Chunliu; Gan, Yong; Nie, Shufang

    2008-12-01

    Nanostructured lipid carriers (NLC) are based on mixture of solid lipids with spatially incompatible liquid lipids, which offer advantages of improving drug loading capacity and release properties. In the present study, hydroxycamptothecin (HCPT) loaded polyethylene glycol (PEG) modified NLC (PEG-NLC) was prepared by high pressure homogenize and spray drying method. PEG-NLC showed spherical particle with smooth surface in scanning electron microscopic (SEM) analysis. The crystallinity of lipid matrix within PEG-NLC was evaluated by powder X-ray diffraction and differential scanning calorimetry (DSC). The less ordered crystals or amorphous state of matrix were found in nanoparticles. A small, homogeneous particle size and high drug loading with fine entrapment efficiency of HCPT was obtained in PEG-NLC system. HCPT releasing from PEG-NLC showed a sustained release trend, and no significantly difference was found between two release curves of PEG-NLC before or after spray drying. After storage for 6 months, PEG-NLC powder after spray drying showed no significantly changes in particle size, drug loading and entrapment efficiency, crystal form and in vitro release. PEG modification statistically decreased the phagocytosis of NLC by RAW 264.7 cells, and spray drying process did not influence the cellular uptake of PEG-NLC. These results suggest that PEG-NLC prepared by spray drying is a stable and high-performance delivery system for HCPT.

  8. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties.

    PubMed

    Jiménez-Saelices, Clara; Seantier, Bastien; Cathala, Bernard; Grohens, Yves

    2017-02-10

    Nanofibrillated cellulose (NFC) aerogels were prepared by spray freeze-drying (SFD). Their structural, mechanical and thermal insulation properties were compared to those of NFC aerogels prepared by conventional freeze-drying (CFD). The purpose of this investigation is to develop superinsulating bioaerogels by reducing their pore size. Severe reduction of the aerogel pore size and skeleton architecture were observed by SEM, aerogels prepared by SFD method show a fibril skeleton morphology, which defines a mesoporous structure. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, the thermal insulation properties were significantly improved for SFD materials compared to CFD aerogel, reaching values of thermal conductivity as low as 0.018W/(mK). Moreover, NFC aerogels have a thermal conductivity below that of air in ambient conditions, making them one of the best cellulose based thermal superinsulating material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator

    NASA Astrophysics Data System (ADS)

    Amstad, Esther; Gopinadhan, Manesh; Holtze, Christian; Osuji, Chinedum O.; Brenner, Michael P.; Spaepen, Frans; Weitz, David A.

    2015-08-01

    Amorphous nanoparticles (a-NPs) have physicochemical properties distinctly different from those of the corresponding bulk crystals; for example, their solubility is much higher. However, many materials have a high propensity to crystallize and are difficult to formulate in an amorphous structure without stabilizers. We fabricated a microfluidic nebulator that can produce amorphous NPs from a wide range of materials, even including pure table salt (NaCl). By using supersonic air flow, the nebulator produces drops that are so small that they dry before crystal nuclei can form. The small size of the resulting spray-dried a-NPs limits the probability of crystal nucleation in any given particle during storage. The kinetic stability of the a-NPs—on the order of months—is advantageous for hydrophobic drug molecules.

  10. Optimization of Sour Cherry Juice Spray Drying as
Affected by Carrier Material and Temperature

    PubMed Central

    Zorić, Zoran; Pedisić, Sandra; Dragović-Uzelac, Verica

    2016-01-01

    Summary Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4–7 and 13–17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4–7 DE were found to be the most suitable for production of sour cherry Marasca powder. PMID:28115901

  11. Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes.

    PubMed

    García-Cruz, E E; Rodríguez-Ramírez, J; Méndez Lagunas, L L; Medina-Torres, L

    2013-01-02

    This study examines the rheological behavior of reconstituted spray-dried mucilage isolated from the cladodes of pitahaya (Hylocereus undatus), the effects of concentration and its relationship with physical properties were analyzed in reconstituted solutions. Drying process optimization was carried out through the surface response method, utilizing a factorial 2(3) design with three central points, in order to evaluate yield and rheological properties. The reconstituted mucilage exhibited non-Newtonian shear-thinning behavior, which adequately fit the Cross model (R(2)>0.95). This dynamic response suggests a random coil configuration. The steady-shear viscosity and dynamic response are suitably correlated through the Cox-Merz rule, confirming the mucilage's stability of flow. Analysis of the physical properties of the mucilage (Tg, DTP, and particle morphology) explains the shear-thinning behavior.

  12. Digestibility and structural parameters of spray-dried casein clusters under simulated gastric conditions.

    PubMed

    Jarunglumlert, Teeraya; Nakagawa, Kyuya; Adachi, Shuji

    2015-09-01

    The digestibility of casein clusters prepared from sodium caseinate solution (plain or pH-adjusted (pH=6.0)) was studied. The prepared solutions were spray-dried at different inlet air temperatures (150°C and 180°C), and the properties (i.e. encapsulation efficiency, surface hydrophobicity, and digestibility) of the resultant powders were investigated. The specimens obtained from the pH-adjusted solution had higher encapsulation efficiencies than the specimens obtained from the plain solution. A higher spray-drying temperature resulted in lower encapsulation efficiencies and higher surface hydrophobicities. Simulated gastric digestion tests were carried out to study the digestibility of the obtained casein clusters, which was analyzed in terms of reaction kinetics and structural changes during digestion. The effects of drying temperature and pH on the amount of casein digested were not significant; that is, approximately 30% of casein was digested in 120min for all specimens. Small-angle and ultra-small-angle X-ray scattering measurements were used to analyze the structure of the obtained clusters and their changes during digestion. The results suggested that all the obtained casein clusters, with an average size of approximately 428nm, had a rough, fractal-structured surface with many dense primary clusters. These structures changed during digestion; specifically, the cluster size increased both in the overall diameter and on the primary structure scale. The fractal characteristics changed from surface to mass fractals, and simultaneously, the cluster density decreased. The drying temperature affected the cluster size during digestion, and the trends were different in the specimens obtained from the plain and pH-adjusted solutions. These results could be useful in the design of protein-based encapsulation systems with desirable digestibility and bioavailability. Copyright © 2015. Published by Elsevier Ltd.

  13. Spray Drying of Rhodomyrtus tomentosa (Ait.) Hassk. Flavonoids Extract: Optimization and Physicochemical, Morphological, and Antioxidant Properties

    PubMed Central

    Wu, Pingping; Ma, Guangzhi; Li, Nianghui; Yin, Yanyan; Zhu, Baojun; Chen, Meiling; Huang, Ruqiang

    2014-01-01

    The optimal condition of spray drying purified flavonoids extract from R. tomentosa berries was studied by response surface methodology. The optimized condition for microencapsulation was of maltodextrin to gum Arabic ratio 1 : 1.3, total solid content 27.4%, glycerol monostearate content 0.25%, and core to coating material ratio 3 : 7, resulting in EE 91.75%. Prepared at the optimized condition, the flavonoids extract microcapsules (FEMs) were irregularly spherical particles with low moisture content (3.27%), high solubility (92.35%), and high bulk density (0.346 g/cm3). DPPH radical scavenging activity of FEMs was not decreased after spray drying (P > 0.05) and higher than those in citric acid and rutin at the same concentration. Moreover, FEMs effectively retarded the oxidation of fresh lard during the 10-day storage period compared with vitamin C, nonencapsulated flavonoids extract, and rutin. Therefore, FEMs produced at the optimized condition could be used as powder ingredients with antioxidant capacities. PMID:26904629

  14. Protective effects of oral microencapsulated Mycoplasma hyopneumoniae vaccine prepared by co-spray drying method.

    PubMed

    Lin, J H; Weng, C N; Liao, C W; Yeh, K S; Pan, M J

    2003-01-01

    The efficacy of Mycoplasma hyopneumoniae oral vaccine was investigated in microsphere dosage form. A co-spray drying process was used to apply an encapsulating material, Eudragit L30 D-55, to microspheres containing Mycoplasma hyopneumoniae antigens. The microspheres were generally effective (>93%) with protein release at pH 7.4, but almost none were released at pH 1.2, for 3 hr in an in vitro dissolution test. An SPF-swine model was used to evaluate the effectiveness of the microspheres as an oral vaccine, and the related immune responses. The serum's systemic IgG against M. hyopneumoniae was evoked by ELISA analysis, after a 2nd immunization of all pigs. The vaccinated groups' mean lesion score was significantly lower after the Mycoplasma hyopneumoniae challenge than that of the nonvaccinated/challenged groups (P<0.05). This study strongly suggests that the oral microspheres vaccine prepared by a co-spray drying method can provide effective protection against M. hyopneumoniae infection in pigs.

  15. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications.

    PubMed

    Edris, Amr E; Kalemba, Danuta; Adamiec, Janusz; Piątkowski, Marcin

    2016-08-01

    Oleoresin of Nigella sativa L. (Black cumin) was obtained from the seeds using hexane extraction at room temperature. The oleoresin was emulsified in an aqueous solution containing gum Arabic/maltodextrin (1:1 w/w) and then encapsulated in powder form by spray drying. The characteristics of the obtained powder including moisture content, bulk density, wettability, morphology, encapsulation efficiency were evaluated. The effect of the spray drying on the chemical composition of the volatile oil fraction of N. sativa oleoresin was also evaluated using gas chromatographic-mass spectroscopic analysis. Results indicated that the encapsulation efficiency of the whole oleoresin in the powder can range from 84.2±1.5% to 96.2±0.2% depending on the conditions of extracting the surface oil from the powder. On the other hand the encapsulation efficiency of the volatile oil fraction was 86.2% ±4.7. The formulated N. sativa L. oleoresin powder can be used in the fortification of processed food and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying

    PubMed Central

    2015-01-01

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464

  17. Spray-dried chitosan/acid/NaCl microparticles enhance saltiness perception.

    PubMed

    Yi, Cheng; Tsai, Min-Lang; Liu, Tristan

    2017-09-15

    The composition, physicochemical properties and salinity of spray-dried chitosan/acid/NaCl microparticles were tested to ensure a low-sodium and high-salinity salty agent. The spray-dried chitosan/acid/NaCl microparticles were hollow and had a favourable hygroscopicity, and increased NaCl content and decreased organic acid content. Their size of the microparticles was 15.4-32.0μm and increased with NaCl concentration. The microparticles of acetic and lactic acid groups had a NaCl crystal size of 1-2 and 1-4μm, respectively. The NaCl crystals of acetic, lactic and citric acid group microparticles were distributed on the microparticle matrices, mostly on the microparticle surface and mainly on the inner walls of the microparticles walls, respectively. The acetic and lactic acid group microparticles were relatively smaller than general salt, with NaCl crystals distributed on the particle surfaces. Consequently, they were perceived as saltier than general salt and could potentially be regarded as a low-sodium salt for surface-salted foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability.

    PubMed

    Avila-Reyes, Sandra V; Garcia-Suarez, Francisco J; Jiménez, María Teresa; San Martín-Gonzalez, María F; Bello-Perez, Luis A

    2014-02-15

    Protection of probiotics by substances considered as prebiotics can be an alternative to increase their viability in the large intestine. The objective of this study was to use two wall materials (native rice starch and inulin) without bonding agent to protect Lactobacillus rhamnosus during spray-drying and determine the viability of the microorganism under two storage conditions. For spray-drying conditions tested in this work the product yield with native rice starch (NRS) ranged between 65% and 74% whereas for inulin (IN) it ranged between 43% and 54%. In general, IN solutions exhibited higher outlet temperature than NRS dispersions. Capsules of IN had smaller particle size than those of NRS. Due to the higher hydrophilic nature of IN capsules as compared to NRS, IN capsules exhibited higher water activity than NRS capsules. Confocal microscopy showed marked differences between both wall materials, which could in turn cause differences in the release profile of encapsulated microorganisms. Agglomerates of NRS provided better protection to the microorganisms as evidenced by the lower reduction in viability when compared to IN, and this effect was corroborated by the stability study. It is possible to protect probiotics using both colloids, but differences in the viability and stability during storage were determined. The use of IN could prove beneficial in the encapsulation of probiotic strains since this carbohydrate is not hydrolyzed by human digestive enzymes and may act as prebiotic.

  19. Spray Drying of Rhodomyrtus tomentosa (Ait.) Hassk. Flavonoids Extract: Optimization and Physicochemical, Morphological, and Antioxidant Properties.

    PubMed

    Wu, Pingping; Deng, Qian; Ma, Guangzhi; Li, Nianghui; Yin, Yanyan; Zhu, Baojun; Chen, Meiling; Huang, Ruqiang

    2014-01-01

    The optimal condition of spray drying purified flavonoids extract from R. tomentosa berries was studied by response surface methodology. The optimized condition for microencapsulation was of maltodextrin to gum Arabic ratio 1 : 1.3, total solid content 27.4%, glycerol monostearate content 0.25%, and core to coating material ratio 3 : 7, resulting in EE 91.75%. Prepared at the optimized condition, the flavonoids extract microcapsules (FEMs) were irregularly spherical particles with low moisture content (3.27%), high solubility (92.35%), and high bulk density (0.346 g/cm(3)). DPPH radical scavenging activity of FEMs was not decreased after spray drying (P > 0.05) and higher than those in citric acid and rutin at the same concentration. Moreover, FEMs effectively retarded the oxidation of fresh lard during the 10-day storage period compared with vitamin C, nonencapsulated flavonoids extract, and rutin. Therefore, FEMs produced at the optimized condition could be used as powder ingredients with antioxidant capacities.

  20. Constant size, variable density aerosol particles by ultrasonic spray freeze drying.

    PubMed

    D'Addio, Suzanne M; Chan, John Gar Yan; Kwok, Philip Chi Lip; Prud'homme, Robert K; Chan, Hak-Kim

    2012-05-10

    This work provides a new understanding of critical process parameters involved in the production of inhalation aerosol particles by ultrasonic spray freeze drying to enable precise control over particle size and aerodynamic properties. A series of highly porous mannitol, lysozyme, and bovine serum albumin (BSA) particles were produced, varying only the solute concentration in the liquid feed, c(s), from 1 to 5 wt%. The particle sizes of mannitol, BSA, and lysozyme powders were independent of solute concentration, and depend only on the drop size produced by atomization. Both mannitol and lysozyme formulations showed a linear relationship between the computed Fine Particle Fraction (FPF) and the square root of c(s), which is proportional to the particle density, ρ, given a constant particle size d(g). The FPF decreased with increasing c(s) from 57.0% to 16.6% for mannitol and 44.5% to 17.2% for lysozyme. Due to cohesion, the BSA powder FPF measured by cascade impaction was less than 10% and independent of c(s). Ultrasonic spray freeze drying enables separate control over particle size, d(g), and aerodynamic size, d(a) which has allowed us to make the first experimental demonstration of the widely accepted rule d(a)=d(g)(ρ/ρ(o))(1/2) with particles of constant d(g), but variable density, ρ (ρ(o) is unit density).

  1. Optimized Slurries for Spray Drying: Different Approaches to Obtain Homogeneous and Deformable Alumina-Zirconia Granules

    PubMed Central

    Naglieri, Valentina; Gutknecht, Dan; Garnier, Vincent; Palmero, Paola; Chevalier, Jérôme; Montanaro, Laura

    2013-01-01

    Spray drying is widely used for producing granulated feed materials for compaction process, which is the current industrial method for manufacturing alumina-zirconia femoral heads. The optimization of the granules compaction behavior requires the control of the slurry rheology. Moreover, for a dual-phase ceramic suspension, the even phase distribution has to be kept through the atomization step. Here we present two approaches addressing the key issues involved in the atomization of a composite system. Alumina-10 vol % zirconia powders were prepared by either a powder mixing route, or by the surface modification of a commercial α-alumina powder with a zirconium salt. Slurries from both powders were spray dried. The correlation between slurry rheology and pH, granules morphology and sintered microstructures was here investigated and discussed on the ground of the two feed materials characteristics. The processing conditions were optimized to obtain dense and homogeneous alumina-zirconia micro-nano composites by both processing routes. PMID:28788396

  2. In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.

    PubMed

    Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-02-25

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.

  3. Formulation and characterization of Turkish oregano microcapsules prepared by spray-drying technology.

    PubMed

    Baranauskaite, Juste; Ivanauskas, Liudas; Masteikova, Ruta; Kopustinskiene, Dalia; Baranauskas, Algirdas; Bernatoniene, Jurga

    2016-06-02

    The aim of this study was optimization of spray-drying process conditions for microencapsulation of Turkish oregano extract. Different concentrations of maltodextrin and gum arabic as encapsulating agents (wall material) as well as influence of selected processing variables were evaluated. The optimal conditions were maintained on the basis of the load of main bioactive compounds - ursolic, rosmarinic acids and carvacrol - in prepared microparticles after comparison of all significant response variables using desirability function. Physicomechanical properties of powders such as flowability, wettability, solubility, moisture content as well as product yield, encapsulation efficiency (EE), density, morphology and size distribution of prepared microparticles have been determined. The results demonstrated that the optimal conditions for spray-drying mixture consisted of two parts of wall material solution and one part of ethanolic oregano extract when the feed flow rate was 40 mL/min and air inlet temperature -170 °C. Optimal concentration of wall materials in solution was 20% while the ratio of maltodextrin and gum arabic was 8.74:1.26.

  4. Structural, physicochemical and biological properties of spray-dried wine powders.

    PubMed

    Wilkowska, Agnieszka; Czyżowska, Agata; Ambroziak, Wojciech; Adamiec, Janusz

    2017-08-01

    Different fruit wines, chokeberry, blackcurrant and blueberry, were spray-dried using hydroxypropyl-β-cyclodextrin (HP-β-CD) and inulin (IN). The structural, physicochemical, and biological properties of the spray-dried wine powders were studied over 12months of storage in darkness at 8°C. Identification and quantification of single phenolic compounds before and after storage revealed that HP-β-CD had a positive effect on anthocyanin retention during storage for all microcapsules tested. Similar decreases in anthocyanin were found for blackcurrant and chokeberry powders, ranging from 7.3 to 8.9% with HP-β-CD and 12.3 to 12.5% with IN. Levels of anthocyanin losses in blueberry wine microcapsules were much greater: 19.9% (HP-β-CD) and 22.7% (IN). The high antiradical activities of blackcurrant and chokeberry wine microcapsules were stable and remained unchanged during storage. All wine microcapsules revealed significant activity against medically important bacterial strains. The HP-β-CD samples showed generally higher activity against the test microorganisms compared to IN microcapsules, especially at concentrations of 100mg/mL. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enhancing graphene oxide reinforcing potential in composites by combined latex compounding and spray drying

    NASA Astrophysics Data System (ADS)

    Mao, Yingyan; Zhang, Shubai; Zhang, Dandan; Chan, Tung W.; Liu, Li

    2014-04-01

    A new strategy was developed to prepare graphene oxide/styrene-butadiene rubber (GO/SBR) composites with highly exfoliated GO sheets and strong interfaces. In particular, GO/SBR microparticles, in which exfoliated GO sheets (with a thickness of ˜1 nm and diameter of tens of nanometers) are trapped in a well-dispersed state throughout the SBR matrix, were made by a combined latex-compounding and spray-drying method. Subsequently, a chemical bridge between GO and rubber matrix through KH550 and Si69 was built during vulcanization, and the interfacial strength of the cured GO/SBR composite was remarkably improved. Due to the highly exfoliated structure and the strong interface, the GO/SBR composite exhibited 7.8 times higher modulus at 300% strain and 6.4 times higher tensile strength compared with cured pure SBR. The combined latex-compounding and spray-drying method presented here is feasible and water-mediated and has great potential for industrial applications.

  6. Application of imaging based tools for the characterisation of hollow spray dried amorphous dispersion particles.

    PubMed

    Gamble, John F; Ferreira, Ana P; Tobyn, Mike; DiMemmo, Lynn; Martin, Kyle; Mathias, Neil; Schild, Richard; Vig, Balvinder; Baumann, John M; Parks, Stacy; Ashton, Mike

    2014-04-25

    The aim of this study was to investigate novel approaches to determine spray dried dispersion (SDD) specific particle characteristics through the use of imaging based technologies. The work demonstrates approaches that can be applied in order to access quantitative approximations for powder characteristics for hollow particles, such as SDD. Cryo-SEM has been used to measure the solid volume fraction and/or particle density of SDD particles. Application of this data to understand the impact of spray drying process conditions on SDD powder properties, and their impact on processability and final dosage form quality were investigated. The use of data from a Morphologi G3 image based particle characterisation system was also examined in order to explain both the propensity and extent of attrition within a series of SDD samples, and also demonstrate the use of light transmission data to assess the relative wall thickness of SDD particles. Such approaches demonstrate a means to access potentially useful information that can be linked to important particle characteristics for SDD materials which, in addition to the standard bulk powder measurements such as bulk density, may enable a better understanding of such materials and their impact on downstream processability and final dosage form acceptability.

  7. [Effect of air humidity on traditional Chinese medicine extract of spray drying process and prediction of its powder stability].

    PubMed

    He, Yan; Xie, Yin; Zheng, Long-jin; Liu, Wei; Rao, Xiao-yong; Luo, Xiao-jian

    2015-02-01

    In order to solve the adhesion and the softening problems of traditional Chinese medicine extract during spray drying, a new method of adding dehumidified air into spray drying process was proposed, and the storage stability conditions of extract powder could be predicted. Kouyanqing extract was taken as model drug to investigate on the wet air (RH = 70%) and dry air conditions of spray drying. Under the dry air condition, the influence of the spray drying result with different air compression ratio and the spray-dried powder properties (extract powder recovery rate, adhesion percentage, water content, angle of repose, compression ratio, particle size and distribution) with 100, 110, 120, 130, 140 °C inlet temperature were studied. The hygroscopic investigation and Tg value with different moisture content of ideal powder were determined. The water activity-equilibrium moisture content (aw-EMC) and the equilibrium moisture content-Tg (EMC-Tg) relationships were fitted by GAB equation and Gordon-Taylor model respectively, and the state diagram of kouyanqing powder was obtained to guide the rational storage conditions. The study found that in the condition of dry air, the extract powder water content decreased with the increase of air compression ratio and the spray drying effect with air compression ratio of 100% was the best performance; in the condition of wet air, the extract powder with high water content and low yield, and the value were 4.26% and 16.73 °C, while, in the dry air condition the values were 2.43% and 24.86 °C with the same other instru- ment parameters. From the analysis of kouyanqing powder state diagram, in order to keep the stability, the critical water content of 3.42% and the critical water content of 0.188. As the water decreased Tg value of extract powder is the major problem of causing adhesion and softening during spray drying, it is meaningful to aid dehumidified air during the process.

  8. Improvement in the properties of plasma-sprayed metallic, alloy and ceramic coatings using dry-ice blasting

    NASA Astrophysics Data System (ADS)

    Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2011-10-01

    Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al 2O 3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.

  9. Interfacial protein engineering for spray-dried emulsions - part I: effects on protein distribution and physical properties.

    PubMed

    Moisio, Timo; Damerau, Annelie; Lampi, Anna-Maija; Piironen, Vieno; Forssell, Pirkko; Partanen, Riitta

    2014-02-01

    Distribution of protein and oil in aqueous and spray-dried emulsions and the effect of protein cross-linking on emulsion properties and matrix-water interactions were investigated. Sodium caseinate and sunflower oil were used to make emulsions which were spray dried using maltodextrin as a wall material. 3% Na-caseinate concentration showed optimum emulsion and process stability as observed in CLSM images, droplet size data and in the amount of heptane-extractable oil from spray-dried emulsions. Transglutaminase cross-linking prior to emulsification slightly increased the amount of protein both on the oil droplet interface and on the particle surface as confirmed by analysis of continuous phase protein in the feed emulsion and by XPS measurements from the powder surface. DSC and water sorption measurements were used to study the physical state of the matrix. Glass transition occurred between RH 54% and 75% at room temperature and it was not affected by cross-linking.

  10. New ceramic coating technique using laser spraying process

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Koichi; Yanagisawa, Takeshi; Uchiyama, Futodhi; Obara, Akira; Okutomi, Mamoru; Kimura, Shinji; Yamada, Akimasa; Shen, Hong L.; Wang, Zhongcheng; Shen, Qinwo; Chatterjee, Udit; Bhar, Gopal C.

    1998-08-01

    A new ceramic coating technique using a CO2 laser has been developed. A high power density laser beam passes near the substrate. Coating materials are supplied by an extra-high accuracy powder supply device and pass across the laser beam. The coating materials are melted in the laser beam and deposited on the substrate surface. A YSZ (Yttria Stabilized Zirconia) layer and a LaCoO3 layer are made for high temperature solid oxide fuel cells. The crystal structures of the coated layers are the same as that of the original coating materials. Superconducting BPSCCO ceramic films are also made with this process. The films show super-conductivity with Tc at 81 K. The Jc of the specimen is 440 A/cm2 at 77 K. We can easily handle and arrange not only metal but also refractory materials. By adopting a multi-axis robot and a surface treatment laser technique, the laser spraying method described here makes it possible to produce highly functional and three dimensional parts of devices directly from raw powder materials. Thus the proposed method will open the path to an unexplored field of key production technology.

  11. Fourier transform infared spectroscopy investigation of protein conformation in spray-dried protein/trehalose powders.

    PubMed

    French, Donna L; Arakawa, Tsutomu; Li, Tiansheng

    2004-03-01

    Spray drying is a way to generate protein solids (powders), which is also true for lyophilization. Sugars are used to protect proteins from conformational changes and chemical degradations arising from drying processes and storage conditions such as the humidity. The influence of trehalose and humidity on the conformation and hydration of spray-dried recombinant human granolucyte colony stimulating factor (rhG-CSF) and recombinant consensus interferon-alpha (rConIFN) was investigated using Fourier transform IR spectroscopy. The spectral analysis of spray-dried powders in the amide I region demonstrated that trehalose stabilized the alpha-helical conformation of both rhG-CSF and rConIFN proteins. Exposure of the pure protein powders to 33% relative humidity (RH) resulted in the formation of beta sheets and loss of turns but no change in alpha-helical structure. Trehalose reduced the magnitude of the changes in beta sheets and turns. Exposure of the pure protein powders to 75% RH resulted in the loss of alpha-helical conformation with a corresponding increase in beta structures (beta sheets and turns). Trehalose did not protect proteins from the loss of alpha-helical structures, but it reduced the formation of antiparallel beta sheets. Hydrogen-deuterium exchange (H-D exchange) was used to further characterize these hydration-induced conformational changes. At 33% RH the percent exchange of the protein decreased with increasing trehalose content, indicating a greater protection of the protein from H-D exchange by a higher concentration of trehalose. Such protection correlates with decreased conformational changes of the protein by trehalose at this humidity. At 75% RH the degree of H-D exchange of the protein was insensitive to the powder composition in all powders. Surprisingly, the H-D exchange of trehalose was low at about 20-25%, which was nearly independent of the protein/trehalose ratio and humidity, indicating that the exchangeable protons on trehalose

  12. Inhalable spray-dried formulation of D-LAK antimicrobial peptides targeting tuberculosis.

    PubMed

    Kwok, Philip Chi Lip; Grabarek, Adam; Chow, Michael Y T; Lan, Yun; Li, Johnny C W; Casettari, Luca; Mason, A James; Lam, Jenny K W

    2015-08-01

    Tuberculosis (TB) is a global disease that is becoming more difficult to treat due to the emergence of multidrug resistant (MDR) Mycobacterium tuberculosis. Inhalable antimicrobial peptides (AMPs) are potentially useful alternative anti-TB agents because they can overcome resistance against classical antibiotics, reduce systemic adverse effects, and achieve local targeting. The aims of the current study were to produce inhalable dry powders containing d-enantiomeric AMPs (D-LAK120-HP13 and D-LAK120-A) and evaluate their solid state properties, aerosol performance, and structural conformation. These two peptides were spray dried with mannitol as a bulking agent at three mass ratios (peptide:mannitol 1:99, 1:49, and 1:24) from aqueous solutions. The resultant particles were spherical, with those containing D-LAK120-HP13 being more corrugated than those with D-LAK120-A. The median volumetric diameter of the particles was approximately 3μm. The residual water content of all powders were <3% w/w and crystalline, due to the low hygroscopicity and crystallinity of mannitol, respectively. The mannitol changed from a mixture of alpha- and beta-forms to delta form with an increasing proportion of AMP in the formulation. The emitted fraction and fine particle fraction of the powders when dispersed from an Osmohaler(®) at 90L/min were about 80% and 50-60% of the loaded dose, respectively, indicating good aerosol performance. Circular dichroism data showed that D-LAK120-HP13 dissolved in Tris buffer at pH 7.15 was of a disordered conformation. In contrast, D-LAK120-A showed greater α-helical conformation. Since the conformations of the AMPs were comparable to the controls (unprocessed peptides), the spray drying process did not substantially affect their secondary structures. In conclusion, spray dried powders containing d-enantiomeric AMPs with preserved secondary molecular structures and good aerosol performance could be successfully produced. They may potentially be used

  13. Integrated ultrasonic transducers made by the sol gel spray technique for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Jen, C.-K.; Moisan, J.-F.; Mrad, N.; Nguyen, S. B.

    2007-04-01

    Integrated piezoelectric-based ultrasonic transducers (UTs) have been developed for potential structural health monitoring. Fabrication techniques and performance evaluation of these transducers at selected monitoring sites are presented. Our novel transducer fabrication approach focuses on the use of handheld and readily accessible equipment to perform sol-gel spray coating, including the use of a heat gun or a torch, to carry out drying and firing, poling and electrode fabrication. The application of these integrated UTs for thickness measurement of graphite/epoxy composites, thickness monitoring of ice build up on aluminum plates at low temperatures, viscosity measurement of a cooling oil flow at temperatures up to 160 °C and monitoring metal debris in cooling oil engines is demonstrated.

  14. Melt extrusion vs. spray drying: The effect of processing methods on crystalline content of naproxen-povidone formulations.

    PubMed

    Haser, Abbe; Cao, Tu; Lubach, Joe; Listro, Tony; Acquarulo, Larry; Zhang, Feng

    2017-03-01

    Our hypothesis is that melt extrusion is a more suitable processing method than spray drying to prepare amorphous solid dispersions of drugs with a high crystallization tendency. Naproxen-povidone K25 was used as the model system in this study. Naproxen-povidone K25 solid dispersions at 30% and 60% drug loadings were characterized by modulated DSC, powder X-ray diffraction, FT-IR, and solid-state (13)C NMR to identify phase separation and drug recrystallization during processing and storage. At 30% drug loading, hydrogen bond (H-bond) sites of povidone K25 were not saturated and the glass transition (Tg) temperature of the formulation was higher. As a result, both melt-extruded and spray-dried materials were amorphous initially and remained so after storage at 40°C. At 60% drug loading, H-bond sites were saturated, and Tg was low. We were not able to prepare amorphous materials. The initial crystallinity of the formulations was 0.4%±0.2% and 5.6%±0.6%, and increased to 2.7%±0.3% and 21.6%±1.0% for melt-extruded and spray-dried materials, respectively. Spray-dried material was more susceptible to re-crystallization during processing, due to the high diffusivity of naproxen molecules in the formulation matrix and lack of kinetic stabilization from polymer solution. A larger number of crystalline nucleation sites and high surface area made the spray-dried material more susceptible to recrystallization during storage. This study demonstrated the unique advantages of melt extrusion over spray drying for the preparation of amorphous solid dispersions of naproxen at high drug level.

  15. The effect of feed solids concentration and inlet temperature on the flavor of spray dried whey protein concentrate.

    PubMed

    Park, Curtis W; Bastian, Eric; Farkas, Brian; Drake, MaryAnne

    2014-01-01

    Previous research has demonstrated that unit operations in whey protein manufacture promote off-flavor production in whey protein. The objective of this study was to determine the effects of feed solids concentration in liquid retentate and spray drier inlet temperature on the flavor of dried whey protein concentrate (WPC). Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 ppm hydrogen peroxide), and ultrafiltered (UF) to obtain WPC80 retentate (25% solids, wt/wt). The liquid retentate was then diluted with deionized water to the following solids concentrations: 25%, 18%, and 10%. Each of the treatments was then spray dried at the following temperatures: 180 °C, 200 °C, and 220 °C. The experiment was replicated 3 times. Flavor of the WPC80 was evaluated by sensory and instrumental analyses. Particle size and surface free fat were also analyzed. Both main effects (solids concentration and inlet temperature) and interactions were investigated. WPC80 spray dried at 10% feed solids concentration had increased surface free fat, increased intensities of overall aroma, cabbage and cardboard flavors and increased concentrations of pentanal, hexanal, heptanal, decanal, (E)2-decenal, DMTS, DMDS, and 2,4-decadienal (P < 0.05) compared to WPC80 spray dried at 25% feed solids. Product spray dried at lower inlet temperature also had increased surface free fat and increased intensity of cardboard flavor and increased concentrations of pentanal, (Z)4-heptenal, nonanal, decanal, 2,4-nonadienal, 2,4-decadienal, and 2- and 3-methyl butanal (P < 0.05) compared to product spray dried at higher inlet temperature. Particle size was higher for powders from increased feed solids concentration and increased inlet temperature (P < 0.05). An increase in feed solids concentration in the liquid retentate and inlet temperature within the parameters evaluated decreased off-flavor intensity in the resulting WPC80.

  16. Investigation of a novel 3-fluid nozzle spray drying technology for the engineering of multifunctional layered microparticles.

    PubMed

    Pabari, Ritesh M; Sunderland, Tara; Ramtoola, Zebunnissa

    2012-12-01

    To examine the potential of a novel 3-fluid nozzle spray drying technology to formulate differentiated layered microparticles (MPs) of diclofenac sodium (DFS)/ethyl cellulose (EC). DFS/EC MPs were formulated using the inner and/or outer nozzles of a novel 3-fluid nozzle and compared with MPs formed using conventional (2-fluid) spray drying. MPs were characterised for particle size and for morphology by TEM and SEM. Distribution of DFS and EC of MPs was analysed by FT-IR and DSC. A two-factor, three-level (3(2)) factorial design was applied to investigate the effect and interaction of total feed solid content (TSC) and feed flow rate (FFR) on MP size, D(50%) and D(90%), bulk density and MP yield. Interestingly, TEM demonstrated that MPs formed by 3-fluid nozzle spray drying showed a heterogeneous internal morphology consisting of a core and coat, characteristic of a microcapsule. In comparison, MPs from conventional spray drying showed a homogeneous internal morphology, characteristics of a matrix system. This differential distribution of DFS/EC was supported by FT-IR and DSC. Results of multiple linear regression analysis showed a linear relationship for the effect of TSC and FFR on all responses except for D(50%) where a quadratric model was valid. The effect of TSC/FFR on MP size and yield was similar to conventional spray drying. The novel 3-fluid nozzle spray drying offers a new method of designing layered microparticles or microcapsules which can have wide applications from drug stabilisation to controlled drug delivery and targeting.

  17. Encapsulation of mixtures of tuna oil, tributyrin and resveratrol in a spray dried powder formulation.

    PubMed

    Sanguansri, Luz; Day, Li; Shen, Zhiping; Fagan, Peter; Weerakkody, Rangika; Cheng, Li Jiang; Rusli, Jenny; Augustin, Mary Ann

    2013-12-01

    Spray dried emulsions are effective for carrying and stabilising combinations of fish oil and tributyrin, fish oil and resveratrol, or fish oil, tributyrin and resveratrol in one formulation. The encapsulation efficiencies were >99% for all three bioactives when a heated mixture of sodium caseinate: glucose: dried glucose syrup matrix (Encapsulant matrix 1) was used. When a heated sodium caseinate: glucose: processed starch matrix (Encapsulant matrix 2) was used, the encapsulation efficiencies were 90-92% for tributyrin and approximately 98% for resveratrol for all formulations but 79-91% for tuna oil where the efficiency was more formulation dependent. There was 84-86% remaining EPA, 85-87% remaining DHA, 85% remaining tributyrin and 94-96% remaining resveratrol after 18 months at 25 °C storage of the spray dried emulsions using Encapsulant matrix 1 across all formulations. In comparison, there was 83-87% remaining EPA and 84-89% remaining DHA, 80-82% remaining tributyrin, and 81-100% remaining resveratrol across all formulations with Encapsulant matrix 2. In vitro studies showed that on sequential exposure to simulated gastric and intestinal fluids, <5% tuna oil was found as triglycerides, but all the tributyrin had been lipolysed. The presence of diglycerides, monoglycerides and free fatty acids in the in vitro digests suggested that lipolysis of tuna oil had occurred. The type of matrix used for encapsulating the bioactives had little effect on the lipolysis of the oils but affected the amount of solvent extractable resveratrol. The ability of delivering mixtures of bioactives within one formulation was demonstrated.

  18. Application of spray granulation for conversion of a nanosuspension into a dry powder form.

    PubMed

    Bose, Sonali; Schenck, Daniel; Ghosh, Indrajit; Hollywood, Al; Maulit, Ester; Ruegger, Colleen

    2012-08-30

    The in vivo effect of particle agglomeration after drying of nanoparticles has not been extensively studied till date based on current literature review. The purpose of this research was to evaluate the feasibility of spray granulation as a processing method to convert a nanosuspension of a poorly water soluble drug into a solid dosage form and to evaluate the effect of the transformation into a solid powder on the in vivo exposure in beagle dogs. Formulation variables like the level of stabilizer in the nanosuspension formulation, granulation substrate and drug loading in the granulation were evaluated. The granules were characterized for moisture content, drug content, particle size, crystallinity and in vitro dissolution rate. Granulations with 10% drug loading showed dissolution profiles comparable to the nanosuspension, slightly slower dissolution profiles were observed at 20% drug loading. This can be attributed to an increase in the surface hydrophobicity at a higher drug loading and the formation of agglomerates that were harder to disintegrate, thereby compromising the dissolution rate. An in vivo PK study in beagle dogs showed an 8-fold increase and a 6-fold increase in the AUC(0-48) from the nanosuspension and dried nanosuspension formulations respectively compared to the coarse suspension. Also, the nanosuspension and dried nanosuspension formulations showed a 12-fold and 8-fold increase in the C(max) respectively compared to the coarse suspension. This shows the feasibility of using spray granulation as a processing method to convert a nanosuspension into a solid dosage form with improved in vivo exposure compared to the coarse suspension formulation.

  19. Stoichiometry-controlled high-performance LiCoO 2 electrode materials prepared by a spray solution technique

    NASA Astrophysics Data System (ADS)

    Konstantinov, K.; Wang, G. X.; Yao, J.; Liu, H. K.; Dou, S. X.

    LiCoO 2 cathode materials have been prepared by a spray-drying technique. The stoichiometry of the materials, their morphology, and the phase composition and electrochemical performance have been studied. The effects of thermal annealing and decomposition processes on the structure are discussed in detail. The changes of Li content in materials were monitored by ICP spectrometry. It was established that the decomposition of the acetates at around 450 °C is a slurry-making process that compacts the powder. It was found that well lithiated samples with good life cycle and high capacity can be prepared using acetate precursors and a spray solution technique. The morphology, grain size and texturing can be controlled by the sintering time and temperature in combination with intermediate grinding.

  20. Physical and immunogenic stability of spray freeze-dried influenza vaccine powder for pulmonary delivery: comparison of inulin, dextran, or a mixture of dextran and trehalose as protectants.

    PubMed

    Murugappan, Senthil; Patil, Harshad P; Kanojia, Gaurav; ter Veer, Wouter; Meijerhof, Tjarko; Frijlink, Henderik W; Huckriede, Anke; Hinrichs, Wouter L J

    2013-11-01

    One of the advantages of dry influenza vaccines over conventional liquid influenza vaccines is that they can be used for alternative routes of administration. Previous studies showed that spray freeze-drying is an excellent technique to prepare vaccine containing powders for pulmonary delivery (J.P. Amorij, V. Saluja, A.H. Petersen, W.L.J. Hinrichs, A. Huckriede, H.W. Frijlink, Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice, Vaccine 25 (2007) 8707-8717; S.A. Audouy, G. van der Schaaf, W.L.J. Hinrichs, H.W. Frijlink, J. Wilschut, A. Huckriede. Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization, Vaccine (2011)). The aim of this study was to investigate the physical and immunogenic stability of spray freeze-dried whole inactivated virus influenza vaccine prepared by using inulin, dextran, and a mixture of dextran and trehalose as protectants. Physical and biochemical characteristics of the vaccine powder were maintained at temperatures up to 30 °C for 3 months. In addition, in vivo data indicate that also, the immunogenic properties of the vaccine were maintained under these storage conditions. On the other hand, in vivo results also revealed that subtle changes in powder characteristics were induced during storage at 30 °C. However, laser diffraction measurements showed that problems associated with these subtle changes can be overcome by using dry powder inhalers with an efficient powder dispersing capacity. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Preparation of Aluminum Coatings by Atmospheric Plasma Spraying and Dry-Ice Blasting and Their Corrosion Behavior

    NASA Astrophysics Data System (ADS)

    Dong, Shu-Juan; Song, Bo; Zhou, Gen-Shu; Li, Chang-Jiu; Hansz, Bernard; Liao, Han-Lin; Coddet, Christian

    2013-10-01

    Aluminum coating, as an example of spray coating material with low hardness, was deposited by atmospheric plasma spraying while dry-ice blasting was applied during the deposition process. The deposited coatings were characterized in terms of microstructure, porosity, phase composition, and the valence states. The results show that the APS aluminum coatings with dry-ice blasting present a porosity of 0.35 ± 0.02%, which is comparable to the bulk material formed by the mechanical compaction. In addition, no evident oxide has been detected, except for the very thin and impervious oxide layer at the outermost layer. Compared to plasma-sprayed Al coatings without dry-ice blasting, the adhesion increased by 52% for Al substrate using dry-ice blasting, while 25% for steel substrate. Corrosion behavior of coated samples was evaluated in 3.5 wt.% NaCl aqueous using electrochemistry measurements. The electrochemical results indicated that APS Al coating with dry-ice blasting was more resistant to pitting corrosion than the conventional plasma-sprayed Al coating.

  2. Characterization of a spray-dried candidate HPV L2-VLP vaccine stored for multiple years at room temperature.

    PubMed

    Peabody, Julianne; Muttil, Pavan; Chackerian, Bryce; Tumban, Ebenezer

    2017-06-01

    HPV infections are associated with human cancers. Although three prophylactic vaccines have been approved to protect against HPV infections, the vaccines require cold-chain storage and may not be suitable for third world countries with less developed refrigeration facilities. We previously developed a bacteriophage L2 virus-like particle (VLP)-based candidate vaccine, which elicited broadly protective antibodies against diverse HPV types. Spray-drying of MS2-16L2 VLPs into a dry powder enhanced the stability of these VLPs. Building on these studies, we assessed the long-term stability and immunogenicity of the spray-dried VLPs. Mice immunized with a single dose of spray-dried MS2-16L2 VLPs, which had been stored for 14 months at room temperature (RT), were partially protected from challenge with a high dose of HPV16, one year after immunization. However, immunization with two doses of MS2-16L2 VLPs stored at RT for 34 months elicited high titer anti-HPV antibodies. More importantly, this group of mice showed significant protection from HPV16, 4 months after immunization. These results suggest that spray-dried MS2-16L2 VLPs retain their effectiveness after long-term storage at RT, and may be suitable in third world countries with less developed refrigeration facilities. Published by Elsevier B.V.

  3. Off-Target Loss in Ornamental Nurseries with Different Spray Techniques

    USDA-ARS?s Scientific Manuscript database

    Information is lacking on spray techniques to reduce off-target loss on the ground and via spray drift from the treated area in nursery applications. Airborne deposits at three elevations on sampling towers and on the ground at several distances from the sprayer were investigated with the three spra...

  4. A simulation technique for predicting thickness of thermal sprayed coatings

    NASA Technical Reports Server (NTRS)

    Goedjen, John G.; Miller, Robert A.; Brindley, William J.; Leissler, George W.

    1995-01-01

    The complexity of many of the components being coated today using the thermal spray process makes the trial and error approach traditionally followed in depositing a uniform coating inadequate, thereby necessitating a more analytical approach to developing robotic trajectories. A two dimensional finite difference simulation model has been developed to predict the thickness of coatings deposited using the thermal spray process. The model couples robotic and component trajectories and thermal spraying parameters to predict coating thickness. Simulations and experimental verification were performed on a rotating disk to evaluate the predictive capabilities of the approach.

  5. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage

    PubMed Central

    Quintana, Gabriel; Gerbino, Esteban; Gómez-Zavaglia, Andrea

    2017-01-01

    Okara is a nutritionally valuable by-product produced in large quantities as result of soymilk elaboration. This work proposes its use as both culture and dehydration medium during freeze-drying, spray-drying, and storage of Lactobacillus plantarum CIDCA 83114. Whole and defatted okara were employed as culture media for L. plantarum CIDCA 83114. The growth kinetics were followed by plate counting and compared with those of bacteria grown in MRS broth (control). No significant differences in plate counting were observed in the three media. The fatty acid composition of bacteria grown in whole and defatted okara showed a noticeable increase in the unsaturated/saturated (U/S) fatty acid ratio, with regard to bacteria grown in MRS. This change was mainly due to the increase in polyunsaturated fatty acids, namely C18:2. For dehydration assays, cultures in the stationary phase were neutralized and freeze-dried (with or without the addition of 250 mM sucrose) or spray-dried. Bacteria were plate counted immediately after freeze-drying or spray-drying and during storage at 4°C for 90 days. Freeze-drying in whole okara conducted to the highest bacterial recovery. Regarding storage, spray-dried bacteria previously grown in whole and defatted okara showed higher plate counts than those grown in MRS. On the contrary, freeze-dried bacteria previously grown in all the three culture media were those with the lowest plate counts. The addition of sucrose to the dehydration media improved their recovery. The higher recovery of microorganisms grown in okara after freeze-drying and spray-drying processes and during storage was ascribed to both the presence of fiber and proteins in the dehydration media, and the increase in U/S fatty acids ratio in bacterial membranes. The obtained results support for the first time the use of okara as an innovative matrix to deliver L. plantarum. Considering that okara is an agro-waste obtained in large quantities, these results represent an

  6. In situ forming antibacterial dextran blend hydrogel for wound dressing: SAA technology vs. spray drying.

    PubMed

    De Cicco, Felicetta; Reverchon, Ernesto; Adami, Renata; Auriemma, Giulia; Russo, Paola; Calabrese, Elena C; Porta, Amalia; Aquino, Rita P; Del Gaudio, Pasquale

    2014-01-30

    This study focuses on designing microparticulate carriers based on high-mannuronic alginate and amidated pectin blend loaded with gentamicin sulphate able to move rapidly from dry to soft hydrogel. Supercritical assisted atomization was used to produce microparticles in form of dry powder and characteristics were compared with those obtained by spray-drying. Particles with very high encapsulation efficiency (approximately 100%) and small diameter (less than 2 μm) showed good flowability and high fluid uptake enabling wound site filling and limiting bacterial proliferation. Moisture transmission of the in situ formed hydrogel was about 95 g/m(2)h, ideal to avoid wound dehydration or occlusion phenomena. All formulations presented a burst effect, suitable to prevent infection spreading at the beginning of the therapy, followed by prolonged release (4-10 days) related to drug/polymers ratio. Antimicrobial tests showed stronger effect than pure GS over time (up-to 24 days) and the ability to degrade preformed biofilms, essential to properly treat infected wounds.

  7. Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology.

    PubMed

    Balasubramani, P; Palaniswamy, P T; Visvanathan, R; Thirupathi, V; Subbarayan, A; Prakash Maran, J

    2015-01-01

    Experiments were conducted on microencapsulation of garlic oleoresin by spray drying with garlic oleoresin concentration (10%, 20% and 30%) as core material, maltodextrin concentration (40%, 50% and 60%) as wall material and inlet temperature of drying air (180 °C, 200 °C and 220 °C) as process parameters. The process in-terms of encapsulation efficiency was optimised following response surface methodology and Pareto analysis of variance (ANOVA). Second order polynomial regression model showed good fit of the experimental data with high coefficient of determination (R(2)) along with predicted values. The relationships between the independent and dependent parameters were represented using response surface and contour plots. The optimum levels of process parameters, viz., garlic oleoresin concentration, maltodextrin concentration and inlet temperature of air drying were found to be 10%, 60% and 200 °C, respectively with the maximum encapsulation efficiency of 81.9% and desirability of 0.998. The microencapsulated garlic oleoresin powder obtained at optimized conditions was spherical with smooth surface as analysed through scanning electron microscopy.

  8. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization

    PubMed Central

    Jong, Teresa; Li, Jian; Mortonx, David A.V.; Zhou, Qi (Tony); Larson, Ian

    2016-01-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared to those produced by jet-milling. Inhalable colistin powder formulations were produced by jet-milling or spray-drying (with or without L-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, while the spray-dried particles were more spherical. Significantly higher fine particle fractions (FPFs) were measured for the spray-dried (43.8-49.6%) vs. the jet-milled formulation (28.4 %) from a Rotahaler at 60L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of L-leucine in the spray drying feed-solution gave no significant improvement in FPF. As measured by inverse gas chromatography, spray-dried formulations had significantly (p<0.001) lower dispersive, specific and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without L-leucine. Based upon our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray-drying, contributed significantly to the reduction of surface free energy and the superior aerosolization performance. PMID:26886330

  9. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    NASA Astrophysics Data System (ADS)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  10. In pursuit of objective dry eye screening clinical techniques.

    PubMed

    Kanellopoulos, Anastasios John; Asimellis, George

    2016-01-01

    Dry eye is a multifactorial, progressive, and chronic disease of the tears and ocular surface. The disease is multi-factorial and has intermittent symptoms. Discomfort, visual disturbance, tear film instability with potential damage to the ocular surface, and increased tear film osmolarity are known associates. Dry eye is a common clinical problem for eye-care providers worldwide and there is a large number of clinical investigative techniques for the evaluation of dry eye. Despite this, however, there is no globally accepted guideline for dry eye diagnosis and none of the available tests may hold the title of the 'gold standard'. The majority of the techniques involved in the diagnosis of the disease, particularly for its early stages, has a large degree of subjectivity. The purpose of this article is to review existing dry eye investigative techniques and to present a new objective dry eye screening technique based on optical coherence tomography.

  11. Spray-freeze-dried liposomal ciprofloxacin powder for inhaled aerosol drug delivery.

    PubMed

    Sweeney, Lyle G; Wang, Zhaolin; Loebenberg, Raimar; Wong, Jonathan P; Lange, Carlos F; Finlay, Warren H

    2005-11-23

    Spray-freeze drying was utilized to manufacture a liposomal powder formulation containing ciprofloxacin as a model active component. The powder forms liposomally encapsulated ciprofloxacin when wetted. Aerosol properties of this formulation were assessed using a new passive inhaler, in which the powder was entrained at a flow rate of 60l/min. A mass median aerodynamic diameter (MMAD) of 2.8 microm was achieved for this formulation. Using the experimental dispersion testing data, ciprofloxacin concentration in the airway surface liquid (ASL) was calculated using a Lagrangian deposition model. The reconstitution of the powder in various aqueous media gave drug encapsulation efficiencies as follows: 50% in water, 93.5% in isotonic saline, 80% in bovine mucin, 75% in porcine mucus and 73% in five-fold-diluted ex vivo human cystic fibrosis patient sputum.

  12. Physicochemical aspects involved in methotrexate release kinetics from biodegradable spray-dried chitosan microparticles

    NASA Astrophysics Data System (ADS)

    Mesquita, Philippe C.; Oliveira, Alice R.; Pedrosa, Matheus F. Fernandes; de Oliveira, Anselmo Gomes; da Silva-Júnior, Arnóbio Antônio

    2015-06-01

    Spray dried methotrexate (MTX) loaded chitosan microparticles were prepared using different drug/copolymer ratios (9%, 18%, 27% and 45% w/w). The physicochemical aspects were assessed in order to select particles that were able to induce a sustained drug release effect. Particles were successfully produced which exhibited desired physicochemical aspects such as spherical shape and high drug loading. XRD and FT-IR analysis demonstrated that drug is not bound to copolymer and is only homogeneously dispersed in an amorphous state into polymeric matrix. Even the particles with higher drug loading levels presented a sustained drug release profile, which were mathematically modeled using adjusted Higuchi model. The drug release occurred predominantly with drug dissolution and diffusion through swollen polymeric matrix, with the slowest release occurring with particles containing 9% of drug, demonstrating an interesting and promising drug delivery system for MTX.

  13. Influence of slurry flocculation on the character and compaction of spray-dried silicon nitride granules

    SciTech Connect

    Takahashi, Hideo; Shinohara, Nobuhiro; Okumiya, Masataro; Uematsu, Keizo; JunIchiro, Tsubaki; Iwamoto, Yuji; Kamiya, Hidehiro

    1995-04-01

    The effect of slurry flocculation on the characteristics of silicon nitride granules prepared by the spray drying process is investigated. The flocculation state of an aqueous silicon nitride slurry is controlled by adding nitric acid and evaluated as a function of pH. Dense and hard silicon nitride granules result from a well-dispersed slurry having a high pH (e.g., 10.8). These hard granules retain their shape in green compacts and form detrimental defects. Lowering the pH of the slurry to a certain value (e.g., pH 7.9) results in slurry flocculation. Granules prepared from this flocculated slurry have low density and low diametral compression strength and contribute to the elimination large pores in green compacts.

  14. Self-dispersible nanocrystals of albendazole produced by high pressure homogenization and spray-drying.

    PubMed

    Paredes, Alejandro Javier; Llabot, Juan Manuel; Sánchez Bruni, Sergio; Allemandi, Daniel; Palma, Santiago Daniel

    2016-10-01

    Albendazole (ABZ) is a broad-spectrum antiparasitic drug used in the treatment of human or animal infections. Although ABZ has shown a high efficacy for repeated doses in monogastric mammals, its low aqueous solubility leads to erratic bioavailability. The aim of this work was to optimize a procedure in order to obtain ABZ self-dispersible nanocrystals (SDNC) by combining high pressure homogenization (HPH) and spray-drying (SD). The material thus obtained was characterized and the variables affecting both the HPH and SD processes were studied. As expected, the homogenizing pressure and number of cycles influenced the final particle size, while the stabilizer concentration had a strong impact on SD output and redispersion of powders upon contact with water. ABZ SDNC were successfully obtained with high process yield and redispersibility. The characteristic peaks of ABZ were clearly identified in the X-ray patterns of the processed samples. A noticeable increase in the dissolution rate was observed in the aqueous environment.

  15. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols.

    PubMed

    Park, Chun-Woong; Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Zwischenberger, Joseph B; Park, Eun-Seok; Mansour, Heidi M

    2013-10-15

    Respirable microparticles/nanoparticles of the antibiotics vancomycin (VCM) and clarithromycin (CLM) were successfully designed and developed by novel organic solution advanced spray drying from methanol solution. Formulation optimization was achieved through statistical experimental design of pump feeding rates of 25% (Low P), 50% (Medium P) and 75% (High P). Systematic and comprehensive physicochemical characterization and imaging were carried out using scanning electron microscopy (SEM), hot-stage microscopy (HSM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Karl Fischer titration (KFT), laser size diffraction (LSD), gravimetric vapor sorption (GVS), confocal Raman microscopy (CRM) and spectroscopy for chemical imaging mapping. These novel spray-dried (SD) microparticulate/nanoparticulate dry powders displayed excellent aerosol dispersion performance as dry powder inhalers (DPIs) with high values in emitted dose (ED), respirable fraction (RF), and fine particle fraction (FPF). VCM DPIs displayed better aerosol dispersion performance compared to CLM DPIs which was related to differences in the physicochemical and particle properties of VCM and CLM. In addition, organic solution advanced co-spray drying particle engineering design was employed to successfully produce co-spray-dried (co-SD) multifunctional microparticulate/nanoparticulate aerosol powder formulations of VCM and CLM with the essential lung surfactant phospholipid, dipalmitoylphosphatidylcholine (DPPC), for controlled release pulmonary nanomedicine delivery as inhalable dry powder aerosols. Formulation optimization was achieved through statistical experimental design of molar ratios of co-SD VCM:DPPC and co-SD CLM:DPPC. XRPD and DSC confirmed that the phospholipid bilayer structure in the solid-state was preserved following spray drying. Co-SD VCM:DPPC and co-SD CLM:DPPC dry powder aerosols demonstrated controlled release of antibiotic drug that was fitted to various

  16. Effect on the nasal bioavailability of co-processing drug and bioadhesive carrier via spray-drying.

    PubMed

    Coucke, D; Vervaet, C; Foreman, P; Adriaensens, P; Carleer, R; Remon, J P

    2009-09-08

    A mucoadhesive combination of a maize starch (Amioca, mainly consisting of amylopectine) and a cross-linked acrylic acid-based polymer (Carbopol 974P) was spray-dried with metoprolol tartrate (used as model molecule) in order to develop a powder suitable for nasal drug delivery via a one-step manufacturing process. The bioavailability of metoprolol tartrate after nasal administration of this powder to rabbits was compared with powders manufactured via other procedures: (a) freeze-drying of a dispersion prepared using the co-spray-dried powder, (b) freeze-drying of a dispersion prepared using a physical mixture of drug and mucoadhesive polymers. After co-processing via spray-drying a low bioavailability (BA 10.8+/-2.3%) was obtained, whereas manufacturing procedures based on freeze-drying yielded a higher BA: 37.9+/-12.8% using the co-processed powder and 73.6+/-24.9% using the physical mixture. The higher bioavailability was due to the deprotonation of poly(acrylic acid) during neutralisation of the dispersion prior to freeze-drying. This induced repulsion of the ionised carboxyl groups and a lower interaction between poly(acrylic acid) and starch, creating a less compact matrix upon hydration of the polymer and allowing an easier escape of metoprolol tartrate from the matrix. This study showed that co-processing of a mucoadhesive Amioca/Carbopol 974P formulation with metoprolol tartrate via co-spray-drying did not provide any added value towards the bioavailability of the drug after nasal administration of the mucoadhesive powder.

  17. Development and Characterization of Multifunctional Directly Compressible Co-processed Excipient by Spray Drying Method.

    PubMed

    Chauhan, Sohil I; Nathwani, Sandeep V; Soniwala, Moinuddin M; Chavda, Jayant R

    2016-08-01

    The present investigation was carried out to develop and characterize a multifunctional co-processed excipient for improving the compressibility of poorly compressible drugs. Etodolac was used as a model drug. Microcrystalline cellulose (MCC), lactose monohydrate (lactose), and StarCap 1500 (StarCap) were selected as components of the co-processed excipient. The spray drying method was used for co-processing of excipients. D-optimal mixture design was applied to optimize the proportion of component excipients. Statistical analysis of the D-optimal mixture design revealed that all response variables were significantly affected by the independent variables (p value < 0.05). Optimized composition was obtained from the desirability function. The optimized composition of the co-processed excipient was found to be 30% MCC, 25% lactose, and 45% StarCap. This optimized batch was evaluated for flow properties, compressibility parameters such as Kawakita's and Kuno's equation and Heckel's equation, and dilution potential. Evaluation parameters for flow properties (angle of repose, Carr's index, and Hausner's ratio) suggested excellent flow character. The parameters of Kawakita's and Kuno's equation and Heckel's equation suggested improvement in the compressibility of the model drug. Dilution potential was found to be 40%, and based on that, tablets of the model drug were formulated and evaluated for general evaluation parameters of tablets. All the parameters were found to be within the acceptance criteria which concluded that the multifunctional directly compressible co-processed excipient was prepared successfully that improved the compressibility of the poorly compressible model drug etodolac along with spray drying as an efficient method for the preparation of co-processed excipient.

  18. Dry friction aspects of Ni-based self-fluxing flame sprayed coatings

    NASA Astrophysics Data System (ADS)

    Paulin, C.; Chicet, D.; Paleu, V.; Benchea, M.; Lupescu, Ş.; Munteanu, C.

    2017-08-01

    In this paper we present the results tribological obtained in the course of dry wear tests on samples coated with three types of coatings produced from self-fluxing Ni-based powders. In this purpose were used three commercial NiCrBSi powders produced by various manufacturers, which have been sprayed against a low alloyed steel substrate using the flame spray thermal deposition method followed by flame remelting, resulting three different samples, denoted as: A, M and P. The first test was conducted on an Amsler type machine, with rolling motion between tribological contacts of third class. The analysed coating was deposited on the generator of the low alloy steel disc and the shoe was realized from a grindstone. The test was conducted for two situations: (a) constant load of 10 kg and 6 kg applied for 5 hours; (b) progressive load starting from 2 to 10 kg for two different speeds of rotation of the disc. The second test was the one of sliding wear and it was conducted on the UMTR 2M-CTR tribometer. The analysed layers were deposited on the flat surface of a low alloy steel lamella, and the friction was achieved with a conical grinding stone. The working parameters were as follows: 20N constant load, constant speed of 10 mm / s, sliding linear length of 30mm, the test duration being 45 minutes. After conducting the tests and after analysing the results, the following conclusions are drawn: a) during the first test has been obtained a global friction coefficient between 0.3 and 0.4 - typical for dry friction, highlighting some lower values in the case of sample A, in which case there were recorded smaller mass losses; b) at the second test was recorded an approximately linear behaviour of the three samples, with a gradual increase of the friction coefficient and a superficial wear mark revealed both by SEM microscopy and by profilometry.

  19. Relationship between surface concentration of L-leucine and bulk powder properties in spray dried formulations.

    PubMed

    Mangal, Sharad; Meiser, Felix; Tan, Geoffrey; Gengenbach, Thomas; Denman, John; Rowles, Matthew R; Larson, Ian; Morton, David A V

    2015-08-01

    The amino acid L-leucine has been demonstrated to act as a lubricant and improve the dispersibility of otherwise cohesive fine particles. It was hypothesized that optimum surface L-leucine concentration is necessary to achieve optimal surface and bulk powder properties. Polyvinylpyrrolidone was spray dried with different concentration of L-leucine and the change in surface composition of the formulations was determined using X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectrometry (ToF-SIMS). The formulations were also subjected to powder X-ray diffraction analysis in order to understand the relationship between surface concentration and solid-state properties of L-leucine. In addition, the morphology, surface energy and bulk cohesion of spray dried formulations were also assessed to understand the relation between surface L-leucine concentration and surface and bulk properties. The surface concentration of L-leucine increased with higher feed concentrations and plateaued at about 10% L-leucine. Higher surface L-leucine concentration also resulted in the formation of larger L-leucine crystals and not much change in crystal size was noted above 10% L-leucine. A change in surface morphology of particles from spherical to increasingly corrugated was also observed with increasing surface l-leucine concentration. Specific collapsed/folded over particles were only seen in formulations with 10% or higher l-leucine feed concentration suggesting a change in particle surface formation process. In addition, bulk cohesion also reduced and approached a minimum with 10% L-leucine concentration. Thus, the surface concentration of L-leucine governs particle formation and optimum surface L-leucine concentration results in optimum surface and bulk powder properties.

  20. Sensory aroma characteristics of alcalase hydrolyzed rice bran protein concentrate as affected by spray drying and sugar addition.

    PubMed

    Arsa, Supeeraya; Theerakulkait, Chockchai

    2015-08-01

    The sensory aroma characteristics of alcalase hydrolyzed rice bran protein concentrate as affected by spray drying and sugar addition were investigated. Rice bran protein concentrate (RBPC) was hydrolyzed by alcalase. Sucrose, glucose or fructose was added to the liquid rice bran protein hydrolysate (LRBPH) and subsequently spray dried. The sensory aroma intensities of the hydrolysates were evaluated. Results showed that after spray drying, the rice bran protein concentrate powder (RBPC-P) had higher sweet and cocoa-like aroma intensities than RBPC (p ≤ 0.05) and hydrolyzed rice bran protein powder (HRBPP) had higher milk powder-like aroma intensities than LRBPH (p ≤ 0.05). The sweet, cocoa-like and milk powder-like aroma intensities in hydrolyzed rice bran protein powder with fructose addition (HRBPP-F) were significantly higher (p ≤ 0.05) than those of hydrolyzed rice bran protein powder with sucrose or glucose addition (HRBPP-S or HRBPP-G). HRBPP-F had the highest overall aroma liking score. These results also indicate that spray drying and sugar addition could improve the sensory aroma characteristics of alcalase hydrolyzed RBPC.

  1. The apparent plasticizing effect of polyethylene glycol (PEG) on the crystallinity of spray dried lactose/PEG composites.

    PubMed

    Mosén, Kristina; Bäckström, Kjell; Thalberg, Kyrre; Schaefer, Torben; Axelsson, Anders; Kristensen, Henning G

    2006-10-01

    Aqueous solutions of lactose and polyethylene glycol (PEG) were spray dried in a Büchi Model 191 spray dryer with the aim to investigate the effect of PEG on the crystallinity of the composite. A PEG concentration of 10.7% by weight of solids was studied for PEG 200, 600, 1500, 4000 and 8000. For PEG 200 and 4000 additional concentrations from 1.5-19.3% to 1.5-32.4%, respectively, were investigated. The spray dried composites were analysed with X-ray powder diffraction and modulating differential scanning calorimetry. The crystallinity of lactose in the composites varied from 0% to 60%, dependent on the molecular weight and concentration of PEG. Apparently, lactose crystallinity is promoted by low molecular weight and high concentration of the PEG. PEG did not affect the lactose glass transition temperature. It is suggested that lactose and PEG are solidified separately during spray drying and that partial crystallization of lactose is associated with effects of PEG on the rate of drying.

  2. Physical and Nutritional Properties of Catfish Roe Spray Dried Protein Powder and its Application in an Emulsion System

    USDA-ARS?s Scientific Manuscript database

    Soluble spray dried protein powder (CRP) was made from catfish roe and its physical and nutritional properties evaluated. An emulsion system (CRPE) was developed using CRP and rheological properties compared with two commercial mayonnaises (RME and RVE). CRP contained 67 % protein, 4.5% moisture, ...

  3. Value-Added Processing of Peanut Skins: Antioxidant Capacity,Total Phenolics,and Procyanidin Content of Spray Dried Extracts

    USDA-ARS?s Scientific Manuscript database

    To explore a potential use for peanut skins as a functional food ingredient, milled skins were extracted with 70% ethanol, separated into a soluble extract and insoluble material by filtration, and spray dried with or without the addition of maltodextrin. Peanut skin extracts had high levels of proc...

  4. Value-Added Processing of Peanut Skins: Antioxidant Capacity, Total Phenolics, and Procyanidin Content of Spray Dried Extracts

    USDA-ARS?s Scientific Manuscript database

    To explore a potential use for peanut skins as a functional food ingredient, milled skins were extracted with 70% ethanol, separated into a soluble extract and insoluble material by filtration, and spray dried with or without the addition of maltodextrin. Peanut skin extracts had high levels of proc...

  5. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Cristiane RD; Durli, Taís L.; Schaffazick, Scheila R.; Raffin, Renata P.; Bender, Eduardo A.; Beck, Ruy CR; Pohlmann, Adriana R.; Guterres, Sílvia S.

    2012-05-01

    The aim of the present study was to develop a transdermal system for controlled delivery of melatonin combining three strategies: nanoencapsulation of melatonin, drying of melatonin-loaded nanocapsules, and incorporation of nanocapsules in a hydrophilic gel. Nanocapsules were prepared by interfacial deposition of the polymer and were spray-dried using water-soluble excipients. In vitro drug release profiles were evaluated by the dialysis bag method, and skin permeation studies were carried out using Franz cells with porcine skin as the membrane. The use of 10% ( w/ v) water-soluble excipients (lactose or maltodextrin) as spray-drying adjuvants furnished redispersible powders (redispersibility index approximately 1.0) suitable for incorporation into hydrogels. All formulations showed a better controlled in vitro release of melatonin compared with the melatonin solution. The best controlled release results were achieved with hydrogels prepared with dried nanocapsules (hydrogels > redispersed dried nanocapsules > nanocapsule suspension > melatonin solution). The skin permeation studies demonstrated a significant modulation of the transdermal melatonin permeation for hydrogels prepared with redispersible nanocapsules. In this way, the additive effect of the different approaches used in this study (nanoencapsulation, spray-drying, and preparation of semisolid dosage forms) allows not only the control of melatonin release, but also transdermal permeation.

  6. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery

    PubMed Central

    2012-01-01

    The aim of the present study was to develop a transdermal system for controlled delivery of melatonin combining three strategies: nanoencapsulation of melatonin, drying of melatonin-loaded nanocapsules, and incorporation of nanocapsules in a hydrophilic gel. Nanocapsules were prepared by interfacial deposition of the polymer and were spray-dried using water-soluble excipients. In vitro drug release profiles were evaluated by the dialysis bag method, and skin permeation studies were carried out using Franz cells with porcine skin as the membrane. The use of 10% (w/v) water-soluble excipients (lactose or maltodextrin) as spray-drying adjuvants furnished redispersible powders (redispersibility index approximately 1.0) suitable for incorporation into hydrogels. All formulations showed a better controlled in vitro release of melatonin compared with the melatonin solution. The best controlled release results were achieved with hydrogels prepared with dried nanocapsules (hydrogels > redispersed dried nanocapsules > nanocapsule suspension > melatonin solution). The skin permeation studies demonstrated a significant modulation of the transdermal melatonin permeation for hydrogels prepared with redispersible nanocapsules. In this way, the additive effect of the different approaches used in this study (nanoencapsulation, spray-drying, and preparation of semisolid dosage forms) allows not only the control of melatonin release, but also transdermal permeation. PMID:22587614

  7. LN2 spray droplet size measurement via ensemble diffraction technique

    NASA Technical Reports Server (NTRS)

    Saiyed, N. H.; Jurns, J.; Chato, David J.

    1991-01-01

    The size of subcooled liquified nitrogen droplets are measured with a 5 mW He-Ne laser as a function of pressure difference (delta P) across flat spray and full cone pressure atomizing nozzles. For delta P's of 3 to 30 psid, the spray sauter mean diameter (SMD) ranged between 250 to 50 microns. The pressure range tested is representative of those expected during cryogenic fluid transfer operations in space. The droplet sizes from the flat spray nozzles were greater than those from the full cone nozzle. A power function of the form, SMD varies as delta P(exp a), describes the spray SMD as a function of the delta P very well. The values of a were -0.36 for the flat spray and -0.87 for the full cone. The reduced dependence of the flat spray SMD on the delta P was probably because of: (1) the absence of a swirler that generates turbulence within the nozzle to enhance atomization, and (2) a possible increase in shearing stress resulting from the delayed atomization due to the absence of turbulence. The nitrogen quality, up to 1.5 percent is based on isenthalpic expansion, did not have a distinct and measurable effect on the spray SMD. Both bimodal and monomodal droplet size population distributions were measured. In the bimodal distribution, the frequency of the first mode was much greater than the frequency of the second mode. Also, the frequency of the second mode was low enough such that a monomodal approximation probably would give reasonable results.

  8. Impact of different spray-drying conditions on the viability of wine Saccharomyces cerevisiae strains.

    PubMed

    Aponte, Maria; Troianiello, Gabriele Danilo; Di Capua, Marika; Romano, Raffaele; Blaiotta, Giuseppe

    2016-01-01

    Spray-drying (SD) is widely considered a suitable method to preserve microorganisms, but data regarding yeasts are still scanty. In this study, the effect of growing media, process variables and carriers over viability of a wild wine Saccharomyces (S.) cerevisiae LM52 was evaluated. For biomass production, the strain was grown (batch and fed-batch fermentation) in a synthetic, as well as in a beet sugar molasses based-medium. Drying of cells resuspended in several combinations of soluble starch and maltose was performed at different inlet and outlet temperatures. Under the best conditions-suspension in soluble starch plus maltose couplet to inlet and outlet temperatures of 110 and 55 °C, respectively-the loss of viability of S. cerevisiae LM52 was 0.8 ± 0.1 and 0.5 ± 0.2 Log c.f.u. g(-1) for synthetic and molasses-based medium, respectively. Similar results were obtained when S. cerevisiae strains Zymoflore F15 and EC1118, isolated from commercial active dry yeast (ADY), were tested. Moreover, powders retained a high vitality and showed good fermentation performances up to 6 month of storage, at both 4 and -20 °C. Finally, fermentation performances of different kinds of dried formulates (SD and ADY) compared with fresh cultures did not show significant differences. The procedure proposed allowed a small-scale production of yeast in continuous operation with relatively simple equipment, and may thus represent a rapid response-on-demand for the production of autochthonous yeasts for local wine-making.

  9. Comparative Survival Rates of Human-Derived Probiotic Lactobacillus paracasei and L. salivarius Strains during Heat Treatment and Spray Drying

    PubMed Central

    Gardiner, G. E.; O'Sullivan, E.; Kelly, J.; Auty, M. A. E.; Fitzgerald, G. F.; Collins, J. K.; Ross, R. P.; Stanton, C.

    2000-01-01

    Spray drying of skim milk was evaluated as a means of preserving Lactobacillus paracasei NFBC 338 and Lactobacillus salivarius UCC 118, which are human-derived strains with probiotic potential. Our initial experiments revealed that NFBC 338 is considerably more heat resistant in 20% (wt/vol) skim milk than UCC 118 is; the comparable decimal reduction times were 11.1 and 1.1 min, respectively, at 59°C. An air outlet temperature of 80 to 85°C was optimal for spray drying; these conditions resulted in powders with moisture contents of 4.1 to 4.2% and viable counts of 3.2 × 109 CFU/g for NFBC 338 and 5.2 × 107 CFU/g for UCC 118. Thus, L. paracasei NFBC 338 survived better than L. salivarius UCC 118 during spray drying; similar results were obtained when we used confocal scanning laser microscopy and LIVE/DEAD BacLight viability staining. In addition, confocal scanning laser microscopy revealed that the probiotic lactobacilli were located primarily in the powder particles. Although both spray-dried cultures appeared to be stressed, as shown by increased sensitivity to NaCl, bacteriocin production by UCC 118 was not affected by the process, nor was the activity of the bacteriocin peptide. The level of survival of NFBC 338 remained constant at ∼1 × 109 CFU/g during 2 months of powder storage at 4°C, while a decline in the level of survival of approximately 1 log (from 7.2 × 107 to 9.5 × 106 CFU/g) was observed for UCC 118 stored under the same conditions. However, survival of both Lactobacillus strains during powder storage was inversely related to the storage temperature. Our data demonstrate that spray drying may be a cost-effective way to produce large quantities of some probiotic cultures. PMID:10831444

  10. Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying.

    PubMed

    Gardiner, G E; O'Sullivan, E; Kelly, J; Auty, M A; Fitzgerald, G F; Collins, J K; Ross, R P; Stanton, C

    2000-06-01

    Spray drying of skim milk was evaluated as a means of preserving Lactobacillus paracasei NFBC 338 and Lactobacillus salivarius UCC 118, which are human-derived strains with probiotic potential. Our initial experiments revealed that NFBC 338 is considerably more heat resistant in 20% (wt/vol) skim milk than UCC 118 is; the comparable decimal reduction times were 11.1 and 1.1 min, respectively, at 59 degrees C. An air outlet temperature of 80 to 85 degrees C was optimal for spray drying; these conditions resulted in powders with moisture contents of 4.1 to 4.2% and viable counts of 3.2 x 10(9) CFU/g for NFBC 338 and 5.2 x 10(7) CFU/g for UCC 118. Thus, L. paracasei NFBC 338 survived better than L. salivarius UCC 118 during spray drying; similar results were obtained when we used confocal scanning laser microscopy and LIVE/DEAD BacLight viability staining. In addition, confocal scanning laser microscopy revealed that the probiotic lactobacilli were located primarily in the powder particles. Although both spray-dried cultures appeared to be stressed, as shown by increased sensitivity to NaCl, bacteriocin production by UCC 118 was not affected by the process, nor was the activity of the bacteriocin peptide. The level of survival of NFBC 338 remained constant at approximately 1 x 10(9) CFU/g during 2 months of powder storage at 4 degrees C, while a decline in the level of survival of approximately 1 log (from 7.2 x 10(7) to 9.5 x 10(6) CFU/g) was observed for UCC 118 stored under the same conditions. However, survival of both Lactobacillus strains during powder storage was inversely related to the storage temperature. Our data demonstrate that spray drying may be a cost-effective way to produce large quantities of some probiotic cultures.

  11. Spray-dried powders containing tretinoin-loaded engineered lipid-core nanocapsules: development and photostability study.

    PubMed

    Marchiori, M C L; Ourique, A F; da Silva, C de B; Raffin, R P; Pohlmann, A R; Guterres, S S; Beck, R C R

    2012-03-01

    The influence of the spray-drying process on the ability of engineered lipid-core nanocapsules to protect tretinoin against UV degradation was evaluated. This approach represents a technological alternative to improve the microbiological stability, storage and transport properties of such formulations. Tretinoin-loaded lipid-core nanocapsules or tretinoin-loaded nanoemulsion were dispersed in lactose (10% w/v) and fed in the spray-drier to obtain a solid product (spray-dried powder containing tretinoin-loaded nanocapsules or nanoemulsion--SD-TTN-NCL or SD-TTN-NE, respectively). SD-TTN-NE showed a lower (p < or = 0.05) percentage of encapsulation (89 +/- 1%) compared to SD-TTN-NCL (94 +/- 2%). Redispersed SD-TTN-NCL and SD-TTN-NE showed z-average sizes of 204 +/- 2 nm and 251 +/- 9 nm, which were close to those of the original suspensions (220 +/- 3 nm and 239 +/- 14 nm, respectively). Similar percentage of photodegradation were determined for tretinoin loaded in nanocapsules (26.15 +/- 4.34%) or in the respective redispersed spray-dried powder (28.73 +/- 6.19 min) after 60 min of UVA radiation exposure (p > 0.05). Our experimental design showed for the first time that spray-dried lipid-core nanocapsules are able to protect tretinoin against UVA radiation, suggesting that the drying process did not alter the supramolecular structure of the lipid-core nanocapsules. Such powders are potential intermediate products for the development of nanomedicines containing tretinoin.

  12. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process.

    PubMed

    Kim, Jeong-Soo; Kim, Min-Soo; Park, Hee Jun; Jin, Shun-Ji; Lee, Sibeum; Hwang, Sung-Joo

    2008-07-09

    The objective of the study was to prepare amorphous atorvastatin hemi-calcium using spray-drying and supercritical antisolvent (SAS) process and evaluate its physicochemical properties and oral bioavailability. Atorvastatin hemi-calcium trihydrate was transformed to anhydrous amorphous form by spray-drying and SAS process. With the SAS process, the mean particle size and the specific surface area of amorphous atorvastatin were drastically changed to 68.7+/-15.8nm, 120.35+/-1.40m2/g and 95.7+/-12.2nm, 79.78+/-0.93m2/g from an acetone solution and a tetrahydrofuran solution, respectively and appeared to be associated with better performance in apparent solubility, dissolution and pharmacokinetic studies, compared with unprocessed crystalline atorvastatin. Oral AUC0-8h values in SD rats for crystalline and amorphous atorvastatin were as follow: 1121.4+/-212.0ngh/mL for crystalline atorvastatin, 3249.5+/-406.4ngh/mL and 3016.1+/-200.3ngh/mL for amorphous atorvastatin from an acetone solution and a tetrahydrofuran solution with SAS process, 2227.8+/-274.5 and 2099.9+/-339.2ngh/mL for amorphous atorvastatin from acetone and tetrahydrofuran with spray-drying. The AUCs of all amorphous atorvastatin significantly increased (P<0.05) compared with crystalline atorvastatin, suggesting that the enhanced bioavailability was attributed to amorphous nature and particle size reduction. In addition, the SAS process exhibits better bioavailability than spray-drying because of particle size reduction with narrow particle size distribution. It was concluded that physicochemical properties and bioavailability of crystalline atorvastatin could be improved by physical modification such as particle size reduction and generation of amorphous state using spray-drying and SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and bioavailability of atorvastatin.

  13. Effect of Galacto-Oligosaccharides: Maltodextrin Matrices on the Recovery of Lactobacillus plantarum after Spray-Drying.

    PubMed

    Sosa, Natalia; Gerbino, Esteban; Golowczyc, Marina A; Schebor, Carolina; Gómez-Zavaglia, Andrea; Tymczyszyn, E Elizabeth

    2016-01-01

    In this work maltodextrins were added to commercial galacto-oligosaccharides (GOS) in a 1:1 ratio and their thermophysical characteristics were analyzed. GOS:MD solutions were then used as matrices during spray-drying of Lactobacillus plantarum CIDCA 83114. The obtained powders were equilibrated at different relative humidities (RH) and stored at 5 and 20°C for 12 weeks, or at 30°C for 6 weeks. The Tgs of GOS:MD matrices were about 20-30°C higher than those of GOS at RH within 11 and 52%. A linear relation between the spin-spin relaxation time (T2) and T-Tg parameter was observed for GOS:MD matrices equilibrated at 11, 22, 33, and 44% RH at 5, 20, and 30°C. Spray-drying of L. plantarum CIDCA 83114 in GOS:MD matrices allowed the recovery of 93% microorganisms. In contrast, only 64% microorganisms were recovered when no GOS were included in the dehydration medium. Survival of L. plantarum CIDCA 83114 during storage showed the best performance for bacteria stored at 5°C. In a further step, the slopes of the linear regressions provided information about the rate of microbial inactivation for each storage condition (k values). This information can be useful to calculate the shelf-life of spray-dried starters stored at different temperatures and RH. Using GOS:MD matrices as a dehydration medium enhanced the recovery of L. plantarum CIDCA 83114 after spray-drying. This strategy allowed for the first time the spray-drying stabilization of a potentially probiotic strain in the presence of GOS.

  14. Effect of Galacto-Oligosaccharides: Maltodextrin Matrices on the Recovery of Lactobacillus plantarum after Spray-Drying

    PubMed Central

    Sosa, Natalia; Gerbino, Esteban; Golowczyc, Marina A.; Schebor, Carolina; Gómez-Zavaglia, Andrea; Tymczyszyn, E. Elizabeth

    2016-01-01

    In this work maltodextrins were added to commercial galacto-oligosaccharides (GOS) in a 1:1 ratio and their thermophysical characteristics were analyzed. GOS:MD solutions were then used as matrices during spray-drying of Lactobacillus plantarum CIDCA 83114. The obtained powders were equilibrated at different relative humidities (RH) and stored at 5 and 20°C for 12 weeks, or at 30°C for 6 weeks. The Tgs of GOS:MD matrices were about 20–30°C higher than those of GOS at RH within 11 and 52%. A linear relation between the spin-spin relaxation time (T2) and T-Tg parameter was observed for GOS:MD matrices equilibrated at 11, 22, 33, and 44% RH at 5, 20, and 30°C. Spray-drying of L. plantarum CIDCA 83114 in GOS:MD matrices allowed the recovery of 93% microorganisms. In contrast, only 64% microorganisms were recovered when no GOS were included in the dehydration medium. Survival of L. plantarum CIDCA 83114 during storage showed the best performance for bacteria stored at 5°C. In a further step, the slopes of the linear regressions provided information about the rate of microbial inactivation for each storage condition (k values). This information can be useful to calculate the shelf-life of spray-dried starters stored at different temperatures and RH. Using GOS:MD matrices as a dehydration medium enhanced the recovery of L. plantarum CIDCA 83114 after spray-drying. This strategy allowed for the first time the spray-drying stabilization of a potentially probiotic strain in the presence of GOS. PMID:27199918

  15. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone.

    PubMed

    Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2011-04-04

    Formulations containing amorphous active pharmaceutical ingredients (APIs) present great potential to overcome problems of limited bioavailability of poorly soluble APIs. In this paper, we directly compare for the first time spray drying and milling as methods to produce amorphous dispersions for two binary systems (poorly soluble API)/excipient: sulfathiazole (STZ)/polyvinylpyrrolidone (PVP) and sulfadimidine (SDM)/PVP. The coprocessed mixtures were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and intrinsic dissolution tests. PXRD and DSC confirmed that homogeneous glassy solutions (mixture with a single glass transition) of STZ/PVP were obtained for 0.05 ≤ X(PVP) (PVP weight fraction) < 1 by spray drying and for 0.6 ≤ X(PVP) < 1 by milling (at 400 rpm), and homogeneous glassy solutions of SDM/PVP were obtained for 0 < X(PVP) < 1 by spray drying and for 0.7 ≤ X(PVP) < 1 by milling. For these amorphous composites, the value of T(g) for a particular API/PVP ratio did not depend on the processing technique used. Variation of T(g) versus concentration of PVP was monotonic for all the systems and matched values predicted by the Gordon-Taylor equation indicating that there are no strong interactions between the drugs and PVP. The fact that amorphous SDM can be obtained on spray drying but not amorphous STZ could not be anticipated from the thermodynamic driving force of crystallization, but may be due to the lower molecular mobility of amorphous SDM compared to amorphous STZ. The solubility of the crystalline APIs in PVP was determined and the activities of the two APIs were fitted to the Flory-Huggins model. Comparable values of the Flory-Huggins interaction parameter (χ) were determined for the two systems (χ = -1.8 for SDM, χ = -1.5 for STZ) indicating that the two APIs have similar miscibility with PVP. Zones of stability and instability of the amorphous dispersions

  16. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics.

    PubMed

    Broeckx, Géraldine; Vandenheuvel, Dieter; Claes, Ingmar J J; Lebeer, Sarah; Kiekens, Filip

    2016-05-30

    The increasing knowledge about the human microbiome leads to the awareness of how important probiotics can be for our health. Although further substantiation is required, it appears that several pathologies could be treated or prevented by the administration of pharmaceutical formulations containing such live health-beneficial bacteria. These pharmabiotics need to provide their effects until the end of shelf life, which can be optimally achieved by drying them before further formulation. However, drying processes, including spray-, freeze-, vacuum- and fluidized bed drying, induce stress on probiotics, thus decreasing their viability. Several protection strategies can be envisaged to enhance their viability, including addition of protective agents, controlling the process parameters and prestressing the probiotics prior to drying. Moreover, probiotic viability needs to be maintained during long-term storage. Overall, lower storage temperature and low moisture content result in good survival rates. Attention should also be given to the rehydration conditions of the dried probiotics, as this can exert an important effect on their revival. By describing not only the characteristics, but also the viability results obtained by the most relevant drying techniques in the probiotic industry, we hope to facilitate the deliberate choice of drying process and protection strategy for specific probiotic and pharmabiotic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Spray Dried Chitosan Microparticles for Intravesical Delivery of Celecoxib: Preparation and Characterization.

    PubMed

    Lopedota, Angela; Cutrignelli, Annalisa; Laquintana, Valentino; Denora, Nunzio; Iacobazzi, Rosa Maria; Perrone, Mara; Fanizza, Elisabetta; Mastrodonato, Maria; Mentino, Donatella; Lopalco, Antonio; Depalo, Nicoletta; Franco, Massimo

    2016-09-01

    Chitosan microparticles containing celecoxib (CB), were developed as chemoprevention of bladder cancer. Furthermore two inclusion complexes of CB with methyl-β-cyclodextrin (C1 and C2) were prepared to improve the solubility of the drug. C1 and C2 were obtained by freeze-drying and characterized in the solid state and in solution. Microparticles loaded with CB or C1 or C2 were prepared by spray drying and fully characterized. The yield and encapsulation efficiencies of microparticles depended by both the viscosity and the presence of the inclusion complex in the feed medium nebulised. Generally, the microparticles exhibited a spherical shape with mean diameter of approximately 2 μm which was compatible with local intravesical administration using a catheter. The CB release studies from the microparticles allowed us to identify both immediate release systems (microparticles including the complexes) and prolonged release systems (microparticles including CB alone). The latter exhibited good adhesion to the bladder mucosa, as highlighted by a mucoadhesion study. Histological studies revealed a desquamation of the superficial cells when the bladder mucosa was treated with microparticles loaded with CB, while the morphology of the urothelium did not change when it was treated with microparticles loaded with the inclusion complex. A new CB intravesical formulation than can easily be administered with a catheter and is able to release the drug at the target site for several hours was realized. This new delivery system could be a good alternative to classic oral CB administration.

  18. Evaporation of multi-component mixtures and shell formation in spray dried droplets

    NASA Astrophysics Data System (ADS)

    Valente, Pedro; Duarte, Íris; Porfirio, Tiago; Temtem, Márcio

    2015-11-01

    Drug particles where the active pharmaceutical ingredient (APIs) is dispersed in a polymer matrix forming an amorphous solid dispersion (ASD) is a commonly used strategy to increase the solubility and dissolution rate of poorly water soluble APIs. However, the formation and stability of an amorphous solid dispersion depends on the polymer/API combination and process conditions to generate it. The focus of the present work is to further develop a numerical tool to predict the formation of ASDs by spray drying solutions of different polymer/API combinations. Specifically, the evaporation of a multi-component droplet is coupled with a diffusion law within the droplet that minimizes the Gibbs free energy of the polymer/API/solvents system, following the Flory-Huggins model. Prior to the shell formation, the evaporation of the solvents is modelled following the simplified approach proposed by Abramzon & Sirignano (1989) which accounts for the varying relative velocity between the droplet and the drying gas. After shell formation, the diffusion of the solvents across the porous shell starkly modifies the evaporative dynamics.

  19. Solid-state characterization of spray-dried ice cream mixes.

    PubMed

    Vega, Cesar; Kim, Esther-H-J; Chen, Xiao D; Roos, Yrjö H

    2005-10-10

    The main physicochemical properties of spray-dried ice cream mixes (i.e. surface composition, wettability, flowability and microstructure) were analyzed. Emulsions contained 19-44% milk fat on a dry basis and included mixes with no added emulsifier and/or sucrose. The time necessary for complete wetting of the powders correlated with the amount of surface free-fat measured by means of solvent extraction. Non-micellar casein (sodium caseinate) showed to be a better co-encapsulant than micellar casein (skim milk) as demonstrated by surface fat coverage measured by electron spectroscopy for chemical analysis (ESCA). Emulsifiers influenced the fat surface composition of the powders by reducing the amount of surface protein due to their lower interfacial tension. Surface fat caused an initial overestimation of the particle size of the powders due to fat-related caking. Powders showed no flow before and after surface fat extraction which was attributed to fat-related caking and very small particle size (<80 microm), respectively.

  20. Cold Spray Coating of Submicronic Ceramic Particles on Poly(vinyl alcohol) in Dry and Hydrogel States

    NASA Astrophysics Data System (ADS)

    Moreau, David; Borit, François; Corté, Laurent; Guipont, Vincent

    2017-06-01

    We report an approach using cold spray technology to coat poly(vinyl alcohol) (PVA) in polymer and hydrogel states with hydroxyapatite (HA). Using porous aggregated HA powder, we hypothesized that fragmentation of the powder upon cold spray could lead to formation of a ceramic coating on the surface of the PVA substrate. However, direct spraying of this powder led to complete destruction of the swollen PVA hydrogel substrate. As an alternative, HA coatings were successfully produced by spraying onto dry PVA substrates prior to swelling in water. Dense homogeneous HA coatings composed of submicron particles were obtained using rather low-energy spraying parameters (temperature 200-250 °C, pressure 1-3 MPa). Coated PVA substrates could swell in water without removal of the ceramic layer to form HA-coated hydrogels. Microscopic observations and in situ measurements were used to explain how local heating and impact of sprayed aggregates induced surface roughening and strong binding of HA particles to the molten PVA substrate. Such an approach could lead to design of ceramic coatings whose roughness and crystallinity can be finely adjusted to improve interfacing with biological tissues.

  1. The effect of acidification of liquid whey protein concentrate on the flavor of spray-dried powder.

    PubMed

    Park, Curtis W; Bastian, Eric; Farkas, Brian; Drake, MaryAnne

    2014-07-01

    Off-flavors in whey protein negatively influence consumer acceptance of whey protein ingredient applications. Clear acidic beverages are a common application of whey protein, and recent studies have demonstrated that beverage processing steps, including acidification, enhance off-flavor production from whey protein. The objective of this study was to determine the effect of preacidification of liquid ultrafiltered whey protein concentrate (WPC) before spray drying on flavor of dried WPC. Two experiments were performed to achieve the objective. In both experiments, Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 mg/kg of hydrogen peroxide), and ultrafiltered (UF) to obtain liquid WPC that was 13% solids (wt/wt) and 80% protein on a solids basis. In experiment 1, the liquid retentate was then acidified using a blend of phosphoric and citric acids to the following pH values: no acidification (control; pH 6.5), pH 5.5, or pH 3.5. The UF permeate was used to normalize the protein concentration of each treatment. The retentates were then spray dried. In experiment 2, 150 μg/kg of deuterated hexanal (D₁₂-hexanal) was added to each treatment, followed by acidification and spray drying. Both experiments were replicated 3 times. Flavor properties of the spray-dried WPC were evaluated by sensory and instrumental analyses in experiment 1 and by instrumental analysis in experiment 2. Preacidification to pH 3.5 resulted in decreased cardboard flavor and aroma intensities and an increase in soapy flavor, with decreased concentrations of hexanal, heptanal, nonanal, decanal, dimethyl disulfide, and dimethyl trisulfide compared with spray drying at pH 6.5 or 5.5. Adjustment to pH 5.5 before spray drying increased cabbage flavor and increased concentrations of nonanal at evaluation pH values of 3.5 and 5.5 and dimethyl trisulfide at all evaluation pH values. In general, the flavor effects of preacidification were consistent regardless of the pH to

  2. Comparison between hot-melt extrusion and spray-drying for manufacturing solid dispersions of the graft copolymer of ethylene glycol and vinylalcohol.

    PubMed

    Guns, Sandra; Dereymaker, Aswin; Kayaert, Pieterjan; Mathot, Vincent; Martens, Johan A; Van den Mooter, Guy

    2011-03-01

    To investigate the effect of the manufacturing method (spray-drying or hot-melt extrusion) on the kinetic miscibility of miconazole and the graft copolymer poly(ethyleneglycol-g-vinylalcohol). The effect of heat pre-treatment of solutions used for spray-drying and the use of spray-dried copolymer as excipient for hot-melt extrusion was investigated. The solid dispersions were prepared at different drug-polymer ratios and analyzed with modulated differential scanning calorimetry and X-ray powder diffraction. Miconazole either mixed with the PEG-fraction of the copolymer or crystallized in the same or a different polymorph as the starting material. The kinetic miscibility was higher for the solid dispersions obtained from solutions which were pre-heated compared to those spray-dried from solutions at ambient temperature. Hot-melt extrusion resulted in an even higher mixing capability. Here the use of the spray-dried copolymer did not show any benefit concerning the kinetic miscibility of the drug and copolymer, but it resulted in a remarkable decrease in the torque experienced by the extruder allowing extrusion at lower temperature and torque. The manufacturing method has an influence on the mixing capacity and phase behavior of solid dispersions. Heat pre-treatment of the solutions before spray-drying can result in a higher kinetic miscibility. Amorphization of the copolymer by spray-drying before using it as an excipient for hot-melt extrusion can be a manufacturing benefit.

  3. Study of the effects of spray drying in whey-starch on the probiotic capacity of Lactobacillus rhamnosus 64 in the gut of mice.

    PubMed

    Lavari, L; Burns, P; Páez, R; Reinheimer, J; Vinderola, G

    2017-10-01

    To evaluate the effects of spray drying of Lactobacillus rhamnosus 64 on its capacity to modulate the gut immune response and on the attenuation of TNBS-induced colitis in mice. Lactobacillus rhamnosus 64 was spray dried in cheese whey-starch solution and administered to mice for 3, 6 or 10 consecutive days. Peritoneal macrophage phagocytic activity, secretory IgA levels in the small intestinal fluid and TNFα, IFNγ, IL-10, IL-6 and IL-2 levels in homogenates of the small and large intestine were determined. The effects of spray drying were also evaluated in an acute model of Trinitrobenzenesulfonic acid (TNBS)-induced colitis. A shift in the regulation of immune parameters, particularly the cytokine profile, was observed for mice treated with the spray-dried culture, compared to the profile observed in animals that received the strain as fresh culture (FC). The spray-dried culture of L. rhamnosus 64 showed anti-inflammatory properties in murine model of TNBS-induced colitis. The spray-drying process of L. rhamnosus 64 in whey-starch modified its immunomodulating capacity in healthy animals and conferred enhanced protection in an in vivo model of inflammation. Probiotic capacity can be affected by spray drying in relation to the properties observed for the strain as an overnight FC. This fact should be taken into account when producing the culture for its application in the industry. © 2017 The Society for Applied Microbiology.

  4. Advanced technologies for the improvement of spray application techniques in spanish viticulture: an overview.

    PubMed

    Gil, Emilio; Arnó, Jaume; Llorens, Jordi; Sanz, Ricardo; Llop, Jordi; Rosell-Polo, Joan R; Gallart, Montserrat; Escolà, Alexandre

    2014-01-02

    Spraying techniques have been undergoing continuous evolution in recent decades. This paper presents part of the research work carried out in Spain in the field of sensors for characterizing vineyard canopies and monitoring spray drift in order to improve vineyard spraying and make it more sustainable. Some methods and geostatistical procedures for mapping vineyard parameters are proposed, and the development of a variable rate sprayer is described. All these technologies are interesting in terms of adjusting the amount of pesticides applied to the target canopy.

  5. Advanced Technologies for the Improvement of Spray Application Techniques in Spanish Viticulture: An Overview

    PubMed Central

    Gil, Emilio; Arnó, Jaume; Llorens, Jordi; Sanz, Ricardo; Llop, Jordi; Rosell-Polo, Joan R.; Gallart, Montserrat; Escolà, Alexandre

    2014-01-01

    Spraying techniques have been undergoing continuous evolution in recent decades. This paper presents part of the research work carried out in Spain in the field of sensors for characterizing vineyard canopies and monitoring spray drift in order to improve vineyard spraying and make it more sustainable. Some methods and geostatistical procedures for mapping vineyard parameters are proposed, and the development of a variable rate sprayer is described. All these technologies are interesting in terms of adjusting the amount of pesticides applied to the target canopy. PMID:24451462

  6. CNS activities of liquid and spray-dried extracts from Lippia alba-Verbenaceae (Brazilian false melissa).

    PubMed

    Zétola, M; De Lima, T C M; Sonaglio, D; González-Ortega, G; Limberger, R P; Petrovick, P R; Bassani, V L

    2002-10-01

    The CNS activity of Lippia alba liquid and spray-dried extracts, containing the non-volatile fraction from the leaves, was investigated. L. alba liquid extracts were prepared by percolation with EtOH 40, 60 or 80%. The liquid extracts, named ES(40%,) ES(60%) and ES(80%,) were concentrated, the ethanol eliminated and then tested in Swiss mice to evaluate its sedative and anticonvulsant effects. The animals received the extracts, orally, in doses corresponding to 200 mg of dry residue by kilogram of body weight. All mice were evaluated in the barbiturate-induced sleep test. Similarly, other groups of mice were submitted to convulsions induced by pentylenetetrazol (PTZ). The concentrated extract obtained from ES(80%) showed the most significant sedative and myorelaxant effects as well as the highest total flavonoid content (66 mg/100 g, expressed in apigenin). Two spray-dried powders, SDP(1) and SDP(2), were prepared from ES(80%) using as excipients, respectively, colloidal silicon dioxide (CSD) and CSD associated to beta-cyclodextrin. Only SDP(1) showed sedative profile similar to that presented by ES(80). In conclusion, we demonstrated that the non-volatile fraction of L. alba, extracted in ethanol 80% (v/v), presents sedative and myorelaxant effects and that, among the tested extracts, this presents the highest flavonoid content. We demonstrated also the technological feasibility of spray-dried extracts and the influence of the excipient on its sedative properties.

  7. Spray drift reduction techniques for vineyards in fragmented landscapes.

    PubMed

    Otto, S; Loddo, D; Baldoin, C; Zanin, G

    2015-10-01

    In intensive agricultural systems spray drift is one of the major potential diffuse pollution pathways for pesticides and poses a risk to the environment. There is also increasing concern about potential exposure to bystanders and passers-by, especially in fragmented landscapes like the Italian pre-Alps, where orchards and vineyards are surrounded by residential houses. There is thus an urgent need to do field measurements of drift generated by air-blast sprayer in vineyards, and to develop measures for its reduction (mitigation). A field experiment with an "event method" was conducted in north-eastern Italy in no-wind conditions, in the hilly area famed for Prosecco wine production, using an air-blast sprayer in order to evaluate the potential spray drift from equipment and the effectiveness of some practical mitigation measures, either single or in combination. A definition of mitigation is proposed, and a method for the calculation of total effectiveness of a series of mitigation measures is applied to some what-if scenarios of interest. Results show that low-drift equipment reduced potential spray drift by 38% and that a fully developed vine curtain mitigated it by about 70%; when the last row was treated without air-assistance mitigation was about 74%; hedgerows were always very effective in providing mitigation of up to 98%. In conclusion, spray drift is not inevitable and can be markedly reduced using a few mitigation measures, most already available to farmers, that can be strongly recommended for environmental regulatory schemes and community-based participatory research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    PubMed

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optimizing spray drying conditions of sour cherry juice based on physicochemical properties, using response surface methodology (RSM).

    PubMed

    Moghaddam, Arasb Dabbagh; Pero, Milad; Askari, Gholam Reza

    2017-01-01

    In this study, the effects of main spray drying conditions such as inlet air temperature (100-140 °C), maltodextrin concentration (MDC: 30-60%), and aspiration rate (AR) (30-50%) on the physicochemical properties of sour cherry powder such as moisture content (MC), hygroscopicity, water solubility index (WSI), and bulk density were investigated. This investigation was carried out by employing response surface methodology and the process conditions were optimized by using this technique. The MC of the powder was negatively related to the linear effect of the MDC and inlet air temperature (IT) and directly related to the AR. Hygroscopicity of the powder was significantly influenced by the MDC. By increasing MDC in the juice, the hygroscopicity of the powder was decreased. MDC and inlet temperature had a positive effect, but the AR had a negative effect on the WSI of powder. MDC and inlet temperature negatively affected the bulk density of powder. By increasing these two variables, the bulk density of powder was decreased. The optimization procedure revealed that the following conditions resulted in a powder with the maximum solubility and minimum hygroscopicity: MDC = 60%, IT = 134 °C, and AR = 30% with a desirability of 0.875.

  10. Novel Spray Dried Glycerol 2-Phosphate Cross-Linked Chitosan Microparticulate Vaginal Delivery System—Development, Characterization and Cytotoxicity Studies

    PubMed Central

    Szymańska, Emilia; Szekalska, Marta; Czarnomysy, Robert; Lavrič, Zoran; Srčič, Stane; Miltyk, Wojciech; Winnicka, Katarzyna

    2016-01-01

    Chitosan microparticulate delivery systems containing clotrimazole were prepared by a spray drying technique using glycerol 2-phosphate as an ion cross-linker. The impact of a cross-linking ratio on microparticle characteristics was evaluated. Drug-free and drug-loaded unmodified or ion cross-linked chitosan microparticles were examined for the in vitro cytotoxicity in VK2/E6E7 human vaginal epithelial cells. The presence of glycerol 2-phosphate influenced drug loading and encapsulation efficacy in chitosan microparticles. By increasing the cross-linking ratio, the microparticles with lower diameter, moisture content and smoother surface were observed. Mucoadhesive studies displayed that all formulations possessed mucoadhesive properties. The in vitro release profile of clotrimazole was found to alter considerably by changing the glycerol 2-phosphate/chitosan ratio. Results from cytotoxicity studies showed occurrence of apoptotic cells in the presence of chitosan and ion cross-linked chitosan microparticles, followed by a loss of membrane potential suggesting that cell death might go through the mitochondrial apoptotic pathway. PMID:27690062

  11. The effect of NaCl on the rheological properties of suspension containing spray dried starch nanoparticles.

    PubMed

    Shi, Ai-min; Li, Dong; Wang, Li-jun; Adhikari, Benu

    2012-11-06

    The effect of NaCl on the rheological properties of suspensions containing spray dried starch nanoparticles produced through high pressure homogenization and emulsion cross-linking technique was studied. Rheological properties such as continuous shear viscosity, viscoelasticity and creep-recovery were measured. NaCl (5-20%, w/w) was found to lower viscosity quite significantly (p<0.05), enhance the heat stability and weaken their gelling behavior compared to starch-only suspension. NaCl reduced both the storage and loss moduli of suspension within the frequency range (0.1-10 rads/s) studied. However, NaCl brought higher speed of reduction on the storage modulus than on the loss modulus, which resulted into large increase in loss angle. The creep-recovery behavior of suspension was affected by NaCl and the recovery rate was highest (86%) at 15% NaCl. The Cross, the Power law and the Burger's models followed the experimental viscosity, storage and loss moduli, and creep-recovery data well with R(2)>0.97. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Improved stability and controlled release of CLA with spray-dried microcapsules of OSA-modified starch and xanthan gum.

    PubMed

    He, Huizi; Hong, Yan; Gu, Zhengbiao; Liu, Guodong; Cheng, Li; Li, Zhaofeng

    2016-08-20

    The objective of this investigation was to improve the stability of CLA and to allow for its controlled release by encapsulating it with combinations of octenyl-succinic anhydride (OSA) starch and xanthan gum (XG) in three ratios (OSA/XG: 60/1, 80/1, and 100/1, w/w). The wall material was examined using FTIR and TGA. The microcapsules were characterized by laser particle size analysis (LPS) and SEM. Oxidation of the microcapsules was monitored by headspace method. The results revealed that microcapsules created with an OSA/XG ratio of 60/1 provided superior protection to CLA against oxidation. When CLA-microcapsules were subjected to conditions simulating those in the human gastrointestinal system, 12.1%-50.1% of the CLA was released. CLA encapsulation in spray-dried microcapsules of OSA/XG appears to be an effective technique that provides good protection against oxidation and could be useful in the targeted delivery of functional lipids or other bioactive components to the small intestine.

  13. Lactobacillus casei Encapsulated in Soy Protein Isolate and Alginate Microparticles Prepared by Spray Drying

    PubMed Central

    2017-01-01

    Summary This article presents a novel formulation for preparation of Lactobacillus casei 01 encapsulated in soy protein isolate and alginate microparticles using spray drying method. A response surface methodology was used to optimise the formulation and the central composite face-centered design was applied to study the effects of critical material attributes and process parameters on viability of the probiotic after microencapsulation and in simulated gastrointestinal conditions. Spherical microparticles were produced in high yield (64%), narrow size distribution (d50=9.7 µm, span=0.47) and favourable mucoadhesive properties, with viability of the probiotic of 11.67, 10.05, 9.47 and 9.20 log CFU/g after microencapsulation, 3 h in simulated gastric and intestinal conditions and four-month cold storage, respectively. Fourier-transform infrared spectroscopy confirmed the probiotic stability after microencapsulation, while differential scanning calorimetry and thermogravimetry pointed to high thermal stability of the soy protein isolate-alginate microparticles with encapsulated probiotic. These favourable properties of the probiotic microparticles make them suitable for incorporation into functional food or pharmaceutical products. PMID:28867947

  14. The stability and degradation kinetics of Sulforaphene in microcapsules based on several biopolymers via spray drying.

    PubMed

    Tian, Guifang; Li, Yuan; Yuan, Qipeng; Cheng, Li; Kuang, Pengqun; Tang, Pingwah

    2015-05-20

    Sulforaphene (SFE) was extracted from the radish seeds and the purity of SFE extracted by our laboratory was 95%. It is well known that SFE can prevent cancers. It is also known that SFE is unstable to heat. To overcome the problem, SFE microcapsules using natural biopolymers were prepared by spray drying. The results indicated that SFE microcapsules using hydroxypropyl-β-cyclodextrin (HP-β-CD), maltodextrin (MD) and isolated soybean protein (SPI) as wall materials could effectively improve its stability against heat, especially SFE-loaded HP-β-CD and MD microcapsules. The amount of SFE in the microcapsules was found 20% higher than that of the non-encapsulated SFE under 90 °C in 168 h. Our finding suggested that the rate of degradation of the non-encapsulated and encapsulated SFE with HP-β-CD, MD and SPI followed the first-order kinetics. The speed of the degradation of the encapsulated SFE in biopolymers increased from SFE with HP-β-CD, to SFE with MD, and to SFE-SPI. The non-encapsulated SFE degrades fastest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The physicochemical properties of a spray dried glutinous rice starch biopolymer.

    PubMed

    Laovachirasuwan, Pornpun; Peerapattana, Jomjai; Srijesdaruk, Voranuch; Chitropas, Padungkwan; Otsuka, Makoto

    2010-06-15

    Glutinous rice starch (GRS) is a biopolymer used widely in the food industry but not at all in the pharmaceutical industry. There are several ways to modify this biopolymer. Physical modification is simple and cheap because it requires no chemicals or biological agents. The aim of this study was to characterize the physicochemical properties of a spray dried glutinous rice starch (SGRS) produced from pregelatinized GRS. The surface morphology changed from an irregular to concave spherical shape as revealed by Scanning Electron Microscopy (SEM). SGRS was almost amorphous as determined by X-ray Diffraction (XRD) spectroscopy. The water molecules became linked through hydrogen bonds to the exposed hydroxyl group of amorphous SGRS as determined by Near Infrared (NIR) spectroscopy. Then, SGRS formed a colloid gel matrix with water and developed a highly viscous gelatinous form as determined using Differential Scanning Calorimetry (DSC) and a stress control type rheometer. In addition, SGRS can swell and produce a gelatinous surface barrier like a hydrophilic matrix biopolymer which controls drug release. Therefore, a novel application of SGRS is as a sustained release modifier for direct compression tablets in the pharmaceutical industry.

  16. Room-Temperature Fabrication of a Flexible Thermoelectric Generator Using a Dry-Spray Deposition System

    NASA Astrophysics Data System (ADS)

    Song, Dae-Seob; Choi, Jung-Oh; Ahn, Sung-Hoon

    2016-04-01

    We present a flexible thermoelectric (TE) generator with titanium dioxide (TiO2), antimony (Sb), and tellurium (Te) powders fabricated by a nanoparticle deposition system (NPDS). NPDS is a novel low-energy consumption dry-spray method that enables the deposition of inorganic materials on substrates at room temperature and under low vacuum. TiO2 nanopowders were dispersed on a TE powder for improved adhesion between TE films and the substrate. Film morphologies were investigated using field-emission scanning electron microscopy, and the phase structure was analyzed by x-ray diffraction. A TE leg, deposited with 3 wt.% TiO2 content, had the largest Seebeck coefficient of approximately 160 μV/K. The prototype TE generator consisted of 16 TE legs linked by silver interconnects over an area of 20 mm × 60 mm. The prototype produced a voltage of 48.91 mV and a maximum power output of 0.18 μW from a temperature gradient of 20 K. The values are comparable to that of conventional methods. These results suggest that flexible TE generators can be fabricated by energy efficient methods, although internal and contact resistances must be decreased.

  17. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen-indomethacin.

    PubMed

    Beyer, Andreas; Radi, Lydia; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S

    2016-07-01

    To improve the dissolution properties and the physical stability of amorphous active pharmaceutical ingredients, small molecule stabilizing agents may be added to prepare co-amorphous systems. The objective of the study was to investigate if spray-drying allows the preparation of co-amorphous drug-drug systems such as naproxen-indomethacin and to examine the influence of the process conditions on the resulting initial sample crystallinity and the recrystallization behavior of the drug(s). For this purpose, the process parameters inlet temperature and pump feed rate were varied according to a 2(2) factorial design and the obtained samples were analyzed with X-ray powder diffractometry and Fourier-transformed infrared spectroscopy. Evaluation of the data revealed that the preparation of fully amorphous samples could be achieved depending on the process conditions. The resulting recrystallization behavior of the samples, such as the total recrystallization rate, the individual recrystallization rates of naproxen and indomethacin as well as the polymorphic form of indomethacin that was formed were influenced by these process conditions. For initially amorphous samples, it was found that naproxen and indomethacin recrystallized almost simultaneously, which supports the theory of formation of drug-drug heterodimers in the co-amorphous phase.

  18. Spray Drying Tenofovir Loaded Mucoadhesive and pH-Sensitive Microspheres Intended for HIV Prevention

    PubMed Central

    Zhang, Tao; Zhang, Chi; Agrahari, Vivek; Murowchick, James B.; Oyler, Nathan A.; Youan, Bi-Botti C.

    2013-01-01

    Purpose To develop spray dried mucoadhesive and pH-sensitive microspheres (MS) based on polymethacrylate salt intended for vaginal delivery of tenofovir (a model HIV microbicide) and assess their critical biological responses. Methods The formulation variables and process parameters are screened and optimized using a 24-1 fractional factorial design. The MS are characterized for size, zeta potential, yield, encapsulation efficiency, Carr’s index, drug loading, in vitro release, cytotoxicity, inflammatory responses and mucoadhesion. Results The optimal MS formulation has an average size of 4.73 µm, Zeta potential of −26.3 mV, 68.9% yield, encapsulation efficiency of 88.7%, Carr’s index of 28.3 and drug loading of 2% (w/w). The MS formulation can release 90% of its payload in the presence of simulated human semen. At a concentration of 1 mg/ml, the MS are noncytotoxic to vaginal endocervical/epithelial cells and Lactobacillus crispatus when compared to control media. There is also no statistically significant level of inflammatory cytokine (IL1-α, IL-1β, IL-6, IL-8, and IP-10) release triggered by MS. The mucoadhesive property of MS formulation is 2-fold higher than that of 1% HEC gel formulation. Conclusion These data suggest the promise of using such MS as an alternative controlled microbicide delivery template by intravaginal route for HIV prevention. PMID:23274788

  19. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release.

    PubMed

    Dang, Xugang; Yang, Mao; Shan, Zhihua; Mansouri, Shahnaz; May, Bee K; Chen, Xiaodong; Chen, Hui; Woo, Meng Wai

    2017-05-01

    Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326°C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder.

    PubMed

    Koca, Nurcan; Erbay, Zafer; Kaymak-Ertekin, Figen

    2015-05-01

    Dairy powders are produced to increase the shelf life of fresh dairy products and for use as flavoring agents. In this study, 24 cheese powders produced under 7 different conditions were used to investigate the effects of spray-drying parameters (e.g., inlet air temperature, atomization pressure, and outlet air temperature) on the quality of white cheese powder. Composition, color, physical properties, reconstitution, and sensory characteristics of white cheese powders were determined. The results revealed that the white cheese powders produced in this study had low moisture content ratios and water activity values. High outlet air temperatures caused browning and enhanced Maillard reactions. Additionally, high outlet air temperatures increased wettability and dispersibility and decreased the solubility of white cheese powders. Free fat content was positively correlated with inlet air temperature and negatively correlated with outlet air temperature and atomization pressure. Sensory analyses revealed that white cheese powder samples had acceptable sensory characteristics with the exception of the sample produced at an outlet air temperature of 100°C, which had high scores for scorched flavor and color and low scores for cheese flavor.

  1. Encapsulation of lemongrass oil with cyclodextrins by spray drying and its controlled release characteristics.

    PubMed

    Phunpee, Sarunya; Ruktanonchai, Uracha Rangsadthong; Yoshii, Hidefumi; Assabumrungrat, Suttichai; Soottitantawat, Apinan

    2017-04-01

    Inclusion of the two isomers of citral (E-citral and Z-citral), components of lemongrass oil, was investigated within the confines of various cyclodextrin (α-CD, β-CD and γ-CD) host molecules. Aqueous complex formation constants for E-citral with α-CD, β-CD and γ-CD were determined to be 123, 185, and 204 L/mol, respectively, whereas Z-citral exhibited stronger affinities (157, 206, and 253 L/mol, respectively). The binding trend γ-CD > β-CD > α-CD is a reflection of the more favorable geometrical accommodation of the citral isomers with increasing cavity size. Encapsulation of lemongrass oil within CDs was undertaken through shaking citral:CD (1:1, 1.5:1, and 2:1 molar ratio) mixtures followed by spray drying. Maximum citral retention occurred at a 1:1 molar ratio with β-CD and α-CD demonstrating the highest levels of total E-citral and Z-citral retention, respectively. Furthermore, the β-CD complex demonstrated the slowest release rate of all inclusion complex powders.

  2. Innovative pMDI formulations of spray-dried nanoparticles for efficient pulmonary drug delivery.

    PubMed

    Li, Hao-Ying; Xu, En-Yu

    2017-09-15

    For drug delivery to the lungs, the aerodynamic size of drug particles plays a predominant role in determining the sites of deposition in the airway, and the particles with the size less than 2μm are highly expected as they will be preferably delivered to the ideal site of alveolar regions. In this paper, a novel platform technology has been developed, where the water (containing pharmaceutically active agents)-in-oil (w/o) microemulsions were spray-dried to generate nanosized drug particles that were able to be homogeneously dispersed in the propellant to form an exceptionally stable suspensions with no precipitates or flocculates during a long time storage. High fine particle (<5.8μm) fraction (∼70% w/w) was achieved, irrespectively of drug molecular size and storage time. This platform technology works pretty well on chemical drugs (i.e. salbutamol sulphate) and biotherapeutics (i.e. insulin) for the generation of nanoparticles, and the nanoparticle pMDI formulations were homogeneous, stable and of high delivery efficiency to the lungs, representing an ideal way for pulmonary delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients.

    PubMed

    Ribeiro, Andreia; Ruphuy, Gabriela; Lopes, José Carlos; Dias, Madalena Maria; Barros, Lillian; Barreiro, Filomena; Ferreira, Isabel C F R

    2015-12-01

    In this work, hydroalcoholic extracts of two mushrooms species, Suillus luteus (L.: Fries) (Sl) and Coprinopsis atramentaria (Bull.) (Ca), were studied for their synergistic antioxidant effect and their viability as functional food ingredients tested by incorporation into a food matrix (cottage cheese). In a first step, the individual extracts and a combination of both, showing synergistic effects (Sl:Ca, 1:1), were microencapsulated by spray-drying using maltodextrin as the encapsulating material. The incorporation of free extracts resulted in products with a higher initial antioxidant activity (t0) but declining after 7 days (t7), which was associated with their degradation. However, the cottage cheese enriched with the microencapsulated extracts, that have revealed a lower activity at the initial time, showed an increase at t7. This improvement can be explained by an effective protection provided by the microspheres together with a sustained release. Analyses performed on the studied cottage cheese samples showed the maintenance of the nutritional properties and no colour modifications were noticed.

  4. Preparation and pharmaceutical characterization of amorphous cefdinir using spray-drying and SAS-process.

    PubMed

    Park, Junsung; Park, Hee Jun; Cho, Wonkyung; Cha, Kwang-Ho; Kang, Young-Shin; Hwang, Sung-Joo

    2010-08-30

    The aim of this study was to investigate the effects of micronization and amorphorization of cefdinir on solubility and dissolution rate. The amorphous samples were prepared by spray-drying (SD) and supercritical anti-solvent (SAS) process, respectively and their amorphous natures were confirmed by DSC, PXRD and FT-IR. Thermal gravimetric analysis was performed by TGA. SEM was used to investigate the morphology of particles and the processed particle had a spherical shape, while the unprocessed crystalline particle had a needle-like shape. The mean particle size and specific surface area were measured by dynamic light scattering (DLS) and BET, respectively. The DLS result showed that the SAS-processed particle was the smallest, followed by SD and the unprocessed cefdinir. The BET result was the same as DLS result in that the SAS-processed particle had the largest surface area. Therefore, the processed cefdinir, especially the SAS-processed particle, appeared to have enhanced apparent solubility, improved intrinsic dissolution rate and better drug release when compared with SD-processed and unprocessed crystalline cefdinir due not only to its amorphous nature, but also its reduced particle size. Conclusions were that the solubility and dissolution rate of crystalline cefdinir could be improved by physically modifying the particles using SD and SAS-process. Furthermore, SAS-process was a powerful methodology for improving the solubility and dissolution rate of cefdinir.

  5. Preparation and structural characterization of amorphous spray-dried dispersions of tenoxicam with enhanced dissolution.

    PubMed

    Patel, Jagdishwar R; Carlton, Robert A; Yuniatine, Fnu; Needham, Thomas E; Wu, Lianming; Vogt, Frederick G

    2012-02-01

    Tenoxicam is a poorly soluble nonsteroidal anti-inflammatory drug. In this work, the solubility of tenoxicam is enhanced using amorphous spray-dried dispersions (SDDs) prepared using two molar equivalents of l-arginine and optionally with 10%-50% (w/w) polyvinylpyrrolidone (PVP). When added to the dispersions, PVP is shown to improve physical properties and also assists in maintaining supersaturation in solution. The dispersions provide a twofold increase over equilibrium solubility at the same pH. The dispersions are characterized using electron microscopy, vibrational spectroscopy, diffuse-reflectance visible spectroscopy, and X-ray powder diffraction. The structures of the dispersions are probed using solid-state nuclear magnetic resonance (SSNMR) experiments applied to the (1) H, (13) C, and (15) N nuclei, including two-dimensional dipolar correlation experiments that detect molecular association and the formation of a glass solution between tenoxicam, l-arginine, and PVP. Other aspects of the amorphous structure, including hydrogen-bonding interactions and the ionization state of tenoxicam and l-arginine, are also explored using SSNMR methods. These methods are used to show that the SDDs contain an amorphous l-arginine salt of tenoxicam in a glass solution that also includes PVP when present. Finally, the dispersions show only a minor decrease in chemical stability during accelerated stability studies relative to a crystalline form of tenoxicam.

  6. Comparison of spray drying, electroblowing and electrospinning for preparation of Eudragit E and itraconazole solid dispersions.

    PubMed

    Sóti, Péter Lajos; Bocz, Katalin; Pataki, Hajnalka; Eke, Zsuzsanna; Farkas, Attila; Verreck, Geert; Kiss, Éva; Fekete, Pál; Vigh, Tamás; Wagner, István; Nagy, Zsombor K; Marosi, György

    2015-10-15

    Three solvent based methods: spray drying (SD), electrospinning (ES) and air-assisted electrospinning (electroblowing; EB) were used to prepare solid dispersions of itraconazole and Eudragit E. Samples with the same API/polymer ratios were prepared in order to make the three technologies comparable. The structure and morphology of solid dispersions were identified by scanning electron microscopy and solid phase analytical methods such as, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Raman chemical mapping. Moreover, the residual organic solvents of the solid products were determined by static headspace-gas chromatography/mass spectroscopy measurements and the wettability of samples was characterized by contact angle measurement. The pharmaceutical performance of the three dispersion type, evaluated by dissolution tests, proved to be very similar. According to XRPD and DSC analyses, made after the production, all the solid dispersions were free of any API crystal clusters but about 10 wt% drug crystallinity was observed after three months of storage in the case of the SD samples in contrast to the samples produced by ES and EB in which the polymer matrix preserved the API in amorphous state.

  7. Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (rubus fruticosus).

    PubMed

    Rigon, Renata Trindade; Zapata Noreña, Caciano P

    2016-03-01

    Blackberry aqueous extract acidified with 2 % citric acid was spray-dried using gum Arabic (GA) and polydextrose (PD) as encapsulating agents at concentrations of 10 and 15 % and temperatures of 140 to 160 °C. All powders presented high solubility, ranging from 88.2 to 97.4 %, and the encapsulation conditions did not significantly affect the hygroscopicity. The powders produced with gum Arabic showed higher brightness than those with polydextrose. The anthocyanins retention in the microcapsules was 878.32 to 1300.83 mg/100 g, and the phenolics was 2106.56 to 2429.22 mg (GAE)/100 g. The antioxidant activity was quantified according to DDPH and ABTS methods, with values ​​ranging from 31.28 to 40.26 % and 27 to 45.15 %, respectively. The microscopy showed spherical particles for both encapsulating agents, and smooth surface with some concavities with the gum Arabic, and smooth or slightly rough surface when using polydextrose. The Pearson correlation coefficient showed a high correlation between the color parameters, L*, a*, b*, Hue, Chroma and browning index (BI), which were also strongly correlated with anthocyanins. Phenolic presented correlation with DPPH and ABTS values. The results showed that the best encapsulation condition was atomization at 140 °C and 15 % gum Arabic.

  8. Investigating the moisture-induced crystallization kinetics of spray-dried lactose.

    PubMed

    Burnett, D J; Thielmann, F; Sokoloski, T; Brum, J

    2006-04-26

    Gravimetric water sorption experiments were performed to study the crystallization behavior of amorphous spray-dried lactose over a wide range of temperature and humidity conditions. Experiments performed at 25 degrees C between 48 and 60% relative humidity (RH) showed that the onset time to crystallization increased dramatically with decreasing humidity. At 55% RH and above, crystallization occurred in a single detectable step, while below a two-step process was observed. Experiments performed at 51% RH between 22 and 32 degrees C indicated the induction time to crystallization onset increased with decreasing temperature. Above 25 degrees C at 51% RH, crystallization occurred in one measurable step, while below crystallization occurred in two steps. The constant RH with varying temperature results were modeled to determine the crystallization mechanism. Above 25 degrees C a mechanism consisting of two competing reaction sequences fit the data with a 0.9997 correlation coefficient. Both reaction sequences have two steps: an auto-catalytic first step is followed by a three-dimensional diffusion controlled water loss step.

  9. Crystallization of bulk samples of partially amorphous spray-dried lactose.

    PubMed

    Darcy, P; Buckton, G

    1998-11-01

    The crystallization of partially amorphous spray-dried lactose was studied as a function of sample size. Crystallization occurred gradually over a period of 80 hr for a 95-g sample. The water content during crystallization was lower than that needed to cause crystallization if it had been distributed evenly throughout the bed, thus the absorbed water must have been unevenly distributed. The weight of the sample continued to change for days after crystallization was completed, because of the slow desorption of condensed water and the very slow formation of the hydrate form. Surprisingly, all samples with a weight between 42 and 95 g were found to take up the same mass (not percent) of water at the same time. This provides further evidence that the water was not evenly distributed throughout the sample. Water loss after this peak differed in the different weight samples, with the largest weights resulting in the lowest residual weight after 2 weeks. Only the sample of 22 g load had a different peak weight and a much lower weight loss after crystallization. This study provides detail of how partially amorphous bulk samples crystallize.

  10. Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.

    PubMed

    Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare

    2015-01-15

    The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data.

  11. Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: Characterization and release kinetics.

    PubMed

    Binsi, P K; Nayak, Natasha; Sarkar, P C; Jeyakumari, A; Muhamed Ashraf, P; Ninan, George; Ravishankar, C N

    2017-03-15

    The synergistic efficacy of gum arabic and sage polyphenols in stabilising capsule wall and protecting fish oil encapsulates from heat induced disruption and oxidative deterioration during spray drying was assessed. The emulsions prepared with sodium caseinate as wall polymer, gum arabic as wall co-polymer and sage extract as wall stabiliser was spray dried using a single fluid nozzle. Fish oil encapsulates stabilised with gum arabic and sage extract (SOE) exhibited significantly higher encapsulation efficiency compared to encapsulates containing gum arabic alone (FOE). Scanning electron microscopic and atomic force microscopic images revealed uniform encapsulates with good sphericity and smooth surface for SOE, compared to FOE powder. In vitro oil release of microencapsulates indicated negligible oil release in buffered saline whereas more than 80% of the oil loaded in encapsulates were released in simulated GI fluids. The encapsulates containing sage extract showed a lower rate of lipid oxidation during storage.

  12. Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.).

    PubMed

    Yousefi, Shima; Emam-Djomeh, Zahra; Mousavi, S M

    2011-12-01

    Pomegranate juice was diluted to 12° Brix and carriers (maltodextrin, gum Arabic, waxy starch) were added with varying concentrations of cellulose before being reduced to powder by spray drying. All carrier concentrations improved dryer yield, with gum Arabic being the most effective. The bulk density of the powder decreased when higher carrier concentrations were used. As cellulose concentration increased in solution, the solubility of the final product decreased. The optical properties of the powder were affected by the type and concentration of the carrier; powders produced with gum Arabic showed the greatest color change. Adding a carrier increased the Tg of the powder and its storage stability. Variation in the anthocyanin may be related to the type of carrier agent and its behavior during spray drying.

  13. Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying.

    PubMed

    Santana, Audirene A; Cano-Higuita, Diana M; de Oliveira, Rafael A; Telis, Vânia R N

    2016-12-01

    The objective of this work was to study the spray drying of jussara pulp using ternary mixtures of gum Arabic (GA) and modified starch (MS) together with either whey protein concentrate (WPC) or soy protein isolate (SPI), as the carrier agents. Two experimental mixture designs and triangular response surfaces were used to evaluate the effects of the mixtures on the responses for powders formulated with GA:MS:WPC and GA:MS:SPI, respectively. The spray drying process was selected for each carrier agent mixture, aiming to maximum the process yield (PY), solubility (S), retention of total anthocyanins (RTA) and encapsulation efficiency (EE). It was shown that the ternary formulations showed higher PY, S and RTA than the pure and binary formulations, as well as good results for EE and a low moisture content, showing that the use of GA and MS together with either WPC or SPI provide better microencapsulation of the jussara pulp.

  14. Method of creating starch-like ultra-fine rice flour and effect of spray drying on formation of free fatty acid.

    USDA-ARS?s Scientific Manuscript database

    Rice flour from long, medium, and short grain cultivars were processed by passing a 32% rice flour slurry through a microfluidizer at 100 MPa, and spray dryer at three different outlet temperatures, OT (50°C, 80°C, and 115°C). Spray drying conditions were controlled by the flow-rate of the slurry ...

  15. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery

    PubMed Central

    Duan, Jinghua; Vogt, Frederick G; Li, Xiaojian; Hayes, Don; Mansour, Heidi M

    2013-01-01

    The aim of this study was to design and develop respirable antibiotics moxifloxacin (MOXI) hydrochloride and ofloxacin (OFLX) microparticles and nanoparticles, and multifunctional antibiotics particles with or without lung surfactant 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) for targeted dry powder inhalation delivery as a pulmonary nanomedicine. Particles were rationally designed and produced by advanced spray-drying particle engineering from an organic solution in closed mode (no water) from dilute solution. Scanning electron microscopy indicated that these particles had both optimal particle morphology and surface morphology, and the particle size distributions were suitable for pulmonary delivery. Comprehensive and systematic physicochemical characterization and in vitro aerosol dispersion performance revealed significant differences between these two fluoroquinolone antibiotics following spray drying as drug aerosols and as cospray-dried antibiotic drug: DPPC aerosols. Fourier transform infrared spectroscopy and confocal Raman microspectroscopy were employed to probe composition and interactions in the solid state. Spray-dried MOXI was rendered noncrystalline (amorphous) following organic solution advanced spray drying. This was in contrast to spray-dried OFLX, which retained partial crystallinity, as did OFLX:DPPC powders at certain compositions. Aerosol dispersion performance was conducted using inertial impaction with a dry powder inhaler device approved for human use. The present study demonstrates that the use of DPPC offers improved aerosol delivery of MOXI as cospray-dried microparticulate/nanoparticulate powders, whereas residual partial crystallinity influenced aerosol dispersion of OFLX and most of the compositions of OFLX:DPPC inhalation powders. PMID:24092972

  16. Storage stability of Anagrapha falcifera nucleopolyhedrovirus in spray-dried formulations.

    PubMed

    Tamez-Guerra, Patricia; McGuire, Michael R; Behle, Robert W; Shasha, Baruch S; Pingel, Randall L

    2002-01-01

    A multiply embedded nucleopolyhedrovirus isolated from Anagrapha falcifera (Kirby) (AfMNPV) can lose insecticidal activity during months of dry storage in ambient room conditions. We tested the spray-dried AfMNPV formulations after storage for up to 1 year at room temperatures for insecticidal activity against neonate Trichoplusia ni (Hübner). Experimental formulations were made using combinations of corn flours, lignin, and sucrose, and were selected based on previous work which demonstrated that these formulations resisted solar degradation in field experiments. Twelve experimental formulations (organized in three groups of four formulations) compared the effect of (1) the ratio of formulation ingredients (lignin and corn flour) to virus concentration, (2) different sources of lignin, or (3) different corn flours and sugar. Based on a single-dose plant assay with these 12 formulations, none of the formulations lost significant activity due to the drying process, when compared with the unformulated wet AfMNPV. Samples of the 12 dried formulations were stored at room (22+/-3 degrees C) and refrigerated (4 degrees C) temperatures. Insecticidal activity (LC(50)) was determined with a dosage-response assay for neonates fed on treated cotton-leaf disks. After 6 (or 9) and 12 months storage, refrigerated samples maintained insecticidal activity better than corresponding samples stored at room temperatures with LC(50)s that averaged 2.0 x 10(6) polyhedral inclusion bodies per milliliter (pibs/ml) for refrigerated samples and 5.4 x 10(6) pibs/ml for samples stored at room temperatures. Compared with unformulated stock virus stored frozen, six formulations stored at room temperature and 10 formulations stored in the refrigerator did not lose significant insecticidal activity after 1 year based on overlapping 90% confidence intervals. Changing the ratio of virus to formulation ingredients did not provide a clear trend over the range of concentrations tested, and may be

  17. Low hygroscopic spray-dried powders with trans-glycosylated food additives enhance the solubility and oral bioavailability of ipriflavone.

    PubMed

    Fujimori, Miki; Kadota, Kazunori; Kato, Kouki; Seto, Yoshiki; Onoue, Satomi; Sato, Hideyuki; Ueda, Hiroshi; Tozuka, Yuichi

    2016-01-01

    The improvement in the solubility and dissolution rate may promote a superior absorption property towards the human body. The spray-dried powders (SDPs) of ipriflavone, which was used as a model hydrophobic flavone, with trans-glycosylated rutin (Rutin-G) showed the highest solubilizing effect of ipriflavone among three types of trans-glycosylated food additives. The SDPs of ipriflavone with Rutin-G have both a significant higher dissolution rate and solubility enhancement of ipriflavone. This spray-dried formulation of ipriflavone with Rutin-G exhibited a low hygroscopicity as a critical factor in product preservation. In addition, an improvement in the oral absorption of ipriflavone was achieved by means of preparing composite particles of ipriflavone/Rutin-G via spray drying, indicating a 4.3-fold increase in the area under the plasma concentration-time curve compared with that of untreated ipriflavone. These phenomena could be applicable to food ingredients involving hydrophobic flavones for producing healthy food with a high quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Extracellular β-fructofuranosidase from Fusarium graminearum: stability of the spray-dried enzyme in the presence of different carbohydrates.

    PubMed

    Gonçalves, Heloísa Bressan; Jorge, João Atílio; Oliveira, Wanderley Pereira; Souza, Claudia Regina Fernandes; Guimarães, Luis Henrique Souza

    2013-01-01

    Microbial enzymes have been used for various biotechnological applications; however, enzyme stabilization remains a challenge for industries and needs to be considered. This study describes the effects of spray-drying conditions on the activity and stability of β-fructofuranosidase from Fusarium graminearum. The extracellular enzyme β-fructofuranosidase was spray dried in the presence of stabilizers, including starch (Capsul) (SC), microcrystalline cellulose (MC), trehalose (TR), lactose (LC) and β-cyclodextrin (CD). In the presence of TR (2% w/v), the enzymatic activity was fully retained. After 1 year of storage, 74% of the enzymatic activity was maintained with the CD stabilizer (10% w/v). The residual activity was maintained as high as 80% for 1 h at 70°C when MC, SC and CD (5% w/v) stabilizers were used. Spray drying with carbohydrates was effective in stabilizing the F. graminearum β-fructofuranosidase, improved enzymatic properties compared to the soluble enzyme and demonstrated a potential use in future biotechnology applications.

  19. Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying.

    PubMed

    Oliveira, A C; Moretti, T S; Boschini, C; Baliero, J C C; Freitas, O; Favaro-Trindade, C S

    2007-11-01

    Microcapsules containing Bifidobacterium lactis (BI 01) and Lactobacillus acidophilus (LAC 4) were produced by complex coacervation using a casein/pectin complex as the wall material, followed by spray drying. The aim of this study was to evaluate the resistance of these microorganisms when submitted to the spray drying process, a shelf-life of 120 days at 7-37 degrees C and the in vitro tolerance after being submitted to acid pH (pH 1.0 and 3.0) solutions besides morphology of microcapsules. Microencapsulated microorganisms were shown to be more resistant to acid conditions than free ones. Microencapsulated L. acidophilus maintained its viability for a longer storage period at both temperatures. The microcapsules presented a spherical shape with no fissures. The process used and the wall material were efficient in protecting the microorganisms under study against the spray drying process and simulated gastric juice; however, microencapsulated B. lactis lost its viability before the end of the storage time.

  20. Study on Enhanced Dissolution of Azilsartan-Loaded Solid Dispersion, Prepared by Combining Wet Milling and Spray-Drying Technologies.

    PubMed

    Lu, Tianshu; Sun, Yinghua; Ding, Dawei; Zhang, Qi; Fan, Rui; He, Zhonggui; Wang, Jing

    2017-02-01

    The purpose of this study was to develop a combination method of wet milling and spray-drying technologies to prepare the solid dispersion and improve the dissolution rate of poorly water-soluble drug candidates. Azilsartan (AZL) was selected as the model drug for its poor water solubility. In the study, AZL-loaded solid dispersion was prepared with polyethylene glycol 6000 (PEG6000) and hydroxypropyl cellulose with super low viscosity (HPC-SL) as stabilizers by using combination of wet grinding and spray-drying methods. The high AZL loading solid dispersion was then characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Besides, dissolution test was carried out by the paddle method and stability investigation was also conducted. As a result, the dissolution rate of the solid dispersion tablets was found to be greater than conventional tablets, but in close agreement with market tablets. Furthermore, the formulation was shown to be stable at 40 ± 2°C and 75 ± 5% for at least 6 months, owing to its decreased particle size, morphology, and its crystal form. It was concluded that the combination of wet milling and spray-drying approaches to prepare solid dispersion would be a prospective method to improve the dissolution rate of poorly water-soluble drugs.

  1. Agglomerated oral dosage forms of artemisinin/β-cyclodextrin spray-dried primary microparticles showing increased dissolution rate and bioavailability.

    PubMed

    Balducci, Anna Giulia; Magosso, Enrico; Colombo, Gaia; Sonvico, Fabio; Khan, Nurzalina Abdul Karim; Yuen, Kah Hay; Bettini, Ruggero; Colombo, Paolo; Rossi, Alessandra

    2013-09-01

    Artemisinin, a poorly water-soluble antimalarial drug, presents a low and erratic bioavailability upon oral administration. The aim of this work was to study an agglomerated powder dosage form for oral administration of artemisinin based on the artemisinin/β-cyclodextrin primary microparticles. These primary microparticles were prepared by spray-drying a water-methanol solution of artemisinin/β-cyclodextrin. β-Cyclodextrin in spray-dried microparticles increased artemisinin water apparent solubility approximately sixfold. The thermal analysis evidenced a reduction in the enthalpy value associated with drug melting, due to the decrease in drug crystallinity. The latter was also evidenced by powder X-ray diffraction analysis, while (13)C-NMR analysis indicated the partial complexation with β-cyclodextrin. Agglomerates obtained by sieve vibration of spray-dried artemisinin/β-cyclodextrin primary microparticles exhibited free flowing and close packing properties compared with the non-flowing microparticulate powder. The in vitro dissolution rate determination of artemisinin from the agglomerates showed that in 10 min about 70% of drug was released from the agglomerates, whereas less than 10% of artemisinin was dissolved from raw material powder. Oral administration of agglomerates in rats yielded higher artemisinin plasma levels compared to those of pure drug. In the case of the agglomerated powder, a 3.2-fold increase in drug fraction absorbed was obtained.

  2. Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles.

    PubMed

    Chen, Jie; Ormes, James D; Higgins, John D; Taylor, Lynne S

    2015-02-02

    Amorphous solid dispersions are frequently prepared by spray drying. It is important that the resultant spray dried particles do not crystallize during formulation, storage, and upon administration. The goal of the current study was to evaluate the impact of surfactants on the crystallization of celecoxib amorphous solid dispersions (ASD), suspended in aqueous media. Solid dispersions of celecoxib with hydroxypropylmethylcellulose acetate succinate were manufactured by spray drying, and aqueous suspensions were prepared by adding the particles to acidified media containing various surfactants. Nucleation induction times were evaluated for celecoxib in the presence and absence of surfactants. The impact of the surfactants on drug and polymer leaching from the solid dispersion particles was also evaluated. Sodium dodecyl sulfate and Polysorbate 80 were found to promote crystallization from the ASD suspensions, while other surfactants including sodium taurocholate and Triton X100 were found to inhibit crystallization. The promotion or inhibition of crystallization was found to be related to the impact of the surfactant on the nucleation behavior of celecoxib, as well as the tendency to promote leaching of the drug from the ASD particle into the suspending medium. It was concluded that surfactant choice is critical to avoid failure of amorphous solid dispersions through crystallization of the drug.

  3. Synthesis of Cr-doped CaTiSiO{sub 5} ceramic pigments by spray drying

    SciTech Connect

    Lyubenova, T. Stoyanova Matteucci, F.; Costa, A.L.; Dondi, M.; Ocana, M.

    2009-04-02

    Cr-doped CaTiSiO{sub 5} was synthesized by spray drying and conventional ceramic method in order to assess its potential as ceramic pigment. The evolution of the phase composition with thermal treatment was investigated by X-ray powder diffraction (XRPD) and thermal analyses (DTA-TGA-EGA). Powder morphology and particle size distribution were analyzed by scanning electron microscopy (SEM) and laser diffraction, respectively. The color efficiency of pigments was evaluated by optical spectroscopy (UV-vis-NIR) and colorimetric analysis (CIE Lab). Results proved that spray drying is an efficient procedure to prepare highly reactive pigment precursors. The spray-dried powders consist of hollow spherical particles with aggregate size in the 1-10 {mu}m range, developing a brown coloration. Optical spectra reveal the occurrence of Cr(III) and Cr(IV), both responsible for the brown color of this pigment. The former occupies the octahedral site of titanite, in substitution of Ti(IV), while the latter is located at the tetrahedral site, where replaces Si(IV)

  4. Pheromone-assisted techniques to improve the efficacy of insecticide sprays against Linepithema humile (Hymenoptera: Formicidae).

    PubMed

    Choe, Dong-Hwan; Tsai, Kasumi; Lopez, Carlos M; Campbell, Kathleen

    2014-02-01

    Outdoor residual sprays are among the most common methods for targeting pestiferous ants in urban pest management programs. If impervious surfaces such as concrete are treated with these insecticides, the active ingredients can be washed from the surface by rain or irrigation. As a result, residual sprays with fipronil and pyrethroids are found in urban waterways and aquatic sediments. Given the amount of insecticides applied to urban settings for ant control and their possible impact on urban waterways, the development of alternative strategies is critical to decrease the overall amounts of insecticides applied, while still achieving effective control of target ant species. Herein we report a "pheromone-assisted technique" as an economically viable approach to maximize the efficacy of conventional sprays targeting the Argentine ant. By applying insecticide sprays supplemented with an attractive pheromone compound, (Z)-9-hexadecenal, Argentine ants were diverted from nearby trails and nest entrances and subsequently exposed to insecticide residues. Laboratory experiments with fipronil and bifenthrin sprays indicated that the overall kill of the insecticides on Argentine ant colonies was significantly improved (57-142% increase) by incorporating (Z)-9-hexadecenal in the insecticide sprays. This technique, once it is successfully implemented in practical pest management programs, has the potential of providing maximum control efficacy with reduced amount of insecticides applied in the environment.

  5. EPA Issues Draft Risk Assessment for Chemical used in Spray Adhesives, Dry Cleaning and Degreasing /Assessment indicates risks to workers and consumers

    EPA Pesticide Factsheets

    WASHINGTON - Today, the U. S. Environmental protection Agency (EPA) released for public comment and peer review a draft risk assessment for 1-Bromopropane (1-BP) used in spray adhesives, dry cleaning (including spot cleaners) applications, and degre

  6. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  7. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery.

    PubMed

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug - cyclosporine A - for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters.

  8. CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Singh, Iqbal; Kaur, Gursharan; Bedi, R. K.

    2011-09-01

    An aqueous solution of cupric nitrate trihydrate (Cu(NO 3) 2·3H 2O) modified with cetyltrimetylammonium bromide (CTAB) is used to deposit CuO films on glass substrate by chemical spray pyrolysis technique. The thermal analysis shows that the dried CTAB doped precursor decomposes by an exothermic reaction and suggests that minimum substrate temperature for film deposition should be greater than 270 °C. X-ray diffraction (XRD) studies indicate the formation of monoclinic CuO with preferential orientation along (0 0 2) plane for all film samples. The CTAB used as cationic surfactant in precursor results in the suppression of grain growth in films along the (1 1 0), (0 2 0) and (2 2 0) crystal planes of CuO. Surfactant modified films showed an increase in crystallite size of 14 nm at substrate temperature of 300 °C. The scanning electron micrographs (FESEM) confirm the uniform distribution of facets like grains on the entire area of substrate. CTAB modified films show a significant reduction in the particle agglomeration. Electrical studies of the CuO films deposited at substrate temperature of 300 °C with and without surfactant reveal that the CTAB doping increase the activation energy of conduction by 0.217 eV and room temperature response to ammonia by 9%. The kinetics of the ammonia gas adsorption on the film surface follows the Elovich and Diffusion models.

  9. Effects of ionic and nonionic surfactants on milk shell wettability during co-spray-drying of whole milk particles.

    PubMed

    Lallbeeharry, P; Tian, Y; Fu, N; Wu, W D; Woo, M W; Selomulya, C; Chen, X D

    2014-09-01

    Mixing surfactants with whole milk feed before spray drying could be a commercially favorable approach to produce instant whole milk powders in a single step. Pure whole milk powders obtained directly from spray drying often have a high surface fat coverage (up to 98%), rendering them less stable during storage and less wettable upon reconstitution. Dairy industries often coat these powders with lecithin, a food-grade surfactant, in a secondary fluidized-bed drying stage to produce instant powders. This study investigated the changes in wetting behavior on the surface of a whole milk particle caused by the addition of surfactants before drying. Fresh whole milk was mixed with 0.1% (wt/wt) Tween 80 or 1% (wt/wt) lecithin (total solids), and the wetting behavior of the shell formed by each sample was captured using a single-droplet drying device at intermediate drying stages as the shell was forming. The addition of surfactants improved shell wettability from the beginning of shell formation, producing more wettable milk particles after drying. The increase in surfactant loading by 10 times reduced the wetting time from around 30s to <5s. At the same loading of 1% (wt/wt; total solids), milk particles with Tween 80 were much more wettable than those with lecithin (<5s compared with >30s). We proposed that Tween 80 could adsorb at the oil-water interface of fat globules, making the surface fat more wettable, whereas lecithin tends to combine with milk proteins to form a complex, which then competes for the air-water surface with fat globules. Spray-drying experiments confirmed the greatly improved wettability of whole milk powders by the addition of either 0.1% (wt/wt) Tween 80 or 1% (wt/wt) lecithin; wetting time was reduced from 35±4s to <15s. To the best of our knowledge, this is the first time that a dynamic droplet drying system has been used to elucidate the complex interactions between ionic or nonionic surfactants and milk components (both proteins and fat

  10. Investigation of the Changes in Aerosolization Behavior Between the Jet-Milled and Spray-Dried Colistin Powders Through Surface Energy Characterization.

    PubMed

    Jong, Teresa; Li, Jian; Morton, David A V; Zhou, Qi Tony; Larson, Ian

    2016-03-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared with those produced by jet milling. Inhalable colistin powder formulations were produced by jet milling or spray drying (with or without l-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, whereas the spray-dried particles were more spherical. Significantly higher fine particle fractions were measured for the spray-dried (43.8%-49.6%) versus the jet-milled formulation (28.4%) from a Rotahaler at 60 L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of l-leucine in the spray drying feed solution gave no significant improvement in fine particle fraction. As measured by inverse gas chromatography, spray-dried formulations had significantly (p < 0.001) lower dispersive, specific, and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without l-leucine. Based on our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray drying contributed significantly to the reduction of surface free energy and the superior aerosolization performance. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols

    PubMed Central

    Lee, Hyo-Jung; Kang, Ji-Hyun; Lee, Hong-Goo; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chun-Woong

    2016-01-01

    The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well

  12. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols.

    PubMed

    Lee, Hyo-Jung; Kang, Ji-Hyun; Lee, Hong-Goo; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chun-Woong

    2016-01-01

    The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well

  13. Development of a Control Strategy for Benzene Impurity in HPMCAS-Stabilized Spray-Dried Dispersion Drug Products Using a Science-Based and Risk-Based Approach.

    PubMed

    Yue, Hongfei; Nicholson, Sarah J; Young, Joel D; Hsieh, Daniel; Ketner, Rodney J; Hall, Robert G; Sackett, Jeremy; Banks, Elizabeth C; Castoro, John A; Randazzo, Michael E

    2015-08-01

    To develop a strategy to control benzene, an ICH Q3C Class 1 impurity that may be present in spray solvents at ppm concentration, in amorphous polymer-stabilized spray-dried dispersion (SDD) products. Risk assessments included determining the probability for benzene concentration in primary spray solvents, the physical properties of volatiles, and the potential enrichment of benzene from solution to solid. Mechanistic understanding of benzene removal was gained through a benzene-spiked fate and tolerance (F&T) study simulating worst-case spray-drying conditions and application of diffusion models for secondary drying. The mass ratio of spray solution to solid presented the highest risk of benzene enrichment. With slow spray-drying kinetics, benzene was reduced about 700-fold. Under standard secondary-drying conditions to remove residual solvents, residual benzene was further removed. Using diffusion models, the maximum benzene concentration was approximated for SDDs dried to the in-process control (IPC) limit of primary solvents. Two critical control points were established to eliminate any risk of residual benzene reaching patients: (1) upstream control of benzene in solvents (≤10 ppm) and (2) IPC of residual solvents in polymer-stabilized SDDs.

  14. Nano spray-dried sodium chloride and its effects on the microbiological and sensory characteristics of surface-salted cheese crackers.

    PubMed

    Moncada, Marvin; Astete, Carlos; Sabliov, Cristina; Olson, Douglas; Boeneke, Charles; Aryana, Kayanush J

    2015-09-01

    Reducing particle size of salt to approximately 1.5 µm would increase its surface area, leading to increased dissolution rate in saliva and more efficient transfer of ions to taste buds, and hence, perhaps, a saltier perception of foods. This has a potential for reducing the salt level in surface-salted foods. Our objective was to develop a salt using a nano spray-drying method, to use the developed nano spray-dried salt in surface-salted cheese cracker manufacture, and to evaluate the microbiological and sensory characteristics of cheese crackers. Sodium chloride solution (3% wt/wt) was sprayed through a nano spray dryer. Particle sizes were determined by dynamic light scattering, and particle shapes were observed by scanning electron microscopy. Approximately 80% of the salt particles produced by the nano spray dryer, when drying a 3% (wt/wt) salt solution, were between 500 and 1,900 nm. Cheese cracker treatments consisted of 3 different salt sizes: regular salt with an average particle size of 1,500 µm; a commercially available Microsized 95 Extra Fine Salt (Cargill Salt, Minneapolis, MN) with an average particle size of 15 µm; and nano spray-dried salt with an average particle size of 1.5 µm, manufactured in our laboratory and 3 different salt concentrations (1, 1.5, and 2% wt/wt). A balanced incomplete block design was used to conduct consumer analysis of cheese crackers with nano spray-dried salt (1, 1.5, and 2%), Microsized salt (1, 1.5, and 2%) and regular 2% (control, as used by industry) using 476 participants at 1wk and 4mo. At 4mo, nano spray-dried salt treatments (1, 1.5, and 2%) had significantly higher preferred saltiness scores than the control (regular 2%). Also, at 4mo, nano spray-dried salt (1.5 and 2%) had significantly more just-about-right saltiness scores than control (regular 2%). Consumers' purchase intent increased by 25% for the nano spray-dried salt at 1.5% after they were notified about the 25% reduction in sodium content of the

  15. Spray-dried porcine plasma influences intestinal barrier function, inflammation, and diarrhea in weaned pigs.

    PubMed

    Peace, Ralph Michael; Campbell, Joy; Polo, Javier; Crenshaw, Joe; Russell, Louis; Moeser, Adam

    2011-07-01

    The objective of this study was to evaluate the effects of dietary inclusion levels of spray-dried porcine plasma (SDPP) on postweaning (PW) intestinal barrier function, mucosal inflammation, and clinical indices of gut health in pigs. Ex vivo Ussing chamber studies were conducted to measure Ileal and colonic barrier function in terms of transepithelial electrical resistance and paracellular flux of (3)H-mannitol and (14)C-inulin. Intestinal inflammation was assessed by histological analysis and mucosal levels of proinflammatory cytokines. Dietary inclusion of 2.5 and 5% SDPP reduced colonic paracellular permeability of (14)C-inulin compared with controls (0% SDPP) on d 7 PW. Both 2.5 and 5% dietary SDPP reduced ileal (3)H-mannitol and (14)C-inulin permeability on d 14 PW. The 5% SDPP diet reduced colonic short-circuit current, an index of net electrogenic ion transport, and fecal scores when measured on d 7 and 14 PW compared with the control and 2.5% SDPP groups (P < 0.05). Histological analysis revealed fewer lamina propria cells in ileum and colon from pigs fed diets containing 2.5 and 5% SDPP on d 7 and 14 PW. Levels of the proinflammatory cytokine TNFα were reduced in the colon but not ileum from pigs fed the 5% SDPP on d 7 and 14 PW compared with controls (P < 0.05). IFNγ levels were lower than in controls in both of the SDPP-fed groups in the ileum and colon on d 7 but not on d 14 PW. Overall, this study demonstrated that dietary inclusion of SDPP had beneficial effects on intestinal barrier function, inflammation, and diarrhea in weaned pigs.

  16. Spray Dried Aerosol Particles of Pyrazinoic Acid Salts for Tuberculosis Therapy. [Corrected].

    PubMed

    Durham, P G; Zhang, Y; German, N; Mortensen, N; Dhillon, J; Mitchison, D A; Fourie, P B; Hickey, A J

    2015-08-03

    Tuberculosis is the most serious infectious disease caused by a single organism, Mycobacterium tuberculosis (Mtb). The standard of care is a protracted and complex drug treatment regimen made more complicated and of longer duration by the incidence of multiple and extensively drug resistant disease. Pulmonary delivery of aerosols as a supplement to the existing regimen offers the advantage of delivering high local drug doses to the initial site of infection and most prominent organ system involved in disease. Pyrazinamide is used in combination with other drugs to treat tuberculosis. It is postulated that the action of pyrazinoic acid (POA), the active moiety of pyrazinamide, may be enhanced by local pH adjustment, when presented as a salt form. POA was prepared as leucine (POA-leu) and ammonium salts (POA-NH4), spray dried, and characterized in terms of physicochemical properties (melting point, crystallinity, moisture content), aerodynamic performance (aerodynamic particle size distribution, emitted dose), and in vitro inhibitory effect on two mycobacteria (Mtb and Mycobacterium bovis). Particles were prepared in sizes suitable for inhalation (3.3 and 5.4 μm mass median aerodynamic diameter and 61 and 40% of the aerodynamic particle size distribution less than 4.46 μm, as measured by inertial impaction, for POA-leu and POA-NH4, respectively) and with properties (stoichiometric 1:1 ratio of salt to drug, melting points at ∼180 °C, with water content of <1%) that would support further development as an inhaled dosage form. In addition, POA salts demonstrated greater potency in inhibiting mycobacterial growth compared with POA alone, which is promising for therapy.

  17. Electrochemical properties of MnS-C and MnO-C composite powders prepared via spray drying process

    NASA Astrophysics Data System (ADS)

    Jeon, Kyung Min; Cho, Jung Sang; Kang, Yun Chan

    2015-11-01

    Spherical micron-sized MnS-C and MnO-C composite powders are successfully prepared by post-treating the spray-dried precursor powders. Dextrin, which is used as the carbon source material, plays a key role in the preparation of the composite powders with regular morphologies; the bare MnS and MnO powders prepared from the spray solution without dextrin have irregular morphologies. The MnS-C composite powders prepared from the spray solution containing 17 g L-1 of dextrin have mixed crystal structures of α- and γ-MnS phases. These powders exhibit superior electrochemical properties compared with those of their MnS and MnO-C counterparts. For example, at a current density of 0.5 A g-1, the MnO-C powders have a 100th-cycle discharge capacity of 321 mA h g-1; the corresponding discharge capacities of the MnS powders prepared from spray solutions containing 0, 17, and 50 g L-1 of dextrin are 501, 786, and 636 mA h g-1, respectively.

  18. Quantitative Analysis of Therapeutic Drugs in Dried Blood Spot Samples by Paper Spray Mass Spectrometry: An Avenue to Therapeutic Drug Monitoring

    NASA Astrophysics Data System (ADS)

    Manicke, Nicholas Edward; Abu-Rabie, Paul; Spooner, Neil; Ouyang, Zheng; Cooks, R. Graham

    2011-09-01

    A method is presented for the direct quantitative analysis of therapeutic drugs from dried blood spot samples by mass spectrometry. The method, paper spray mass spectrometry, generates gas phase ions directly from the blood card paper used to store dried blood samples without the need for complex sample preparation and separation; the entire time for preparation and analysis of blood samples is around 30 s. Limits of detection were investigated for a chemically diverse set of some 15 therapeutic drugs; hydrophobic and weakly basic drugs, such as sunitinib, citalopram, and verapamil, were found to be routinely detectable at approximately 1 ng/mL. Samples were prepared by addition of the drug to whole blood. Drug concentrations were measured quantitatively over several orders of magnitude, with accuracies within 10% of the expected value and relative standard deviation (RSD) of around 10% by prespotting an internal standard solution onto the paper prior to application of the blood sample. We have demonstrated that paper spray mass spectrometry can be used to quantitatively measure drug concentrations over the entire therapeutic range for a wide variety of drugs. The high quality analytical data obtained indicate that the technique may be a viable option for therapeutic drug monitoring.

  19. Preparation and Analysis of Co-precipitated, Biodegradable Poly-(Lactide-co-Glycolide) and Polyethylene Glycol Microspheres Prepared by Spray Drying

    NASA Astrophysics Data System (ADS)

    Javiya, Curie

    Biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) based microspheres are commonly used for numerous clinical applications. PEG is a widely used polymer due to its hydrophilic, biocompatible, and nontoxic nature. In this study, different blends of PLGA/PEG microspheres were prepared using a spray drying technique. The microspheres were spherical with maximum yield found to be 60.3% and average particle size in the range of 2.4 to 3.1 microm. Under the spray drying processing conditions, the polymers showed full miscibility slightly below 15% w/w and partial miscibility up to 20% w/w of PEG in the blended microspheres. At higher temperatures, PLGA and PEG were miscible in all proportions used for the blended microspheres. Blending 10% w/w PEG in PLGA membranes showed significant reduction in attachment of macrophages compared to PLGA membranes. The in-vitro response of macrophage towards the miscible blends of PLGA/PEG microspheres was further characterized. Results showed some reduction in macrophage viability and activation, however, significant effects with PLGA/PEG microspheres were not observed.

  20. Impact of process variables on the micromeritic and physicochemical properties of spray-dried porous microparticles, part I: introduction of a new morphology classification system.

    PubMed

    Paluch, Krzysztof J; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2012-11-01

    This work investigated the impact of spray drying variables such as feed concentration, solvent composition and the drying mode, on the micromeritic properties of chlorothiazide sodium (CTZNa) and chlorothiazide potassium (CTZK). Microparticles were prepared by spray drying and characterised using thermal analysis, helium pycnometry, laser diffraction, specific surface area analysis and scanning electron microscopy. Microparticles produced under different process conditions presented several types of morphology. To systematise the description of morphology of microparticles, a novel morphology classification system was introduced. The shape of the microparticles was described as spherical (1) or irregular (2) and the surface was classified as smooth (A) or crumpled (B). Three classes of morphology of microparticles were discerned visually: class I, non-porous; classes II and III, comprising differing types of porosity characteristics. The interior was categorised as solid/continuous (α), hollow (β), unknown (γ) and hollow with microparticulate content (δ). Nanoporous microparticles of CTZNa and CTZK, produced without recirculation of the drying gas, had the largest specific surface area of 72.3 and 90.2 m²/g, respectively, and presented morphology of class 1BIIIα. Alteration of spray drying process variables, particularly solvent composition and feed concentration can have a significant effect on the morphology of spray dried microparticulate products. Morphology of spray dried particles may be usefully described using the morphology classification system. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  1. Electrostatic spraying:  a novel technique for preparation of polymer coatings on electrodes.

    PubMed

    Hoyer, B; Sørensen, G; Jensen, N; Nielsen, D B; Larsen, B

    1996-11-01

    A liquid flow emerging from a tip or a thin tube under the influence of a strong electric field will, due to charging of the dielectric liquid, break up into small droplets. Thus, if a polymer material is dissolved in the liquid, this electrodeposition technique can be utilized for producing polymer coatings on electrodes. The method was applied for in situ formation of ultrathin (∼3000 Å) cellulose acetate (CA) phase inversion membranes on glassy carbon electrodes. The purpose of the membrane was to protect the electrode surface from fouling by macromolecular species. The spraying liquid consisted of CA, acetone, and aqueous magnesium perchlorate as pore former, and the spraying voltage was 14 kV. Profilometric measurements showed that the thickness of the spray-cast membranes was much more uniform than that of similar membranes formed by solvent casting. By using cadmium and lead as test analytes and differential pulse anodic stripping voltammetry as detection method, it was found that the membranes prepared by spray casting offered better protection against interference from poly(ethylene glycol) (PEG) 6000 than those prepared by solvent casting. Also, the interference from PEG 2000 was significantly reduced. Experimental details of the electrostatic spraying technique are given.

  2. Application of digital image analysis techniques to antimisting fuel spray characterization

    SciTech Connect

    Fleeter, R.; Sarohia, V.; Toaz, R.

    1983-01-01

    A system for fuel mist characterization using digital image analysis and processing techniques has been developed and applied to research on aviation safety fuels. Pulsed ruby laser sheet illumination of the spray is used for initial data recording on very high resolution photographic film. Digitization of mosaic elements is accomplished with a vidicon and video digitizer whose output is stored in computer RAM (Random Access Memory) memory for processing. Highly non-spherical elements and a wide range of drop diameters (8-2000 ..mu..m) resulting from the unusual rheological properties of the fuel-additive system are accomodated by the device configuration and algorithms. Generation of two-dimensional images via scattered light also eliminates errors resulting from variations in the index of refraction and from the presence of submicron scattering sites often present within the modified fuel. No a priori information on the drop size distribution nor on system response to various drop sizes is required. This wide dynamic range, insensitivity to drop optical properties and the lack of a priori assumptions concerning drop shape are some of the unique features of the present analysis technique which are not available in single currently available drop counting methods. A drop histogram is generated for any portion of a spray or for an entire spray field along with local and global spray Sauter mean diameter (SMD) and density information. The technique is applied to analysis of sprays formed in a simulation of an aircraft crash with fuel spillage. Measurements of spray SMD and density are correlated with the results of flammability tests.

  3. Impact of extra virgin olive oil and ethylenediaminetetraacetic acid (EDTA) on the oxidative stability of fish oil emulsions and spray-dried microcapsules stabilized by sugar beet pectin.

    PubMed

    Polavarapu, Sudheera; Oliver, Christine M; Ajlouni, Said; Augustin, Mary Ann

    2012-01-11

    The influence of EDTA on lipid oxidation in sugar beet pectin-stabilized oil-in-water emulsions (pH 6, 15% oil, wet basis), prepared from fish oil (FO) and fish oil-extra virgin olive oil (FO-EVOO) (1:1 w/w), as well as the spray-dried microcapsules (50% oil, dry basis) prepared from these emulsions, was investigated. Under accelerated conditions (80 °C, 5 bar oxygen pressure) the oxidative stability was significantly (P < 0.05) higher for FO and FO-EVOO formulated with EDTA, in comparison to corresponding emulsions and spray-dried microcapsules formulated without EDTA. The EDTA effect was greater in emulsions than in spray-dried microcapsules, with the greatest protective effect obtained in FO-EVOO emulsions. EDTA enhanced the oxidative stability of the spray-dried microcapsules during ambient storage (~25 °C, a(w) = 0.5), as demonstrated by their lower concentration of headspace volatile oxidation products, propanal and hexanal. These results show that the addition of EDTA is an effective strategy to maximize the oxidative stability of both FO emulsions and spray-dried microcapsules in which sugar beet pectin is used as the encapsulant material.

  4. The microbiological and immunomodulatory effects of spray-dried versus wet dietary supplementation of seaweed extract in the pig gastrointestinal tract.

    PubMed

    Mukhopadhya, A; O'Doherty, J V; Smith, A; Bahar, B; Sweeney, T

    2012-12-01

    Seaweeds and seaweed extract (SWE) possess antimicrobial, anti-inflammatory, prebiotic, and growth-promoting properties. Extracts can be prepared in different ways including wet, spray-dried, and freeze-dried forms. The aim of this study was to determine if spray drying of laminarin and fucoidan derived from Laminaria digitata had an effect on the microbiological and cytokine profile of the gastrointestinal tract (GIT) compared to the wet SWE in newly weaned pigs. No differences in cytokine expression were observed between wet and spray dried SWE formulation in either the ileum or colon. Bifidobacteria counts were greater (P < 0.05) in the wet SWE formulation relative to both spray dried SWE and the basal diet in the ileum. In conclusion, neither of the SWE formulations had significant effects on the cytokine profile in the ileum or colon. However, a prebiotic effect observed in the ileum of piglets in response to the wet SWE formulation was lost following spray drying of the SWE.

  5. High drug load, stable, manufacturable and bioavailable fenofibrate formulations in mesoporous silica: a comparison of spray drying versus solvent impregnation methods.

    PubMed

    Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev

    2016-01-01

    Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.

  6. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel.

    PubMed

    Sawicki, Emilia; Beijnen, Jos H; Schellens, Jan H M; Nuijen, Bastiaan

    2016-09-25

    Previously, it was shown in Phase I clinical trials that solubility-limited oral absorption of docetaxel and paclitaxel can be drastically improved with a freeze dried solid dispersion (fdSD). These formulations, however, are unfavorable for further clinical research because of limitations in amorphicity of SD and scalability of the production process. To resolve this, a spray drying method for an SD (spSD) containing docetaxel or paclitaxel and subsequently drug products were developed. Highest saturation solubility (Smax), precipitation onset time (Tprecip), amorphicity, purity, residual solvents, yield/efficiency and powder flow of spSDs were studied. Drug products were monitored for purity/content and dissolution during 24 months at +15-25°C. Docetaxel spSD Smax was equal to that of fdSD but Tprecip was 3 times longer. Paclitaxel spSD Smax was 30% increased but Tprecip was equal to fdSD. spSDs were fully amorphous, >99% pure, <5% residual solvents, mean batch yield was 100g and 84%. spSDs had poor powder flow characteristics, which could not be resolved by changing settings, but by using 75% lactose as diluent. The drug product was a tablet with docetaxel or paclitaxel spSD and was stable for at least 24 months. Spray drying is feasible for the production of SD of docetaxel or paclitaxel for upcoming clinical trials. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Structural, functional and in vitro digestion characteristics of spray dried fish roe powder stabilised with gum arabic.

    PubMed

    Binsi, P K; Natasha, Nayak; Sarkar, P C; Muhamed Ashraf, P; George, Ninan; Ravishankar, C N

    2017-04-15

    Fish roes are considered as nutritionally valuable for their high content of essential fatty acids and amino acids. However, roe lipids undergo considerable extent of oxidation during processing and storage, imparting objectionable bitter taste and rancid flavour to roe products. Hence, the objective of the study was to reconstitute the roe mass and microencapsulate lipid fraction, so that small oil droplets are entrapped within a dry matrix of roe proteins during spray drying. Prior to spray drying, the emulsion was stabilised with gum arabic as it also act as a co-wall polymer. The microscopic images indicated presence of larger aggregates in unstabilised powder (RC) compared to well-separated particles in stabilised powder (RG). Incorporation of gum arabic retarded rancidity development during storage. In vitro digestive pattern of roe powder indicated higher amount of oil release in RG. These observations highlight the potential of converting the soft textured carp roe mass into stable fish roe powder with superior storage stability and functionality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    SciTech Connect

    Choudhuri, Ahsan; Love, Norman

    2016-11-04

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials for corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray

  9. Evaluation of the Microcentrifuge Dissolution Method as a Tool for Spray-Dried Dispersion.

    PubMed

    Wu, Benjamin; Li, Jinjiang; Wang, Yahong

    2016-03-01

    Although using spray-dried dispersions (SDDs) to improve the bioavailability of poorly water-soluble compounds has become a common practice in supporting the early phases of clinical studies, their performance evaluation, whether in solid dosage forms or alone, still presents significant challenges. A microcentrifuge dissolution method has been reported to quickly assess the dissolution performance of SDDs. While the microcentrifuge dissolution method has been used in the SDD community, there is still a need to understand the mechanisms about the molecular species present in supernatant after centrifugation, the molecular nature of active pharmaceutical ingredients (APIs), as well as the impact of experimental conditions. In this paper, we aim to assess the effect of API and polymer properties on the dissolution behavior of SDDs along with centrifuging parameters, and for this, two poorly water-soluble compounds (indomethacin and ketoconazole) and two commonly used polymers in the pharmaceutical industry (PVP and HPMC-AS) were chosen to prepare SDDs. A typical microcentrifuge dissolution procedure as reported in the publication (Curatolo et al., Pharm Res 26:1419-1431, 2009) was followed. In addition, after separation of the supernatant from precipitation, some of the samples were filtered through filters of various sizes to investigate the particulate nature (particle size) of the supernatant. Furthermore, the centrifuge speed was varied to study sedimentation of API, SDD, or polymer particles. The results indicated that for the SDDs of four drug-polymer pairs, microcentrifuge dissolution exhibited varied behaviors, depending on the polymer and the drug used. The SDDs of indomethacin with either PVP or HPMC-AS showed a reproducible dissolution with minimum variability even after filtration and subjecting to varied centrifugation speed, suggesting that the supernatant behaved solution-like. However, ketoconazole-PVP and ketoconazole-HPMC-AS SDDs displayed a

  10. Spray-drying of proteins: effects of sorbitol and trehalose on aggregation and FT-IR amide I spectrum of an immunoglobulin G.

    PubMed

    Maury, Michael; Murphy, Keith; Kumar, Sandeep; Mauerer, Alexander; Lee, Geoffrey

    2005-02-01

    An immunoglobulin G (IgG) was spray-dried on a Buchi 190 laboratory spray-dryer at inlet and outlet air temperatures of 130 and 190 degrees C, respectively. The IgG solution contains initially 115 mg/ml IgG plus 50 mg/ml sorbitol. After dialysis, at least 80% of low molecular weight component was removed. After spray-drying the dialyzed IgG and immediate redissolution of the powder, an increase in aggregates from 1 to 17% occurred. A major shift towards increase beta-sheet structure was detected in the spray-dried solid, which, however, reverted to native structure on redissolution of the powder. A correlation between aggregation determined by size exclusion chromatography and alterations in secondary structure determined by Fourier transformation infra-red spectroscopy could not therefore be established. On spray-drying a non-dialyzed, sorbitol-containing IgG only some 0.7% aggregates were formed. The sorbitol is therefore evidently able to stabilize partially the IgG during the process of spray-drying. Addition of trehalose to the liquid feed produced quantitatively the same stabilizing action on the IgG during spray-drying as did the sorbitol. This finding again points towards a water replacement stabilization mechanism. The IgG spray-dried powder prepared from the dialyzed liquid feed showed continued substantial aggregation on dry storage at 25 degrees C. This was substantially less in the non-dialyzed, sorbitol-containing spray-dried powder. Addition of trehalose to both dialyzed and non-dialyzed system produced substantial improvement in storage stability and reduction in aggregate formation in storage. The quantitative stabilizing effect of the trehalose was only slightly higher than that of the sorbitol. Taken together, these results indicate that both the sorbitol and trehalose stabilize the IgG primarily by a water replacement mechanism rather than by glassy immobilization. The relevance of this work is its questioning of the importance of the usually

  11. Biologic comparison of inhaled insulin formulations: Exubera™ and novel spray-dried engineered particles of dextran-10.

    PubMed

    Kuehl, Philip J; Cherrington, Alan; Dobry, Dan E; Edgerton, Dale; Friesen, Dwayne T; Hobbs, Charles; Leach, Chet L; Murri, Brice; Neal, Doss; Lyon, David K; Vodak, David T; Reed, Matthew D

    2014-12-01

    Inhaled peptides and proteins have promise for respiratory and systemic disease treatment. Engineered spray-dried powder formulations have been shown to stabilize peptides and proteins and optimize aerosol properties for pulmonary delivery. The current study was undertaken to investigate the in vitro and in vivo inhalation performance of a model spray-dried powder of insulin and dextran 10 in comparison to Exubera™. Dextrans are a class of glucans that are generally recognized as safe with optimum glass transition temperatures well suited for spray drying. A 70% insulin particle loading was prepared by formulating with 30% (w/v) dextran 10. Physical characterization revealed a "raisin like" particle. Both formulations were generated to produce a similar bimodal particle size distribution of less than 3.5 μm MMAD. Four female Beagle dogs were exposed to each powder in a crossover design. Similar presented and inhaled doses were achieved with each powder. Euglycemia was achieved in each dog prior and subsequent to dosing and blood samples were drawn out to 245 min post-exposure. Pharmacokinetic analyses of post-dose insulin levels were similar for both powders. Respective dextran 10-insulin and Exubera exposures were similar producing near identical area under the curve (AUC), 7,728 ± 1,516 and 6,237 ± 2,621; concentration maximums (C max), 126 and 121 (μU/mL), and concentration-time maximums, 20 and 14 min, respectively. These results suggest that dextran-10 and other dextrans may provide a novel path for formulating peptides and proteins for pulmonary delivery.

  12. Clarithromycin and N-acetylcysteine co-spray-dried powders for pulmonary drug delivery: A focus on drug solubility.

    PubMed

    Manniello, Michele Dario; Del Gaudio, Pasquale; Aquino, Rita P; Russo, Paola

    2017-04-01

    Cystic fibrosis (CF) lungs are usually susceptible to Pseudomonas aeruginosa colonization and this bacterium is resistant to immune system clearance and drug control. Particularly, the biofilm mode of growth protects several microorganisms from host defenses and antibacterial drugs, mainly due to a delayed penetration of the drug through the biofilm matrix. Biofilm, together with lung mucus viscosity and tenacity, reduces, therefore, the effectiveness of conventional antibiotic therapy in CF. The aim of this research was to design and develop a stable, portable, easy to use dry powder inhaler (DPI) for CF patients, able to release directly to the lung an association of macrolide antibiotics (clarithromycin) and a mucolytic agent (N-Acetyl-Cysteine). Its effectiveness is based on the counteracting of the characteristics of P. aeruginosa infections in CF (lung bacterial adhesion to lung epithelium, biofilm formation and mucus viscosity) and the ability to let the antimicrobial drug exert their pharmacological action. A solution of these two drugs, without any excipients, was spray-dried to obtain respirable microparticles, characterized by aerodynamic diameters suitable for inhalation (<5.0μm). The morphology evaluation evidenced particles shape dependent on water content in the spray drying feeds, with wrinkled particles more evident with higher water content. Moreover, thanks to the presence of N-acetylcysteine which can interact with clarithromycin dimethyl-amino group, a consistent enhancement of drug solubility was obtained, compared to raw material and to the drug sprayed alone. The mucolytic agent added in the DPI may improve the macrolide diffusion into the mucus, enabling its action. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods.

    PubMed

    Chen, Zhi-Gang; Guo, Xiao-Yu; Wu, Tao

    2016-05-01

    A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41-53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model.

  14. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-02-14

    The purpose of this study was to systematically design pure antibiotic drug dry powder inhalers (DPIs) for targeted antibiotic pulmonary delivery in the treatment of pulmonary infections and comprehensively correlate the physicochemical properties in the solid-state and spray-drying conditions effects on aerosol dispersion performance as dry powder inhalers (DPIs). The two rationally chosen model antibiotic drugs, tobramycin (TOB) and azithromycin (AZI), represent two different antibiotic drug classes of aminoglycosides and macrolides, respectively. The particle size distributions were narrow, unimodal, and in the microparticulate/nanoparticulate size range. The SD particles possessed relatively spherical particle morphology, smooth surface morphology, low residual water content, and the absence of long-range molecular order. The emitted dose (ED%), fine particle fraction (FPF%) and respirable fraction (RF%) were all excellent. The MMAD values were in the inhalable range (<10 μm) with smaller MMAD values for SD AZI powders in contrast to SD TOB powders. Positive linear correlations were observed between the aerosol dispersion performance parameter of FPF with increasing spray-drying pump rates and also with the difference between thermal parameters expressed as Tg-To (i.e. the difference between the glass transition temperature and outlet temperature) for SD AZI powders. The aerosol dispersion performance for SD TOB appeared to be influenced by its high water vapor sorption behavior (hygroscopicity) and pump rates or To. Aerosol dispersion performance of SD powders were distinct for both antibiotic drug aerosol systems and also between different pump rates for each system. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables.

    PubMed

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-03-01

    The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five-nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult-to-reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target. Copyright © 2011 Society of Chemical Industry.

  16. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion.

    PubMed

    Yonekura, Lina; Sun, Han; Soukoulis, Christos; Fisk, Ian

    2014-01-01

    We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion.

  17. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in