Sample records for spraying systems performing

  1. Fixed automated spray technology.

    DOT National Transportation Integrated Search

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  2. Experimental and Numerical Analysis of the Cooling Performance of Water Spraying Systems during a Fire

    PubMed Central

    Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie

    2015-01-01

    The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519

  3. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  4. Development of a plasma sprayed ceramic gas path seal for high pressure turbine application

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1978-01-01

    Development of the plasma sprayed graded, layered ZRO2/CoCrAlY seal system for gas turbine engine blade tip seal applications up to 1589 K (2400 F) surface temperature was continued. The effect of changing ZRO2/CoCrAlY ratios in the intermediate layers on thermal stresses was evaluated analytically with the goal of identifying the materials combinations which would minimize thermal stresses in the seal system. Three methods of inducing compressive residual stresses in the sprayed seal materials to offset tensile thermal stresses were analyzed. The most promising method, thermal prestraining, was selected based upon potential, feasibility and complexity considerations. The plasma spray equipment was modified to heat, control and monitor the substrate temperature during spraying. Specimens were fabricated and experimentally evaluated to: (1) substantiate the capability of the thermal prestrain method to develop compressive residual stresses in the sprayed structure and (2) define the effect of spraying on a heated substate on abradability, erosion and thermal shock characteristics of the seal system. Thermal stress analysis, including residual stresses and material properties variations, was performed and correlated with thermal shock test results. Seal system performance was assessed and recommendations for further development were made.

  5. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1977-01-01

    The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.

  6. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhuri, Ahsan; Love, Norman

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials formore » corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray systems, there exists a lack of fundamental understanding of the effect of hardware characteristics and operating parameters on HVOF thermally sprayed coatings. Motivated by these issues, this study is devoted to investigate the effect of hardware characteristics (e.g. spraying distance) and operating parameters (e.g. combustion chamber pressure, equivalence ratio, and total gas flow rate) on HVOF sprayed coatings using Inconel 718 alloy. The current study provides extensive understanding of several key operating and process parameters to optimize the next generation of HVOF thermally sprayed coatings for high temperature and harsh environment applications. A facility was developed to support this endeavor in a safe and efficient way, including a HVOF thermal spray system with a Data Acquisition and Remote Controls system (DARCS). The coatings microstructure and morphology were examined using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Nanoindentation.« less

  7. Evaluating effective swath width and droplet distribution of aerial spraying systems on M-18B and Thrush 510G airplanes

    USDA-ARS?s Scientific Manuscript database

    Aerial spraying plays an important role in promoting agricultural production and protecting the biological environment due to its flexibility, high effectiveness, and large operational area per unit of time. In order to evaluate the performance parameters of the spraying systems on two fixed wing ai...

  8. Integrated computational study of ultra-high heat flux cooling using cryogenic micro-solid nitrogen spray

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Oh, U.; Tan, Daisuke

    2012-10-01

    A new type of ultra-high heat flux cooling system using the atomized spray of cryogenic micro-solid nitrogen (SN2) particles produced by a superadiabatic two-fluid nozzle was developed and numerically investigated for application to next generation super computer processor thermal management. The fundamental characteristics of heat transfer and cooling performance of micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. The employed Computational Fluid Dynamics (CFD) analysis based on the Euler-Lagrange model is focused on the cryogenic spray behavior of atomized particulate micro-solid nitrogen and also on its ultra-high heat flux cooling characteristics. Based on the numerically predicted performance, a new type of cryogenic spray cooling technique for application to a ultra-high heat power density device was developed. In the present integrated computation, it is clarified that the cryogenic micro-solid spray cooling characteristics are affected by several factors of the heat transfer process of micro-solid spray which impinges on heated surface as well as by atomization behavior of micro-solid particles. When micro-SN2 spraying cooling was used, an ultra-high cooling heat flux level was achieved during operation, a better cooling performance than that with liquid nitrogen (LN2) spray cooling. As micro-SN2 cooling has the advantage of direct latent heat transport which avoids the film boiling state, the ultra-short time scale heat transfer in a thin boundary layer is more possible than in LN2 spray. The present numerical prediction of the micro-SN2 spray cooling heat flux profile can reasonably reproduce the measurement results of cooling wall heat flux profiles. The application of micro-solid spray as a refrigerant for next generation computer processors is anticipated, and its ultra-high heat flux technology is expected to result in an extensive improvement in the effective cooling performance of large scale supercomputer systems.

  9. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    PubMed

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development and Testing of a Mobile Platform for Tank Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, T.A.

    2001-01-16

    The Department of Energy (DOE) is committed to removing millions of gallons of high level radioactive waste from waste storage tanks at the Savannah River Site (SRS). SRS was the first site in the DOE complex to have emptied and closed high level waste tanks. Tank closure at the Site is now progressing to tanks containing waste composed of liquid and large deposits of solids, including a tank that has a potential ''heel''. A heel is a hardened mass of solid waste material spread across the tank bottom. Tank closure requires breaking up this heel and moving the material tomore » the intake of a pumping system for transfer from the tank. In the past, overhead spray systems have been used with some success at moving waste. But the limited number of risers restricts the coverage area of the overhead spray system. Therefore, a floor- level spray system will be used to separate manageable size chunks of the material from the heel. The chunks will be guided into the pump's intake to be remove from the tank. The floor-level spray system movement will be accomplished by using a mobile platform, a crawler, which provides transport to nearly every point on the tank floor. Transport of the spray system will allow the system to ''corral'' the waste away from the tank walls and control the movement of the material across the tank floor. Because the available access riser is small, and a wide crawler platform is required to support the spray system, the crawler's frame must fold to enter the tank. After entry into the tank, the crawler unfolds on the tank floor using the crawler drive tracks to expand the frame and position the mobile platform under the entry riser. The spray system will then be lowered separately through the entry riser and mated onto the crawler on the tank floor. The crawler and spray system are tethered and controlled remotely by personnel at the control station. Motorized cable reels will also be remotely controlled to pay out, retrieve, and manage the tethers as the mobile platform moves the spray system across the tank floor. Both the crawler and spray systems are designed to be retrievable. Development of the tank cleaning system was evaluated using a performance test program. The tests evaluated the spray system dynamics, the crawler's fit through the riser, the crawler landing in mocked up tank with simulant, the crawler's traction, and the crawler and spray system mating. Initial testing verified the crawler platform was compatible with the dynamics produced by the spray system. The riser fit test confirmed that a dedicated riser is required for deployment of the crawler and the spray system. The crawler traction test defined the capabilities of the crawler at different levels of simulant. Deployment testing through a mockup riser verified the basic system processes. Finally, testing of the complete system in a full-scale mockup with sludge simulant was performed to evaluate the tank cleaning ability of the crawler. This paper describes th e tank conditions, the tank closure process, the development of the crawler and spray system, and the testing program and results used to evaluate the mobile platform and spray system.« less

  11. A comparative study of spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions.

    PubMed

    Dontireddy, Rakesh; Crean, Abina M

    2011-10-01

    Poor water solubility of new chemical entities (NCEs) is one of the major challenges the pharmaceutical industry currently faces. The purpose of this study was to investigate the feasibility of freeze-drying as an alternative technique to spray-drying to produce solid dispersions of poorly water-soluble drugs. Also investigated was the use of aqueous solvent mixtures in place of pure solvent for the production of solid dispersions. Aqueous solvent systems would reduce the environmental impact of pure organic solvent systems. Spray-dried and freeze-dried hydrocortisone/polyvinyl pyrrolidone solid dispersions exhibited differences in dissolution behavior. Freeze-dried dispersions exhibited faster dissolution rates than the corresponding spray-dried dispersions. Spray-dried systems prepared using both solvent systems (20% v/v and 96% v/v ethanol) displayed similar dissolution performance despite displaying differences in glass transition temperatures (T(g)) and surface areas. All dispersions showed drug/polymer interactions indicated by positive deviations in T(g) from the predicted values calculated using the Couchman-Karasz equation. Fourier transform infrared (FTIR) spectroscopic results confirmed the conversion of crystalline drug to the amorphous in the dispersions. Stability studies were preformed at 40°C and 75% relative humidity to investigate the physical stability of prepared dispersions. Recrystallization was observed after a month and the resultant dispersions were tested for their dissolution performance to compare with the dissolution performance of the dispersions prior to the stability study. The dissolution rate of the freeze-dried dispersions remained higher than both spray-dried dispersions after storage.

  12. A New Quantitative 3D Imaging Method for Characterizing Spray in the Near-field of Nozzle Exits

    DTIC Science & Technology

    2015-01-13

    measurements were performed on a flat-panel tabletop cone - beam CT system in the Radiology Department at Stanford University. The X-ray generator (CPI...quantitative measurement technique to examine the dense near-field region of sprays using X-ray computed tomography (CT). An optimized “spray CT system” was...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 X-ray CT, Spray, Hollow Cone Spray, Near Field REPORT DOCUMENTATION PAGE 11. SPONSOR

  13. Spray drying of lipid-based systems loaded with Camellia sinensis polyphenols.

    PubMed

    Secolin, Vanessa A; Souza, Claudia R F; Oliveira, Wanderley P

    2017-03-01

    In this work, spray-dried lipid systems based on soy phosphatidylcholine, cholesterol and lauroyl polyoxylglycerides for entrapping Green tea polyphenols were produced. The aim was to study the effects of the encapsulating composition and spray drying conditions on the system performance and physicochemical product properties. The spray dryer powder production yield falls around 50.7 ± 2.8%, which is typical for lab scale spray dryers. Wrinkled and rounded particles, with low surface porosities were generated, independent of the drying carriers (trehalose or lactose) used. The product showed high encapsulation efficiency of Green tea polyphenols, which was promptly redispersible in water. It presented low density, and good compressive and flow properties. The results herein reported confirm the feasibility of the entrapment of Green tea polyphenols in lipid-based compositions by spray drying in presence of the drying carriers evaluated. The spray-dried microparticles show high potential to be used as additive in food, nutraceutical and pharmaceutical products.

  14. M-52 spray booth qualification test

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The procedures, performance, and results obtained from the M-52 spray booth qualification test are documented. The test was conducted at Thiokol Corporation, Space Operations, M-52 Inert Parts Preparation facility. The purpose of this testing sequence was to ensure the spray booth would produce flight qualified hardware. The testing sequence was conducted in two series. The first series was conducted under CTP-0142, Revision 1. The second series was conducted in accordance with CTP-0142, Revision 2. The test sequence started with CTP-0142, Revision 1. The series consisted of the contamination removal test and the performance test. The contamination removal test was used to assess the Teflon level in the spray booth. The performance test consisted of painting and Chemloking a forward dome inside the spray booth per flight procedures. During the performance test, two sets of witness panels (case/insulation and steel/epoxy/steel) were prepared and pull tested. The CTP-0142, Revision 2, series of testing consisted of re-testing the steel/epoxy/steel witness panels. The pull tests analysis indicates the results of the tensile tests were comparable to the systems tunnel witness panel database. The exposed panel set and the control panel set average tensile values were above the 1-basis lower limits established on the systems tunnel witness panel database. It is recommended that the M-52 spray booth be qualified for producing flight hardware.

  15. Fabrication of High Performing PEMFC Catalyst-Coated Membranes with a Low Cost Air-Assisted Cylindrical Liquid Jets Spraying System

    DOE PAGES

    Peng, Xiong; Omasta, Travis; Rigdon, William; ...

    2016-11-15

    In this paper, a low cost air-assisted cylindrical liquid jets spraying (ACLJS) system was developed to prepare high-performance catalyst-coated membranes (CCMs) for proton exchange membrane fuel cells (PEMFCs). The catalyst ink was flowed from a cylindrical orifice and was atomized by an air stream fed from a coaxial slit and sprayed directly onto the membrane, which was suctioned to a heated aluminum vacuum plate. The CCM pore architecture including size, distribution and volume can be controlled using various flow parameters, and the impact of spraying conditions on electrode structure and PEMFC performance was investigated. CCMs fabricated in the fiber-type break-upmore » regime by ACLJS achieved very high performance during PEMFC testing, with the top-performing cells having a current density greater than 1900 mA/cm 2 at 0.7 V under H 2/O 2 flows and 700 mA/cm 2 under H 2/Air at 1.5 bar(absolute) pressure and 60% gas RH, and 80°C cell temperature.« less

  16. Fabrication of High Performing PEMFC Catalyst-Coated Membranes with a Low Cost Air-Assisted Cylindrical Liquid Jets Spraying System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xiong; Omasta, Travis; Rigdon, William

    In this paper, a low cost air-assisted cylindrical liquid jets spraying (ACLJS) system was developed to prepare high-performance catalyst-coated membranes (CCMs) for proton exchange membrane fuel cells (PEMFCs). The catalyst ink was flowed from a cylindrical orifice and was atomized by an air stream fed from a coaxial slit and sprayed directly onto the membrane, which was suctioned to a heated aluminum vacuum plate. The CCM pore architecture including size, distribution and volume can be controlled using various flow parameters, and the impact of spraying conditions on electrode structure and PEMFC performance was investigated. CCMs fabricated in the fiber-type break-upmore » regime by ACLJS achieved very high performance during PEMFC testing, with the top-performing cells having a current density greater than 1900 mA/cm 2 at 0.7 V under H 2/O 2 flows and 700 mA/cm 2 under H 2/Air at 1.5 bar(absolute) pressure and 60% gas RH, and 80°C cell temperature.« less

  17. Investigation of Spray Cooling Schemes for Dynamic Thermal Management

    NASA Astrophysics Data System (ADS)

    Yata, Vishnu Vardhan Reddy

    This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.

  18. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    NASA Astrophysics Data System (ADS)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  19. Effect of Operating Parameters on a Dual-Stage High Velocity Oxygen Fuel Thermal Spray System

    NASA Astrophysics Data System (ADS)

    Khan, Mohammed N.; Shamim, Tariq

    2014-08-01

    High velocity oxygen fuel (HVOF) thermal spray systems are being used to apply coatings to prevent surface degradation. The coatings of temperature sensitive materials such as titanium and copper, which have very low melting points, cannot be applied using a single-stage HVOF system. Therefore, a dual-stage HVOF system has been introduced and modeled computationally. The dual-spray system provides an easy control of particle oxidation by introducing a mixing chamber. In addition to the materials being sprayed, the thermal spray coating quality depends to a large extent on flow behavior of reacting gases and the particle dynamics. The present study investigates the influence of various operating parameters on the performance of a dual-stage thermal spray gun. The objective is to develop a predictive understanding of various parameters. The gas flow field and the free jet are modeled by considering the conservation of mass, momentum, and energy with the turbulence and the equilibrium combustion sub models. The particle phase is decoupled from the gas phase due to very low particle volume fractions. The results demonstrate the advantage of a dual-stage system over a single-stage system especially for the deposition of temperature sensitive materials.

  20. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    PubMed

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial pattern of airborne spray drift.

  1. Variable Gravity Effects on the Cooling Performance of a Single Phase Confined Spray

    NASA Technical Reports Server (NTRS)

    Michalak, Travis; Yerkes, Kirk; Baysinger, Karri; McQuillen, John

    2005-01-01

    The objective of this paper is to discuss the testing of a spray cooling experiment designed to be flown on NASA's KC-135 Reduced Gravity Testing Platform. Spray cooling is an example of a thermal management technique that may be utilized in high flux heat acquisition and high thermal energy transport concepts. Many researchers have investigated the utility of spray cooling for the thermal management of devices generating high heat fluxes. However, there has been little research addressing the physics and ultimate performance of spray cooling in a variable gravity environment. An experimental package, consisting of a spray chamber coupled to a fluid delivery loop system, was fabricated for variable gravity flight tests. The spray chamber contains two opposing nozzles spraying on target Indium Tin Oxide (ITO) heaters. These heaters are mounted on glass pedestals, which are part of a sump system to remove unconstrained liquid from the test chamber. Liquid is collected in the sumps and returned to the fluid delivery loop. Thermocouples mounted in and around the pedestals are used to determine both the heat loss through the underside of the IT0 heater and the heat extracted by the spray. A series of flight tests were carried out aboard the KC-135, utilizing the ability of the aircraft to produce various gravity conditions. During the flight tests, for a fixed flow rate, heat input was varied at 20, 30, 50, and 80W with variable gravities of 0.01, 0.16, 0.36, and 1.8g. Flight test data was compared to terrestrial baseline data in addition to analytical and numerical solutions to evaluate the heat transfer in the heater and support structure . There were significant differences observed in the spray cooling performance as a result of variable gravity conditions and heat inputs. In general, the Nussult number at the heater surface was found to increase with decreasing gravity conditions for heat loads greater than 30W.

  2. Field scale evaluation of spray drift reduction technologies from ground and aerial application systems

    USDA-ARS?s Scientific Manuscript database

    The objective of this work is to evaluate a proposed Test Plan for the validation testing of pesticide spray drift reduction technologies for row and field crops, focusing on the testing of ground and aerial application systems under full-scale field evaluations. The measure of performance for a gi...

  3. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application.

    PubMed

    Kesterson, Melissa A; Luck, Joe D; Sama, Michael P

    2015-12-17

    An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array.

  4. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application

    PubMed Central

    Kesterson, Melissa A.; Luck, Joe D.; Sama, Michael P.

    2015-01-01

    An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array. PMID:26694417

  5. New Icing Cloud Simulation System at the NASA Glenn Research Center Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Oldenburg, John R.; Sheldon, David W.

    1999-01-01

    A new spray bar system was designed, fabricated, and installed in the NASA Glenn Research Center's Icing Research Tunnel (IRT). This system is key to the IRT's ability to do aircraft in-flight icing cloud simulation. The performance goals and requirements levied on the design of the new spray bar system included increased size of the uniform icing cloud in the IRT test section, faster system response time, and increased coverage of icing conditions as defined in Appendix C of the Federal Aviation Regulation (FAR), Part 25 and Part 29. Through significant changes to the mechanical and electrical designs of the previous-generation spray bar system, the performance goals and requirements were realized. Postinstallation aerodynamic and icing cloud calibrations were performed to quantify the changes and improvements made to the IRT test section flow quality and icing cloud characteristics. The new and improved capability to simulate aircraft encounters with in-flight icing clouds ensures that the 1RT will continue to provide a satisfactory icing ground-test simulation method to the aeronautics community.

  6. Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.

    PubMed

    Bandyopadhyay, Amitava; Biswas, Manindra Nath

    2008-08-01

    The performance of a spray tower using an energy efficient two-phase critical flow atomizer on the scrubbing of particulate-laden SO(2) using water and dilute NaOH is reported in this article. Experimentation revealed that SO(2) removal was enhanced due to presence of particles (fly-ash) and almost 100% removal efficiency was achieved in water scrubbing. The removal efficiency is elucidated in reference to atomizing air pressure, droplet diameter and droplet velocity besides other pertinent variables of the system studied. The presence of fly-ash particles improved the removal efficiency to about 20% within the range of variables studied. Empirical and semi-empirical correlations were developed for predicting the removal efficiency in water and dilute NaOH respectively. Predicted data fitted excellently well with experimental values. The performance of the spray tower is compared with the performances of existing systems and very encouraging results are obtained.

  7. Investigation of the spray characteristics for a secondary fuel injection nozzle using a digital image processing method

    NASA Astrophysics Data System (ADS)

    Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji

    2007-05-01

    There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.

  8. Digital image processing techniques for the analysis of fuel sprays global pattern

    NASA Astrophysics Data System (ADS)

    Zakaria, Rami; Bryanston-Cross, Peter; Timmerman, Brenda

    2017-12-01

    We studied the fuel atomization process of two fuel injectors to be fitted in a new small rotary engine design. The aim was to improve the efficiency of the engine by optimizing the fuel injection system. Fuel sprays were visualised by an optical diagnostic system. Images of fuel sprays were produced under various testing conditions, by changing the line pressure, nozzle size, injection frequency, etc. The atomisers were a high-frequency microfluidic dispensing system and a standard low flow-rate fuel injector. A series of image processing procedures were developed in order to acquire information from the laser-scattering images. This paper presents the macroscopic characterisation of Jet fuel (JP8) sprays. We observed the droplet density distribution, tip velocity, and spray-cone angle against line-pressure and nozzle-size. The analysis was performed for low line-pressure (up to 10 bar) and short injection period (1-2 ms). Local velocity components were measured by applying particle image velocimetry (PIV) on double-exposure images. The discharge velocity was lower in the micro dispensing nozzle sprays and the tip penetration slowed down at higher rates compared to the gasoline injector. The PIV test confirmed that the gasoline injector produced sprays with higher velocity elements at the centre and the tip regions.

  9. An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Le; Torelli, Roberto; Zhu, Xiucheng

    Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at amore » density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGE framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation. A set of turbulence and spray break-up model constants was identified to properly match the aforementioned measurements of liquid penetration within their experimental confidence intervals. An accuracy study on varying the minimum mesh size was also performed to ensure the grid convergence of the numerical results. Experimentally validated computational fluid dynamics (CFD) simulations were then used to investigate the local spray characteristics in the vicinity of the wall with a particular focus on Sauter Mean Diameter (SMD) and Reynolds and Weber numbers. The analysis was performed by considering before- and after-impingement conditions in order to take in account the influence of the impinged wall on the spray morphology.« less

  10. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    PubMed

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  11. Application Of Holography In The Distribution Measurement Of Fuel Spraying Field In Diesel Engines

    NASA Astrophysics Data System (ADS)

    Xiang, He Wan; Xiong, Li Zhi

    1988-01-01

    The distribution of fuel spraying field in the combustion chamber is an important factor which influences the performance of diesel engines. Precise data for those major parameters of the spraying field distribution are difficult to obtain using conventional ways of measurement, so its effects on the combustion process cannot be controlled. The laser holographic measurement is used and many researches have been made on the injecting nozzles used in diesel engines Series 95, 100 and 130. These researches show that clear spraying field hologram can be taken with an "IC Engine Laser Holography System". By rendition and data processing, droplet size, amount and their space distribution in the spraying; the spraying range, cone angle and other dependable data can be obtained. Therefore, the spraying quality of an injecting nozzle can be precisely determined, which provides reliable basis for the improvement of diesel engines' functions.

  12. Testing of a Spray-bar Thermodynamic Vent System in Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2005-01-01

    To support development of a microgravity pressure control capability for liquid oxygen, thermodynamic vent system (TVS) testing was conducted at Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a LOX simulant. The spray bar TVS hardware used was originally designed by the Boeing Company for testing in liquid hydrogen (LH2). With this concept, a small portion of the tank fluid is passed through a Joule-Thomson (J-T) device, and then through a longitudinal spray bar mixed-heat exchanger in order to cool the bulk fluid. To accommodate the larger mass flow rates associated with LN2, the TVS hardware was modified by replacing the recirculation pump with an LN2 compatible pump and replacing the J-T valve. The primary advantage of the spray-bar configuration is that tank pressure control can be achieved independent of liquid and vapor location, enhancing the applicability of ground test data to microgravity conditions. Performance testing revealed that the spray-bar TVS was effective in controlling tank pressure within a 6.89 kPa band for fill levels of 90%, 50%, and 25%. Tests were also conducted with gaseous helium (GHe) in the ullage. The TVS operated nominally with GHe in the ullage, with performance similar to the tests with gaseous nitrogen (GN2). Testing demonstrated that the spray-bar TVS design was flexible enough for use in two different propellants with minimal hardware modifications.

  13. Development of 6-DOF painting robot control system

    NASA Astrophysics Data System (ADS)

    Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang

    2017-01-01

    With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.

  14. The Effect of Variable Gravity on the Cooling Performance of a 16-Nozzle Spray Array

    DTIC Science & Technology

    2008-09-01

    Coolants and Capabilities [1]. spray cooling, have been studied in depth and are currently being used on various types of systems. Mudawar [1] presented many...meniscus. Surface modifications could be made to reduce this effect while enhancing overall operability. 58 Bibliography [1] Mudawar , I., “Assessment of

  15. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  16. Ducts Sealing Using Injected Spray Sealant, Raleigh, North Carolina (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques - manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the usemore » of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.« less

  17. a Numerical Model for Flue Gas Desulfurization System.

    NASA Astrophysics Data System (ADS)

    Kim, Sung Joon

    The purpose of this work is to develop a reliable numerical model for spray dryer desulfurization systems. The shape of the spray dryer requires that a body fitted orthogonal coordinate system be used for the numerical model. The governing equations are developed in the general orthogonal coordinates and discretized to yield a system of algebraic equations. A turbulence model is also included in the numerical program. A new second order numerical scheme is developed and included in the numerical model. The trajectory approach is used to simulate the flow of the dispersed phase. Two-way coupling phenomena is modeled by this scheme. The absorption of sulfur dioxide into lime slurry droplets is simulated by a model based on gas -phase mass transfer. The program is applied to a typical spray dryer desulfurization system. The results show the capability of the program to predict the sensitivity of system performance to changes in operational parameters.

  18. Method for Continuous Monitoring of Electrospray Ion Formation

    NASA Astrophysics Data System (ADS)

    Metzler, Guille; Crathern, Susan; Bachmann, Lorin; Fernández-Metzler, Carmen; King, Richard

    2017-10-01

    A method for continuously monitoring the performance of electrospray ionization without the addition of hardware or chemistry to the system is demonstrated. In the method, which we refer to as SprayDx, cluster ions with solvent vapor natively formed by electrospray are followed throughout the collection of liquid chromatography-selected reaction monitoring data. The cluster ion extracted ion chromatograms report on the consistency of the ion formation and detection system. The data collected by the SprayDx method resemble the data collected for postcolumn infusion of analyte. The response of the cluster ions monitored reports on changes in the physical parameters of the ion source such as voltage and gas flow. SprayDx is also observed to report on ion suppression in a fashion very similar to a postcolumn infusion of analyte. We anticipate the method finding utility as a continuous readout on the performance of electrospray and other atmospheric pressure ionization processes. [Figure not available: see fulltext.

  19. Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system

    NASA Astrophysics Data System (ADS)

    Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran

    2014-05-01

    In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.

  20. Physico-Chemical Properties, Aerosolization and Dissolution of Co-Spray Dried Azithromycin Particles with L-Leucine for Inhalation

    PubMed Central

    Mangal, Sharad; Nie, Haichen; Xu, Rongkun; Guo, Rui; Cavallaro, Alex; Zemlyanov, Dmitry; Zhou, Qi (Tony)

    2018-01-01

    Purpose Inhalation therapy is popular to treat lower respiratory tract infections. Azithromycin is effective against some bacteria that cause respiratory tract infections; but it has poor water solubility that may limit its efficacy when administrated as inhalation therapy. In this study, dry powder inhaler formulations were developed by co-spray drying azithromycin with L-leucine with a purpose to improve dissolution. Methods The produced powder formulations were characterized regarding particle size, morphology, surface composition and in-vitro aerosolization performance. Effects of L-leucine on the solubility and in-vitro dissolution of azithromycin were also evaluated. Results The spray dried azithromycin alone formulation exhibited a satisfactory aerosol performance with a fine particle fraction (FPF) of 62.5 ± 4.1%. Addition of L-leucine in the formulation resulted in no significant change in particle morphology and FPF, which can be attributed to enrichment of azithromycin on the surfaces of composite particles. Importantly, compared with the spray-dried amorphous azithromycin alone powder, the co-spray dried powder formulations of azithromycin and L-leucine demonstrated a substantially enhanced in-vitro dissolution rate. Such enhanced dissolution of azithromycin could be attributed to the formation of composite system and the acidic microenvironment around azithromycin molecules created by the dissolution of acidic L-leucine in the co-spray dried powder. Fourier transform infrared spectroscopic data showed intermolecular interactions between azithromycin and L-leucine in the co-spray dried formulations. Conclusions We developed the dry powder formulations with satisfactory aerosol performance and enhanced dissolution for a poorly water soluble weak base, azithromycin, by co-spray drying with an amino acid, L-leucine. PMID:29374368

  1. Physico-Chemical Properties, Aerosolization and Dissolution of Co-Spray Dried Azithromycin Particles with L-Leucine for Inhalation.

    PubMed

    Mangal, Sharad; Nie, Haichen; Xu, Rongkun; Guo, Rui; Cavallaro, Alex; Zemlyanov, Dmitry; Zhou, Qi Tony

    2018-01-08

    Inhalation therapy is popular to treat lower respiratory tract infections. Azithromycin is effective against some bacteria that cause respiratory tract infections; but it has poor water solubility that may limit its efficacy when administrated as inhalation therapy. In this study, dry powder inhaler formulations were developed by co-spray drying azithromycin with L-leucine with a purpose to improve dissolution. The produced powder formulations were characterized regarding particle size, morphology, surface composition and in-vitro aerosolization performance. Effects of L-leucine on the solubility and in-vitro dissolution of azithromycin were also evaluated. The spray dried azithromycin alone formulation exhibited a satisfactory aerosol performance with a fine particle fraction (FPF) of 62.5 ± 4.1%. Addition of L-leucine in the formulation resulted in no significant change in particle morphology and FPF, which can be attributed to enrichment of azithromycin on the surfaces of composite particles. Importantly, compared with the spray-dried amorphous azithromycin alone powder, the co-spray dried powder formulations of azithromycin and L-leucine demonstrated a substantially enhanced in-vitro dissolution rate. Such enhanced dissolution of azithromycin could be attributed to the formation of composite system and the acidic microenvironment around azithromycin molecules created by the dissolution of acidic L-leucine in the co-spray dried powder. Fourier transform infrared spectroscopic data showed intermolecular interactions between azithromycin and L-leucine in the co-spray dried formulations. We developed the dry powder formulations with satisfactory aerosol performance and enhanced dissolution for a poorly water soluble weak base, azithromycin, by co-spray drying with an amino acid, L-leucine.

  2. Internal Diameter HVAF Spraying for Wear and Corrosion Applications

    NASA Astrophysics Data System (ADS)

    Lyphout, C.; Björklund, S.

    2015-01-01

    Electrolytic hard chrome (EHC) methods are still widely utilized in the printing, automotive and off-shore industries. Alternative methods to EHC have been widely developed in the past decade by conventional HVOF processes and more recently HVAF systems, which are processing at higher kinetic energy and more particularly at lower temperature, significantly increasing wear and corrosion resistance properties. A dedicated internal diameter HVAF system is here presented, and coatings characteristics are compared to the one obtained by standard HVAF coatings. Specially R&D designed fixtures with inside bore of 200 mm have been manufactured for this purpose, with a possibility to spray samples at increasing depth up to 400 mm while simulating closed bottom bore spraying. WC-based and Cr3C2-based powder feedstock materials have been deposited onto high-strength steel substrates. Respective coating microstructures, thermally induced stresses and corrosion resistance are discussed for further optimization of coating performances. The fact that the ID-HVAF system is utilized both for spraying and gritblasting procedures is also given a particular interest.

  3. Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review

    NASA Astrophysics Data System (ADS)

    Feuerstein, Albert; Knapp, James; Taylor, Thomas; Ashary, Adil; Bolcavage, Ann; Hitchman, Neil

    2008-06-01

    The most advanced thermal barrier coating (TBC) systems for aircraft engine and power generation hot section components consist of electron beam physical vapor deposition (EBPVD) applied yttria-stabilized zirconia and platinum modified diffusion aluminide bond coating. Thermally sprayed ceramic and MCrAlY bond coatings, however, are still used extensively for combustors and power generation blades and vanes. This article highlights the key features of plasma spray and HVOF, diffusion aluminizing, and EBPVD coating processes. The coating characteristics of thermally sprayed MCrAlY bond coat as well as low density and dense vertically cracked (DVC) Zircoat TBC are described. Essential features of a typical EBPVD TBC coating system, consisting of a diffusion aluminide and a columnar TBC, are also presented. The major coating cost elements such as material, equipment and processing are explained for the different technologies, with a performance and cost comparison given for selected examples.

  4. Process-based quality for thermal spray via feedback control

    NASA Astrophysics Data System (ADS)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  5. Air Distribution Retrofit Strategies for Affordable Housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Conlin, Francis; Holloway, Parker

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the usemore » of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.« less

  6. Air Distribution Retrofit Strategies for Affordable Housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, J.; Conlin, F.; Holloway, Parker

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through themore » use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.« less

  7. Evaluation of Non-Chromate Passivations on Electroplated gamma-Phase Zinc Nickel

    NASA Astrophysics Data System (ADS)

    Volz, Steven Michael

    This research focused on the corrosion response and electrochemical behavior of electroplated low hydrogen embrittlement alkaline gamma-phase zinc nickel with passivation layers. The motivation was the need to replace hexavalent chromium conversion coatings in military grade electrical systems with a more environment friendly alternative. The passivation layers were employed for the purpose of mitigating corrosion attack while maintaining low contact resistance. Trivalent chromium-based passivations and cerium-based passivations were compared against the currently used hexavalent chromium conversion coating. The coating systems were compared using electrochemical impedance spectroscopy, cyclic potentiodymanic scans, salt spray exposure testing, electrical resistance measurements, microstructure analysis, and compositional analysis. Coating systems with lower open circuit had a lower corrosion current and performed better during salt spray testing. All of the systems evaluated had corrosion products consistent with oxidized zinc compounds but the morphology of the passivation was dependent on the passivation. The electrical contact resistance ranged from 1 to 108 mO/cm 2, after salt spray testing. Two versions of Trivalent chromium-based passivations, were able to meet military performance specifications after corrosion testing.

  8. Experimental Study on the Electrochemical Anti-Corrosion Properties of Steel Structures Applying the Arc Thermal Metal Spraying Method

    PubMed Central

    Choe, Hong-Bok; Lee, Han-Seung; Shin, Jun-Ho

    2014-01-01

    The arc thermal metal spraying method (ATMSM) provides proven long-term protective coating systems using zinc, aluminum and their alloys for steel work in a marine environment. This paper focuses on studying experimentally the anti-corrosion criteria of ATMSM on steel specimens. The effects of the types of spraying metal and the presence or absence of sealing treatment from the thermal spraying of film on the anti-corrosion performance of TMSM were quantitatively evaluated by electrochemical techniques. The results showed that ATMSM represented a sufficient corrosion resistance with the driving force based on the potential difference of more than approximately 0.60 V between the thermal spraying layer and the base substrate steel. Furthermore, it was found that the sealing treatment of specimens had suppressed the dissolution of metals, increased the corrosion potential, decreased the corrosion current density and increased the polarization resistance. Metal alloy Al–Mg (95%:5%) by mass with epoxy sealing coating led to the most successful anti-corrosion performance in these electrochemical experiments. PMID:28788271

  9. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    NASA Astrophysics Data System (ADS)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  10. Comparison of UNL laser imaging and sizing system and a phase Doppler system for analyzing sprays from a NASA nozzle

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis R.

    1990-01-01

    Research was conducted on characteristics of aerosol sprays using a P/DPA and a laser imaging/video processing system on a NASA MOD-1 air assist nozzle being evaluated for use in aircraft icing research. Benchmark tests were performed on monodispersed particles and on the NASA MOD-1 nozzle under identical lab operating conditions. The laser imaging/video processing system and the P/DPA showed agreement on a calibration tests in monodispersed aerosol sprays of + or - 2.6 micron with a standard deviation of + or - 2.6 micron. Benchmark tests were performed on the NASA MOD-1 nozzle on the centerline and radially at 0.5 inch increments to the outer edge of the spray plume at a distance 2 ft downstream from the exit nozzle. Comparative results at two operation conditions of the nozzle are presented for the two instruments. For the 1st case studied, the deviation in arithmetic mean diameters determined by the two instruments was in a range of 0.1 to 2.8 micron, and the deviation in Sauter mean diameters varied from 0 to 2.2 micron. Severe operating conditions in the 2nd case resulted in the arithmetic mean diameter deviating from 1.4 to 7.1 micron and the deviation in the Sauter mean diameters ranging from 0.4 to 6.7 micron.

  11. Comparison of UNL laser imaging and sizing system and a phase/Doppler system for analyzing sprays from a NASA nozzle

    NASA Technical Reports Server (NTRS)

    Alexander, Dennis R.

    1988-01-01

    Aerosol spray characterization was done using a P/DPA and a laser imaging/video processing system on a NASA MOD-1 air-assist nozzle being evaluated for use in aircraft icing research. Benchmark tests were performed on monodispersed particles and on the NASA MOD-1 nozzle under identical laboratory operating conditions. The laser imaging/video processing system and the P/DPA showed agreement on calibration tests in monodispersed aerosol sprays of + or - 2.6 microns with a standard deviation of + or - 2.6 microns. Tests were performed on the NASA MOD-1 nozzle on the centerline and radially at one-half inch increments to the outer edge of the spray plume at a distance two feet (0.61 m) downstream from the exit of the nozzle. Comparative results at two operating conditions of the nozzle are presented for the two instruments. For the first case, the deviation in arithmetic mean diameters determined by the two instruments was in a range of 0.1 to 2.8 microns, and the deviation in Sauter mean diameters varied from 0 to 2.2 microns. Operating conditions in the second case were more severe which resulted in the arithmetic mean diameter deviating from 1.4 to 7.1 microns and the deviation in the Sauter mean diameters ranging from 0.4 to 6.7 microns.

  12. Modeling spray/puddle dissolution processes for deep-ultraviolet acid-hardened resists

    NASA Astrophysics Data System (ADS)

    Hutchinson, John M.; Das, Siddhartha; Qian, Qi-De; Gaw, Henry T.

    1993-10-01

    A study of the dissolution behavior of acid-hardened resists (AHR) was undertaken for spray and spray/puddle development processes. The Site Services DSM-100 end-point detection system is used to measure both spray and puddle dissolution data for a commercially available deep-ultraviolet AHR resist, Shipley SNR-248. The DSM allows in situ measurement of dissolution rate on the wafer chuck and hence allows parameter extraction for modeling spray and puddle processes. The dissolution data for spray and puddle processes was collected across a range of exposure dose and postexposure bake temperature. The development recipe was varied to decouple the contribution of the spray and puddle modes to the overall dissolution characteristics. The mechanisms involved in spray versus puddle dissolution and the impact of spray versus puddle dissolution on process performance metrics has been investigated. We used the effective-dose-modeling approach and the measurement capability of the DSM-100 and developed a lumped parameter model for acid-hardened resists that incorporates the effects of exposure, postexposure bake temperature and time, and development condition. The PARMEX photoresist-modeling program is used to determine parameters for the spray and for the puddle process. The lumped parameter AHR model developed showed good agreement with experimental data.

  13. Liquid Fertilizer Spraying Performance Using A Knapsack Power Sprayer On Soybean Field

    NASA Astrophysics Data System (ADS)

    Gatot, P.; Anang, R.

    2018-05-01

    An effort for increasing soybean production can be conducted by applying liquid fertilizer on soybean cultivation field. The objective of this research was to determine liquid fertilizer spraying performance using knapsack power sprayer TASCO TF-900 on a soybean cultivation field. Performances test were conducted in the Laboratory of Spraying Test and on a soybean cultivation field to determine (1) effective spraying width, (2) droplets diameter, (3) droplets density, (4) effective spraying discharge rate, and (5) effective field capacity of spraying. The research was conducted using 2 methods: (1) one-nozzle spraying, and (2) four- nozzles spraying. Results of the research showed that at a constant pressure of 900 kPa effective spraying width using one-nozzle spraying and four-nozzles spraying were 0.62 m and 1.10 m. A bigger effective spraying width was resulted in a bigger average effective spraying discharge rate and average effective spraying field capacity of 4.52 l/min and 83.92 m2/min on forward walking speed range of 0.94 m/s up to 1.77 m/s. On the contrary, bigger effective spraying width was result in bigger droplets diameter of 502.73 μm and a smaller droplets density of 98.39 droplets/cm2, whereas smaller effective spraying width was resulted in a smaller droplets diameter of 367.09 μm and a bigger droplets density of 350.53 droplets/cm2. One-nozzle spraying method produced a better spraying quality than four-nozzles spraying method, although four-nozzles spraying was resulted in a bigger effective field capacity of spraying.

  14. Warm Spraying of High-Strength Ni-Al-Bronze: Cavitation Characteristics and Property Prediction

    NASA Astrophysics Data System (ADS)

    Krebs, Sebastian; Kuroda, Seiji; Katanoda, Hiroshi; Gaertner, Frank; Klassen, Thomas; Araki, Hiroshi; Frede, Simon

    2017-01-01

    Bronze materials such as Ni-Al-bronze show exceptional performances against cavitation erosion, due to their high fatigue strength and high strength. These materials are used for ship propellers, pump systems or for applications with alternating stresses. Usually, the respective parts are cast. With the aim to use resources more efficiently and to reduce costs, this study aimed to evaluate opportunities to apply bronze as a coating to critical areas of respective parts. The coatings should have least amounts of pores and non-bonded areas and any contaminations that might act as crack nuclei and contribute to material damages. Processes with low oxidation and high kinetic impacts fulfill these criteria. Especially warm spraying, a nitrogen-cooled HVOF process, with similar impact velocities as cold gas spraying but enhanced process temperature, allows for depositing high-strength Ni-Al-bronze. This study systematically simulates and evaluates the formation and performance of warm-sprayed Ni-Al-bronze coatings for different combustion pressures and nitrogen flow rates. Substrate preheating was used to improve coating adhesion for lower spray parameter sets. Furthermore, this study introduces an energy-based concept to compare spray parameter sets and to predict coating properties. Coatings with low porosities and high mechanical strengths are obtained, allowing for a cavitation resistance similar to bulk material.

  15. NASA Glenn Propulsion Systems Lab (PSL) Icing Facility Update

    NASA Technical Reports Server (NTRS)

    Thomas, Queito P.

    2015-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, PSL is capable of simulation of in-flight icing events in a ground test facility. The system was designed to operate at altitudes from 4,000 ft. to 40,000 ft. at Mach numbers up to 0.8M and inlet total temperatures from -60F to +15F.

  16. Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Sampath, Sanjay

    2010-09-01

    Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray's versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are "passive" protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.

  17. In Vitro Assessment of Spray Deposition Patterns in a Pediatric (12 Year-Old) Nasal Cavity Model.

    PubMed

    Sawant, Namita; Donovan, Maureen D

    2018-03-26

    Nasal sprays available for the treatment of cold and allergy symptoms currently use identical formulations and devices for adults as well as for children. Due to the obvious differences between the nasal airway dimensions of a child and those of an adult, the performance of nasal sprays in children was evaluated. Deposition patterns of nasal sprays administered to children were tested using a nasal cast based on MRI images obtained from a 12 year old child's nasal cavity. Test formulations emitting a range of spray patterns were investigated by actuating the device into the pediatric nasal cast under controlled conditions. The results showed that the nasal sprays impacted in the anterior region of the 12 year old child's nasal cavity, and only limited spray entered the turbinate region - the effect site for most topical drugs and the primary absorptive region for systemically absorbed drugs. Differences in deposition patterns following the administration of nasal sprays to adults and children may lead to differences in efficacy between these populations. Greater anterior deposition in children may result in decreased effectiveness, greater anterior dosage form loss, and the increased potential for patient non-compliance.

  18. Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay

    2015-07-01

    Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.

  19. Influence of temperature and relative humidity conditions on the pan coating of hydroxypropyl cellulose molded capsules.

    PubMed

    Macchi, Elena; Zema, Lucia; Pandey, Preetanshu; Gazzaniga, Andrea; Felton, Linda A

    2016-03-01

    In a previous study, hydroxypropyl cellulose (HPC)-based capsular shells prepared by injection molding and intended for pulsatile release were successfully coated with 10mg/cm(2) Eudragit® L film. The suitability of HPC capsules for the development of a colon delivery platform based on a time dependent approach was demonstrated. In the present work, data logging devices (PyroButton®) were used to monitor the microenvironmental conditions, i.e. temperature (T) and relative humidity (RH), during coating processes performed under different spray rates (1.2, 2.5 and 5.5g/min). As HPC-based capsules present special features, a preliminary study was conducted on commercially available gelatin capsules for comparison purposes. By means of PyroButton data-loggers it was possible to acquire information about the impact of the effective T and RH conditions experienced by HPC substrates during the process on the technological properties and release performance of the coated systems. The use of increasing spray rates seemed to promote a tendency of the HPC shells to slightly swell at the beginning of the spraying process; moreover, capsules coated under spray rates of 1.2 and 2.5g/min showed the desired release performance, i.e. ability to withstand the acidic media followed by the pulsatile release expected for uncoated capsules. Preliminary stability studies seemed to show that coating conditions might also influence the release performance of the system upon storage. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Demonstration of no-VOC/no-HAP wood furniture coating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, E.W.; Guan, R.; McCrillis, R.C.

    1997-12-31

    The United States Environmental Protection Agency has contracted with AeroVironment Environmental Services, Inc. and its subcontractor, Adhesive Coating Co., to develop and demonstrate a no-VOC (volatile organic compound)/no-HAP (hazardous air pollutant) wood furniture coating system. The objectives of this project are to develop a new wood coating system that is sufficiently mature for demonstration and to develop a technology transfer plan to get the product into public use. The performance characteristics of this new coating system are excellent in terms of adhesion, drying times, gloss, hardness, mar resistance, level of solvents, and stain resistance. Workshops will be held to providemore » detailed information to wood furniture manufacturers on what is required to change to the new coating system. Topics such as spray gun selection, spray techniques, coating repair procedures, drying times and procedures, and spray equipment cleaning materials and techniques will be presented. A cost analysis, including costs of materials, capital outlay, and labor will be conducted comparing costs to finish furniture with the new system to systems currently used. Film performance, coating materials cost per unit production, productivity, manufacturing changes, and emission levels will be compared in the workshops, based on data gathered during the in-plant, full scale demonstrations.« less

  1. Spray visualization of alternative fuels at hot ambient conditions

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2017-11-01

    Gas-to-Liquid (GTL) has gained significant interest as drop-in alternative jet fuel owing to its cleaner combustion characteristics. The physical and evaporation properties of GTL fuels are different from those of the conventional jet fuels. Those differences will have an effect on the spray, and in turn, the combustion performance. In this study, the non-reacting near nozzle spray dynamics such as spray cone angle, liquid sheet breakup and liquid velocity of GTL fuel will be investigated and compared with those of the conventional jet fuel. This work is a follow up of the preliminary study performed at atmospheric ambient conditions where differences were observed in the near nozzle spray characteristics between the fuels. Whereas, in this study the spray visualization will be performed in a hot and inert environment to account for the difference in evaporation characteristics of the fuels. The spray visualization images will be captured using the shadowgraph technique. A rigorous statistical analysis of the images will be performed to compare the spray dynamics between the fuels.

  2. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    PubMed Central

    Stajnko, Denis; Berk, Peter; Lešnik, Mario; Jejčič, Viktor; Lakota, Miran; Štrancar, Andrej; Hočevar, Marko; Rakun, Jurij

    2012-01-01

    This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD) on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits. PMID:23202220

  3. A study on post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems

    NASA Astrophysics Data System (ADS)

    Shahariar, G. M. H.; Wardana, M. K. A.; Lim, O. T.

    2018-04-01

    The post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems was numerically investigated in a constant volume chamber using STAR CCM+ CFD code. The turbulence flow was modelled by realizable k-ε two-layer model together with standard wall function and all y+ treatment was applied along with two-layer approach. The Eulerian-Lagrangian approach was used for the modelling of multi phase flow. Urea water solution (UWS) was injected onto the heated wall for the wall temperature of 338, 413, 473, 503 & 573 K. Spray development after impinging on the heated wall was visualized and measured. Droplet size distribution and droplet evaporation rates were also measured, which are vital parameters for the system performance but still not well researched. Specially developed user defined functions (UDF) are implemented to simulate the desired conditions and parameters. The investigation reveals that wall temperature has a great impact on spray development after impingement, droplet size distribution and evaporation. Increasing the wall temperature leads to longer spray front projection length, smaller droplet size and faster droplet evaporation which are preconditions for urea crystallization reduction. The numerical model and parameters are validated comparing with experimental data.

  4. 46 CFR 35.40-18 - Water spray systems-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Water spray systems-TB/ALL. 35.40-18 Section 35.40-18 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-18 Water spray systems—TB/ALL. (a) Water spray system apparatus shall be marked: “WATER SPRAY SYSTEM,” as appropriate, in not...

  5. 46 CFR 35.40-18 - Water spray systems-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Water spray systems-TB/ALL. 35.40-18 Section 35.40-18 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-18 Water spray systems—TB/ALL. (a) Water spray system apparatus shall be marked: “WATER SPRAY SYSTEM,” as appropriate, in not...

  6. Comparison of the Characteristics and Performance of Flurbiprofen 8.75 mg Spray for Sore Throat.

    PubMed

    Veale, David; Shephard, Adrian; Adams, Verity; Lidster, Charlotte

    2017-01-01

    Sore throat sprays provide targeted relief by delivering the active ingredient directly to the site of pain. Different sprays vary in characteristics, thus affecting delivery of the active ingredient to the throat, which can impact compliance. The characteristics and performance of FLURBIPROFEN 8.75 mg SPRAY were compared with 12 other sprays. Parameters assessed included spray angle and pattern, droplet size distribution, shot weight uniformity and shot weight throughout life. Among all sprays tested WICK Sulagil Halsspray had the smallest spray angle (46°) and also the smallest diameter spray pattern (X=32.8 mm; Y=34.4 mm). Thiovalone® Buccal Spray Suspension had both the largest spray angle (82°) and largest diameter spray pattern (X=62.6 mm; Y=78.0 mm). Hasco Sept® Aerosol Spray had the smallest droplet size (Dv90=118.4 μm) whereas OKi infiammazione e dolore® 0.16% spray had the largest (Dv90=214.34 μm). In terms of shot weight uniformity, TANTUM® VERDE GOLA 0.25% spray showed the least variation (2% RSD) between shots and UNIBEN Aerosol Spray the most (23.4% RSD). Shot weight throughout life studies showed that FLURBIPROFEN 8.75 mg SPRAY had the least deviation from shot weight (1.77%) whereas OKi infiammazione e dolore® 0.16% spray deviated the most (44.9%). FLURBIPROFEN 8.75 mg SPRAY had the second smallest spray angle/pattern and droplet size distribution and also the least variation in shot weight. Different sore throat sprays vary in different attributes, affecting delivery of the active ingredient. FLURBIPROFEN 8.75 mg SPRAY performed well overall, ranking first among all sprays tested, and providing a dose which is targeted and uniformly delivered throughout the life of the bottle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Development of an Improved Inhalable Powder Formulation of Pirfenidone by Spray-Drying: In Vitro Characterization and Pharmacokinetic Profiling.

    PubMed

    Seto, Yoshiki; Suzuki, Gen; Leung, Sharon Shui Yee; Chan, Hak-Kim; Onoue, Satomi

    2016-06-01

    Previously, a respirable powder (RP) formulation of pirfenidone (PFD) was developed for reducing phototoxic risk; however, PFD-RP demonstrated unacceptable in vitro inhalation performance. The present study aimed to develop a new RP system of PFD with favorable inhalation properties by spray-drying method. Spray-dried PFD (SD/PFD) was prepared by spray-drying with L-leucine, and the physicochemical properties and efficacy in an antigen-sensitized airway inflammation model were assessed. A pharmacokinetic study was also conducted after intratracheal and oral administration of PFD formulations. Regarding powder characterization, SD/PFD had dimpled surface with the mean diameter of 1.793 μm. In next generation impactor analysis, SD/PFD demonstrated high in vitro inhalation performance without the need of carrier particles, and the fine particle fraction of SD/PFD was calculated to be 62.4%. Insufflated SD/PFD (0.3 mg-PFD/rat) attenuated antigen-evoked inflammatory events in the lung, including infiltration of inflammatory cells and myeloperoxidase activity. Systemic exposure level of PFD after insufflation of SD/PFD at the pharmacologically effective dose was 600-fold lower than that after oral administration of PFD at the phototoxic dose. SD/PFD would be suitable for inhalation, and the utilization of an RP system with SD/PFD would provide a safer medication compared with oral administration of PFD.

  8. Electrospray performance of interacting multi-capillary emitters in a linear array

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Srivastava, A.; Shanbhogue, K. M.; Ingersol, S.; Sen, A. K.

    2018-03-01

    Here, we report electrospray performance of multiple emitters (of internal diameter 200 µm) arranged in a linear (inline) array. For a fixed flow rate Q , at higher voltages {{V}a} , multi-jet mode is observed, which leads to a rapid increase in the spray current (I∼ {{V}a} ) as compared to the single cone-jet case (I∼ Va0.8 ). A theoretical model is presented that predicts (within 10% of experimental data) the divergence of sprays g(x) issued from a pair of interacting emitters due to the mutual Columbic interaction of space charges. The variation of onset voltage {{V}o} and spray current I with spacing between the emitters p is studied and it is found that {{V}o}∼ {{p}-0.2} and I∼ {{p}0.8} . The effect of the flow rate Q , voltage V and number of emitters ~n~ on the spray current I is investigated and it is found that I∼ {{Q}0.5} , I∼ Va0.8 and I∼ \\sqrt{n} . The present work provides insight regarding the behavior of interacting sprays in an inline configuration and could be significant in the design of multiple emitter systems for electrospray applications.

  9. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction

    PubMed Central

    Fritz, Bradley K.; Hoffmann, W. Clint

    2016-01-01

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589

  10. Assessing sea wave and spray effects on Marine Boundary Layer structure

    NASA Astrophysics Data System (ADS)

    Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George

    2017-04-01

    Air sea interface is characterized by several mechanical and thermodynamical processes. Heat, moisture and momentum exchanges increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to sea surface roughness and sea spray. Sea spray fluxes can affect atmospheric stability and induce microphysical processes such as sea salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of sea spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, sea salt aerosols and droplet thermodynamic processes and handles sea salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.

  11. Thermal Protection System Application to Composite Cryotank Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Protz, Alison; Nettles, Mindy

    2015-01-01

    The EM41 Thermal Protection System (TPS) team contributed to the success of the Composite Cryotank Technology Demonstrator (CCTD) manufacturing by developing and implementing a low-cost solution to apply cryoinsulation foam on the exterior surface of the tank in the NASA Marshall Space Flight Center (MSFC) TPS Development Facility, Bldg. 4765. The TPS team used techniques developed for the smallscale composite cryotank to apply Stepanfoam S-180 polyurethane foam to the 5.5-meter CCTD using a manual spray process. Manual spray foam technicians utilized lifts and scaffolding to access the barrel and dome sections of the large-scale tank in the horizontal orientation. During manufacturing, the tank was then oriented vertically, allowing access to the final barrel section for manual spray foam application. The CCTD was the largest application of manual spray foam performed to date with the S-180 polyurethane foam and required the TPS team to employ best practices for process controls on the development article.

  12. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    PubMed

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  13. Ultrasonic technique for measuring porosity of plasma-sprayed alumina coatings

    NASA Astrophysics Data System (ADS)

    Parthasarathi, S.; Tittmann, B. R.; Onesto, E. J.

    1997-12-01

    Porosity is an important factor in plasma-sprayed coatings, especially ceramic coatings. Excessive poros-ity can adversely affect the performance of the coated component in various ways. An ultrasonic nonde-structive measurement technique has been developed to measure porosity in plasma-sprayed alumina coatings. The technique is generic and can be extended to other ceramic coating systems. To test the tech-nique, freestanding alumina coatings with varying levels of porosity were fabricated via plasma spray. Samples with varying porosity, obtained through innovative fabrication techniques, were used to gener-ate a calibration curve. The ultrasonic velocity in the low-frequency range was found to be dependent on the density of freestanding coatings (measured via Archimedian techniques). This dependence is the basis of the development of a technique to measure the density of coatings.

  14. Transparent electrodes made with ultrasonic spray coating technique for flexible heaters

    NASA Astrophysics Data System (ADS)

    Wroblewski, G.; Krzemiński, J.; Janczak, D.; Sowiński, J.; Jakubowska, M.

    2017-08-01

    Transparent electrodes are one of the basic elements of various electronic components. The paper presents the preliminary results related to novel method of ultrasonic spray coating used for fabrication of transparent flexible electrodes. Experiments were conducted by means of specially made laboratory setup composed of ultrasonic spray generator and XYZ plotter. In the first part of the paper diverse solvents were used to determine the crucial technological parameters such as atomization voltage and fluid flow velocity. Afterwards paint containing carbon nanotubes suspended in the two solvent system was prepared and deposited on the polyethylene terephthalate foil. Thickness, roughness and electrical measurements were performed to designate the relations of technological parameters of ultrasonic spray coating on thickness, roughness, sheet resistance and optical transmission of fabricated samples.

  15. A Global Approach to the Optimal Trajectory Based on an Improved Ant Colony Algorithm for Cold Spray

    NASA Astrophysics Data System (ADS)

    Cai, Zhenhua; Chen, Tingyang; Zeng, Chunnian; Guo, Xueping; Lian, Huijuan; Zheng, You; Wei, Xiaoxu

    2016-12-01

    This paper is concerned with finding a global approach to obtain the shortest complete coverage trajectory on complex surfaces for cold spray applications. A slicing algorithm is employed to decompose the free-form complex surface into several small pieces of simple topological type. The problem of finding the optimal arrangement of the pieces is translated into a generalized traveling salesman problem (GTSP). Owing to its high searching capability and convergence performance, an improved ant colony algorithm is then used to solve the GTSP. Through off-line simulation, a robot trajectory is generated based on the optimized result. The approach is applied to coat real components with a complex surface by using the cold spray system with copper as the spraying material.

  16. Joint Test Plan for Gas Dynamic Spray Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2008-01-01

    Air Force Space Command (AFSPC) and NASA have similar missions, facilities, and structures located in similar harsh environments. Both are responsible for a number of facilities/structures with metallic structural and non-structural components in highly and moderately corrosive environments. Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are subject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by AFSPC and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GDS) technology (also known as Cold Spray) will be evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GDS coatings also have no VOCs and are environmentally preferable coatings. To achieve a condition suitable for the application of a coating system, including GDS coatings, the substrate must undergo some type of surface preparation and/or depainting operation to ensure adhesion of the new coating system. The GDS unit selected for demonstration has a powder feeding system that can be used for surface preparation or coating application. The surface preparation feature will also be examined. The primary objective of this effort is to demonstrate GDS technology as a repair method for TSCs. The project will also determine the optimal GDS coating thickness for acceptable performance. Successful completion of this project will result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations and will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  17. Spray Characteristics of a Hybrid Twin-Fluid Pressure-Swirl Atomizer

    NASA Technical Reports Server (NTRS)

    Durham, M. J.; Sojka, P. E.; Ashmore, C. B.

    2004-01-01

    The spray performance of a fuel injection system applicable for use in main combustion chamber of an oxidizer-rich staged combustion (ORSC) cycles is presented. The experimental data reported here include mean drop size and drop size distribution, spray cone half-angle, and momentum rate (directly related to spray penetration). The maximum entropy formalism, MEF, method to predict drop size distribution is applied and compared to the experimental data. Geometric variables considered include the radius of the injector inlet orifice plate through which oxidizer flows (&) and the exposed length from the fuel inlet to the injector exit plane (L2). Operating conditions that were varied include the liquid mass flow rate and air mass flow rate. For orifices B and C there is a significant dependence of D3Z on both the air and liquid mass flow rates, as well as on L2. For the A orifice, the momentum rate of the air flow appears to exceed a threshold value above which a constant D32 is obtained. Using the MEF method, a semi-analytical process was developed to model the spray distribution using two input parameters (q = 0.4 and Dso). The momentum rate of the spray is directly related to the air and liquid mass flow rates. The cone half angle of the spray ranges from 25 to 17 degrees. The data resulting from this project will eventually be used to develop advanced rocket systems.

  18. 46 CFR 34.05-5 - Fire extinguishing systems-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... described in 46 CFR subpart 95.16 or a water spray system must be installed in all lamp and paint lockers... 46 CFR subpart 95.16, a foam spray system, or a water spray system must be installed for the...

  19. 46 CFR 34.05-5 - Fire extinguishing systems-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... described in 46 CFR subpart 95.16 or a water spray system must be installed in all lamp and paint lockers... 46 CFR subpart 95.16, a foam spray system, or a water spray system must be installed for the...

  20. 46 CFR 34.05-5 - Fire extinguishing systems-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... described in 46 CFR subpart 95.16 or a water spray system must be installed in all lamp and paint lockers... 46 CFR subpart 95.16, a foam spray system, or a water spray system must be installed for the...

  1. Review of the MDF-LSA 100 Spray Decontamination System

    DTIC Science & Technology

    2011-12-01

    decontamination technology. In October 2000, SNL received funding from the U.S. Department of Energy’s and National Nuclear Security Administration’s...UNCLASSIFIED DSTO-GD-0662 The MDF-LSA 200 is supplied or created as a foam, liquid or aerosol. The foam can be sprayed from handheld canisters . When the foam...DSTO Publications Repository http://dspace.dsto.defence.gov.au/dspace/ 14. RELEASE AUTHORITY Chief, Human Protection and Performance

  2. Application of High Performance Computing for Simulations of N-Dodecane Jet Spray with Evaporation

    DTIC Science & Technology

    2016-11-01

    sprays and develop a predictive theory for comparison to measurements in the laboratory of turbulent diesel sprays. 15. SUBJECT TERMS high...models into future simulations of turbulent jet sprays and develop a predictive theory for comparison to measurements in the lab of turbulent diesel ...A critical component of maintaining performance and durability of a diesel engine involves the formation of a fuel-air mixture as a diesel jet spray

  3. A New Type of Self-lubricated Thermal Spray Coatings: Liquid Lubricants Embedded in a Metal Matrix

    NASA Astrophysics Data System (ADS)

    Espallargas, N.; Armada, S.

    2015-01-01

    Oils and greases are commonly used for lubricating, rotating and sliding systems such as bearings, gears, connectors, etc. The maintenance of such lubricated systems in some applications where access is difficult (e.g., offshore wind farms and subsea equipment) increases the operational costs. In some cases, it can be thought that the use of solid lubricants (MoS2, PTFE, graphite, etc.) embedded in coatings could be a solution for such applications; however, the mechanical and dynamic conditions of most of the systems are not appropriate for solid lubricants. Despite this, solid lubricants such as PTFE and MoS2 have been largely employed in different industries, especially in those applications where liquid lubricants cannot be used and when the dynamic conditions allow for it. Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Although the use of liquid lubricants is desirable whenever it is possible, limited research has been addressed toward the development of self-lubricated coatings containing liquid lubricants. One of the main reasons for this is due to the complexity of embedding liquid lubricant reservoirs inside the coating matrix. In the present work, a new type of liquid-solid self-lubricated coatings is presented, being the matrix a metal alloy. Three thermal spray techniques used were as follows: arc-spray, plasma spray, and HVOAF. The metal matrices were two stainless steel types and liquid lubricant-filled capsules with different liquid contents were used. No degradation of the capsules during spraying was observed and the coatings containing capsules were able to keep a low coefficient of friction. The optimal performance is found for the coatings obtained at the lowest spraying temperature and velocity.

  4. Microstructural characteristics of plasma sprayed nanostructured partially stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Lima, Rogerio Soares

    Thermal barrier coatings have been extensively applied in the aerospace industry in turbines and rocket engines as an insulation system. Partially stabilized zirconia, due to its high thermal stability and low thermal conductivity at high temperatures has been traditionally employed as the ceramic element of the thermal barrier coating system. Different approaches have been taken in order to improve the performance of these coatings. Nanostructured materials are promising an interesting future in the beginning of the 21st century. Due to its enhanced strain to failure and superplasticity new applications may be accomplished or the limits of materials utilization may be placed at higher levels. Single nanostructured particles can not be thermal sprayed by conventional thermal spray equipment. Due to its low mass, they would be deviated to the periphery of the thermal spray jet. To overcome this characteristic, single nanostructured particles were successively agglomerated into large microscopic particles, with particle size distribution similar to the conventional feedstocks for thermal spray equipment. Agglomerated nanostructured particles of partially stabilized zirconia were plasma sprayed in air with different spray parameters. According to traditional thermal spray procedure, the feedstock has to be melted in the thermal spray jet in order to achieve the necessary conditions for adhesion and cohesion on the substrate. Due to the nature of the nanostructured particles, a new step has to be taken in the thermal spray processing; particle melting has to be avoided in order to preserve the feedstock nanostructure in the coating overall microstructure. In this work, the adhesion/cohesion system of nanostructured coatings is investigated and clarified. A percentage of molten particles will retain and hold the non-molten agglomerated nanostructured particles in the coating overall microstructure. Controlling the spray parameters it was possible to produce coatings with different levels of non-molten particles in the coating microstructure; from 25 to 50%. The presence of non-molten and molten phases in the coating microstructure, results in an unique mechanical behavior. The nanostructured coatings present a bimodal distribution with respect to the mechanical properties; each mode has origin from one of the phases. The phases were carefully mapped via scanning electron microscopy and microhardness measurements. These results enabled us to create a model for mechanical properties prediction. This finding is considered one of the most important achievements of this work.

  5. Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme.

    PubMed

    Ji, Shuying; Thulstrup, Peter Waaben; Mu, Huiling; Hansen, Steen Honoré; van de Weert, Marco; Rantanen, Jukka; Yang, Mingshi

    2016-11-20

    In the spray drying process, organic solvents can be added to facilitate drying, accommodate certain functional excipients, and modify the final particle characteristics. In this study, lysozyme was used as a model pharmaceutical protein to study the effect of ethanol as a co-solvent on the stability and aerosol performance of spray-dried protein. Lysozyme was dissolved in solutions with various ratios of ethanol and water, and subsequently spray-dried. A change from spherical particles into wrinkled and folded particles was observed upon increasing the ratio of ethanol in the feed. The aerosol performance of the spray-dried lysozyme from ethanol-water solution was improved compared to that from pure water. The conformation of lysozyme in the ethanol-water solution and spray dried powder was altered, but the native structure of lysozyme was restored upon reconstitution in water after the spray drying process. The enzymatic activities of the spray-dried lysozyme showed no significant impact of ethanol; however, the lysozyme enzymatic activity was ca. 25% lower compared to the starting material. In conclusion, the addition of ethanol as a co-solvent in the spray drying feed for lysozyme did not compromise the conformation of the protein after drying, while it improved the inhaled aerosol performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Spray nozzle investigation for the Improved Helicopter Icing Spray System (IHISS)

    NASA Technical Reports Server (NTRS)

    Peterson, Andrew A.; Oldenburg, John R.

    1990-01-01

    A contract has been awarded by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System. Data are shown for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle. The IHISS, capable of deployment from any CH-47 helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.

  7. Water spray ventilator system for continuous mining machines

    DOEpatents

    Page, Steven J.; Mal, Thomas

    1995-01-01

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  8. Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop

    PubMed Central

    Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An

    2016-01-01

    Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors—together with their interfaces in the transponder—are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated. PMID:27490546

  9. Thermal spray for commercial shipbuilding

    NASA Astrophysics Data System (ADS)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  10. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  11. Application of External Axis in Robot-Assisted Thermal Spraying

    NASA Astrophysics Data System (ADS)

    Deng, Sihao; Fang, Dandan; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2012-12-01

    Currently, industrial robots are widely used in the process of thermal spraying because of their high efficiency, security, and repeatability. Although robots are found suitable for use in industrial productions, they have some natural disadvantages because of their six-axis mechanical linkages. When a robot performs a series of stages of production, it could be hard to move from one to another because a few axes reach their limit value. For this reason, an external axis should be added to the robot system to extend the reachable space of the robots. This article concerns the application of external axis on ABB robots in thermal spraying and the different methods of off-line programming with external axis in the virtual environment. The developed software toolkit was applied to coat real workpiece with a complex geometry in atmospheric plasma spraying).

  12. Radiation-Spray Coupling for Realistic Flow Configurations

    NASA Technical Reports Server (NTRS)

    El-Asrag, Hossam; Iannetti, Anthony C.

    2011-01-01

    Three Large Eddy Simulations (LES) for a lean-direct injection (LDI) combustor are performed and compared. In addition to the cold flow simulation, the effect of radiation coupling with the multi-physics reactive flow is analyzed. The flame let progress variable approach is used as a subgrid combustion model combined with a stochastic subgrid model for spray atomization and an optically thin radiation model. For accurate chemistry modeling, a detailed Jet-A surrogate mechanism is utilized. To achieve realistic inflow, a simple recycling technique is performed at the inflow section upstream of the swirler. Good comparison is shown with the experimental data mean and root mean square profiles. The effect of combustion is found to change the shape and size of the central recirculation zone. Radiation is found to change the spray dynamics and atomization by changing the heat release distribution and the local temperature values impacting the evaporation process. The simulation with radiation modeling shows wider range of droplet size distribution by altering the evaporation rate. The current study proves the importance of radiation modeling for accurate prediction in realistic spray combustion configurations, even for low pressure systems.

  13. Recent Trends in Newly Developed Plasma-Sprayed and Sintered Coatings for Implant Applications

    NASA Astrophysics Data System (ADS)

    Bsat, Suzan; Speirs, Andrew; Huang, Xiao

    2016-08-01

    The current paper aims to review recent trends (2011 to 2015) in newly developed plasma-sprayed and sintered coatings for implant applications. Recent developments in plasma-sprayed and sintered coatings have focused on improving biological performance, bacterial growth resistance, and mechanical properties, predominantly of HA and glass ceramics. The majority of these improvements are attributed to the addition of dopants. To improve biological performance, trace elements, such as Zn and Mg, both of which are found in bone, were added to replicate the functions they provide for the skeletal system. Though bacterial growth resistance is traditionally improved by Ag dopant, the addition of new dopants such as CeO2 and Zn were explored as well. Great effort has also been made to improve coating adherence and reduce stresses by minimizing coefficient of thermal expansion mismatch between the coating and substrate through the addition of elements such as Zn and Mg or the inclusion of a buffer layer. For sintering process in particular, there was an emphasis on reducing sintering temperature through modification of 45S5 Bioglass. New plasma spray and sintering technologies aimed at reducing high-temperature exposure are briefly introduced as well. These include microplasma spray and spark plasma sintering.

  14. Enhanced Quality Factor Label-free Biosensing with Micro-Cantilevers Integrated into Microfluidic Systems.

    PubMed

    Kartanas, Tadas; Ostanin, Victor; Challa, Pavan Kumar; Daly, Ronan; Charmet, Jerome; Knowles, Tuomas P J

    2017-11-21

    Microelectromechanical systems (MEMS) have enabled the development of a new generation of sensor platforms. Acoustic sensor operation in liquid, the native environment of biomolecules, causes, however, significant degradation of sensing performance due to viscous drag and relies on the availability of capture molecules to bind analytes of interest to the sensor surface. Here, we describe a strategy to interface MEMS sensors with microfluidic platforms through an aerosol spray. Our sensing platform comprises a microfluidic spray nozzle and a microcantilever array operated in dynamic mode within a closed loop oscillator. A solution containing the analyte is sprayed uniformly through picoliter droplets onto the microcantilever surface; the micrometer-scale drops evaporate rapidly and leave the solutes behind, adding to the mass of the cantilever. This sensing scheme results in a 50-fold increase in the quality factor compared to operation in liquid, yet allows the analytes to be introduced into the sensing system from a solution phase. It achieves a 370 femtogram limit of detection, and we demonstrate quantitative label-free analysis of inorganic salts and model proteins. These results demonstrate that the standard resolution limits of cantilever sensing in dynamic mode can be overcome with the integration of spray microfluidics with MEMS.

  15. The Effect of Spray Strips on the Take-off Performance of a Model of a Flying-Boat Hull

    NASA Technical Reports Server (NTRS)

    Truscott, Starr

    1935-01-01

    The effect on the take-off performance of a model of the hull of a typical flying boat, Navy PH-1, of fitting spray strips of four different widths, each at three different angles, was determined by model tests in the NACA Tank. Spray strips of widths up to 3 percent of the beam improve the general performance at speeds near the hump and reduce the spray thrown. A downward angle of 30 degrees to 45 degrees in the neighborhood of the step seems most favorable for the reduction of the spray. The spray strips have a large effect in reducing the trimming moments at speeds near the hump speed, but have little effect on them at high speeds.

  16. Arc spray process for the aircraft and stationary gas turbine industry

    NASA Astrophysics Data System (ADS)

    Sampson, E. R.; Zwetsloot, M. P.

    1997-06-01

    Technological advances in arc spray have produced a system that competes favorably with other thermal spray processes. In the past, arc spray was thought of as a process for very large parts that need thick buildups. However, an attachment device known as the arc jet system has been developed that focuses the pattern and accelerates the particles. This attachment device, coupled with the in-troduction of metal-cored wires that provide the same chemistries as plasma-sprayed powders, pro-vides application engineers with a viable economic alternative to existing spray methods. A comparative evaluation of a standard production plasma spray system was conducted with the arc spray process using the attachment device. This evaluation was conducted by an airline company on four major parts coated with nickel-aluminum. Results show that, for these applications, the arc spray process offers several benefits.

  17. Agglomerated novel spray-dried lactose-leucine tailored as a carrier to enhance the aerosolization performance of salbutamol sulfate from DPI formulations.

    PubMed

    Molina, Carlos; Kaialy, Waseem; Chen, Qiao; Commandeur, Daniel; Nokhodchi, Ali

    2017-12-19

    Spray-drying allows to modify the physicochemical/mechanical properties of particles along with their morphology. In the present study, L -leucine with varying concentrations (0.1, 0.5, 1, 5, and 10% w/v) were incorporated into lactose monohydrate solution for spray-drying to enhance the aerosolization performance of dry powder inhalers containing spray-dried lactose-leucine and salbutamol sulfate. The prepared spray-dried lactose-leucine carriers were analyzed using laser diffraction (particle size), differential scanning calorimetry (thermal behavior), scanning electron microscopy (morphology), powder X-ray diffraction (crystallinity), Fourier transform infrared spectroscopy (interaction at molecular level), and in vitro aerosolization performance (deposition). The results showed that the efficacy of salbutamol sulfate's aerosolization performance was, in part, due to the introduction of L -leucine in the carrier, prior to being spray-dried, accounting for an increase in the fine particle fraction (FPF) of salbutamol sulfate from spray-dried lactose-leucine (0.5% leucine) in comparison to all other carriers. It was shown that all of the spray-dried carriers were spherical in their morphology with some agglomerates and contained a mixture of amorphous, α-lactose, and β-lactose. It was also interesting to note that spray-dried lactose-leucine particles were agglomerated during the spray-drying process to make coarse particles (volume mean diameter of 79 to 87 μm) suitable as a carrier in DPI formulations.

  18. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2000-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  19. Substrate system for spray forming

    DOEpatents

    Chu, Men G.; Chernicoff, William P.

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  20. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks formore » roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.« less

  1. Effect of Spray Distance on Microstructure and Tribological Performance of Suspension Plasma-Sprayed Hydroxyapatite-Titania Composite Coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Haifeng; Geng, Xin; Wang, Jingjing; Xiao, Jinkun; Zhu, Peizhi

    2016-10-01

    Hydroxyapatite (HA)-titania (TiO2) composite coatings prepared on Ti6Al4V alloy surface can combine the excellent mechanical property of the alloy substrate and the good biocompatibility of the coating material. In this paper, HA-TiO2 composite coatings were deposited on Ti6Al4V substrates using suspension plasma spray (SPS). X-ray diffraction, scanning electron microscopy, Fourier infrared absorption spectrometry and friction tests were used to analyze the microstructure and tribological properties of the obtained coatings. The results showed that the spray distance had an important influence on coating microstructure and tribological performance. The amount of decomposition phases decreased as the spray distance increased. The increase in spray distance from 80 to 110 mm improved the crystalline HA content and decreased the wear performance of the SPS coatings. In addition, the spray distance had a big effect on the coating morphology due to different substrate temperature resulting from different spray distance. Furthermore, a significant presence of OH- and CO3 2- was observed, which was favorable for the biomedical applications.

  2. Laminar flow burner system with infrared heated spray chamber and condenser.

    PubMed

    Hell, A; Ulrich, W F; Shifrin, N; Ramírez-Muñoz, J

    1968-07-01

    A laminar flow burner is described that provides several advantages in atomic absorption flame photometry. Included in its design is a heated spray chamber followed by a condensing system. This combination improves the concentration level of the analyte in the flame and keeps solvent concentration low. Therefore, sensitivities are significantly improved for most elements relative to cold chamber burners. The burner also contains several safety features. These various design features are discussed in detail, and performance data are given on (a) signal size, (b) signal-to-noise ratio, (c) linearity, (d) working range, (e) precision, and (g) accuracy.

  3. Theophylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance.

    PubMed

    Alhalaweh, Amjad; Kaialy, Waseem; Buckton, Graham; Gill, Hardyal; Nokhodchi, Ali; Velaga, Sitaram P

    2013-03-01

    The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NIC>THF-URE>THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties.

  4. Characterization of Modified Tapioca Starch Solutions and Their Sprays for High Temperature Coating Applications

    PubMed Central

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Shaari, Ku Zilati Ku

    2014-01-01

    The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature. PMID:24592165

  5. Effect of Particle and Carbide Grain Sizes on a HVOAF WC-Co-Cr Coating for the Future Application on Internal Surfaces: Microstructure and Wear

    NASA Astrophysics Data System (ADS)

    Pulsford, J.; Kamnis, S.; Murray, J.; Bai, M.; Hussain, T.

    2018-01-01

    The use of nanoscale WC grain or finer feedstock particles is a possible method of improving the performance of WC-Co-Cr coatings. Finer powders are being pursued for the development of coating internal surfaces, as less thermal energy is required to melt the finer powder compared to coarse powders, permitting spraying at smaller standoff distances. Three WC-10Co-4Cr coatings, with two different powder particle sizes and two different carbide grain sizes, were sprayed using a high velocity oxy-air fuel (HVOAF) thermal spray system developed by Castolin Eutectic-Monitor Coatings Ltd., UK. Powder and coating microstructures were characterized using XRD and SEM. Fracture toughness and dry sliding wear performance at three loads were investigated using a ball-on-disk tribometer with a WC-Co counterbody. It was found that the finer powder produced the coating with the highest microhardness, but its fracture toughness was reduced due to increased decarburization compared to the other powders. The sprayed nanostructured powder had the lowest microhardness and fracture toughness of all materials tested. Unlubricated sliding wear testing at the lowest load showed the nanostructured coating performed best; however, at the highest load this coating showed the highest specific wear rates with the other two powders performing to a similar, better standard.

  6. Thermal spray coating for corrosion under insulation (CUI) prevention

    NASA Astrophysics Data System (ADS)

    Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab

    2017-12-01

    Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.

  7. Balanced-Rotating-Spray Tank-And-Pipe-Cleaning System

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.; Caimi, Raoul E. B.

    1995-01-01

    Spray head translates and rotates to clean entire inner surface of tank or pipe. Cleansing effected by three laterally balanced gas/liquid jets from spray head that rotates about longitudinal axis. Uses much less liquid. Cleaning process in system relies on mechanical action of jets instead of contaminant dissolution. Eliminates very difficult machining needed to make multiple converging/diverging nozzles within one spray head. Makes nozzle much smaller. Basic two-phase-flow, supersonic-nozzle design applied to other spray systems for interior or exterior cleaning.

  8. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses

    NASA Astrophysics Data System (ADS)

    Hong, Se-Woon; Zhao, Lingying; Zhu, Heping

    2018-02-01

    The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. In this study, an integrated computational fluid dynamics (CFD) model was developed to predict displacement of pesticide spray droplets discharged from an air-assisted sprayer, depositions onto tree canopies, and off-target deposition and airborne drift in an apple orchard. Pesticide droplets discharged from a moving sprayer were tracked using the Lagrangian particle transport model, and the deposition model was applied to droplets entering porous canopy zones. Measurements of the droplet deposition and drift in the same orchard were used to validate the model simulations. Good agreement was found between the measured and simulated spray concentrations inside tree canopies and off-target losses (ground deposition and airborne drifts) with the overall relative errors of 22.1% and 40.6%, respectively, under three growth stages. The CFD model was able to estimate the mass balance of pesticide droplets in the orchard, which was practically difficult to investigate by measurements in field conditions. As the foliage of trees became denser, spray deposition inside canopies increased from 8.5% to 65.8% and airborne drift and ground deposition decreased from 25.8% to 7.0% and 47.8% to 21.2%, respectively. Higher wind speed also increased the spray airborne drift downwind of the orchard. This study demonstrates that CFD model can be used to evaluate spray application performance and design and operate sprayers with increased spray efficiencies and reduced drift potentials.

  9. Comparative performance study of different sample introduction techniques for rapid and precise selenium isotope ratio determination using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS).

    PubMed

    Elwaer, Nagmeddin; Hintelmann, Holger

    2007-11-01

    The analytical performance of five sample introduction systems, a cross flow nebulizer spray chamber, two different solvent desolvation systems, a multi-mode sample introduction system (MSIS), and a hydride generation (LI2) system were compared for the determination of Se isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP/MS). The optimal operating parameters for obtaining the highest Se signal-to-noise (S/N) ratios and isotope ratio precision for each sample introduction were determined. The hydride generation (LI2) system was identified as the most suitable sample introduction method yielding maximum sensitivity and precision for Se isotope ratio measurement. It provided five times higher S/N ratios for all Se isotopes compared to the MSIS, 20 times the S/N ratios of both desolvation units, and 100 times the S/N ratios produced by the conventional spray chamber sample introduction method. The internal precision achieved for the (78)Se/(82)Se ratio at 100 ng mL(-1) Se with the spray chamber, two desolvation, MSIS, and the LI2 systems coupled to MC-ICP/MS was 150, 125, 114, 13, and 7 ppm, respectively. Instrument mass bias factors (K) were calculated using an exponential law correction function. Among the five studied sample introduction systems the LI2 showed the lowest mass bias of -0.0265 and the desolvation system showed the largest bias with -0.0321.

  10. A Five-year Performance Study of Low VOC Coatings over Zinc Thermal Spray for the Protection of Carbon Steel at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Kolody, Mark R.; Curran, Jerome P.; Calle, Luz Marina

    2014-01-01

    The launch facilities at the Kennedy Space Center (KSC) are located approximately 1000 feet from the Atlantic Ocean where they are exposed to salt deposits, high humidity, high UV degradation, and acidic exhaust from solid rocket boosters. These assets are constructed from carbon steel, which requires a suitable coating to provide long-term protection to reduce corrosion and its associated costs. While currently used coating systems provide excellent corrosion control performance, they are subject to occupational, safety, and environmental regulations at the Federal and State levels that limit their use. Many contain high volatile organic compounds (VOCs), hazardous air pollutants, and other hazardous materials. Hazardous waste from coating operations include vacuum filters, zinc dust, hazardous paint related material, and solid paint. There are also worker safety issues such as exposure to solvents and isocyanates. To address these issues, top-coated thermal spray zinc coating systems were investigated as a promising environmentally friendly corrosion protection for carbon steel in an acidic launch environment. Additional benefits of the combined coating system include a long service life, cathodic protection to the substrate, no volatile contaminants, and high service temperatures. This paper reports the results of a performance based study to evaluate low VOC topcoats (for thermal spray zinc coatings) on carbon steel for use in a space launch environment.

  11. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    EPA Science Inventory

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  12. Evaporating Spray in Supersonic Streams Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.

    2006-01-01

    Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.

  13. Development of the improved helicopter icing spray system (IHISS)

    NASA Technical Reports Server (NTRS)

    Peterson, Andrew A.; Jenks, Mark D.; Gaitskill, William H.

    1989-01-01

    Boeing Helicopters has been awarded a contract by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System (HISS). The Improved Hiss (IHISS), capable of deployment from any CH-47D helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. Results are presented for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle and validate spray boom aerodynamic characteristics. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.

  14. Bond Coat Engineering Influence on the Evolution of the Microstructure, Bond Strength, and Failure of TBCs Subjected to Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Lima, R. S.; Nagy, D.; Marple, B. R.

    2015-01-01

    Different types of thermal spray systems, including HVOF (JP5000 and DJ2600-hybrid), APS (F4-MB and Axial III), and LPPS (Oerlikon Metco system) were employed to spray CoNiCrAlY bond coats (BCs) onto Inconel 625 substrates. The chemical composition of the BC powder was the same in all cases; however, the particle size distribution of the powder employed with each torch was that specifically recommended for the torch. For optimization purposes, these BCs were screened based on initial evaluations of roughness, porosity, residual stress, relative oxidation, and isothermal TGO growth. A single type of standard YSZ top coat was deposited via APS (F4MB) on all the optimized BCs. The TBCs were thermally cycled by employing a furnace cycle test (FCT) (1080 °C-1 h—followed by forced air cooling). Samples were submitted to 10, 100, 400, and 1400 cycles as well as being cycled to failure. The behavior of the microstructures, bond strength values (ASTM 633), and the TGO evolution of these TBCs, were investigated for the as-sprayed and thermally cycled samples. During FCT, the TBCs found to be both the best and poorest performing and had their BCs deposited via HVOF. The results showed that engineering low-oxidized BCs does not necessarily lead to an optimal TBC performance. Moreover, the bond strength values decrease significantly only when the TBC is about to fail (top coat spall off) and the as-sprayed bond strength values cannot be used as an indicator of TBC performance.

  15. Early change in thermal perception is not a driver of anticipatory exercise pacing in the heat.

    PubMed

    Barwood, Martin James; Corbett, Jo; White, Danny; James, Jason

    2012-10-01

    Initial power output declines significantly during exercise in hot conditions on attaining a rapid increase in skin temperature when exercise commences. It is unclear whether this initial reduced power is mediated consciously, through thermal perceptual cues, or is a subconscious process. The authors tested the hypothesis that improved thermal perception (feeling cooler and more comfortable) in the absence of a change in thermal state (ie, similar deep-body and skin temperatures between spray conditions) would alter pacing and 40 km cycling time trial (TT) performance. Eleven trained participants (mean (SD): age 30 (8.1) years; height 1.78 (0.06) m; mass 76.0 (8.3) kg) completed three 40 km cycling TTs in standardised conditions (32°C, 50% RH) with thermal perception altered prior to exercise by application of cold-receptor-activating menthol spray (MENTHOL SPRAY), in contrast to a separate control spray (CONTROL SPRAY) and no spray control (CON). Thermal perception, perceived exertion, thermal responses and cycling TT performance were measured. MENTHOL SPRAY induced feelings of coolness and improved thermal comfort before and during exercise. Skin temperature profile at the start of exercise was similar between sprays (CON-SPRAY 33.3 (1.1)°C and MENTHOL SPRAY 33.4 (0.4)°C, but different to CON 34.5 (0.5)°C), but there was no difference in the pacing strategy adopted. There was no performance benefit using MENTHOL SPRAY; cycling TT completion time for CON is 71.58 (6.21) min, for CON-SPRAY is 70.94 (6.06) min and for MENTHOL SPRAY is 71.04 (5.47) min. The hypothesis is rejected. Thermal perception is not a primary driver of early pacing during 40 km cycling TT in hot conditions in trained participants.

  16. The effects of excipients and particle engineering on the biophysical stability and aerosol performance of parathyroid hormone (1-34) prepared as a dry powder for inhalation.

    PubMed

    Shoyele, Sunday A; Sivadas, Neeraj; Cryan, Sally-Ann

    2011-03-01

    Pulmonary delivery of therapeutic peptides and proteins has many advantages including high relative bioavailability, rapid systemic absorption and onset of action and a non-invasive mode of administration which improves patient compliance. In this study, we investigated the effect of spray-drying (SD) and spray freeze-drying processes on the stability and aerosol performance of parathyroid hormone (PTH) (1-34) microparticles. In this study, the stabilisation effect of trehalose (a non-reducing sugar) and Brij 97 (a non-ionic surfactant) on spray-dried PTH particles was assessed using analytical techniques including circular dichroism (CD), fluorescence spectroscopy, modulated differential scanning calorimetry and an in vitro bioactivity assay. Physical characterisation also included electron microscopy, tap density measurement and laser light diffraction. The aerosol aerodynamic performance of the formulations was assessed using the Andersen cascade impactor. Based on these studies, a formulation for spray freeze-drying was selected and the effects of the two particle engineering techniques on the biophysical stability and aerosol performance of the resulting powders was determined. CD, fluorescence spectroscopy and bioactivity data suggest that trehalose when used alone as a stabilising excipient produces a superior stabilising effect than when used in combination with a non-ionic surfactant. This highlights the utility of CD and fluorescence spectroscopy studies for the prediction of protein bioactivity post-processing. Therefore, a method and formulation suitable for the preparation of PTH as a dry powder was developed based on spray-drying PTH with trehalose as a stabiliser with the bioactivity of SD PTH containing trehalose being equivalent to that of unprocessed PTH. © 2011 American Association of Pharmaceutical Scientists

  17. Touch Spray Mass Spectrometry for In Situ Analysis of Complex Samples

    PubMed Central

    Kerian, Kevin S.; Jarmusch, Alan K.; Cooks, R. Graham

    2014-01-01

    Touch spray, a spray-based ambient in-situ ionization method, uses a small probe, e.g. a teasing needle to pick up sample and the application of voltage and solvent to cause field-induced droplet emission. Compounds extracted from the microsample are incorporated into the sprayed micro droplets. Performance tests include disease state of tissue, microorganism identification, and therapeutic drug quantitation. Chemical derivatization is performed simultaneously with ionization. PMID:24756256

  18. Herbicidal drift control: aerial spray equipment, formulations, and supervision.

    Treesearch

    H. Gratkowski

    1974-01-01

    Public concern over environmental pollution requires increasingly sophisticated procedures when herbicides are used in silviculture. Many specialized aerial application systems and spray additives have been developed to reduce drift of herbicidal sprays. This publication provides forest-land managers with a brief description of these aerial spray systems and additives...

  19. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties

    NASA Astrophysics Data System (ADS)

    Bakan, Emine; Vaßen, Robert

    2017-08-01

    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic-extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined.

  20. Liquid and gelled sprays for mixing hypergolic propellants using an impinging jet injection system

    NASA Astrophysics Data System (ADS)

    James, Mark D.

    The characteristics of sprays produced by liquid rocket injectors are important in understanding rocket engine ignition and performance. The includes, but is not limited to, drop size distribution, spray density, drop velocity, oscillations in the spray, uniformity of mixing between propellants, and the spatial distribution of drops. Hypergolic ignition and the associated ignition delay times are also important features in rocket engines, providing high reliability and simplicity of the ignition event. The ignition delay time is closely related to the level and speed of mixing between a hypergolic fuel and oxidizer, which makes the injection method and conditions crucial in determining the ignition performance. Although mixing and ignition of liquid hypergolic propellants has been studied for many years, the processes for injection, mixing, and ignition of gelled hypergolic propellants are less understood. Gelled propellants are currently under investigation for use in rocket injectors to combine the advantages of solid and liquid propellants, although not without their own difficulties. A review of hypergolic ignition has been conducted for selected propellants, and methods for achieving ignition have been established. This research is focused on ignition using the liquid drop-on-drop method, as well as the doublet impinging jet injector. The events leading up to ignition, known as pre-ignition stage are discussed. An understanding of desirable ignition and combustion performance requires a study of the effects of injection, temperature, and ambient pressure conditions. A review of unlike-doublet impinging jet injection mixing has also been conducted. This includes mixing factors in reactive and non-reactive sprays. Important mixing factors include jet momentum, jet diameter and length, impingement angle, mass distribution, and injector configuration. An impinging jet injection system is presented using an electro-mechanically driven piston for injecting liquid and gelled hypergolic propellants. A calibration of the system is done with water in preparation for hypergolic injection, and characteristics of individual water and gelled JP-8 jets are studied at velocities in the range of 3 ft/s to 61 ft/s. The piston response is also analyzed to characterize the startup and steady state liquid jet velocities using orifices of 0.02" in diameter. Using this injection system, water and gelled JP-8 sprays are formed and compared across injection velocities of 30 ft/s to 121 ft/s. The comparison includes sheet shape and disintegration, total number of drops, drop size distributions, drop eccentricity, most populated drop bin size, and mean drop sizes. A test matrix for investigating the effects of mixing on ignition of MMH and IRFNA through different injection conditions are presented. First, water and IRFNA are injected to create a spray in the combustion chamber in order to verify effectiveness of test procedures and the test hardware. Next, injection of the hypergolic propellants MMH and IRFNA are done in accordance to the test matrix, although ignition was not observed as expected. These injections are followed by simple drop-on-drop tests to investigate propellant quality and ignition delay. Drop tests are performed with propellants IRFNA/MMH, and again with H2O2/Block 0 as possible propellant replacements for the proposed test plan.

  1. Stability of extemporaneously prepared preservative-free prochlorperazine nasal spray.

    PubMed

    Yellepeddi, Venkata K

    2018-01-01

    The stability of an extemporaneously prepared preservative-free prochlorperazine 5-mg/mL nasal spray was evaluated. The preservative-free prochlorperazine nasal spray was prepared by adding 250 mg of prochlorperazine edisylate to 50 mL of citrate buffer in a low-density polyethylene nasal spray bottle. A stability-indicating high-performance liquid chromatography (HPLC) method was developed and validated using the major degradant prochlorperazine sulfoxide and by performing forced-degradation studies. For chemical stability studies, 3 100-μL samples of the preservative-free prochlorperazine from 5 nasal spray bottles stored at room temperature were collected at days 0, 20, 30, 45, and 60 and were assayed in triplicate using the stability-indicating HPLC method. Microbiological testing involved antimicrobial effectiveness testing based on United States Pharmacopeia ( USP ) chapter 51 and quantitative microbiological enumeration of aerobic bacteria, yeasts, and mold based on USP chapter 61. Samples for microbiological testing were collected at days 0, 30, and 60. The stability-indicating HPLC method clearly identified the degradation product prochlorperazine sulfoxide without interference from prochlorperazine. All tested solutions retained over 90% of the initial prochlorperazine concentration for the 60-day study period. There were no detectable changes in color, pH, and viscosity in any sample. There was no growth of bacteria, yeast, and mold for 60 days in all samples tested. An extemporaneously prepared preservative-free nasal spray solution of prochlorperazine edisylate 5 mg/mL was physically, chemically, and microbiologically stable for 60 days when stored at room temperature in low-density polyethylene bottles. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  2. Humectants to augment current from metallized zinc cathodic protection systems on concrete : final report.

    DOT National Transportation Integrated Search

    2002-12-01

    Cathodic protection (CP) systems using thermal-sprayed zinc anodes are employed to mitigate the corrosion process in reinforced concrete structures. However, the performance of the anodes is improved by moisture at the anode-concrete interface. Resea...

  3. Evaluation of Application Accuracy and Performance of a Hydraulically Operated Variable-Rate Aerial Application System

    USDA-ARS?s Scientific Manuscript database

    An aerial variable-rate application system consisting of a DGPS-based guidance system, automatic flow controller, and hydraulically controlled pump/valve was evaluated for response time to rapidly changing flow requirements and accuracy of application. Spray deposition position error was evaluated ...

  4. A decision-support tool to predict spray deposition of insecticides in commercial potato fields and its implications for their performance.

    PubMed

    Nansen, Christian; Vaughn, Kathy; Xue, Yingen; Rush, Charlie; Workneh, Fekede; Goolsby, John; Troxclair, Noel; Anciso, Juan; Gregory, Ashley; Holman, Daniel; Hammond, Abby; Mirkov, Erik; Tantravahi, Pratyusha; Martini, Xavier

    2011-08-01

    Approximately US $1.3 billion is spent each year on insecticide applications in major row crops. Despite this significant economic importance, there are currently no widely established decision-support tools available to assess suitability of spray application conditions or of the predicted quality or performance of a given commercial insecticide applications. We conducted a field study, involving 14 commercial spray applications with either fixed wing airplane (N=8) or ground rig (N=6), and we used environmental variables as regression fits to obtained spray deposition (coverage in percentage). We showed that (1) ground rig applications provided higher spray deposition than aerial applications, (2) spray deposition was lowest in the bottom portion of the canopy, (3) increase in plant height reduced spray deposition, (4) wind speed increased spray deposition, and (5) higher ambient temperatures and dew point increased spray deposition. Potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), mortality increased asymptotically to approximately 60% in response to abamectin spray depositions exceeding around 20%, whereas mortality of psyllid adults reached an asymptotic response approximately 40% when lambda-cyhalothrin/thiamethoxam spray deposition exceeded 30%. A spray deposition support tool was developed (http://pilcc.tamu.edu/) that may be used to make decisions regarding (1) when is the best time of day to conduct spray applications and (2) selecting which insecticide to spray based on expected spray deposition. The main conclusion from this analysis is that optimization of insecticide spray deposition should be considered a fundamental pillar of successful integrated pest management programs to increase efficiency of sprays (and therefore reduce production costs) and to reduce risk of resistance development in target pest populations.

  5. Physicochemical and in vitro deposition properties of salbutamol sulphate/ipratropium bromide and salbutamol sulphate/excipient spray dried mixtures for use in dry powder inhalers.

    PubMed

    Corrigan, Deirdre O; Corrigan, Owen I; Healy, Anne Marie

    2006-09-28

    The physicochemical and aerodynamic properties of spray dried powders of the drug/drug mixture salbutamol sulphate/ipratropium bromide were investigated. The in vitro deposition properties of spray dried salbutamol sulphate and the spray dried drug/excipient mixtures salbutamol sulphate/lactose and salbutamol sulphate/PEG were also determined. Spray drying ipratropium bromide monohydrate resulted in a crystalline material from both aqueous and ethanolic solution. The product spray dried from aqueous solution consisted mainly of ipratropium bromide anhydrous. There was evidence of the presence of another polymorphic form of ipratropium bromide. When spray dried from ethanolic solution the physicochemical characterisation suggested the presence of an ipratropium bromide solvate with some anhydrous ipratropium bromide. Co-spray drying salbutamol sulphate with ipratropium bromide resulted in amorphous composites, regardless of solvent used. Particles were spherical and of a size suitable for inhalation. Twin impinger studies showed an increase in the fine particle fraction (FPF) of spray dried salbutamol sulphate compared to micronised salbutamol sulphate. Co-spray dried salbutamol sulphate:ipratropium bromide 10:1 and 5:1 systems also showed an increase in FPF compared to micronised salbutamol sulphate. Most co-spray dried salbutamol sulphate/excipient systems investigated demonstrated FPFs greater than that of micronised drug alone. The exceptions to this were systems containing PEG 4000 20% or PEG 20,000 40% both of which had FPFs not significantly different from micronised salbutamol sulphate. These two systems were crystalline unlike most of the other spray dried composites examined which were amorphous in nature.

  6. Relieving thermal discomfort: Effects of sprayed L-menthol on perception, performance, and time trial cycling in the heat.

    PubMed

    Barwood, M J; Corbett, J; Thomas, K; Twentyman, P

    2015-06-01

    L-menthol stimulates cutaneous thermoreceptors and induces cool sensations improving thermal comfort, but has been linked to heat storage responses; this could increase risk of heat illness during self-paced exercise in the heat. Therefore, L-menthol application could lead to a discrepancy between behavioral and autonomic thermoregulatory drivers. Eight male participants volunteered. They were familiarized and then completed two trials in hot conditions (33.5 °C, 33% relative humidity) where their t-shirt was sprayed with CONTROL-SPRAY or MENTHOL-SPRAY after 10 km (i.e., when they were hot and uncomfortable) of a 16.1-km cycling time trial (TT). Thermal perception [thermal sensation (TS) and comfort (TC)], thermal responses [rectal temperature (Trec ), skin temperature (Tskin )], perceived exertion (RPE), heart rate, pacing (power output), and TT completion time were measured. MENTHOL-SPRAY made participants feel cooler and more comfortable and resulted in lower RPE (i.e., less exertion) yet performance was unchanged [TT completion: CONTROL-SPRAY 32.4 (2.9) and MENTHOL-SPRAY 32.7 (3.0) min]. Trec rate of increase was 1.40 (0.60) and 1.45 (0.40) °C/h after CONTROL-SPRAY and MENTHOL-SPRAY application, which were not different. Spraying L-menthol toward the end of self-paced exercise in the heat improved perception, but did not alter performance and did not increase heat illness risk. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. VERIFYING THE PERFORMANCE OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES

    EPA Science Inventory

    Application of pesticide sprays usually results in formation of small spray droplets which can drift with air currents to nearby sensitive sites. A number of technologies offer the potential to reduce the amount of spray drift from pesticide applications. Acceptance and use of ...

  8. Optimization of Fibrin Glue Spray Systems for Ophthalmic Surgery

    PubMed Central

    Chaurasia, Shyam S.; Champakalakshmi, Ravi; Angunawela, Romesh I.; Tan, Donald T.; Mehta, Jodhbir S.

    2012-01-01

    Purpose To optimize fibrin glue (FG) spray for ophthalmic surgery using two spray applicators, EasySpray and DuploSpray systems, by varying the distance from point of application and the pressure/flow rate, and to compare the adhesive strength of sutured and sutureless (FG sprayed) conjunctival graft surgery in a rabbit model. Methods FG was sprayed on a 0.2 mm-thick sheet of paper using EasySpray by variously combining application distances of 2.5, 5, 7.5, and 10 cm with pressures of 10, 15, and 20 psi. DuploSpray was used at the same distances but with varying flow rates of 1 and 2 L/min. Subsequently, FG was sprayed on porcine corneas and FG thickness was analyzed by histology. In addition, adhesive strength of the conjunctival graft (0.5 × 0.5 cm) attached to the rabbit cornea by sutured and sutureless surgery (FG spray) was compared using a tension meter. Results Histology measurements revealed that the FG thickness decreased with increases in distance and pressure of spray using the EasySpray applicator on paper and porcine corneal sections. The adhesive strength of the sutured conjunctival graft (41 ± 4.85 [kilopascal] KPa) was found to be higher than the graft attached by spraying (10 ± 2.3 KPa) and the sequential addition of FG (6 ± 0.714 KPa). Conclusions The EasySpray applicator formed a uniform spread of FG at a distance-pressure combination of 5 cm and 20 psi. The conjunctival graft attached with sutures had higher adhesive strength compared with grafts glued with a spray applicator. Although the adhesive strength of FG applied through the applicator was similar to the drop-wise sequential technique, the former was more cost effective because more samples could be sprayed compared with the sequential manual technique. Translational Relevance The standardization of the spray system for the application of FG in ophthalmology will provide an economical method for delivering consistent healing results after surgery. PMID:24049702

  9. Systems and methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    DOEpatents

    Moore, Karen A.; Zatorski, Raymond A.

    2005-07-12

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  10. Technology Solutions Case Study: Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-11-01

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks formore » roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. In this project, Building Science Corporation investigated rain and built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.« less

  11. 46 CFR 34.05-5 - Fire-extinguishing systems-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... subparagraph. (3) Lamp and paint lockers and similar spaces. A carbon dioxide or water spray system must be..., inert gas, foam or water spray system must be installed for the protection of all pumprooms. (5...

  12. 46 CFR 34.05-5 - Fire-extinguishing systems-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Officer in Charge, Marine Inspection. (1) Dry cargo compartments. A carbon dioxide or water spray system... subparagraph. (3) Lamp and paint lockers and similar spaces. A carbon dioxide or water spray system must be..., inert gas, foam or water spray system must be installed for the protection of all pumprooms. (5...

  13. Characteristics of Subcooled Liquid Methane During Passage Through a Spray-Bar Joule-Thompson Thermodynamic Vent System

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Schnell, A.

    2011-01-01

    NASA s Marshall Space Flight Center (MSFC) conducted liquid methane (LCH4) testing in November 2006 using the multipurpose hydrogen test bed (MHTB) outfitted with a spray-bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with subcooled LCH4 that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 W to 420 W at a fill level of approximately 90%. During an updated evaluation of the data, it was noted that as the fluid passed through the Joule Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This paper describes the observed thermodynamic conditions that correspond with metastability and effects on TVS performance.

  14. Thermal Spray Maps: Material Genomics of Processing Technologies

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Sanpo, Noppakun; Sesso, Mitchell L.; Kim, Sun Yung; Berndt, Christopher C.

    2013-10-01

    There is currently no method whereby material properties of thermal spray coatings may be predicted from fundamental processing inputs such as temperature-velocity correlations. The first step in such an important understanding would involve establishing a foundation that consolidates the thermal spray literature so that known relationships could be documented and any trends identified. This paper presents a method to classify and reorder thermal spray data so that relationships and correlations between competing processes and materials can be identified. Extensive data mining of published experimental work was performed to create thermal spray property-performance maps, known as "TS maps" in this work. Six TS maps will be presented. The maps are based on coating characteristics of major importance; i.e., porosity, microhardness, adhesion strength, and the elastic modulus of thermal spray coatings.

  15. Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor

    PubMed Central

    Zhai, Changyuan; Zhao, Chunjiang; Wang, Xiu; Wang, Ning; Zou, Wei; Li, Wei

    2015-01-01

    Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately. PMID:26501288

  16. Salt Spray Test to Determine Galvanic Corrosion Levels of Electroless Nickel Connectors Mounted on an Aluminum Bracket

    NASA Technical Reports Server (NTRS)

    Rolin, T. D.; Hodge, R. E.; Torres, P. D.; Jones, D. D.; Laird, K. R.

    2014-01-01

    During preliminary vehicle design reviews, requests were made to change flight termination systems from an electroless nickel (EN) connector coating to a zinc-nickel (ZN) plating. The reason for these changes was due to a new NASA-STD-6012 corrosion requirement where connectors must meet the performance requirement of 168 hr of exposure to salt spray. The specification for class F connectors, MIL-DTL-38999, certifies the EN coating will meet a 48-hr salt spray test, whereas the ZN is certified to meet a 168-hr salt spray test. The ZN finish is a concern because Marshall Space Flight Center has no flight experience with ZN-finished connectors, and MSFC-STD-3012 indicates that zinc and zinc alloys should not be used. The purpose of this test was to run a 168-hr salt spray test to verify the electrical and mechanical integrity of the EN connectors and officially document the results. The salt spray test was conducted per ASTM B117 on several MIL-DTL-38999 flight-like connectors mounted to an aluminum 6061-T6 bracket that was alodined. The configuration, mounting techniques, electrical checks, and materials used were typical of flight and ground support equipment.

  17. SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.

    SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISPmore » model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.« less

  18. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif

    2017-10-01

    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.

  19. Indoor Residual Spraying Delivery Models to Prevent Malaria: Comparison of Community- and District-Based Approaches in Ethiopia

    PubMed Central

    Johns, Benjamin; Yihdego, Yemane Yeebiyo; Kolyada, Lena; Dengela, Dereje; Chibsa, Sheleme; Dissanayake, Gunawardena; George, Kristen; Taffese, Hiwot Solomon; Lucas, Bradford

    2016-01-01

    ABSTRACT Background: Indoor residual spraying (IRS) for malaria prevention has traditionally been implemented in Ethiopia by the district health office with technical and operational inputs from regional, zonal, and central health offices. The United States President's Malaria Initiative (PMI) in collaboration with the Government of Ethiopia tested the effectiveness and efficiency of integrating IRS into the government-funded community-based rural health services program. Methods: Between 2012 and 2014, PMI conducted a mixed-methods study in 11 districts of Oromia region to compare district-based IRS (DB IRS) and community-based IRS (CB IRS) models. In the DB IRS model, each district included 2 centrally located operational sites where spray teams camped during the IRS campaign and from which they traveled to the villages to conduct spraying. In the CB IRS model, spray team members were hired from the communities in which they operated, thus eliminating the need for transport and camping facilities. The study team evaluated spray coverage, the quality of spraying, compliance with environmental and safety standards, and cost and performance efficiency. Results: The average number of eligible structures found and sprayed in the CB IRS districts increased by 19.6% and 20.3%, respectively, between 2012 (before CB IRS) and 2013 (during CB IRS). Between 2013 and 2014, the numbers increased by about 14%. In contrast, in the DB IRS districts the number of eligible structures found increased by only 8.1% between 2012 and 2013 and by 0.4% between 2013 and 2014. The quality of CB IRS operations was good and comparable to that in the DB IRS model, according to wall bioassay tests. Some compliance issues in the first year of CB IRS implementation were corrected in the second year, bringing compliance up to the level of the DB IRS model. The CB IRS model had, on average, higher amortized costs per district than the DB IRS model but lower unit costs per structure sprayed and per person protected because the community-based model found and sprayed more structures. Conclusion: Established community-based service delivery systems can be adapted to include a seasonal IRS campaign alongside the community-based health workers' routine activities to improve performance efficiency. Further modifications of the community-based IRS model may reduce the total cost of the intervention and increase its financial sustainability. PMID:27965266

  20. Performance of system consisting of vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of rural wastewater.

    PubMed

    Zhang, Yi; Cheng, Yan; Yang, Chunping; Luo, Wei; Zeng, Guangming; Lu, Li

    2015-10-01

    In order to improve nitrogen removal for rural wastewater, a novel two-stage hybrid system, consisting of a vertical flow trickling filter (VFTF) and a horizontal flow multi-soil-layering (HFMSL) bioreactor was developed. The performance of the apparatus was observed under various carbon-nitrogen ratios and water spraying frequencies separately. The maximum removal efficiency of total nitrogen (TN) for the hybrid system was 92.8% while the removal rates of CODCr, ammonium (NH4(+)-N), and total phosphorus (TP) were 94.1%, 96.1%, 92.0% respectively, and the corresponding effluent concentrations were 3.61, 21.20, 1.91, and 0.33 mg L(-1). The horizontal flow mode for MSL led the system to denitrifying satisfactorily as it ensured relatively long hydraulic retention time (HRT), ideal anoxic condition and adequate organic substrates supply. Also, higher water spraying frequency benefited intermittent feeding system for pollutants removal. Shock loading test indicated that the hybrid system could operate well even at hydraulic shock loadings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Spray pattern analysis in TWAS using photogrammetry and digital image correlation

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Rademacher, H. G.; Hagen, L.; Abdulgader, M.; El Barad’ei, M.

    2018-06-01

    In terms of arc spraying processes, the spray plume characteristic is mainly affected by the flow characteristic of the atomization gas at the nozzle inlet and intersection point of the wire tips, which in turn affect the particle distribution at the moment of impact when molten spray particles splash onto the substrate. With respect to the route of manufacturing of near net-shaped coatings on complex geometries, the acquisition of the spray patterns is pressingly necessary to determine the produced coating thickness. Within the scope of this study, computer fluid dynamics (CFD) simulations were carried out to determine the distribution of spray particles for different spray parameter settings. The results were evaluated by three-dimensional spray spot analyses using an optical measurement based on photogrammetry and digital image correlation. The optical measurement represents a promising and much faster candidate to measure spray patterns compared to the tactile measurement system but with an equal accuracy. For given nozzle configurations and spray parameter settings, numerous spray patterns were examined to their shape factors, demonstrating the potential of an online analysis, which encompasses a “fast sample loop” and a data processing system to generate a three-dimensional surface of the spray spot profile.

  2. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    NASA Astrophysics Data System (ADS)

    You, J. H.; Höschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  3. Distributed multi-level supervision to effectively monitor the operations of a fleet of autonomous vehicles in agricultural tasks.

    PubMed

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-03-05

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations.

  4. Distributed Multi-Level Supervision to Effectively Monitor the Operations of a Fleet of Autonomous Vehicles in Agricultural Tasks

    PubMed Central

    Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela

    2015-01-01

    This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079

  5. A new HF-resistant tandem spray chamber for improved determination of trace elements and Pb isotopes using inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Krachler, Michael; Rausch, Nicole; Feuerbacher, Helmut; Klemens, Patrick

    2005-07-01

    The use of a new HF-resistant tandem spray chamber arrangement consisting of a cyclonic spray chamber and a Scott-type spray chamber made from PFA and PEEK provides a straightforward approach for improving the performance of inductively coupled-mass spectrometry (ICP-MS). The characteristics of the tandem spray chamber were critically evaluated against a PEEK cyclonic and a PFA Scott-type spray chamber, respectively. Sensitivity across the entire mass range was increased by about three times compared to the conventional setup utilizing only one spray chamber. Precision of the results, especially at low signal intensities, improved by 160% and 31% compared to the cyclonic and Scott-type spray chamber, respectively. Using the tandem spray chamber, the oxide formation rate was lowered by about 50%. Signals as low as 30 counts could be determined under routine measurement conditions with a RSD of 2.4% thus allowing to precisely quantify small concentration differences at the ng l - 1 concentration level. The excellent precision (0.02-0.07%) of 206Pb / 207Pb and 206Pb / 208Pb ratios determined in pore water samples was rather limited by the instrumental capabilities of the single collector ICP-MS instrument than by the performance of the tandem spray chamber.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multifamily buildings. In this project, the team helped to transform a 100-year-old empty school building into 12 high performance apartments with low energy costs. The advanced features included an excellent thermal envelope of closed-cell spray foam and triple-pane windows, ductless heat pumps, solar thermal hot water system, and photovoltaic system.

  7. [The influence of spray drying process conditions on physical, chemical properties and lung inhaling performance of Panax notoginseng saponins - tanshinone II A composite particles].

    PubMed

    Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei

    2013-06-01

    This study is to report the influence of conditions in spray drying process on physical and chemical properties and lung inhaling performance of Panax notoginseng Saponins - Tanshinone II A composite particles. According to the physical and chemical properties of the two types of components within the composite particles, three solvent systems were selected including ethanol, ethanol : acetone (9 : 1, v/v) and ethanol : acetone (4 : 1, v/v), and three inlet temperature: 110 degrees C, 120 degrees C, 130 degrees C to prepare seven different composite particle samples; each sample was characterized using laser diffraction, scanning electron microscopy (SEM), dynamic vapour sorption (DVS) and atomic force microscope (AFM), and their aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The results indicate that under the conditions of using the mixed solvent system of ethanol--acetone volume ratio of 9 : 1, and the inlet temperature of 110 degrees C, the resulting composite particles showed rough surface, with more tanshinone II A distributing in the outer layer, such composite particles have the best lung inhaling performance and the fine particle fraction (FPF) close to 60%. Finally it is concluded that by adjusting the conditions in co-spray drying process, the distribution amount and existence form of tanshinone II A in the outer layer of the particles can be changed so that to enhance lung inhaling performance of the drug composite particles.

  8. Development and Characterization of Sodium Hyaluronate Microparticle-Based Sustained Release Formulation of Recombinant Human Growth Hormone Prepared by Spray-Drying.

    PubMed

    Kim, Sun J; Kim, Chan W

    2016-02-01

    The purpose of this study was to develop and characterize a sodium hyaluronate microparticle-based sustained release formulation of recombinant human growth hormone (SR-rhGH) prepared by spray-drying. Compared to freeze-drying, spray-dried SR-rhGH showed not only prolonged release profiles but also better particle property and injectability. The results of size-exclusion high-performance liquid chromatography showed that no aggregate was detected, and dimer was just about 2% and also did not increase with increase of inlet temperature up to 150 °C. Meanwhile, the results of reversed-phase high-performance liquid chromatography revealed that related proteins increased slightly from 4.6% at 100 °C to 6.3% at 150 °C. Thermal mapping test proved that product temperature did not become high to cause protein degradation during spray-drying because thermal energy was used for the evaporation of surface moisture of droplets. The structural characterization by peptide mapping, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and circular dichroism revealed that the primary, secondary, and tertiary structures of rhGH in SR-rhGH were highly comparable to those of reference somatropin materials. The biological characterization by rat weight gain and cell proliferation assays provided that bioactivity of SR-rhGH was equivalent to that of native hGH. These data establish that spray-dried SR-rhGH is highly stable by preserving intact rhGH and hyaluronate microparticle-based formulation by spray-drying can be an alternative delivery system for proteins. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Technology Insertion for Recapitalization of Legacy Systems

    DTIC Science & Technology

    2015-09-30

    peened, and 4) an Abcite coating will be flame sprayed on the component. The ALCM program (B) has 1) evaluated data provided, 2) gathered questions...Report Technology Insertion for the Recapitalization of Legacy Systems Laser sintering, thermal spray and cold spray are additive manufacturing methods... coatings Need an experienced operator Requires a special spray booth to limit overspray and protect operator Requires primer or surface treatment

  10. Airspeed and orifice size affect spray droplet spectra from an aerial electrostatic nozzle for rotary-wing applications

    USDA-ARS?s Scientific Manuscript database

    The aerial electrostatic spraying system patented by the USDA-ARS is a unique aerial application system which inductively charges spray droplets for the purpose of increasing deposition and efficacy. While this system has many potential benefits, no published data exits which describe how changes i...

  11. Airspeed and orifice size affect spray droplet spectrum from an aerial electrostatic nozzle for fixed-wing applications

    USDA-ARS?s Scientific Manuscript database

    The aerial electrostatic spraying system patented by the USDA ARS is a unique aerial application system which inductively charges spray particles for the purpose of increasing deposition and efficacy. While this system has many potential benefits, very little is known about how changes in airspeed o...

  12. SprayQc: a real-time LC-MS/MS quality monitoring system to maximize uptime using off the shelf components.

    PubMed

    Scheltema, Richard A; Mann, Matthias

    2012-06-01

    With the advent of high-throughput mass spectrometry (MS)-based proteomics, the magnitude and complexity of the performed experiments has increased dramatically. Likewise, investments in chromatographic and MS instrumentation are a large proportion of the budget of proteomics laboratories. Guarding measurement quality and maximizing uptime of the LC-MS/MS systems therefore requires constant care despite automated workflows. We describe a real-time surveillance system, called SprayQc, that continuously monitors the status of the peripheral equipment to ensure that operational parameters are within an acceptable range. SprayQc is composed of multiple plug-in software components that use computer vision to analyze electrospray conditions, monitor the chromatographic device for stable backpressure, interact with a column oven to control pressure by temperature, and ensure that the mass spectrometer is still acquiring data. Action is taken when a failure condition has been detected, such as stopping the column oven and the LC flow, as well as automatically notifying the appropriate operator. Additionally, all defined metrics can be recorded synchronized on retention time with the MS acquisition file, allowing for later inspection and providing valuable information for optimization. SprayQc has been extensively tested in our laboratory, supports third-party plug-in development, and is freely available for download from http://sourceforge.org/projects/sprayqc .

  13. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells.

    PubMed

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H; Watkins, Scott E; Kim, Dong-Yu; Vak, Doojin

    2016-02-08

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%.

  14. Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells

    PubMed Central

    Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H.; Watkins, Scott E.; Kim, Dong-Yu; Vak, Doojin

    2016-01-01

    We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%. PMID:26853266

  15. Design of a new nozzle for direct current plasma guns with improved spraying parameters

    NASA Astrophysics Data System (ADS)

    Jankovic, M.; Mostaghimi, J.; Pershin, V.

    2000-03-01

    A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.

  16. 46 CFR 34.25-20 - Spray nozzles-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Spray nozzles-T/ALL. 34.25-20 Section 34.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-20 Spray nozzles—T/ALL. (a) Spray nozzles shall be of an approved type. ...

  17. 46 CFR 34.25-20 - Spray nozzles-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Spray nozzles-T/ALL. 34.25-20 Section 34.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-20 Spray nozzles—T/ALL. (a) Spray nozzles shall be of an approved type. ...

  18. Porous mannitol carrier for pulmonary delivery of cyclosporine A nanoparticles.

    PubMed

    Leung, Sharon Shui Yee; Wong, Jennifer; Guerra, Heloisa Victorino; Samnick, Kevin; Prud'homme, Robert K; Chan, Hak-Kim

    2017-03-01

    This study employed the ultrasonic spray-freeze-drying technique to prepare porous mannitol carriers that incorporated hydrophobic cyclosporine A (CsA) nanoparticles (NPs) for pulmonary delivery. Two nanosuspension stabilization systems, (1) a combination of lecithin and lactose system and (2) a D-α-tocopheryl polyethylene glycol succinate (TPGS) system, were investigated. The ability of the lecithin and TPGS in anchoring the hydrophobic CsA NPs to the porous hydrophilic mannitol structure was first reported. Formulations stabilized by TPGS provided a much better dose uniformity, suggesting that TPGS is a better anchoring agent compared with lecithin. The effects of mannitol carrier density and CsA loading (4.9-27%) on aerosol performance and dissolution profiles were assessed. The fine particle fraction (FPF) increased from 44 to 63% as the mannitol concentration decreased from 1 to 5%. All formulations achieved full dissolution within an hour without significant influence from the mannitol content and CsA loading. The initial dissolution rates of the present formulations were almost double than that of the spray-dried counterpart, with 90% of the drug dissolved in 10 min. Overall, the CsA NPs were successfully incorporated into the porous mannitol which demonstrated good aerosol performance and enhanced dissolution profiles. These spray-freeze-drying (SFD) powders were stable after 2-year storage under desiccation at 20 ± 3°C.

  19. Methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    DOEpatents

    Moore, Karen A.; Zatorski, Raymond A.

    2007-10-02

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  20. A high-speed photographic system for flow visualization in a steam turbine

    NASA Technical Reports Server (NTRS)

    Barna, G. J.

    1973-01-01

    A photographic system was designed to visualize the moisture flow in a steam turbine. Good performance of the system was verified using dry turbine mockups in which an aerosol spray simulated, in a rough way, the moisture flow in the turbine. Borescopes and fiber-optic light tubes were selected as the general instrumentation approach. High speed motion-picture photographs of the liquid flow over the stator blade surfaces were taken using stroboscopic lighting. Good visualization of the liquid flow was obtained. Still photographs of drops in flight were made using short duration flash sources. Drops with diameters as small as 30 micrometers (0.0012 in.) could be resolved. In addition, motion pictures of a spray of water simulating the spray off the rotor blades and shrouds were taken at normal framing rates. Specially constructed light tubes containing small tungsten-halogen lamps were used. Sixteen millimeter photography was used in all cases. Two potential problems resulting from the two-phase turbine flow (attenuation and scattering of light by the fog present and liquid accumulation on the borescope mirrors) were taken into account in the photographic system design but not evaluated experimentally.

  1. Use of air-assisted electrostatic spraying system (ESS)or the sprayed lethality in container(SLIC) method to deliver anticmicrobials onto the surface of beef subprimals to ... shiga toxin-producing cells of Escherichia coli

    USDA-ARS?s Scientific Manuscript database

    We evaluated the efficacy of an air-assisted electrostatic spraying system (ESS) and/or the Sprayed Lethality in Container (SLIC) method to deliver antimicrobials onto the surface of beef subprimals to reduce levels of Shiga toxin-producing Escherichia coli (STEC). Beef subprimals were surface inocu...

  2. Liquid Methane Testing With a Large-Scale Spray Bar Thermodynamic Vent System

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Flachbart, R. H.; Sisco, J. D.; Schnell. A. R.

    2014-01-01

    NASA's Marshall Space Flight Center conducted liquid methane testing in November 2006 using the multipurpose hydrogen test bed outfitted with a spray bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with densified methane that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 to 420 W at a fill level of approximately 90%. It was noted that as the fluid passed through the Joule-Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This Technical Publication describes conditions that correspond with metastability and its detrimental effects on TVS performance. The observed conditions were primarily functions of methane densification and helium pressurization; therefore, assurance must be provided that metastable conditions have been circumvented in future applications of thermodynamic venting to in-space methane storage.

  3. Fuel thermal stability effects on spray characteristics

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H.; Nickolaus, D.

    1987-01-01

    The propensity of a heated hydrocarbon fuel toward solids deposition within a fuel injector is investigated experimentally. Fuel is arranged to flow through the injector at constant temperature, pressure, and flow rate and the pressure drop across the nozzle is monitored to provide an indication of the amount of deposition. After deposits have formed, the nozzle is removed from the test rig and its spray performance is compared with its performance before deposition. The spray characteristics measured include mean drop size, drop-size distribution, and radial and circumferential fuel distribution. It is found that small amounts of deposition can produce severe distortion of the fuel spray pattern. More extensive deposition restores spray uniformity, but the nozzle flow rate is seriously curtailed.

  4. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: tree deposition and off-target losses

    USDA-ARS?s Scientific Manuscript database

    The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. ...

  5. The influence of cavitation on the flow characteristics of liquid nitrogen through spray nozzles: A CFD study

    NASA Astrophysics Data System (ADS)

    Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu

    2017-09-01

    Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.

  6. Microstructural characterization of Ni-based self-fluxing alloy after selective surface-engineering using diode laser

    NASA Astrophysics Data System (ADS)

    Chun, Eun-Joon; Park, Changkyoo; Nishikawa, Hiroshi; Kim, Min-Su

    2018-06-01

    The microstructural characterization of thermal-sprayed Ni-based self-fluxing alloy (Metco-16C®) after laser-assisted homogenization treatment was performed. To this end, a high-power diode laser system was used. This supported the real-time control of the target homogenization temperature at the substrate surface. Non-homogeneities of the macrosegregation of certain elements (C and Cu) and the local concentration of Cr-based carbides and borides in certain regions in the as-sprayed state could be enhanced with the application of homogenization. After homogenization at 1423 K, the hardness of the thermal-sprayed layer was found to have increased by 1280 HV from the as-sprayed state (750 HV). At this homogenization temperature, the microstructure of the thermal-sprayed layer consisted of a lamellar structuring of the matrix phase (austenite and Ni3Si) with fine (<5 μm) carbides and borides (the rod-like phase of Cr5B3, the lumpy phase of M23C6, and the extra-fine phase of M7C3). Despite the formation of several kinds of carbides and borides during homogenization at 1473 K, the lowest hardness level was found to be less than that of the as-sprayed state, because of the liquid-state homogenization treatment without formation of lamellar structuring between austenite and Ni3Si.

  7. Efficient control system for low-concentration inorganic gases from a process vent stream: application of surfactants in spray and packed columns.

    PubMed

    Chein, Hungmin; Aggarwal, Shankar G; Wu, Hsin-Hsien

    2004-11-01

    Control of low-concentration pollutants from a semiconductor process vent stream using a wet-scrubbing technique is a challenging task to meet Taiwan environmental emission standards. An efficient wet-scrubber is designed on a pilot scale and tested to control low concentration acid and base waste-gas emission. The scrubber system consisted of two columns, i.e., a fine spray column [cutoff diameter (based on volume), Dv(50) = 15.63 microm; Sauter mean diameter (SMD) = 7.62 microm], which is especially efficient for NH3 removal as the pH of the spraying liquid is approximately 7 followed by a packed column with a scrubbing liquid pH approximately 9.0 mainly for acids removal. It is observed that use of the surfactants in low concentration about 10(-4) M and 10(-7) M in the spray liquid and in the scrubbing liquid, respectively, remarkably enhances the removal efficiency of the system. A traditional packed column (without the spray column and the surfactant) showed that the removal efficiencies of NH3, HF, and HCl for the inlet concentration range 0.2 to 3 ppm were (n = 5) 22.6+/-3.4%, 43.4+/-5.5%, and 40.4+/-7.4%, respectively. The overall efficiencies of the proposed system (the spray column and the packed column) in the presence of the surfactant in the spray liquid and in the scrubbing liquid forthese three species were found to increase significantly (n = 5) from 60.3+/-3.6 to 82.8+/-6.8%, 59.1+/-2.7 to 83.4+/-4.2%, and 56.2+/-7.3 to 81.0+/-6.7%, respectively. In this work, development of charge on the gas-liquid interface due to the surfactants has been measured and discussed. It is concluded that the presence of charge on the gas-liquid interface is the responsible factor for enhancement of the removal efficiency (mass-transfer in liquid phase). The effects of the type of surfactants, their chain length, concentration in liquid, etc. on the removal efficiency are discussed. Since the pilot tests were performed under the operating conditions similar to most of the wet-scrubbers operated in semiconductors manufacturing facilities for inorganic pollutants, this study can be applied to modify the existing wet-scrubbers to enhance the removal efficiencies, especially for low-concentration pollutants.

  8. Numerical investigations on the rebound phenomena and the bonding mechanisms in cold spray processes

    NASA Astrophysics Data System (ADS)

    Viscusi, A.

    2018-05-01

    Cold spray technology is a relatively new additive process allowing to create high quality metallic coatings, on both metallic and non-metallic substrates, without extensive heating of the powders sprayed. Upon impact with a target surface, conversion of kinetic energy to plastic deformation occurs, the solid particles deform and bond together. The actual bonding mechanism for cold spray particles is still not well understood, a high number of works has been carried out during the past two decades, several theories have been proposed to explain the adhesion/rebound mechanisms making the system ineffective for industrial applications. Therefore, the aim of this research activity is to better explain the complex adhesion/rebound phenomena into cold spray impact processes through numerical simulations; for this purpose, on the base of simplified hypothesis and results found in literature, an original 3D Finite Element Method (FEM) model of an aluminium particle impacting on an aluminium substrate was proposed. A cohesive behaviour algorithm was implemented in the particle-substrate contact regions aiming to simulate the bonding between the impacting particle and the substrate under specific working conditions. A rebound coefficient was also defined representing the particle residual energy. Different simulations were performed using a range of impact velocities and varying the interfacial cohesive strength. It was shown that at low impact velocities the rebound phenomenon is governed by the elastic energy stored in the system, meanwhile at high impact velocities, the rebound phenomenon is mainly due to the strain rate effects making the system mechanically stronger; therefore, a specific range of bonding velocities depending on substrate-particle contact area were found.

  9. Combustion characteristics in the transition region of liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Cernansky, N. P.; Namer, I.; Tidona, R. J.

    1986-01-01

    A number of important effects have been observed in the droplet size transition region in spray combustion systems. In this region, where the mechanism of flame propagation is transformed from diffusive to premixed dominated combustion, the following effects have been observed: (1) maxima in burning velocity; (2) extension of flammability limits; (3) minima in ignition energy; and (4) minima in NOx formation. A monodisperse aerosol generator has been used to form and deliver a well controlled liquid fuel spray to the combustion test section where measurements of ignition energy have been made. The ignition studies were performed on monodisperse n-heptane sprays at atmospheric pressure over a range of equivalence ratios and droplet diameters. A capacitive discharge spark ignition system was used as the ignition source, providing independent control of spark energy and duration. Preliminary measurements were made to optimize spark duration and spark gap, optimum conditions being those at which the maximum frequency or probability of ignition was observed. Using the optimum electrode spacing and spark duration, the frequency of ignition was determined as a function of spark energy for three overall equivalence ratios (0.6, 0.8, and 1.0) and for initial droplet diameters of 25, 40, 50, 60, and 70 micro m.

  10. Performance evaluation of Ormat unit at Wabuska, Nevada. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culver, G.

    1986-07-01

    Three nominal 24 hour tests under summer, winter and spring weather conditions, were run on an Ormat geothermal binary power generation machine. The machine, located at TAD's Enterprises in Wabuska, Nevada is supplied with approximately 830 gpm of geothermal water at 221/sup 0/F and has two spray cooling ponds. During the tests, temperature, pressure, and flows of geothermal water, freon, cooling water and instantaneous electrical production were recorded hourly. At least once during each test, energy consumption of the well pump, freon feed pump and cooling water pumps were made. Power output of the machine is limited by spray pondmore » capacity. Net output ranged from 410.2 kW during summer conditions when cooling water was 65/sup 0/F to 610.4 kW during winter conditions when cooling water was 55/sup 0/F. Net resource utilization ranged from 1.005 Whr/lb during the summer test to 1.55 Whr/lb during the winter test. Spray pond performance averaged 63% for the fall and winter tests. Availability of the Ormat unit itself during the eight month test period was generally good, averaging 95.5%. Overall system availability, including well pumps, cooling system and electric grid was somewhat less - averaging 83%.« less

  11. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.

    PubMed

    Lu, Yehu; Song, Guowen; Wang, Faming

    2015-03-01

    Hot liquid hazards existing in work environments are shown to be a considerable risk for industrial workers. In this study, the predicted protection from fabric was assessed by a modified hot liquid splash tester. In these tests, conditions with and without an air spacer were applied. The protective performance of a garment exposed to hot water spray was investigated by a spray manikin evaluation system. Three-dimensional body scanning technique was used to characterize the air gap size between the protective clothing and the manikin skin. The relationship between bench scale test and manikin test was discussed and the regression model was established to predict the overall percentage of skin burn while wearing protective clothing. The results demonstrated strong correlations between bench scale test and manikin test. Based on these studies, the overall performance of protective clothing against hot water spray can be estimated on the basis of the results of the bench scale hot water splashes test and the information of air gap size entrapped in clothing. The findings provide effective guides for the design and material selection while developing high performance protective clothing. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  12. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption, and biologic response.

    PubMed

    Suman, Julie D; Laube, Beth L; Dalby, Richard

    2006-01-01

    This research investigated the impact of the full range of in vitro spray characterization tests described in the FDA Draft Bioequivalence Guidance on nasal deposition pattern, pharmacokinetics, and biological response to nicotine administered by two aqueous nasal spray pumps in human volunteers. Nicotine was selected as a model drug (even though it is not locally acting) based on its ability to alter cardiac function and available plasma assay. Significant differences in pump performance-including mean volume diameters, spray angle, spray width, and ovality ratios-were observed between the two pumps. There were no significant differences in deposition pattern, or pharmacokinetic or pharmacodynamic response to the nasally administered nicotine. Although there were statistical differences in the in vitro tests between the two pumps, these differences did not result in significant alterations in the site of droplet deposition within the nose, the rate and extent of nicotine absorption, or the physiologic response it induced. These results suggest that current measures of in vitro performance, particularly spray angle and spray pattern (ovality), may not be clinically relevant. Additional research is needed to define what spray pump characteristics are likely to produce differences in deposition pattern and drug response.

  13. Comparison of the performance between a spray gun and a spray boom in ornamentals.

    PubMed

    Foqué, D; Nuyttens, D

    2011-01-01

    Flemish greenhouse growers predominantly use handheld spray guns and spray lances for their crop protection purposes although these techniques are known for their heavy workload and their high operator exposure risks. Moreover, when these techniques are compared with spray boom equipment, they are often found to be less effective. On the other hand, handheld spraying techniques are less expensive and more flexible to use. Additionally, many Flemish growers are convinced that a high spray volume and spray pressure is needed to assure a good plant protection. The aim of this work was to evaluate and compare the spray deposition, penetration and uniformity between a manually pulled horizontal spray boom and a spray gun under controlled laboratory conditions. In total, six different spray application techniques were evaluated. In general, the total deposition results were comparable between the spray boom and the spray gun applications but the boom applications resulted in a more uniform spray distribution over the crop. On a plant level, the spray distribution was not uniform for the different techniques with highest deposits on the upper side of the top leaves. Using spray guns at a higher spray pressure did not improve spray penetration and deposition on the bottom side of the leaves. From the different nozzle types, the XR 80 03 gave the best results. Plant density clearly affected crop penetration and deposition on the bottom side of the leaves.

  14. Light extinction method on high-pressure diesel injection

    NASA Astrophysics Data System (ADS)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  15. Design, characterization, and aerosol dispersion performance modeling of advanced spray-dried microparticulate/nanoparticulate mannitol powders for targeted pulmonary delivery as dry powder inhalers.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-04-01

    The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns.

  16. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  17. Atomization and combustion performance of antimisting kerosene and jet fuel

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Parikh, P.; Sarohia, V.

    1983-01-01

    Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.

  18. Evaluation of aerosolized medications during parabolic flight maneuvers

    NASA Technical Reports Server (NTRS)

    Lloyd, Charles W.; Martin, William J.; Gosbee, John

    1991-01-01

    The goal was to visually evaluate the effect gravity has on delivery of medications by the use of various aerosol devices. During parabolic flight the same four aerosols were retested as performed in studio ground tests. It appears that the Cetacaine spray and the Ventolin inhaler function without failure during all test. The pump spray (Nostril) appeared to function normally when the container was full, however it appeared to begin to fail to deliver a full mist with larger droplet size when the container was nearly empty. The simple hand spray bottle appeared to work when the container was full and performed progressively worse as the container was emptied. During Apollo flights, it was reported that standard spray bottles did not work well, however, they did not indicate why. It appears that we would also conclude that standard spray bottles do not function as well in zero gravity by failing to produce a normal mist spray. The standard spray bottle allowed the fluid to come out in a narrow fluid stream when held with the nozzle either level or slightly tilted upward.

  19. Exergy analysis of encapsulation of photochromic dye by spray drying

    NASA Astrophysics Data System (ADS)

    Çay, A.; Akçakoca Kumbasar, E. P.; Morsunbul, S.

    2017-10-01

    Application of exergy analysis methodology for encapsulation of photochromic dyes by spray drying was presented. Spray drying system was investigated considering two subsystems, the heater and the dryer sections. Exergy models for each subsystem were proposed and exergy destruction rate and exergy efficiency of each subsystem and the whole system were computed. Energy and exergy efficiency of the system were calculated to be 5.28% and 3.40%, respectively. It was found that 90% of the total exergy inlet was destroyed during encapsulation by spray drying and the exergy destruction of the heater was found to be higher.

  20. Biomimetic Dissolution: A Tool to Predict Amorphous Solid Dispersion Performance.

    PubMed

    Puppolo, Michael M; Hughey, Justin R; Dillon, Traciann; Storey, David; Jansen-Varnum, Susan

    2017-11-01

    The presented study describes the development of a membrane permeation non-sink dissolution method that can provide analysis of complete drug speciation and emulate the in vivo performance of poorly water-soluble Biopharmaceutical Classification System class II compounds. The designed membrane permeation methodology permits evaluation of free/dissolved/unbound drug from amorphous solid dispersion formulations with the use of a two-cell apparatus, biorelevant dissolution media, and a biomimetic polymer membrane. It offers insight into oral drug dissolution, permeation, and absorption. Amorphous solid dispersions of felodipine were prepared by hot melt extrusion and spray drying techniques and evaluated for in vitro performance. Prior to ranking performance of extruded and spray-dried felodipine solid dispersions, optimization of the dissolution methodology was performed for parameters such as agitation rate, membrane type, and membrane pore size. The particle size and zeta potential were analyzed during dissolution experiments to understand drug/polymer speciation and supersaturation sustainment of felodipine solid dispersions. Bland-Altman analysis was performed to measure the agreement or equivalence between dissolution profiles acquired using polymer membranes and porcine intestines and to establish the biomimetic nature of the treated polymer membranes. The utility of the membrane permeation dissolution methodology is seen during the evaluation of felodipine solid dispersions produced by spray drying and hot melt extrusion. The membrane permeation dissolution methodology can suggest formulation performance and be employed as a screening tool for selection of candidates to move forward to pharmacokinetic studies. Furthermore, the presented model is a cost-effective technique.

  1. Development and validation of spray models for investigating diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Som, Sibendu

    Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and combusting data from Sandia National Laboratory. The KH-ACT model is observed to provide better predictions for spray dispersion, axial velocity decay, sauter mean diameter, and liquid and lift-off length interplay which is attributed to the enhanced primary breakup predicted by this model. In addition, experimentally observed trends with changing nozzle conicity could only be captured by the KH-ACT model. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. Finally, the differences in inner nozzle flow and spray characteristics of petrodiesel and biodiesel are quantified. The improved modeling capability developed in this work can be used for extensive diesel engine simulations to further optimize injection, spray, combustion, and emission processes.

  2. Compression ignition engine having fuel system for non-sooting combustion and method

    DOEpatents

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  3. Aerial application equipment for herbicidal drift reduction.

    Treesearch

    1976-01-01

    This publication provides silviculturists and managers of utility rights-of-way with a description and evaluation of available helicopter spray application equipment. Modified conventional equipment will reduce drift of sprays in normal carriers and apply various high-viscosity sprays. Specialized spray systems have found limited use in forestry; they are more commonly...

  4. Spray Distribution of Boomless Nozzles: The Boomjet 5880, Radiarc and Boom Buster

    Treesearch

    James H. Miller

    1990-01-01

    Abstract. The patterns of spray distribution are described for three boomless nozzlesthat arc commonly used, or have promise, for forestry applications: The BoomJet5880 cluster nozzle (Spraying Systems Co.), the Radiarc (Waldrum specialties ), and the Boom Buster (Evergreen Products). Spray distribution patterns were determined using regularly...

  5. Aromatherapy Benefits Autonomic Nervous System Regulation for Elementary School Faculty in Taiwan

    PubMed Central

    Chang, Kang-Ming; Shen, Chuh-Wei

    2011-01-01

    Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P < .001∗∗∗) after application of the aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables) and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy. PMID:21584196

  6. Aromatherapy benefits autonomic nervous system regulation for elementary school faculty in taiwan.

    PubMed

    Chang, Kang-Ming; Shen, Chuh-Wei

    2011-01-01

    Workplace stress-related illness is a serious issue, and consequently many stress reduction methods have been investigated. Aromatherapy is especially for populations that work under high stress. Elementary school teachers are a high-stress working population in Taiwan. In this study, fifty-four elementary school teachers were recruited to evaluate aromatherapy performance on stress reduction. Bergamot essential oil was used for aromatherapy spray for 10 minutes. Blood pressure and autonomic nervous system parameters were recorded 5 minutes before and after the application of the aroma spray. Results showed that there were significant decreases in blood pressure, heart rate, LF power percentage, and LF/HF while there were increases in heart rate variability and HF power percentage (P < .001(∗∗∗)) after application of the aromatherapy spray. Further analysis was investigated by dividing subjects into three background variables (position variables, age variables, gender variables) and anxiety degree groups. All parameters were significantly different for most subgroups, except for the substitute teachers and the light-anxiety group. Parasympathetic nervous system activation was measured after aromatherapy in this study. It encouraged further study for other stress working population by aromatherapy.

  7. Spray drying from organic solvents to prepare nanoporous/nanoparticulate microparticles of protein: excipient composites designed for oral inhalation.

    PubMed

    Ní Ógáin, Orla; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2012-09-01

    The aim of this study was to determine if spray-drying could successfully produce microparticles containing the model protein trypsin in a form suitable for inhalation. Trypsin was spray-dried with raffinose from a methanol : n-butyl acetate solvent system (MeOH : BA). The solvent system was then adjusted to include water, and trypsin was co-spray-dried with raffinose, trehalose or hydroxpropyl-β-cyclodextrin. The spray-dried products were characterised by SEM, XRD, DSC, TGA and FTIR. Protein biological activity and in-vitro deposition of trypsin : excipient nanoporous/nanoparticulate microparticles (NPMPs) was also assessed. The inclusion of water in a MeOH : BA solvent system allowed for the successful production of NPMPs of trypsin : excipient by spray-drying. Trypsin formulated as trypsin : excipient NPMPs retained biological activity on processing and showed no deterioration in activity or morphological characteristics when stored with desiccant at either 4 or 25°C. Hydroxpropyl-β-cyclodextrin showed advantages over the sugars in terms of producing powders with appropriate density and with greater physical stability under high-humidity conditions. Fine particle fractions of between 41 and 45% were determined for trypsin : excipient NPMPs. NPMPs of trypsin : excipient systems can be produced by spray-drying by adjustment of the solvent system to allow for adequate solubility of trypsin. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  8. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization

    PubMed Central

    Jong, Teresa; Li, Jian; Mortonx, David A.V.; Zhou, Qi (Tony); Larson, Ian

    2016-01-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared to those produced by jet-milling. Inhalable colistin powder formulations were produced by jet-milling or spray-drying (with or without L-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, while the spray-dried particles were more spherical. Significantly higher fine particle fractions (FPFs) were measured for the spray-dried (43.8-49.6%) vs. the jet-milled formulation (28.4 %) from a Rotahaler at 60L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of L-leucine in the spray drying feed-solution gave no significant improvement in FPF. As measured by inverse gas chromatography, spray-dried formulations had significantly (p<0.001) lower dispersive, specific and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without L-leucine. Based upon our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray-drying, contributed significantly to the reduction of surface free energy and the superior aerosolization performance. PMID:26886330

  9. Numerical Modeling of Turbulence Effects within an Evaporating Droplet in Atomizing Sprays

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.

    2006-01-01

    A new approach to account for finite thermal conductivity and turbulence effects within atomizing liquid sprays is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen (2005). This finite conductivity model is based on the two-temperature film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal diffhsivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. The current evaporation model is incorporated into the T-blob atomization model of Trinh and Chen (2005) and implemented in an existing CFD Eulerian-Lagrangian two-way coupling numerical scheme. Validation studies were carried out by comparing with available evaporating atomization spray experimental data in terms of jet penetration, temperature field, and droplet SMD distribution within the spray. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating spray.

  10. Investigations on the Behavior of HVOF and Cold Sprayed Ni-20Cr Coating on T22 Boiler Steel in Actual Boiler Environment

    NASA Astrophysics Data System (ADS)

    Bala, Niraj; Singh, Harpreet; Prakash, Satya; Karthikeyan, J.

    2012-01-01

    High temperature corrosion accompanied by erosion is a severe problem, which may result in premature failure of the boiler tubes. One countermeasure to overcome this problem is the use of thermal spray protective coatings. In the current investigation high velocity oxy-fuel (HVOF) and cold spray processes have been used to deposit commercial Ni-20Cr powder on T22 boiler steel. To evaluate the performance of the coatings in actual conditions the bare as well as the coated steels were subjected to cyclic exposures, in the superheater zone of a coal fired boiler for 15 cycles. The weight change and thickness loss data were used to establish kinetics of the erosion-corrosion. X-ray diffraction, surface and cross-sectional field emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) and x-ray mapping techniques were used to analyse the as-sprayed and corroded specimens. The HVOF sprayed coating performed better than its cold sprayed counterpart in actual boiler environment.

  11. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    NASA Astrophysics Data System (ADS)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  12. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections

    PubMed Central

    Leung, Sharon S.Y.; Parumasivam, Thaigarajan; Gao, Fiona G.; Carrigy, Nicholas B.; Vehring, Reinhard; Finlay, Warren H.; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2016-01-01

    Purpose The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. Method A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. Results A significant titer loss (~ 2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 104 pfu and SD-F2 = 11.0 ± 1.4 × 104 pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 104 pfu and SFD-F2 = 2.1 ± 0.3 × 104 pfu). Conclusion Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2. PMID:26928668

  13. Optimising the in vitro and in vivo performance of oral cocrystal formulations via spray coating.

    PubMed

    Serrano, Dolores R; Walsh, David; O'Connell, Peter; Mugheirbi, Naila A; Worku, Zelalem Ayenew; Bolas-Fernandez, Francisco; Galiana, Carolina; Dea-Ayuela, Maria Auxiliadora; Healy, Anne Marie

    2018-03-01

    Engineering of pharmaceutical cocrystals is an advantageous alternative to salt formation for improving the aqueous solubility of hydrophobic drugs. Although, spray drying is a well-established scale-up technique in the production of cocrystals, several issues can arise such as sublimation or stickiness due to low glass transition temperatures of some organic molecules, making the process very challenging. Even though, fluidised bed spray coating has been successfully employed in the production of amorphous drug-coated particles, to the best of our knowledge, it has never been employed in the production of cocrystals. The feasibility of this technique was proven using three model cocrystals: sulfadimidine (SDM)/4-aminosalicylic acid (4ASA), sulfadimidine/nicotinic acid (NA) and ibuprofen (IBU)/ nicotinamide (NAM). Design of experiments were performed to understand the critical formulation and process parameters that determine the formation of either cocrystal or coamorphous systems for SDM/4ASA. The amount and type of binder played a key role in the overall solid state and in vitro performance characteristics of the cocrystals. The optimal balance between high loading efficiencies and high degree of crystallinity was achieved only when a binder: cocrystal weight ratio of 5:95 or 10:90 was used. The cocrystal coated beads showed an improved in vitro-in vivo performance characterised by: (i) no tendency to aggregate in aqueous media compared to spray dried formulations, (ii) enhanced in vitro activity (1.8-fold greater) against S. aureus, (iii) larger oral absorption and bioavailability (2.2-fold higher C max ), (iv) greater flow properties and (v) improved chemical stability than cocrystals produced by other methods derived from the morphology and solid nature of the starter cores. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Influence of coating defects on the corrosion behavior of cold sprayed refractory metals

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Rao, A. Arjuna

    2017-02-01

    The defects in the cold sprayed coatings are critical in the case of corrosion performances of the coatings in aggressive conditions. To understand the influence of coating defects on corrosion, immersion tests have been carried out in HF solution for the cold sprayed and heat treated Titanium, Tantalum and Niobium coatings. Long duration immersion tests reveal inhomogeneous weight losses of the samples prepared at different heat treatment conditions. The weight loss for different coatings has been well corroborated with the coating defects and microstructures. Chemical and micro structural analysis elucidates the reason behind the inhomogeneous performance of different type of cold sprayed coatings in corrosion medium. In the case of cold sprayed titanium, formation of stable oxide along the inter-splat boundary hinders the aggressive attack of the corrosion medium which is not so in other cases.

  15. Research on the Fatigue Flexural Performance of RC Beams Attacked by Salt Spray

    NASA Astrophysics Data System (ADS)

    Mao, Jiang-hong; Xu, Fang-yuan; Jin, Wei-liang; Zhang, Jun; Wu, Xi-xi; Chen, Cai-sheng

    2018-04-01

    The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.

  16. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J. F.; Tasooji, A.

    1985-01-01

    This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system is composed of a low pressure, plasma sprayed applied, oxidation resistant NiCrAlY bond coating. The other system is an air plasma sprayed yttria (8 percent) partially stabilized zirconia insulative layer.

  17. Test Data Analysis of a Spray Bar Zero-Gravity Liquid Hydrogen Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Bailey, J. W.; Hastings, L. J.; Flachbart, R. H.

    2003-01-01

    To support development of a zero-gravity pressure control capability for liquid hydrogen (LH2), a series of thermodynamic venting system (TVS) tests was conducted in 1996 and 1998 using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB). These tests were performed with ambient heat leaks =20 and 50 W for tank fill levels of 90%, 50%, and 25%. TVS performance testing revealed that the spray bar was highly effective in providing tank pressure control within a 7-kPa band (131-138 Wa), and complete destratification of the liquid and the ullage was achieved with all test conditions. Seven of the MHTB tests were correlated with the TVS performance analytical model. The tests were selected to encompass the range of tank fill levels, ambient heat leaks, operational modes, and ullage pressurants. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature obtained from the TVS model were compared with the test data. During extended self-pressurization periods, following tank lockup, the model predicted faster pressure rise rates than were measured. However, once the system entered the cyclic mixing/venting operational mode, the modeled and measured data were quite similar.

  18. Evaluation of effervescent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Meng; Duan, YuFeng; Zhang, TieNan

    2010-09-15

    The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distancemore » increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)« less

  19. Balanced Rotating Spray Tank and Pipe Cleaning and Cleanliness Verification System

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul E. B. (Inventor); Thaxton, Eric A. (Inventor)

    1998-01-01

    A system for cleaning and verifying the cleanliness of the interior surfaces of hollow items, such as small bottles, tanks, pipes and tubes, employs a rotating spray head for supplying a gas-liquid cleaning mixture to the item's surface at a supersonic velocity. The spray head incorporates a plurality of nozzles having diverging cross sections so that the incoming gas-liquid mixture is first converged within the spray head and then diverged through the nozzles, thereby accelerating the mixture to a supersonic velocity. In the preferred embodiment, three nozzles are employed; one forwardly facing nozzle at the end of the spray head and two oppositely facing angled nozzles exiting on opposite sides of the spray head which balance each other, and therefore impart no net side load on the spray head. A drive mechanism is provided to rotate the spray head and at the same time move the head back and forth within the item to be cleaned. The drive mechanism acts on a long metal tube to which the spray head is fixed, and thus no moving parts are exposed to the interior surfaces of the items to be cleaned, thereby reducing the risk of contamination.

  20. Liquid Hydrogen Zero-Boiloff Testing and Analysis for Long-Term Orbital Storage

    NASA Astrophysics Data System (ADS)

    Hastings, L. J.; Hedayat, A.; Bryant, C. B.; Flachbart, R. H.

    2004-06-01

    Advancement of cryocooler and passive insulation technologies in recent years has improved the prospects for zero-boiloff (ZBO) storage of cryogenic fluids. The ZBO concept involves the use of a cryocooler/radiator system to balance storage system incoming and extracted energy such that zero boiloff (no venting) occurs. A large-scale demonstration of the ZBO concept was conducted using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB) along with a commercial cryocooler unit. The liquid hydrogen (LH2) was withdrawn from the tank, passed through the cryocooler heat exchanger, and then the chilled liquid was sprayed back into the tank through a spray bar. The spray bar recirculation system was designed to provide destratification independent of ullage and liquid positions in a zero-gravity environment. The insulated MHTB tank, combined with the vacuum chamber conditions, enabled orbital storage simulation. ZBO was demonstrated for fill levels of 95%, 50%, and 25%. At each fill level, a steady-state boiloff test was performed prior to operating the cryocooler to establish the baseline heat leak. Control system logic based on real-time thermal data and ullage pressure response was implemented to automatically provide a constant tank pressure. A comparison of test data and analytical results is presented in this paper.

  1. Starch Applications for Delivery Systems

    NASA Astrophysics Data System (ADS)

    Li, Jason

    2013-03-01

    Starch is one of the most abundant and economical renewable biopolymers in nature. Starch molecules are high molecular weight polymers of D-glucose linked by α-(1,4) and α-(1,6) glycosidic bonds, forming linear (amylose) and branched (amylopectin) structures. Octenyl succinic anhydride modified starches (OSA-starch) are designed by carefully choosing a proper starch source, path and degree of modification. This enables emulsion and micro-encapsulation delivery systems for oil based flavors, micronutrients, fragrance, and pharmaceutical actives. A large percentage of flavors are encapsulated by spray drying in today's industry due to its high throughput. However, spray drying encapsulation faces constant challenges with retention of volatile compounds, oxidation of sensitive compound, and manufacturing yield. Specialty OSA-starches were developed suitable for the complex dynamics in spray drying and to provide high encapsulation efficiency and high microcapsule quality. The OSA starch surface activity, low viscosity and film forming capability contribute to high volatile retention and low active oxidation. OSA starches exhibit superior performance, especially in high solids and high oil load encapsulations compared with other hydrocolloids. The submission is based on research and development of Ingredion

  2. Sustainability of Metal Structures via Spray-Clad Remanufacturing

    NASA Astrophysics Data System (ADS)

    Smith, Gregory M.; Sampath, Sanjay

    2018-04-01

    Structural reclamation and remanufacturing is an important future design consideration to allow sustainable recovery of degraded structural metals. Heavy machinery and infrastructure components subjected to extended use and/or environment induced degradation require costly and time-consuming replacement. If these parts can be remanufactured to original tolerances, and returned to service with "as good or better" performance, significant reductions in materials, cost, and environmental impact can be achieved. Localized additive restoration via thermal or cold spray methods is a promising approach in recovering and restoring original design strength of degraded metals. The advent of high velocity spray deposition technologies has allowed deposition of near full density materials. In this review, the fundamental scientific and technological elements of such local additive restoration is contemplated including materials, processes, and methodologies to assess the capabilities of such remanufactured systems. This points to sustainable material reclamation, as well as a route toward resource and process sustainability.

  3. Next Generation Thermal Barrier Coatings for the Gas Turbine Industry

    NASA Astrophysics Data System (ADS)

    Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch

    2011-01-01

    The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.

  4. Development of a new modular aerial spray system and night application capability for the U.S. Air Force

    USDA-ARS?s Scientific Manuscript database

    The U.S. Air Force maintains a capability with the C130 aircraft to conduct aerial spray operations over large areas for controlling insects of medical importance. The current modular aerial spray system (MASS) is custom designed to support a variety of configurations from ultralow volume space spra...

  5. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... finishing material. (5) Dry spray booth. A spray booth not equipped with a water washing system as described in subparagraph (4) of this paragraph. A dry spray booth may be equipped with (i) distribution or... it enters the exhaust duct; or (ii) overspray dry filters to minimize dusts; or (iii) overspray dry...

  6. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... finishing material. (5) Dry spray booth. A spray booth not equipped with a water washing system as described in subparagraph (4) of this paragraph. A dry spray booth may be equipped with (i) distribution or... it enters the exhaust duct; or (ii) overspray dry filters to minimize dusts; or (iii) overspray dry...

  7. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... finishing material. (5) Dry spray booth. A spray booth not equipped with a water washing system as described in subparagraph (4) of this paragraph. A dry spray booth may be equipped with (i) distribution or... it enters the exhaust duct; or (ii) overspray dry filters to minimize dusts; or (iii) overspray dry...

  8. Development Study of Cartridge/Crucible Tube Materials

    NASA Technical Reports Server (NTRS)

    McKechnie, Timothy N.; ODell, Scott J.

    1998-01-01

    The limitations of traditional alloys and the desire for improved performance for components is driving the increased utilization of refractory metals in tile space industry. From advanced propulsion systems to high temperature furnace components for microgravity processing, refractory metals are being used for their high melting temperatures and inherent chemical stability. Techniques have been developed to produce near net shape refractory metal components utilizing vacuum plasma spraying. Material utilization is very high, and laborious machining can be avoided. As-spray formed components have been tested and found to perform adequately. However, increased mechanical and thermal properties are needed. To improve these properties, post processing thermal treatments such as hydrogen sintering and vacuum annealing have been performed. Components formed from alloys of tungsten, rhenium, tantalum, niobium, and molybdenum are discussed and a metallurgical analyses detailing the results are presented. A qualitative comparison of mechanical properties is also included.

  9. Some Characteristics of Fuel Sprays from Open Nozzles

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Lee, D W

    1930-01-01

    The penetration and cone-angle of fuel sprays from open nozzles were recorded with the NACA Spray Photography Equipment. The results show that for injection systems in which the rate of pressure rise at the discharge orifice is high, open nozzles give spray-tip velocities and penetrations which compare favorably with those of closed nozzles. The spray cone-angle was the same for all tests, although open nozzles having different orifice diameters were used, and one nozzle was used both as an open and as a closed nozzle. In designing a fuel system using open nozzles, particular care must be taken to avoid air pockets. The check valve should be placed close to the discharge orifice.

  10. Development of spray guns for the application of rigid foam insulation

    NASA Technical Reports Server (NTRS)

    Allen, Peter B.

    1993-01-01

    The paper describes the activities initiated to improve the existing spray gun system used for spraying insulating foam on the External Tank of the Space Shuttle, due to the quality variations of the applied foam noted in the past. Consideration is given to the two tasks of the project: (1) investigations of possible improvements, as an interim measure, to the spray gun currently used to apply the large acreage spray-on-foam insulation and the evaluation of other commercial equipment; and (2) the design and fabrication of a new automatic spray gun. The design and operation of the currently used Binks 43 PA spray gun are described together with several new breadboard spray guns designed and fabricated and the testing procedures developed. These new guns include the Modular Automatic Foam spray gun, the Ball Valve spray gun, and the Tapered Plug Valve (TPV) gun. As a result of tests, the TPV spray gun is recommended to replace the currently used automatic spray gun.

  11. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  12. Penetration and Duration of Fuel Sprays from a Pump Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1934-01-01

    High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. The pump was used with and without a check valve. The results show that the penetration of the spray tip can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.

  13. Moisture and Structural Analysis for High Performance Hybrid Wall Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grin, A.; Lstiburek, J.

    2012-09-01

    Based on past experience in the Building America program, BSC has found that combinations of materials and approaches—in other words, systems—usually provide optimum performance. Integration is necessary, as described in this research project. The hybrid walls analyzed utilize a combination of exterior insulation, diagonal metal strapping, and spray polyurethane foam and leave room for cavity-fill insulation. These systems can provide effective thermal, air, moisture, and water barrier systems in one assembly and provide structure.

  14. Characterization of sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C.-P.

    1984-01-01

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  15. Performance Evaluation of Innovative Water Main Rehabilitation Spray-on Lining Product in Somerville, NJ

    EPA Science Inventory

    Renewal technologies being used for the repair, replacement and/or rehabilitation of deteriorating water distribution systems are generally effective, but there is still considerable room for improvement of these existing technologies and for the development of new technologies. ...

  16. Hydrogen no-vent fill testing in a 5 cubic foot (142 liter) tank using spray nozzle and spray bar liquid injection

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Nyland, Ted W.

    1992-01-01

    A total of 38 hydrogen no-vent fill tests were performed in this test series using various size spray nozzles and a spray bar with different hole sizes in a 5 cubic foot receiver tank. Fill levels of 90 percent by volume or greater were achieved in 26 of the tests while maintaining a receiver tank pressure below 30 psia. Spray nozzles were mounted at the top of the tank, whereas, the spray bar was centered in the tank axially. The spray nozzle no-vent fills demonstrated tank pressure and temperature responses comparable to previous test series. Receiver tank pressure responses for the spray bar configuration were similar to the spray nozzle tests with the pressure initially rising rapidly, then leveling off as vapor condenses onto the discharging liquid streams, and finally ramping up near the end of the test due to ullage compression. Both liquid injection techniques tested were capable of filling the receiver tank to 90 percent under variable test conditions. Comparisons between the spray nozzle and spray bar configurations for well matched test conditions indicate the spray nozzle injection technique is more effective in minimizing the receiving tank pressure throughout a no-vent fill compared to the spray bar under normal gravity conditions.

  17. A performance comparison of ultrasonically aided electric propulsion extractor configurations

    NASA Astrophysics Data System (ADS)

    Dong, L.; Song, W.; Kang, X. M.; Zhao, W. S.

    2012-08-01

    As a novel propulsion technology, ultrasonically aided electric propulsion (UAEP) offers a high specific impulse and a high thrust density. In this paper, the effects of extractor grid configuration on performance of a UAEP thruster have been investigated by both experimental studies and numerical simulation. Relationships between spray current and operation parameters, including applied voltage, propellant flow rate, and vibration power and frequency, are explored for different extractor mesh sizes and shapes. Numerical simulation is also carried out for a better understanding of the formation of capillary standing waves as well as the electric field distribution in the acceleration zone. Experimental results show that compared with a circular shaped extractor, a reticular shaped extractor is able to produce a higher spray current. The current density increases with a denser mesh, which agrees well with the numerical simulation results. This phenomenon indicates that optimizing extractors with appropriate shapes and sizes can be an effective way to improve the performance of a UAEP system. A performance evaluation based on hydrodynamic and electrostatic calculations indicates that the present UAEP system can produce a thrust competitive to that of the colloid thruster with an emitter array.

  18. USERS GUIDE FOR THE CONVERSION OF NAVY PAINT SPRAY BOOTH PARTICULATE EMISSION CONTROL SYSTEMS FROM WET TO DRY OPERATION

    EPA Science Inventory

    The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...

  19. Mechanism of Action of Lung Damage Caused by a Nanofilm Spray Product

    PubMed Central

    Larsen, Søren T.; Dallot, Constantin; Larsen, Susan W.; Rose, Fabrice; Poulsen, Steen S.; Nørgaard, Asger W.; Hansen, Jitka S.; Sørli, Jorid B.; Nielsen, Gunnar D.; Foged, Camilla

    2014-01-01

    Inhalation of waterproofing spray products has on several occasions caused lung damage, which in some cases was fatal. The present study aims to elucidate the mechanism of action of a nanofilm spray product, which has been shown to possess unusual toxic effects, including an extremely steep concentration-effect curve. The nanofilm product is intended for application on non-absorbing flooring materials and contains perfluorosiloxane as the active film-forming component. The toxicological effects and their underlying mechanisms of this product were studied using a mouse inhalation model, by in vitro techniques and by identification of the binding interaction. Inhalation of the aerosolized product gave rise to increased airway resistance in the mice, as evident from the decreased expiratory flow rate. The toxic effect of the waterproofing spray product included interaction with the pulmonary surfactants. More specifically, the active film-forming components in the spray product, perfluorinated siloxanes, inhibited the function of the lung surfactant due to non-covalent interaction with surfactant protein B, a component which is crucial for the stability and persistence of the lung surfactant film during respiration. The active film-forming component used in the present spray product is also found in several other products on the market. Hence, it may be expected that these products may have a toxicity similar to the waterproofing product studied here. Elucidation of the toxicological mechanism and identification of toxicological targets are important to perform rational and cost-effective toxicological studies. Thus, because the pulmonary surfactant system appears to be an important toxicological target for waterproofing spray products, study of surfactant inhibition could be included in toxicological assessment of this group of consumer products. PMID:24863969

  20. Effects of thermoacoustic oscillations on spray combustion dynamics with implications for lean direct injection systems

    NASA Astrophysics Data System (ADS)

    Chishty, Wajid Ali

    Thermoacoustic instabilities in modern high-performance, low-emission gas turbine engines are often observable as large amplitude pressure oscillations and can result in serious performance and structural degradations. These acoustic oscillations can cause oscillations in combustor through-flows and given the right phase conditions, can also drive unsteady heat release. To curb the potential harms caused by the existence of thermoacoustic instabilities, recent efforts have focused on the active suppression of these instabilities. Intuitively, development of effective active combustion control methodologies is strongly dependent on the knowledge of the onset and sustenance of thermoacoustic instabilities. Specially, non-premixed spray combustion environment pose additional challenges due to the inherent unstable dynamics of sprays. The understanding of the manner in which the combustor acoustics affect the spray characteristics, which in turn result in heat release oscillation, is therefore, of paramount importance. The experimental investigations and the modeling studies conducted towards achieving this knowledge have been presented in this dissertation. Experimental efforts comprise both reacting and non-reacting flow studies. Reacting flow experiments were conducted on a overall lean direct injection, swirl-stabilized combustor rig. The investigations spanned combustor characterization and stability mapping over the operating regime. The onset of thermoacoustic instability and the transition of the combustor to two unstable regimes were investigated via phase-locked chemiluminescence imaging and measurement and phase-locked acoustic characterization. It was found that the onset of the thermoacoustic instability is a function of the energy gain of the system, while the sustenance of instability is due to the in-phase relationship between combustor acoustics and unsteady heat release driven by acoustic oscillations. The presence of non-linearities in the system between combustor acoustic and heat release and also between combustor acoustics and air through-flow were found to exist. The impact of high amplitude limit-cycle pressure on droplet breakdown under very low mean airflow and the localized effects of forced primary fuel modulations on heat release were also investigated. The non-reacting flow experiments were conducted to study the spray behavior under the presence of an acoustic field. An isothermal acoustic rig was specially fabricated, where the pressure oscillations were generated using an acoustic driver. Phase Doppler Anemometry was used to measure the droplet velocities and sizes under varying acoustic forcing conditions and spray feed pressures. Measurements made at different locations in the spray were related to these variations in mean and unsteady inputs. The droplet velocities were found to show a second order response to acoustic forcing with the cut-off frequency equal to the relaxation time corresponding to mean droplet size. It was also found that under acoustic forcing the droplets migrate radially away from the spray centerline and show oscillatory excursions in their movement. Modeling efforts were undertaken to gain physical insights of spray dynamics under the influence of acoustic forcing and to explain the experimental findings. The radial migration of droplets and their oscillatory movement were validated. The flame characteristics in the two unstable regimes and the transition between them were explained. It was found that under certain acoustic and mean air-flow condition, bands of high droplet densities were formed which resulted in diffusion type group burning of droplets. It was also shown that very high acoustic amplitudes cause secondary breakup of droplets.

  1. Spray nozzle designs for agricultural aviation applications. [relation of drop size to spray characteristics and nozzle efficiency

    NASA Technical Reports Server (NTRS)

    Lee, K. W.; Putnam, A. A.; Gieseke, J. A.; Golovin, M. N.; Hale, J. A.

    1979-01-01

    Techniques of generating monodisperse sprays and information concerning chemical liquids used in agricultural aviation are surveyed. The periodic dispersion of liquid jet, the spinning disk method, and ultrasonic atomization are the techniques discussed. Conceptually designed spray nozzles for generating monodisperse sprays are assessed. These are based on the classification of the drops using centrifugal force, on using two opposing liquid laden air jets, and on operating a spinning disk at an overloaded flow. Performance requirements for the designs are described and estimates of the operational characteristics are presented.

  2. Electrostatic spraying in the chemical control of Triozoida limbata (Enderlein) (Hemiptera: Triozidae) in guava trees (Psidium guajava L.).

    PubMed

    Tavares, Rafael M; Cunha, João Par; Alves, Thales C; Bueno, Mariana R; Silva, Sérgio M; Zandonadi, César Hs

    2017-06-01

    Owing to the difficulty in reaching targets during pesticide applications on guava trees, it is important to evaluate new technologies that may improve pest management. In electrostatic spraying, an electric force is added to the droplets to control their movements such that they are efficiently directed to the target. The present study evaluated the performance of electrostatic and non-electrostatic spraying in the control of the guava psyllid, the deposition of the spray mixture on the leaves and the losses to the soil. The deposition of the spray mixture was up to 2 times greater when using electrostatic spraying in comparison with non-electrostatic application. The losses of the spray mixture to the soil were up to 4 times smaller with the electrostatic spraying. Electrostatic spraying had better control of the psyllid. It was possible to reduce the volume rate of application with electrostatic spraying without adversely affecting the control of the guava psyllid. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Conventional wastewater treatment and reuse site practices modify bacterial community structure but do not eliminate some opportunistic pathogens in reclaimed water.

    PubMed

    Kulkarni, Prachi; Olson, Nathan D; Paulson, Joseph N; Pop, Mihai; Maddox, Cynthia; Claye, Emma; Rosenberg Goldstein, Rachel E; Sharma, Manan; Gibbs, Shawn G; Mongodin, Emmanuel F; Sapkota, Amy R

    2018-10-15

    Water recycling continues to expand across the United States, from areas that have access to advanced, potable-level treated reclaimed water, to those having access only to reclaimed water treated at conventional municipal wastewater treatment plants. This expansion makes it important to further characterize the microbial quality of these conventionally-treated water sources. Therefore, we used 16S rRNA gene sequencing to characterize total bacterial communities present in differentially-treated wastewater and reclaimed water (n = 67 samples) from four U.S. wastewater treatment plants and one associated spray irrigation site conducting on-site ultraviolet treatment and open-air storage. The number of observed operational taxonomic units was significantly lower (p < 0.01) in effluent, compared to influent, after conventional treatment. Effluent community structure was influenced more by treatment method than by influent community structure. The abundance of Legionella spp. increased as treatment progressed in one treatment plant that performed chlorination and in another that seasonally chlorinated. Overall, the alpha-diversity of bacterial communities in reclaimed water decreased (p < 0.01) during wastewater treatment and spray irrigation site ultraviolet treatment (p < 0.01), but increased (p < 0.01) after open-air storage at the spray irrigation site. The abundance of Legionella spp. was higher at the sprinkler system pumphouse at the spray irrigation site than in the influent from the treatment plant supplying the site. Legionella pneumophila was detected in conventionally treated effluent samples and in samples collected after ultraviolet treatment at the spray irrigation site, while Legionella feeleii persisted throughout on-site treatment at the spray irrigation site, and, along with Mycobacterium gordonae, was also detected at the sprinkler system pumphouse at the spray irrigation site. These data could inform the development of future treatment technologies and reuse guidelines that address a broader assemblage of the bacterial community of reclaimed water, resulting in reuse practices that may be more protective of public health. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Walk-through survey report: Control of methylene chloride in furniture stripping at jet strip, Boulder, Colorado, August 1, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, R.M.; Sheehy, J.W.

    1992-12-01

    A walk through survey was made of the furniture stripping process at Jet Strip (SIC-7641), Boulder, Colorado to examine the effectiveness of a unique, enclosed, automated furniture stripping spray system which featured a gasket sealed lid which was in place while furniture was being stripped. Stripping was performed continuously throughout the workday. The enclosed spray system tank was 6 feet wide, 10 feet long and 4.5 feet deep. Furniture to be stripped was placed on a metal grid hung from the top of the enclosed spray system. The rack was lowered into the tank and the lip dropped to formmore » the cover of the enclosed system. A hole in the lid was connected to a water bed mattress which lays on top of the lip. During the stripping process, vapors were emitted through the hole, causing the mattress to expand. At the completion of the stripping process the vapors slowly dissipated into the tank, leaving the mattress in its original form. A single personal sample collected during the stripping and rinsing operations showed a methylene-chloride concentration of 68 parts per million (ppm). If the rinse area were also controlled, the enclosed system could keep the concentration below the 25ppm level. The system was homemade and not commercially available. The authors conclude that the system, while apparently effective, was also expensive. It is not recommended for further study at this time.« less

  5. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  6. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    PubMed

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  7. Crash-Fire Protection System for T-56 Turbopropeller Engine Using Water as Cooling and Inerting Agent

    NASA Technical Reports Server (NTRS)

    Busch, Arthur M.; Campbell, John A.

    1959-01-01

    A crash-fire protection system to suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbopropeller engine is described. This system includes means for rapidly extinguishing the combustor flame and means for cooling and inerting with water the hot engine parts likely to ignite engine-ingested fuel. Combustion-chamber flames were extinguished in 0.07 second at the engine fuel manifold. Hot engine parts were inerted and cooled by 52 pounds of water discharged at ten engine stations. Performance trials of the crash-fire prevention system were conducted by bringing the engine up to takeoff temperature, stopping the normal fuel flow to the engine, starting the water discharge, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.

  8. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Batakis, A. P.; Vogan, J. W.

    1985-01-01

    A research program was conducted to generate data and develop analytical techniques to predict the performance and reliability of ceramic thermal barrier coatings in high heat flux environments. A finite element model was used to analyze the thermomechanical behavior of coating systems in rocket thrust chambers. Candidate coating systems (using a copper substrate, NiCrAlY bond coat and ZrO2.8Y2O3 ceramic overcoat) were selected for detailed study based on photomicrographic evaluations of experimental test specimens. The effects of plasma spray application parameters on the material properties of these coatings were measured and the effects on coating performance evaluated using the finite element model. Coating design curves which define acceptable operating envelopes for seleted coating systems were constructed based on temperature and strain limitations. Spray gun power levels was found to have the most significant effect on coating structure. Three coating systems were selected for study using different power levels. Thermal conductivity, strain tolerance, density, and residual stress were measured for these coatings. Analyses indicated that extremely thin coatings ( 0.02 mm) are required to accommodate the high heat flux of a rocket thrust chamber and ensure structural integrity.

  9. Skin sterility after application of ethyl chloride spray.

    PubMed

    Polishchuk, Daniil; Gehrmann, Robin; Tan, Virak

    2012-01-18

    Ethyl chloride topical anesthetic spray is labeled as nonsterile, yet it is widely used during injection procedures performed in an outpatient setting. The purpose of this study was to investigate the sterility of ethyl chloride topical anesthetic spray applied before an injection. Our a priori hypothesis was that application of the spray after the skin has been prepared would not alter the sterility of the injection site. We conducted a prospective, blinded, controlled study to assess the effect of ethyl chloride spray on skin sterility. Fifteen healthy adult subjects (age, twenty-three to sixty-one years) were prepared for mock injections into both shoulders and both knees, although no injection was actually performed. Three culture samples were obtained from each site on the skin: one before skin preparation with isopropyl alcohol, one after skin preparation and before application of ethyl chloride, and one after ethyl chloride had been sprayed on the site. In addition, the sterility of the ethyl chloride was tested directly by inoculating cultures with spray from the bottles. Growth occurred in 70% of the samples obtained before skin preparation, 3% of the samples obtained after skin preparation but before application of ethyl chloride, and 5% of the samples obtained after the injection site had been sprayed with ethyl chloride. The percentage of positive cultures did not increase significantly after application of ethyl chloride (p = 0.65). Spraying of ethyl chloride directly on agar plates resulted in growth on 13% of these plates compared with 11% of the control plates; this difference was also not significant (p = 0.80). Although ethyl chloride spray is not sterile, its application did not alter the sterility of the injection sites in the shoulder and knee.

  10. The feasibility study of hot cell decontamination by the PFC spray method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-15

    The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to bemore » reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation module. A performance test on each module was executed and the results have been reported. A combined test of the four modules, however, has not been performed as yet. The main objective of the present study is to demonstrate the feasibility of the full PFC spray decontamination process. Decontamination of the inside of the IMEF hot cell by the PFC spray method was also performed. PFC spray decontamination process was demonstrated by using a surrogate wall contaminated with Eu{sub 2}O{sub 3} powder. The spray pressure was 41 kgf/cm{sup 2}, the orifice diameter was 0.2 mm and the spray velocity was 0.2 L/min. And, the decontaminated area was 100 cm{sup 2}. From previous test results, we found that the decontamination factor of the PFC spray method was in the range from 9.6 to 62.4. When the decontamination efficiency of Co-60 was high, then the decontamination efficiency of Cs-137 was also high. As the surface roughness of the specimen increased, the PFC spray decontamination efficiency decreased. Inferring from the previous results, the surface of the surrogate wall was cleaned by the PFC spray method. The vacuum cup of the collection module operated well and gathered more than 99 % of the PFC solution. Also, filtration and distillation modules operated well. All the filtered PFC solution flowed to the storage chamber where some of the PFC solution was distilled. The coolant of the distillation module was a dry ice. And, the recycled solution was transferred to the spray module by a high pressure pump. To evaluate the PFC spray decontamination efficiency, a smear device was fabricated and operated by a manipulator. Before and after decontamination, a smear test was performed. The tested area was 100 cm{sup 2} and the radioactivity was estimated indirectly by measuring the radioactivity of the filter paper. The average decontamination factor was in the range between 10 and 15. One application time was 2 minutes. The sprayed PFC solution was collected by the vacuum cup and it was stored in the collection equipment. After the termination of the decontamination test, the flexible hose was cut near a toboggan. The collection equipment that contained the spent PFC solution, vacuum cup, spray nozzle and the flexible hose was stored in a radioactive waste storage tank. A feasibility study for the PFC spray decontamination method for an application to a hot cell surface was performed. The decontamination equipment that consisted of four modules operated well in the hot cell. The collection module gathered the sprayed PFC solution. The solution was purified in the filtration or distillation modules. The main characteristic of the distillation module is the use of dry ice as a coolant. The decontamination factor of IMEF hot cell was in the range from 10 to 15. It was difficult to measure the radioactivity accurately at a given time. We, however, concluded that the PFC spray decontamination method is a promising technology. It generated a small amount of secondary waste and used a non-toxic and non-conducting material. Decontamination work was performed with a little loss of the main decontamination agent. Based on the test results, we are developing an improved PFC spray decontamination process.« less

  11. Novel Online Diagnostic Analysis for In-Flight Particle Properties in Cold Spraying

    NASA Astrophysics Data System (ADS)

    Koivuluoto, Heli; Matikainen, Ville; Larjo, Jussi; Vuoristo, Petri

    2018-02-01

    In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.

  12. Numerical study on the impacts of the bogus data assimilation and sea spray parameterization on typhoon ducts

    NASA Astrophysics Data System (ADS)

    Fei, Jianfang; Ding, Juli; Huang, Xiaogang; Cheng, Xiaoping; Hu, Xiaohua

    2013-06-01

    The Weather Research and Forecasting model version 3.2 (WRF v3.2) was used with the bogus data assimilation (BDA) scheme and sea spray parameterization (SSP), and experiments were conducted to assess the impacts of the BDA and SSP on prediction of the typhoon ducting process induced by Typhoon Mindule (2004). The global positioning system (GPS) dropsonde observations were used for comparison. The results show that typhoon ducts are likely to form in every direction around the typhoon center, with the main type of ducts being elevated duct. With the BDA scheme included in the model initialization, the model has a better performance in predicting the existence, distribution, and strength of typhoon ducts. This improvement is attributed to the positive effect of the BDA scheme on the typhoon's ambient boundary layer structure. Sea spray affects typhoon ducts mainly by changing the latent heat (LH) flux at the air-sea interface beyond 270 km from the typhoon center. The strength of the typhoon duct is enhanced when the boundary layer under this duct is cooled and moistened by the sea spray; otherwise, the typhoon duct is weakened. The sea spray induced changes in the air-sea sensible heat (SH) flux and LH flux are concentrated in the maximum wind speed area near the typhoon center, and the changes are significantly weakened with the increase of the radial range.

  13. Performance Analysis and Modeling of Thermally Sprayed Resistive Heaters

    NASA Astrophysics Data System (ADS)

    Lamarre, Jean-Michel; Marcoux, Pierre; Perrault, Michel; Abbott, Richard C.; Legoux, Jean-Gabriel

    2013-08-01

    Many processes and systems require hot surfaces. These are usually heated using electrical elements located in their vicinity. However, this solution is subject to intrinsic limitations associated with heating element geometry and physical location. Thermally spraying electrical elements directly on surfaces can overcome these limitations by tailoring the geometry of the heating element to the application. Moreover, the element heat transfer is maximized by minimizing the distance between the heater and the surface to be heated. This article is aimed at modeling and characterizing resistive heaters sprayed on metallic substrates. Heaters were fabricated by using a plasma-sprayed alumina dielectric insulator and a wire flame-sprayed iron-based alloy resistive element. Samples were energized and kept at a constant temperature of 425 °C for up to 4 months. SEM cross-sectional observations revealed the formation of cracks at very specific locations in the alumina layer after thermal use. Finite-element modeling shows that these cracks originate from high local thermal stresses and can be predicted according to the considered geometry. The simulation model was refined using experimental parameters obtained by several techniques such as emissivity and time-dependent temperature profile (infra-red camera), resistivity (four-probe technique), thermal diffusivity (laser flash method), and mechanical properties (micro and nanoindentation). The influence of the alumina thickness and the substrate material on crack formation was evaluated.

  14. Evaluation of leaf wetness duration models for operational use in strawberry disease-warning systems in four US states.

    PubMed

    Montone, Verona O; Fraisse, Clyde W; Peres, Natalia A; Sentelhas, Paulo C; Gleason, Mark; Ellis, Michael; Schnabel, Guido

    2016-11-01

    Leaf wetness duration (LWD) plays a key role in disease development and is often used as an input in disease-warning systems. LWD is often estimated using mathematical models, since measurement by sensors is rarely available and/or reliable. A strawberry disease-warning system called "Strawberry Advisory System" (SAS) is used by growers in Florida, USA, in deciding when to spray their strawberry fields to control anthracnose and Botrytis fruit rot. Currently, SAS is implemented at six locations, where reliable LWD sensors are deployed. A robust LWD model would facilitate SAS expansion from Florida to other regions where reliable LW sensors are not available. The objective of this study was to evaluate the use of mathematical models to estimate LWD and time of spray recommendations in comparison to on site LWD measurements. Specific objectives were to (i) compare model estimated and observed LWD and resulting differences in timing and number of fungicide spray recommendations, (ii) evaluate the effects of weather station sensors precision on LWD models performance, and (iii) compare LWD models performance across four states in the USA. The LWD models evaluated were the classification and regression tree (CART), dew point depression (DPD), number of hours with relative humidity equal or greater than 90 % (NHRH ≥90 %), and Penman-Monteith (P-M). P-M model was expected to have the lowest errors, since it is a physically based and thus portable model. Indeed, the P-M model estimated LWD most accurately (MAE <2 h) at a weather station with high precision sensors but was the least accurate when lower precision sensors of relative humidity and estimated net radiation (based on solar radiation and temperature) were used (MAE = 3.7 h). The CART model was the most robust for estimating LWD and for advising growers on fungicide-spray timing for anthracnose and Botrytis fruit rot control and is therefore the model we recommend for expanding the strawberry disease warning beyond Florida, to other locations where weather stations may be deployed with lower precision sensors, and net radiation observations are not available.

  15. Evaluation of leaf wetness duration models for operational use in strawberry disease-warning systems in four US states

    NASA Astrophysics Data System (ADS)

    Montone, Verona O.; Fraisse, Clyde W.; Peres, Natalia A.; Sentelhas, Paulo C.; Gleason, Mark; Ellis, Michael; Schnabel, Guido

    2016-11-01

    Leaf wetness duration (LWD) plays a key role in disease development and is often used as an input in disease-warning systems. LWD is often estimated using mathematical models, since measurement by sensors is rarely available and/or reliable. A strawberry disease-warning system called "Strawberry Advisory System" (SAS) is used by growers in Florida, USA, in deciding when to spray their strawberry fields to control anthracnose and Botrytis fruit rot. Currently, SAS is implemented at six locations, where reliable LWD sensors are deployed. A robust LWD model would facilitate SAS expansion from Florida to other regions where reliable LW sensors are not available. The objective of this study was to evaluate the use of mathematical models to estimate LWD and time of spray recommendations in comparison to on site LWD measurements. Specific objectives were to (i) compare model estimated and observed LWD and resulting differences in timing and number of fungicide spray recommendations, (ii) evaluate the effects of weather station sensors precision on LWD models performance, and (iii) compare LWD models performance across four states in the USA. The LWD models evaluated were the classification and regression tree (CART), dew point depression (DPD), number of hours with relative humidity equal or greater than 90 % (NHRH ≥90 %), and Penman-Monteith (P-M). P-M model was expected to have the lowest errors, since it is a physically based and thus portable model. Indeed, the P-M model estimated LWD most accurately (MAE <2 h) at a weather station with high precision sensors but was the least accurate when lower precision sensors of relative humidity and estimated net radiation (based on solar radiation and temperature) were used (MAE = 3.7 h). The CART model was the most robust for estimating LWD and for advising growers on fungicide-spray timing for anthracnose and Botrytis fruit rot control and is therefore the model we recommend for expanding the strawberry disease warning beyond Florida, to other locations where weather stations may be deployed with lower precision sensors, and net radiation observations are not available.

  16. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    PubMed Central

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-01-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g−1, respectively, at a current density of 2 A g−1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones. PMID:27033088

  17. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    NASA Astrophysics Data System (ADS)

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-04-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g-1, respectively, at a current density of 2 A g-1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones.

  18. 29 CFR 1910.163 - Fixed extinguishing systems, water spray and foam.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....160. This section does not apply to automatic sprinkler systems which are covered under § 1910.159. (b...] Other Fire Protection Systems ... 29 Labor 5 2012-07-01 2012-07-01 false Fixed extinguishing systems, water spray and foam. 1910.163...

  19. 29 CFR 1910.163 - Fixed extinguishing systems, water spray and foam.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....160. This section does not apply to automatic sprinkler systems which are covered under § 1910.159. (b...] Other Fire Protection Systems ... 29 Labor 5 2014-07-01 2014-07-01 false Fixed extinguishing systems, water spray and foam. 1910.163...

  20. Improved the microstructures and properties of M3:2 high-speed steel by spray forming and niobium alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.; Hou, L.G., E-mail: lghou@skl.ustb.edu.cn; Zhang, J.X.

    The microstructures and properties of spray formed (SF) high-speed steels (HSSs) with or without niobium (Nb) addition were studied. Particular emphasis was placed on the effect of Nb on the solidification microstructures, decomposition of M{sub 2}C carbides, thermal stability and mechanical properties. The results show that spray forming can refine the cell size of eutectic carbides due to the rapid cooling effect during atomization. With Nb addition, further refinement of the eutectic carbides and primary austenite grains are obtained. Moreover, the Nb addition can accelerate the decomposition of M{sub 2}C carbides and increase the thermal stability of high-speed steel, andmore » also can improve the hardness and bending strength with slightly decrease the impact toughness. The high-speed steel made by spray forming and Nb alloying can give a better tool performance compared with powder metallurgy M3:2 and commercial AISI M2 high-speed steels. - Highlights: • Spray forming can effectively refine the microstructure of M3:2 steel. • Niobium accelerates the decomposition of M{sub 2}C carbides. • Niobium increases the hardness and bending strength of spray formed M3:2 steel. • Spray-formed niobium-containing M3:2 steel has the best tool performance.« less

  1. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.

    PubMed

    Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel

    2014-08-01

    The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).

  2. Verification on spray simulation of a pintle injector for liquid rocket engine

    NASA Astrophysics Data System (ADS)

    Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye

    2016-02-01

    The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.

  3. Microbial contamination and disinfection methods of pacifiers.

    PubMed

    Nelson-Filho, Paulo; Louvain, Márcia Costa; Macari, Soraia; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Queiroz, Alexandra Mussolino de; Gaton-Hernández, Patrícia; Silva, Léa Assed Bezerra da

    2015-10-01

    To evaluate the microbial contamination of pacifiers by Mutans Streptococci(MS) and the efficacy of different methods for their disinfection. Twenty-eight children were assigned to a 4-stage changeover system with a 1-week interval. In each stage, children received a new pacifier and the parents were instructed to maintain their normal habits for 1 week. After this time, the pacifiers were subjected to the following 4 disinfection methods: spraying with 0.12% chlorhexidine solution, Brushtox or sterile tap water, and immersion in boiling tap water for 15 minutes. Microbiological culture for MS and Scanning Electron Microscopy (SEM) were performed. The results were analyzed statistically by Friedman's non-parametric test (a=0.05). The 0.12% chlorhexidine spray was statistically similar to the boiling water (p>0.05) and more effective than the Brushtox spray and control (p<0.05). The analysis of SEM showed the formation of a cariogenic biofilm in all groups with positive culture. Pacifiers become contaminated by MS after their use by children and should be disinfected routinely. Spraying with a 0.12% chlorhexidine solution and immersion in boiling water promoted better disinfection of the pacifiers compared with a commercial antiseptic toothbrush cleanser (Brushtox).

  4. Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers

    NASA Astrophysics Data System (ADS)

    Keong Lay, Kok; Yew Cheong, Brian Mun; Li Tong, Wei; Tan, Ming Kwang; Hung, Yew Mun

    2017-04-01

    A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.

  5. Performance of EVA-Based Membranes for SCL in Hard Rock

    NASA Astrophysics Data System (ADS)

    Holter, Karl Gunnar

    2016-04-01

    The bonded property of multi-layered sprayed concrete tunnel linings (SCL) waterproofed with sprayed membranes means that the constituent materials will be exposed to the groundwater without any draining or mechanically separating measures. Moisture properties of the sprayed concrete and membrane materials are therefore important in order to establish the system properties of such linings. Ethyl-vinyl-acetate based sprayed membranes exhibit high water absorption potential under direct exposure to water, but are found to be significantly less hygroscopic and exhibit lower sorptivity (water absorption rate) than sprayed concrete. This material behavior explains the relatively dry in situ condition of the membrane that was observed. Measured in situ moisture content levels of the membrane material in tunnel linings have been found to vary within the range of 30-40 % of the maximum water absorption potential, and show a decreasing trend over the first 4 years after construction has been completed. A model for the mechanical loading, moisture condition and thermal exposure of the membrane and the resulting realistic parameters to be tested is presented. Laboratory testing methods for the membrane materials are evaluated considering possible loads, moisture and freezing exposure. Material testing of membrane materials was conducted with preconditioning to realistic moisture contents and under different temperature conditions including relevant freezing temperatures for tunnel linings. The main effects of the in situ moisture condition of the tested membrane materials are favorable tensile strengths in the range of 1.1-1.5 MPa and low risk of freeze-thaw damage. The crack bridging capacity of the tested membranes is found to be sensitive to temperature. With membrane thicknesses in the range of 3-4 mm, crack bridging capacity up to 4-6 mm opening of the crack width at 23 °C and approximately 1 mm opening at -3 °C was measured for the tested membranes. No significant reduction of the tensile bond strength could be demonstrated after 35 freeze-thaw cycles with -3 °C minimum temperature at the membrane location in the lining. Further work is required to verify the performance of the SCL system under exposure to high hydrostatic pressures and the effects of long term mechanical exposure.

  6. The improved dissolution performance of a post processing treated spray-dried crystalline solid dispersion of poorly soluble drugs.

    PubMed

    Chan, Siok-Yee; Toh, Seok-Ming; Khan, Nasir Hayat; Chung, Yin-Ying; Cheah, Xin-Zi

    2016-11-01

    Solution-mediated transformation has been cited as one of the main problems that deteriorate dissolution performances of solid dispersion (SD). This is mainly attributed by the recrystallization tendency of poorly soluble drug. Eventually, it will lead to extensive agglomeration which is a key process in reducing the dissolution performance of SD and offsets the true benefit of SD system. Here, a post-processing treatment is suggested in order to reduce the recrystallization tendency and hence bring forth the dissolution advantage of SD system. The current study investigates the effect of a post processing treatment on dissolution performance of SD in comparison to their performances upon production. Two poorly soluble drugs were spray dried into SD using polyvinyl alcohol (PVA) as hydrophilic carrier. The obtained samples were post processing treated by exposure to high humidity, i.e. 75% RH at room temperature. The physical properties and release rate of the SD system were characterized upon production and after the post-processing treatment. XRPD, Infrared and DSC results showed partial crystallinity of the fresh SD systems. Crystallinity of these products was further increased after the post-processing treatment at 75% RH. This may be attributed to the high moisture absorption of the SD system that promotes recrystallization process of the drug. However, dissolution efficiencies of the post-treated systems were higher and more consistent than the fresh SD. The unexpected dissolution trend was further supported by the results intrinsic dissolution and solubility studies. An increase of crystallinity in a post humidity treated SD did not exert detrimental effect to their dissolution profiles. A more stabilized system with a preferable enhanced dissolution rate was obtained by exposing the SD to a post processing humidity treatment.

  7. Calibrating and Evaluating Boomless Spray Systems for Applying Forest Herbicides

    Treesearch

    Michael A. Wehr; Russell W. Johnson; Robert L. Sajdak

    1985-01-01

    Describes a testing procedure used to calibrate and evaluate agricultureal boomless spray systems. Tests allow the user to obtain dependable and satisfactory results when used in actual forest situations.

  8. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Astrophysics Data System (ADS)

    Ravex, Alain; Flachbart, Robin; Holt, Barney

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. TVS performance testing demonstrated that the spray bar was effective in providing tank pressure control within a 6.89 kPa (1psi) band for fill levels of 90%, 50%, and 25%. Complete destratification of the liquid and ullage was achieved at these fill levels. The axial jet was effective in providing tank pressure control within the same pressure control band at the 90% fill level. However, at the 50% level, the system reached a point at which it was unable to extract enough energy to keep up with the heat leak into the tank. Due to a hardware problem, the recirculation pump operated well below the axial jet design flow rate. Therefore, it is likely that the performance of the axial jet would have improved had the pump operated at the proper flow rate. A CFD model is being used to determine if the desired axial jet performance would be achieved if a higher pump flow rate were available. Testing conducted thus far has demonstrated that both TVS concepts can be effective in destratifying a propellant tank, rejecting stored heat energy, and thus, controlling tank pressure.

  9. Influence of Cold-Sprayed, Warm-Sprayed, and Plasma-Sprayed Layers Deposition on Fatigue Properties of Steel Specimens

    NASA Astrophysics Data System (ADS)

    Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik

    2015-06-01

    Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.

  10. 40 CFR 60.543 - Performance test and compliance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operator of each tread end cementing operation and each green tire spraying operation using only water... conducting a monthly performance test, the owner or operator of each tread end cementing operation and each green tire spraying operation shall submit formulation data or the results of Method 24 analysis...

  11. 40 CFR 60.543 - Performance test and compliance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operator of each tread end cementing operation and each green tire spraying operation using only water... conducting a monthly performance test, the owner or operator of each tread end cementing operation and each green tire spraying operation shall submit formulation data or the results of Method 24 analysis...

  12. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables.

    PubMed

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-03-01

    The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five-nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult-to-reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target. Copyright © 2011 Society of Chemical Industry.

  13. Measurement of Spray Drift with a Specifically Designed Lidar System.

    PubMed

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R

    2016-04-08

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift.

  14. Characteristics of combustion flame sprayed nickel aluminum using a Coanda Assisted Spray Manipulation collar for off-normal deposits

    NASA Astrophysics Data System (ADS)

    Archibald, Reid S.

    A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.

  15. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  16. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    NASA Astrophysics Data System (ADS)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  17. Granulometric characterization of airborne particulate release during spray application of nanoparticle-doped coatings

    NASA Astrophysics Data System (ADS)

    Göhler, Daniel; Stintz, Michael

    2014-08-01

    Airborne particle release during the spray application of coatings was analyzed in the nanometre and micrometre size range. In order to represent realistic conditions of domestic and handcraft use, the spray application was performed using two types of commercial propellant spray cans and a manual gravity spray gun. Four different types of coatings doped with three kinds of metal-oxide tracer nanoparticle additives (TNPA) were analyzed. Depending on the used coating and the kind of spray unit, particulate release numbers between 5 × 108 and 3 × 1010 particles per gram ejection mass were determined in the dried spray aerosols. The nanoparticulate fraction amounted values between 10 and 60 no%. The comparison between nanoparticle-doped coatings with non-doped ones showed no TNPA-attributed differences in both the macroscopic spray process characteristics and the particle release numbers. SEM, TEM and EDX-analyzes showed that the spray aerosols were composed of particles made up solely from matrix material and sheathed pigments, fillers and TNPAs. Isolated ZnO- or Fe2O3-TNPAs could not be observed.

  18. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.

    PubMed

    Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam

    2014-01-01

    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.

  19. Updating the USDA ARS rotary wing nozzle models

    USDA-ARS?s Scientific Manuscript database

    Optimizing aerial spray applications requires proper setup of the sprayer system, particularly with respect to nozzle selection and operation, which significantly affects spray deposition, product efficacy, and spray drift. Droplet size from an aerial application is a function of the combination of...

  20. Two intelligent spraying systems developed for tree crop production

    USDA-ARS?s Scientific Manuscript database

    Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...

  1. Insights into Spray Development from Metered-Dose Inhalers Through Quantitative X-ray Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.

    Typical methods to study pMDI sprays employ particle sizing or visible light diagnostics, which suffer in regions of high spray density. X-ray techniques can be applied to pharmaceutical sprays to obtain information unattainable by conventional particle sizing and light-based techniques. We present a technique for obtaining quantitative measurements of spray density in pMDI sprays. A monochromatic focused X-ray beam was used to perform quantitative radiography measurements in the near-nozzle region and plume of HFA-propelled sprays. Measurements were obtained with a temporal resolution of 0.184 ms and spatial resolution of 5 mu m. Steady flow conditions were reached after around 30more » ms for the formulations examined with the spray device used. Spray evolution was affected by the inclusion of ethanol in the formulation and unaffected by the inclusion of 0.1% drug by weight. Estimation of the nozzle exit density showed that vapour is likely to dominate the flow leaving the inhaler nozzle during steady flow. Quantitative measurements in pMDI sprays allow the determination of nozzle exit conditions that are difficult to obtain experimentally by other means. Measurements of these nozzle exit conditions can improve understanding of the atomization mechanisms responsible for pMDI spray droplet and particle formation.« less

  2. Burner Rig Evaluation of Thermal Barrier Coating Systems for Nickel-Base Alloys

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1981-01-01

    Eight plasma sprayed bond coatings were evaluated for their potential use with ZrO2-Y2O3 thermal barrier coatings (TECs) which are being developed for coal derived fuel fired gas turbines. Longer TBC lives in cyclic burner rig oxidation to 1050 C were achieved with the more oxidation resistant bond coatings. These were Ni-14.1Cr-13.4A1-0.10Ar, Ni-14.1C4-14.4Al-0.16Y, and Ni-15.8Cr-12.8Al-0.36Y on Rene 41. The TBC systems performed best when 0.015-cm thick bond coatings were employed that were sprayed at 20 kW using argon 3.5v/o hydrogen. Cycling had a more life limiting influence on the TBC than accumulated time at 1050 C.

  3. Optimal Control of Malaria Transmission using Insecticide Treated Nets and Spraying

    NASA Astrophysics Data System (ADS)

    Athina, D.; Bakhtiar, T.; Jaharuddin

    2017-03-01

    In this paper, we consider a model of the transmission of malaria which was developed by Silva and Torres equipped with two control variables, namely the use of insecticide treated nets (ITN) to reduce the number of human beings infected and spraying to reduce the number of mosquitoes. Pontryagin maximum principle was applied to derive the differential equation system as optimality conditions which must be satisfied by optimal control variables. The Mangasarian sufficiency theorem shows that Pontryagin maximum principle is necessary as well as sufficient conditions for optimization problem. The 4th-order Runge Kutta method was then performed to solve the differential equations system. The numerical results show that both controls given at once can reduce the number of infected individuals as well as the number of mosquitoes which reduce the impact of malaria transmission.

  4. Thermal Spraying of Bioactive Polymer Coatings for Orthopaedic Applications

    NASA Astrophysics Data System (ADS)

    Chebbi, A.; Stokes, J.

    2012-06-01

    Flame sprayed biocompatible polymer coatings, made of biodegradable and non-biodegradable polymers, were investigated as single coatings on titanium and as top coatings on plasma sprayed Hydroxyapatite. Biocompatible polymers can act as drug carriers for localized drug release following implantation. The polymer matrix consisted of a biodegradable polymer, polyhydroxybutyrate 98%/ polyhydroxyvalerate 2% (PHBV) and a non-biodegradable polymer, polymethylmethacrylate (PMMA). Screening tests were performed to determine the suitable range of spraying parameters, followed by a Design of Experiments study to determine the effects of spraying parameters on coating characteristics (thickness, roughness, adhesion, wettability), and to optimize the coating properties accordingly. Coatings characterization showed that optimized flame sprayed biocompatible polymers underwent little chemical degradation, did not produce acidic by-products in vitro, and that cells proliferated well on their surface.

  5. Processing, structure, property and performance relationships for the thermal spray of the internal surface of aluminum cylinders

    NASA Astrophysics Data System (ADS)

    Cook, David James

    The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips the oxide from the aluminum and allows for chemical bonding of the NiAl coating to the aluminum via the formation of intermetallics. By developing processing, structure, property, and performance relationships for the full process, it was possible to design a complete coating process to succeed in this application. The determination of these relationships and the underlying process physics improves reliability and instills confidence in the process.

  6. 7 CFR 58.220 - Drying systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... filter system shall comply with the applicable requirements of the 3-A Accepted Practices for Milk and Milk Products Spray Drying Systems. The filtering system shall be cleaned or component parts replaced... shall comply with the requirements of the 3-A Accepted Practices for Milk and Milk Products Spray Drying...

  7. 7 CFR 58.220 - Drying systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... filter system shall comply with the applicable requirements of the 3-A Accepted Practices for Milk and Milk Products Spray Drying Systems. The filtering system shall be cleaned or component parts replaced... shall comply with the requirements of the 3-A Accepted Practices for Milk and Milk Products Spray Drying...

  8. 7 CFR 58.220 - Drying systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... filter system shall comply with the applicable requirements of the 3-A Accepted Practices for Milk and Milk Products Spray Drying Systems. The filtering system shall be cleaned or component parts replaced... shall comply with the requirements of the 3-A Accepted Practices for Milk and Milk Products Spray Drying...

  9. 7 CFR 58.220 - Drying systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... filter system shall comply with the applicable requirements of the 3-A Accepted Practices for Milk and Milk Products Spray Drying Systems. The filtering system shall be cleaned or component parts replaced... shall comply with the requirements of the 3-A Accepted Practices for Milk and Milk Products Spray Drying...

  10. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery

    PubMed Central

    Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj

    2013-01-01

    Purpose The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. Methods The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. Results sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. Conclusion The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation. PMID:24039397

  11. Preparation and in vivo absorption evaluation of spray dried powders containing salmon calcitonin loaded chitosan nanoparticles for pulmonary delivery.

    PubMed

    Sinsuebpol, Chutima; Chatchawalsaisin, Jittima; Kulvanich, Poj

    2013-01-01

    The aim of the present study was to prepare inhalable co-spray dried powders of salmon calcitonin loaded chitosan nanoparticles (sCT-CS-NPs) with mannitol and investigate pulmonary absorption in rats. The sCT-CS-NPs were prepared by the ionic gelation method using sodium tripolyphosphate (TPP) as a cross-linking polyion. Inhalable dry powders were obtained by co-spray drying aqueous dispersion of sCT-CS-NPs and mannitol. sCT-CS-NPs co-spray dried powders were characterized with respect to morphology, particle size, powder density, aerodynamic diameter, protein integrity, in vitro release of sCT, and aerosolization. The plasmatic sCT levels following intratracheal administration of sCT-CS-NPs spray dried powders to the rats was also determined. sCT-CS-NPs were able to be incorporated into mannitol forming inhalable microparticles by the spray drying process. The sCT-CS-NPs/mannitol ratios and spray drying process affected the properties of the microparticles obtained. The conformation of the secondary structures of sCTs was affected by both mannitol content and spray dry inlet temperature. The sCT-CS-NPs were recovered after reconstitution of spray dried powders in an aqueous medium. The sCT release profile from spray dried powders was similar to that from sCT-CS-NPs. In vitro inhalation parameters measured by the Andersen cascade impactor indicated sCT-CS-NPs spray dried powders having promising aerodynamic properties for deposition in the deep lung. Determination of the plasmatic sCT levels following intratracheal administration to rats revealed that the inhalable sCT-CS NPs spray dried powders provided higher protein absorption compared to native sCT powders. The sCT-CS-NPs with mannitol based spray dried powders were prepared to have appropriate aerodynamic properties for pulmonary delivery. The developed system was able to deliver sCT via a pulmonary route into the systemic circulation.

  12. Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review

    NASA Astrophysics Data System (ADS)

    Gardon, M.; Guilemany, J. M.

    2014-04-01

    Titanium dioxide has been the most investigated metal oxide due to its outstanding performance in a wide range of applications, chemical stability and low cost. Coating processes that can produce surfaces based on this material have been deeply studied. Nevertheless, the necessity of coating large areas by means of rapid manufacturing processes renders laboratory-scale techniques unsuitable, leading to a noteworthy interest from the thermal spray (TS) community in the development of significant intellectual property and a large number of scientific publications. This review unravels the relationship between titanium dioxide and TS technologies with the aim of providing detailed information related to the most significant achievements, lack of knowhow, and performance of TS TiO2 functional coatings in photocatalytic, biomedical, and other applications. The influence of thermally activated techniques such as atmospheric plasma spray and high-velocity oxygen fuel spray on TiO2 feedstock based on powders and suspensions is revised; the influence of spraying parameters on the microstructural and compositional changes and the final active behavior of the coating have been analyzed. Recent findings on titanium dioxide coatings deposited by cold gas spray and the capacity of this technology to prevent loss of the nanostructured anatase metastable phase are also reviewed.

  13. Mechanical Performance of Cold-Sprayed A357 Aluminum Alloy Coatings for Repair and Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Petráčková, K.; Kondás, J.; Guagliano, M.

    2017-12-01

    Cold-sprayed coatings made of A357 aluminum alloy, a casting alloy widely used in aerospace, underwent set of standard tests as well as newly developed fatigue test to gain an information about potential of cold spray for repair and additive manufacturing of loaded parts. With optimal spray parameters, coating deposition on substrate with smooth surface resulted in relatively good bonding, which can be further improved by application of grit blasting on substrate's surface. However, no enhancement of adhesion was obtained for shot-peened surface. Process temperature, which was set either to 450 or 550 °C, was shown to have an effect on adhesion and cohesion strength, but it does not influence residual stress in the coating. To assess cold spray perspectives for additive manufacturing, flat tensile specimens were machined from coating and tested in as-sprayed and heat-treated (solution treatment and aging) condition. Tensile properties of the coating after the treatment correspond to properties of the cast A357-T61 aluminum alloy. Finally, fatigue specimen was proposed to test overall performance of the coating and coating's fatigue limit is compared to the results obtained on cast A357-T61 aluminum alloy.

  14. A Multiple-Dose, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group QT/QTc Study to Evaluate the Electrophysiologic Effects of THC/CBD Spray.

    PubMed

    Sellers, Edward M; Schoedel, Kerri; Bartlett, Cindy; Romach, Myroslava; Russo, Ethan B; Stott, Colin G; Wright, Stephen; White, Linda; Duncombe, Paul; Chen, Chien-Feng

    2013-07-01

    Delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray has proved efficacious in the treatment of spasticity in multiple sclerosis and chronic pain. A thorough QT/QTc study was performed to investigate the effects of THC/CBD spray on electrocardiogram (ECG) parameters in compliance with regulatory requirements, evaluating the effect of a recommended daily dose (8 sprays/day) and supratherapeutic doses (24 or 36 sprays/day) of THC/CBD spray on the QT/QTc interval in 258 healthy volunteers. The safety, tolerability, and pharmacokinetic profile of THC/CBD spray were also evaluated. Therapeutic and supratherapeutic doses of THC/CBD spray had no effect on cardiac repolarization with primary and secondary endpoints of QTcI and QTcF/QTcB, respectively, showing similar results. There was no indication of any effect on heart rate, atrioventricular conduction, or cardiac depolarization and no new clinically relevant morphological changes were observed. Overall, 19 subjects (25.0%) in the supratherapeutic (24/36 daily sprays of THC/CBD spray) dose group and one (1.6%) in the moxifloxacin group withdrew early due to intolerable AEs. Four psychiatric serious adverse events (AEs) in the highest dose group resulted in a reduction in the surpatherapeutic dose to 24 sprays/day. In conclusion, THC/CBD spray does not significantly affect ECG parameters. Additionally, THC/CBD spray is well tolerated at therapeutic doses with an AE profile similar to previous clinical studies. © The Author(s) 2013.

  15. Potential effects of the fire protection system sprays at Browns Ferry on fission product transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemczyk, S.J.

    1983-01-01

    The fire protection system (FPS) sprays within any nuclear plant are not intended to mitigate radioactive releases to the environment resulting from severe core-damage accidents. However, it has been shown here that during certain postulated severe accident scenarios at the Browns Ferry Nuclear Plant, the functioning of FPS sprays could have a significant impact on the radioactive releases. Thus the effects of those sprays need to be taken into account for realistic estimation of source terms for some accident scenarios. The effects would include direct ones such as cooling of the reactor building atmosphere and scrubbing of radioactivity from it,more » as well as indirect effects such as an altered likelihood of hydrogen burning and flooding of various safety-related pumps in the reactor building basement. Thus some of the impacts of the sprays would be beneficial with respect to mitigating releases to the environment but some others might not be. The effects of the FPS would be very scenario dependent with a wide range of potential effects often existing for a given accident sequence. Any generalization of the specific results presented here for Browns Ferry to other nuclear plants must be done cautiously, as it appears from a preliminary investigation that the relevant physical and operational characteristics of FPS spray systems differ widely among even otherwise apparently similar plants. Likewise the standby gas treatment systems, which substantially impact the effects of the FPS, differ significantly among plants. More work for both Mark I plants and other plants, BWRs and PWRs alike, is indicated so the potential effects of FPS spray systems during severe accidents can be at least ball-parked for more realistic accident analyses.« less

  16. Laser-assisted selective fusing of thermal sprayed Ni-based self-fluxing alloys by using high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Chun, Eun-Joon; Kim, Min-Su; Nishikawa, Hiroshi; Park, Changkyoo; Suh, Jeong

    2018-03-01

    Fusing treatment of Ni-based self-fluxing alloys (Metco-16C and 1276F) was performed using high-power diode lasers to control the temperature of the substrate's surface in real time. The effects of the fusing treatment temperature on the microstructural change and hardness distribution were also investigated. For Metco-16C and 1276F, the macrostructural inhomogeneity (voids) within the thermal sprayed layer decreased considerably as the fusing temperature increased. For both self-fluxing alloys, the optimal temperature for fusing was approximately 1423 K (for Metco-16C) and 1373 K (for 1276F), both of which are within the solid state temperature range; these temperatures maximize the alloy hardness together with the macrostructural homogeneity. In this temperature range, the microstructure consists of a lamellar-structured matrix phase with fine (<5 μm) carbides and borides. Selective fusing for a thermal sprayed layer 0.2-0.5 mm in thickness could be successfully achieved in a high-power diode laser system.

  17. PERFORMANCE EVALUATION OF AN INNOVATIVE FIBER REINFORCED GEOPOLYMER SPRAY-APPLIED MORTAR FOR LARGE DIAMETER WASTEWATER MAIN REHABILITATION IN HOUSTON, TX

    EPA Science Inventory

    This report describes the performance evaluation of a fiber reinforced geopolymer spray-applied mortar, which has potential as a structural alternative to traditional open cut techniques used in large-diameter sewer pipes. Geopolymer is a sustainable green material that incorpor...

  18. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  19. Effect of particle in-flight behavior on the composition of thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Bai, Y.; Tang, J. J.; Liu, K.; Ding, C. H.; Yang, J. F.; Han, Z. H.

    2013-12-01

    In this work, 6 to 11 mol% YO1.5-stabilized zirconia (YSZ) coatings were deposited by supersonic and conventional atmospheric plasma spraying. During spraying, the surface temperature and velocity of in-flight particles were monitored by Spray Watch 2i on-line system. The phase composition of as-sprayed coatings was analyzed by X-ray diffractometry (XRD). Lattice parameters, tetragonality and the content of YO1.5 (mol%) of as-sprayed coatings were calculated according to the position of (0 0 4) and (4 0 0) diffraction peaks. It was found that the as-sprayed coatings were composed of metastable non-transformable tetragonal phase (t‧). However, the amount of YO1.5 (mol%) in the as-sprayed coatings decreased with the increase of melting index of in-flight particles due to the partial evaporation of YO1.5 during spraying.

  20. Update to the USDA-ARS fixed-wing spray nozzle models

    USDA-ARS?s Scientific Manuscript database

    The current USDA ARS Aerial Spray Nozzle Models were updated to reflect both new standardized measurement methods and systems, as well as, to increase operational spray pressure, aircraft airspeed and nozzle orientation angle limits. The new models were developed using both Central Composite Design...

  1. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    NASA Technical Reports Server (NTRS)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  2. Liquid rocket performance computer model with distributed energy release

    NASA Technical Reports Server (NTRS)

    Combs, L. P.

    1972-01-01

    Development of a computer program for analyzing the effects of bipropellant spray combustion processes on liquid rocket performance is described and discussed. The distributed energy release (DER) computer program was designed to become part of the JANNAF liquid rocket performance evaluation methodology and to account for performance losses associated with the propellant combustion processes, e.g., incomplete spray gasification, imperfect mixing between sprays and their reacting vapors, residual mixture ratio striations in the flow, and two-phase flow effects. The DER computer program begins by initializing the combustion field at the injection end of a conventional liquid rocket engine, based on injector and chamber design detail, and on propellant and combustion gas properties. It analyzes bipropellant combustion, proceeding stepwise down the chamber from those initial conditions through the nozzle throat.

  3. Effects of service condition on rolling contact fatigue failure mechanism and lifetime of thermal spray coatings—A review

    NASA Astrophysics Data System (ADS)

    Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo

    2015-01-01

    The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.

  4. Salivary pH after a glucose rinse: effect of a new mucoadhesive spray (Cariex) based on sodium bicarbonate and xylitol.

    PubMed

    Abbate, G M; Levrini, L; Caria, M P

    2014-01-01

    This study evaluated whether sodium bicarbonate applied on the oral mucosa through a new mucoadhesive spray (Cariex) could control a drop in salivary pH after a glucose rinse, and therefore enhance the buffering potential of saliva. A sample of 50 healthy adults was selected. At day 1, the measurement of salivary pH was performed in the lower fornix in correspondence with the lower molars. Each subject rinsed with 10 ml of a 10% glucose solution and then pH was monitored continually for 40 minutes. At day 2, the same experimental procedure was repeated and three shots of the spray were administered on the oral mucosa. The tested spray is composed of sodium bicarbonate, xylitol, and excipients. Without the mucoadhesive spray, salivary pH became significantly lower following the glucose rinse (p < 0.01). Following the spray, the time in which the pH remained lower than 6.0 was reduced statistically significantly (p < 0.01). A continual rise of salivary pH was observed for the 40 minutes in which the pH recording was performed. Conclusions: The use of a sodium bicarbonate spray on the mucosa was shown to control the lowering of salivary pH following carbohydrate consumption, and might therefore add to the prevention of caries and dental erosion.

  5. Effects of laser remelting on microstructures and immersion corrosion performance of arc sprayed Al coating in 3.5% NaCl solution

    NASA Astrophysics Data System (ADS)

    Sun, Ze; Zhang, Donghui; Yan, Baoxu; Kong, Dejun

    2018-02-01

    An arc sprayed aluminum (Al) coating on S355 steel was processed using a laser remelting (LR). The microstructures, chemical element composition, and phases of the obtained Al coating were analyzed using a field mission scanning electronic microscope (FESEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively, and the residual stresses were measured using an X-ray diffraction stress tester. The immersion corrosion tests and potentiodynamic polarization of Al coating in 3.5% NaCl solution were performed to investigate the effects of LR on its immersion corrosion behaviors, and the corrosion mechanism of Al coating was also discussed. The results show that the arc sprayed Al coating is composed of Al phase, while that by LR is composed of Al-Fe and AlO4FeO6 phases, and the porosities and cracks in the arc sprayed Al coating are eliminated by LR, The residual stress of arc sprayed Al coating is -5.6 ± 18 MPa, while that after LR is 137.9 ± 12 MPa, which deduces the immersion corrosion resistance of Al coating. The corrosion mechanism of arc sprayed Al coating is pitting corrosion and crevice corrosion, while that by LR is uniform corrosion and pitting corrosion. The corrosion potential of arc sprayed Al coating by LR shifts positively, which improves its immersion corrosion resistance.

  6. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    PubMed

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  7. Production of Inhalation Phage Powders Using Spray Freeze Drying and Spray Drying Techniques for Treatment of Respiratory Infections.

    PubMed

    Leung, Sharon S Y; Parumasivam, Thaigarajan; Gao, Fiona G; Carrigy, Nicholas B; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2016-06-01

    The potential of aerosol phage therapy for treating lung infections has been demonstrated in animal models and clinical studies. This work compared the performance of two dry powder formation techniques, spray freeze drying (SFD) and spray drying (SD), in producing inhalable phage powders. A Pseudomonas podoviridae phage, PEV2, was incorporated into multi-component formulation systems consisting of trehalose, mannitol and L-leucine (F1 = 60:20:20 and F2 = 40:40:20). The phage titer loss after the SFD and SD processes and in vitro aerosol performance of the produced powders were assessed. A significant titer loss (~2 log) was noted for droplet generation using an ultrasonic nozzle employed in the SFD method, but the conventional two-fluid nozzle used in the SD method was less destructive for the phage (~0.75 log loss). The phage were more vulnerable during the evaporative drying process (~0.75 log further loss) compared with the freeze drying step, which caused negligible phage loss. In vitro aerosol performance showed that the SFD powders (~80% phage recovery) provided better phage protection than the SD powders (~20% phage recovery) during the aerosolization process. Despite this, higher total lung doses were obtained for the SD formulations (SD-F1 = 13.1 ± 1.7 × 10(4) pfu and SD-F2 = 11.0 ± 1.4 × 10(4) pfu) than from their counterpart SFD formulations (SFD-F1 = 8.3 ± 1.8 × 10(4) pfu and SFD-F2 = 2.1 ± 0.3 × 10(4) pfu). Overall, the SD method caused less phage reduction during the powder formation process and the resulted powders achieved better aerosol performance for PEV2.

  8. Comparative evaluation of ICP sample introduction systems to be used in the metabolite profiling of chlorine-containing pharmaceuticals via HPLC-ICP-MS.

    PubMed

    Klencsár, Balázs; Sánchez, Carlos; Balcaen, Lieve; Todolí, José; Lynen, Frederic; Vanhaecke, Frank

    2018-05-10

    A systematic evaluation of four different ICP sample introduction systems to be used in the context of metabolite profiling of chlorine-containing pharmaceuticals via HPLC-ICP-MS was carried out using diclofenac and its major metabolite, 4'-hydroxy-diclofenac, as model compounds. The strict requirements for GMP validation of chromatographic methods in the pharmaceutical industry were adhered to in this context. The final aim of this investigation is an extension of the applicability and validatability of HPLC-ICP-MS in the field of pharmaceutical R&D. Five different gradient programmes were tested while the baseline peak width (w b ), peak capacity (P), USP tailing factor (A s ) and USP signal-to-noise ratio (USP S/N) were determined as major indicators of the chromatographic performance and the values obtained were compared to the corresponding FDA recommendations (if applicable). Four different ICP-MS sample introductions systems were investigated involving two units typically working at higher flow rates (∼1.0 mL min -1 ) and another two systems working at lower flow rates (∼0.1 mL min -1 ). Optimal conditions with potential for applicability under GMP conditions were found at a mobile phase flow rate of 1.0 mL min -1 by using a pneumatic micro-flow LC nebulizer mounted onto a Peltier-cooled cyclonic spray chamber cooled to -1 °C for sample introduction. Under these conditions, HPLC-ICP-MS provided a chromatographic performance similar to that of HPLC with UV detection. The peak shape (USP tailing factor = 1.1-1.4) was significantly improved compared to that obtained with the Peltier-cooled Scott-type spray chamber. Two alternative sample introduction systems - a POINT ® and a High-Temperature Torch-Integrated Sample Introduction System (hTISIS) - were also tested at a flow rate of 0.1 mL min -1 using a chromatographic column with 1.0 mm ID. Although these systems allowed the peak shape to be improved compared to that obtained with the traditional Scott-type spray chamber, the limits of detection and of quantification achievable were strongly compromised due to the significantly lower sensitivity observed for Cl. In addition to a comparison of the aforementioned sample introduction systems, also the effect of spray chamber temperature was evaluated and it was demonstrated that proper temperature control plays an essential role in the optimization of HPLC-ICP-MS methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Plasma sprayed ceria-containing interlayer

    DOEpatents

    Schmidt, Douglas S.; Folser, George R.

    2006-01-10

    A plasma sprayed ceria-containing interlayer is provided. The interlayer has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, a plasma sprayed interlayer disposed on at least a portion of the air electrode, a plasma sprayed electrolyte disposed on at least a portion of the interlayer, and a fuel electrode applied on at least a portion of the electrolyte.

  10. The influence of THC:CBD oromucosal spray on driving ability in patients with multiple sclerosis-related spasticity.

    PubMed

    Celius, Elisabeth G; Vila, Carlos

    2018-05-01

    Driving ability is a key function for the majority of patients with multiple sclerosis (MS) to help maintain daily interactions. Both physical and cognitive disability, as well as treatments, may affect the ability to drive. Spasticity is a common symptom associated with MS, and it may affect driving performance either directly or via the medications used to treat it. In this article, we review the evidence relating the antispasticity medicine, Δ 9 -tetrahydrocannabinol:cannabidiol (THC:CBD) oromucosal spray (Sativex ® ), and its potential impact on driving performance. Articles were identified by searching PubMed from 1/1/2000 to 30/6/2017 using a specified list of search terms. The articles identified using these search terms were augmented with relevant references from these papers and other articles known to the authors. The results from THC:CBD oromucosal spray driving studies and real-world registries did not show any evidence of an increase in motor vehicle accidents associated with THC:CBD oromucosal spray. The majority of patients reported an improvement in driving ability after starting THC:CBD oromucosal spray, and it was speculated that this may be related to reduced spasticity and/or better cognitive function. It should be noted that THC blood levels are significantly lower than the levels associated with recreational use of herbal cannabis. THC:CBD oromucosal spray was shown not to impair driving performance. However, periodic assessment of patients with MS driving ability is recommended, especially after relapses and changes in treatment. Blood THC measurements might be above authorized thresholds for some countries following administration of THC:CBD oromucosal spray, thus specific knowledge of each country's driving regulations and a medical certificate are recommended.

  11. Implementing a vector surveillance-response system for chagas disease control: a 4-year field trial in Nicaragua.

    PubMed

    Yoshioka, Kota; Tercero, Doribel; Pérez, Byron; Nakamura, Jiro; Pérez, Lenin

    2017-03-06

    Chagas disease is one of the neglected tropical diseases (NTDs). International goals for its control involve elimination of vector-borne transmission. Central American countries face challenges in establishing sustainable vector control programmes, since the main vector, Triatoma dimidiata, cannot be eliminated. In 2012, the Ministry of Health in Nicaragua started a field test of a vector surveillance-response system to control domestic vector infestation. This paper reports the main findings from this pilot study. This study was carried out from 2012 to 2015 in the Municipality of Totogalpa. The Japan International Cooperation Agency provided technical cooperation in designing and monitoring the surveillance-response system until 2014. This system involved 1) vector reports by householders to health facilities, 2) data analysis and planning of responses at the municipal health centre and 3) house visits or insecticide spraying by health personnel as a response. We registered all vector reports and responses in a digital database. The collected data were used to describe and analyse the system performance in terms of amount of vector reports as well as rates and timeliness of responses. During the study period, T. dimidiata was reported 396 times. Spatiotemporal analysis identified some high-risk clusters. All houses reported to be infested were visited by health personnel in 2013 and this response rate dropped to 39% in 2015. Rates of insecticide spraying rose above 80% in 2013 but no spraying was carried out in the following 2 years. The timeliness of house visits improved significantly after the responsibility was transferred from a vector control technician to primary health care staff. We argue that the proposed vector surveillance-response system is workable within the resource-constrained health system in Nicaragua. Integration to the primary health care services was a key to improve the system performance. Continual efforts are necessary to keep adapting the surveillance-response system to the dynamic health systems. We also discuss that the goal of eliminating vector-borne transmission remains unachievable. This paper provides lessons not only for Chagas disease control in Central America, but also for control efforts for other NTDs that need a sustainable surveillance-response system to support elimination.

  12. Cold Spray Technology for Repair of Magnesium Rotorcraft Components (Briefing Charts)

    DTIC Science & Technology

    2007-01-01

    control valve Nozzle Braided flex hose Helium Tank Powder Feeder Spray Nozzle ARL Portable System Parameters for Applying CP-Al to ZE41A - Mg...and Advantages of Cold Spray •Present Test Results to Date •Coating Integrity and Microstructural Analysis •Adhesion, Hardness and Corrosion Tests

  13. Spray combustion at normal and reduced gravity in counterflow and co-flow configurations

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1995-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment In view of the nearly insurmountable difficulties of this two-phase flow, a systematic study of spray evaporation and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones, would be useful. A few years ago we proposed to use an electrostatic spray of charged droplets for this type of combustion experiments under well-defined conditions. In the simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip (cone-jet mode). This jet breaks up farther downstream into a spray of charged droplets - the so-called ElectroSpray (ES). Several advantages distinguish the electrospray from alternative atomization techniques: (1) it can produce quasi-monodisperse droplets over a phenomenal size range; (2) the atomization, that is strictly electrostatic, is decoupled from gas flow processes, which provides some flexibility in the selection and control of the experimental conditions; (3) the Coulombic repulsion of homopolarly charged droplets induces spray self-dispersion and prevents droplet coalescence; (4) the ES provides the opportunity of studying regimes of slip between droplets and host gas without compromising the control of the spray properties; and (5) the compactness and potential controllability of this spray generation system makes it appealing for studies in reduced-gravity environments aimed at isolating the spray behavior from natural convection complications. With these premises, in March 1991 we initiated a series of experiments under NASA sponsorship (NAG3-1259 and 1688) in which the ES was used as a research tool to examine spray combustion in counter-flow and co-flow spray diffusion flames, as summarized below. The ultimate objective of this investigation is to examine the formation and burning of sprays of liquid fuels, at both normal and reduced gravity, first in laminar regimes and then in turbulent ones.

  14. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols

    PubMed Central

    Meenach, Samantha A; Vogt, Frederick G; Anderson, Kimberly W; Hilt, J Zach; McGarry, Ronald C; Mansour, Heidi M

    2013-01-01

    Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the spray-drying process had a significant effect on the solid-state particle properties and that a higher pump rate produced the most optimal system. Advanced dry powder inhalers of inhalable lipopolymers for targeted dry powder inhalation delivery were successfully achieved. PMID:23355776

  15. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov Websites

    detection of compounds at sub-parts per billion by volume levels. A high-performance liquid chromatograph ) platform; a high-pressure (1,200- bar) direct-injection system to minimize spray physics effects; and an combustion chamber. A high-speed pressure transducer measures chamber pressure to detect fuel ignition. Air

  16. 40 CFR 60.453 - Performance test and compliance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....45 Manual electrostatic spray 0.60 Flow coat 0.85 Dip coat 0.85 Nonrotational automatic electrostatic... applied (G) during the calendar month for each affected facility by the following equation: EC16NO91.038... affected facility that uses a capture system and a control device that destroys VOC's (e.g., incinerator...

  17. Effects of gas liquid ratio on the atomization characteristics of gas-liquid swirl coaxial injectors

    NASA Astrophysics Data System (ADS)

    Kang, Zhongtao; Li, Qinglian; Zhang, Jiaqi; Cheng, Peng

    2018-05-01

    To understand the atomization characteristics and atomization mechanism of the gas-liquid swirl coaxial (GLSC) injector, a back-lighting photography technique has been employed to capture the instantaneous spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of gas liquid ratio (GLR) on the spray pattern, Sauter mean diameter (SMD), diameter-velocity distribution and mass flow rate distribution were analyzed and discussed. The results show that the atomization of the GLSC injector is dominated by the film breakup when the GLR is small, and violent gas-liquid interaction when the GLR is large enough. The film breakup dominated spray can be divided into gas acceleration region and film breakup region while the violent gas-liquid interaction dominated spray can be divided into the gas acceleration region, violent gas-liquid interaction region and big droplets breakup region. The atomization characteristics of the GLSC injector is significantly influenced by the GLR. From the point of atomization performance, the increase of GLR has positive effects. It decreases the global Sauter mean diameter (GSMD) and varies the SMD distribution from a hollow cone shape (GLR = 0) to an inverted V shape, and finally slanted N shape. However, from the point of spatial distribution, the increase of GLR has negative effects, because the mass flow rate distribution becomes more nonuniform.

  18. A Validation Summary of the NCC Turbulent Reacting/non-reacting Spray Computations

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Liu, N.-S. (Technical Monitor)

    2000-01-01

    This pper provides a validation summary of the spray computations performed as a part of the NCC (National Combustion Code) development activity. NCC is being developed with the aim of advancing the current prediction tools used in the design of advanced technology combustors based on the multidimensional computational methods. The solution procedure combines the novelty of the application of the scalar Monte Carlo PDF (Probability Density Function) method to the modeling of turbulent spray flames with the ability to perform the computations on unstructured grids with parallel computing. The calculation procedure was applied to predict the flow properties of three different spray cases. One is a nonswirling unconfined reacting spray, the second is a nonswirling unconfined nonreacting spray, and the third is a confined swirl-stabilized spray flame. The comparisons involving both gas-phase and droplet velocities, droplet size distributions, and gas-phase temperatures show reasonable agreement with the available experimental data. The comparisons involve both the results obtained from the use of the Monte Carlo PDF method as well as those obtained from the conventional computational fluid dynamics (CFD) solution. Detailed comparisons in the case of a reacting nonswirling spray clearly highlight the importance of chemistry/turbulence interactions in the modeling of reacting sprays. The results from the PDF and non-PDF methods were found to be markedly different and the PDF solution is closer to the reported experimental data. The PDF computations predict that most of the combustion occurs in a predominantly diffusion-flame environment. However, the non-PDF solution predicts incorrectly that the combustion occurs in a predominantly vaporization-controlled regime. The Monte Carlo temperature distribution shows that the functional form of the PDF for the temperature fluctuations varies substantially from point to point. The results also bring to the fore some of the deficiencies associated with the use of assumed-shape PDF methods in spray computations.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, Sibendu; Wang, Zihan; Pei, Yuanjiang

    A state-of-the-art spray modeling methodology, recently presented by Senecal et al. [ , , ], is applied to Large Eddy Simulations (LES) of vaporizing gasoline sprays. Simulations of non-combusting Spray G (gasoline fuel) from the Engine Combustion Network are performed. Adaptive mesh refinement (AMR) with cell sizes from 0.09 mm to 0.5 mm are utilized to further demonstrate grid convergence of the dynamic structure LES model for the gasoline sprays. Grid settings are recommended to optimize the accuracy/runtime tradeoff for LES-based spray simulations at different injection pressure conditions typically encountered in gasoline direct injection (GDI) applications. The influence of LESmore » sub-grid scale (SGS) models is explored by comparing the results from dynamic structure and Smagorinsky based models against simulations without any SGS model. Twenty different realizations are simulated by changing the random number seed used in the spray sub-models. It is shown that for global quantities such as spray penetration, comparing a single LES simulation to experimental data is reasonable. Through a detailed analysis using the relevance index (RI) criteria, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of the gasoline sprays.« less

  20. Spray process for in situ synthesizing Ti(C,N)-TiB2-Al2O3 composite ceramic coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Liu, Hongwei; Sun, Sihao

    2017-12-01

    Using core wires with Ti-B4C-C as core and Al as strip materials, Ti(C,N)-TiB2-Al2O3 composite ceramic coatings were prepared on 45 steel substrates by the reactive arc spray technology. The influence of spray voltage, current, gas pressure and distance on the coatings was discussed. The spray parameters were optimized with porosity of the coatings as evaluation standard. The results showed that the most important factor which influences the quality of the coatings was spray distance. Then spray gas pressure, current and voltage followed in turn. The optimum process was spray current of 120A, voltage of 36, gas pressure of 0.7MPa and distance of 160mm. The porosity of coatings prepared in this spray process was only 2.11%. The coatings were composed of TiB2, TiC0.3N0.7, TiN, Al2O3 and AlN. Good properties and uniform distribution of these ceramic phases made the coatings have excellent comprehensive performances.

  1. Thermal Arc Spray Overview

    NASA Astrophysics Data System (ADS)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  2. INEL Spray-forming Research

    NASA Technical Reports Server (NTRS)

    Mchugh, Kevin M.; Key, James F.

    1993-01-01

    Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.

  3. 46 CFR 154.1125 - Pipes, fittings, and valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., fitting, and valve for the water spray system must be made of fire resistant and corrosion resistant materials, such as galvanized steel or galvanized iron pipe. (e) Each water spray system must have a means of drainage to prevent corrosion of the system and freezing of accumulated water in subfreezing...

  4. 46 CFR 154.1125 - Pipes, fittings, and valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., fitting, and valve for the water spray system must be made of fire resistant and corrosion resistant materials, such as galvanized steel or galvanized iron pipe. (e) Each water spray system must have a means of drainage to prevent corrosion of the system and freezing of accumulated water in subfreezing...

  5. Spray formation of biodiesel-water in air-assisted atomizer using Schlieren photography

    NASA Astrophysics Data System (ADS)

    Amirnordin, S. H.; Khalid, A.; Sapit, A.; Salleh, H.; Razali, A.; Fawzi, M.

    2016-11-01

    Biodiesels are attractive renewable energy sources, particularly for industrial boiler and burner operators. However, biodiesels produce higher nitrogen oxide (NOx) emissions compared with diesel. Although water-emulsified fuels can lower NOx emissions by reducing flame temperature, its influence on atomization needs to be investigated further. This study investigates the effects of water on spray formation in air-assisted atomizers. The Schlieren method was used to capture the spray images in terms of tip penetration, spray angle, and spray area. The experiment used palm oil biodiesel at different blending ratios (B5, B10, and B15) and water contents (0vol%-15vol%). Results show that water content in the fuel increases the spray penetration and area but reduces the spray angle because of the changes in fuel properties. Therefore, biodiesel-water application is applicable to burner systems.

  6. Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application

    NASA Astrophysics Data System (ADS)

    Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain

    2014-12-01

    Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.

  7. Probing a Spray Using Frequency-Analyzed Light Scattering

    NASA Technical Reports Server (NTRS)

    Eskridge, Richard; Lee, Michael H.; Rhys, Noah O.

    2008-01-01

    Frequency-analyzed laser-light scattering (FALLS) is a relatively simple technique that can be used to measure principal characteristics of a sheet of sprayed liquid as it breaks up into ligaments and then the ligaments break up into droplets. In particular, through frequency analysis of laser light scattered from a spray, it is possible to determine whether the laser-illuminated portion of the spray is in the intact-sheet region, the ligament region, or the droplet region. By logical extension, it is possible to determine the intact length from the location of the laser beam at the transition between the intact-sheet and ligament regions and to determine a breakup frequency from the results of the frequency analysis. Hence, FALLS could likely be useful both as a means of performing research on sprays in general and as a means of diagnostic sensing in diverse applications in which liquid fuels are sprayed. Sprays are also used for drying and to deposit paints and other coating materials.

  8. Near-net-shape manufacturing: Spray-formed metal matrix composites and tooling

    NASA Technical Reports Server (NTRS)

    Mchugh, Kevin M.

    1994-01-01

    Spray forming is a materials processing technology in which a bulk liquid metal is converted to a spray of fine droplets and deposited onto a substrate or pattern to form a near-net-shape solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g. refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. The Idaho National Engineering Laboratory is developing a unique spray-forming method, the Controlled Aspiration Process (CAP), to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Results from two spray-accompanying technical and economic benefits. These programs involved spray forming aluminum strip reinforced with SiC particulate, and the production of tooling, such as injection molds and dies, using low-melting-point metals.

  9. A New Classification System for the Actions of IRS Chemicals Traditionally Used for Malaria Control

    DTIC Science & Technology

    2007-08-08

    compounds for IRS use that elicit a spatial repellent response. Insecticides recommended for indoor residual spraying (IRS) continue to be evaluated...hundred mosquitoes would enter a house, bite while indoors , and escape and survive if the house were not sprayed . We can use our proportions, described...considered to be the cheapest and most effective chemical for use in house spray operations. Its long residual action when sprayed on inner walls further

  10. Bear Spray Safety Program

    USGS Publications Warehouse

    Blome, C.D.; Kuzniar, R.L.

    2009-01-01

    A bear spray safety program for the U.S. Geological Survey (USGS) was officially initiated by the Firearms Safety Committee to address accident prevention and to promote personnel training in bear spray and its transportation, storage, and use for defense against wild animals. Used as part of a system including firearms, or used alone for those who choose not to carry a firearm, bear spray is recognized as an effective tool that can prevent injury in a wild animal attack.

  11. Size and Velocity Distributions of Particles and Droplets in Spray Combustion Systems.

    DTIC Science & Technology

    1984-11-01

    constructed, calibrated, and successfully applied. Our efforts to verify the performance and accuracy of this diagnostic led to a parallel research...array will not be an acceptable detection system for size distribution measurements by this method. VI. Conclusions This study has led to the following...radiation is also useful particle size analysis by ensemble multiangle scattering. One problem for all multiwavelength or multiaricle diagnostics for

  12. Spray drying of budesonide, formoterol fumarate and their composites-II. Statistical factorial design and in vitro deposition properties.

    PubMed

    Tajber, L; Corrigan, O I; Healy, A M

    2009-02-09

    The aim of this study was to investigate the effect of changing spray drying parameters on the production of a budesonide/formoterol fumarate 100:6 (w/w) composite. The systems were spray dried as solutions from 95% ethanol/5% water (v/v) using a Büchi 191-Mini Spray Dryer. A 2(5-1) factorial design study was undertaken to assess the consequence of altering spray drying processing variables on particle characteristics. The processing parameters that were studied were inlet temperature, spray drier airflow rate, pump rate, aspirator setting and feed concentration. Each batch of the resulting powder was characterised in terms of thermal and micromeritic properties as well as an in vitro deposition by twin impinger analysis. Overall, the parameter that had the greatest influence on each response investigated was production yield - airflow (higher airflow giving greater yields), median particle size - airflow (higher airflow giving smaller particle sizes) and Carr's compressibility index - feed concentration (lower feed concentration giving smaller Carr's indices). A six- to seven-fold difference in respirable fraction can be observed by changing the spray drying process parameters. The co-spray dried composite system which displayed best in vitro deposition characteristics, showed a 2.6-fold increase in respirable fraction in the twin impinger experiments and better dose uniformity compared with the physical mix of micronised powders.

  13. Enhancement of human oral bioavailability and in vitro antitumor activity of rosuvastatin via spray dried self-nanoemulsifying drug delivery system.

    PubMed

    Kamel, Amany O; Mahmoud, Azza A

    2013-01-01

    The purpose of this study was to develop spray dried self-nanoemulsifying drug delivery system (SNEDDS) tablets of rosuvastatin using mannitol as a carrier. SNEDDS were prepared using Capryol 90, poloxamer 407 and Transcutol P or triacetin as oil, surfactant and cosurfactants, respectively. The prepared systems were characterized and their cytotoxicity was evaluated using Caco-2 cell lines. A comparative bioavailability study was performed in human volunteers relative to the conventional commercial product. Results showed better self-nanoemulsifying ability of systems containing triacetin compared to Transcutol P. SNEDDS formed uni-modal nanoemulsion droplet size distributions with droplet size less than 50 nm and polydispersity index values ranging from 0.127 to 0.275. The solubilizing capacity of rosuvastatin was affected by both surfactant and cosurfactant concentrations. Upon spray drying, systems prepared using Transcutol P tended to be soft and tacky and were sticking to the walls of the dryer. The redispersion of rosuvastatin from solid SNEDDS was very fast (100% within 5 minutes). Optimized SNEDDS prepared with triacetin were safe with no cytotoxic effect on Caco-2 cells. The anticancer effect of rosuvastatin was enhanced when incorporated in SNEDDS (IC50 value decreased from 4 to 3 microg/ml) due to the increase in penetration of SNEDDS inside the cells. The relative bioavailability for SNEDDS tablets compared to the commercial tablets was 167%. The effective solubilization, penetration and enhancement in bioavailability of SNEDDS tablets proves their potential as a safe, and effective drug delivery system for poorly-soluble drugs.

  14. Spray Bar Zero-Gravity Vent System for On-Orbit Liquid Hydrogen Storage

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Flachbart, R. H.; Martin, J. J.; Hedayat, A.; Fazah, M.; Lak, T.; Nguyen, H.; Bailey, J. W.

    2003-01-01

    During zero-gravity orbital cryogenic propulsion operations, a thermodynamic vent system (TVS) concept is expected to maintain tank pressure control without propellant resettling. In this case, a longitudinal spray bar mixer system, coupled with a Joule-Thompson (J-T) valve and heat exchanger, was evaluated in a series of TVS tests using the 18 cu m multipurpose hydrogen test bed. Tests performed at fill levels of 90, 50, and 25 percent, coupled with heat tank leaks of about 20 and 50 W, successfully demonstrated tank pressure control within a 7-kPa band. Based on limited testing, the presence of helium constrained the energy exchange between the gaseous and liquid hydrogen (LH2) during the mixing cycles. A transient analytical model, formulated to characterize TVS performance, was used to correlate the test data. During self-pressurization cycles following tank lockup, the model predicted faster pressure rise rates than were measured; however, once the system entered the cyclic self-pressurization/mixing/venting operational mode, the modeled and measured data were quite similar. During a special test at the 25-percent fill level, the J-T valve was allowed to remain open and successfully reduced the bulk LH2 saturation pressure from 133 to 70 kPa in 188 min.

  15. Thermal barrier coating life prediction model development

    NASA Technical Reports Server (NTRS)

    Hillery, R. V.; Pilsner, B. H.; Mcknight, R. L.; Cook, T. S.; Hartle, M. S.

    1988-01-01

    This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life.

  16. The influence of menthol on thermoregulation and perception during exercise in warm, humid conditions.

    PubMed

    Gillis, D Jason; House, James R; Tipton, Michael J

    2010-10-01

    Menthol has recently been added to various cooling products that claim to enhance athletic performance. This study assessed the effect of two such solutions during exercise in warm, humid conditions. Twelve participants (22 ± 2.9 years; VO2peak 47.4 ± 6.2 mL kg(-1) min(-1)) completed a peak power (PO(peak)) test and three separate exercise bouts in 30°C and 70% relative humidity after being sprayed with 100 mL of water containing either 0.05 or 0.2% l-menthol, or a control spray. During each trial, participants underwent 15 min of rest, spraying, 15 min of rest and 45 min of exercise at 45% of PO(peak). The following variables were measured: rectal temperature (T (re)), sweat rate (SR), skin blood flow (SBF), heart rate (HR), thermal comfort (TC) and sensation (TS) votes, irritation (IRR) and rating of perceived exertion (RPE). Mean skin (MST) and body temperatures (Tbody) were calculated. There was no significant difference in MST, Tbody SR, SBF, HR, TC or RPE between conditions. Spraying with 0.2% menthol significantly (P < 0.05) elevated T (re) by 0.2°C compared to the other conditions. Both menthol sprays caused participants to feel significantly cooler than control spraying (P = 0.001), but 0.2% spraying induced significantly cooler sensations (P = 0.01) than 0.05% spraying. Both menthol sprays induced greater irritation (P < 0.001) than control spraying. These findings suggest that 0.05% menthol spraying induced cooler upper body sensations without measurable thermoregulatory impairment. T (re) was significantly elevated with 0.2% spraying. Irritation persisted with both menthol sprays while TC remained unchanged, suggesting a causal relationship. The use in sport of a spray similar to those tested here remains equivocal.

  17. A Comparative Study on Ni-Based Coatings Prepared by HVAF, HVOF, and APS Methods for Corrosion Protection Applications

    NASA Astrophysics Data System (ADS)

    Sadeghimeresht, E.; Markocsan, N.; Nylén, P.

    2016-12-01

    Selection of the thermal spray process is the most important step toward a proper coating solution for a given application as important coating characteristics such as adhesion and microstructure are highly dependent on it. In the present work, a process-microstructure-properties-performance correlation study was performed in order to figure out the main characteristics and corrosion performance of the coatings produced by different thermal spray techniques such as high-velocity air fuel (HVAF), high-velocity oxy fuel (HVOF), and atmospheric plasma spraying (APS). Previously optimized HVOF and APS process parameters were used to deposit Ni, NiCr, and NiAl coatings and compare with HVAF-sprayed coatings with randomly selected process parameters. As the HVAF process presented the best coating characteristics and corrosion behavior, few process parameters such as feed rate and standoff distance (SoD) were investigated to systematically optimize the HVAF coatings in terms of low porosity and high corrosion resistance. The Ni and NiAl coatings with lower porosity and better corrosion behavior were obtained at an average SoD of 300 mm and feed rate of 150 g/min. The NiCr coating sprayed at a SoD of 250 mm and feed rate of 75 g/min showed the highest corrosion resistance among all investigated samples.

  18. Evaluation of a moisturising micro-gel spray for prevention of cell dryness in oral mucosal cells: an in vitro study and evaluation in a clinical setting.

    PubMed

    Ota, Y; Morito, A; Fujisawa, K; Nishida, M; Hata, H; Ueno, T; Yurikusa, T; Murata, T

    2012-11-01

    A moisturising micro-gel spray for prevention of dryness was compared with commercial products and artificial saliva in vitro and in a clinical setting in patients with cancer. Survival of cultured human gingival epithelial cells was evaluated after treatment with each product for 15 min. A dry test was performed for products giving a 50% survival rate, in which cell survival was measured after drying of cells treated with each product. The survival rates of cells treated with the micro-gel spray and artificial saliva were significantly higher than those of control cells. The micro-gel spray was then evaluated for 1 week in patients with symptoms of dry mouth caused by cancer treatment. There was significant improvement of these symptoms at night and on awakening and of subjective symptoms of decreased salivary volume (P < 0.05). Mean visual analogue scale scores also significantly decreased (P < 0.01). These data suggest that evaluation of moisturising products for dryness prevention can be performed in cultured cells, since products that performed well in vitro also showed good efficacy for symptoms of dry mouth. The micro-gel spray was particularly effective for relieving symptoms of dry mouth in patients with cancer. © 2012 Blackwell Publishing Ltd.

  19. Effect of epoxy resin sealing on corrosion resistance of arc spraying aluminium coating using cathode electrophoresis method

    NASA Astrophysics Data System (ADS)

    Pang, Xuming; Wang, Runqiu; Wei, Qian; Zhou, Jianxin

    2018-01-01

    Arc-sprayed Al coating was sealed with epoxy resin using the cathode electrophoresis method. The anti-corrosion performance of the coatings sealed with epoxy resin was studied by means of a 3.5 wt.% NaCl solution test at 40 °C. For comparison, the anti-corrosion performance of Al coating sealed with boiling water was also performed under the same conditions. The results show that epoxy resin with a thickness of about 20 microns can entirely cover open pores and decreases the surface roughness of the as-sprayed Al coating, and the epoxy resin even permeates into the gaps among lamellar splats from open pores. After corrosion, the thickness of the epoxy resin layer is unchanged and can still cover the as-sprayed Al coating entirely. However, the thickness of Al coating sealed with boiling water decreases from 100 to 40 microns, which indicates that the arc-sprayed Al coating has much better corrosion resistance than the Al coating sealed with boiling water. Meanwhile, the content of substituted benzene ring in the epoxy resin increases, but aromatic ring decreases according to the fourier transform infrared spectra, which will cause the rigidity of the epoxy resin to increase, but the toughness slightly decreases after corrosion.

  20. Picosecond imaging of sprays

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Liou, Larry; Wang, L.; Liang, X.; Galland, P.; Ho, P. P.; Alfano, R. R.

    1994-01-01

    Preliminary results from applying a Kerr-Fourier imaging system to a water/air spray produced by a shear coaxial element are presented. The physics behind ultrafast time-gated optical techniques is discussed briefly. A typical setup of a Kerr-Fourier time gating system is presented.

  1. Thermoelectric Device Fabrication Using Thermal Spray and Laser Micromachining

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Fu, Gaosheng; Hwang, David J.; Zuo, Lei; Sampath, Sanjay; Longtin, Jon P.

    2016-02-01

    Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are used in many engineering applications such as vehicle and industrial waste-heat recovery systems to provide electrical power, improve operating efficiency and reduce costs. State-of-art TEG manufacturing is based on prefabricated materials and a labor-intensive process involving soldering, epoxy bonding, and mechanical clamping for assembly. This reduces their durability and raises costs. Additive manufacturing technologies, such as thermal spray, present opportunities to overcome these challenges. In this work, TEGs have been fabricated for the first time using thermal spray technology and laser micromachining. The TEGs are fabricated directly onto engineering component surfaces. First, current fabrication techniques of TEGs are presented. Next, the steps required to fabricate a thermal spray-based TEG module, including the formation of the metallic interconnect layers and the thermoelectric legs are presented. A technique for bridging the air gap between two adjacent thermoelectric elements for the top layer using a sacrificial filler material is also demonstrated. A flat 50.8 mm × 50.8 mm TEG module is fabricated using this method and its performance is experimentally characterized and found to be in agreement with expected values of open-circuit voltage based on the materials used.

  2. Microbial contamination and disinfection methods of pacifiers

    PubMed Central

    NELSON, Paulo; LOUVAIN, Márcia Costa; MACARI, Soraia; LUCISANO, Marília Pacífico; da SILVA, Raquel Assed Bezerra; de QUEIROZ, Alexandra Mussolino; GATON-HERNÁNDEZ, Patrícia; da SILVA, Léa Assed Bezerra

    2015-01-01

    Objectives To evaluate the microbial contamination of pacifiers by Mutans Streptococci (MS) and the efficacy of different methods for their disinfection. Methods Twenty-eight children were assigned to a 4-stage changeover system with a 1-week interval. In each stage, children received a new pacifier and the parents were instructed to maintain their normal habits for 1 week. After this time, the pacifiers were subjected to the following 4 disinfection methods: spraying with 0.12% chlorhexidine solution, Brushtox® or sterile tap water, and immersion in boiling tap water for 15 minutes. Microbiological culture for MS and Scanning Electron Microscopy (SEM) were performed. The results were analyzed statistically by Friedman’s non-parametric test (a=0.05). Results The 0.12% chlorhexidine spray was statistically similar to the boiling water (p>0.05) and more effective than the Brushtox® spray and control (p<0.05). The analysis of SEM showed the formation of a cariogenic biofilm in all groups with positive culture. Conclusions Pacifiers become contaminated by MS after their use by children and should be disinfected routinely. Spraying with a 0.12% chlorhexidine solution and immersion in boiling water promoted better disinfection of the pacifiers compared with a commercial antiseptic toothbrush cleanser (Brushtox®). PMID:26537723

  3. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    NASA Astrophysics Data System (ADS)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  4. Automated Plasma Spray (APS) process feasibility study

    NASA Technical Reports Server (NTRS)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1981-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal barrier coatings to aircraft and stationary gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical positioning subsystem incorporating two interlaced six degree of freedom assemblies (one for coating deposition and one for coating thickness monitoring); a noncoherent optical metrology subsystem (for in process gaging of the coating thickness buildup at specified points on the specimen); a microprocessor based adaptive system controller (to achieve the desired overall thickness profile on the specimen); and commerical plasma spray equipment. Over fifty JT9D first stage aircraft turbine blade specimens, ten W501B utility turbine blade specimens and dozens of cylindrical specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary turbine blade specimens achieved an overall coating thickness uniformity of 53 micrometers (2.1 mils), much better than is achievable manually. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were performed. One of the preliminary turbine blade evaluation specimens was subjected to a torch test and metallographic evaluation. Some cylindrical specimens coated with the APS process survived up to 2000 cycles in subsequent burner rig testing.

  5. Use of a double condenser in a dehumidifier with a spray dryer for vitamin A extraction in tomato as a heat-sensitive material

    NASA Astrophysics Data System (ADS)

    Kosasih, E. A.; Warjito, H., Imansyah I.; Ruhyat, N.

    2017-06-01

    Spray dryers are commonly operated at a high temperature (>100 °C), which becomes an obstacle for heat-sensitive materials. In this study, a refrigeration system that uses evaporator as dehumidifier and that recovers the heat released from the first condenser to preheat the drying air was utilised to reduce the drying temperature. Results showed that the degradation of vitamin A (measured with the high performance liquid chromatography method) in tomato increased significantly when the drying air temperature increased from 90 °C to 120 °C, and it cannot be controlled at a temperature higher than 120 °C. At an air flow rate of 450 lpm, the drying capacity at a drying air temperature of 60 °C (with refrigeration, humidity ratio of 0.005 [kg H2O / kg dry air]) is equal to the drying capacity at a drying air temperature of 120 °C (without refrigeration, humidity ratio of 0.021 [kg H2O / kg dry air]). The drying capacity at a drying air temperature of 90 °C (with refrigeration) even becomes 1.5 times the drying capacity at a drying air temperature of 120 °C (without refrigeration). The combination of a spray dryer system with a refrigeration system (double condenser) is therefore beneficial for drying heat-sensitive materials, such as vitamin A.

  6. Within-band spray distribution of nozzles used for herbaceous plant control

    Treesearch

    James H. Miller

    1994-01-01

    Abstract. Described are the spray patterns of nozzles setup for banded herbaceous plant control treatments. Spraying Systems Company nozzles. were tested, but similar nozzles are available from other manufacturers. Desirable traits were considered to be as follows: an even distribution pattern, low volume, low height, large droplets, and a single...

  7. Spray combustion experiments and numerical predictions

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Bulzan, Daniel L.; Chen, Kuo-Huey

    1993-01-01

    The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines.

  8. Characterization and durability testing of plasma-sprayed zirconia-yttria and hafnia-yttria thermal barrier coatings. Part 2: Effect of spray parameters on the performance of several hafnia-yttria and zirconia-yttria coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Leissler, George W.

    1993-01-01

    This is the second of two reports which discuss initial experiments on thermal barrier coatings prepared and tested in newly upgraded plasma spray and burner rig test facilities at LeRC. The first report, part 1, describes experiments designed to establish the spray parameters for the baseline zirconia-yttria coating. Coating quality was judged primarily by the response to burner rig exposure, together with a variety of other characterization approaches including thermal diffusivity measurements. That portion of the study showed that the performance of the baseline NASA coating was not strongly sensitive to processing parameters. In this second part of the study, new hafnia-yttria coatings were evaluated with respect to both baseline and alternate zirconia-yttria coatings. The hafnia-yttria and the alternate zirconia-yttria coatings were very sensitive to plasma-spray parameters in that high-quality coatings were obtained only when specific parameters were used. The reasons for this important observation are not understood.

  9. Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings

    NASA Astrophysics Data System (ADS)

    Alidokht, S. A.; Vo, P.; Yue, S.; Chromik, R. R.

    2017-12-01

    Ni-WC composites are ideal protective coatings against wear and are often fabricated using laser cladding and thermal spray processes, but the high temperatures of these processes result in decarburization, which deteriorates the performance of the coating. Cold spray has the potential to deposit Ni-WC composite coatings and retain the composition of the initial WC feedstock. However, the insignificant plastic deformation of hard WC particles makes it difficult to build up a high WC content coating by cold spray. By using three different WC powder sizes, the effect of feedstock powder size on WC retention was tested. To improve WC retention, a WC/Ni composite powder in mixture with Ni was also sprayed. Microstructural characterization, including the deformed structure of Ni splats, retention, distribution, and fragmentation of WC, was performed by scanning electron microscopy. An improvement in WC retention was achieved using finer WC particles. Significant improvement in WC particles retention was achieved using WC/Ni composite powder, with the WC content in the coating being close to that of the feedstock.

  10. Development of ultrasonic atomizer and its application to S. I. engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namiyama, K.; Nakamura, H.; Kokubo, K.

    1989-01-01

    This paper describes a fuel atomizer developed for S.I. engines based on ultrasonic vibrations. As the spray is characterized by fine droplet size and low penetration, it facilitates fuel movement and the formation of a homogeneous mixture. The spray behavior of this atomizer is easily influenced by ambient air motion. Therefore, the spray is most effectively delivered to the cylinders by precise injection timing. The ultrasonic atomizer disperses a fine spray over a wide flow rate range. A single cylinder engine fitted with the atomizer showed advantages in combustion speed and transient response performance.

  11. Program Models A Laser Beam Focused In An Aerosol Spray

    NASA Technical Reports Server (NTRS)

    Barton, J. P.

    1996-01-01

    Monte Carlo analysis performed on packets of light. Program for Analysis of Laser Beam Focused Within Aerosol Spray (FLSPRY) developed for theoretical analysis of propagation of laser pulse optically focused within aerosol spray. Applied for example, to analyze laser ignition arrangement in which focused laser pulse used to ignite liquid aerosol fuel spray. Scattering and absorption of laser light by individual aerosol droplets evaluated by use of electromagnetic Lorenz-Mie theory. Written in FORTRAN 77 for both UNIX-based computers and DEC VAX-series computers. VAX version of program (LEW-16051). UNIX version (LEW-16065).

  12. A simulation technique for predicting thickness of thermal sprayed coatings

    NASA Technical Reports Server (NTRS)

    Goedjen, John G.; Miller, Robert A.; Brindley, William J.; Leissler, George W.

    1995-01-01

    The complexity of many of the components being coated today using the thermal spray process makes the trial and error approach traditionally followed in depositing a uniform coating inadequate, thereby necessitating a more analytical approach to developing robotic trajectories. A two dimensional finite difference simulation model has been developed to predict the thickness of coatings deposited using the thermal spray process. The model couples robotic and component trajectories and thermal spraying parameters to predict coating thickness. Simulations and experimental verification were performed on a rotating disk to evaluate the predictive capabilities of the approach.

  13. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    DTIC Science & Technology

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios

  14. Fabrication of High-Temperature Heat Exchangers by Plasma Spraying Exterior Skins on Nickel Foams

    NASA Astrophysics Data System (ADS)

    Hafeez, P.; Yugeswaran, S.; Chandra, S.; Mostaghimi, J.; Coyle, T. W.

    2016-06-01

    Thermal-sprayed heat exchangers were tested at high temperatures (750 °C), and their performances were compared to the foam heat exchangers made by brazing Inconel sheets to their surface. Nickel foil was brazed to the exterior surface of 10-mm-thick layers of 10 and 40 PPI nickel foam. A plasma torch was used to spray an Inconel coating on the surface of the foil. A burner test rig was built to produce hot combustion gases that flowed over exposed face of the heat exchanger. Cooling air flowed through the foam heat exchanger at rates of up to 200 SLPM. Surface temperature and air inlet/exit temperature were measured. Heat transfer to air flowing through the foam was significantly higher for the thermally sprayed heat exchangers than for the brazed heat exchangers. On an average, thermally sprayed heat exchangers show 36% higher heat transfer than conventionally brazed foam heat exchangers. At low flow rates, the convective resistance is large (~4 × 10-2 m2 K/W), and the effect of thermal contact resistance is negligible. At higher flow rates, the convective resistance decreases (~2 × 10-3 m2 K/W), and the lower contact resistance of the thermally sprayed heat exchanger provides better performance than the brazed heat exchangers.

  15. Effect of topical vapocoolant spray on response to arthrocentesis and intravenous catheterization in unsedated horses.

    PubMed

    Fjordbakk, Cathrine T; Haga, Henning A

    2011-06-01

    To assess the efficacy of a commercially available topical vapocoolant spray in reducing responses to arthrocentesis of the middle carpal (MC) and metacarpophalangeal (MCP) joints and jugular vein catheterization in unsedated horses. 8 healthy research horses. Arthrocentesis of both MC and MCP joints and bilateral jugular vein catheterization were performed in each horse. Immediately prior to skin penetration, 1 randomly selected MC joint, MCP joint, and jugular vein were sprayed with a vapocoolant liquid (intervention product), and the contralateral MC joint, MCP joint, and jugular vein were sprayed with water (placebo). An observer blinded to the type of spray treatment used evaluated the horses' responses to needle or catheter placement procedures by use of a 6-point categorical scale and a 100-mm visual analog scale. Responses evaluated via the visual analog scale were significantly reduced after application of the intervention product, compared with responses after application of the placebo, for the MC and MCP joints; no difference in responses to jugular vein catheterization was detected between the 2 treatments. Vapocoolant spray was safe and effective in reducing horses' responses to arthrocentesis. The use of such products prior to joint injections may reduce procedural nociception and pain anticipation in unsedated horses and may improve the safety of personnel performing such procedures.

  16. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.

  17. Detailed assessment of diesel spray atomization models using visible and X-ray extinction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnotti, G. M.; Genzale, C. L.

    The physical mechanisms characterizing the breakup of a diesel spray into droplets are still unknown. This gap in knowledge has largely been due to the challenges of directly imaging this process or quantitatively measuring the outcomes of spray breakup, such as droplet size. Recent x-ray measurements by Argonne National Laboratory, utilized in this work, provide needed information about the spatial evolution of droplet sizes in selected regions of the spray under a range of injection pressures (50–150 MPa) and ambient densities (7.6–22.8 kg/m3) relevant for diesel operating conditions. Ultra-small angle x-ray scattering (USAXS) measurements performed at the Advanced Photon Sourcemore » are presented, which quantify Sauter mean diameters (SMD) within optically thick regions of the spray that are inaccessible by conventional droplet sizing measurement techniques, namely in the near-nozzle region, along the spray centerline, and within the core of the spray. To quantify droplet sizes along the periphery of the spray, a complementary technique is proposed and introduced, which leverages the ratio of path-integrated x-ray and visible laser extinction (SAMR) measurements to quantify SMD. The SAMR and USAXS measurements are then utilized to evaluate current spray models used for engine computational fluid dynamic (CFD) simulations. We explore the ability of a carefully calibrated spray model, premised on aerodynamic wave growth theory, to capture the experimentally observed trends of SMD throughout the spray. The spray structure is best predicted with an aerodynamic primary and secondary breakup process that is represented with a slower time constant and larger formed droplet size than conventionally recommended for diesel spray models. Additionally, spray model predictions suggest that droplet collisions may not influence the resultant droplet size distribution along the spray centerline in downstream regions of the spray.« less

  18. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative fuels. Optical patternation data and line of sight laser diffraction data show that there is significant difference between jet fuels. Particularly at low fuel injection pressures (0.345 MPa) and cold temperatures (-40 C), the patternation data shows that the total surface area in the spray at 38.1 mm from the pressure swirl injector for the JP-10 fuel type is one-sixth the amount of the JP-8. Finally, this study compares the atomizer performance of a pressure swirl nozzle to a hybrid air blast nozzle. The total surface area for both the hybrid air blast nozzle and the pressure swirl nozzle show a similar decline in atomization performance at low fuel injection pressures and cold temperatures. However, the optical patternator radial profile data and the line of sight laser diffraction data show that the droplet size and spray distribution data are less affected by injection conditions and fuel type in the hybrid air blast nozzle, than they are in the pressure swirl nozzle. One explanation is that the aerodynamic forces associated with the swirler on the hybrid air blast nozzle control the distribution droplets in the spray. This is in contrast to the pressure swirl nozzle droplet distribution that is controlled by internal geometry and droplet ballistics.

  19. Study of Heterogeneous Structure in Diesel Fuel Spray by Using Micro-Probe L2F

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Yamamoto, Shohei; Ueki, Hironobu; Ishdia, Masahiro

    A L2F (Laser 2-Focus velocimeter) was applied for the measurements of the velocity and size of droplets in diesel fuel sprays. The micro-scale probe of the L2F has an advantage in avoiding the multiple scattering from droplets in a dense region of fuel sprays. A data sampling rate of 15MHz has been achieved in the L2F system for detecting almost all of the droplets which passed through the measurement probe. Diesel fuel was injected into the atmosphere by using a common rail injector. Measurement positions were located along the spray axis at 10, 15, 20, 25, and 30 mm from the nozzle exit. Measurement result showed that the velocity and size of droplets decreased and the number density of droplets increased along the spray axis. It was clearly shown that the mass flow rate in the spray was highest near the spray tip and was lower inside the spray.

  20. Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8.

    PubMed

    Yánez-Mendizabal, V; Viñas, I; Usall, J; Cañamás, T; Teixidó, N

    2012-04-01

    The role of endospore production by Bacillus subtilis CPA-8 on survival during spray-drying was investigated by comparison with a non-spore-forming biocontrol agent Pantoea agglomerans CPA-2. Endospore formation promoted heat resistance in CPA-8 depending on growth time (72 h cultures were more resistant than 24 h ones). The survival of CPA-8 and CPA-2 after spray-drying was determined after being grown in optimised media for 24 and 72 h. Spray-dried 72 h CPA-8 had the best survival (32%), while CPA-2 viability was less than 2%. CPA-8 survival directly related with its ability to produce endospores. Spray-dried CPA-8 reduced Monilinia fructicola conidia germination similarly to fresh cells, demonstrating that spray-drying did not adversely affect biocontrol efficacy. Endospore production thus improves CPA-8 resistance to spray-drying. These results can provide a reliable basis for optimising of the spray-drying formulation process for CPA-8 and other microorganisms.

  1. CFD Simulation of Aerial Crop Spraying

    NASA Astrophysics Data System (ADS)

    Omar, Zamri; Qiang, Kua Yong; Mohd, Sofian; Rosly, Nurhayati

    2016-11-01

    Aerial crop spraying, also known as crop dusting, is made for aerial application of pesticides or fertilizer. An agricultural aircraft which is converted from an aircraft has been built to combine with the aerial crop spraying for the purpose. In recent years, many studies on the aerial crop spraying were conducted because aerial application is the most economical, large and rapid treatment for the crops. The main objective of this research is to study the airflow of aerial crop spraying system using Computational Fluid Dynamics. This paper is focus on the effect of aircraft speed and nozzle orientation on the distribution of spray droplet at a certain height. Successful and accurate of CFD simulation will improve the quality of spray during the real situation and reduce the spray drift. The spray characteristics and efficiency are determined from the calculated results of CFD. Turbulence Model (k-ɛ Model) is used for the airflow in the fluid domain to achieve a more accurate simulation. Furthermore, spray simulation is done by setting the Flat-fan Atomizer Model of Discrete Phase Model (DPM) at the nozzle exit. The interaction of spray from each flat-fan atomizer can also be observed from the simulation. The evaluation of this study is validation and grid dependency study using field data from industry.

  2. The Determination of Several Spray Characteristics of a High-Speed Oil Engine Injection System with an Oscilloscope

    NASA Technical Reports Server (NTRS)

    Hicks, Chester W; Moore, Charles S

    1928-01-01

    An investigation was conducted to determine the injection lag, duration of injection, and spray start and cut-off characteristics of a fuel injection system operated on an engine and injecting fuel into the atmosphere.

  3. 46 CFR 154.1105 - Exterior water spray system: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 154.1105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting § 154.1105 Exterior water spray system: General. Each liquefied flammable gas vessel...

  4. 46 CFR 154.1105 - Exterior water spray system: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 154.1105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting § 154.1105 Exterior water spray system: General. Each liquefied flammable gas vessel...

  5. 46 CFR 154.1105 - Exterior water spray system: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 154.1105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting § 154.1105 Exterior water spray system: General. Each liquefied flammable gas vessel...

  6. Influence of Surface Finishing on the Oxidation Behaviour of VPS MCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Fossati, Alessio; di Ferdinando, Martina; Bardi, Ugo; Scrivani, Andrea; Giolli, Carlo

    2012-03-01

    CoNiCrAlY coatings were produced by means of the vacuum plasma spraying (VPS) process onto CMSX-4 single crystal nickel superalloy disk substrates. As-sprayed samples were annealed at high temperatures in low vacuum. Three kinds of finishing processes were carried out, producing three types of samples: as-sprayed, mechanically smoothed by grinding, ground and PVD coated by using aluminum targets in an oxygen atmosphere. Samples were tested under isothermal conditions, in air, at 1000 °C, and up to 5000 h. Morphological, microstructural and compositional analyses were performed on the coated samples in order to assess the high temperature oxidation behavior provided by the three different surface finishing processes. Several differences were observed: grinding operations decrease the oxidation resistance, whereas the PVD process can increase the performances over longer time with respect of the as-sprayed samples.

  7. Heat, Mass and Aerosol Transfers in Spray Conditions for Containment Application

    NASA Astrophysics Data System (ADS)

    Porcheron, Emmanuel; Lemaitre, Pascal; Nuboer, Amandine; Vendel, Jacques

    TOSQAN is an experimental program undertaken by the Institut de Radioprotection et de Surété Nucleaire (IRSN) in order to perform thermal hydraulic containment studies. The TOSQAN facility is a large enclosure devoted to simulating typical accidental thermal hydraulic flow conditions in nuclear Pressurized Water Reactor (PWR) containment. The TOSQAN facility, which is highly instrumented with non-intrusive optical diagnostics, is particularly adapted to nuclear safety CFD code validation. The present work is devoted to studying the interaction of a water spray injection used as a mitigation means in order to reduce the gas pressure and temperature in the containment, to produce gases mixing and washout of fission products. In order to have a better understanding of heat and mass transfers between spray droplets and the gas mixture, and to analyze mixing effects due to spray activation, we performed detailed characterization of the two-phase flow.

  8. Wastewater application by spray irrigation on a field southeast of Tallahassee, Florida; effects on ground-water quality and quantity, 1980-82

    USGS Publications Warehouse

    Elder, J.F.; Hunn, J.D.; Calhoun, C.W.

    1985-01-01

    A field southeast of Tallahassee, Florida, used for land application of wastewater by spray irrigation was the site of a ground-water monitoring study to determine effects of spray irrigation on water-table elevations and ground-water quality. The study was conducted during 1980-82 in cooperation with the City of Tallahassee. The wastewater has relatively high concentrations of chloride, nitrogen, phosphorus, organic carbon , coliform bacteria, sodium, and potassium. These substances are usually attenuated before they can impact the ground water. However, increases in chloride and nitrate-nitrogen were evident in ground water in some of the monitoring wells during the study. Chloride concentrations increased five-fold or more in some wells directly affected by spray irrigation, and nitrate-nitrogen concentrations increased eight-fold or more. Ground-water levels in the area of the spray field fluctuated over a range of several feet. These fluctuations were affected somewhat by spray irrigation, but the primary control on water levels was rainfall. As of December 1982, constituents introduced to the system by spray irrigation of effluent had not exceeded drinking water standard in the ground water. However, the system had not yet stabilized and more changes in ground-water quality could be expected. (USGS)

  9. Clinicopathological effects of pepper (oleoresin capsicum) spray.

    PubMed

    Yeung, M F; Tang, William Y M

    2015-12-01

    Pepper (oleoresin capsicum) spray is one of the most common riot-control measures used today. Although not lethal, exposure of pepper spray can cause injury to different organ systems. This review aimed to summarise the major clinicopathological effects of pepper spray in humans. MEDLINE, EMBASE database, and Cochrane Database of Systematic Reviews were used to search for terms associated with the clinicopathological effects of pepper spray in humans and those describing the pathophysiology of capsaicin. A phone interview with two individuals recently exposed to pepper spray was also conducted to establish clinical symptoms. Major key words used for the MEDLINE search were "pepper spray", "OC spray", "oleoresin capsicum"; and other key words as "riot control agents", "capsaicin", and "capsaicinoid". We then combined the key words "capsaicin" and "capsaicinoid" with the major key words to narrow down the number of articles. A search with other databases including EMBASE and Cochrane Database of Systematic Reviews was also conducted with the above phrases to identify any additional related articles. All article searches were confined to human study. The bibliography of articles was screened for additional relevant studies including non-indexed reports, and information from these was also recorded. Non-English articles were included in the search. Fifteen articles were considered relevant. Oleoresin capsicum causes almost instantaneous irritative symptoms to the skin, eyes, and respiratory system. Dermatological effects include a burning sensation, erythema, and hyperalgesia. Ophthalmic effects involve blepharospasm, conjunctivitis, peri-orbital oedema, and corneal pathology. Following inhalation, a stinging or burning sensation can be felt in the nose with sore throat, chest tightness, or dyspnoea. The major pathophysiology is neurogenic inflammation caused by capsaicinoid in the pepper spray. There is no antidote for oleoresin capsicum. Treatment consists of thorough decontamination, symptom-directed supportive measures, and early detection and treatment of systemic toxicity. Decontamination should be carefully carried out to avoid contamination of the surrounding skin and clothing. Pepper (oleoresin capsicum) spray is an effective riot-control agent and does not cause life-threatening clinical effects in the majority of exposed individuals. Early decontamination minimises the irritant effects.

  10. Effectiveness of Large-Scale Chagas Disease Vector Control Program in Nicaragua by Residual Insecticide Spraying Against Triatoma dimidiata.

    PubMed

    Yoshioka, Kota; Nakamura, Jiro; Pérez, Byron; Tercero, Doribel; Pérez, Lenin; Tabaru, Yuichiro

    2015-12-01

    Chagas disease is one of the most serious health problems in Latin America. Because the disease is transmitted mainly by triatomine vectors, a three-phase vector control strategy was used to reduce its vector-borne transmission. In Nicaragua, we implemented an indoor insecticide spraying program in five northern departments to reduce house infestation by Triatoma dimidiata. The spraying program was performed in two rounds. After each round, we conducted entomological evaluation to compare the vector infestation level before and after spraying. A total of 66,200 and 44,683 houses were sprayed in the first and second spraying rounds, respectively. The entomological evaluation showed that the proportion of houses infested by T. dimidiata was reduced from 17.0% to 3.0% after the first spraying, which was statistically significant (P < 0.0001). However, the second spraying round did not demonstrate clear effectiveness. Space-time analysis revealed that reinfestation of T. dimidiata is more likely to occur in clusters where the pre-spray infestation level is high. Here we discuss how large-scale insecticide spraying is neither effective nor affordable when T. dimidiata is widely distributed at low infestation levels. Further challenges involve research on T. dimidiata reinfestation, diversification of vector control strategies, and implementation of sustainable vector surveillance. © The American Society of Tropical Medicine and Hygiene.

  11. Impacts of sewage effluent on tree survival, water quality and nutrient removal in coastal plain swamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuenzler, E.J.

    1987-09-01

    An investigation was conducted of the impacts of sprayed municipal sewage on swamp tree survival and the effects of the swamp system on nutrient concentrations below the outfalls on two streams on the coastal plain of North Carolina. Effluent was discharged to one swamp stream by aerial spraying and to the other stream by way of a small ditch. Ninety-eight percent of the trees struck directly by the spray were dead within 18 months of the date spraying began. Both swamp systems removed sufficient quantities of nitrogen and phosphorus within a few kilometers to account for virtually all of themore » sewage nutrient load to the swamps.« less

  12. Reformulation of Stmerin(®) D CFC formulation using HFA propellants.

    PubMed

    Murata, Saburo; Izumi, Takashi; Ito, Hideki

    2013-01-01

    Stmerin(®) D was reformulated using hydrofluoroalkanes (HFA-134a and HFA-227) as alternative propellants instead of chlorofluorocarbons (CFCs), where the active ingredients were suspended in mixed CFCs (CFC-11/CFC-12/CFC-114). Here, we report the suspension stability and spray performance of the original CFC formulation and a reformulation using HFAs. We prepared metered dose inhalers (MDI) using HFAs with different surfactants and co-solvents, and investigated the effect on suspension stability by visual testing. We found that the drug suspension stability was poor in both HFAs, but was improved, particularly for HFA-227, by adding a middle chain fatty acid triglycerides (MCT) to the formulation. However, the vapor pressure of HFA-227 is higher than a CFC mixture and this increased the fine particle dose (FPD). Spray performance was adjusted by altering the actuator configuration, and the performance of different actuators was tested by cascade impaction. We found the spray performance could be controlled by the configuration of the actuator. A spray performance comparable to the original formulation was obtained with a 0.8 mm orifice diameter and a 90° cone angle. These results demonstrate that the reformulation of Stmerin(®) D using HFA-227 is feasible, by using MCT as a suspending agent and modifying the actuator configuration.

  13. Study of Adsorption and Desorption Performances of Zr-Based Metal-Organic Frameworks Using Paper Spray Mass Spectrometry.

    PubMed

    Wang, Xiaoting; Chen, Ying; Zheng, Yajun; Zhang, Zhiping

    2017-07-08

    The dynamic pore systems and high surface areas of flexible metal-organic framework materials make them excellent candidates to be used in different kinds of adsorption processes. However, the adsorption and desorption behaviors of therapeutic drugs on metal-organic frameworks in solution are not fully developed. Here, we systematically investigated the adsorption and desorption behaviors of a typical therapeutic drug, verapamil, over several Zr-based metal-organic frameworks [e.g., Zr-FUM, UiO-66(Zr), UiO-66(Zr)-NH₂ and UiO-66(Zr)-2COOH] as well as ZrO₂ in an acetonitrile solution by using paper spray mass spectrometry. In contrast to other materials, UiO-66(Zr)-2COOH demonstrated a superior adsorption performance to verapamil due to their strong acid-base and/or hydrogen-bond interactions, and the adsorption process fitted well with the pseudo-second-order kinetic model. As verapamil-adsorbed materials were used for desorption experiments, ZrO₂ demonstrated the most favorable desorption performance, whereas UiO-66(Zr)-2COOH yielded the poorest desorption capability. These Zr-based materials had also been coated at the surface with filter papers for the analysis of various drugs and proteins in the process of paper spray mass spectrometry. The results demonstrated that among the studied materials, ZrO₂-coated paper gave the most favorable desorption performance as a pure drug solution, whereas the paper from UiO-66(Zr) demonstrated the optimal capability in the analyses of therapeutic drugs in a complex matrix (e.g., blood) and a protein (e.g., myoglobin).

  14. Characterization of ZrO2-Y2O3 thermal spray powder systems

    NASA Technical Reports Server (NTRS)

    Mantkowski, Thomas E.; Rigney, David V.; Froning, Marc J.; Jayaraman, N.

    1985-01-01

    The overall objective is to establish the interrelation between the raw material in the coating process and the performance of the coating deposit. It is anticipated that these interrelations will help establish more precise specifications for the procurement of the raw materials. Some of the preliminary results of the program are presented.

  15. Evaluation of generation 3 treatment technology for swine waste - A North Carolina's clean water management trust fund project - Technical environmental performance report

    USDA-ARS?s Scientific Manuscript database

    This project evaluated and demonstrated the viability of a third generation manure treatment technology. The technology was developed as an alternative to the lagoon/spray field system typically used to treat the wastewater generated by swine farms in North Carolina. It separates solids and liquids ...

  16. Structure and Corrosion Resistance of Welded Joints of Alloy 1151 in Marine Atmosphere

    NASA Astrophysics Data System (ADS)

    Bakulo, A. V.; Yakushin, B. F.; Puchkov, Yu. A.

    2017-07-01

    The corrosion behavior of joints formed by TIG and IMIG welding from clad sheets of heat-hardenable aluminum alloy 1151 of the Al - Cu - Mg system is studied. The corrosion tests are performed in an aqueous solution of NaCl in a salt-spray chamber. The welded joints are subjected to a metallographic analysis.

  17. Manufacturing Methods and Technology Project Summary Reports.

    DTIC Science & Technology

    1980-12-01

    deposition of chrome-copper (Cr- Cu ), dry-film photoresist application, photolithographic masking, spray etching, die bonding, ultrasonic...4) cold roll forging. Of these, the cold roll forging process is the most widely used for the pro- duction of steel and low alloy blades. It provides... sprayed Mo- Al -Ni both provide relatively good wear resistance, see Figure 1. The powder -flame sprayed aluminum bronze did not perform as well. 147 -S t. I

  18. Comparison of lidocaine spray and paracervical block application for pain relief during first-trimester surgical abortion: A randomised, double-blind, placebo-controlled trial.

    PubMed

    Aksoy, Huseyin; Aksoy, Ulku; Ozyurt, Sezin; Ozoglu, Nil; Acmaz, Gokhan; Aydın, Turgut; İdem Karadağ, Özge; Tayyar, Ahter Tanay

    2016-07-01

    Surgical abortion is one of the most frequently performed gynaecological procedures and its associated pain has always been a problem in gynaecology. Here we studied the analgesic efficacy of lidocaine spray and paracervical block (PCB) in patients undergoing first-trimester surgical abortion. A randomised double-blind placebo-controlled study was conducted on 108 women requesting pregnancy termination. The subjects were randomly assigned into four groups: Group 1 (PCB plus lidocaine spray) (n=27), Group 2 (PCB) (n=27), Group 3 (lidocaine spray) (n=27) and Group 4 (placebo) (n=27). Intra-procedural and post-procedural pain scores were measured with a standard visual analogue scale (VAS). The median VAS scores during procedure in placebo, lidocaine spray, PCB plus lidocaine spray and PCB groups were 8 (7-9), 5 (4-8), 4 (3-4) and 5 (3-5), respectively. The most effective method of pain relief during first-trimester abortion can be achieved through a combined use of PCB plus lidocaine spray. Therefore, lidocaine spray is a non-invasive complementary anaesthetic method versus traditional PCB for first-trimester surgical abortion.

  19. Preparation of MgO/B₂O₃ coatings by plasma spraying on SUS304 surface and effects of heat-resistant.

    PubMed

    Song, Bo; Zhou, Ningning; Ju, Dongying

    2013-12-01

    This study mainly deals with the preparation of MgO/B2O3 coatings by plasma spraying on the SUS304 surface and the effects of heat-resistant. The power materials of low thermal conductivity were selected to control the heat divergent performance of high temperature parts. The reticular micro-structure between the cover thermal layer and the substrate was prepared by using the plasma spraying method. The powder mixture of MgO and B2O3 were selected as spraying materials and the SUS304 was used as the substrate material. The MgO/B2O3 coating was prepared on the surface of the SUS304 to provide better cover thermal performance. The properties of the microstructures and the morphologies were studied by Optical Microscope, Scanning Electron Microscope, Electron Probe Microanalyzer, and X-ray Diffraction. The results showed that the cover thermal performance has been improved. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  1. Penetration and Duration of Fuel Sprays from a Pump Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1931-01-01

    High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. In addition, the effects of the variables on the time lag and duration of injection can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.

  2. Use of biocidal products (insect sprays and electro-vaporizer) in indoor areas--exposure scenarios and exposure modeling.

    PubMed

    Berger-Preiss, Edith; Koch, Wolfgang; Gerling, Susanne; Kock, Heiko; Appel, Klaus E

    2009-09-01

    Five commercially available insect sprays were applied in a model room. Spraying was performed in accordance with the manufacturers' instructions and in an overdosed manner in order to simulate worst-case conditions or an unforeseeable misuse. In addition, we examined electro-vaporizers. The Respicon aerosol monitoring system was applied to determine inhalation exposure. During normal spraying (10 seconds) and during the following 2-3 minutes, exposure concentrations ranged from 70 to 590 microg/m3 for the pyrethroids tetramethrin, d-phenothrin, cyfluthrin, bioallethrin, and the pyrethrins. Calculated inhalable doses were 2-16 microg. A concentration of approximately 850 microg chlorpyrifos/m(3) (inhalable dose: approximately 20 microg) was determined when the "Contra insect fly spray" was applied. Highest exposure concentrations (1100-2100 microg/m3) were measured for piperonyl butoxide (PBO), corresponding to an inhalation intake of 30-60microg. When simulating worst-case conditions, exposure concentrations of 200-3400microg/m3 and inhalable doses of 10-210microg were determined for the various active substances. Highest concentrations (4800-8000 microg/m3) were measured for PBO (inhalable: 290-480 microg). By applying the electro-vaporizer "Nexa Lotte" plug-in mosquito killer concentrations for d-allethrin were in the range of 5-12microg/m3 and 0.5-2 microg/m3 for PBO while with the "Paral" plug-in mosquito killer concentrations of 0.4-5microg/m3 for pyrethrins and 1-7 microg/m3 for PBO were measured. Potential dermal exposures were determined using exposure pads. Between 80 and 1000microg active substance (tetramethrin, phenothrin, cyfluthrin, bioallethrin, pyrethrins, chlorpyrifos) were deposited on the clothing of the total body surface area of the spray user. Highest levels (up to 3000 microg) were determined for PBO. Worst-case uses of the sprays led to 5-9 times higher concentrations. Also a 2-hour stay nearby an operating electro-vaporizer led to a contamination of the clothing (total amounts on the whole body were 450 microg d-allethrin and 50 microg PBO for "Nexa Lotte" plug-in mosquito killer and 80 microg pyrethrins and 190 microg PBO for "Paral" plug-in mosquito killer). Human biomonitoring data revealed urine concentrations of the metabolite (E)-trans-chrysanthemum dicarboxylic acid ((E)-trans-CDCA) between 1.7 microg/l and 7.1 microg/l after 5 minutes of exposure to the different sprays. Also the use of electro-vaporizers led to (E)-trans-CDCA concentrations in the urine in the range of 1.0 microg/l to 6.2 microg/l (1-3 hours exposure period). The exposure data presented can be used for performing human risk assessment when these biocidal products were applied indoors. The airborne concentrations of the non-volatile active chemical compounds could be predicted from first principles using a deterministic exposure model (SprayExpo).

  3. An electronic flow control system for a variable-rate tree sprayer

    USDA-ARS?s Scientific Manuscript database

    Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...

  4. Deposition of Electrically Conductive Coatings on Castable Polyurethane Elastomers by the Flame Spraying Process

    NASA Astrophysics Data System (ADS)

    Ashrafizadeh, H.; McDonald, A.; Mertiny, P.

    2016-02-01

    Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green's function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.

  5. Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition.

    PubMed

    Kumar, Neetesh; Dutta, Viresh

    2014-11-15

    This paper investigates fabrication of surfactant free CdS nanoparticles (NPs) and application in the fabrication of P3HT:CdS and PCPDTBT:CdS bulk-heterojunction hybrid solar cells using high-throughput, large-area, low cost spray deposition technique. Both the hybrid active layers and hole transport layers are deposited by spray technique. The CdS/Poly(3-hexylthiophene-2,5-diyl) (P3HT) and CdS/Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) hybrid devices are fabricated by spray deposition process at optimized conditions (i.e. film thickness, spray solution volume, distance between sample and spray nozzle, substrate temperature, etc.). The power conversion efficiency of η=0.6% and 1.02% is obtained for P3HT:CdS and PCPDTBT:CdS hybrid devices, respectively. Spray coating holds significant promise as a technique capable of fabricating large-area, high performance hybrid solar cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows

    NASA Astrophysics Data System (ADS)

    Afshar, Ali

    An evaluation of Lagrangian-based, discrete-phase models for multi-component liquid sprays encountered in the combustors of gas turbine engines is considered. In particular, the spray modeling capabilities of the commercial software, ANSYS Fluent, was evaluated. Spray modeling was performed for various cold flow validation cases. These validation cases include a liquid jet in a cross-flow, an airblast atomizer, and a high shear fuel nozzle. Droplet properties including velocity and diameter were investigated and compared with previous experimental and numerical results. Different primary and secondary breakup models were evaluated in this thesis. The secondary breakup models investigated include the Taylor analogy breakup (TAB) model, the wave model, the Kelvin-Helmholtz Rayleigh-Taylor model (KHRT), and the Stochastic secondary droplet (SSD) approach. The modeling of fuel sprays requires a proper treatment for the turbulence. Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES), hybrid RANS/LES, and dynamic LES (DLES) were also considered for the turbulent flows involving sprays. The spray and turbulence models were evaluated using the available benchmark experimental data.

  7. Laser absorption-scattering technique applied to asymmetric evaporating fuel sprays for simultaneous measurement of vapor/liquid mass distributions

    NASA Astrophysics Data System (ADS)

    Gao, J.; Nishida, K.

    2010-10-01

    This paper describes an Ultraviolet-Visible Laser Absorption-Scattering (UV-Vis LAS) imaging technique applied to asymmetric fuel sprays. Continuing from the previous studies, the detailed measurement principle was derived. It is demonstrated that, by means of this technique, cumulative masses and mass distributions of vapor/liquid phases can be quantitatively measured no matter what shape the spray is. A systematic uncertainty analysis was performed, and the measurement accuracy was also verified through a series of experiments on the completely vaporized fuel spray. The results show that the Molar Absorption Coefficient (MAC) of the test fuel, which is typically pressure and temperature dependent, is the major error source. The measurement error in the vapor determination has been shown to be approximately 18% under the assumption of constant MAC of the test fuel. Two application examples of the extended LAS technique were presented for exploring the dynamics and physical insight of the evaporating fuel sprays: diesel sprays injected by group-hole nozzles and gasoline sprays impinging on an inclined wall.

  8. Optimization of the inter-tablet coating uniformity for an active coating process at lab and pilot scale.

    PubMed

    Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter

    2013-11-30

    The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A Planar-Fluorescence Imaging Technique for Studying Droplet-Turbulence Interactions in Vaporizing Sprays

    NASA Technical Reports Server (NTRS)

    Santavicca, Dom A.; Coy, E.

    1990-01-01

    Droplet turbulence interactions directly affect the vaporization and dispersion of droplets in liquid sprays and therefore play a major role in fuel oxidizer mixing in liquid fueled combustion systems. Proper characterization of droplet turbulence interactions in vaporizing sprays require measurement of droplet size velocity and size temperature correlations. A planar, fluorescence imaging technique is described which is being developed for simultaneously measuring the size, velocity, and temperature of individual droplets in vaporizing sprays. Preliminary droplet size velocity correlation measurements made with this technique are presented. These measurements are also compared to and show very good agreement with measurements made in the same spray using a phase Doppler particle analyzer.

  10. Evaluating the feasibility of using insecticide quantification kits (IQK) for estimating cyanopyrethroid levels for indoor residual spraying in Vanuatu

    PubMed Central

    2014-01-01

    Background The quality of routine indoor residual spraying (IRS) operations is rarely assessed because of the limited choice of methods available for quantifying insecticide content in the field. This study, therefore, evaluated a user-friendly, rapid colorimetric assay for detecting insecticide content after routine IRS operations were conducted. Methods This study was conducted in Tafea Province, Vanuatu. Routine IRS was conducted with lambda cyhalothrin. Two methods were used to quantify the IRS activities: 1) pre-spray application of small felt pads and 2) post-spray removal of insecticide with adhesive. The insecticide content was quantified using a colorimetric assay (Insecticide Quantification Kit [IQK]), which involved exposing each sample to the test reagents for 15 mins. The concentration of insecticide was indicated by the depth of red colour. Results The IQK proved simple to perform in the field and results could be immediately interpreted by the programme staff. The insecticide content was successfully sampled by attaching felt pads to the house walls prior to spraying. The IRS operation was well conducted, with 83% of houses being sprayed at the target dose (20 – 30 mg AI/m2). The average reading across all houses was 24.4 ± 1.5 mg AI/m2. The results from the felt pads applied pre-spray were used as a base to compare methods for sampling insecticide from walls post-spray. The adhesive of Sellotape did not collect adequate samples. However, the adhesive of the felt pads provided accurate samples of the insecticide content on walls. Conclusion The IQK colorimetric assay proved to be a useful tool that was simple to use under realistic field conditions. The assay provided rapid information on IRS spray dynamics and spray team performance, facilitating timely decision making and reporting for programme managers. The IQK colorimetric assay will have direct applications for routine quality control in malaria control programmes globally and has the potential to improve the efficacy of vector control operations. PMID:24885084

  11. Spray distribution evaluation of different settings of a hand-held-trolley sprayer used in greenhouse tomato crops.

    PubMed

    Llop, Jordi; Gil, Emilio; Gallart, Montserrat; Contador, Felipe; Ercilla, Mireia

    2016-03-01

    Hand-held-trolley sprayers have recently been promoted to improve spray application techniques in greenhouses in south-eastern Spain. However, certain aspects remain to be improved. A modified hand-held-trolley sprayer was evaluated under two different canopy conditions (high and low canopy density) and with several sprayer settings (nozzle type, air assistance and spray volume). In this study, the deposition, coverage and uniformity of distribution of the spray on the canopy have been assessed. The deposition on leaves was significantly higher when flat-fan nozzles and air assistance were used at both high and low spray volumes. No differences were detected between the reference system at a high spray volume and the modified trolley at a low spray volume. Flat-fan nozzles with air assistance increased penetrability into the canopy. Air assistance and flat-fan nozzles allow volume rates to be reduced while maintaining or improving spray quality distribution. The working parameters of hand-held sprayers must be considered to reduce environmental risk and increase the efficacy of the spraying process. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  12. Mathematical simulation of surface heating during plasma spraying

    NASA Astrophysics Data System (ADS)

    Bogdanovich, V. I.; Giorbelidze, M. G.

    2017-02-01

    A mathematical model of temperature distribution over the flat ‘coating-substrate’ system section during plasma spraying, taking into account a plasma gun travel and coating buildup has been developed. It has been shown that the temperature value in the near-surface layer of the sprayed coating during the plasma gun passage can significantly exceed the temperature values in underlayers.

  13. Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ternes, MP

    A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use ofmore » the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.« less

  14. 46 CFR 34.25-1 - Application-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Application-T/ALL. 34.25-1 Section 34.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-1 Application—T/ALL. (a) Where a water spray extinguishing system is...

  15. 46 CFR 34.25-1 - Application-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Application-T/ALL. 34.25-1 Section 34.25-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Water Spray Extinguishing Systems, Details § 34.25-1 Application—T/ALL. (a) Where a water spray extinguishing system is...

  16. MODELING OF SO2 REMOVAL IN SPRAY-DRYER FLUE-GAS DESULFURIZATION SYSTEM

    EPA Science Inventory

    The report presents a comprehensive mathematical model of the SO2 removal process in a spray-dryer flue-gas desulfurization system. Simultaneous evaporation of a sorbent droplet and absorption/reaction of SO2 in the droplet are described by the corresponding heat- and mass-transf...

  17. Fuzzy logic control of rotating drum bioreactor for improved production of amylase and protease enzymes by Aspergillus oryzae in solid-state fermentation.

    PubMed

    Sukumprasertsri, Monton; Unrean, Pornkamol; Pimsamarn, Jindarat; Kitsubun, Panit; Tongta, Anan

    2013-03-01

    In this study, we compared the performance of two control systems, fuzzy logic control (FLC) and conventional control (CC). The control systems were applied for controlling temperature and substrate moisture content in a solidstate fermentation for the biosynthesis of amylase and protease enzymes by Aspergillus oryzae. The fermentation process was achieved in a 200 L rotating drum bioreactor. Three factors affecting temperature and moisture content in the solid-state fermentation were considered. They were inlet air velocity, speed of the rotating drum bioreactor, and spray water addition. The fuzzy logic control system was designed using four input variables: air velocity, substrate temperature, fermentation time, and rotation speed. The temperature was controlled by two variables, inlet air velocity and rotational speed of bioreactor, while the moisture content was controlled by spray water. Experimental results confirmed that the FLC system could effectively control the temperature and moisture content of substrate better than the CC system, resulting in an increased enzyme production by A. oryzae. Thus, the fuzzy logic control is a promising control system that can be applied for enhanced production of enzymes in solidstate fermentation.

  18. A Combined Water-Bromotrifluoromethane Crash-Fire Protection System for a T-56 Turbopropeller Engine

    NASA Technical Reports Server (NTRS)

    Campbell, John A.; Busch, Arthur M.

    1959-01-01

    A crash-fire protection system is described which will suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbo-propeller engine. This system includes means for rapidly extinguishing the combustor flame, means for cooling and inerting with water the hot engine parts likely to ignite engine ingested fuel, and means for blanketing with bromotrifluoromethane massive metal parts that may reheat after the engine stops rotating. Combustion-chamber flames were rapidly extinguished at the engine fuel nozzles by a fuel shutoff and drain valve. Hot engine parts were inerted and cooled by 42 pounds of water discharged at seven engine stations. Massive metal parts that could reheat were inerted with 10 pounds of bromotrifluoromethane discharged at two engine stations. Performance trials of the crash-fire protection system were conducted by bringing the engine up to takeoff temperature, actuating the crash-fire protection system, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.

  19. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  20. [Research about effect of spray drying conditions on hygroscopicity of spray dry powder of gubi compound's water extract and its mechanism].

    PubMed

    Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei

    2014-02-01

    To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).

  1. Comparison of a high temperature torch integrated sample introduction system with a desolvation system for the analysis of microsamples through inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sánchez, Raquel; Cañabate, Águeda; Bresson, Carole; Chartier, Frédéric; Isnard, Hélène; Maestre, Salvador; Nonell, Anthony; Todolí, José-Luis

    2017-03-01

    This work describes for the first time the comparison of the analytical performances obtained with a high temperature torch integrated sample introduction system (hTISIS) against those found with a commercially available desolvation system (APEX) associated with inductively coupled plasma mass spectrometry (ICP-MS). A double pass spray chamber was taken as the reference system. Similar detection limits and sensitivities were obtained in continuous injection mode at low liquid flow rates for the APEX and hTISIS operating at high temperatures. In contrast, in the air-segmented injection mode, the detection limits obtained with hTISIS at high temperatures were up to 12 times lower than those found for the APEX. Regarding memory effects, wash out times were shorter in continuous mode and peaks were narrower in air segmented mode for the hTISIS as compared to the APEX. Non spectral interferences (matrix effects) were studied with 10% nitric acid, 2% methanol, for an ICP multielemental solution and a hydro-organic matrix containing 70% (v/v) acetonitrile in water, 15 mmol L- 1 ammonium acetate and 0.5% formic acid containing lanthanide complexes. In all the cases, matrix effects were less severe for the hTISIS operating at 200 °C and the APEX than for the double pass spray chamber. Finally, two spiked reference materials (sea water and Antartic krill) were analyzed. The hTISIS operating at 200 °C gave the best results compared to those obtained with the APEX and the double pass spray chamber. In conclusion, despite the simplicity of the hTISIS, it provided, at low liquid flow rates, results similar to or better than those obtained with the by other sample introduction systems.

  2. Effect of the Reservoir Volume on the Discharge Pressures in the Injection System of the N.A.C.A. Spray Photography Equipment

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Lee, D W

    1932-01-01

    Tests were made to determine the effect of the reservoir volume on the discharge pressures in the injection system of the N.A.C.A. spray photography equipment. The data obtained are applicable to the design of a common rail fuel-injection system. The data show that an injection system of the type described can be designed so that not more than full load fuel quantity can be injected into the engine cylinders, and so that the fuel spray characteristics remain constant over a large range of engine speeds. Formulas are presented for computing the volume of the reservoir and the diameter of the discharge orifice.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zihan; Swantek, Andrew; Scarcelli, Riccardo

    This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence ismore » ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated. Additional parametric studies under different ambient and injection conditions were performed to study their influence on global and local flow structures for gasoline sprays. It is concluded that LES can generally well capture all experimental trends and comes close to matching the x-ray data. Discrepancies between experimental and simulation results can be correlated to uncertainties in boundary and initial conditions such as rate of injection and spray and turbulent dispersion sub-model constants.« less

  4. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus.

    PubMed

    Lavra, Zênia Maria Maciel; Pereira de Santana, Davi; Ré, Maria Inês

    2017-01-01

    Efavirenz (EFV), a first-line anti-HIV drug largely used as part of antiretroviral therapies, is practically insoluble in water and belongs to BCS class II (low solubility/high permeability). The aim of this study was to improve the solubility and dissolution performances of EFV by formulating an amorphous solid dispersion of the drug in polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus ® ) using spray-drying technique. To this purpose, spray-dried dispersions of EFV in Soluplus ® at different mass ratios (1:1.25, 1:7, 1:10) were prepared and characterized using particle size measurements, SEM, XRD, DSC, FTIR and Raman microscopy mapping. Solubility and dissolution were determined in different media. Stability was studied at accelerated conditions (40 °C/75% RH) and ambient conditions for 12 months. DSC and XRD analyses confirmed the EFV amorphous state. FTIR spectroscopy analyses revealed possible drug-polymer molecular interaction. Solubility and dissolution rate of EFV was enhanced remarkably in the developed spray-dried solid dispersions, as a function of the polymer concentration. Spray-drying was concluded to be a proper technique to formulate a physically stable dispersion of amorphous EFV in Soluplus ® , when protected from moisture.

  5. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    PubMed

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Evaluation of mechanical properties of Aluminum-Copper cold sprayed and alloy 625 wire arc sprayed coatings

    NASA Astrophysics Data System (ADS)

    Bashirzadeh, Milad

    This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.

  7. Improvement of Physico-mechanical Properties of Partially Amorphous Acetaminophen Developed from Hydroalcoholic Solution Using Spray Drying Technique

    PubMed Central

    Sadeghi, Fatemeh; Torab, Mansour; Khattab, Mostafa; Homayouni, Alireza; Afrasiabi Garekani, Hadi

    2013-01-01

    Objective(s): This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen. Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water) of acetaminophen (5% w/v) in the presence of small amounts of polyninylpyrrolidone K30 (PVP) (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight) was carried out. The properties of spray dried particles namely morphology, surface characteristics, particle size, crystallinity, dissolution rate and compactibility were evaluated. Results: Spray drying process significantly changed the morphology of acetaminophen crystals from acicular (rod shape) to spherical microparticle. Differential scanning calorimetery (DSC) and x-ray powder diffraction (XRPD) studies ruled out any polymorphism in spray dried samples, however, a major reduction in crystallinity up to 65%, especially for those containing 5% w/w PVP was observed. Spray dried acetaminophen particles especially those obtained in the presence of PVP exhibited an obvious improvement of the dissolution and compaction properties. Tablets produced from spray dried samples exhibited excellent crushing strengths and no tendency to cap. Conclusions: The findings of this study revealed that spray drying of acetaminophen from hydroalcoholic solution in the presence of small amount of PVP produced partially amorphous particles with improved dissolution and excellent compaction properties. PMID:24379968

  8. Classification of spray nozzles based on droplet size distributions and wind tunnel tests.

    PubMed

    De Schamphelerie, M; Spanoghe, P; Nuyttens, D; Baetens, K; Cornelis, W; Gabriels, D; Van der Meeren, P

    2006-01-01

    Droplet size distribution of a pesticide spray is recognised as a main factor affecting spray drift. As a first approximation, nozzles can be classified based on their droplet size spectrum. However, the risk of drift for a given droplet size distribution is also a function of spray structure, droplet velocities and entrained air conditions. Wind tunnel tests to determine actual drift potentials of the different nozzles have been proposed as a method of adding an indication of the risk of spray drift to the existing classification based on droplet size distributions (Miller et al, 1995). In this research wind tunnel tests were performed in the wind tunnel of the International Centre for Eremology (I.C.E.), Ghent University, to determine the drift potential of different types and sizes of nozzles at various spray pressures. Flat Fan (F) nozzles Hardi ISO 110 02, 110 03, 110 04, 110 06; Low-Drift (LD) nozzles Hardi ISO 110 02, 110 03, 110 04 and Injet Air Inclusion (AI) nozzles Hardi ISO 110 02, 110 03, 110 04 were tested at a spray pressures of 2, 3 and 4 bar. The droplet size spectra of the F and the LD nozzles were measured with a Malvern Mastersizer at spray pressures 2 bar, 3 bar and 4 bar. The Malvern spectra were used to calculate the Volume Median Diameters (VMD) of the sprays.

  9. [Experimental evaluation of the spraying disinfection efficiency on dental models].

    PubMed

    Zhang, Yi; Fu, Yuan-fei; Xu, Kan

    2013-08-01

    To evaluate the disinfect effect after spraying a new kind of disinfectant on the dental plaster models. The germ-free plaster samples, which were smeared with bacteria compound including Staphylococcus aureus, Escherichia coli, Saccharomyces albicans, Streptococcus mutans and Actinomyces viscosus were sprayed with disinfectants (CaviCide) and glutaraldehyde individually. In one group(5 minutes later) and another group(15 minutes later), the colonies were counted for statistical analysis after sampling, inoculating, and culturing which were used for evaluation of disinfecting efficiency. ANOVA was performed using SPSS12.0 software package. All sample bacteria were eradicated after spraying disinfectants(CaviCide) within 5 minutes and effective bacteria control was retained after 15 minutes. There was significant difference between the disinfecting efficiency of CaviCide and glutaraldehyde. The effect of disinfection with spraying disinfectants (CaviCide) on dental models is quick and effective.

  10. The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process

    NASA Astrophysics Data System (ADS)

    Rahmati, Saeed; Ghaei, Abbas

    2014-02-01

    Cold spray is a coating deposition method in which the solid particles are accelerated to the substrate using a low temperature supersonic gas flow. Many numerical studies have been carried out in the literature in order to study this process in more depth. Despite the inability of Johnson-Cook plasticity model in prediction of material behavior at high strain rates, it is the model that has been frequently used in simulation of cold spray. Therefore, this research was devoted to compare the performance of different material models in the simulation of cold spray process. Six different material models, appropriate for high strain-rate plasticity, were employed in finite element simulation of cold spray process for copper. The results showed that the material model had a considerable effect on the predicted deformed shapes.

  11. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.H. Kim; C.T. Lee; C.B. Lee

    2013-10-01

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 degrees C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 degrees C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the mostmore » promising characteristics among HfN, TiC, ZrC, and Y2O3 coating.« less

  12. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet trajectory analysis overpredicts the liquid mass penetration, and indicates a need for a more rigorous model to account for the three-dimensional mixing field induced by the jet-crossflow interaction. Nonetheless, the general procedures and criteria that are outlined can be used to efficiently assess and compare the quality of sprays formed under different conditions.

  13. Multiphase-Multifunctional Ceramic Coatings

    DTIC Science & Technology

    2013-06-30

    were conducted at 1200-1600° C from 10-24 h. Densification of powders in the pyrochlore-fuorite system was also performed by Spark Plasma Sintering ...capability with emphasis on improving toughness and phase stability. The primary goal was clearly accomplished by developing an instrumented air plasma ...composition. Coating compositions were synthesized by atmospheric plasma spray (APS) at CINVESTAV facilities, and dense monolithic counterparts were

  14. Ultrasonic Detection of Delamination and Material Characterization of Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Hung-Liang Roger; Zhang, Binwei; Alvin, Mary Anne; Lin, Yun

    2012-12-01

    This article describes ultrasonic nondestructive evaluation (NDE) to detect the changes of material properties and provide early warning of delamination in thermal barrier coating (TBC) systems. NDE tests were performed on single-crystal René N5 superalloy coupons that were coated with a commercially available MCrAlY bond coat and an air plasma sprayed 7% yttria-stabilized zirconia (YSZ) top coat deposited by Air Plasma Spray method, as well as Haynes 230 superalloy coupons coated with MCrA1Y bond coat, and an electron beam physical vapor deposit of 7% YSZ top coat. The TBC coupons were subjected to either cyclic or isothermal exposure for various lengths of time at temperatures ranging from 900 to 1100 °C. The ultrasonic measurements performed on the coupons had provided an early warning of delamination along the top coat/TGO interface before exposure time, when delamination occurred. The material's property (Young's modulus) of the top coat was estimated using the measured wave speeds. Finite element analysis (FEA) of the ultrasonic wave propagation was conducted on a simplified TBC system to verify experimental observations. The technique developed was also demonstrated on an as-manufactured turbine blade to estimate normalized top coat thickness measurements.

  15. A stop-restart solid propellant study with salt quench

    NASA Technical Reports Server (NTRS)

    Kumar, R. N.

    1976-01-01

    Experiments were conducted to gain insight into the unsatisfactory performance of the salt quench system of solid propellants in earlier studies. Nine open-air salt spray tests were conducted and high-speed cinematographic coverage was obtained of the events. It is shown that the salt spray by the detonator is generally a two-step process yielding two different fractions. The first fraction consists of finely powdered salt and moves practically unidirectionally at a high velocity (thousand of feet per second) while the second fraction consists of coarse particles and moves randomly at a low velocity (a few feet per second). Further investigation is required to verify the speculation that a lower quench charge ratio (weight of salt/propellant burning area) than previously employed may lead to an efficient quench

  16. Microfabricated polymer injector for direct mass spectrometry coupling.

    PubMed

    Gobry, Véronique; van Oostrum, Jan; Martinelli, Marco; Rohner, Tatiana C; Reymond, Frédéric; Rossier, Joël S; Girault, Hubert H

    2002-04-01

    This paper demonstrates the coupling of a plasma etched polymer microfluidic system with an electrospray mass spectrometer by generation of a nanospray. Taking advantage of the microtechnology processes and polymer properties, high volume production with good reproducibility of hydrophobic interfaces could be obtained. The nanospray was directly produced from the outlet of the plastic microfabricated chip positioned in front of the capillary entrance of the mass spectrometer. No chemical background due to the polymer has been observed under standard nanospray conditions. The performances of the spray as well as its efficiency have been demonstrated by flow measurements, stability establishment and tandem mass spectrometry experiment on angiotensin II. The spray was actuated without additional flow in methanol: water:acetic acid (50:49:1%) solution. A 40 fmol/microL detection limit could be reached.

  17. Application of external axis in thermal spraying

    NASA Astrophysics Data System (ADS)

    Gao, Guoyou; Wang, Wei; Chen, Tao; Hui, Chun

    2018-05-01

    Industrial robots are widely used nowadays in the process of thermal spraying, human work can be largely replaced due to the high-efficient, security, precision and repeatability of industrial robot. As offering the convenience to industrial product, Robots have some natural deficiencies because of its mechanical linkages of six-axis. When robot performs a series of stage of production, it could be hard to move to the next one because one of his axis reaches a maximum value. For this reason, external axis is added to robot system to extend the reachable space of robot axis. This paper concerns to the application of external axis and the different methods of programming the robot with work-holding external axis in the virtual environment. Experiments demonstrate the coating layer on the regular workpiece is uniform.

  18. Synthesis and Characterization of Aluminum-Nanodiamond Composite Powders by High Energy Ball Milling

    DTIC Science & Technology

    2011-12-01

    al , “ Cold - spray processing of high density nanocrystalline aluminum alloy 2009...2980, 1996. [21] L. Ajdelsztajn, et al , “ Cold spray deposition of nanocrystalline aluminum alloys ,” Metallurgical and Materials Transactions, vol...form the coating or deposit [9]. Figure 2. Diagram of a typical cold spray system [9] It has been proven that pure metals or composite powders

  19. Studies on the use of helicopters for oil spill clearance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinelli, F.N.

    A program of work was undertaken to assess the use of a commercially available underslung cropspraying bucket for spraying oil spill dispersants. The study consisted of land-based trials to measure relevant parameters of the spray and the effect on these parameters of spray height and dispersant viscosity. A sea trial was undertaken to observe the system under realistic conditions. (Copyright (c) Crown Copyright.)

  20. Using Bayleton (Triadimefon) to Control Fusiform Rust in Pine Tree Nurseries

    Treesearch

    G.A. Snow; S.J. Rowan; J.P. Jones; W. D. Kelley; J.G. Mexal

    1979-01-01

    Bayletor® was field-tested for fusiform rust control at eight pine tree nurseries during the spring of 1978. Four to six foliar sprays of this systemic fungicide were as effective as ferbam sprayed 16 to 36 times. Seed treatment with Bayleton reduced infection levels but did not significantly improve rust control in plots sprayed with Bayleton. At high rates, Bayleton...

  1. Hard tissue ablation with a spray-assisted mid-IR laser

    NASA Astrophysics Data System (ADS)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  2. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    NASA Astrophysics Data System (ADS)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  3. Process optimization of ultrasonic spray coating of polymer films.

    PubMed

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.

  4. Skin Sterility After Application of a Vapocoolant Spray Part 2.

    PubMed

    Mlynek, Karolina; Lyahn, Hwang; Richards, Bryson; Schleicher, William; Bassiri Gharb, Bahar; Procop, Gary; Tuohy, Marion; Zins, James

    2015-08-01

    Refrigerant sprays have been used for pain relief at the time of minor office procedures. However, their sterility remains in question. This study investigates the microbiologic effect of this vapocoolant when sprayed after 70 % isopropyl alcohol skin preparation. In 50 healthy volunteers, three skin culture samples were collected: Group 1 prior to alcohol application; Group 2 after preparation with alcohol, and Group 3 after preparation with alcohol followed with vapocoolant spray. Samples were cultured in a blinded fashion and analyzed after 5 days of incubation. Gram staining was performed when cultures were positive. Bacterial growth was found in 98 % of samples prior to any skin preparation. This was reduced to 54 % after alcohol use (Group 2). Spraying with the skin refrigerant further reduced bacterial growth to 46 % (Group 3). The results showed a significant reduction in the number of positive bacterial cultures following skin preparation with alcohol and when alcohol prep was followed by vapocoolant spray (p < 0.001) compared to initial cultures. No statistical difference was observed between Groups 2 and 3 (p = 0.74). The use of the vapocoolant spray does not compromise the sterility of the skin following alcohol prep. Both 70 % isopropyl alcohol antiseptic preparation and skin preparation followed by vapocoolant spray significantly reduce skin colonization when compared to unprepared skin (p < 0.001).

  5. Improving the biocontrol potential of entomopathogenic nematodes against Mamestra brassicae: effect of spray application technique, adjuvants and an attractant.

    PubMed

    Beck, Bert; Brusselman, Eva; Nuyttens, David; Moens, Maurice; Temmerman, Femke; Pollet, Sabien; Van Weyenberg, Stephanie; Spanoghe, Pieter

    2014-01-01

    Steinernema carpocapsae Weiser, an entomopathogenic nematode (EPN), is a potential biological control agent for the cabbage moth (Mamestra brassicae L.). This research aimed to identify a suitable spray application technique, and to determine whether yeast extract added to an EPN spray has an attracting and/or a feeding stimulant effect on M. brassicae. The biological control capabilities of EPN against this pest were examined in the field. Good coverage of the underside of cauliflower leaves, the habitat of young instar larvae (L1-L4) of M. brassicae was obtained using different spray boom configurations with vertical extensions that carried underleaf spraying nozzles. One of the configurations was selected for field testing with an EPN spray. Brewer's yeast extract stimulated larval feeding on leaves, and increased the mortality of these larvae when exposed to EPN. The field trial showed that a spray application with S. carpocapsae, Addit and xanthan gum can effectively lower the numbers of cabbage heads damaged by M. brassicae. Brewer's yeast extract did not significantly increase this field performance of EPN. Steinernema carpocapsae, applied with an appropriate spray technique, can be used within biological control schemes as part of a resistance management programme for Bt. © 2013 Society of Chemical Industry.

  6. The electrospray: Fundamentals and combustion applications

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro

    1993-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment. In view of the nearly unsurmountable difficulties of this two-phase flow, it would be useful to use an experimental arrangement that allow a systematic study of spray evolution and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones. An Electrostatic Spray (ES) of charged droplets lends itself to this type of combustion experiments under well-defined conditions and can be used to synthesize gradually more complex spray environments. In its simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip. This jet breaks up farther downstream into a fine spray of charged droplets. Several advantages distinguish the electrospray from alternative atomization techniques: the self-dispersion property of the spray due to coulombic repulsion; the absence of droplet coalescence; the potential control of the trajectories of charged droplets by suitable disposition of electrostatic fields; and the decoupling of atomization, which is strictly electrostatic, from gas flow processes. Furthermore, as recently shown in our laboratory, the electrospray can produce quasi-monodisperse droplets over a very broad size range (1-100 microns). The ultimate objective of this research project is to study the formation and burning of electrosprays of liquid fuels first in laminar regimes and then in turbulent ones. Combustion will eventually be investigated in conditions of three-dimensional droplet-droplet interaction, for which experimental studies have been limited to either qualitative observations in sprays or more quantitative observations on simplified systems consisting of a small number of droplets or droplet arrays. The compactness and potential controllability of this spray generaiton system makes it appealing for studies to be undertaken in the next two years on electrospray combustion in reduced-gravity environments such as those achievable at NASA microgravity test facilities.

  7. The Effect of Variable Gravity on the Cooling Performance of a Partially-Confined FC-72 Spray

    DTIC Science & Technology

    2009-07-01

    that takes place in pool boiling.(10),(11) However, it should be noted that Estes and Mudawar (12) found that for sprays with relatively high...than the upward-facing horizontal heater. Rybicki and Mudawar (23) reported on the effects of various parameters including orientation on spray...to that observed by Yoshida et al.,(28) Hunnel et al.,(45) Kim,(2) Mudawar ,(1) and Estes and Mudawar .(12) Elston(40) noted this trend, but also

  8. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  9. On the Development of Spray Submodels Based on Droplet Size Moments

    NASA Astrophysics Data System (ADS)

    Beck, J. C.; Watkins, A. P.

    2002-11-01

    Hitherto, all polydisperse spray models have been based on discretising the liquid flow field into groups of equally sized droplets. The authors have recently developed a spray model that captures the full polydisperse nature of the spray flow without using droplet size classes (Beck, 2000, Ph.D thesis, UMIST; Beck and Watkins, 2001, Proc. R. Soc. London A). The parameters used to describe the distribution of droplet sizes are the moments of the droplet size distribution function. Transport equations are written for the two moments which represent the liquid mass and surface area, and two more moments representing the sum of drop radii and droplet number are approximated via use of a presumed distribution function, which is allowed to vary in space and time. The velocities to be used in the two transport equations are obtained by defining moment-average quantities and constructing further transport equations for the relevant moment-average velocities. An equation for the energy of the liquid phase and standard gas phase equations, including a k-ɛ turbulence model, are also solved. All the equations are solved in an Eulerian framework using the finite-volume approach, and the phases are coupled through source terms. Effects such as interphase drag, droplet breakup, and droplet-droplet collisions are also captured through the use of source terms. The development of the submodels to describe these effects is the subject of this paper. All the source terms for the hydrodynamics of the spray are derived in this paper in terms of the four moments of the droplet size distribution in order to find the net effect on the whole spray flow field. The development of similar submodels to describe heat and mass transfer effects between the phases is the subject of a further paper (Beck and Watkins, 2001, J. Heat Fluid Flow). The model has been applied to a wide variety of different sprays, including high-pressure diesel sprays, wide-angle solid-cone water sprays, hollow-cone spray s, and evaporating sprays. The comparisons of the results with experimental data show that the model performs well. The interphase drag model, along with the model for the turbulent dispersion of the liquid, produces excellent agreement in the spray penetration results, and the moment-average velocity approach gives good radial distributions of droplet size, showing the capability of the model to predict polydisperse behaviour. Good submodel performance results in droplet breakup, collisions, and evaporation effects (see (Beck and Watkins, 2001, J. Heat Fluid Flow)) also being captured successfully.

  10. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  11. Trends and problems in CdS/Cu/x/S thin film solar cells - A review

    NASA Astrophysics Data System (ADS)

    Martinuzzi, S.

    1982-03-01

    The methods currently used to fabricate CdS/CuS solar cells are reviewed, along with comparisons of the effects on performance of the various preparation techniques. Attention is given to thermal evaporation, sputter, and chemical spray formation of the CdS layers, noting that most experience is presently with the evaporative and spray processes. CuS layers are formed in dip or wet process chemiplating, electroplating, vacuum deposition in flash and sputter modes, solid state reaction, or spray deposition. Any of the CuS film techniques can be used with any of the CdS layer processes, while spraying and sputtering are noted to offer the best alternatives for industrial production. Band profiles, I-V characteristics, photocurrent levels, and capacitance-voltage characteristics are outlined for the differently formed cells, and CdS/CuS and CdZnS/CuS cells are concluded to exhibit the highest performance features. Areas of improvement necessary to bring the cells to commercial status are discussed.

  12. Liquid Feedstock Plasma Spraying: An Emerging Process for Advanced Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Markocsan, Nicolaie; Gupta, Mohit; Joshi, Shrikant; Nylén, Per; Li, Xin-Hai; Wigren, Jan

    2017-08-01

    Liquid feedstock plasma spraying (LFPS) involves deposition of ultrafine droplets of suspensions or solution precursors (typically ranging from nano- to submicron size) and permits production of coatings with unique microstructures that are promising for advanced thermal barrier coating (TBC) applications. This paper reviews the recent progress arising from efforts devoted to development of high-performance TBCs using the LFPS approach. Advancements in both suspension plasma spraying and solution precursor plasma spraying, which constitute the two main variants of LFPS, are presented. Results illustrating the different types of the microstructures that can be realized in LFPS through appropriate process parameter control, model-assisted assessment of influence of coating defects on thermo-mechanical properties and the complex interplay between pore coarsening, sintering and crystallite growth in governing thermal conductivity are summarized. The enhancement in functional performances/lifetime possible in LFPS TBCs with multilayered architectures and by incorporating new pyrochlore chemistries such as gadolinium zirconate, besides the conventional single 8 wt.% yttria-stabilized zirconia insulating ceramic layer, is specifically highlighted.

  13. Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel.

    PubMed

    Passerini, Nadia; Albertini, Beatrice; Perissutti, Beatrice; Rodriguez, Lorenzo

    2006-08-02

    Praziquantel (PZQ), an anthelminthic drug widely used in developing countries, is classified in Class II in the Biopharmaceutics Classification Systems; this means that PZQ has very low water solubility and high permeability, thus the dissolution is the absorption rate-limiting factor. The aim of this work was to evaluate the suitability of melt granulation and ultrasonic spray congealing as techniques for enhancing the dissolution rate of PZQ. Granules in high shear mixer were prepared by melt granulation, using polyethylene glycol 4000 or poloxamer 188 as meltable binders and alpha-lactose monohydrate as a filler. Quite regularly shaped granules having main size fraction in the range 200-500 microm were obtained using both formulations; however, only poloxamer 188 granules demonstrated a significant (P=0.05) increase of the PZQ dissolution rate compared to pure drug. To evaluate the potential of ultrasonic spray congealing, Gelucire 50/13 microparticles having different drug to carrier ratios (5, 10, 20 and 30%, w/w) were then prepared. The results showed that all the microparticles had a significant higher dissolution rate (P=0.05) respect to pure PZQ. The increase of the PZQ content considerably decreased the dissolution rate of the drug: 5 and 10% PZQ loaded systems evidenced dissolution significantly enhanced compared to 20 and 30% PZQ microparticles. The microparticle's characterisation, performed by Differential Scanning Calorimetry, Hot Stage Microscopy, X-ray powder diffraction and FT-Infrared analysis, evidenced the absence of both modifications of the solid state of PZQ and of significant interactions between the drug and the carrier. In conclusion, melt granulation and ultrasonic spray congealing could be proposed as solvent free, rapid and low expensive manufacturing methods to increase the in vitro dissolution rate of PZQ.

  14. Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders

    NASA Astrophysics Data System (ADS)

    Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang

    2018-02-01

    In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.

  15. Water sprays in space retrieval operations. [for disabled spacecraft detumbling and despinning

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1978-01-01

    The water spray technique (WST) for nullifying the angular momentum of a disabled spacecraft is examined. Such a despinning operation is necessary before a disabled spacecraft can be retrieved by the Space Shuttle. The WST involving the use of liquid sprays appears to be less complex and costly than other techniques proposed to despin a disabled vehicle. A series of experiments have been conducted to determine physical properties of water sprays exhausting into a vacuum. A computer model is built which together with the experimental results yields satellite despin performance parameters. The selection and retrieval of an actual disabled spacecraft is considered to demonstrate an application of the WST.

  16. Turbulent dispersion of the icing cloud from spray nozzles used in icing tunnels

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Olsen, W. A., Jr.

    1986-01-01

    To correctly simulate flight in natural icing conditions, the turbulence in an icing simulator must be as low as possible. But some turbulence is required to mix the droplets from the spray nozzles and achieve an icing cloud of uniform liquid water content. The goal for any spray system is to obtain the widest possible spray cloud with the lowest possible turbulence in the test section of a icing tunnel. This investigation reports the measurement of turbulence and the three-dimensional spread of the cloud from a single spray nozzle. The task was to determine how the air turbulence and cloud width are affected by spray bars of quite different drag coefficients, by changes in the turbulence upstream of the spray, the droplet size, and the atomizing air. An ice accretion grid, located 6.3 m downstream of the single spray nozzle, was used to measure cloud spread. Both the spray bar and the grid were located in the constant velocity test section. Three spray bar shapes were tested: the short blunt spray bar used in the NASA Lewis Icing Research Tunnel, a thin 14.6 cm chord airfoil, and a 53 cm chord NACA 0012 airfoil. At the low airspeed (56 km/hr) the ice accretion pattern was axisymmetric and was not affected by the shape of the spray bar. At the high airspeed (169 km/hr) the spread was 30 percent smaller than at the low airspeed. For the widest cloud the spray bars should be located as far upstream in the low velocity plenum of the icing tunnel. Good comparison is obtained between the cloud spread data and predicitons from a two-dimensional cloud mixing computer code using the two equation turbulence (k epsilon g) model.

  17. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector

    NASA Astrophysics Data System (ADS)

    Ramírez, A. I.; Som, S.; Aggarwal, Suresh K.; Kastengren, A. L.; El-Hannouny, E. M.; Longman, D. E.; Powell, C. F.

    2009-07-01

    A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software.

  18. 46 CFR 154.1105 - Exterior water spray system: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Exterior water spray system: General. 154.1105 Section 154.1105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting § 154.1105 Exterior...

  19. 29 CFR 1910.163 - Fixed extinguishing systems, water spray and foam.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Fixed extinguishing systems, water spray and foam. 1910.163 Section 1910.163 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Fire Protection Fixed Fire Suppression Equipment § 1910.163 Fixed...

  20. 46 CFR 154.1105 - Exterior water spray system: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Exterior water spray system: General. 154.1105 Section 154.1105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Firefighting § 154.1105 Exterior...

  1. The potential for pulmonary heat injury resulting from the activation of a cabin water spray system to fight aircraft cabin fires.

    DOT National Transportation Integrated Search

    1995-05-01

    A cabin water spray system (CWSS) has been suggested as a means of attenuating the severity of smoke and fire commonly associated with aircraft accidents. All aspects of passenger and cabin safety must be considered when evaluating a new safety syste...

  2. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.

  3. Eye-Safe Lidar System for Pesticide Spray Drift Measurement

    PubMed Central

    Gregorio, Eduard; Rocadenbosch, Francesc; Sanz, Ricardo; Rosell-Polo, Joan R.

    2015-01-01

    Spray drift is one of the main sources of pesticide contamination. For this reason, an accurate understanding of this phenomenon is necessary in order to limit its effects. Nowadays, spray drift is usually studied by using in situ collectors which only allow time-integrated sampling of specific points of the pesticide clouds. Previous research has demonstrated that the light detection and ranging (lidar) technique can be an alternative for spray drift monitoring. This technique enables remote measurement of pesticide clouds with high temporal and distance resolution. Despite these advantages, the fact that no lidar instrument suitable for such an application is presently available has appreciably limited its practical use. This work presents the first eye-safe lidar system specifically designed for the monitoring of pesticide clouds. Parameter design of this system is carried out via signal-to-noise ratio simulations. The instrument is based on a 3-mJ pulse-energy erbium-doped glass laser, an 80-mm diameter telescope, an APD optoelectronic receiver and optomechanically adjustable components. In first test measurements, the lidar system has been able to measure a topographic target located over 2 km away. The instrument has also been used in spray drift studies, demonstrating its capability to monitor the temporal and distance evolution of several pesticide clouds emitted by air-assisted sprayers at distances between 50 and 100 m. PMID:25658395

  4. In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.

    PubMed

    Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M

    2014-01-01

    Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties.

  5. Quantitative Laser-Saturated Fluorescence Measurements of Nitric Oxide in a Heptane Spray Flame

    NASA Technical Reports Server (NTRS)

    Cooper, Clayton S.; Laurendeau, Normand M.; Lee, Chi (Technical Monitor)

    1997-01-01

    We report spatially resolved laser-saturated fluorescence measurements of NO concentration in a pre-heated, lean-direct injection (LDI) spray flame at atmospheric pressure. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q2(26.5) transition of the gamma(0,0) band. Detection is performed in a 2-nm region centered on the gamma(0,1) band. Because of the relatively close spectral spacing between the excitation (226 nm) and detection wavelengths (236 nm), the gamma(0,1) band of NO cannot be isolated from the spectral wings of the Mie scattering signal produced by the spray. To account for the resulting superposition of the fluorescence and scattering signals, a background subtraction method has been developed that utilizes a nearby non-resonant wavelength. Excitation scans have been performed to locate the optimum off-line wavelength. Detection scans have been performed at problematic locations in the flame to determine possible fluorescence interferences from UHCs and PAHs at both the on-line and off-line excitation wavelengths. Quantitative radial NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors.

  6. Study of Adsorption and Desorption Performances of Zr-Based Metal–Organic Frameworks Using Paper Spray Mass Spectrometry

    PubMed Central

    Wang, Xiaoting; Chen, Ying; Zheng, Yajun

    2017-01-01

    The dynamic pore systems and high surface areas of flexible metal–organic framework materials make them excellent candidates to be used in different kinds of adsorption processes. However, the adsorption and desorption behaviors of therapeutic drugs on metal–organic frameworks in solution are not fully developed. Here, we systematically investigated the adsorption and desorption behaviors of a typical therapeutic drug, verapamil, over several Zr-based metal–organic frameworks [e.g., Zr-FUM, UiO-66(Zr), UiO-66(Zr)-NH2 and UiO-66(Zr)-2COOH] as well as ZrO2 in an acetonitrile solution by using paper spray mass spectrometry. In contrast to other materials, UiO-66(Zr)-2COOH demonstrated a superior adsorption performance to verapamil due to their strong acid-base and/or hydrogen-bond interactions, and the adsorption process fitted well with the pseudo-second-order kinetic model. As verapamil-adsorbed materials were used for desorption experiments, ZrO2 demonstrated the most favorable desorption performance, whereas UiO-66(Zr)-2COOH yielded the poorest desorption capability. These Zr-based materials had also been coated at the surface with filter papers for the analysis of various drugs and proteins in the process of paper spray mass spectrometry. The results demonstrated that among the studied materials, ZrO2-coated paper gave the most favorable desorption performance as a pure drug solution, whereas the paper from UiO-66(Zr) demonstrated the optimal capability in the analyses of therapeutic drugs in a complex matrix (e.g., blood) and a protein (e.g., myoglobin). PMID:28773131

  7. Carbon dioxide capture from atmospheric air using sodium hydroxide spray.

    PubMed

    Stolaroff, Joshuah K; Keith, David W; Lowry, Gregory V

    2008-04-15

    In contrast to conventional carbon capture systems for power plants and other large point sources, the system described in this paper captures CO2 directly from ambient air. This has the advantages that emissions from diffuse sources and past emissions may be captured. The objective of this research is to determine the feasibility of a NaOH spray-based contactor for use in an air capture system by estimating the cost and energy requirements per unit CO2 captured. A prototype system is constructed and tested to measure CO2 absorption, energy use, and evaporative water loss and compared with theoretical predictions. A numerical model of drop collision and coalescence is used to estimate operating parameters for a full-scale system, and the cost of operating the system per unit CO2 captured is estimated. The analysis indicates that CO2 capture from air for climate change mitigation is technically feasible using off-the-shelf technology. Drop coalescence significantly decreases the CO2 absorption efficiency; however, fan and pump energy requirements are manageable. Water loss is significant (20 mol H2O/mol CO2 at 15 degrees C and 65% RH) but can be lowered by appropriately designing and operating the system. The cost of CO2 capture using NaOH spray (excluding solution recovery and CO2 sequestration, which may be comparable) in the full-scale system is 96 $/ton-CO2 in the base case, and ranges from 53 to 127 $/ton-CO2 under alternate operating parameters and assumptions regarding capital costs and mass transfer rate. The low end of the cost range is reached by a spray with 50 microm mean drop diameter, which is achievable with commercially available spray nozzles.

  8. Aircraft disinsection: exposure assessment and evaluation of a new pre-embarkation method.

    PubMed

    Berger-Preiss, Edith; Koch, Wolfgang; Gerling, Susanne; Kock, Heiko; Klasen, Jutta; Hoffmann, Godehard; Appel, Klaus E

    2006-01-01

    A new "pre-embarkation" method for aircraft disinsection was investigated using two different 2% d-phenothrin containing aerosols. Five experiments in aircrafts of the type Airbus 310 (4x) and Boeing 747-400 (1x) were performed. In the absence of passengers and crew the d-phenothrin aerosol was sprayed under the seat rows and in a second step at the height of approximately 1.60 m by moving from one end of the cabin to the other. Concentration levels of d-phenothrin were determined at different time periods after application of the aerosol spray. In a B 747-400 with the air conditioning system operating the concentrations ranged between 853 and 1753 microg/m3 during and till 5 min after the beginning of spraying at different locations in the cabin. Within 5-20min after the end of the spraying concentrations of 36-205 microg/m3 and 20-40 min thereafter only ca. 1 microg d-phenothrin/m3 were detectable (average values in relation to each period of measurement). On cabin interior surfaces the median values for mainly horizontal areas ranged from 100 to 1160 ng d-phenothrin/cm2. d-Phenothrin concentrations in the air were sufficient to kill flying insects like house flies and mosquitoes within 20 min. Horizontal surfaces were 100% effective against insects up to 24 h after spraying. Doses inhaled by sprayers determined by personal measurements were calculated to be 30-235 microg d-phenothrin per 100 g spray applied (30% in the respirable fraction for Arrow Aircraft Disinsectant; 10% for Aircraft Disinsectant Denka). If passengers will board, e.g., 20 min after the end of the disinsection operation, inhalation exposure is estimated to be practically negligible. Also possible dermal exposure from residues in seats and headrests is very low for passengers during the flight. Therefore any health effects for passengers and crew members are very unlikely.

  9. In-situ control system for atomization

    DOEpatents

    Anderson, I.E.; Figliola, R.S.; Terpstra, R.L.

    1995-06-13

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray is disclosed. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray. 3 figs.

  10. In-situ control system for atomization

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Terpstra, Robert L.

    1995-06-13

    Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray.

  11. Gas Dynamic Spray Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Burford, Pattie Lewis

    2011-01-01

    Zinc primer systems are currently used across NASA and AFSPC for corrosion protection of steel. AFSPC and NASA have approved the use of Thermal Spray Coatings (TSCs) as an environmentally preferable alternative. TSCs are approved in NASA-STD-5008 and AFSPC and KSC is currently looking for additional applications in which TSC can be used. Gas Dynamic Spray (GDS, also known as Cold Spray) is being evaluated as a means of repairing TSCs and for areas such as corners and edges where TSCs do not work as well. Other applications could include spot repair/maintenance of steel on structures, facilities, and ground support equipment.

  12. Anomalous Epitaxial Growth in Thermally Sprayed YSZ and LZ Splats

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-Jun

    2017-08-01

    Thermally sprayed coatings are essentially layered materials, and lamellar interfaces are of great importance to coatings' performances. In the present study, to investigate the microstructures and defect features at thermally sprayed coating interfaces, homoepitaxial 8 mol.% yttria-stabilized zirconia (YSZ) and heteroepitaxial lanthanum zirconia (LZ) films were fabricated. The epitaxial interfaces were examined by high-resolution transmission electron microscope (HR-TEM) in detail. As a result, we report, for the first time, an anomalous incommensurate homoepitaxial growth with mismatch-induced dislocations in thermally sprayed YSZ splats to create a homointerface. We also find the anomalous heteroepitaxial growth in thermally sprayed LZ splats. The mechanism of the anomalous incommensurate growth was analyzed in detail. Essentially, it is a pseudo-heteroepitaxy because of the lattice mismatch between the film and the locally heated substrate, as the locally heated substrate is significantly strained by its cold surroundings. Moreover, the super-high-density dislocations were found in the interfacial region, which resulted from sufficient thermal fluctuations and extremely rapid cooling rates. Both the anomalous lattice mismatch and super-high-density dislocations lead to weak interfaces and violent cracking in thermally sprayed coatings. These were also the essential differences between the conventional and the present epitaxy by thermal spray technique.

  13. The effect of chine tires on nose gear water-spray characteristics of a twin engine airplane

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Stubbs, S. M.; Mccarty, J. L.

    1975-01-01

    An experimental investigation was performed to evaluate the effectiveness of nose gear chine tires in eliminating or minimizing the engine spray ingestion problem encountered on several occasions by the Merlin 4, a twin-engine propjet airplane. A study of the photographic and television coverage indicated that under similar test conditions the spray from the chine tires presented less of a potential engine spray ingestion problem than the conventional tires. Neither tire configuration appeared to pose any ingestion problem at aircraft speeds in excess of the hydroplaning speed for each tire, however, significant differences were noted in the spray patterns of the two sets of tires at sub-hydroplaning speeds. At sub-hydroplaning speeds, the conventional tires produced substantial spray above the wing which approached the general area of the engine air inlet at lower test speeds. The chine tires produced two distinct spray plumes at sub-hydroplaning speeds: one low-level plume which presented no apparent threat of ingestion, and one which at most test speeds was observed to be below the wing leading edge and thus displaced from the intakes on the engine nacelle.

  14. Corrosion Protection of Nd-Fe Magnets via Phophatization, Silanization and Electrostatic Spraying with Organic Resin Composite Coatings

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Li, Jingjie; Li, Musen; Ge, Shengsong; Wang, Xiuchun; Ding, Kaihong; Cui, Shengli; Sun, Yongcong

    2014-09-01

    Nd-Fe-B permanent magnets possess excellent properties. However, they are highly sensitive to the attack of corrosive environment. The aim of this work is to improve the corrosion resistance of the magnets by phosphatization, silanization, and electrostatic spraying with organic resin composite coatings. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectrometer (EDS) tests showed that uniform phosphate conversion coatings and spray layers were formed on the surface of the Nd-Fe-B magnets. Neutral salt spray tests exhibited that, after treated by either phosphating, silanization or electrostatic spraying, the protectiveness of Nd-Fe-B alloys was apparently increased. And corrosion performance of magnets treated with silane only was slightly inferior to those of phosphatized ones. However, significant improvement in corrosion protection was achieved after two-step treatments, i.e. by top-coating spray layer with phosphate or silane films underneath. Grid test indicated that the phosphate and silane coating were strongly attached to the substrate while silane film was slightly weaker than the phosphate-treated ones. Magnetic property analysis revealed phosphatization, silanization, and electrostatic spraying caused decrease in magnetism, but silanization had the relatively smaller effect.

  15. Roof sprinkling system sweats down A/C costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This article describes a roof spray system which enhances the energy efficiency of a building's HVAC system at a nominal cost in relationship to the benefits it yields. Roof spray cooling is based on the fact that water, when it evaporates, absorbs large amounts of heat. The evaporation of one gallon of water will dissipate about 8500 BTU's of heat; and three fallons of water evaporated over one hour's time offers the same cooling capacity as a two-ton airconditioner operated over the same period. By intermittently spraying its surface with water, a direct evaporative cooling system allows a roof tomore » sweat away the sun's radiant heat, cooling an un-airconditioned building from 10 to 12 degrees mrt and reducing summer electric costs by 25%.« less

  16. IR window design for hypersonic missile seekers: thermal shock and cooling systems

    NASA Astrophysics Data System (ADS)

    Hingst, Uwe; Koerber, Stefan

    2001-10-01

    Infra-red (IR) seekers on missiles at high Mach-numbers in the lower tier air defence often suffer from degradation in performance due to aerothermodynamic effects. The kind and rate of degradation depends on the geometric design (shape) and location of the IR-window. Optimal design may reduce those effects but still misses to totally withstand the imposed thermal stresses (thermal shock). Proper thermal protection systems and/or window cooling systems will be needed. The first part of this paper deals particularly with passive IR- window design features to reduce the thermal stresses. A series of wind-tunnel testings focused on the thermal shock behavior of different IR-window shapes under critical flight conditions. The variation of typical design parameters demonstrates the available features to reduce thermal shock by passive ways. The second part presents active thermal stress reduction devices, e.g. an active cooling system. Among others the most efficient reduction of thermal heating is based on three components: A partial coverage of the IR-dome to protect most parts against heating effects, a rotating system bearing the IR-dome and a liquid spray-cooling system in the gap between the cover and the IR-dome. The hemispherical or pyramidal dome can be located either midways in the missile nose section or sideways on the structure. The liquid spray cooling system combines both, a heat exchange by fluid evaporation and a heat transfer by fluid and gas cross flow (convection), causing a low fluid consumption. Such a cooling system along with their driving parameters and the resulting analytical performance will be presented.

  17. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses.

    PubMed

    Garcerá, Cruz; Moltó, Enrique; Chueca, Patricia

    2017-12-01

    Only a portion of the water volume sprayed is deposited on the target when applying plant protection products with air-assisted axial-fan airblast sprayers in high growing crops. A fraction of the off-target losses deposits on the ground, but droplets also drift away from the site. This work aimed at assessing the spray distribution to different compartments (tree canopy, ground and air) during pesticide applications in a Mediterranean citrus orchard. Standard cone nozzles (Teejet D3 DC35) and venturi drift reducing nozzles (Albuz TVI 80 03) were compared. Applications were performed with a conventional air-assisted sprayer, with a spray volume of around 3000lha -1 in a Navel orange orchard. Brilliant Sulfoflavine (BSF) was used as a tracer. Results showed that only around 46% of the applied spray was deposited on the target trees and around 4% of the spray was deposited on adjacent trees from adjoining rows independently of the nozzle type. Applications with standard nozzles produced more potential airborne spray drift (23%) than those with the drift reducing nozzles (17%) but fewer direct losses to the ground (22% vs. 27%). Indirect losses (sedimenting spray drift) to the ground of adjacent paths were around 7-9% in both cases. The important data set of spray distribution in the different compartments around sprayed orchard (air, ground, vegetation) generated in this work is highly useful as input source of exposure to take into account for the risk assessment in Mediterranean citrus scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A demonstration of the antimicrobial effectiveness of various copper surfaces

    PubMed Central

    2013-01-01

    Background Bacterial contamination on touch surfaces results in increased risk of infection. In the last few decades, work has been done on the antimicrobial properties of copper and its alloys against a range of micro-organisms threatening public health in food processing, healthcare and air conditioning applications; however, an optimum copper method of surface deposition and mass structure has not been identified. Results A proof-of-concept study of the disinfection effectiveness of three copper surfaces was performed. The surfaces were produced by the deposition of copper using three methods of thermal spray, namely, plasma spray, wire arc spray and cold spray The surfaces were then inoculated with meticillin-resistant Staphylococcus aureus (MRSA). After a two hour exposure to the surfaces, the surviving MRSA were assayed and the results compared. The differences in the copper depositions produced by the three thermal spray methods were examined in order to explain the mechanism that causes the observed differences in MRSA killing efficiencies. The cold spray deposition method was significantly more effective than the other methods. It was determined that work hardening caused by the high velocity particle impacts created by the cold spray technique results in a copper microstructure that enhances ionic diffusion, and copper ions are principally responsible for antimicrobial activity. Conclusions This test showed significant microbiologic differences between coatings produced by different spray techniques and demonstrates the importance of the copper application technique. The cold spray technique shows superior anti-microbial effectiveness caused by the high impact velocity imparted to the sprayed particles which results in high dislocation density and high ionic diffusivity. PMID:23537176

  19. Performance evaluation of a newly developed variable rate sprayer for nursery liner applications

    USDA-ARS?s Scientific Manuscript database

    An experimental variable-rate sprayer designed for liner applications was tested by comparing its spray deposit, coverage, and droplet density inside canopies of six nursery liner varieties with constant-rate applications. Spray samplers, including water sensitive papers (WSP) and nylon screens, wer...

  20. DEVELOPMENT OF AN INNOVATIVE SPRAY DISPENSER TO REDUCE INDOOR AIR EMISSIONS FROM AEROSOL CONSUMER PRODUCTS

    EPA Science Inventory

    The report presents the operating principles and performance of a new type of spray nozzle. This nozzle, termed a "ligament-controlled effervescent atomizer," was developed to allow consumer product manufacturers to replace volatile organic compound (VOC) solvents with water, and...

  1. Thermal barrier coating life-prediction model development

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Neumann, J.

    1985-01-01

    Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models.

  2. Aerosolization Characteristics of Dry Powder Inhaler Formulations for the Excipient Enhanced Growth (EEG) Application: Effect of Spray Drying Process Conditions on Aerosol Performance

    PubMed Central

    Son, Yoen-Ju; Longest, P. Worth; Hindle, Michael

    2013-01-01

    The aim of this study was to develop a spray dried submicrometer powder formulation suitable for the excipient enhanced growth (EEG) application. Combination particles were prepared using the Buchi Nano spray dryer B-90. A number of spray drying and formulation variables were investigated with the aims of producing dry powder formulations that were readily dispersed upon aerosolization and maximizing the fraction of submicrometer particles. Albuterol sulfate, mannitol, L-leucine, and poloxamer 188 were selected as a model drug, hygroscopic excipient, dispersibility enhancer and surfactant, respectively. Formulations were assessed by scanning electron microscopy and aerosol performance following aerosolization using an Aerolizer® dry powder inhaler (DPI). In vitro drug deposition was studied using a realistic mouth-throat (MT) model. Based on the in vitro aerosolization results, the best performing submicrometer powder formulation consisted of albuterol sulfate, mannitol, L-leucine and poloxamer 188 in a ratio of 30:48:20:2, containing 0.5% solids in a water:ethanol (80:20% v/v) solution which was spray dried at 70 °C. The submicrometer particle fraction (FPF1μm/ED) of this final formulation was 28.3% with more than 80% of the capsule contents being emitted during aerosolization. This formulation also showed 4.1% MT deposition. The developed combination formulation delivered a powder aerosol developed for the EEG application with high dispersion efficiency and low MT deposition from a convenient DPI device platform. PMID:23313343

  3. Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray-Coating of Photoactive Layers.

    PubMed

    Chang, Wei-Chieh; Lan, Ding-Hung; Lee, Kun-Mu; Wang, Xiao-Feng; Liu, Cheng-Liang

    2017-04-10

    This study investigated a new film-deposition technique, ultrasonic spray-coating, for use in the production of a photoactive layer of perovskite solar cells. Stable atomization and facile fabrication of perovskite thin films by ultrasonic spray-coating were achieved in a one-step method through manipulating the ink formulation (e.g., solution concentration, precursor composition, and mixing solvent ratio) and the drying kinetics (e.g., post-annealing temperature). The performance of the perovskite solar cells was mainly influenced by the intrinsic film morphology and crystalline orientation of the deposited perovskite layer. By suitable optimization of the spreading and drying conditions of the ink, ultrasonic spray-coated perovskite photovoltaic devices were obtained with a maximum power conversion efficiency of 11.30 %, a fill factor of 73.6 %, a short-circuit current of 19.7 mA cm -1 , and an open-circuit voltage of 0.78 V, respectively. Notably, the average power efficiency reached above 10 %, attributed to the large flower-like perovskite crystal with orientation along the (1 1 2)/(2 0 0) and (2 2 4)/(4 0 0) directions. Thus, the ultrasonic spray-coating method for perovskite photoactive layers, combining advantages of good photovoltaic performance results and benefits from cost and processing, has the potential for large-scale commercial production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nasal saline for chronic sinonasal symptoms: a randomized controlled trial.

    PubMed

    Pynnonen, Melissa A; Mukerji, Shraddha S; Kim, H Myra; Adams, Meredith E; Terrell, Jeffrey E

    2007-11-01

    To determine if isotonic sodium chloride (hereinafter "saline") nasal irrigations performed with large volume and delivered with low positive pressure are more effective than saline sprays at improving quality of life and decreasing medication use. A prospective, randomized controlled trial. Community. A total of 127 adults with chronic nasal and sinus symptoms. Patients were randomly assigned to irrigation performed with large volume and delivered with low positive pressure (n = 64) or spray (n = 63) for 8 weeks. Change in symptom severity measured by mean 20-Item Sino-Nasal Outcome Test (SNOT-20) score; change in symptom frequency measured with a global question; and change in medication use. A total of 121 patients were evaluable. The irrigation group achieved lower SNOT-20 scores than the spray group at all 3 time points: 4.4 points lower at 2 weeks (P = .02); 8.2 points lower at 4 weeks (P < .001); and 6.4 points lower at 8 weeks (P = .002). When symptom frequency was analyzed, 40% of subjects in the irrigation group reported symptoms "often or always" at 8 weeks compared with 61% in the spray group (absolute risk reduction, 0.2; 95% confidence interval, 0.02-0.38 (P = .01). No significant differences in sinus medication use were seen between groups. Nasal irrigations performed with large volume and delivered with low positive pressure are more effective than saline sprays for treatment of chronic nasal and sinus symptoms in a community-based population.

  5. Comparing a spray boom to a roller-wiper system for a single-passenger four-wheeler

    Treesearch

    James D. Haywood; Richard Hallman

    1992-01-01

    The ability of spray booms and carpet-covered roller-wipers mounted on four-wheelers to apply herbicides on pine plantings sites was tested with the following treatments: spray boom application of 0.31 kg (0.69 lb) acid equivalent glyphosate with 0.08 kg (0.18 lb) active ingredient sulfometuron in 215 liters of water/ha (23 gallons/acre) and roller-wiping the...

  6. Novel Techniques for Quantification of Correlation Between Primary Liquid Jet Breakup and Downstream Spray Characteristics

    DTIC Science & Technology

    2016-05-08

    unlimited. 5 1. Introduction Several liquid -fuelled combustion systems, such as liquid propellant rocket engines and gas turbines...AFRL-AFOSR-JP-TR-2016-0084 Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray characteristics...to 17 Apr 2016 4.  TITLE AND SUBTITLE Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray

  7. Novel Techniques for Quantification of Correlation Between Primary Liquid Jet Breakup and Downstream Spray Characteristics

    DTIC Science & Technology

    2016-10-05

    unlimited. 5 1. Introduction Several liquid -fuelled combustion systems, such as liquid propellant rocket engines and gas turbines...AFRL-AFOSR-JP-TR-2016-0084 Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray characteristics...to 17 Apr 2016 4.  TITLE AND SUBTITLE Novel techniques for quantification of correlation between primary liquid jet breakup and downstream spray

  8. The design and scale-up of spray dried particle delivery systems.

    PubMed

    Al-Khattawi, Ali; Bayly, Andrew; Phillips, Andrew; Wilson, David

    2018-01-01

    The rising demand for pharmaceutical particles with tailored physicochemical properties has opened new markets for spray drying especially for solubility enhancement, improving inhalation medicines and stabilization of biopharmaceuticals. Despite this, the spray drying literature is scattered and often does not address the principles underpinning robust development of pharmaceuticals. It is therefore necessary to present clearer picture of the field and highlight the factors influencing particle design and scale-up. Areas covered: The review presents a systematic analysis of the trends in development of particle delivery systems using spray drying. This is followed by exploring the mechanisms governing particle formation in the process stages. Particle design factors including those of equipment configurations and feed/process attributes were highlighted. Finally, the review summarises the current industrial approaches for upscaling pharmaceutical spray drying. Expert opinion: Spray drying provides the ability to design particles of the desired functionality. This greatly benefits the pharmaceutical sector especially as product specifications are becoming more encompassing and exacting. One of the biggest barriers to product translation remains one of scale-up/scale-down. A shift from trial and error approaches to model-based particle design helps to enhance control over product properties. To this end, process innovations and advanced manufacturing technologies are particularly welcomed.

  9. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    NASA Astrophysics Data System (ADS)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3), the break-up time was 0.30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6 degrees. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  10. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries.

    PubMed

    Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Wang, Xin; Bakenov, Zhumabay; Yin, Fuxing

    2018-01-18

    An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g -1 at 0.1 C. The discharge capacity remained at 828 mAh g -1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites.

  11. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries

    PubMed Central

    Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Yin, Fuxing

    2018-01-01

    An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites. PMID:29346303

  12. A study of processing parameters in thermal-sprayed alumina and zircon mixtures

    NASA Astrophysics Data System (ADS)

    Li, Y.; Khor, K. A.

    2002-06-01

    A method of plasma spraying of alumina and zircon mixtures to form ZrO2-mullite composites has been proposed and developed. The feedstock is prepared by a combination of mechanical alloying, which allows formation of fine-grained, homogeneous solid-solution mixtures, followed by plasma spheroidization that yields rapid solidified microstructures and enhanced compositional homogeneity. The effects of ball-milling duration and milling media were studied. It was found that zirconia is a more efficient milling media and that increasing milling duration enhanced the dissociation of zircon. Flame spray and plasma spray processes were used to spheroidize the spray-dried powders. The temperature of the flame spray was found to be insufficient to melt the powders completely. The processing parameters of the plasma spray played an important role in zircon decomposition and mullite formation. Increasing the arc current or reducing secondary gas pressure caused more zircon to decompose and more mullite to form after heat treatment at 1200 °C for 3 h. Dissociation of zircon and the amount of mullite for med can be enhanced significantly when using the more efficient, computerized plasma-spraying system and increasing the ball-milling duration from 4 to 8 h.

  13. Spray-applied waterproofing membranes: effective solution for safe and durable tunnel linings?

    NASA Astrophysics Data System (ADS)

    Pisova, Barbora; Hilar, Matous

    2017-09-01

    What is the perfect tunnel lining? Cost efficient, easy and fast to build with acceptable environmental impact? How to construct a watertight and safe tunnel lining? Would it be possible to apply a waterproofing system directly onto the rock face just after the tunnel face opening? This might be the system of the future enabling all concrete applied to the rock face to remain permanent. For now though, we would like to focus on an optimisation and examination of currently available technologies and materials, such as tunnel linings with the use of spray-applied waterproofing membranes. In this paper, the failure mechanisms of a tunnel lining with a spray-applied waterproofing membrane are described, the behaviour of spray-applied waterproofing membrane under various conditions (dry, moist, wet) is challenged and the possibilities of interface numerical modelling are presented. Tunnel lining design is mainly dependent on the geological and hydrological conditions in the considered area. The application of tunnel linings with spray-applied waterproofing membrane in both hard rock and soft ground tunnelling, are studied.

  14. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    NASA Astrophysics Data System (ADS)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures, and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% by mass coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3)), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time, and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  15. Metallization of Various Polymers by Cold Spray

    NASA Astrophysics Data System (ADS)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  16. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    NASA Astrophysics Data System (ADS)

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  17. Overview of the NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey

    2001-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between then NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Glenn Research Center (LeRC), and Pratt & Whitney (P&W). The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration. The development of the NCC beta version was essentially completed in June 1998. Technical details of the NCC elements are given in the Reference List. Elements such as the baseline flow solver, turbulence module, and the chemistry module, have been extensively validated; and their parallel performance on large-scale parallel systems has been evaluated and optimized. However the scalar PDF module and the Spray module, as well as their coupling with the baseline flow solver, were developed in a small-scale distributed computing environment. As a result, the validation of the NCC beta version as a whole was quite limited. Current effort has been focused on the validation of the integrated code and the evaluation/optimization of its overall performance on large-scale parallel systems.

  18. SNL/JAEA Collaborations on Sodium Fire Benchmarking.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Andrew Jordan; Denman, Matthew R; Takata, Takashi

    Two sodium spray fire experiments performed by Sandia National Laboratories (SNL) were used for a code - to - code comparison between CONTAIN - LMR and SPHINCS. Both computer codes are used for modeling sodium accidents in sodium fast reactors. The comparison between the two codes provides insights into the ability of both codes to model sodium spray fires. The SNL T3 and T4 experiments are 20 kg sodium spray fires with sodium spray temperature s of 200 deg C and 500 deg C, respe ctively. Given the relatively low sodium temperature in the SNL T3 experiment, the sodium spraymore » experienced a period of non - combustion. The vessel in the SNL T4 experiment experienced a rapid pressurization that caused of the instrumentation ports to fail during the sodium spray. Despite these unforeseen difficulties, both codes were shown in good agreement with the experiment s . The subsequent pool fire that develops from the unburned sodium spray is a significant characteristic of the T3 experiment. SPHIN CS showed better long - term agreement with the SNL T3 experiment than CONTAIN - LMR. The unexpected port failure during the SNL T4 experiment presented modelling challenges. The time at which the port failure occurred is unknown, but is believed to have occur red at about 11 seconds into the sodium spray fire. The sensitivity analysis for the SNL T4 experiment shows that with a port failure, the sodium spray fire can still maintain elevated pressures during the spray.« less

  19. Thermodynamic performance testing of the orbiter flash evaporator system

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  20. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.

  1. 40 CFR 60.543 - Performance test and compliance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... organic solvent-based sprays are used, each Michelin-A operation, each Michelin-B operation, and each Michelin-C-automatic operation where the owner or operator seeks to comply with the uncontrolled monthly... sprays are used, each Michelin-A operation, each Michelin-B operation, and each Michelin-C-automatic...

  2. 40 CFR 60.543 - Performance test and compliance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... organic solvent-based sprays are used, each Michelin-A operation, each Michelin-B operation, and each Michelin-C-automatic operation where the owner or operator seeks to comply with the uncontrolled monthly... sprays are used, each Michelin-A operation, each Michelin-B operation, and each Michelin-C-automatic...

  3. 40 CFR 60.543 - Performance test and compliance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... organic solvent-based sprays are used, each Michelin-A operation, each Michelin-B operation, and each Michelin-C-automatic operation where the owner or operator seeks to comply with the uncontrolled monthly... sprays are used, each Michelin-A operation, each Michelin-B operation, and each Michelin-C-automatic...

  4. EVALUATION OF THE AGDISP AERIAL SPRAY ALGORITHMS IN THE AGDRIFT MODEL

    EPA Science Inventory

    A systematic evaluation of the AgDISP algorithms, which simulate off-site drift and deposition of aerially applied pesticides, contained in the AgDRIFT model was performed by comparing model simulations to field-trial data collected by the Spray Drift Task Force. Field-trial data...

  5. Pulse sliced picosecond Ballistic Imaging and two planar elastic scattering: Development of the techniques and their application to diesel sprays

    NASA Astrophysics Data System (ADS)

    Duran, Sean Patrick Hynes

    A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to allow probing of the sprays three dimensional structure. The test matrix included two nozzle diameters, 160 and 320 microns, and two fuels dodecane and methyl oleate. Results are presented comparing the fuels and the effects of nozzle diameter. A mathematical interpretation of the results is also presented.

  6. Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. L.

    1978-01-01

    Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.

  7. Correlation between Hierarchical Structure and Processing Control of Large-area Spray-coated Polymer Solar Cells toward High Performance

    PubMed Central

    Huang, Yu-Ching; Tsao, Cheng-Si; Cha, Hou-Chin; Chuang, Chih-Min; Su, Chun-Jen; Jeng, U-Ser; Chen, Charn-Ying

    2016-01-01

    The formation mechanism of a spray-coated film is different from that of a spin-coated film. This study employs grazing incidence small- and wide-angle X-ray Scattering (GISAXS and GIWAXS, respectively) quantitatively and systematically to investigate the hierarchical structure and phase-separated behavior of a spray-deposited blend film. The formation of PCBM clusters involves mutual interactions with both the P3HT crystal domains and droplet boundary. The processing control and the formed hierarchical structure of the active layer in the spray-coated polymer/fullerene blend film are compared to those in the spin-coated film. How the different post-treatments, such as thermal and solvent vapor annealing, tailor the hierarchical structure of the spray-coated films is quantitatively studied. Finally, the relationship between the processing control and tailored BHJ structures and the performance of polymer solar cell devices is established here, taking into account the evolution of the device area from 1 × 0.3 and 1 × 1 cm2. The formation and control of the special networks formed by the PCBM cluster and P3HT crystallites, respectively, are related to the droplet boundary. These structures are favorable for the transverse transport of electrons and holes. PMID:26817585

  8. Piezoelectric Sol-Gel Composite Film Fabrication by Stencil Printing.

    PubMed

    Kaneko, Tsukasa; Iwata, Kazuki; Kobayashi, Makiko

    2015-09-01

    Piezoelectric films using sol-gel composites could be useful as ultrasonic transducers in various industrial fields. For sol-gel composite film fabrication, the spray coating technique has been used often because of its adaptability for various substrates. However, the spray technique requires multiple spray coating processes and heating processes and this is an issue of concern, especially for on-site fabrication in controlled areas. Stencil printing has been developed to solve this issue because this method can be used to fabricate thick sol-gel composite films with one coating process. In this study, PbTiO3 (PT)/Pb(Zr,Ti)O3 (PZT) films, PZT/PZT films, and Bi4Ti3O12 (BiT)/PZT films were fabricated by stencil printing, and PT/ PZT films were also fabricated using the spray technique. After fabrication, a thermal cycle test was performed for the samples to compare their ultrasonic performance. The sensitivity and signal-to-noise-ratio (SNR) of the ultrasonic response of PT/PZT fabricated by stencil printing were equivalent to those of PT/PZT fabricated by the spray technique, and better than those of other samples between room temperature and 300°C. Therefore, PT/PZT films fabricated by stencil printing could be a good candidate for nondestructive testing (NDT) ultrasonic transducers from room temperature to 300°C.

  9. Zolmitriptan 5 mg nasal spray: efficacy and onset of action in the acute treatment of migraine--results from phase 1 of the REALIZE Study.

    PubMed

    Gawel, Marek; Aschoff, Jürgen; May, Arne; Charlesworth, Bruce R

    2005-01-01

    The objective of phase 1 (reported here) of this two-phase study was to assess the efficacy of zolmitriptan 5 mg nasal spray, in terms of ability to provide relief from all migraine symptoms, in a controlled setting, designed to replicate clinical practice. Zolmitriptan nasal spray has been shown to be fast acting and highly effective in the treatment of migraine, as assessed using standard endpoints, such as headache response and pain-free rates. In the double-blind first phase of the study, patients with migraine were randomized to receive zolmitriptan 5 mg nasal spray or placebo to treat a single migraine attack. Attacks were treated according to patients' normal patterns of use, in order to closely reflect clinical practice; that is, no specific regimen was dictated in terms of time to treatment or at what level of pain intensity the headache should be treated. Patients could take a second dose of study medication or an agreed escape medication if adequate pain relief had not been achieved 2 hours after the first dose. The primary efficacy endpoint was total symptom relief (freedom from pain, nausea, photophobia, and phonophobia) 1 hour after the first dose. Secondary efficacy endpoints included headache response, pain-free status and sustained pain-free status, and ability to perform normal activities. The intention-to-treat population comprised 461 zolmitriptan nasal spray recipients and 451 placebo recipients. The total symptom relief rate 1 hour post-dose was significantly higher in the zolmitriptan 5 mg nasal spray group than in the placebo group (14.5% vs. 5.1%; P < .0001); the difference between the groups was significant from 30 minutes post-dose. Treatment with zolmitriptan nasal spray, compared with placebo, also produced a higher headache response rate from 10 minutes post-dose (15.1% vs. 9.1%; P = .0079) and a higher pain-free rate from 30 minutes post-dose (7.7% vs. 3.2%; P = .0039). Zolmitriptan nasal spray was also significantly superior to placebo in terms of sustained pain-free status and patients' ability to perform normal activities. Zolmitriptan nasal spray was well tolerated. These findings confirm the efficacy demonstrated by zolmitriptan nasal spray in previous clinical trials.

  10. Effects of spray-irrigated municipal wastewater on a small watershed in Chester County, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.; Galeone, Daniel G.

    2005-01-01

    Spray irrigation is a method for disposing of secondary treated municipal wastewater by spraying it on the land surface (fig. 1). The sprayed wastewater either evaporates into the air, soaks into the soil, or percolates through the soil and recharges the ground water. Land application of wastewater has advantages over conventional means of disposal by direct discharge to streams because the wastewater recharges the ground-water system and increases base flow in streams. Additional benefits are derived from the "natural" treatment of the wastewater that takes place in the soil when plants and other biota remove some nutrients (nitrogen and phosphorus) from the wastewater (Pennsylvania Department of Environmental Protection, 2003). The removal of nutrients is one advantage spray irrigation has to conventional disposal methods like instream discharge.

  11. [Dexpanthenol nasal spray in comparison to dexpanthenol nasal ointment. A prospective, randomised, open, cross-over study to compare nasal mucociliary clearance].

    PubMed

    Verse, T; Klöcker, N; Riedel, F; Pirsig, W; Scheithauer, M O

    2004-07-01

    Recent technical developments in metered pump systems allow the production and use of preservative-free nasal products. The aim of the current study is to compare the tolerability of a preservative-free dexpanthenol (5%) nasal spray with that of the established dexpanthenol (5%) nasal ointment, also without preservatives. The main outcome measure was in vivo mucociliary clearance. Mucociliary clearance was assessed by saccharin migration time in 20 volunteers. Wash-out phases were 7 days and the spray or ointment was always applied 20 min before the saccharin test. The study was designed to test for non-inferiority. Saccharin migration time was slightly longer after ointment administration, however, these were not significantly different to nasal spray. The saccharin migration time showed a significant correlation with the age of the volunteers. The upper confidence limit of dexpanthenol nasal spray was markedly less than that of the ointment. Therefore, dexpanthenol nasal spray is at least equal to if not better than dexpanthenol nasal ointment. Due to its ease of administration, preservative-free dexpanthenol nasal spray offers a valuable therapeutic alternative.

  12. T55-L-712 turbine engine compressor housing refurbishment-plasma spray project

    NASA Technical Reports Server (NTRS)

    Leissler, George W.; Yuhas, John S.

    1988-01-01

    A study was conducted to assess the feasibility of reclaiming T55-L-712 turbine engine compressor housings with an 88 wt percent aluminum to 12 wt percent silicon alloy applied by a plasma spray process. Tensile strength testing was conducted on as-sprayed and thermally cycled test specimens which were plasma sprayed with 0.020 to 0.100 in. coating thicknesses. Satisfactory tensile strength values were observed in the as-sprayed tensile specimens. There was essentially no decrease in tensile strength after thermally cycling the tensile specimens. Furthermore, compressor housings were plasma sprayed and thermally cycled in a 150-hr engine test and a 200-hr actual flight test during which the turbine engine was operated at a variety of loads, speeds and torques. The plasma sprayed coating system showed no evidence of degradation or delamination from the compressor housings. As a result of these tests, a procedure was designed and developed for the application of an aluminum-silicon alloy in order to reclaim T55-L-712 turbine engine compressor housings.

  13. 8. HIGH POWER SPRAY IN MEN'S PACK ROOM. Hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. HIGH POWER SPRAY IN MEN'S PACK ROOM. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  14. 9. HIGH POWER SPRAY IN MEN'S STEAM ROOM. Hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. HIGH POWER SPRAY IN MEN'S STEAM ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  15. Materials for Advanced Turbine Engines (MATE). Project 4: Erosion resistant compressor airfoil coating

    NASA Technical Reports Server (NTRS)

    Rashid, J. M.; Freling, M.; Friedrich, L. A.

    1987-01-01

    The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.

  16. Spray Cooling Trajectory Angle Impact Upon Heat Flux Using a Straight Finned Enhanced Surface

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.; Kim, Jungho; Kiger, Ken

    2005-01-01

    Experiments were conducted to study the effects of spray trajectory angles upon heat flux for flat and enhanced surface spray cooling. The surface enhancement consisted of straight fins machined on the top surface of a copper heater block. Spray cooling curves were obtained with the straight fin surface aligned both parallel (axial) and perpendicular (transverse) to the spray axis. Measurements were also obtained on a flat surface heater block for comparison purposes. Each copper block had a cross-sectional area of 2.0 sq cm. A 2x2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data was obtained under nominally degassed (chamber pressure of 41.4 kPa) conditions. Results show that the maximum CHF in all cases was attained for a trajectory angle of 30' from the surface normal. Furthermore, trajectory angles applied to straight finned surfaces can have a critical heat flux (CHF) enhancement as much as 75% (heat flux value of 140 W/sq cm) relative to the vertical spray orientation for the analogous flat surface case under nominally degassed conditions.

  17. Crack Initiation and Growth Behavior of Cold-Sprayed Ni Particles on IN718 Alloy

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Silvello, A.

    2017-04-01

    Cold spray processing parameters, governing particle velocity and impact energy, are analyzed in the present paper for pure Ni sprayed on IN718 substrates. Finite element modeling (FEM) was used to calculate the particle impact velocity and temperature as a function of gas temperature and pressure and particle density and dimensions. Experimental evidence underlines the possibility of performing repairing through cold spray thanks to the good level of adhesion achievable by employing optimal combinations of materials and spray processing parameters. In the present paper, the potential repairing of cracked superalloys sheets, by employing cold spray technology, is presented. 30° surface V-notched IN718 panels have been repaired by using pure Ni cold-sprayed powders. The bending behavior of the repaired sheets was analyzed by FEM and mechanical testing in order to compare the properties with those belonging to the unrepaired panels. Simulations and mechanical results showed a reduction in the stress intensity factor, a modification of the crack initiation site and a crack retardation in the repaired structures if compared with the unrepaired ones. The K factor was quantified; the resistance of repaired panels was increased of more than eight times in the case of repairing with Ni cold spray particles. Geometrical and mechanical properties of the coating-substrate interfaces, such as adhesion strength and residual stresses influencing the coatings behavior, were largely analyzed.

  18. Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency.

    PubMed

    Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P

    2018-02-01

    Drug nanosuspension is one of the established methods to improve the bioavailability of poorly soluble drugs. Drug physical properties aspect (morphology, solid state, starting size et al) is a critical parameter determining the production efficiency. Some drug modification approaches such as spray-drying were proved to improve the millability of drug powders. However, the mechanism behind those improved performances is unclear. This study is to systematically investigate the influence of those physical properties. Five different APIs (active pharmaceutical ingredients) with different millabilities, i.e. resveratrol, hesperetin, glibenclamide, rutin, and quercetin, were processed by standard high pressure homogenization (HPH), wet bead milling (WBM), and a combinative method of spray-drying and HPH. Smaller starting sizes of certain APIs could accelerate the particle size reduction velocity during both HPH and WBM processes. Spherical particles were observed for almost all spray-dried powders (except spray-dried hesperetin) after spray-drying. The crystallinity of some spray-dried samples such as rutin and glibenclamide became much lower than their corresponding unmodified powders. Almost all spray-dried drug powders after HPH processes could lead to smaller nanocrystal particle size than unmodified APIs. The modified microstructure instead of solid state after spray-drying explained the potential reason for improved nanosizing efficiency. In addition, the contribution of starting size on the production efficiency was also critical according to both HPH and WBM results.

  19. Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings

    NASA Astrophysics Data System (ADS)

    Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.

    2009-01-01

    Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.

  20. mSpray: a mobile phone technology to improve malaria control efforts and monitor human exposure to malaria control pesticides in Limpopo, South Africa

    PubMed Central

    Eskenazi, Brenda; Quirós-Alcalá, Lesliam; Lipsitt, Jonah M.; Wu, Lemuel D.; Kruger, Philip; Ntimbane, Tzundzukani; Nawn, John Burns; Bornman, M. S. Riana; Seto, Edmund

    2015-01-01

    Recent estimates indicate that malaria has led to over half a million deaths worldwide, mostly to African children. Indoor residual spraying (IRS) of insecticides is one of the primary vector control interventions. However, current reporting systems do not obtain precise location of IRS events in relation to malaria cases, which poses challenges for effective and efficient malaria control. This information is also critical to avoid unnecessary human exposure to IRS insecticides. We developed and piloted a mobile-based application (mSpray) to collect comprehensive information on IRS spray events. We assessed the utility, acceptability and feasibility of using mSpray to gather improved homestead- and chemical-level IRS coverage data. We installed mSpray on 10 cell phones with data bundles, and pilot tested it with 13 users in Limpopo, South Africa. Users completed basic information (number of rooms/shelters sprayed; chemical used, etc.) on spray events. Upon submission, this information as well as geographic positioning system coordinates and time/date stamp were uploaded to a Google Drive Spreadsheet to be viewed in real time. We administered questionnaires, conducted focus groups, and interviewed key informants to evaluate the utility of the app. The low-cost, cell phone-based “mSpray” app was learned quickly by users, well accepted and preferred to the current paper-based method. We recorded 2,865 entries (99.1% had a GPS accuracy of 20 m or less) and identified areas of improvement including increased battery life. We also identified a number of logistic and user problems (e.g., cost of cell phones and cellular bundles, battery life, obtaining accurate GPS measures, user errors, etc.) that would need to be overcome before full deployment. Use of cell phone technology could increase the efficiency of IRS malaria control efforts by mapping spray events in relation to malaria cases, resulting in more judicious use of chemicals that are potentially harmful to humans and the environment. PMID:24769412

  1. JT9D ceramic outer air seal system refinement program

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1982-01-01

    The abradability and durability characteristics of the plasma sprayed system were improved by refinement and optimization of the plasma spray process and the metal substrate design. The acceptability of the final seal system for engine testing was demonstrated by an extensive rig test program which included thermal shock tolerance, thermal gradient, thermal cycle, erosion, and abradability tests. An interim seal system design was also subjected to 2500 endurance test cycles in a JT9D-7 engine.

  2. Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review

    NASA Astrophysics Data System (ADS)

    Hardwicke, Canan U.; Lau, Yuk-Chiu

    2013-06-01

    Functional coatings are widely used in energy generation equipment in industries such as renewables, oil and gas, propulsion engines, and gas turbines. Intelligent thermal spray processing is vital in many of these areas for efficient manufacturing. Advanced thermal spray coating applications include thermal management, wear, oxidation, corrosion resistance, sealing systems, vibration and sound absorbance, and component repair. This paper reviews the current status of materials, equipment, processing, and properties' aspects for key coatings in the energy industry, especially the developments in large-scale gas turbines. In addition to the most recent industrial advances in thermal spray technologies, future technical needs are also highlighted.

  3. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    NASA Astrophysics Data System (ADS)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-04-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  4. A methodology for the assessment of inhalation exposure to aluminium from antiperspirant sprays.

    PubMed

    Schwarz, Katharina; Pappa, Gerlinde; Miertsch, Heike; Scheel, Julia; Koch, Wolfgang

    2018-04-01

    Inhalative exposure can occur accidentally when using cosmetic spray products. Usually, a tiered approach is applied for exposure assessment, starting with rather conservative, simplistic calculation models that may be improved with measured data and more refined modelling. Here we report on an advanced methodology to mimic in-use conditions for antiperspirant spray products to provide a more accurate estimate of the amount of aluminium possibly inhaled and taken up systemically, thus contributing to the overall body burden. Four typical products were sprayed onto a skin surrogate in defined rooms. For aluminium, size-related aerosol release fractions, i.e. inhalable, thoracic and respirable, were determined by a mass balance method taking droplet maturation into account. These data were included into a simple two-box exposure model, allowing calculation of the inhaled aluminium dose over 12 min. Systemic exposure doses were calculated for exposure of the deep lung and the upper respiratory tract using the Multiple Path Particle Deposition Model (MPPD) model. The total systemically available dose of aluminium was in all cases found to be less than 0.5 µg per application. With this study it could be demonstrated that refinement of the input data of the two-box exposure model with measured data of released airborne aluminium is a valuable approach to analyse the contribution of antiperspirant spray inhalation to total aluminium exposure as part of the overall risk assessment. We suggest the methodology which can also be applied to other exposure modelling approaches for spray products, and further is adapted to other similar use scenarios.

  5. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  6. Coaxial airblast atomizers

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  7. Detecting Heap-Spraying Code Injection Attacks in Malicious Web Pages Using Runtime Execution

    NASA Astrophysics Data System (ADS)

    Choi, Younghan; Kim, Hyoungchun; Lee, Donghoon

    The growing use of web services is increasing web browser attacks exponentially. Most attacks use a technique called heap spraying because of its high success rate. Heap spraying executes a malicious code without indicating the exact address of the code by copying it into many heap objects. For this reason, the attack has a high potential to succeed if only the vulnerability is exploited. Thus, attackers have recently begun using this technique because it is easy to use JavaScript to allocate the heap memory area. This paper proposes a novel technique that detects heap spraying attacks by executing a heap object in a real environment, irrespective of the version and patch status of the web browser. This runtime execution is used to detect various forms of heap spraying attacks, such as encoding and polymorphism. Heap objects are executed after being filtered on the basis of patterns of heap spraying attacks in order to reduce the overhead of the runtime execution. Patterns of heap spraying attacks are based on analysis of how an web browser accesses benign web sites. The heap objects are executed forcibly by changing the instruction register into the address of them after being loaded into memory. Thus, we can execute the malicious code without having to consider the version and patch status of the browser. An object is considered to contain a malicious code if the execution reaches a call instruction and then the instruction accesses the API of system libraries, such as kernel32.dll and ws_32.dll. To change registers and monitor execution flow, we used a debugger engine. A prototype, named HERAD(HEap spRAying Detector), is implemented and evaluated. In experiments, HERAD detects various forms of exploit code that an emulation cannot detect, and some heap spraying attacks that NOZZLE cannot detect. Although it has an execution overhead, HERAD produces a low number of false alarms. The processing time of several minutes is negligible because our research focuses on detecting heap spraying. This research can be applied to existing systems that collect malicious codes, such as Honeypot.

  8. mSpray: a mobile phone technology to improve malaria control efforts and monitor human exposure to malaria control pesticides in Limpopo, South Africa.

    PubMed

    Eskenazi, Brenda; Quirós-Alcalá, Lesliam; Lipsitt, Jonah M; Wu, Lemuel D; Kruger, Philip; Ntimbane, Tzundzukani; Nawn, John Burns; Bornman, M S Riana; Seto, Edmund

    2014-07-01

    Recent estimates indicate that malaria has led to over half a million deaths worldwide, mostly to African children. Indoor residual spraying (IRS) of insecticides is one of the primary vector control interventions. However, current reporting systems do not obtain precise location of IRS events in relation to malaria cases, which poses challenges for effective and efficient malaria control. This information is also critical to avoid unnecessary human exposure to IRS insecticides. We developed and piloted a mobile-based application (mSpray) to collect comprehensive information on IRS spray events. We assessed the utility, acceptability and feasibility of using mSpray to gather improved homestead- and chemical-level IRS coverage data. We installed mSpray on 10 cell phones with data bundles, and pilot tested it with 13 users in Limpopo, South Africa. Users completed basic information (number of rooms/shelters sprayed; chemical used, etc.) on spray events. Upon submission, this information as well as geographic positioning system coordinates and time/date stamp were uploaded to a Google Drive Spreadsheet to be viewed in real time. We administered questionnaires, conducted focus groups, and interviewed key informants to evaluate the utility of the app. The low-cost, cell phone-based "mSpray" app was learned quickly by users, well accepted and preferred to the current paper-based method. We recorded 2865 entries (99.1% had a GPS accuracy of 20 m or less) and identified areas of improvement including increased battery life. We also identified a number of logistic and user problems (e.g., cost of cell phones and cellular bundles, battery life, obtaining accurate GPS measures, user errors, etc.) that would need to be overcome before full deployment. Use of cell phone technology could increase the efficiency of IRS malaria control efforts by mapping spray events in relation to malaria cases, resulting in more judicious use of chemicals that are potentially harmful to humans and the environment. Copyright © 2014. Published by Elsevier Ltd.

  9. Formation of high heat resistant coatings by using gas tunnel type plasma spraying.

    PubMed

    Kobayashi, A; Ando, Y; Kurokawa, K

    2012-06-01

    Zirconia sprayed coatings are widely used as thermal barrier coatings (TBC) for high temperature protection of metallic structures. However, their use in diesel engine combustion chamber components has the long run durability problems, such as the spallation at the interface between the coating and substrate due to the interface oxidation. Although zirconia coatings have been used in many applications, the interface spallation problem is still waiting to be solved under the critical conditions such as high temperature and high corrosion environment. The gas tunnel type plasma spraying developed by the author can make high quality ceramic coatings such as Al2O3 and ZrO2 coating compared to other plasma spraying method. A high hardness ceramic coating such as Al2O3 coating by the gas tunnel type plasma spraying, were investigated in the previous study. The Vickers hardness of the zirconia (ZrO2) coating increased with decreasing spraying distance, and a higher Vickers hardness of about Hv = 1200 could be obtained at a shorter spraying distance of L = 30 mm. ZrO2 coating formed has a high hardness layer at the surface side, which shows the graded functionality of hardness. In this study, ZrO2 composite coatings (TBCs) with Al2O3 were deposited on SS304 substrates by gas tunnel type plasma spraying. The performance such as the mechanical properties, thermal behavior and high temperature oxidation resistance of the functionally graded TBCs was investigated and discussed. The resultant coating samples with different spraying powders and thickness are compared in their corrosion resistance with coating thickness as variables. Corrosion potential was measured and analyzed corresponding to the microstructure of the coatings. High Heat Resistant Coatings, Gas Tunnel Type Plasma Spraying, Hardness,

  10. Inhalational and dermal exposures during spray application of biocides.

    PubMed

    Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang

    2005-01-01

    Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a.s./h) and after-high-pressure applications in the antifouling sector (110-300 mg a.s./h). The potential dermal exposure of spray operators was lowest (dose rates from 0.2 to 7 mg a.s./h) in the areas of food and feed disinfection and private and public hygiene during spraying with low-pressure devices. During fogging, wood protection and antifouling applications, high-potential dermal exposures of the operators were determined. Dermal dose rates varied between 100 and 34,000 mg a.s./h.

  11. 30 CFR 75.1101-1 - Deluge-type water spray systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discharge from the nozzles. (b) Nozzles attached to the branch lines shall be full cone, corrosion resistant and provided with blow-off dust covers. The spray application rate shall not be less than 0.25 gallon...

  12. Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Naumenko, D.; Pillai, R.; Chyrkin, A.; Quadakkers, W. J.

    2017-12-01

    The performance of MCrAlY (M = Ni, Co) bondcoats for atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) is substantially affected by the contents of Co, Ni, Cr, and Al as well as minor additions of Y, Hf, Zr, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. The latter properties depend in turn on the exact technology and set of parameters used for bondcoat deposition. The well-established LPPS process competes nowadays with alternative technologies such as HVOF and APS. In addition, new technologies have been developed for bondcoats manufacturing such as high-velocity APS or a combination of HVOF and APS for application of a flashcoat. Future developments of the bondcoat systems will likely include optimization of thermal spraying methods for obtaining complex bondcoat roughness profiles required for extended APS-TBC lifetimes. Introduction of the newest generation single-crystal superalloys possessing low Cr and high Al and refractory metals (Re, Ru) contents will require definition of new bondcoat compositions and/or multilayered bondcoats to minimize interdiffusion issues. The developments of new bondcoat compositions may be substantially facilitated using thermodynamic-kinetic modeling, the vast potential of which has been demonstrated in recent years.

  13. Assessment of RELAP5/MOD2 against a pressurizer spray valve inadverted fully opening transient and recovery by natural circulation in Jose Cabrera Nuclear Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arroyo, R.; Rebollo, L.

    1993-06-01

    This document presents the comparison between the simulation results and the plant measurements of a real event that took place in JOSE CABRERA nuclear power plant in August 30th, 1984. The event was originated by the total, continuous and inadverted opening of the pressurizer spray valve PCV-400A. JOSE CABRERA power plant is a single loop Westinghouse PWR belonging to UNION ELECTRICA FENOSA, S.A. (UNION FENOSA), an Spanish utility which participates in the International Code Assessment and Applications Program (ICAP) as a member of UNIDAD ELECTRICA, S.A. (UNESA). This is the second of its two contributions to the Program: the firstmore » one was an application case and this is an assessment one. The simulation has been performed using the RELAP5/MOD2 cycle 36.04 code, running on a CDC CYBER 180/830 computer under NOS 2.5 operating system. The main phenomena have been calculated correctly and some conclusions about the 3D characteristics of the condensation due to the spray and its simulation with a 1D tool have been got.« less

  14. Methacrylate micro/nano particles prepared by spray drying: a preliminary in vitro/in vivo study.

    PubMed

    Muñoz Ortega, Begoña; Sallam, Marwa Ahmed; Marín Boscá, M Teresa

    2016-09-01

    Delivery systems controlling drug release only in the colon holds great promises since they improve utilization of drug and decrease the dosing times comparison with conventional forms. The aim of the present study was to prepare polymeric microparticles on the basis of Ciprofloxacin via oral route for the treatment of inflammatory bowel disease. Ciprofloxacin was selected because of its extensive coverage for intestinal flora, relatively favorable side-effect profile and preliminary data suggesting its efficacy in the treatment of active Crohn's Disease. Microparticles were prepared using different acrylic compounds, namely Eudragit® RL (PO) and RS (PO) and a mixture of both. Spray-drying was used as a preparation method of Ciprofloxacin/Eudragit® microparticles using a Mini Spray Dryer B-290 (Büchi, Postfach, Switzerland). In vitro dissolution studies were performed to choose the best formulation and selected microparticles were characterized by size and morphology by environmental scanning electron microscopy. Yield and encapsulation efficiency were calculated and in vivo/ex vivo experiments were investigated both of which suggest that selected microparticles can be used for colon targeting of drugs increasing residence time of the drug in the affected area.

  15. One Dimensional Analysis Model of a Condensing Spray Chamber Including Rocket Exhaust Using SINDA/FLUINT and CEA

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara; Edwards, Daryl; Dickens, Kevin

    2014-01-01

    Modeling droplet condensation via CFD codes can be very tedious, time consuming, and inaccurate. CFD codes may be tedious and time consuming in terms of using Lagrangian particle tracking approaches or particle sizing bins. Also since many codes ignore conduction through the droplet and or the degradating effect of heat and mass transfer if noncondensible species are present, the solutions may be inaccurate. The modeling of a condensing spray chamber where the significant size of the water droplets and the time and distance these droplets take to fall, can make the effect of droplet conduction a physical factor that needs to be considered in the model. Furthermore the presence of even a relatively small amount of noncondensible has been shown to reduce the amount of condensation [Ref 1]. It is desirable then to create a modeling tool that addresses these issues. The path taken to create such a tool is illustrated. The application of this tool and subsequent results are based on the spray chamber in the Spacecraft Propulsion Research Facility (B2) located at NASA's Plum Brook Station that tested an RL-10 engine. The platform upon which the condensation physics is modeled is SINDAFLUINT. The use of SINDAFLUINT enables the ability to model various aspects of the entire testing facility, including the rocket exhaust duct flow and heat transfer to the exhaust duct wall. The ejector pumping system of the spray chamber is also easily implemented via SINDAFLUINT. The goal is to create a transient one dimensional flow and heat transfer model beginning at the rocket, continuing through the condensing spray chamber, and finally ending with the ejector pumping system. However the model of the condensing spray chamber may be run independently of the rocket and ejector systems detail, with only appropriate mass flow boundary conditions placed at the entrance and exit of the condensing spray chamber model. The model of the condensing spray chamber takes into account droplet conduction as well as the degrading effect of mass and heat transfer due to the presence of noncondensibles. The one dimension model of the condensing spray chamber makes no presupposition on the pressure profile within the chamber, allowing the implemented droplet physics of heat and mass transfer coupled to the SINDAFLUINT solver to determine a transient pressure profile of the condensing spray chamber. Model results compare well to the RL-10 engine pressure test data.

  16. Controlling Flows Of Two Ingredients For Spraying

    NASA Technical Reports Server (NTRS)

    Chandler, Huel H.

    1995-01-01

    Closed-loop servo control subsystem incorporated, as modification, into system controlling flows of two ingredients mixed and sprayed to form thermally insulating foams on large tanks. Provides steady flows at specified rates. Foams produced smoother and of higher quality. Continued use of system results in substantial reduction in cost stemming from close control of application of foam and consequent reduced use of material.

  17. Water injected fuel cell system compressor

    DOEpatents

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  18. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak power densities as high as 520 mW/cm2 at 800 °C for YSZ and 350 mW/cm 2 at 800 °C for YSZ/GDC bilayer electrolytes.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ctibor, Pavel; Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz; Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6

    Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-raymore » diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.« less

  20. Evaluation of the effects, on canopy arthropods, of two agricultural management systems to control pests in olive groves from north-east of Portugal.

    PubMed

    Santos, Sónia A P; Pereira, José A; Torres, Laura M; Nogueira, António J A

    2007-02-01

    This study aims to investigate the effect of management regime on canopy arthropod community of the olive tree (Olea europaea L.). Field studies were performed in two successive years, 2002 and 2003, in two olive groves, one under organic farming and the other under integrated protection. The integrated protection grove was sprayed once a year in June, with dimethoate, to control the anthophagous generation of the olive moth, Prays oleae (Bern.). From April to November of each year, the canopy arthropods were sampled weekly. PRC method was used to analyse the effect of management regime at the community level and results showed that taxa responded differently to insecticide application suggesting that the organic grove was a more suitable habitat for the arthropods than the integrated protection grove. Abundance of arthropods peaked in May and June for both years but, after spraying with dimethoate, decreased significantly in integrated protection grove, recovering very slowly thereafter. Psocoptera, Miridae, Formicidae and Coccinellidae were the most sensitive taxa to insecticide application. Their decreasing in abundance was more evident in the second year of the trial. On the other hand chrysopids showed some tolerance to insecticide applications. These results suggest that the timing of spray is of utmost importance in reducing the side effects of spraying on beneficial arthropods. Moreover, differences in population susceptibility as well as in life cycle patterns must be considered.

Top