Chaudhuri, Shomesh E; Merfeld, Daniel M
2013-03-01
Psychophysics generally relies on estimating a subject's ability to perform a specific task as a function of an observed stimulus. For threshold studies, the fitted functions are called psychometric functions. While fitting psychometric functions to data acquired using adaptive sampling procedures (e.g., "staircase" procedures), investigators have encountered a bias in the spread ("slope" or "threshold") parameter that has been attributed to the serial dependency of the adaptive data. Using simulations, we confirm this bias for cumulative Gaussian parametric maximum likelihood fits on data collected via adaptive sampling procedures, and then present a bias-reduced maximum likelihood fit that substantially reduces the bias without reducing the precision of the spread parameter estimate and without reducing the accuracy or precision of the other fit parameters. As a separate topic, we explain how to implement this bias reduction technique using generalized linear model fits as well as other numeric maximum likelihood techniques such as the Nelder-Mead simplex. We then provide a comparison of the iterative bootstrap and observed information matrix techniques for estimating parameter fit variance from adaptive sampling procedure data sets. The iterative bootstrap technique is shown to be slightly more accurate; however, the observed information technique executes in a small fraction (0.005 %) of the time required by the iterative bootstrap technique, which is an advantage when a real-time estimate of parameter fit variance is required.
A method of PSF generation for 3D brightfield deconvolution.
Tadrous, P J
2010-02-01
This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function.
NASA Astrophysics Data System (ADS)
Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun
2018-06-01
This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.
NASA Technical Reports Server (NTRS)
Shoberg, Tom; Stein, Seth
1994-01-01
Spreading center segments that have experienced a complex tectonic history including rift propagation may have a complicated signature in bathymetric and magnetic anomaly data. To gain insight into the history of such regions, we have developed techniques in which both the magnetic anomaly patterns and seafloor fabric trends are predicted theoretically, and the combined predictions are compared numerically with the data to estimate best fitting parameters for the propagation history. Fitting functions are constructed to help determine which model best matches the digitized fabric and magnetic anomaly data. Such functions offer statistical criteria for choosing the best fit model. We use this approach to resolve the propagation history of the Cobb Offset along the Juan de Fuca ridge. In this example, the magnetic anomaly data prove more useful in defining the geometry of the propagation events, while the fabric, with its greater temporal resolution, is more useful for constraining the rate of propagation. It thus appears that joint inversion of magnetic and seafloor fabric data can be valuable in tectonic analyses.
Spreading of Neutrophils: From Activation to Migration
Sengupta, Kheya; Aranda-Espinoza, Helim; Smith, Lee; Janmey, Paul; Hammer, Daniel
2006-01-01
Neutrophils rely on rapid changes in morphology to ward off invaders. Time-resolved dynamics of spreading human neutrophils after activation by the chemoattractant fMLF (formyl methionyl leucyl phenylalanine) was observed by RICM (reflection interference contrast microscopy). An image-processing algorithm was developed to identify the changes in the overall cell shape and the zones of close contact with the substrate. We show that in the case of neutrophils, cell spreading immediately after exposure of fMLF is anisotropic and directional. The dependence of spreading area, A, of the cell as a function of time, t, shows several distinct regimes, each of which can be fitted as power laws (A ∼ tb). The different spreading regimes correspond to distinct values of the exponent b and are related to the adhesion state of the cell. Treatment with cytochalasin-B eliminated the anisotropy in the spreading. PMID:17012330
2010-09-01
which are primarily sensitive to upper crustal structures, are difficult to measure and especially true in tectonically and geologically complex areas...slice through the model (compare Figure 6 and Figure 9). The fit to the receiver function is not perfect and the spread of the slower deep crustal ...Although the final fit is certainly not perfect, note the improvement in timing of the main crustal conversion and reverberation (vertical lines) from the
A Simulated Annealing based Optimization Algorithm for Automatic Variogram Model Fitting
NASA Astrophysics Data System (ADS)
Soltani-Mohammadi, Saeed; Safa, Mohammad
2016-09-01
Fitting a theoretical model to an experimental variogram is an important issue in geostatistical studies because if the variogram model parameters are tainted with uncertainty, the latter will spread in the results of estimations and simulations. Although the most popular fitting method is fitting by eye, in some cases use is made of the automatic fitting method on the basis of putting together the geostatistical principles and optimization techniques to: 1) provide a basic model to improve fitting by eye, 2) fit a model to a large number of experimental variograms in a short time, and 3) incorporate the variogram related uncertainty in the model fitting. Effort has been made in this paper to improve the quality of the fitted model by improving the popular objective function (weighted least squares) in the automatic fitting. Also, since the variogram model function (£) and number of structures (m) too affect the model quality, a program has been provided in the MATLAB software that can present optimum nested variogram models using the simulated annealing method. Finally, to select the most desirable model from among the single/multi-structured fitted models, use has been made of the cross-validation method, and the best model has been introduced to the user as the output. In order to check the capability of the proposed objective function and the procedure, 3 case studies have been presented.
Muir, Ryan D.; Pogranichney, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.
2014-01-01
Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment. PMID:25178010
Muir, Ryan D; Pogranichney, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J
2014-09-01
Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment.
Assortative mating and mutation diffusion in spatial evolutionary systems
NASA Astrophysics Data System (ADS)
Paley, C. J.; Taraskin, S. N.; Elliott, S. R.
2010-04-01
The influence of spatial structure on the equilibrium properties of a sexual population model defined on networks is studied numerically. Using a small-world-like topology of the networks as an investigative tool, the contributions to the fitness of assortative mating and of global mutant spread properties are considered. Simple measures of nearest-neighbor correlations and speed of spread of mutants through the system have been used to confirm that both of these dynamics are important contributory factors to the fitness. It is found that assortative mating increases the fitness of populations. Quick global spread of favorable mutations is shown to be a key factor increasing the equilibrium fitness of populations.
Cortactin Tyrosine Phosphorylation Promotes Its Deacetylation and Inhibits Cell Spreading
Meiler, Eugenia; Nieto-Pelegrín, Elvira; Martinez-Quiles, Narcisa
2012-01-01
Background Cortactin is a classical Src kinase substrate that participates in actin cytoskeletal dynamics by activating the Arp2/3 complex and interacting with other regulatory proteins, including FAK. Cortactin has various domains that may contribute to the assembly of different protein platforms to achieve process specificity. Though the protein is known to be regulated by post-translational modifications such as phosphorylation and acetylation, how tyrosine phosphorylation regulates cortactin activity is poorly understood. Since the basal level of tyrosine phosphorylation is low, this question must be studied using stimulated cell cultures, which are physiologically relevant but unreliable and difficult to work with. In fact, their unreliability may be the cause of some contradictory findings about the dynamics of tyrosine phosphorylation of cortactin in different processes. Methodology/Principal Findings In the present study, we try to overcome these problems by using a Functional Interaction Trap (FIT) system, which involves cotransfecting cells with a kinase (Src) and a target protein (cortactin), both of which are fused to complementary leucine-zipper domains. The FIT system allowed us to control precisely the tyrosine phosphorylation of cortactin and explore its relationship with cortactin acetylation. Conclusions/Significance Using this system, we provide definitive evidence that a competition exists between acetylation and tyrosine phosphorylation of cortactin and that phosphorylation inhibits cell spreading. We confirmed the results from the FIT system by examining endogenous cortactin in different cell types. Furthermore, we demonstrate that cell spreading promotes the association of cortactin and FAK and that tyrosine phosphorylation of cortactin disrupts this interaction, which may explain how it inhibits cell spreading. PMID:22479425
Exploring the fitness landscape of poliovirus
NASA Astrophysics Data System (ADS)
Bianco, Simone; Acevedo, Ashely; Andino, Raul; Tang, Chao
2012-02-01
RNA viruses are known to display extraordinary adaptation capabilities to different environments, due to high mutation rates. Their very dynamical evolution is captured by the quasispecies concept, according to which the viral population forms a swarm of genetic variants linked through mutation, which cooperatively interact at a functional level and collectively contribute to the characteristics of the population. The description of the viral fitness landscape becomes paramount towards a more thorough understanding of the virus evolution and spread. The high mutation rate, together with the cooperative nature of the quasispecies, makes it particularly challenging to explore its fitness landscape. I will present an investigation of the dynamical properties of poliovirus fitness landscape, through both the adoption of new experimental techniques and theoretical models.
Dong, Zhengchao; Zhang, Yudong; Liu, Feng; Duan, Yunsuo; Kangarlu, Alayar; Peterson, Bradley S
2014-11-01
Proton magnetic resonance spectroscopic imaging ((1) H MRSI) has been used for the in vivo measurement of intramyocellular lipids (IMCLs) in human calf muscle for almost two decades, but the low spectral resolution between extramyocellular lipids (EMCLs) and IMCLs, partially caused by the magnetic field inhomogeneity, has hindered the accuracy of spectral fitting. The purpose of this paper was to enhance the spectral resolution of (1) H MRSI data from human calf muscle using the SPREAD (spectral resolution amelioration by deconvolution) technique and to assess the influence of improved spectral resolution on the accuracy of spectral fitting and on in vivo measurement of IMCLs. We acquired MRI and (1) H MRSI data from calf muscles of three healthy volunteers. We reconstructed spectral lineshapes of the (1) H MRSI data based on field maps and used the lineshapes to deconvolve the measured MRS spectra, thereby eliminating the line broadening caused by field inhomogeneities and improving the spectral resolution of the (1) H MRSI data. We employed Monte Carlo (MC) simulations with 200 noise realizations to measure the variations of spectral fitting parameters and used an F-test to evaluate the significance of the differences of the variations between the spectra before SPREAD and after SPREAD. We also used Cramer-Rao lower bounds (CRLBs) to assess the improvements of spectral fitting after SPREAD. The use of SPREAD enhanced the separation between EMCL and IMCL peaks in (1) H MRSI spectra from human calf muscle. MC simulations and F-tests showed that the use of SPREAD significantly reduced the standard deviations of the estimated IMCL peak areas (p < 10(-8) ), and the CRLBs were strongly reduced (by ~37%). Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Han, Lu; Gao, Kun; Gong, Chen; Zhu, Zhenyu; Guo, Yue
2017-08-01
On-orbit Modulation Transfer Function (MTF) is an important indicator to evaluate the performance of the optical remote sensors in a satellite. There are many methods to estimate MTF, such as pinhole method, slit method and so on. Among them, knife-edge method is quite efficient, easy-to-use and recommended in ISO12233 standard for the wholefrequency MTF curve acquisition. However, the accuracy of the algorithm is affected by Edge Spread Function (ESF) fitting accuracy significantly, which limits the range of application. So in this paper, an optimized knife-edge method using Powell algorithm is proposed to improve the ESF fitting precision. Fermi function model is the most popular ESF fitting model, yet it is vulnerable to the initial values of the parameters. Considering the characteristics of simple and fast convergence, Powell algorithm is applied to fit the accurate parameters adaptively with the insensitivity to the initial parameters. Numerical simulation results reveal the accuracy and robustness of the optimized algorithm under different SNR, edge direction and leaning angles conditions. Experimental results using images of the camera in ZY-3 satellite show that this method is more accurate than the standard knife-edge method of ISO12233 in MTF estimation.
Modeling two strains of disease via aggregate-level infectivity curves.
Romanescu, Razvan; Deardon, Rob
2016-04-01
Well formulated models of disease spread, and efficient methods to fit them to observed data, are powerful tools for aiding the surveillance and control of infectious diseases. Our project considers the problem of the simultaneous spread of two related strains of disease in a context where spatial location is the key driver of disease spread. We start our modeling work with the individual level models (ILMs) of disease transmission, and extend these models to accommodate the competing spread of the pathogens in a two-tier hierarchical population (whose levels we refer to as 'farm' and 'animal'). The postulated interference mechanism between the two strains is a period of cross-immunity following infection. We also present a framework for speeding up the computationally intensive process of fitting the ILM to data, typically done using Markov chain Monte Carlo (MCMC) in a Bayesian framework, by turning the inference into a two-stage process. First, we approximate the number of animals infected on a farm over time by infectivity curves. These curves are fit to data sampled from farms, using maximum likelihood estimation, then, conditional on the fitted curves, Bayesian MCMC inference proceeds for the remaining parameters. Finally, we use posterior predictive distributions of salient epidemic summary statistics, in order to assess the model fitted.
Scattering and the Point Spread Function of the New Generation Space Telescope
NASA Technical Reports Server (NTRS)
Schreur, Julian J.
1996-01-01
Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called the total integrated scattering (TIS), and the fraction remaining is called the Strehl ratio. The angular distribution of the scattered light is called the angle resolved scattering (ARS), and it shows a strong spike centered on a scattering angle of zero, and a broad , less intense distribution at larger angles. It is this scattered light, and its effect on the point spread function which is the focus of this study.
NASA Astrophysics Data System (ADS)
Siemons, M.; Hulleman, C. N.; Thorsen, R. Ø.; Smith, C. S.; Stallinga, S.
2018-04-01
Point Spread Function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can be used in the corresponding localization algorithms in order to model the intricate spot shape and deformations correctly. The complexity of the optical architecture and fit model makes PSF engineering approaches particularly sensitive to optical aberrations. Here, we present a calibration and alignment protocol for fluorescence microscopes equipped with a spatial light modulator (SLM) with the goal of establishing a wavefront error well below the diffraction limit for optimum application of complex engineered PSFs. We achieve high-precision wavefront control, to a level below 20 m$\\lambda$ wavefront aberration over a 30 minute time window after the calibration procedure, using a separate light path for calibrating the pixel-to-pixel variations of the SLM, and alignment of the SLM with respect to the optical axis and Fourier plane within 3 $\\mu$m ($x/y$) and 100 $\\mu$m ($z$) error. Aberrations are retrieved from a fit of the vectorial PSF model to a bead $z$-stack and compensated with a residual wavefront error comparable to the error of the SLM calibration step. This well-calibrated and corrected setup makes it possible to create complex `3D+$\\lambda$' PSFs that fit very well to the vectorial PSF model. Proof-of-principle bead experiments show precisions below 10~nm in $x$, $y$, and $\\lambda$, and below 20~nm in $z$ over an axial range of 1 $\\mu$m with 2000 signal photons and 12 background photons.
Sasu, Miruna A; Ferrari, Matthew J; Du, Daolin; Winsor, James A; Stephenson, Andrew G
2009-11-10
Virus-resistant transgenic squash are grown throughout the United States and much of Mexico and it is likely that the virus-resistant transgene (VRT) has been introduced to wild populations repeatedly. The evolutionary fate of any resistance gene in wild populations and its environmental impacts depend upon trade-offs between the costs and benefits of the resistance gene. In a 3-year field study using a wild gourd and transgenic and nontransgenic introgressives, we measured the effects of the transgene on fitness, on herbivory by cucumber beetles, on the incidence of mosaic viruses, and on the incidence of bacterial wilt disease (a fatal disease vectored by cucumber beetles). In each year, the first incidence of zucchini yellow mosaic virus occurred in mid-July and spread rapidly through the susceptible plants. We found that the transgenic plants had greater reproduction through both male and female function than the susceptible plants, indicating that the VRT has a direct fitness benefit for wild gourds under the conditions of our study. Moreover, the VRT had no effect on resistance to cucumber beetles or the incidence of wilt disease before the spread of the virus. However, as the virus spread through the fields, the cucumber beetles became increasingly concentrated upon the healthy (mostly transgenic) plants, which increased exposure to and the incidence of wilt disease on the transgenic plants. This indirect cost of the VRT (mediated by a nontarget herbivore and pathogen) mitigated the overall beneficial effect of the VRT on fitness.
Sasu, Miruna A.; Ferrari, Matthew J.; Du, Daolin; Winsor, James A.; Stephenson, Andrew G.
2009-01-01
Virus-resistant transgenic squash are grown throughout the United States and much of Mexico and it is likely that the virus-resistant transgene (VRT) has been introduced to wild populations repeatedly. The evolutionary fate of any resistance gene in wild populations and its environmental impacts depend upon trade-offs between the costs and benefits of the resistance gene. In a 3-year field study using a wild gourd and transgenic and nontransgenic introgressives, we measured the effects of the transgene on fitness, on herbivory by cucumber beetles, on the incidence of mosaic viruses, and on the incidence of bacterial wilt disease (a fatal disease vectored by cucumber beetles). In each year, the first incidence of zucchini yellow mosaic virus occurred in mid-July and spread rapidly through the susceptible plants. We found that the transgenic plants had greater reproduction through both male and female function than the susceptible plants, indicating that the VRT has a direct fitness benefit for wild gourds under the conditions of our study. Moreover, the VRT had no effect on resistance to cucumber beetles or the incidence of wilt disease before the spread of the virus. However, as the virus spread through the fields, the cucumber beetles became increasingly concentrated upon the healthy (mostly transgenic) plants, which increased exposure to and the incidence of wilt disease on the transgenic plants. This indirect cost of the VRT (mediated by a nontarget herbivore and pathogen) mitigated the overall beneficial effect of the VRT on fitness. PMID:19858473
NASA Technical Reports Server (NTRS)
Tilton, James C.; Wolfe, Robert E.; Lin, Guoqing
2017-01-01
The visible infrared imaging radiometer suite (VIIRS) instrument was launched 28 October 2011 onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite. The VIIRS instrument is a whiskbroom system with 22 spectral and thermal bands split between 16 moderate resolution bands (M-bands), five imagery resolution bands (I-bands) and a day-night band. In this study we estimate the along-scan line spread function (LSF) of the I-bands and M-bands based on measurements performed on images of the Lake Pontchartrain Causeway Bridge. In doing so we develop a model for the LSF that closely matches the prelaunch laboratory measurements. We utilize VIIRS images co-geolocated with a Landsat TM image to precisely locate the bridge linear feature in the VIIRS images as a linear best fit to a straight line. We then utilize non-linear optimization to compute the best fit equation of the VIIRS image measurements in the vicinity of the bridge to the developed model equation. From the found parameterization of the model equation we derive the full-width at half-maximum (FWHM) as an approximation of the sensor field of view (FOV) for all bands, and compare these on-orbit measured values with prelaunch laboratory results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Garson, A. B.; Anastasio, M. A.
In this study, we report initial demonstrations of the use of single crystals in indirect x-ray imaging with a benchtop implementation of propagation-based (PB) x-ray phase contrast imaging. Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point-spread function (PSF) with the 50-μm thick single crystal scintillators than with the reference polycrystalline phosphor/scintillator. Fiber-optic plate depth-of-focus and Al reflective-coating aspects are also elucidated. Guided by the results from the 25-mm diameter crystal samples, we report additionally the first results with a unique 88-mm diameter single crystal bonded to a fiber optic platemore » and coupled to the large format CCD. Both PSF and x-ray phase contrast imaging data are quantified and presented.« less
Monolayer Adsorption of Ar and Kr on Graphite: Theoretical Isotherms and Spreading Pressures
Mulero; Cuadros
1997-02-01
The validity of analytical equations for two-dimensional fluids in the prediction of monolayer adsorption isotherms and spreading pressures of rare gases on graphite is analyzed. The statistical mechanical theory of Steele is used to relate the properties of the adsorbed and two-dimensional fluids. In such theory the model of graphite is a perfectly flat surface, which means that only the first order contribution of the fluid-solid interactions are taken into account. Two analytical equations for two-dimensional Lennard-Jones fluids are used: one proposed by Reddy-O'Shea, based in the fit on pressure and potential energy computer simulated results, and other proposed by Cuadros-Mulero, based in the fit of the Helmholtz free energy calculated from computer simulated results of the radial distribution function. The theoretical results are compared with experimental results of Constabaris et al. (J. Chem. Phys. 37, 915 (1962)) for Ar and of Putnam and Fort (J. Phys. Chem. 79, 459 (1975)) for Kr. Good agreement is found using both equations in both cases.
Event ambiguity fuels the effective spread of rumors
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Zhang, Yi
2015-08-01
In this paper, a new rumor spreading model which quantifies a specific rumor spreading feature is proposed. The specific feature focused on is the important role the event ambiguity plays in the rumor spreading process. To study the impact of this event ambiguity on the spread of rumors, the probability p(t) that an individual becomes a rumor spreader from an initially unaware person at time t is built. p(t) reflects the extent of event ambiguity, and a parameter c of p(t) is used to measure the speed at which the event moves from ambiguity to confirmation. At the same time, a principle is given to decide on the correct value for parameter c A rumor spreading model is then developed with this function added as a parameter to the traditional model. Then, several rumor spreading model simulations are conducted with different values for c on both regular networks and ER random networks. The simulation results indicate that a rumor spreads faster and more broadly when c is smaller. This shows that if events are ambiguous over a longer time, rumor spreading appears to be more effective, and is influenced more significantly by parameter c in a random network than in a regular network. We then determine parameters of this model through data fitting of the missing Malaysian plane, and apply this model to an analysis of the missing Malaysian plane. The simulation results demonstrate that the most critical time for authorities to control rumor spreading is in the early stages of a critical event.
VizieR Online Data Catalog: Vela Junior (RX J0852.0-4622) HESS image (HESS+, 2018)
NASA Astrophysics Data System (ADS)
H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Anguener, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernloehr, K.; Blackwell, R.; Boettcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Buechele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chretien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Atai, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Foerster, A.; Funk, S.; Fuessling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzynski, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khelifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluzniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krueger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lopez-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Mora, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec J.; Oakes, L.; O'Brien, P.; Odaka, H.; Oettl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schuessler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der, Walt D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Voelk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Woernlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zywucka, N.
2018-03-01
skymap.fit: H.E.S.S. excess skymap in FITS format of the region comprising Vela Junior and its surroundings. The excess map has been corrected for the gradient of exposure and smoothed with a Gaussian function of width 0.08° to match the analysis point spread function, matching the procedure applied to derive the maps in Fig. 1. sp_stat.txt: H.E.S.S. spectral points and fit parameters for Vela Junior (H.E.S.S. data points in Fig. 3 and Tab. A.2 and H.E.S.S. spectral fit parameters in Tab. 4). The errors in this file represent statistical uncertainties at 1 sigma confidence level. The covariance matrix of the fit is also included in the format: c11 c12 c_13 c21 c22 c_23 c31 c32 c_33 where the subindices represent the following parameters of the power-law with exponential cut-off (ECPL) formula in Tab. 2: 1: flux normalization (Phi0) 2: spectral index (Gamma) 3: inverse of the cutoff energy (lambda=1/Ecut) The units for the covariance matrix are the same as for the fit parameters. Notice that, while the fit parameters section of the file shows E_cut as parameter, the fit was done in lambda=1/Ecut; hence the covariance matrix shows the values for lambda in TeV-1. sp_syst.txt: H.E.S.S. spectral points and fit parameters for Vela Junior (H.E.S.S. data points in Fig. 3 and Tab. A.2 and H.E.S.S. spectral fit parameters in Tab. 4). The errors in this file represent systematic uncertainties at 1 sigma confidence level. The integral fluxes for several energy ranges are also included. (4 data files).
Super-resolution pupil filtering for visual performance enhancement using adaptive optics
NASA Astrophysics Data System (ADS)
Zhao, Lina; Dai, Yun; Zhao, Junlei; Zhou, Xiaojun
2018-05-01
Ocular aberration correction can significantly improve visual function of the human eye. However, even under ideal aberration correction conditions, pupil diffraction restricts the resolution of retinal images. Pupil filtering is a simple super-resolution (SR) method that can overcome this diffraction barrier. In this study, a 145-element piezoelectric deformable mirror was used as a pupil phase filter because of its programmability and high fitting accuracy. Continuous phase-only filters were designed based on Zernike polynomial series and fitted through closed-loop adaptive optics. SR results were validated using double-pass point spread function images. Contrast sensitivity was further assessed to verify the SR effect on visual function. An F-test was conducted for nested models to statistically compare different CSFs. These results indicated CSFs for the proposed SR filter were significantly higher than the diffraction correction (p < 0.05). As such, the proposed filter design could provide useful guidance for supernormal vision optical correction of the human eye.
Lunar-edge based on-orbit modulation transfer function (MTF) measurement
NASA Astrophysics Data System (ADS)
Cheng, Ying; Yi, Hongwei; Liu, Xinlong
2017-10-01
Modulation transfer function (MTF) is an important parameter for image quality evaluation of on-orbit optical image systems. Various methods have been proposed to determine the MTF of an imaging system which are based on images containing point, pulse and edge features. In this paper, the edge of the moon can be used as a high contrast target to measure on-orbit MTF of image systems based on knife-edge methods. The proposed method is an extension of the ISO 12233 Slanted-edge Spatial Frequency Response test, except that the shape of the edge is a circular arc instead of a straight line. In order to get more accurate edge locations and then obtain a more authentic edge spread function (ESF), we choose circular fitting method based on least square to fit lunar edge in sub-pixel edge detection process. At last, simulation results show that the MTF value at Nyquist frequency calculated using our lunar edge method is reliable and accurate with error less than 2% comparing with theoretical MTF value.
O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin
2017-12-06
Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.
Ward, Catherine M; Su, Jessica T; Huang, Yunxin; Lloyd, Alun L; Gould, Fred; Hay, Bruce A
2011-04-01
One strategy for controlling transmission of insect-borne disease involves replacing the native insect population with transgenic animals unable to transmit disease. Population replacement requires a drive mechanism to ensure the rapid spread of linked transgenes, the presence of which may result in a fitness cost to carriers. Medea selfish genetic elements have the feature that when present in a female, only offspring that inherit the element survive, a behavior that can lead to spread. Here, we derive equations that describe the conditions under which Medea elements with a fitness cost will spread, and the equilibrium allele frequencies are achieved. Of particular importance, we show that whenever Medea spreads, the non-Medea genotype is driven out of the population, and we estimate the number of generations required to achieve this goal for Medea elements with different fitness costs and male-only introduction frequencies. Finally, we characterize two contexts in which Medea elements with fitness costs drive the non-Medea allele from the population: an autosomal element in which not all Medea-bearing progeny of a Medea-bearing mother survive, and an X-linked element in species in which X/Y individuals are male. Our results suggest that Medea elements can drive population replacement under a wide range of conditions. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J.
1983-01-01
The atmospheric radiative transfer calculation program (ATARD) and its supporting programs (setting up atmospheric profile, making Mie tables and an exponential-sum-fitting table) were completed. More sophisticated treatment of aerosol scattering (including angular phase function or asymmetric factor) and multichannel analysis of results from ATRAD are being developed. Some progress was made on a Monte Carlo program for examining two dimensional effects, specifically a surface boundary condition that varies across a scene. The MONTE program combines ATRAD and the Monte Carlo method together to produce an atmospheric point spread function. Currently the procedure passes monochromatic tests and the results are reasonable.
A Simplified Algorithm for Statistical Investigation of Damage Spreading
NASA Astrophysics Data System (ADS)
Gecow, Andrzej
2009-04-01
On the way to simulating adaptive evolution of complex system describing a living object or human developed project, a fitness should be defined on node states or network external outputs. Feedbacks lead to circular attractors of these states or outputs which make it difficult to define a fitness. The main statistical effects of adaptive condition are the result of small change tendency and to appear, they only need a statistically correct size of damage initiated by evolutionary change of system. This observation allows to cut loops of feedbacks and in effect to obtain a particular statistically correct state instead of a long circular attractor which in the quenched model is expected for chaotic network with feedback. Defining fitness on such states is simple. We calculate only damaged nodes and only once. Such an algorithm is optimal for investigation of damage spreading i.e. statistical connections of structural parameters of initial change with the size of effected damage. It is a reversed-annealed method—function and states (signals) may be randomly substituted but connections are important and are preserved. The small damages important for adaptive evolution are correctly depicted in comparison to Derrida annealed approximation which expects equilibrium levels for large networks. The algorithm indicates these levels correctly. The relevant program in Pascal, which executes the algorithm for a wide range of parameters, can be obtained from the author.
The epidemiology and spread of drug resistant human influenza viruses.
Hurt, Aeron C
2014-10-01
Significant changes in the circulation of antiviral-resistant influenza viruses have occurred over the last decade. The emergence and continued circulation of adamantane-resistant A(H3N2) and A(H1N1)pdm09 viruses mean that the adamantanes are no longer recommended for use. Resistance to the newer class of drugs, the neuraminidase inhibitors, is typically associated with poorer viral replication and transmission. But 'permissive' mutations, that compensated for impairment of viral function in A(H1N1) viruses during 2007/2008, enabled them to acquire the H275Y NA resistance mutation without fitness loss, resulting in their rapid global spread. Permissive mutations now appear to be present in A(H1N1)pdm09 viruses thereby increasing the risk that oseltamivir-resistant A(H1N1)pdm09 viruses may also spread globally, a concerning scenario given that oseltamivir is the most widely used influenza antiviral. Copyright © 2014 Elsevier B.V. All rights reserved.
SU-E-T-439: An Improved Formula of Scatter-To-Primary Ratio for Photon Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, T
2014-06-01
Purpose: Scatter-to-primary ratio (SPR) is an important dosimetric quantity that describes the contribution from the scatter photons in an external photon beam. The purpose of this study is to develop an improved analytical formula to describe SPR as a function of circular field size (r) and depth (d) using Monte Carlo (MC) simulation. Methods: MC simulation was performed for Mohan photon spectra (Co-60, 4, 6, 10, 15, 23 MV) using EGSNRC code. Point-spread scatter dose kernels in water are generated. The scatter-to-primary ratio (SPR) is also calculated using MC simulation as a function of field size for circular field sizemore » with radius r and depth d. The doses from forward scatter and backscatter photons are calculated using a convolution of the point-spread scatter dose kernel and by accounting for scatter photons contributing to dose before (z'd) reaching the depth of interest, d, where z' is the location of scatter photons, respectively. The depth dependence of the ratio of the forward scatter and backscatter doses is determined as a function of depth and field size. Results: We are able to improve the existing 3-parameter (a, w, d0) empirical formula for SPR by introducing depth dependence for one of the parameter d0, which becomes 0 for deeper depths. The depth dependence of d0 can be directly calculated as a ratio of backscatter-to-forward scatter doses for otherwise the same field and depth. With the improved empirical formula, we can fit SPR for all megavoltage photon beams to within 2%. Existing 3-parameter formula cannot fit SPR data for Co-60 to better than 3.1%. Conclusion: An improved empirical formula is developed to fit SPR for all megavoltage photon energies to within 2%.« less
An epidemic model of rumor diffusion in online social networks
NASA Astrophysics Data System (ADS)
Cheng, Jun-Jun; Liu, Yun; Shen, Bo; Yuan, Wei-Guo
2013-01-01
So far, in some standard rumor spreading models, the transition probability from ignorants to spreaders is always treated as a constant. However, from a practical perspective, the case that individual whether or not be infected by the neighbor spreader greatly depends on the trustiness of ties between them. In order to solve this problem, we introduce a stochastic epidemic model of the rumor diffusion, in which the infectious probability is defined as a function of the strength of ties. Moreover, we investigate numerically the behavior of the model on a real scale-free social site with the exponent γ = 2.2. We verify that the strength of ties plays a critical role in the rumor diffusion process. Specially, selecting weak ties preferentially cannot make rumor spread faster and wider, but the efficiency of diffusion will be greatly affected after removing them. Another significant finding is that the maximum number of spreaders max( S) is very sensitive to the immune probability μ and the decay probability v. We show that a smaller μ or v leads to a larger spreading of the rumor, and their relationships can be described as the function ln(max( S)) = Av + B, in which the intercept B and the slope A can be fitted perfectly as power-law functions of μ. Our findings may offer some useful insights, helping guide the application in practice and reduce the damage brought by the rumor.
Monitoring and analysis of thermal deformation waves with a high-speed phase measurement system.
Taylor, Lucas; Talghader, Joseph
2015-10-20
Thermal effects in optical substrates are vitally important in determining laser damage resistance in long-pulse and continuous-wave laser systems. Thermal deformation waves in a soda-lime-silica glass substrate have been measured using high-speed interferometry during a series of laser pulses incident on the surface. Two-dimensional images of the thermal waves were captured at a rate of up to six frames per thermal event using a quantitative phase measurement method. The system comprised a Mach-Zehnder interferometer, along with a high-speed camera capable of up to 20,000 frames-per-second. The sample was placed in the interferometer and irradiated with 100 ns, 2 kHz Q-switched pulses from a high-power Nd:YAG laser operating at 1064 nm. Phase measurements were converted to temperature using known values of thermal expansion and temperature-dependent refractive index for glass. The thermal decay at the center of the thermal wave was fit to a function derived from first principles with excellent agreement. Additionally, the spread of the thermal distribution over time was fit to the same function. Both the temporal decay fit and the spatial fit produced a thermal diffusivity of 5×10-7 m2/s.
Photoreflectance measurements of unintentional impurity concentrations in undoped GaAs
NASA Astrophysics Data System (ADS)
Sydor, Michael; Angelo, James; Mitchel, William; Haas, T. W.; Yen, Ming-Yuan
1989-07-01
Modulated photoreflectance is used to measure the unintentional impurity concentrations in undoped epitaxial GaAs. A photoreflectance signal above the band gap spreads with the unintentional impurity concentrations and shows well-defined Franz-Keldysh peaks whose separation provide a good measure of the current carrier concentrations. In samples less than 3-micron thick, a photoreflectance signal at the band edge contains a substrate-epilayer interface effect which precludes the analysis of the data by using the customary third derivative functional fits for low electric fields.
Schmidt, Tom L.; Barton, Nicholas H.; Rašić, Gordana; Turley, Andrew P.; Montgomery, Brian L.; Iturbe-Ormaetxe, Inaki; Cook, Peter E.; Ryan, Peter A.; Ritchie, Scott A.; Hoffmann, Ary A.; O’Neill, Scott L.
2017-01-01
Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100–200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation. PMID:28557993
Schmidt, Tom L; Barton, Nicholas H; Rašić, Gordana; Turley, Andrew P; Montgomery, Brian L; Iturbe-Ormaetxe, Inaki; Cook, Peter E; Ryan, Peter A; Ritchie, Scott A; Hoffmann, Ary A; O'Neill, Scott L; Turelli, Michael
2017-05-01
Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100-200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation.
Spreading Characteristics and Thrust of Jets from Asymmetric Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1995-01-01
The spreading characteristics of jets from several asymmetric nozzles are studied in comparison to those of an axisymmetric jet, over the Mach number (M(sub J)) range of 0.3 to 1.96. The effect of tabs in two cases, the axisymmetric nozzle fitted with four tabs and a rectangular nozzle fitted with two large tabs, is also included in the comparison. Compared to the axisymmetric jet, the asymmetric jets spread only slightly faster at subsonic conditions, while at supersonic conditions, when screech occurs, they spread much faster. Screech profoundly increases the spreading of all jets. The effect varies in the different stages of screech, and the corresponding unsteady flowfield characteristics are documented via phase-averaged measurement of the fluctuating total pressure. An organization and intensification of the azimuthal vortical structures under the screeching condition is believed to be responsible for the increased spreading. Curiously, the jet from a 'lobed mixer' nozzle spreads much less at supersonic conditions compared to all other cases. This is due to the absence of screech with this nozzle. Jet spreading for the two tab configurations, on the other hand, is significantly more than any of the no-tab cases. This is true in the subsonic regime, as well as in the supersonic regime in spite of the fact that screech is essentially eliminated by the tabs. The dynamics of the streamwise vortex pairs produced by the tabs cause the most efficient jet spreading thus far observed in the study.
Detector Sampling of Optical/IR Spectra: How Many Pixels per FWHM?
NASA Astrophysics Data System (ADS)
Robertson, J. Gordon
2017-08-01
Most optical and IR spectra are now acquired using detectors with finite-width pixels in a square array. Each pixel records the received intensity integrated over its own area, and pixels are separated by the array pitch. This paper examines the effects of such pixellation, using computed simulations to illustrate the effects which most concern the astronomer end-user. It is shown that coarse sampling increases the random noise errors in wavelength by typically 10-20 % at 2 pixels per Full Width at Half Maximum, but with wide variation depending on the functional form of the instrumental Line Spread Function (i.e. the instrumental response to a monochromatic input) and on the pixel phase. If line widths are determined, they are even more strongly affected at low sampling frequencies. However, the noise in fitted peak amplitudes is minimally affected by pixellation, with increases less than about 5%. Pixellation has a substantial but complex effect on the ability to see a relative minimum between two closely spaced peaks (or relative maximum between two absorption lines). The consistent scale of resolving power presented by Robertson to overcome the inadequacy of the Full Width at Half Maximum as a resolution measure is here extended to cover pixellated spectra. The systematic bias errors in wavelength introduced by pixellation, independent of signal/noise ratio, are examined. While they may be negligible for smooth well-sampled symmetric Line Spread Functions, they are very sensitive to asymmetry and high spatial frequency sub-structure. The Modulation Transfer Function for sampled data is shown to give a useful indication of the extent of improperly sampled signal in an Line Spread Function. The common maxim that 2 pixels per Full Width at Half Maximum is the Nyquist limit is incorrect and most Line Spread Functions will exhibit some aliasing at this sample frequency. While 2 pixels per Full Width at Half Maximum is nevertheless often an acceptable minimum for moderate signal/noise work, it is preferable to carry out simulations for any actual or proposed Line Spread Function to find the effects of various sampling frequencies. Where spectrograph end-users have a choice of sampling frequencies, through on-chip binning and/or spectrograph configurations, it is desirable that the instrument user manual should include an examination of the effects of the various choices.
USDA-ARS?s Scientific Manuscript database
In this study, effective spread of aeciospores from an area source in a field was fit to an exponential decline model with a predicted maximum distance of spread of 30 m from the area source to observed uredinia on one leaf of one C. arvense shoot. However, the greatest number of shoots bearing leav...
Angles-centroids fitting calibration and the centroid algorithm applied to reverse Hartmann test
NASA Astrophysics Data System (ADS)
Zhao, Zhu; Hui, Mei; Xia, Zhengzheng; Dong, Liquan; Liu, Ming; Liu, Xiaohua; Kong, Lingqin; Zhao, Yuejin
2017-02-01
In this paper, we develop an angles-centroids fitting (ACF) system and the centroid algorithm to calibrate the reverse Hartmann test (RHT) with sufficient precision. The essence of ACF calibration is to establish the relationship between ray angles and detector coordinates. Centroids computation is used to find correspondences between the rays of datum marks and detector pixels. Here, the point spread function of RHT is classified as circle of confusion (CoC), and the fitting of a CoC spot with 2D Gaussian profile to identify the centroid forms the basis of the centroid algorithm. Theoretical and experimental results of centroids computation demonstrate that the Gaussian fitting method has a less centroid shift or the shift grows at a slower pace when the quality of the image is reduced. In ACF tests, the optical instrumental alignments reach an overall accuracy of 0.1 pixel with the application of laser spot centroids tracking program. Locating the crystal at different positions, the feasibility and accuracy of ACF calibration are further validated to 10-6-10-4 rad root-mean-square error of the calibrations differences.
Thick Disks in the Hubble Space Telescope Frontier Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Tompkins, Brittany
Thick disk evolution is studied using edge-on galaxies in two Hubble Space Telescope Frontier Field Parallels. The galaxies were separated into 72 clumpy types and 35 spiral types with bulges. Perpendicular light profiles in F435W, F606W, and F814W ( B , V , and I ) passbands were measured at 1 pixel intervals along the major axes and fitted to sech{sup 2} functions convolved with the instrument line spread function (LSF). The LSF was determined from the average point spread function of ∼20 stars in each passband and field, convolved with a line of uniform brightness to simulate disk blurring.more » A spread function for a clumpy disk was also used for comparison. The resulting scale heights were found to be proportional to galactic mass, with the average height for a 10{sup 10±0.5} M {sub ⊙} galaxy at z = 2 ± 0.5 equal to 0.63 ± 0.24 kpc. This value is probably the result of a blend between thin and thick disk components that cannot be resolved. Evidence for such two-component structure is present in an inverse correlation between height and midplane surface brightness. Models suggest that the thick disk is observed best between the clumps, and there the average scale height is 1.06 ± 0.43 kpc for the same mass and redshift. A 0.63 ± 0.68 mag V − I color differential with height is also evidence for a mixture of thin and thick components.« less
Zhao, Kun; Zhou, Xiao-Dong; Liu, Xue-Qiang; Lu, Lei; Wu, Zhi-Bo; Peng, Fei; Ju, Xiao-Yu; Yang, Li-Zhong
2016-11-22
The present study is aimed at predicting downward flame spread characteristics over poly(methyl methacrylate) (PMMA) with different sample dimensions in different pressure environments. Three-dimensional (3-D) downward flame spread experiments on free PMMA slabs were conducted at five locations with different altitudes, which provide different pressures. Pressure effects on the flame spread rate, profile of pyrolysis front and flame height were analyzed at all altitudes. The flame spread rate in the steady-state stage was calculated based on the balance on the fuel surface and fuel properties. Results show that flame spread rate increases exponentially with pressure, and the exponent of pressure further shows an increasing trend with the thickness of the sample. The angle of the pyrolysis front emerged on sample residue in the width direction, which indicates a steady-burning stage, varies clearly with sample thicknesses and ambient pressures. A global non-dimensional equation was proposed to predict the variation tendency of the angle of the pyrolysis front with pressure and was found to fit well with the measured results. In addition, the dependence of average flame height on mass burning rate, sample dimension and pressure was proposed based on laminar diffusion flame theory. The fitted exponent of experimental data is 1.11, which is close to the theoretical value.
Gogarten, J Peter; Hilario, Elena
2006-01-01
Self splicing introns and inteins that rely on a homing endonuclease for propagation are parasitic genetic elements. Their life-cycle and evolutionary fate has been described through the homing cycle. According to this model the homing endonuclease is selected for function only during the spreading phase of the parasite. This phase ends when the parasitic element is fixed in the population. Upon fixation the homing endonuclease is no longer under selection, and its activity is lost through random processes. Recent analyses of these parasitic elements with functional homing endonucleases suggest that this model in its most simple form is not always applicable. Apparently, functioning homing endonuclease can persist over long evolutionary times in populations and species that are thought to be asexual or nearly asexual. Here we review these recent findings and discuss their implications. Reasons for the long-term persistence of a functional homing endonuclease include: More recombination (sexual and as a result of gene transfer) than previously assumed for these organisms; complex population structures that prevent the element from being fixed; a balance between active spreading of the homing endonuclease and a decrease in fitness caused by the parasite in the host organism; or a function of the homing endonuclease that increases the fitness of the host organism and results in purifying selection for the homing endonuclease activity, even after fixation in a local population. In the future, more detailed studies of the population dynamics of the activity and regulation of homing endonucleases are needed to decide between these possibilities, and to determine their relative contributions to the long term survival of parasitic genes within a population. Two outstanding publications on the amoeba Naegleria group I intron (Wikmark et al. BMC Evol Biol 2006, 6:39) and the PRP8 inteins in ascomycetes (Butler et al.BMC Evol Biol 2006, 6:42) provide important stepping stones towards integrated studies on how these parasitic elements evolve through time together with, or despite, their hosts. PMID:17101053
NASA Technical Reports Server (NTRS)
Choi, Taeyong; Xiong, Xiaoxiong; Wang, Zhipeng
2013-01-01
Spatial quality of an imaging sensor can be estimated by evaluating its modulation transfer function (MTF) from many different sources such as a sharp edge, a pulse target, or bar patterns with different spatial frequencies. These well-defined targets are frequently used for prelaunch laboratory tests, providing very reliable and accurate MTF measurements. A laboratory-quality edge input source was included in the spatial-mode operation of the Spectroradiometric Calibration Assembly (SRCA), which is one of the onboard calibrators of the Moderate Resolution Imaging Spectroradiometer (MODIS). Since not all imaging satellites have such an instrument, SRCA MTF estimations can be used as a reference for an on-orbit lunar MTF algorithm and results. In this paper, the prelaunch spatial quality characterization process from the Integrated Alignment Collimator and SRCA is briefly discussed. Based on prelaunch MTF calibration using the SRCA, a lunar MTF algorithm is developed and applied to the lifetime on-orbit Terra and Aqua MODIS lunar collections. In each lunar collection, multiple scan-directionMoon-to-background transition profiles are aligned by the subpixel edge locations from a parametric Fermi function fit. Corresponding accumulated edge profiles are filtered and interpolated to obtain the edge spread function (ESF). The MTF is calculated by applying a Fourier transformation on the line spread function through a simple differentiation of the ESF. The lifetime lunar MTF results are analyzed and filtered by a relationship with the Sun-Earth-MODIS angle. Finally, the filtered lunarMTF values are compared to the SRCA MTF results. This comparison provides the level of accuracy for on-orbit MTF estimations validated through prelaunch SRCA measurements. The lunar MTF values had larger uncertainty than the SRCA MTF results; however, the ratio mean of lunarMTF fit and SRCA MTF values is within 2% in the 250- and 500-m bands. Based on the MTF measurement uncertainty range, the suggested lunar MTF algorithm can be applied to any on-orbit imaging sensor with lunar calibration capability.
From Relativistic Electrons to X-ray Phase Contrast Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A. H.; Garson, A. B.; Anastasio, M. A.
2017-10-09
We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.
IRACproc: IRAC Post-BCD Processing
NASA Astrophysics Data System (ADS)
Schuster, Mike; Marengo, Massimo; Patten, Brian
2012-09-01
IRACproc is a software suite that facilitates the co-addition of dithered or mapped Spitzer/IRAC data to make them ready for further analysis with application to a wide variety of IRAC observing programs. The software runs within PDL, a numeric extension for Perl available from pdl.perl.org, and as stand alone perl scripts. In acting as a wrapper for the Spitzer Science Center's MOPEX software, IRACproc improves the rejection of cosmic rays and other transients in the co-added data. In addition, IRACproc performs (optional) Point Spread Function (PSF) fitting, subtraction, and masking of saturated stars.
Using Model Point Spread Functions to Identifying Binary Brown Dwarf Systems
NASA Astrophysics Data System (ADS)
Matt, Kyle; Stephens, Denise C.; Lunsford, Leanne T.
2017-01-01
A Brown Dwarf (BD) is a celestial object that is not massive enough to undergo hydrogen fusion in its core. BDs can form in pairs called binaries. Due to the great distances between Earth and these BDs, they act as point sources of light and the angular separation between binary BDs can be small enough to appear as a single, unresolved object in images, according to Rayleigh Criterion. It is not currently possible to resolve some of these objects into separate light sources. Stephens and Noll (2006) developed a method that used model point spread functions (PSFs) to identify binary Trans-Neptunian Objects, we will use this method to identify binary BD systems in the Hubble Space Telescope archive. This method works by comparing model PSFs of single and binary sources to the observed PSFs. We also use a method to compare model spectral data for single and binary fits to determine the best parameter values for each component of the system. We describe these methods, its challenges and other possible uses in this poster.
Garske, Tini; Yu, Hongjie; Peng, Zhibin; Ye, Min; Zhou, Hang; Cheng, Xiaowen; Wu, Jiabing; Ferguson, Neil
2011-02-02
The spread of infectious disease epidemics is mediated by human travel. Yet human mobility patterns vary substantially between countries and regions. Quantifying the frequency of travel and length of journeys in well-defined population is therefore critical for predicting the likely speed and pattern of spread of emerging infectious diseases, such as a new influenza pandemic. Here we present the results of a large population survey undertaken in 2007 in two areas of China: Shenzhen city in Guangdong province, and Huangshan city in Anhui province. In each area, 10,000 randomly selected individuals were interviewed, and data on regular and occasional journeys collected. Travel behaviour was examined as a function of age, sex, economic status and home location. Women and children were generally found to travel shorter distances than men. Travel patterns in the economically developed Shenzhen region are shown to resemble those in developed and economically advanced middle income countries with a significant fraction of the population commuting over distances in excess of 50 km. Conversely, in the less developed rural region of Anhui, travel was much more local, with very few journeys over 30 km. Travel patterns in both populations were well-fitted by a gravity model with a lognormal kernel function. The results provide the first quantitative information on human travel patterns in modern China, and suggest that a pandemic emerging in a less developed area of rural China might spread geographically sufficiently slowly for containment to be feasible, while spatial spread in the more economically developed areas might be expected to be much more rapid, making containment more difficult.
Garske, Tini; Yu, Hongjie; Peng, Zhibin; Ye, Min; Zhou, Hang; Cheng, Xiaowen; Wu, Jiabing; Ferguson, Neil
2011-01-01
The spread of infectious disease epidemics is mediated by human travel. Yet human mobility patterns vary substantially between countries and regions. Quantifying the frequency of travel and length of journeys in well-defined population is therefore critical for predicting the likely speed and pattern of spread of emerging infectious diseases, such as a new influenza pandemic. Here we present the results of a large population survey undertaken in 2007 in two areas of China: Shenzhen city in Guangdong province, and Huangshan city in Anhui province. In each area, 10,000 randomly selected individuals were interviewed, and data on regular and occasional journeys collected. Travel behaviour was examined as a function of age, sex, economic status and home location. Women and children were generally found to travel shorter distances than men. Travel patterns in the economically developed Shenzhen region are shown to resemble those in developed and economically advanced middle income countries with a significant fraction of the population commuting over distances in excess of 50 km. Conversely, in the less developed rural region of Anhui, travel was much more local, with very few journeys over 30 km. Travel patterns in both populations were well-fitted by a gravity model with a lognormal kernel function. The results provide the first quantitative information on human travel patterns in modern China, and suggest that a pandemic emerging in a less developed area of rural China might spread geographically sufficiently slowly for containment to be feasible, while spatial spread in the more economically developed areas might be expected to be much more rapid, making containment more difficult. PMID:21311745
Klas, Ferdinand E; Fuchs, Marc; Gonsalves, Dennis
2006-10-01
The spatial and temporal patterns of aphid-vectored spread of Zucchini Yellow Mosaic Virus (ZYMV) and Watermelon Mosaic Virus (WMV) were monitored over two consecutive years in plantings of nontransgenic and transgenic squash ZW-20H (commercial cv. Freedom II) and ZW-20B, both expressing the coat protein genes of ZYMV and WMV. All test plants were surrounded by nontransgenic plants that were mechanically inoculated with ZYMV or WMV, and served as primary virus source. Across all trials, none of the transgenic plants exhibited systemic symptoms upon infection by ZYMV and WMV but a few of them developed localized chlorotic dots and/or blotches, and had low mixed infection rates [4% (6 of 139) of ZW-20H and 9% (13 of 139) of ZW-20B], as shown by ELISA. Geostatistical analysis of ELISA positive transgenic plants indicated, (i) a lack of spatial relationship on spread of ZYMV and WMV for ZW-20H with flat omnidirectional experimental semivariograms that fitted poorly theoretical models, and (ii) some extent of spatial dependence on ZYMV spread for ZW-20B with a well structured experimental semivariogram that fitted poorly theoretical models during the first but not the second growing season. In contrast, a strong spatial dependence on spread of ZYMV and WMV was found for nontransgenic plants, which developed severe systemic symptoms, had prevalent mixed infection rates (62%, 86 of 139), and well-defined omnidirectional experimental semivariograms that fitted a spherical model. Geostatistical data were sustained by virus transmission experiments with Myzus persicae in screenhouses, showing that commercial transgenic squash ZW-20H alter the dynamics of ZYMV and WMV epidemics by preventing secondary plant-to-plant spread.
Alviar, Maria Jenelyn; Olver, John; Pallant, Julie F; Brand, Caroline; de Steiger, Richard; Pirpiris, Marinis; Bucknill, Andrew; Khan, Fary
2012-11-01
To determine the dimensionality, reliability, model fit, adequacy of the qualifier levels, response patterns across different factors, and targeting of the International Classification of Functioning, Disability and Health (ICF) osteoarthritis core set categories in people with osteoarthritis undergoing hip and knee arthroplasty. The osteoarthritis core set was rated in 316 persons with osteoarthritis who were either in the pre-operative or within one year post-operative stage. Rasch analyses were performed using the RUMM 2030 program. Twelve of the 13 body functions categories and 13 of the 19 activity and participation categories had good model fit. The qualifiers displayed disordered thresholds necessitating rescoring. There was uneven spread of ICF categories across the full range of the patients' scores indicating off--targeting. Subtest analysis of the reduced ICF categories of body functions and activity and participation showed that the two components could be integrated to form one measure. The results suggest that it is possible to measure functioning using a unidimensional construct based on ICF osteoarthritis core set categories of body functions and activity and participation in this population. However, omission of some categories and reduction in qualifier levels are necessary. Further studies are needed to determine whether better targeting is achieved, particularly during the pre-operative and during the sub-acute care period.
Ultrahigh resolution multicolor colocalization of single fluorescent probes
Weiss, Shimon; Michalet, Xavier; Lacoste, Thilo D.
2005-01-18
A novel optical ruler based on ultrahigh-resolution colocalization of single fluorescent probes is described. Two unique families of fluorophores are used, namely energy-transfer fluorescent beads and semiconductor nanocrystal (NC) quantum dots, that can be excited by a single laser wavelength but emit at different wavelengths. A novel multicolor sample-scanning confocal microscope was constructed which allows one to image each fluorescent light emitter, free of chromatic aberrations, by scanning the sample with nanometer scale steps using a piezo-scanner. The resulting spots are accurately localized by fitting them to the known shape of the excitation point-spread-function of the microscope.
Profiler - A Fast and Versatile New Program for Decomposing Galaxy Light Profiles
NASA Astrophysics Data System (ADS)
Ciambur, Bogdan C.
2016-12-01
I introduce Profiler, a user-friendly program designed to analyse the radial surface brightness profiles of galaxies. With an intuitive graphical user interface, Profiler can accurately model galaxies of a broad range of morphological types, with various parametric functions routinely employed in the field (Sérsic, core-Sérsic, exponential, Gaussian, Moffat, and Ferrers). In addition to these, Profiler can employ the broken exponential model for disc truncations or anti-truncations, and two special cases of the edge-on disc model: along the disc's major or minor axis. The convolution of (circular or elliptical) models with the point spread function is performed in 2D, and offers a choice between Gaussian, Moffat or a user-provided profile for the point spread function. Profiler is optimised to work with galaxy light profiles obtained from isophotal measurements, which allow for radial gradients in the geometric parameters of the isophotes, and are thus often better at capturing the total light than 2D image-fitting programs. Additionally, the 1D approach is generally less computationally expensive and more stable. I demonstrate Profiler's features by decomposing three case-study galaxies: the cored elliptical galaxy NGC 3348, the nucleated dwarf Seyfert I galaxy Pox 52, and NGC 2549, a double-barred galaxy with an edge-on, truncated disc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binder, Gary A.; /Caltech /SLAC
2010-08-25
In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images frommore » the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Flampouri, S.; Yeung, D.
2014-09-15
Purpose: The purpose of this investigation is to determine if a single set of beam data, described by a minimal set of equations and fitting variables, can be used to commission different installations of a proton double-scattering system in a commercial pencil-beam dose calculation algorithm. Methods: The beam model parameters required to commission the pencil-beam dose calculation algorithm (virtual and effective SAD, effective source size, and pristine-peak energy spread) are determined for a commercial double-scattering system. These parameters are measured in a first room and parameterized as function of proton energy and nozzle settings by fitting four analytical equations tomore » the measured data. The combination of these equations and fitting values constitutes the golden beam data (GBD). To determine the variation in dose delivery between installations, the same dosimetric properties are measured in two additional rooms at the same facility, as well as in a single room at another facility. The difference between the room-specific measurements and the GBD is evaluated against tolerances that guarantee the 3D dose distribution in each of the rooms matches the GBD-based dose distribution within clinically reasonable limits. The pencil-beam treatment-planning algorithm is commissioned with the GBD. The three-dimensional dose distribution in water is evaluated in the four treatment rooms and compared to the treatment-planning calculated dose distribution. Results: The virtual and effective SAD measurements fall between 226 and 257 cm. The effective source size varies between 2.4 and 6.2 cm for the large-field options, and 1.0 and 2.0 cm for the small-field options. The pristine-peak energy spread decreases from 1.05% at the lowest range to 0.6% at the highest. The virtual SAD as well as the effective source size can be accurately described by a linear relationship as function of the inverse of the residual energy. An additional linear correction term as function of RM-step thickness is required for accurate parameterization of the effective SAD. The GBD energy spread is given by a linear function of the exponential of the beam energy. Except for a few outliers, the measured parameters match the GBD within the specified tolerances in all of the four rooms investigated. For a SOBP field with a range of 15 g/cm{sup 2} and an air gap of 25 cm, the maximum difference in the 80%–20% lateral penumbra between the GBD-commissioned treatment-planning system and measurements in any of the four rooms is 0.5 mm. Conclusions: The beam model parameters of the double-scattering system can be parameterized with a limited set of equations and parameters. This GBD closely matches the measured dosimetric properties in four different rooms.« less
Stallinga, Sjoerd
2015-02-01
A study is presented of the point spread function (PSF) of electric dipole emitters that go through a series of absorption-emission cycles while the dipole orientation is changing due to rotational diffusion within the constraint of an orientational potential well. An analytical expression for the PSF is derived valid for arbitrary orientational potential wells in the limit of image acquisition times much larger than the rotational relaxation time. This framework is used to study the effects of the direction of incidence, polarization, and degree of coherence of the illumination. In the limit of fast rotational diffusion on the scale of the fluorescence lifetime the illumination influences only the PSF height, not its shape. In the limit of slow rotational diffusion on the scale of the fluorescence lifetime there is a significant effect on the PSF shape as well, provided the illumination is (partially) coherent. For oblique incidence, illumination asymmetries can arise in the PSF that give rise to position offsets in localization based on Gaussian spot fitting. These asymmetries persist in the limit of free diffusion in a zero orientational potential well.
Effects of rewiring strategies on information spreading in complex dynamic networks
NASA Astrophysics Data System (ADS)
Ally, Abdulla F.; Zhang, Ning
2018-04-01
Recent advances in networks and communication services have attracted much interest to understand information spreading in social networks. Consequently, numerous studies have been devoted to provide effective and accurate models for mimicking information spreading. However, knowledge on how to spread information faster and more widely remains a contentious issue. Yet, most existing works are based on static networks which limit the reality of dynamism of entities that participate in information spreading. Using the SIR epidemic model, this study explores and compares effects of two rewiring models (Fermi-Dirac and Linear functions) on information spreading in scale free and small world networks. Our results show that for all the rewiring strategies, the spreading influence replenishes with time but stabilizes in a steady state at later time-steps. This means that information spreading takes-off during the initial spreading steps, after which the spreading prevalence settles toward its equilibrium, with majority of the population having recovered and thus, no longer affecting the spreading. Meanwhile, rewiring strategy based on Fermi-Dirac distribution function in one way or another impedes the spreading process, however, the structure of the networks mimic the spreading, even with a low spreading rate. The worst case can be when the spreading rate is extremely small. The results emphasize that despite a big role of such networks in mimicking the spreading, the role of the parameters cannot be simply ignored. Apparently, the probability of giant degree neighbors being informed grows much faster with the rewiring strategy of linear function compared to that of Fermi-Dirac distribution function. Clearly, rewiring model based on linear function generates the fastest spreading across the networks. Therefore, if we are interested in speeding up the spreading process in stochastic modeling, linear function may play a pivotal role.
NASA Astrophysics Data System (ADS)
Donlon, Kevan; Ninkov, Zoran; Baum, Stefi
2018-07-01
Interpixel capacitance (IPC) is a deterministic electronic coupling that results in a portion of the collected signal incident on one pixel of a hybridized detector array being measured in adjacent pixels. Data collected by light sensitive HgCdTe arrays which exhibit this coupling typically goes uncorrected or is corrected by treating the coupling as a fixed point-spread function. Evidence suggests that this IPC coupling is not uniform across different signal and background levels. This variation invalidates assumptions that are key in decoupling techniques such as Wiener Filtering or application of the Lucy–Richardson algorithm. Additionally, the variable IPC results in the point-spread function (PSF) depending upon a star’s signal level relative to the background level, among other parameters. With an IPC ranging from 0.68% to 1.45% over the full well depth of a sensor, as is a reasonable range for the H2RG arrays, the FWHM of the JWSTs NIRCam 405N band is degraded from 2.080 pix (0.″132) as expected from the diffraction pattern to 2.186 pix (0.″142) when the star is just breaching the sensitivity limit of the system. For example, When attempting to use a fixed PSF fitting (e.g., assuming the PSF observed from a bright star in the field) to untangle two sources with a flux ratio of 4:1 and a center to center distance of 3 pixels, flux estimation can be off by upwards of 1.5% with a separation error of 50 millipixels. To deal with this issue an iterative non-stationary method for deconvolution is here proposed, implemented, and evaluated that can account for the signal dependent nature of IPC.
Cultural selection drives the evolution of human communication systems
Tamariz, Monica; Ellison, T. Mark; Barr, Dale J.; Fay, Nicolas
2014-01-01
Human communication systems evolve culturally, but the evolutionary mechanisms that drive this evolution are not well understood. Against a baseline that communication variants spread in a population following neutral evolutionary dynamics (also known as drift models), we tested the role of two cultural selection models: coordination- and content-biased. We constructed a parametrized mixed probabilistic model of the spread of communicative variants in four 8-person laboratory micro-societies engaged in a simple communication game. We found that selectionist models, working in combination, explain the majority of the empirical data. The best-fitting parameter setting includes an egocentric bias and a content bias, suggesting that participants retained their own previously used communicative variants unless they encountered a superior (content-biased) variant, in which case it was adopted. This novel pattern of results suggests that (i) a theory of the cultural evolution of human communication systems must integrate selectionist models and (ii) human communication systems are functionally adaptive complex systems. PMID:24966310
Cultural selection drives the evolution of human communication systems.
Tamariz, Monica; Ellison, T Mark; Barr, Dale J; Fay, Nicolas
2014-08-07
Human communication systems evolve culturally, but the evolutionary mechanisms that drive this evolution are not well understood. Against a baseline that communication variants spread in a population following neutral evolutionary dynamics (also known as drift models), we tested the role of two cultural selection models: coordination- and content-biased. We constructed a parametrized mixed probabilistic model of the spread of communicative variants in four 8-person laboratory micro-societies engaged in a simple communication game. We found that selectionist models, working in combination, explain the majority of the empirical data. The best-fitting parameter setting includes an egocentric bias and a content bias, suggesting that participants retained their own previously used communicative variants unless they encountered a superior (content-biased) variant, in which case it was adopted. This novel pattern of results suggests that (i) a theory of the cultural evolution of human communication systems must integrate selectionist models and (ii) human communication systems are functionally adaptive complex systems.
Anthropometry of a Fit Test Sample used in Evaluating the Current and Improved MCU-2/P Masks
1989-03-01
METHOD Forty-two head and face measurements were taken on each subject after he/she had completed MSA’s series of fit tests. Of these, 15 were measured...BREADTH Using spreading calipers, the hori- zontal distance between the fronto- temporale landmarks. 25 MEASUREMENT DESCRIPTIONS (cont’d) 13. NASAL
GENE-dosage effects on fitness in recent adaptive duplications: ace-1 in the mosquito Culex pipiens.
Labbé, Pierrick; Milesi, Pascal; Yébakima, André; Pasteur, Nicole; Weill, Mylène; Lenormand, Thomas
2014-07-01
Gene duplications have long been advocated to contribute to the evolution of new functions. The role of selection in their early spread is more controversial. Unless duplications are favored for a direct benefit of increased expression, they are likely detrimental. In this article, we investigated the case of duplications favored because they combine already functionally divergent alleles. Their gene-dosage/fitness relations are poorly known because selection may operate on both overall expression and duplicates relative dosage. Using the well-documented case of Culex pipiens resistance to insecticides, we compared strains with various ace-1 allele combinations, including two duplicated alleles carrying both susceptible and resistant copies. The overall protein activity was nearly additive, but, surprisingly, fitness correlated better with the relative proportion of susceptible and resistant copies rather than any absolute measure of activity. Gene dosage is thus crucial, duplications stabilizing a "heterozygote" phenotype. It corroborates the view that these were favored because they fix a permanent heterosis, thereby solving the irreducible trade-off between resistance and synaptic transmission. Moreover, we showed that the contrasted successes of the two duplicated alleles in natural populations depend on genetic changes unrelated to ace-1, confirming the probable implication of recessive sublethal mutations linked to structural rearrangements in some duplications. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Improving Kepler Pipeline Sensitivity with Pixel Response Function Photometry.
NASA Astrophysics Data System (ADS)
Morris, Robert L.; Bryson, Steve; Jenkins, Jon Michael; Smith, Jeffrey C
2014-06-01
We present the results of our investigation into the feasibility and expected benefits of implementing PRF-fitting photometry in the Kepler Science Processing Pipeline. The Kepler Pixel Response Function (PRF) describes the expected system response to a point source at infinity and includes the effects of the optical point spread function, the CCD detector responsivity function, and spacecraft pointing jitter. Planet detection in the Kepler pipeline is currently based on simple aperture photometry (SAP), which is most effective when applied to uncrowded bright stars. Its effectiveness diminishes rapidly as target brightness decreases relative to the effects of noise sources such as detector electronics, background stars, and image motion. In contrast, PRF photometry is based on fitting an explicit model of image formation to the data and naturally accounts for image motion and contributions of background stars. The key to obtaining high-quality photometry from PRF fitting is a high-quality model of the system's PRF, while the key to efficiently processing the large number of Kepler targets is an accurate catalog and accurate mapping of celestial coordinates onto the focal plane. If the CCD coordinates of stellar centroids are known a priori then the problem of PRF fitting becomes linear. A model of the Kepler PRF was constructed at the time of spacecraft commissioning by fitting piecewise polynomial surfaces to data from dithered full frame images. While this model accurately captured the initial state of the system, the PRF has evolved dynamically since then and has been seen to deviate significantly from the initial (static) model. We construct a dynamic PRF model which is then used to recover photometry for all targets of interest. Both simulation tests and results from Kepler flight data demonstrate the effectiveness of our approach. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA’s Science Mission Directorate.Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA’s Science Mission Directorate.
Hartman, Yorike; Hooftman, Danny A P; Uwimana, Brigitte; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; van Tienderen, Peter H
2012-01-01
Many crops contain domestication genes that are generally considered to lower fitness of crop–wild hybrids in the wild environment. Transgenes placed in close linkage with such genes would be less likely to spread into a wild population. Therefore, for environmental risk assessment of GM crops, it is important to know whether genomic regions with such genes exist, and how they affect fitness. We performed quantitative trait loci (QTL) analyses on fitness(-related) traits in two different field environments employing recombinant inbred lines from a cross between cultivated Lactuca sativa and its wild relative Lactuca serriola. We identified a region on linkage group 5 where the crop allele consistently conferred a selective advantage (increasing fitness to 212% and 214%), whereas on linkage group 7, a region conferred a selective disadvantage (reducing fitness to 26% and 5%), mainly through delaying flowering. The probability for a putative transgene spreading would therefore depend strongly on the insertion location. Comparison of these field results with greenhouse data from a previous study using the same lines showed considerable differences in QTL patterns. This indicates that care should be taken when extrapolating experiments from the greenhouse, and that the impact of domestication genes has to be assessed under field conditions. PMID:23028403
An Accurate Centroiding Algorithm for PSF Reconstruction
NASA Astrophysics Data System (ADS)
Lu, Tianhuan; Luo, Wentao; Zhang, Jun; Zhang, Jiajun; Li, Hekun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui
2018-07-01
In this work, we present a novel centroiding method based on Fourier space Phase Fitting (FPF) for Point Spread Function (PSF) reconstruction. We generate two sets of simulations to test our method. The first set is generated by GalSim with an elliptical Moffat profile and strong anisotropy that shifts the center of the PSF. The second set of simulations is drawn from CFHT i band stellar imaging data. We find non-negligible anisotropy from CFHT stellar images, which leads to ∼0.08 scatter in units of pixels using a polynomial fitting method (Vakili & Hogg). When we apply the FPF method to estimate the centroid in real space, the scatter reduces to ∼0.04 in S/N = 200 CFHT-like sample. In low signal-to-noise ratio (S/N; 50 and 100) CFHT-like samples, the background noise dominates the shifting of the centroid; therefore, the scatter estimated from different methods is similar. We compare polynomial fitting and FPF using GalSim simulation with optical anisotropy. We find that in all S/N (50, 100, and 200) samples, FPF performs better than polynomial fitting by a factor of ∼3. In general, we suggest that in real observations there exists anisotropy that shifts the centroid, and thus, the FPF method provides a better way to accurately locate it.
A global perspective of the limits of prediction skill based on the ECMWF ensemble
NASA Astrophysics Data System (ADS)
Zagar, Nedjeljka
2016-04-01
In this talk presents a new model of the global forecast error growth applied to the forecast errors simulated by the ensemble prediction system (ENS) of the ECMWF. The proxy for forecast errors is the total spread of the ECMWF operational ensemble forecasts obtained by the decomposition of the wind and geopotential fields in the normal-mode functions. In this way, the ensemble spread can be quantified separately for the balanced and inertio-gravity (IG) modes for every forecast range. Ensemble reliability is defined for the balanced and IG modes comparing the ensemble spread with the control analysis in each scale. The results show that initial uncertainties in the ECMWF ENS are largest in the tropical large-scale modes and their spatial distribution is similar to the distribution of the short-range forecast errors. Initially the ensemble spread grows most in the smallest scales and in the synoptic range of the IG modes but the overall growth is dominated by the increase of spread in balanced modes in synoptic and planetary scales in the midlatitudes. During the forecasts, the distribution of spread in the balanced and IG modes grows towards the climatological spread distribution characteristic of the analyses. The ENS system is found to be somewhat under-dispersive which is associated with the lack of tropical variability, primarily the Kelvin waves. The new model of the forecast error growth has three fitting parameters to parameterize the initial fast growth and a more slow exponential error growth later on. The asymptotic values of forecast errors are independent of the exponential growth rate. It is found that the asymptotic values of the errors due to unbalanced dynamics are around 10 days while the balanced and total errors saturate in 3 to 4 weeks. Reference: Žagar, N., R. Buizza, and J. Tribbia, 2015: A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble. J. Atmos. Sci., 72, 4423-4444.
Bayesian image reconstruction - The pixon and optimal image modeling
NASA Technical Reports Server (NTRS)
Pina, R. K.; Puetter, R. C.
1993-01-01
In this paper we describe the optimal image model, maximum residual likelihood method (OptMRL) for image reconstruction. OptMRL is a Bayesian image reconstruction technique for removing point-spread function blurring. OptMRL uses both a goodness-of-fit criterion (GOF) and an 'image prior', i.e., a function which quantifies the a priori probability of the image. Unlike standard maximum entropy methods, which typically reconstruct the image on the data pixel grid, OptMRL varies the image model in order to find the optimal functional basis with which to represent the image. We show how an optimal basis for image representation can be selected and in doing so, develop the concept of the 'pixon' which is a generalized image cell from which this basis is constructed. By allowing both the image and the image representation to be variable, the OptMRL method greatly increases the volume of solution space over which the image is optimized. Hence the likelihood of the final reconstructed image is greatly increased. For the goodness-of-fit criterion, OptMRL uses the maximum residual likelihood probability distribution introduced previously by Pina and Puetter (1992). This GOF probability distribution, which is based on the spatial autocorrelation of the residuals, has the advantage that it ensures spatially uncorrelated image reconstruction residuals.
Photometry of resolved galaxies. V - NGC 6822
NASA Technical Reports Server (NTRS)
Hoessel, J. G.; Anderson, N.
1986-01-01
Three-color CCD frames of the local group irregular galaxy NGC 6822 have been reduced to GRI photometry for 3475 stars using RICHFLD point-spread function fitting techniques. The data are compared with earlier work on this galaxy, particularly with Kayser (1966) on a star-by-star basis. Color-magnitude diagrams are constructed from the data and compared with both theoretical stellar model tracks and the expected foreground star contamination. A luminosity function for the blue stars is derived; comparison of this luminosity function with those of 10 other irregular galaxies indicates that NGC 6822 has a typical young star population. The stellar birthrate and initial mass function are estimated for this galaxy. The slope at the bright end of the mass function looks similar to recent results for the Galaxy, the Magellanic Clouds, and the irregular galaxy Sextans A. NGC 6822 appears to be presently forming stars at a slower rate for its mass than Sextans A or the Magellanic Clouds.
Three dimensional single molecule localization using a phase retrieved pupilfunction
Liu, Sheng; Kromann, Emil B.; Krueger, Wesley D.; Bewersdorf, Joerg; Lidke, Keith A.
2013-01-01
Localization-based superresolution imaging is dependent on finding the positions of individualfluorophores in a sample by fitting the observed single-molecule intensity pattern to the microscopepoint spread function (PSF). For three-dimensional imaging, system-specific aberrations of theoptical system can lead to inaccurate localizations when the PSF model does not account for theseaberrations. Here we describe the use of phase-retrieved pupil functions to generate a more accuratePSF and therefore more accurate 3D localizations. The complex-valued pupil function containsinformation about the system-specific aberrations and can thus be used to generate the PSF forarbitrary defocus. Further, it can be modified to include depth dependent aberrations. We describethe phase retrieval process, the method for including depth dependent aberrations, and a fastfitting algorithm using graphics processing units. The superior localization accuracy of the pupilfunction generated PSF is demonstrated with dual focal plane 3D superresolution imaging ofbiological structures. PMID:24514501
Preventing the Spread of Illness in Child Care or School
... Healthy Living Healthy Living Healthy Living Nutrition Fitness Sports Oral Health Emotional Wellness Growing Healthy Sleep Safety & Prevention Safety & Prevention Safety and Prevention Immunizations ...
Orgovan, Norbert; Peter, Beatrix; Bősze, Szilvia; Ramsden, Jeremy J; Szabó, Bálint; Horvath, Robert
2014-02-07
A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (v(RGD)) of integrin ligand RGD-motifs. v(RGD) was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm(-2) (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels.
Influence of network dynamics on the spread of sexually transmitted diseases.
Risau-Gusman, Sebastián
2012-06-07
Network epidemiology often assumes that the relationships defining the social network of a population are static. The dynamics of relationships is only taken indirectly into account by assuming that the relevant information to study epidemic spread is encoded in the network obtained, by considering numbers of partners accumulated over periods of time roughly proportional to the infectious period of the disease. On the other hand, models explicitly including social dynamics are often too schematic to provide a reasonable representation of a real population, or so detailed that no general conclusions can be drawn from them. Here, we present a model of social dynamics that is general enough so its parameters can be obtained by fitting data from surveys about sexual behaviour, but that can still be studied analytically, using mean-field techniques. This allows us to obtain some general results about epidemic spreading. We show that using accumulated network data to estimate the static epidemic threshold lead to a significant underestimation of that threshold. We also show that, for a dynamic network, the relative epidemic threshold is an increasing function of the infectious period of the disease, implying that the static value is a lower bound to the real threshold. A practical example is given of how to apply the model to the study of a real population.
Influence of network dynamics on the spread of sexually transmitted diseases
Risau-Gusman, Sebastián
2012-01-01
Network epidemiology often assumes that the relationships defining the social network of a population are static. The dynamics of relationships is only taken indirectly into account by assuming that the relevant information to study epidemic spread is encoded in the network obtained, by considering numbers of partners accumulated over periods of time roughly proportional to the infectious period of the disease. On the other hand, models explicitly including social dynamics are often too schematic to provide a reasonable representation of a real population, or so detailed that no general conclusions can be drawn from them. Here, we present a model of social dynamics that is general enough so its parameters can be obtained by fitting data from surveys about sexual behaviour, but that can still be studied analytically, using mean-field techniques. This allows us to obtain some general results about epidemic spreading. We show that using accumulated network data to estimate the static epidemic threshold lead to a significant underestimation of that threshold. We also show that, for a dynamic network, the relative epidemic threshold is an increasing function of the infectious period of the disease, implying that the static value is a lower bound to the real threshold. A practical example is given of how to apply the model to the study of a real population. PMID:22112655
Morphological Studies of Rising Equatorial Spread F Bubbles
1977-11-01
depletions. In the present paper , we wish to discuss equatorial Spread F bubble shapes and vertical rise rates within the context of the collisional...simulation results are needed to ascertain which model fits best. All of the models described in this paper , based on collisional Rayleigh-Taylor type...Analysis of Barium Clouds - Semi-Annual Technical Report, RADC-TR-72-103, Vol. I, Avco Everett Reserach Laboratory, Everett, Mass., January 1972
Kim, Yuseob; Escalante, Ananias A.; Schneider, Kristan A.
2014-01-01
To develop public-health policies that extend the lifespan of affordable anti-malarial drugs as effective treatment options, it is necessary to understand the evolutionary processes leading to the origin and spread of mutations conferring drug resistance in malarial parasites. We built a population-genetic model for the emergence of resistance under combination drug therapy. Reproductive cycles of parasites are specified by their absolute fitness determined by clinical parameters, thus coupling the evolutionary-genetic with population-dynamic processes. Initial mutations confer only partial drug-resistance. Therefore, mutant parasites rarely survive combination therapy and within-host competition is very weak among parasites. The model focuses on the early phase of such unsuccessful recurrent mutations. This ends in the rare event of mutants enriching in an infected individual from which the successful spread of resistance over the entire population is initiated. By computer simulations, the waiting time until the establishment of resistant parasites is analysed. Resistance spreads quickly following the first appearance of a host infected predominantly by mutant parasites. This occurs either through a rare transmission of a resistant parasite to an uninfected host or through a rare failure of drugs in removing “transient” mutant alleles. The emergence of resistance is delayed with lower mutation rate, earlier treatment, higher metabolic cost of resistance, longer duration of high drug dose, and higher drug efficacy causing a stronger reduction in the sensitive and resistant parasites’ fitnesses. Overall, contrary to other studies’ proposition, the current model based on absolute fitness suggests that aggressive drug treatment delays the emergence of drug resistance. PMID:25007207
The Resolved Stellar Populations Early Release Science Program
NASA Astrophysics Data System (ADS)
Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team
2018-06-01
The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.
On the parametrization of lateral dose profiles in proton radiation therapy.
Bellinzona, V E; Ciocca, M; Embriaco, A; Fontana, A; Mairani, A; Mori, M; Parodi, K
2015-07-01
The accurate evaluation of the lateral dose profile is an important issue in the field of proton radiation therapy. The beam spread, due to Multiple Coulomb Scattering (MCS), is described by the Molière's theory. To take into account also the contribution of nuclear interactions, modern Treatment Planning Systems (TPSs) generally approximate the dose profiles by a sum of Gaussian functions. In this paper we have compared different parametrizations for the lateral dose profile of protons in water for therapeutical energies: the goal is to improve the performances of the actual treatment planning. We have simulated typical dose profiles at the CNAO (Centro Nazionale di Adroterapia Oncologica) beamline with the FLUKA code and validated them with data taken at CNAO considering different energies and depths. We then performed best fits of the lateral dose profiles for different functions using ROOT and MINUIT. The accuracy of the best fits was analyzed by evaluating the reduced χ(2), the number of free parameters of the functions and the calculation time. The best results were obtained with the triple Gaussian and double Gaussian Lorentz-Cauchy functions which have 6 parameters, but good results were also obtained with the so called Gauss-Rutherford function which has only 4 parameters. The comparison of the studied functions with accurate and validated Monte Carlo calculations and with experimental data from CNAO lead us to propose an original parametrization, the Gauss-Rutherford function, to describe the lateral dose profiles of proton beams. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
SYNMAG PHOTOMETRY: A FAST TOOL FOR CATALOG-LEVEL MATCHED COLORS OF EXTENDED SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bundy, Kevin; Yasuda, Naoki; Hogg, David W.
2012-12-01
Obtaining reliable, matched photometry for galaxies imaged by different observatories represents a key challenge in the era of wide-field surveys spanning more than several hundred square degrees. Methods such as flux fitting, profile fitting, and PSF homogenization followed by matched-aperture photometry are all computationally expensive. We present an alternative solution called 'synthetic aperture photometry' that exploits galaxy profile fits in one band to efficiently model the observed, point-spread-function-convolved light profile in other bands and predict the flux in arbitrarily sized apertures. Because aperture magnitudes are the most widely tabulated flux measurements in survey catalogs, producing synthetic aperture magnitudes (SYNMAGs) enablesmore » very fast matched photometry at the catalog level, without reprocessing imaging data. We make our code public and apply it to obtain matched photometry between Sloan Digital Sky Survey ugriz and UKIDSS YJHK imaging, recovering red-sequence colors and photometric redshifts with a scatter and accuracy as good as if not better than FWHM-homogenized photometry from the GAMA Survey. Finally, we list some specific measurements that upcoming surveys could make available to facilitate and ease the use of SYNMAGs.« less
SkZpipe: A Python3 module to produce efficiently PSF-fitting photometry with DAOPHOT, and much more
NASA Astrophysics Data System (ADS)
Mauro, F.
2017-07-01
In an era characterized by big sky surveys and the availability of large amount of photometric data, it is important for astronomers to have tools to process their data in an efficient, accurate and easy way, minimizing reduction time. We present SkZpipe, a Python3 module designed mainly to process generic data, performing point-spread function (PSF) fitting photometry with the DAOPHOT suite (Stetson 1987). The software has already demonstrated its accuracy and efficiency with the adaptation VVV-SkZ_pipeline (Mauro et al. 2013) for the "VISTA Variables in the Vía Láctea" ESO survey, showing how it can replace the users, avoiding repetitive interaction in all the operations, retaining all of the benefits of the power and accuracy of the DAOPHOT suite, detaching them from the burden of data precessing. This software provides not only a pipeline, but also all the tools to run easily each atomic step of the photometric procedure, to match the results, and to retrieve information from fits headers and the internal instrumental database. We plan to add the support to other photometric softwares in the future.
CAPELLA: Software for stellar photometry in dense fields with an irregular background
NASA Astrophysics Data System (ADS)
Debray, B.; Llebaria, A.; Dubout-Crillon, R.; Petit, M.
1994-01-01
We describe CAPELLA, a photometric reduction package developed top automatically process images of very crowded stellar fields with an irregular background. Detection is performed by the use of a derivative filter (the laplacian of a gaussian), the measuring of position and flux of the stars uses a profile fitting technique. The Point Spread Function (PSF) is empirical. The traditional multiparmetric non-linear fit is replaced by a set of individual linear fits. The determination of the background, the detection, the definition of the PSF and the basics of the methods are successively addressed in details. The iterative procedure as well as some aspects of the sampling problem are also discussed. Precision tests, performances in uncrowded and crowded fields are given CAPELLA has been used to process crowded stellar fields obtained with different detectors such as electronographic cameras, CCD's photographic films coupled to image intensifiers. It has been applied successfully in the extreme cases of close associations of the galaxy M33, of the composite Wolf-Rayet Brey 73 in the Large Magellanic Cloud (LMC) and of the central parts of globular clusters as 47 TUC and M15.
Modeling corneal surfaces with rational functions for high-speed videokeratoscopy data compression.
Schneider, Martin; Iskander, D Robert; Collins, Michael J
2009-02-01
High-speed videokeratoscopy is an emerging technique that enables study of the corneal surface and tear-film dynamics. Unlike its static predecessor, this new technique results in a very large amount of digital data for which storage needs become significant. We aimed to design a compression technique that would use mathematical functions to parsimoniously fit corneal surface data with a minimum number of coefficients. Since the Zernike polynomial functions that have been traditionally used for modeling corneal surfaces may not necessarily correctly represent given corneal surface data in terms of its optical performance, we introduced the concept of Zernike polynomial-based rational functions. Modeling optimality criteria were employed in terms of both the rms surface error as well as the point spread function cross-correlation. The parameters of approximations were estimated using a nonlinear least-squares procedure based on the Levenberg-Marquardt algorithm. A large number of retrospective videokeratoscopic measurements were used to evaluate the performance of the proposed rational-function-based modeling approach. The results indicate that the rational functions almost always outperform the traditional Zernike polynomial approximations with the same number of coefficients.
The dynamics of maternal-effect selfish genetic elements.
Smith, N G
1998-03-21
Maternal-effect selfish genes such as Medea or Scat act to kill progeny that do not bear a copy of the selfish gene present in the mother. Previous models of this system allowed for two types of allele, the selfish (killer) type and the sensitive (susceptible) wild-type. These models predict that the invasion conditions of the selfish allele are quite broad and that if invasion is possible a high frequency equilibrium is to be expected. The selfish element is therefore predicted to persist. Here a hypothetical third allele that neither kills nor is killed (i.e. insensitive) is considered. Such an allele could enter a population by recombination, mutation or migration. The incorporation of this third allele profoundly affects the dynamics of the system and, under some parameter values, it is possible for the spread of the insensitive allele to lead, eventually, to the fixation of the wild-type allele (reversible evolution). This is most likely if the death of progeny provides no direct benefit to the surviving sibs (i.e. in the absence of fitness compensation), as in insects without gregarious broods. Under these circumstances the selfish element cannot spread when infinitely rare, only after having risen to some finite frequency. A fitness cost to bearing the killer allele then causes its loss. However, if fitness compensation is found (e.g. in placental mammals) the invasion of the selfish element from an infinitely low level is possible for a wide range of costs and both stable coexistences of all three alleles and limit cycles of all three are then found. It is therefore to be expected that in mammals selfish maternal-effect genes are more likely both to spread and to persist than in insects, due to their different levels of fitness compensation.
Estimation of parameters of dose volume models and their confidence limits
NASA Astrophysics Data System (ADS)
van Luijk, P.; Delvigne, T. C.; Schilstra, C.; Schippers, J. M.
2003-07-01
Predictions of the normal-tissue complication probability (NTCP) for the ranking of treatment plans are based on fits of dose-volume models to clinical and/or experimental data. In the literature several different fit methods are used. In this work frequently used methods and techniques to fit NTCP models to dose response data for establishing dose-volume effects, are discussed. The techniques are tested for their usability with dose-volume data and NTCP models. Different methods to estimate the confidence intervals of the model parameters are part of this study. From a critical-volume (CV) model with biologically realistic parameters a primary dataset was generated, serving as the reference for this study and describable by the NTCP model. The CV model was fitted to this dataset. From the resulting parameters and the CV model, 1000 secondary datasets were generated by Monte Carlo simulation. All secondary datasets were fitted to obtain 1000 parameter sets of the CV model. Thus the 'real' spread in fit results due to statistical spreading in the data is obtained and has been compared with estimates of the confidence intervals obtained by different methods applied to the primary dataset. The confidence limits of the parameters of one dataset were estimated using the methods, employing the covariance matrix, the jackknife method and directly from the likelihood landscape. These results were compared with the spread of the parameters, obtained from the secondary parameter sets. For the estimation of confidence intervals on NTCP predictions, three methods were tested. Firstly, propagation of errors using the covariance matrix was used. Secondly, the meaning of the width of a bundle of curves that resulted from parameters that were within the one standard deviation region in the likelihood space was investigated. Thirdly, many parameter sets and their likelihood were used to create a likelihood-weighted probability distribution of the NTCP. It is concluded that for the type of dose response data used here, only a full likelihood analysis will produce reliable results. The often-used approximations, such as the usage of the covariance matrix, produce inconsistent confidence limits on both the parameter sets and the resulting NTCP values.
Vincent, Leah R; Kerr, Samuel R; Tan, Yang; Tomberg, Joshua; Raterman, Erica L; Dunning Hotopp, Julie C; Unemo, Magnus; Nicholas, Robert A; Jerse, Ann E
2018-04-03
Resistance to ceftriaxone in Neisseria gonorrhoeae is mainly conferred by mosaic penA alleles that encode penicillin-binding protein 2 (PBP2) variants with markedly lower rates of acylation by ceftriaxone. To assess the impact of these mosaic penA alleles on gonococcal fitness, we introduced the mosaic penA alleles from two ceftriaxone-resistant (Cro r ) clinical isolates (H041 and F89) into a Cro s strain (FA19) by allelic exchange and showed that the resultant Cro r mutants were significantly outcompeted by the Cro s parent strain in vitro and in a murine infection model. Four Cro r compensatory mutants of FA19 penA41 were isolated independently from mice that outcompeted the parent strain both in vitro and in vivo One of these compensatory mutants (LV41C) displayed a unique growth profile, with rapid log growth followed by a sharp plateau/gradual decline at stationary phase. Genome sequencing of LV41C revealed a mutation (G348D) in the acnB gene encoding the bifunctional aconitate hydratase 2/2 methylisocitrate dehydratase. Introduction of the acnB G348D allele into FA19 penA41 conferred both a growth profile that phenocopied that of LV41C and a fitness advantage, although not as strongly as that exhibited by the original compensatory mutant, suggesting the existence of additional compensatory mutations. The mutant aconitase appears to be a functional knockout with lower activity and expression than wild-type aconitase. Transcriptome sequencing (RNA-seq) analysis of FA19 penA41 acnB G348D revealed a large set of upregulated genes involved in carbon and energy metabolism. We conclude that compensatory mutations can be selected in Cro r gonococcal strains that increase metabolism to ameliorate their fitness deficit. IMPORTANCE The emergence of ceftriaxone-resistant (Cro r ) Neisseria gonorrhoeae has led to the looming threat of untreatable gonorrhea. Whether Cro resistance is likely to spread can be predicted from studies that compare the relative fitnesses of susceptible and resistant strains that differ only in the penA gene that confers Cro resistance. We showed that mosaic penA alleles found in Cro r clinical isolates are outcompeted by the Cro s parent strain in vitro and in vivo but that compensatory mutations that allow ceftriaxone resistance to be maintained by increasing bacterial fitness are selected during mouse infection. One compensatory mutant that was studied in more detail had a mutation in acnB , which encodes the aconitase that functions in the tricarboxylic acid (TCA) cycle. This study illustrates that compensatory mutations can be selected during infection, which we hypothesize may allow the spread of Cro resistance in nature. This study also provides novel insights into gonococcal metabolism and physiology.
Center determination for trailed sources in astronomical observation images
NASA Astrophysics Data System (ADS)
Du, Jun Ju; Hu, Shao Ming; Chen, Xu; Guo, Di Fu
2014-11-01
Images with trailed sources can be obtained when observing near-Earth objects, such as small astroids, space debris, major planets and their satellites, no matter the telescopes track on sidereal speed or the speed of target. The low centering accuracy of these trailed sources is one of the most important sources of the astrometric uncertainty, but how to determine the central positions of the trailed sources accurately remains a significant challenge to image processing techniques, especially in the study of faint or fast moving objects. According to the conditions of one-meter telescope at Weihai Observatory of Shandong University, moment and point-spread-function (PSF) fitting were chosen to develop the image processing pipeline for space debris. The principles and the implementations of both two methods are introduced in this paper. And some simulated images containing trailed sources are analyzed with each technique. The results show that two methods are comparable to obtain the accurate central positions of trailed sources when the signal to noise (SNR) is high. But moment tends to fail for the objects with low SNR. Compared with moment, PSF fitting seems to be more robust and versatile. However, PSF fitting is quite time-consuming. Therefore, if there are enough bright stars in the field, or the high astronometric accuracy is not necessary, moment is competent. Otherwise, the combination of moment and PSF fitting is recommended.
NASA Astrophysics Data System (ADS)
Ahmad, Zeeshan; Viswanathan, Venkatasubramanian
2016-08-01
Computationally-guided material discovery is being increasingly employed using a descriptor-based screening through the calculation of a few properties of interest. A precise understanding of the uncertainty associated with first-principles density functional theory calculated property values is important for the success of descriptor-based screening. The Bayesian error estimation approach has been built in to several recently developed exchange-correlation functionals, which allows an estimate of the uncertainty associated with properties related to the ground state energy, for example, adsorption energies. Here, we propose a robust and computationally efficient method for quantifying uncertainty in mechanical properties, which depend on the derivatives of the energy. The procedure involves calculating energies around the equilibrium cell volume with different strains and fitting the obtained energies to the corresponding energy-strain relationship. At each strain, we use instead of a single energy, an ensemble of energies, giving us an ensemble of fits and thereby, an ensemble of mechanical properties associated with each fit, whose spread can be used to quantify its uncertainty. The generation of ensemble of energies is only a post-processing step involving a perturbation of parameters of the exchange-correlation functional and solving for the energy non-self-consistently. The proposed method is computationally efficient and provides a more robust uncertainty estimate compared to the approach of self-consistent calculations employing several different exchange-correlation functionals. We demonstrate the method by calculating the uncertainty bounds for several materials belonging to different classes and having different structures using the developed method. We show that the calculated uncertainty bounds the property values obtained using three different GGA functionals: PBE, PBEsol, and RPBE. Finally, we apply the approach to calculate the uncertainty associated with the DFT-calculated elastic properties of solid state Li-ion and Na-ion conductors.
Yang, Xiao; Wang, Feng; Su, Jun; Lu, Bao-Rong
2012-01-01
Background The spread of insect-resistance transgenes from genetically engineered (GE) rice to its coexisting weedy rice (O. sativa f. spontanea) populations via gene flow creates a major concern for commercial GE rice cultivation. Transgene flow to weedy rice seems unavoidable. Therefore, characterization of potential fitness effect brought by the transgenes is essential to assess environmental consequences caused by crop-weed transgene flow. Methodology/Principal Findings Field performance of fitness-related traits was assessed in advanced hybrid progeny of F4 generation derived from a cross between an insect-resistant transgenic (Bt/CpTI) rice line and a weedy strain. The performance of transgene-positive hybrid progeny was compared with the transgene-negative progeny and weedy parent in pure and mixed planting of transgenic and nontransgenic plants under environmental conditions with natural vs. low insect pressure. Results showed that under natural insect pressure the insect-resistant transgenes could effectively suppress target insects and bring significantly increased fitness to transgenic plants in pure planting, compared with nontransgenic plants (including weedy parent). In contrast, no significant differences in fitness were detected under low insect pressure. However, such increase in fitness was not detected in the mixed planting of transgenic and nontransgenic plants due to significantly reduced insect pressure. Conclusions/Significance Insect-resistance transgenes may have limited fitness advantages to hybrid progeny resulted from crop-weed transgene flow owning to the significantly reduced ambient target insect pressure when an insect-resistant GE crop is grown. Given that the extensive cultivation of an insect-resistant GE crop will ultimately reduce the target insect pressure, the rapid spread of insect-resistance transgenes in weedy populations in commercial GE crop fields may be not likely to happen. PMID:22815975
Agol, V I; Belov, G A; Cherkasova, E A; Gavrilin, G V; Kolesnikova, M S; Romanova, L I; Tolskaya, E A
2001-01-01
Molecular mechanisms of poliovirus reproduction in the human gut remain largely unexplored. Nevertheless, there are grounds to believe that the virus spreads from cell to cell, like that from person to person during natural circulation, and involves a relatively small proportion of the highly heterogeneous viral population generated by the previous host. This mechanism of random sampling is responsible for the majority of fixed mutations, and contributes to the maintenance of a certain level of viral fitness (virulence). In the long term, random sampling may lead to the decrease in fitness and even to extinction of some viral evolutionary branches, explaining cases of self-limiting poliovirus infection in immunodeficient patients. A low propensity of the Sabin viruses for natural circulation may also be a related phenomenon. The trend to decrease in fitness may be interrupted by the appearance of rare, fitter (more virulent) variants, which may be responsible for poliomyelitis outbreaks caused by wild type virus, and for the development of paralytic disease in chronic carriers of the Sabin vaccine. All these evolutionary events are largely stochastic and hence are unpredictable in principle.
Jennifer Britt; Everett Hansen
2011-01-01
Since the discovery of Phytophthora ramorum Werres, De Cock & Man In't Veld in south-western Oregon forests in 2001, newly infected areas are detected each year. Yet, there are still gaps in our knowledge about how the pathogen spreads or where new infections come from. Our study aims to track the spread of P. ramorum...
Rogers, Geoffrey
2018-06-01
The Yule-Nielsen effect is an influence on halftone color caused by the diffusion of light within the paper upon which the halftone ink is printed. The diffusion can be characterized by a point spread function. In this paper, a point spread function for paper is derived using the multiple-path model of reflection. This model treats the interaction of light with turbid media as a random walk. Using the multiple-path point spread function, a general expression is derived for the average reflectance of light from a frequency-modulated halftone, in which dot size is constant and the number of dots is varied, with the arrangement of dots random. It is also shown that the line spread function derived from the multiple-path model has the form of a Lorentzian function.
Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.
2017-03-01
Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.
Effect of the Galapagos Hotspot on Seamount Formation along the Galapagos Spreading Center
NASA Astrophysics Data System (ADS)
Behn, M. D.; Sinton, J. M.; Detrick, R. S.
2002-12-01
Studies along the Mid-Atlantic Ridge (MAR) and East Pacific Rise (EPR) have shown seamount formation to be a strong function of spreading rate. At the MAR, seamounts are a dominant morphologic feature of the inner valley floor, while at the EPR seamounts are rarely observed within the neovolcanic zone. The Galapagos Spreading Center (GSC) provides an excellent location to test the influence of a hotspot on the process of seamount generation at a relatively constant spreading rate. In this study we use multi-beam bathymetry data acquired during the G-PRIME cruise in April-May, 2000 to examine the distribution of axial seamounts along the GSC with distance from the hotspot. We use a numerical algorithm to identify isolated volcanic edifices, by searching bathymetry for closed, concentric contours protruding above the surrounding seafloor. Seamount populations are fit with a maximum likelihood model to estimate the total number of seamounts per unit area, ν o, and the characteristic seamount height, β-1. The number of seamounts in the axial zone decreases significantly as the Galapagos hotspot is approached, suggesting a change from dominantly point-source to fissure-fed volcanism as magma supply increases. West of the 95.5°W propagator, the total number of seamounts per unit area (ν o = 279+/-16 per 103 km2) is similar to values observed at the MAR. In comparison, east of 92.7°W, where magma supply is higher, seamount density (50+/-9 per 103 km2) is similar to observations at the fast-spreading EPR. Our results show that the transition from point-source to fissure-fed eruptions occurs gradually, in contrast to the "threshold" effect observed in axial magma chamber depth and axial morphology in which small changes in magma supply result in large changes in these variables. In summary, the western GSC displays the same range in seamount density observed along the global mid-ocean ridge system suggesting that both spreading rate and magma supply are important factors controlling the style of constructional volcanism (point source vs fissure fed eruptions) at oceanic spreading centers.
Development of a program to fit data to a new logistic model for microbial growth.
Fujikawa, Hiroshi; Kano, Yoshihiro
2009-06-01
Recently we developed a mathematical model for microbial growth in food. The model successfully predicted microbial growth at various patterns of temperature. In this study, we developed a program to fit data to the model with a spread sheet program, Microsoft Excel. Users can instantly get curves fitted to the model by inputting growth data and choosing the slope portion of a curve. The program also could estimate growth parameters including the rate constant of growth and the lag period. This program would be a useful tool for analyzing growth data and further predicting microbial growth.
Epidemic Spreading in a Multi-compartment System
NASA Astrophysics Data System (ADS)
Gao, Zong-Mao; Gu, Jiao; Li, Wei
2012-02-01
We introduce the variant rate and white noise into the susceptible-infected-removed (SIR) model for epidemics, discuss the epidemic dynamics of a multiple-compartment system, and describe this system by using master equations. For both the local epidemic spreading system and the whole multiple-compartment system, we find that a threshold could be useful in forecasting when the epidemic vanishes. Furthermore, numerical simulations show that a model with the variant infection rate and white noise can improve fitting with real SARS data.
NASA Astrophysics Data System (ADS)
Turcu, Ioan; Bratfalean, Radu; Neamtu, Silvia
2008-07-01
The adequacy of the effective phase function (EPF) used to describe the light scattered at small angles was tested on aqueous suspensions of polystyrene microspheres. Angular resolved light scattering measurements were performed on two types of latex suspension, which contained polystyrene spheres of 3 µm and 5 µm diameters, respectively. The experimental data were fitted with two EPF approximants. If the polystyrene spheres are at least 3 µm in diameter the quasi-ballistic light scattering process can be described relatively well by the EPF in a small angular range centered in the forward direction. The forward light scattering by macroscopic samples containing microspheres can be modeled relatively well if the true Mie single particle scattering phase function is replaced by a simpler Henyey-Greenstein dependence having the same width at half-height as the first scattering lobe.
How do neurons work together? Lessons from auditory cortex.
Harris, Kenneth D; Bartho, Peter; Chadderton, Paul; Curto, Carina; de la Rocha, Jaime; Hollender, Liad; Itskov, Vladimir; Luczak, Artur; Marguet, Stephan L; Renart, Alfonso; Sakata, Shuzo
2011-01-01
Recordings of single neurons have yielded great insights into the way acoustic stimuli are represented in auditory cortex. However, any one neuron functions as part of a population whose combined activity underlies cortical information processing. Here we review some results obtained by recording simultaneously from auditory cortical populations and individual morphologically identified neurons, in urethane-anesthetized and unanesthetized passively listening rats. Auditory cortical populations produced structured activity patterns both in response to acoustic stimuli, and spontaneously without sensory input. Population spike time patterns were broadly conserved across multiple sensory stimuli and spontaneous events, exhibiting a generally conserved sequential organization lasting approximately 100 ms. Both spontaneous and evoked events exhibited sparse, spatially localized activity in layer 2/3 pyramidal cells, and densely distributed activity in larger layer 5 pyramidal cells and putative interneurons. Laminar propagation differed however, with spontaneous activity spreading upward from deep layers and slowly across columns, but sensory responses initiating in presumptive thalamorecipient layers, spreading rapidly across columns. In both unanesthetized and urethanized rats, global activity fluctuated between "desynchronized" state characterized by low amplitude, high-frequency local field potentials and a "synchronized" state of larger, lower-frequency waves. Computational studies suggested that responses could be predicted by a simple dynamical system model fitted to the spontaneous activity immediately preceding stimulus presentation. Fitting this model to the data yielded a nonlinear self-exciting system model in synchronized states and an approximately linear system in desynchronized states. We comment on the significance of these results for auditory cortical processing of acoustic and non-acoustic information. © 2010 Elsevier B.V. All rights reserved.
Gossip spread in social network Models
NASA Astrophysics Data System (ADS)
Johansson, Tobias
2017-04-01
Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.
Mid-latitude spread- F structure
NASA Astrophysics Data System (ADS)
From, W. R.; Meehan, D. H.
1988-07-01
Spread- F has been observed at frequencies of 1.98, 3.84 and 5.80 MHz and multiple angles of arrival have been resolved using an HF radar near Brisbane (27°S, 153°E). The spreading of the ionogram trace has been shown to be due to a spread in angles of arrival of echoes, rather than any 'vertical' spreading. The reflection process appears to involve total specular reflection rather than scattering. The previously reported very strong bias for angles of arrival from the north-west at Brisbane is supported. The direction of movement of the reflection points is not radial and therefore, the structure cannot be purely frontal with purely linear movement, as is often supposed. The velocities are much less than for coexisting travelling ionospheric disturbances. The variations of angle of arrival, range and rate of change of range with frequency do not fit previously proposed ideas of the plasma distribution and an alternative is suggested in which the distortions of the isoionic surfaces resemble small, elongated, asymmetrical 'hills' or 'dips'.
NASA Technical Reports Server (NTRS)
Groff, Tyler; Rizzo, Maxime; Greco, Johnny P.; Loomis, Craig; Mede, Kyle; Kasdin, N. Jeremy; Knapp, Gillian; Tamura, Motohide; Hayashi, Masahiko; Galvin, Michael;
2017-01-01
We present the data reduction pipeline for CHARIS, a high-contrast integral-field spectrograph for the Subaru Telescope. The pipeline constructs a ramp from the raw reads using the measured nonlinear pixel response and reconstructs the data cube using one of three extraction algorithms: aperture photometry, optimal extraction, or chi-squared fitting. We measure and apply both a detector flatfield and a lenslet flatfield and reconstruct the wavelength- and position-dependent lenslet point-spread function (PSF) from images taken with a tunable laser. We use these measured PSFs to implement a chi-squared-based extraction of the data cube, with typical residuals of approximately 5 percent due to imperfect models of the under-sampled lenslet PSFs. The full two-dimensional residual of the chi-squared extraction allows us to model and remove correlated read noise, dramatically improving CHARIS's performance. The chi-squared extraction produces a data cube that has been deconvolved with the line-spread function and never performs any interpolations of either the data or the individual lenslet spectra. The extracted data cube also includes uncertainties for each spatial and spectral measurement. CHARIS's software is parallelized, written in Python and Cython, and freely available on github with a separate documentation page. Astrometric and spectrophotometric calibrations of the data cubes and PSF subtraction will be treated in a forthcoming paper.
NASA Astrophysics Data System (ADS)
Brandt, Timothy D.; Rizzo, Maxime; Groff, Tyler; Chilcote, Jeffrey; Greco, Johnny P.; Kasdin, N. Jeremy; Limbach, Mary Anne; Galvin, Michael; Loomis, Craig; Knapp, Gillian; McElwain, Michael W.; Jovanovic, Nemanja; Currie, Thayne; Mede, Kyle; Tamura, Motohide; Takato, Naruhisa; Hayashi, Masahiko
2017-10-01
We present the data reduction pipeline for CHARIS, a high-contrast integral-field spectrograph for the Subaru Telescope. The pipeline constructs a ramp from the raw reads using the measured nonlinear pixel response and reconstructs the data cube using one of three extraction algorithms: aperture photometry, optimal extraction, or χ2 fitting. We measure and apply both a detector flatfield and a lenslet flatfield and reconstruct the wavelength- and position-dependent lenslet point-spread function (PSF) from images taken with a tunable laser. We use these measured PSFs to implement a χ2-based extraction of the data cube, with typical residuals of ˜5% due to imperfect models of the undersampled lenslet PSFs. The full two-dimensional residual of the χ2 extraction allows us to model and remove correlated read noise, dramatically improving CHARIS's performance. The χ2 extraction produces a data cube that has been deconvolved with the line-spread function and never performs any interpolations of either the data or the individual lenslet spectra. The extracted data cube also includes uncertainties for each spatial and spectral measurement. CHARIS's software is parallelized, written in Python and Cython, and freely available on github with a separate documentation page. Astrometric and spectrophotometric calibrations of the data cubes and PSF subtraction will be treated in a forthcoming paper.
Formation of Continental Fragments: The Tamayo Bank, Gulf of California
NASA Astrophysics Data System (ADS)
van Wijk, J.; Abera, R.; Axen, G. J.
2015-12-01
Potential field data are used to construct a two-dimensional crustal model along a profile through the Tamayo Trough and Bank in the Gulf of California. The model is constrained by seismic reflection and refraction data, and field observations. The potential field data do not fit a model where the crust of the Tamayo trough is continental, but they fit well with a model where the Tamayo trough crust is oceanic. This implies that the Tamayo Bank is entirely bounded by oceanic crust and is a microcontinent. The oceanic crust of the Tamayo trough that separates the Tamayo Bank from the mainland of Mexico is thin (~4 km), so oceanic spreading was probably magma-starved before it ceased. This led us to come up with a model that explains the formation of microcontinents that are smaller in size and are not found in the proximity of hotspots. At first, seafloor spreading commences following continental breakup. When the magma supply to the ridge slows down, the plate boundary strengthens. Hence, the ridge may be abandoned while tectonic extension begins elsewhere, or slow spreading may continue while a new ridge starts to develop. The old spreading ridge becomes extinct. An asymmetric ocean basin forms if the ridge jumps within oceanic lithosphere; a microcontinent forms if the ridge jumps into a continental margin. This model for formation of continental fragments is applicable to other regions as well, eliminating the need of mantle plume impingement to facilitate rifting of a young continental margin and microcontinent formation.
NASA Astrophysics Data System (ADS)
Wörner, M.; Cai, X.; Alla, H.; Yue, P.
2018-03-01
The Cox–Voinov law on dynamic spreading relates the difference between the cubic values of the apparent contact angle (θ) and the equilibrium contact angle to the instantaneous contact line speed (U). Comparing spreading results with this hydrodynamic wetting theory requires accurate data of θ and U during the entire process. We consider the case when gravitational forces are negligible, so that the shape of the spreading drop can be closely approximated by a spherical cap. Using geometrical dependencies, we transform the general Cox law in a semi-analytical relation for the temporal evolution of the spreading radius. Evaluating this relation numerically shows that the spreading curve becomes independent from the gas viscosity when the latter is less than about 1% of the drop viscosity. Since inertia may invalidate the made assumptions in the initial stage of spreading, a quantitative criterion for the time when the spherical-cap assumption is reasonable is derived utilizing phase-field simulations on the spreading of partially wetting droplets. The developed theory allows us to compare experimental/computational spreading curves for spherical-cap shaped droplets with Cox theory without the need for instantaneous data of θ and U. Furthermore, the fitting of Cox theory enables us to estimate the effective slip length. This is potentially useful for establishing relationships between slip length and parameters in numerical methods for moving contact lines.
Testing modified gravity at large distances with the HI Nearby Galaxy Survey's rotation curves
NASA Astrophysics Data System (ADS)
Mastache, Jorge; Cervantes-Cota, Jorge L.; de la Macorra, Axel
2013-03-01
Recently a new—quantum motivated—theory of gravity has been proposed that modifies the standard Newtonian potential at large distances when spherical symmetry is considered. Accordingly, Newtonian gravity is altered by adding an extra Rindler acceleration term that has to be phenomenologically determined. Here we consider a standard and a power-law generalization of the Rindler modified Newtonian potential. The new terms in the gravitational potential are hypothesized to play the role of dark matter in galaxies. Our galactic model includes the mass of the integrated gas, and stars for which we consider three stellar mass functions (Kroupa, diet-Salpeter, and free mass model). We test this idea by fitting rotation curves of seventeen low surface brightness galaxies from the HI Nearby Galaxy Survey (THINGS). We find that the Rindler parameters do not perform a suitable fit to the rotation curves in comparison to standard dark matter profiles (Navarro-Frenk-White and Burkert) and, in addition, the computed parameters of the Rindler gravity show a high spread, posing the model as a nonacceptable alternative to dark matter.
Attenuation of thermal neutrons by an imperfect single crystal
NASA Astrophysics Data System (ADS)
Naguib, K.; Adib, M.
1996-06-01
A semi-empirical formula is given which allows one to calculate the total thermal cross section of an imperfect single crystal as a function of crystal constants, temperature and neutron energy E, in the energy range between 3 meV and 10 eV. The formula also includes the contribution of the parasitic Bragg scattering to the total cross section that takes into account the crystal mosaic spread value and its orientation with respect to the neutron beam direction. A computer program (ISCANF) was developed to calculate the total attenuation of neutrons using the proposed formula. The ISCANF program was applied to investigate the neutron attenuation through a copper single crystal. The calculated values of the neutron transmission through the imperfect copper single crystal were fitted to the measured ones in the energy range 3 - 40 meV at different crystal orientations. The result of fitting shows that use of the computer program ISCANF allows one to predict the behaviour of the total cross section of an imperfect copper single crystal for the whole energy range.
Combining MRI With PET for Partial Volume Correction Improves Image-Derived Input Functions in Mice
NASA Astrophysics Data System (ADS)
Evans, Eleanor; Buonincontri, Guido; Izquierdo, David; Methner, Carmen; Hawkes, Rob C.; Ansorge, Richard E.; Krieg, Thomas; Carpenter, T. Adrian; Sawiak, Stephen J.
2015-06-01
Accurate kinetic modelling using dynamic PET requires knowledge of the tracer concentration in plasma, known as the arterial input function (AIF). AIFs are usually determined by invasive blood sampling, but this is prohibitive in murine studies due to low total blood volumes. As a result of the low spatial resolution of PET, image-derived input functions (IDIFs) must be extracted from left ventricular blood pool (LVBP) ROIs of the mouse heart. This is challenging because of partial volume and spillover effects between the LVBP and myocardium, contaminating IDIFs with tissue signal. We have applied the geometric transfer matrix (GTM) method of partial volume correction (PVC) to 12 mice injected with 18F - FDG affected by a Myocardial Infarction (MI), of which 6 were treated with a drug which reduced infarction size [1]. We utilised high resolution MRI to assist in segmenting mouse hearts into 5 classes: LVBP, infarcted myocardium, healthy myocardium, lungs/body and background. The signal contribution from these 5 classes was convolved with the point spread function (PSF) of the Cambridge split magnet PET scanner and a non-linear fit was performed on the 5 measured signal components. The corrected IDIF was taken as the fitted LVBP component. It was found that the GTM PVC method could recover an IDIF with less contamination from spillover than an IDIF extracted from PET data alone. More realistic values of Ki were achieved using GTM IDIFs, which were shown to be significantly different (p <; 0.05) between the treated and untreated groups.
Evolution dynamics of a model for gene duplication under adaptive conflict
NASA Astrophysics Data System (ADS)
Ancliff, Mark; Park, Jeong-Man
2014-06-01
We present and solve the dynamics of a model for gene duplication showing escape from adaptive conflict. We use a Crow-Kimura quasispecies model of evolution where the fitness landscape is a function of Hamming distances from two reference sequences, which are assumed to optimize two different gene functions, to describe the dynamics of a mixed population of individuals with single and double copies of a pleiotropic gene. The evolution equations are solved through a spin coherent state path integral, and we find two phases: one is an escape from an adaptive conflict phase, where each copy of a duplicated gene evolves toward subfunctionalization, and the other is a duplication loss of function phase, where one copy maintains its pleiotropic form and the other copy undergoes neutral mutation. The phase is determined by a competition between the fitness benefits of subfunctionalization and the greater mutational load associated with maintaining two gene copies. In the escape phase, we find a dynamics of an initial population of single gene sequences only which escape adaptive conflict through gene duplication and find that there are two time regimes: until a time t* single gene sequences dominate, and after t* double gene sequences outgrow single gene sequences. The time t* is identified as the time necessary for subfunctionalization to evolve and spread throughout the double gene sequences, and we show that there is an optimum mutation rate which minimizes this time scale.
Effects of Variant Rates and Noise on Epidemic Spreading
NASA Astrophysics Data System (ADS)
Li, Wei; Gao, Zong-Mao; Gu, Jiao
2011-05-01
We introduce variant rates, for both infection and recovery and noise into the susceptible-infected-removed (SIR) model for epidemic spreading. The changing rates are taken mainly due to the changing profiles of an epidemic during its evolution. However, the noise parameter which is taken from a given distribution, i.e. Gaussian can describe the fluctuations of the infection and recovery rates. The numerical simulations show that the SIR model with variant rates and noise and can improve the fitting with real SARS data in the near-stationary stage.
Turelli, Michael; Barton, Nicholas H
2017-06-01
A novel strategy for controlling the spread of arboviral diseases such as dengue, Zika and chikungunya is to transform mosquito populations with virus-suppressing Wolbachia. In general, Wolbachia transinfected into mosquitoes induce fitness costs through lower viability or fecundity. These maternally inherited bacteria also produce a frequency-dependent advantage for infected females by inducing cytoplasmic incompatibility (CI), which kills the embryos produced by uninfected females mated to infected males. These competing effects, a frequency-dependent advantage and frequency-independent costs, produce bistable Wolbachia frequency dynamics. Above a threshold frequency, denoted pˆ, CI drives fitness-decreasing Wolbachia transinfections through local populations; but below pˆ, infection frequencies tend to decline to zero. If pˆ is not too high, CI also drives spatial spread once infections become established over sufficiently large areas. We illustrate how simple models provide testable predictions concerning the spatial and temporal dynamics of Wolbachia introductions, focusing on rate of spatial spread, the shape of spreading waves, and the conditions for initiating spread from local introductions. First, we consider the robustness of diffusion-based predictions to incorporating two important features of wMel-Aedes aegypti biology that may be inconsistent with the diffusion approximations, namely fast local dynamics induced by complete CI (i.e., all embryos produced from incompatible crosses die) and long-tailed, non-Gaussian dispersal. With complete CI, our numerical analyses show that long-tailed dispersal changes wave-width predictions only slightly; but it can significantly reduce wave speed relative to the diffusion prediction; it also allows smaller local introductions to initiate spatial spread. Second, we use approximations for pˆ and dispersal distances to predict the outcome of 2013 releases of wMel-infected Aedes aegypti in Cairns, Australia, Third, we describe new data from Ae. aegypti populations near Cairns, Australia that demonstrate long-distance dispersal and provide an approximate lower bound on pˆ for wMel in northeastern Australia. Finally, we apply our analyses to produce operational guidelines for efficient transformation of vector populations over large areas. We demonstrate that even very slow spatial spread, on the order of 10-20 m/month (as predicted), can produce area-wide population transformation within a few years following initial releases covering about 20-30% of the target area. Copyright © 2017 Elsevier Inc. All rights reserved.
Spreading activation in nonverbal memory networks.
Foster, Paul S; Wakefield, Candias; Pryjmak, Scott; Roosa, Katelyn M; Branch, Kaylei K; Drago, Valeria; Harrison, David W; Ruff, Ronald
2017-09-01
Theories of spreading activation primarily involve semantic memory networks. However, the existence of separate verbal and visuospatial memory networks suggests that spreading activation may also occur in visuospatial memory networks. The purpose of the present investigation was to explore this possibility. Specifically, this study sought to create and describe the design frequency corpus and to determine whether this measure of visuospatial spreading activation was related to right hemisphere functioning and spreading activation in verbal memory networks. We used word frequencies taken from the Controlled Oral Word Association Test and design frequencies taken from the Ruff Figural Fluency Test as measures of verbal and visuospatial spreading activation, respectively. Average word and design frequencies were then correlated with measures of left and right cerebral functioning. The results indicated that a significant relationship exists between performance on a test of right posterior functioning (Block Design) and design frequency. A significant negative relationship also exists between spreading activation in semantic memory networks and design frequency. Based on our findings, the hypotheses were supported. Further research will need to be conducted to examine whether spreading activation exists in visuospatial memory networks as well as the parameters that might modulate this spreading activation, such as the influence of neurotransmitters.
Olsson, Aaryn D.; Betancourt, Julio L.; Crimmins, Michael A.; Marsh, Stuart E.
2012-01-01
In North American deserts, grass invasions threaten native vegetation via competition and altered fire regimes. Accurate prediction and successful mitigation of these invasions hinge on estimation of spread rates and their degree of constancy in time and space. We used high-resolution aerial photographs from 11 sites in the Santa Catalina Mountains, southern Arizona to reconstruct the spread of buffelgrass (Pennisetum ciliare), a C4 perennial bunchgrass, since 1980. The total area infested was fit to a logistic model and residuals of the model were compared to climatic factors of the corresponding and lagged time periods. Infestations grew from small colonizing patches in the 1980s to 66 ha in 2008, doubling every 2.26–7.04 years since 1988. Although buffelgrass germination, establishment and distribution are favored by wet summers and warm winters, climate variables did not predict spread rates. Buffelgrass has grown at a constant rate, at least since 1988, when much of its expansion took place. In the study area, minimum requirements are met almost every year for germination and reproduction, establishing a consistent baseline for spread that manifests as a constant spread rate.
Computational model of cerebral blood flow redistribution during cortical spreading depression
NASA Astrophysics Data System (ADS)
Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.
2016-04-01
In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.
Exploiting the Adaptation Dynamics to Predict the Distribution of Beneficial Fitness Effects
2016-01-01
Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depends on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remains nearly a constant for exponentially decaying distributions and increases when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold good for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments. PMID:26990188
Klein, F.W.; Wright, Tim
2008-01-01
The remarkable catalog of Hawaiian earthquakes going back to the 1820s is based on missionary diaries, newspaper accounts, and instrumental records and spans the great M7.9 Kau earthquake of April 1868 and its aftershock sequence. The earthquake record since 1868 defines a smooth curve complete to M5.2 of the declining rate into the 21st century, after five short volcanic swarms are removed. A single aftershock curve fits the earthquake record, even with numerous M6 and 7 main shocks and eruptions. The timing of some moderate earthquakes may be controlled by magmatic stresses, but their overall long-term rate reflects one of aftershocks of the Kau earthquake. The 1868 earthquake is, therefore, the largest and most controlling stress event in the 19th and 20th centuries. We fit both the modified Omori (power law) and stretched exponential (SE) functions to the earthquakes. We found that the modified Omori law is a good fit to the M ??? 5.2 earthquake rate for the first 10 years or so and the more rapidly declining SE function fits better thereafter, as supported by three statistical tests. The switch to exponential decay suggests that a possible change in aftershock physics may occur from rate and state fault friction, with no change in the stress rate, to viscoelastic stress relaxation. The 61-year exponential decay constant is at the upper end of the range of geodetic relaxation times seen after other global earthquakes. Modeling deformation in Hawaii is beyond the scope of this paper, but a simple interpretation of the decay suggests an effective viscosity of 1019 to 1020 Pa s pertains in the volcanic spreading of Hawaii's flanks. The rapid decline in earthquake rate poses questions for seismic hazard estimates in an area that is cited as one of the most hazardous in the United States.
Human ectoparasites and the spread of plague in Europe during the Second Pandemic
Krauer, Fabienne; Walløe, Lars; Bramanti, Barbara; Stenseth, Nils Chr.; Schmid, Boris V.
2018-01-01
Plague, caused by the bacterium Yersinia pestis, can spread through human populations by multiple transmission pathways. Today, most human plague cases are bubonic, caused by spillover of infected fleas from rodent epizootics, or pneumonic, caused by inhalation of infectious droplets. However, little is known about the historical spread of plague in Europe during the Second Pandemic (14–19th centuries), including the Black Death, which led to high mortality and recurrent epidemics for hundreds of years. Several studies have suggested that human ectoparasite vectors, such as human fleas (Pulex irritans) or body lice (Pediculus humanus humanus), caused the rapidly spreading epidemics. Here, we describe a compartmental model for plague transmission by a human ectoparasite vector. Using Bayesian inference, we found that this model fits mortality curves from nine outbreaks in Europe better than models for pneumonic or rodent transmission. Our results support that human ectoparasites were primary vectors for plague during the Second Pandemic, including the Black Death (1346–1353), ultimately challenging the assumption that plague in Europe was predominantly spread by rats. PMID:29339508
Human ectoparasites and the spread of plague in Europe during the Second Pandemic.
Dean, Katharine R; Krauer, Fabienne; Walløe, Lars; Lingjærde, Ole Christian; Bramanti, Barbara; Stenseth, Nils Chr; Schmid, Boris V
2018-02-06
Plague, caused by the bacterium Yersinia pestis , can spread through human populations by multiple transmission pathways. Today, most human plague cases are bubonic, caused by spillover of infected fleas from rodent epizootics, or pneumonic, caused by inhalation of infectious droplets. However, little is known about the historical spread of plague in Europe during the Second Pandemic (14-19th centuries), including the Black Death, which led to high mortality and recurrent epidemics for hundreds of years. Several studies have suggested that human ectoparasite vectors, such as human fleas ( Pulex irritans ) or body lice ( Pediculus humanus humanus ), caused the rapidly spreading epidemics. Here, we describe a compartmental model for plague transmission by a human ectoparasite vector. Using Bayesian inference, we found that this model fits mortality curves from nine outbreaks in Europe better than models for pneumonic or rodent transmission. Our results support that human ectoparasites were primary vectors for plague during the Second Pandemic, including the Black Death (1346-1353), ultimately challenging the assumption that plague in Europe was predominantly spread by rats. Copyright © 2018 the Author(s). Published by PNAS.
Fluid spatial dynamics of West Nile virus in the USA: Rapid spread in a permissive host environment
Di Giallonardo , Francesca; Geoghegan, Jemma L.; Docherty, Douglas E.; McLean, Robert G.; Zody, Michael C.; Qu, James; Yang, Xiao; Birren, Bruce W.; Malboeuf, Christine M.; Newman, R.; Ip, Hon S.; Holmes, Edward C.
2016-01-01
The introduction of West Nile virus (WNV) into North America in 1999 is a classical example of viral emergence in a new environment, with its subsequent dispersion across the continent having a major impact on local bird populations. Despite the importance of this epizootic, the pattern, dynamics and determinants of WNV spread in its natural hosts remain uncertain. In particular, it is unclear whether the virus encountered major barriers to transmission, or spread in an unconstrained manner, and if specific viral lineages were favored over others indicative of intrinsic differences in fitness. To address these key questions in WNV evolution and ecology we sequenced the complete genomes of approximately 300 avian isolates sampled across the USA between 2001-2012. Phylogenetic analysis revealed a relatively ‘star-like' tree structure, indicative of explosive viral spread in US, although with some replacement of viral genotypes through time. These data are striking in that viral sequences exhibit relatively limited clustering according to geographic region, particularly for those viruses sampled from birds, and no strong phylogenetic association with well sampled avian species. The genome sequence data analysed here also contain relatively little evidence for adaptive evolution, particularly on structural proteins, suggesting that most viral lineages are of similar fitness, and that WNV is well adapted to the ecology of mosquito vectors and diverse avian hosts in the USA. In sum, the molecular evolution of WNV in North America depicts a largely unfettered expansion within a permissive host and geographic population with little evidence of major adaptive barriers.
Spatiotemporal characterization of Sclerotinia crown rot epidemics in pyrethrum
USDA-ARS?s Scientific Manuscript database
Sclerotinia crown rot, caused by Sclerotinia minor and S. sclerotiorum is a disease of pyrethrum in Australia that may cause substantial decline in plant density. The spatiotemporal characteristics of the disease were quantified in 14 fields spread across three growing seasons. Fitting the binary ...
Synthetically engineered Medea gene drive system in the worldwide crop pest Drosophila suzukii
Buchman, Anna; Marshall, John M.; Ostrovski, Dennis; Yang, Ting; Akbari, Omar S.
2018-01-01
Synthetic gene drive systems possess enormous potential to replace, alter, or suppress wild populations of significant disease vectors and crop pests; however, their utility in diverse populations remains to be demonstrated. Here, we report the creation of a synthetic Medea gene drive system in a major worldwide crop pest, Drosophila suzukii. We demonstrate that this drive system, based on an engineered maternal “toxin” coupled with a linked embryonic “antidote,” is capable of biasing Mendelian inheritance rates with up to 100% efficiency. However, we find that drive resistance, resulting from naturally occurring genetic variation and associated fitness costs, can be selected for and hinder the spread of such a drive. Despite this, our results suggest that this gene drive could maintain itself at high frequencies in a wild population and spread to fixation if either its fitness costs or toxin resistance were reduced, providing a clear path forward for developing future such systems in this pest. PMID:29666236
A gravity model for the spread of a pollinator-borne plant pathogen.
Ferrari, Matthew J; Bjørnstad, Ottar N; Partain, Jessica L; Antonovics, Janis
2006-09-01
Many pathogens of plants are transmitted by arthropod vectors whose movement between individual hosts is influenced by foraging behavior. Insect foraging has been shown to depend on both the quality of hosts and the distances between hosts. Given the spatial distribution of host plants and individual variation in quality, vector foraging patterns may therefore produce predictable variation in exposure to pathogens. We develop a "gravity" model to describe the spatial spread of a vector-borne plant pathogen from underlying models of insect foraging in response to host quality using the pollinator-borne smut fungus Microbotryum violaceum as a case study. We fit the model to spatially explicit time series of M. violaceum transmission in replicate experimental plots of the white campion Silene latifolia. The gravity model provides a better fit than a mean field model or a model with only distance-dependent transmission. The results highlight the importance of active vector foraging in generating spatial patterns of disease incidence and for pathogen-mediated selection for floral traits.
Assogba, Benoît S; Djogbénou, Luc S; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène
2015-10-05
Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1(R) allele), is already present. Furthermore, a duplicated allele (ace-1(D)) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1(D) confers less resistance than ace-1(R), the high fitness cost associated with ace-1(R) is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management.
Assogba, Benoît S.; Djogbénou, Luc S.; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène
2015-01-01
Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1R allele), is already present. Furthermore, a duplicated allele (ace-1D) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1D confers less resistance than ace-1R, the high fitness cost associated with ace-1R is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management. PMID:26434951
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gecow, Andrzej
On the way to simulating adaptive evolution of complex system describing a living object or human developed project, a fitness should be defined on node states or network external outputs. Feedbacks lead to circular attractors of these states or outputs which make it difficult to define a fitness. The main statistical effects of adaptive condition are the result of small change tendency and to appear, they only need a statistically correct size of damage initiated by evolutionary change of system. This observation allows to cut loops of feedbacks and in effect to obtain a particular statistically correct state instead ofmore » a long circular attractor which in the quenched model is expected for chaotic network with feedback. Defining fitness on such states is simple. We calculate only damaged nodes and only once. Such an algorithm is optimal for investigation of damage spreading i.e. statistical connections of structural parameters of initial change with the size of effected damage. It is a reversed-annealed method--function and states (signals) may be randomly substituted but connections are important and are preserved. The small damages important for adaptive evolution are correctly depicted in comparison to Derrida annealed approximation which expects equilibrium levels for large networks. The algorithm indicates these levels correctly. The relevant program in Pascal, which executes the algorithm for a wide range of parameters, can be obtained from the author.« less
Jin, Xin; Liu, Li; Chen, Yanqin; Dai, Qionghai
2017-05-01
This paper derives a mathematical point spread function (PSF) and a depth-invariant focal sweep point spread function (FSPSF) for plenoptic camera 2.0. Derivation of PSF is based on the Fresnel diffraction equation and image formation analysis of a self-built imaging system which is divided into two sub-systems to reflect the relay imaging properties of plenoptic camera 2.0. The variations in PSF, which are caused by changes of object's depth and sensor position variation, are analyzed. A mathematical model of FSPSF is further derived, which is verified to be depth-invariant. Experiments on the real imaging systems demonstrate the consistency between the proposed PSF and the actual imaging results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Rubab, E-mail: rubab@uw.edu
We present Spitzer IRAC 3.6–8 μ m and Multiband Imaging Photometer 24 μ m point-source catalogs for M31 and 15 other mostly large, star-forming galaxies at distances ∼3.5–14 Mpc, including M51, M83, M101, and NGC 6946. These catalogs contain ∼1 million sources including ∼859,000 in M31 and ∼116,000 in the other galaxies. They were created following the procedures described in Khan et al. through a combination of point-spread function (PSF) fitting and aperture photometry. These data products constitute a resource to improve our understanding of the IR-bright (3.6–24 μ m) point-source populations in crowded extragalactic stellar fields and to planmore » observations with the James Webb Space Telescope .« less
Source Finding in the Era of the SKA (Precursors): Aegean 2.0
NASA Astrophysics Data System (ADS)
Hancock, Paul J.; Trott, Cathryn M.; Hurley-Walker, Natasha
2018-03-01
In the era of the SKA precursors, telescopes are producing deeper, larger images of the sky on increasingly small time-scales. The greater size and volume of images place an increased demand on the software that we use to create catalogues, and so our source finding algorithms need to evolve accordingly. In this paper, we discuss some of the logistical and technical challenges that result from the increased size and volume of images that are to be analysed, and demonstrate how the Aegean source finding package has evolved to address these challenges. In particular, we address the issues of source finding on spatially correlated data, and on images in which the background, noise, and point spread function vary across the sky. We also introduce the concept of forced or prioritised fitting.
A data-centric approach to understanding the pricing of financial options
NASA Astrophysics Data System (ADS)
Healy, J.; Dixon, M.; Read, B.; Cai, F. F.
2002-05-01
We investigate what can be learned from a purely phenomenological study of options prices without modelling assumptions. We fitted neural net (NN) models to LIFFE ``ESX'' European style FTSE 100 index options using daily data from 1992 to 1997. These non-parametric models reproduce the Black-Scholes (BS) analytic model in terms of fit and performance measures using just the usual five inputs (S, X, t, r, IV). We found that adding transaction costs (bid-ask spread) to these standard five parameters gives a comparable fit and performance. Tests show that the bid-ask spread can be a statistically significant explanatory variable for option prices. The difference in option prices between the models with transaction costs and those without ranges from about -3.0 to +1.5 index points, varying with maturity date. However, the difference depends on the moneyness (S/X), being greatest in-the-money. This suggests that use of a five-factor model can result in a pricing difference of up to #10 to #30 per call option contract compared with modelling under transaction costs. We found that the influence of transaction costs varied between different yearly subsets of the data. Open interest is also a significant explanatory variable, but volume is not.
Diffusion in the presence of a local attracting factor: Theory and interdisciplinary applications.
Veermäe, Hardi; Patriarca, Marco
2017-06-01
In many complex diffusion processes the drift of random walkers is not caused by an external force, as in the case of Brownian motion, but by local variations of fitness perceived by the random walkers. In this paper, a simple but general framework is presented that describes such a type of random motion and may be of relevance in different problems, such as opinion dynamics, cultural spreading, and animal movement. To this aim, we study the problem of a random walker in d dimensions moving in the presence of a local heterogeneous attracting factor expressed in terms of an assigned position-dependent "attractiveness function." At variance with standard Brownian motion, the attractiveness function introduced here regulates both the advection and diffusion of the random walker, thus providing testable predictions for a specific form of fluctuation-relations. We discuss the relation between the drift-diffusion equation based on the attractiveness function and that describing standard Brownian motion, and we provide some explicit examples illustrating its relevance in different fields, such as animal movement, chemotactic diffusion, and social dynamics.
Diffusion in the presence of a local attracting factor: Theory and interdisciplinary applications
NASA Astrophysics Data System (ADS)
Veermäe, Hardi; Patriarca, Marco
2017-06-01
In many complex diffusion processes the drift of random walkers is not caused by an external force, as in the case of Brownian motion, but by local variations of fitness perceived by the random walkers. In this paper, a simple but general framework is presented that describes such a type of random motion and may be of relevance in different problems, such as opinion dynamics, cultural spreading, and animal movement. To this aim, we study the problem of a random walker in d dimensions moving in the presence of a local heterogeneous attracting factor expressed in terms of an assigned position-dependent "attractiveness function." At variance with standard Brownian motion, the attractiveness function introduced here regulates both the advection and diffusion of the random walker, thus providing testable predictions for a specific form of fluctuation-relations. We discuss the relation between the drift-diffusion equation based on the attractiveness function and that describing standard Brownian motion, and we provide some explicit examples illustrating its relevance in different fields, such as animal movement, chemotactic diffusion, and social dynamics.
Analytical-Based Partial Volume Recovery in Mouse Heart Imaging
NASA Astrophysics Data System (ADS)
Dumouchel, Tyler; deKemp, Robert A.
2011-02-01
Positron emission tomography (PET) is a powerful imaging modality that has the ability to yield quantitative images of tracer activity. Physical phenomena such as photon scatter, photon attenuation, random coincidences and spatial resolution limit quantification potential and must be corrected to preserve the accuracy of reconstructed images. This study focuses on correcting the partial volume effects that arise in mouse heart imaging when resolution is insufficient to resolve the true tracer distribution in the myocardium. The correction algorithm is based on fitting 1D profiles through the myocardium in gated PET images to derive myocardial contours along with blood, background and myocardial activity. This information is interpolated onto a 2D grid and convolved with the tomograph's point spread function to derive regional recovery coefficients enabling partial volume correction. The point spread function was measured by placing a line source inside a small animal PET scanner. PET simulations were created based on noise properties measured from a reconstructed PET image and on the digital MOBY phantom. The algorithm can estimate the myocardial activity to within 5% of the truth when different wall thicknesses, backgrounds and noise properties are encountered that are typical of healthy FDG mouse scans. The method also significantly improves partial volume recovery in simulated infarcted tissue. The algorithm offers a practical solution to the partial volume problem without the need for co-registered anatomic images and offers a basis for improved quantitative 3D heart imaging.
An application of synthetic seismicity in earthquake statistics - The Middle America Trench
NASA Technical Reports Server (NTRS)
Ward, Steven N.
1992-01-01
The way in which seismicity calculations which are based on the concept of fault segmentation incorporate the physics of faulting through static dislocation theory can improve earthquake recurrence statistics and hone the probabilities of hazard is shown. For the Middle America Trench, the spread parameters of the best-fitting lognormal or Weibull distributions (about 0.75) are much larger than the 0.21 intrinsic spread proposed in the Nishenko Buland (1987) hypothesis. Stress interaction between fault segments disrupts time or slip predictability and causes earthquake recurrence to be far more aperiodic than has been suggested.
The role of adaptive trans-generational plasticity in biological invasions of plants
USDA-ARS?s Scientific Manuscript database
Trans-generational plasticity (TGP) that confers greater offspring fitness is likely to be an important mechanism contributing to the spread of some invasive plant species. TGP is predicted for populations found in habitats with predictable spatial or temporal resource heterogeneity, and that have ...
Continuous Fluorescence Microphotolysis and Correlation Spectroscopy Using 4Pi Microscopy
Arkhipov, Anton; Hüve, Jana; Kahms, Martin; Peters, Reiner; Schulten, Klaus
2007-01-01
Continuous fluorescence microphotolysis (CFM) and fluorescence correlation spectroscopy (FCS) permit measurement of molecular mobility and association reactions in single living cells. CFM and FCS complement each other ideally and can be realized using identical equipment. So far, the spatial resolution of CFM and FCS was restricted by the resolution of the light microscope to the micrometer scale. However, cellular functions generally occur on the nanometer scale. Here, we develop the theoretical and computational framework for CFM and FCS experiments using 4Pi microscopy, which features an axial resolution of ∼100 nm. The framework, taking the actual 4Pi point spread function of the instrument into account, was validated by measurements on model systems, employing 4Pi conditions or normal confocal conditions together with either single- or two-photon excitation. In all cases experimental data could be well fitted by computed curves for expected diffusion coefficients, even when the signal/noise ratio was small due to the small number of fluorophores involved. PMID:17704168
Ghost suppression in image restoration filtering
NASA Technical Reports Server (NTRS)
Riemer, T. E.; Mcgillem, C. D.
1975-01-01
An optimum image restoration filter is described in which provision is made to constrain the spatial extent of the restoration function, the noise level of the filter output and the rate of falloff of the composite system point-spread away from the origin. Experimental results show that sidelobes on the composite system point-spread function produce ghosts in the restored image near discontinuities in intensity level. By redetermining the filter using a penalty function that is zero over the main lobe of the composite point-spread function of the optimum filter and nonzero where the point-spread function departs from a smoothly decaying function in the sidelobe region, a great reduction in sidelobe level is obtained. Almost no loss in resolving power of the composite system results from this procedure. By iteratively carrying out the same procedure even further reductions in sidelobe level are obtained. Examples of original and iterated restoration functions are shown along with their effects on a test image.
Don't put all your eggs in one nest: spread them and cut time at risk.
Andersson, Malte; Åhlund, Matti
2012-09-01
In many egg-laying animals, some females spread their clutch among several nests. The fitness effects of this reproductive tactic are obscure. Using mathematical modeling and field observations, we analyze an unexplored benefit of egg spreading in brood parasitic and other breeding systems: reduced time at risk for offspring. If a clutch takes many days to lay until incubation and embryo development starts after the last egg, by spreading her eggs a parasitic female can reduce offspring time in the vulnerable nest at risk of predation or other destruction. The model suggests that she can achieve much of this benefit by spreading her eggs among a few nests, even if her total clutch is large. Field data from goldeneye ducks Bucephala clangula show that egg spreading enables a fecund female to lay a clutch that is much larger than average without increasing offspring time at risk in a nest. This advantage increases with female condition (fecundity) and can markedly raise female reproductive success. These results help explain the puzzle of nesting parasites in some precocial birds, which lay eggs in the nests of other females before laying eggs in their own nest. Risk reduction by egg spreading may also play a role in the evolution of other breeding systems and taxa-for instance, polyandry with male parental care in some birds and fishes.
Characteristics of Solar Energetic Ions as a Function of Longitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M., E-mail: cohen@srl.caltech.edu
Since the 2006 launch of STEREO , multi-spacecraft studies have yielded several surprising results regarding the spread of solar energetic particles (SEPs) within the inner heliosphere. We have investigated the role of energy and ridigity, using ACE and STEREO 10 MeV n{sup −1} oxygen data to identify 41 large SEP events observed by two or three spacecraft. We calculated fluence spectra from ∼0.1 to >10 MeV n{sup −1} for H, He, O, and Fe for each event at the observing spacecraft (including SOHO and GOES ). The particle fluences at 0.3, 1, and 10 MeV n{sup −1} were examined asmore » a function of the distance between the associated solar flare longitude and the spacecraft magnetic footpoints at the Sun to determine the longitudinal spread of particles and study how the distribution centers and widths depend on energy and charge-to-mass (Q/M) for the first time. On average, the three-spacecraft event distributions were centered at 22 ± 4° west of the flare site and were 43 ± 1° wide, though there was substantial variability, while the fit to the aggregate of the two-spacecraft event fluences yielded significantly wider distributions at 0.3 and 1 MeV n{sup −1}. The widths derived from both the three- and two-spacecraft events show an energy dependence with distributions narrowing with increasing energy, consistent with lower energy ions experiencing more field line co-rotation, or being accelerated over a larger portion of the CME-driven shock or for longer times as the shock expands. Surprisingly, no clear evidence was found for a Q/M dependence to the widths or centers suggesting that rigidity-related processes are not the dominant means of spreading particles in longitude.« less
NASA Astrophysics Data System (ADS)
Gardner, Patrick J.; Roggemann, Michael C.; Welsh, Byron M.; Bowersox, Rodney D.; Luke, Theodore E.
1997-04-01
A lateral shearing interferometer was used to measure the slope of perturbed wave fronts after they propagated through a He N 2 mixing layer in a rectangular channel. Slope measurements were used to reconstruct the phase of the turbulence-corrupted wave front. The random phase fluctuations induced by the mixing layer were captured in a large ensemble of wave-front measurements. Phase structure functions, computed from the reconstructed phase surfaces, were stationary in first increments. A five-thirds power law is shown to fit streamwise and cross-stream slices of the structure function, analogous to the Kolmogorov model for isotropic turbulence, which describes the structure function with a single parameter. Strehl ratios were computed from the phase structure functions and compared with a measured experiment obtained from simultaneous point-spread function measurements. Two additional Strehl ratios were calculated by using classical estimates that assume statistical isotropy throughout the flow. The isotropic models are a reasonable estimate of the optical degradation only within a few centimeters of the initial mixing, where the Reynolds number is low. At higher Reynolds numbers, Strehl ratios calculated from the structure functions match the experiment much better than Strehl ratio calculations that assume isotropic flow.
Blind deconvolution post-processing of images corrected by adaptive optics
NASA Astrophysics Data System (ADS)
Christou, Julian C.
1995-08-01
Experience with the adaptive optics system at the Starfire Optical Range has shown that the point spread function is non-uniform and varies both spatially and temporally as well as being object dependent. Because of this, the application of a standard linear and non-linear deconvolution algorithms make it difficult to deconvolve out the point spread function. In this paper we demonstrate the application of a blind deconvolution algorithm to adaptive optics compensated data where a separate point spread function is not needed.
Ichihashi, Norikazu; Aita, Takuyo; Motooka, Daisuke; Nakamura, Shota; Yomo, Tetsuya
2015-12-01
Genetic and phenotypic diversity are the basis of evolution. Despite their importance, however, little is known about how they change over the course of evolution. In this study, we analyzed the dynamics of the adaptive evolution of a simple evolvable artificial cell-like system using single-molecule real-time sequencing technology that reads an entire single artificial genome. We found that the genomic RNA population increases in fitness intermittently, correlating with a periodic pattern of genetic and fitness diversity produced by repeated diversification and domination. In the diversification phase, a genomic RNA population spreads within a genetic space by accumulating mutations until mutants with higher fitness are generated, resulting in an increase in fitness diversity. In the domination phase, the mutants with higher fitness dominate, decreasing both the fitness and genetic diversity. This study reveals the dynamic nature of genetic and fitness diversity during adaptive evolution and demonstrates the utility of a simplified artificial cell-like system to study evolution at an unprecedented resolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Guidelines Urge Exercise for Cancer Patients, Survivors
The benefits of exercise are well documented in a number of cancers. A panel of experts in cancer, fitness, obesity, and exercise training convened by the American College of Sports Medicine is spreading what they believe to be one of the most important messages for cancer patients and survivors: Avoid inactivity.
The Role of Evolutionary Intermediates in the Host Adaptation of Canine Parvovirus
Stucker, Karla M.; Pagan, Israel; Cifuente, Javier O.; Kaelber, Jason T.; Lillie, Tyler D.; Hafenstein, Susan; Holmes, Edward C.
2012-01-01
The adaptation of viruses to new hosts is a poorly understood process likely involving a variety of viral structures and functions that allow efficient replication and spread. Canine parvovirus (CPV) emerged in the late 1970s as a host-range variant of a virus related to feline panleukopenia virus (FPV). Within a few years of its emergence in dogs, there was a worldwide replacement of the initial virus strain (CPV type 2) by a variant (CPV type 2a) characterized by four amino acid differences in the capsid protein. However, the evolutionary processes that underlie the acquisition of these four mutations, as well as their effects on viral fitness, both singly and in combination, are still uncertain. Using a comprehensive experimental analysis of multiple intermediate mutational combinations, we show that these four capsid mutations act in concert to alter antigenicity, cell receptor binding, and relative in vitro growth in feline cells. Hence, host adaptation involved complex interactions among both surface-exposed and buried capsid mutations that together altered cell infection and immune escape properties of the viruses. Notably, most intermediate viral genotypes containing different combinations of the four key amino acids possessed markedly lower fitness than the wild-type viruses. PMID:22114336
ABISM: an interactive image quality assessment tool for adaptive optics instruments
NASA Astrophysics Data System (ADS)
Girard, Julien H.; Tourneboeuf, Martin
2016-07-01
ABISM (Automatic Background Interactive Strehl Meter) is a interactive tool to evaluate the image quality of astronomical images. It works on seeing-limited point spread functions (PSF) but was developed in particular for diffraction-limited PSF produced by adaptive optics (AO) systems. In the VLT service mode (SM) operations framework, ABISM is designed to help support astronomers or telescope and instruments operators (TIOs) to quickly measure the Strehl ratio (SR) during or right after an observing block (OB) to evaluate whether it meets the requirements/predictions or whether is has to be repeated and will remain in the SM queue. It's a Python-based tool with a graphical user interface (GUI) that can be used with little AO knowledge. The night astronomer (NA) or Telescope and Instrument Operator (TIO) can launch ABISM in one click and the program is able to read keywords from the FITS header to avoid mistakes. A significant effort was also put to make ABISM as robust (and forgiven) with a high rate of repeatability. As a matter of fact, ABISM is able to automatically correct for bad pixels, eliminate stellar neighbours and estimate/fit properly the background, etc.
Predictive Validation of an Influenza Spread Model
Hyder, Ayaz; Buckeridge, David L.; Leung, Brian
2013-01-01
Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive ability. PMID:23755236
Cretaceous to present kinematics of the Indian, African and Seychelles plates
NASA Astrophysics Data System (ADS)
Eagles, Graeme; Hoang, Ha H.
2014-01-01
An iterative inverse model of seafloor spreading data from the Mascarene and Madagascar basins and the flanks of the Carlsberg Ridge describes a continuous history of Indian-African Plate divergence since 84 Ma. Visual-fit modelling of conjugate magnetic anomaly data from near the Seychelles platform and Laxmi Ridge documents rapid rotation of a Seychelles Plate about a nearby Euler pole in Palaeocene times. As the Euler pole migrated during this rotation, the Amirante Trench on the western side of the plate accommodated first convergence and later divergence with the African Plate. The unusual present-day morphology of the Amirante Trench and neighbouring Amirante Banks can be related to crustal thickening by thrusting and folding during the convergent phase and the subsequent development of a spreading centre with a median valley during the divergent phase. The model fits FZ trends in the north Arabian and east Somali basins, suggesting that they formed in India-Africa Plate divergence. Seafloor fabric in and between the basins shows that they initially hosted a segmented spreading ridge that accommodated slow plate divergence until 71-69 Ma, and that upon arrival of the Deccan-Réunion plume and an increase to faster plate divergence rates in the period 69-65 Ma, segments of the ridge lengthened and propagated. Ridge propagation into the Indian continental margin led first to the formation of the Laxmi Basin, which accompanied extensive volcanism onshore at the Deccan Traps and offshore at the Saurashtra High and Somnath Ridge. A second propagation episode initiated the ancestral Carlsberg Ridge at which Seychelles-India and India-Africa Plate motions were accommodated. With the completion of this propagation, the plate boundaries in the Mascarene Basin were abandoned. Seafloor spreading between this time and the present has been accommodated solely at the Carlsberg Ridge.
Respiratory source control using a surgical mask: An in vitro study.
Patel, Rajeev B; Skaria, Shaji D; Mansour, Mohamed M; Smaldone, Gerald C
2016-07-01
Cough etiquette and respiratory hygiene are forms of source control encouraged to prevent the spread of respiratory infection. The use of surgical masks as a means of source control has not been quantified in terms of reducing exposure to others. We designed an in vitro model using various facepieces to assess their contribution to exposure reduction when worn at the infectious source (Source) relative to facepieces worn for primary (Receiver) protection, and the factors that contribute to each. In a chamber with various airflows, radiolabeled aerosols were exhaled via a ventilated soft-face manikin head using tidal breathing and cough (Source). Another manikin, containing a filter, quantified recipient exposure (Receiver). The natural fit surgical mask, fitted (SecureFit) surgical mask and an N95-class filtering facepiece respirator (commonly known as an "N95 respirator") with and without a Vaseline-seal were tested. With cough, source control (mask or respirator on Source) was statistically superior to mask or unsealed respirator protection on the Receiver (Receiver protection) in all environments. To equal source control during coughing, the N95 respirator must be Vaseline-sealed. During tidal breathing, source control was comparable or superior to mask or respirator protection on the Receiver. Source control via surgical masks may be an important adjunct defense against the spread of respiratory infections. The fit of the mask or respirator, in combination with the airflow patterns in a given setting, are significant contributors to source control efficacy. Future clinical trials should include a surgical mask source control arm to assess the contribution of source control in overall protection against airborne infection.
Examination of the wind speed limit function in the Rothermel surface fire spread model
Patricia L. Andrews; Miguel G. Cruz; Richard C. Rothermel
2013-01-01
The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is...
Cardiorespiratory Fitness and Cognitive Function in Midlife: Neuroprotection or Neuroselection?
Belsky, Daniel W.; Caspi, Avshalom; Israel, Salomon; Blumenthal, James A.; Poulton, Richie; Moffitt, Terrie E.
2015-01-01
Objective To determine if better cognitive functioning at midlife among more physically fit individuals reflects “neuroprotection,” in which fitness protects against age-related cognitive decline, or “neuroselection,” in which children with higher cognitive functioning select into more active lifestyles. Methods Children in the Dunedin Longitudinal Study (N=1,037) completed the Wechsler Intelligence Scales and the Trail-Making, Rey-Delayed-Recall, and Grooved-Pegboard tasks as children and again at midlife (age-38). Adult cardiorespiratory fitness was assessed using a submaximal exercise test to estimate maximum-oxygen-consumption-adjusted-for-body-weight in milliliters/minute/kilogram (VO2max). We tested if more-fit individuals had better cognitive functioning than their less-fit counterparts (which could be consistent with neuroprotection), and if better childhood cognitive functioning predisposed to better adult cardiorespiratory fitness (neuroselection). Finally, we examined possible mechanisms of neuroselection. Results Participants with better cardiorespiratory fitness had higher cognitive test scores at midlife. However, fitness-associated advantages in cognitive functioning were present already in childhood. After accounting for childhood-baseline performance on the same cognitive tests, there was no association between cardiorespiratory fitness and midlife cognitive functioning. Socioeconomic and health advantages in childhood, and healthier lifestyles during young adulthood explained most of the association between childhood cognitive functioning and adult cardiorespiratory fitness. Interpretation We found no evidence for a neuroprotective effect of cardiorespiratory fitness as of midlife. Instead, children with better cognitive functioning are selecting into healthier lives. Fitness interventions may enhance cognitive functioning. But, observational and experimental studies testing neuroprotective effects of physical fitness should consider confounding by neuroselection. PMID:25601795
Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness
Manokaran, Gayathri; Finol, Esteban; Wang, Chunling; Gunaratne, Jayantha; Bahl, Justin; Ong, Eugenia Z.; Tan, Hwee Cheng; Sessions, October M.; Ward, Alex M.; Gubler, Duane J.; Harris, Eva; Garcia-Blanco, Mariano A.; Ooi, Eng Eong
2016-01-01
The global spread of dengue virus (DENV) infections has increased viral genetic diversity, some of which appears associated with greater epidemic potential. The mechanisms governing viral fitness in epidemiological settings, however, remain poorly defined. We identified a determinant of fitness in a foreign dominant (PR-2B) DENV serotype 2 (DENV-2) clade, which emerged during the 1994 epidemic in Puerto Rico and replaced an endemic (PR-1) DENV-2 clade. The PR-2B DENV-2 produced increased levels of subgenomic flavivirus RNA (sfRNA) relative to genomic RNA during replication. PR-2B sfRNA showed sequence-dependent binding to and prevention of tripartite motif 25 (TRIM25) deubiquitylation, which is critical for sustained and amplified retinoic acid–inducible gene 1 (RIG-I)–induced type I interferon expression. Our findings demonstrate a distinctive viral RNA–host protein interaction to evade the innate immune response for increased epidemiological fitness. PMID:26138103
A fringe projector-based study of the Brighter-Fatter Effect in LSST CCDs
Gilbertson, W.; Nomerotski, A.; Takacs, P.
2017-09-07
In order to achieve the goals of the Large Synoptic Survey Telescope for Dark Energy science requires a detailed understanding of CCD sensor effects. One such sensor effect is the Point Spread Function (PSF) increasing with flux, alternatively called the `Brighter-Fatter Effect.' Here a novel approach was tested to perform the PSF measurements in the context of the Brighter-Fatter Effect employing a Michelson interferometer to project a sinusoidal fringe pattern onto the CCD. The Brighter-Fatter effect predicts that the fringe pattern should become asymmetric in the intensity pattern as the brighter peaks corresponding to a larger flux are smeared bymore » a larger PSF. By fitting the data with a model that allows for a changing PSF, the strength of the Brighter-Fatter effect can be evaluated.« less
A fringe projector-based study of the Brighter-Fatter Effect in LSST CCDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbertson, W.; Nomerotski, A.; Takacs, P.
In order to achieve the goals of the Large Synoptic Survey Telescope for Dark Energy science requires a detailed understanding of CCD sensor effects. One such sensor effect is the Point Spread Function (PSF) increasing with flux, alternatively called the `Brighter-Fatter Effect.' Here a novel approach was tested to perform the PSF measurements in the context of the Brighter-Fatter Effect employing a Michelson interferometer to project a sinusoidal fringe pattern onto the CCD. The Brighter-Fatter effect predicts that the fringe pattern should become asymmetric in the intensity pattern as the brighter peaks corresponding to a larger flux are smeared bymore » a larger PSF. By fitting the data with a model that allows for a changing PSF, the strength of the Brighter-Fatter effect can be evaluated.« less
Objective for monitoring the corona discharge
NASA Astrophysics Data System (ADS)
Obrezkov, Andrey; Rodionov, Andrey Yu.; Pisarev, Viktor N.; Chivanov, Alexsey N.; Baranov, Yuri P.; Korotaev, Valery V.
2016-04-01
Remote optoelectronic probing is one of the most actual aspects of overhead electric line maintenances. By installing such systems on a helicopter (for example) it becomes possible to monitor overhead transmission line status and to search damaged parts of the lines. Thermal and UV-cameras are used for more effective diagnostic. UV-systems are fitted with filters, that attenuate visible spectrum, which is an undesired type of signal. Also these systems have a wide view angle for better view and proper diagnostics. For even more effectiveness, it is better to use several spectral channels: like UV and IR. Such spectral selection provides good noise reduction. Experimental results of spectral parameters of the wide view angle multispectral objective for such systems are provided in this report. There is also data on point spread function, UV and IR scattering index data and technical requirements for detectors.
The CHARIS Integral Field Spectrograph with SCExAO: Data Reduction and Performance
NASA Astrophysics Data System (ADS)
Kasdin, N. Jeremy; Groff, Tyler; Brandt, Timothy; Currie, Thayne; Rizzo, Maxime; Chilcote, Jeffrey K.; Guyon, Olivier; Jovanovic, Nemanja; Lozi, Julien; Norris, Barnaby; Tamura, Motohide
2018-01-01
We summarize the data reduction pipeline and on-sky performance of the CHARIS Integral Field Spectrograph behind the SCExAO Adaptive Optics system on the Subaru Telescope. The open-source pipeline produces data cubes from raw detector reads using a Χ^2-based spectral extraction technique. It implements a number of advances, including a fit to the full nonlinear pixel response, suppression of up to a factor of ~2 in read noise, and deconvolution of the spectra with the line-spread function. The CHARIS team is currently developing the calibration and postprocessing software that will comprise the second component of the data reduction pipeline. Here, we show a range of CHARIS images, spectra, and contrast curves produced using provisional routines. CHARIS is now characterizing exoplanets simultaneously across the J, H, and K bands.
Stellar photometry with the Wide Field/Planetary Camera of the Hubble Space Telescope
NASA Astrophysics Data System (ADS)
Holtzman, Jon A.
1990-07-01
Simulations of Wide Field/Planetary Camera (WF/PC) images are analyzed in order to discover the most effective techniques for stellar photometry and to evaluate the accuracy and limitations of these techniques. The capabilities and operation of the WF/PC and the simulations employed in the study are described. The basic techniques of stellar photometry and methods to improve these techniques for the WF/PC are discussed. The correct parameters for star detection, aperture photometry, and point-spread function (PSF) fitting with the DAOPHOT software of Stetson (1987) are determined. Consideration is given to undersampling of the stellar images by the detector; variations in the PSF; and the crowding of the stellar images. It is noted that, with some changes DAOPHOT, is able to generate photometry almost to the level of photon statistics.
A search for novae in M 31 globular clusters
NASA Astrophysics Data System (ADS)
Ciardullo, Robin; Tamblyn, Peter; Phillips, A. C.
1990-10-01
By combining a local sky-fitting algorithm with a Fourier point-spread-function matching technique, nova outbursts have been searched for inside 54 of the globular clusters contained on the Ciardullo et al. (1987 and 1990) H-alpha survey frames of M 31. Over a mean effective survey time of about 2.0 years, no cluster exhibited a magnitude increase indicative of a nova explosion. If the cataclysmic variables (CVs) contained within globular clusters are similar to those found in the field, then these data imply that the overdensity of CVs within globulars is at least several times less than that of the high-luminosity X-ray sources. If tidal capture is responsible for the high density of hard binaries within globulars, then the probability of capturing condensed objects inside globular clusters may depend strongly on the mass of the remnant.
VizieR Online Data Catalog: Optical/NIR light curves of SN 2009ib (Takats+, 2015)
NASA Astrophysics Data System (ADS)
Takats, K.; Pignata, G.; Pumo, M. L.; Paillas, E.; Zampieri, L.; Elias-Rosa, N.; Benetti, S.; Bufano, F.; Cappellaro, E.; Ergon, M.; Fraser, M.; Hamuy, M.; Inserra, C.; Kankare, E.; Smartt, S. J.; Stritzinger, M. D.; van Dyk, S. D.; Haislip, J. B.; Lacluyze, A. P.; Moore, J. P.; Reichart, D.
2017-11-01
Optical photometry was collected using multiple telescopes with UBVRI and u'g'r'i'z' filters, covering the phases between 13 and 262d after explosion. The basic reduction steps of the images (such as bias-subtraction, overscan-correction, flat-fielding) were carried out using the standard IRAF tasks. The photometric measurement of the SN was performed using the point-spread function (PSF) fitting technique via the SNOOPY package in IRAF. Near-infrared photometry was obtained using the Rapid Eye Mount (REM) telescope in JH bands. Dithered images of the SN field were taken in multiple sequences of five. The object images were dark- and flat-field corrected, combined to create sky images then the sky images were subtracted from the object images. The images were then registered and combined. (3 data files).
Assessing the role of spatial correlations during collective cell spreading
Treloar, Katrina K.; Simpson, Matthew J.; Binder, Benjamin J.; McElwain, D. L. Sean; Baker, Ruth E.
2014-01-01
Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher's equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations. PMID:25026987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malapit, Giovanni M.; Department of Physical Sciences, University of the Philippines Baguio, Baguio City 2600; Mahinay, Christian Lorenz S.
2012-02-15
A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into themore » data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.« less
NASA Astrophysics Data System (ADS)
Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide; Christiansen, Ove
2018-02-01
We present an approach to treat sets of general fit-basis functions in a single uniform framework, where the functional form is supplied on input, i.e., the use of different functions does not require new code to be written. The fit-basis functions can be used to carry out linear fits to the grid of single points, which are generated with an adaptive density-guided approach (ADGA). A non-linear conjugate gradient method is used to optimize non-linear parameters if such are present in the fit-basis functions. This means that a set of fit-basis functions with the same inherent shape as the potential cuts can be requested and no other choices with regards to the fit-basis functions need to be taken. The general fit-basis framework is explored in relation to anharmonic potentials for model systems, diatomic molecules, water, and imidazole. The behaviour and performance of Morse and double-well fit-basis functions are compared to that of polynomial fit-basis functions for unsymmetrical single-minimum and symmetrical double-well potentials. Furthermore, calculations for water and imidazole were carried out using both normal coordinates and hybrid optimized and localized coordinates (HOLCs). Our results suggest that choosing a suitable set of fit-basis functions can improve the stability of the fitting routine and the overall efficiency of potential construction by lowering the number of single point calculations required for the ADGA. It is possible to reduce the number of terms in the potential by choosing the Morse and double-well fit-basis functions. These effects are substantial for normal coordinates but become even more pronounced if HOLCs are used.
Miller, Daniel P; Hutcherson, Justin A; Wang, Yan; Nowakowska, Zuzanna M; Potempa, Jan; Yoder-Himes, Deborah R; Scott, David A; Whiteley, Marvin; Lamont, Richard J
2017-01-01
Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis , and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq). Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism.
Biner, Olivier; Trachsel, Christian; Moser, Aline; Kopp, Lukas; Langenegger, Nicolas; Kämpfer, Urs; von Ballmoos, Christoph; Nentwig, Wolfgang; Schürch, Stefan; Schaller, Johann; Kuhn-Nentwig, Lucia
2015-01-01
Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40-60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well the current phylogenetic idea on a more isolated position of these families and can perhaps be explained by specialized prey catching techniques.
Spatio-temporal analysis of an HLB epidemic in Florida and implications for spread.
USDA-ARS?s Scientific Manuscript database
Data for Huanglongbing (HLB) epidemics was collected during 5 assessment dates over a 2-year period from 11, 4-ha commercial citrus blocks in Florida. Data were analyzed for regional spatial characteristics via Ripley’s K analyses. Data were fitted to the logistic and Gompertz temporal models, the...
Polynomial Expressions for Estimating Elastic Constants From the Resonance of Circular Plates
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.; Singh, Abhishek
2005-01-01
Two approaches were taken to make convenient spread sheet calculations of elastic constants from resonance data and the tables in ASTM C1259 and E1876: polynomials were fit to the tables; and an automated spread sheet interpolation routine was generated. To compare the approaches, the resonant frequencies of circular plates made of glass, hardened maraging steel, alpha silicon carbide, silicon nitride, tungsten carbide, tape cast NiO-YSZ, and zinc selenide were measured. The elastic constants, as calculated via the polynomials and linear interpolation of the tabular data in ASTM C1259 and E1876, were found comparable for engineering purposes, with the differences typically being less than 0.5 percent. Calculation of additional v values at t/R between 0 and 0.2 would allow better curve fits. This is not necessary for common engineering purposes, however, it might benefit the testing of emerging thin structures such as fuel cell electrolytes, gas conversion membranes, and coatings when Poisson s ratio is less than 0.15 and high precision is needed.
García-Pérez, Miguel A.; Alcalá-Quintana, Rocío
2017-01-01
Psychophysical data from dual-presentation tasks are often collected with the two-alternative forced-choice (2AFC) response format, asking observers to guess when uncertain. For an analytical description of performance, psychometric functions are then fitted to data aggregated across the two orders/positions in which stimuli were presented. Yet, order effects make aggregated data uninterpretable, and the bias with which observers guess when uncertain precludes separating sensory from decisional components of performance. A ternary response format in which observers are also allowed to report indecision should fix these problems, but a comparative analysis with the 2AFC format has never been conducted. In addition, fitting ternary data separated by presentation order poses serious challenges. To address these issues, we extended the indecision model of psychophysical performance to accommodate the ternary, 2AFC, and same–different response formats in detection and discrimination tasks. Relevant issues for parameter estimation are also discussed along with simulation results that document the superiority of the ternary format. These advantages are demonstrated by fitting the indecision model to published detection and discrimination data collected with the ternary, 2AFC, or same–different formats, which had been analyzed differently in the sources. These examples also show that 2AFC data are unsuitable for testing certain types of hypotheses. matlab and R routines written for our purposes are available as Supplementary Material, which should help spread the use of the ternary format for dependable collection and interpretation of psychophysical data. PMID:28747893
Non-Orthogonality of Seafloor Spreading: A New Look at Fast Spreading Centers
NASA Astrophysics Data System (ADS)
Zhang, T.; Gordon, R. G.
2015-12-01
Most of Earth's surface is created by seafloor spreading. While most seafloor spreading is orthogonal, that is, the strike of mid-ocean ridge segments is perpendicular to nearby transform faults, examples of significant non-orthogonality have been noted since the 1970s, in particular in regions of slow seafloor spreading such as the western Gulf of Aden with non-orthogonality up to 45°. In contrast, here we focus on fast and ultra-fast seafloor spreading along the East Pacific Rise. To estimate non-orthogonality, we compare ridge-segment strikes with the direction of plate motion determined from the angular velocity that best fits all the data along the boundary of a single plate pair [DeMets et al., 2010]. The advantages of this approach include greater accuracy and the ability to estimate non-orthogonality where there are no nearby transform faults. Estimating the strikes of fast-spreading mid-ocean ridge segments present several challenges as non-transform offsets on various scales affect the estimate of the strike. While spreading is orthogonal or nearly orthogonal along much of the East Pacific Rise, some ridge segments along the Pacific-Nazca boundary near 30°S and near 16°S-22°S deviate from orthogonality by as much as 6°-12° even when we exclude the portions of mid-ocean ridge segments involved in overlapping spreading centers. Thus modest but significant non-orthogonality occurs where seafloor spreading is the fastest on the planet. If a plume lies near the ridge segment, we assume it contributes to magma overpressure along the ridge segment [Abelson & Agnon, 1997]. We further assume that the contribution to magma overpressure is proportional to the buoyancy flux of the plume [Sleep, 1990] and inversely proportional to the distance between the mid-ocean ridge segment and a given plume. We find that the non-orthogonal angle tends to decrease with increasing spreading rate and with increasing distance between ridge segment and plume.
Robinson, Stacie J.; Samuel, Michael D.; Rolley, Robert E.; Shelton, Paul
2013-01-01
Animal movement across the landscape plays a critical role in the ecology of infectious wildlife diseases. Dispersing animals can spread pathogens between infected areas and naïve populations. While tracking free-ranging animals over the geographic scales relevant to landscape-level disease management is challenging, landscape features that influence gene flow among wildlife populations may also influence the contact rates and disease spread between populations. We used spatial diffusion and barriers to white-tailed deer gene flow, identified through landscape genetics, to model the distribution of chronic wasting disease (CWD) in the infected region of southern Wisconsin and northern Illinois, USA. Our generalized linear model showed that risk of CWD infection declined exponentially with distance from current outbreaks, and inclusion of gene flow barriers dramatically improved fit and predictive power of the model. Our results indicate that CWD is spreading across the Midwestern landscape from these two endemic foci, but spread is strongly influenced by highways and rivers that also reduce deer gene flow. We used our model to plot a risk map, providing important information for CWD management by identifying likely routes of disease spread and providing a tool for prioritizing disease monitoring and containment efforts. The current analysis may serve as a framework for modeling future disease risk drawing on genetic information to investigate barriers to spread and extending management and monitoring beyond currently affected regions.
Cunniffe, Nik J; Laranjeira, Francisco F; Neri, Franco M; DeSimone, R Erik; Gilligan, Christopher A
2014-08-01
A spatially-explicit, stochastic model is developed for Bahia bark scaling, a threat to citrus production in north-eastern Brazil, and is used to assess epidemiological principles underlying the cost-effectiveness of disease control strategies. The model is fitted via Markov chain Monte Carlo with data augmentation to snapshots of disease spread derived from a previously-reported multi-year experiment. Goodness-of-fit tests strongly supported the fit of the model, even though the detailed etiology of the disease is unknown and was not explicitly included in the model. Key epidemiological parameters including the infection rate, incubation period and scale of dispersal are estimated from the spread data. This allows us to scale-up the experimental results to predict the effect of the level of initial inoculum on disease progression in a typically-sized citrus grove. The efficacies of two cultural control measures are assessed: altering the spacing of host plants, and roguing symptomatic trees. Reducing planting density can slow disease spread significantly if the distance between hosts is sufficiently large. However, low density groves have fewer plants per hectare. The optimum density of productive plants is therefore recovered at an intermediate host spacing. Roguing, even when detection of symptomatic plants is imperfect, can lead to very effective control. However, scouting for disease symptoms incurs a cost. We use the model to balance the cost of scouting against the number of plants lost to disease, and show how to determine a roguing schedule that optimises profit. The trade-offs underlying the two optima we identify-the optimal host spacing and the optimal roguing schedule-are applicable to many pathosystems. Our work demonstrates how a carefully parameterised mathematical model can be used to find these optima. It also illustrates how mathematical models can be used in even this most challenging of situations in which the underlying epidemiology is ill-understood.
Okasha, S; Martens, J
2016-03-01
Hamilton's original work on inclusive fitness theory assumed additivity of costs and benefits. Recently, it has been argued that an exact version of Hamilton's rule for the spread of a pro-social allele (rb > c) holds under nonadditive pay-offs, so long as the cost and benefit terms are defined as partial regression coefficients rather than pay-off parameters. This article examines whether one of the key components of Hamilton's original theory can be preserved when the rule is generalized to the nonadditive case in this way, namely that evolved organisms will behave as if trying to maximize their inclusive fitness in social encounters. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Kobayashi, Seiji
2002-05-10
A point-spread function (PSF) is commonly used as a model of an optical disk readout channel. However, the model given by the PSF does not contain the quadratic distortion generated by the photo-detection process. We introduce a model for calculating an approximation of the quadratic component of a signal. We show that this model can be further simplified when a read-only-memory (ROM) disk is assumed. We introduce an edge-spread function by which a simple nonlinear model of an optical ROM disk readout channel is created.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon, Stephanie M., E-mail: Stephanie.Leon@uth.tmc.edu; Wagner, Louis K.; Brateman, Libby F.
2014-11-01
Purpose: Monte Carlo simulations were performed with the goal of verifying previously published physical measurements characterizing scatter as a function of apparent thickness. A secondary goal was to provide a way of determining what effect tissue glandularity might have on the scatter characteristics of breast tissue. The overall reason for characterizing mammography scatter in this research is the application of these data to an image processing-based scatter-correction program. Methods: MCNPX was used to simulate scatter from an infinitesimal pencil beam using typical mammography geometries and techniques. The spreading of the pencil beam was characterized by two parameters: mean radial extentmore » (MRE) and scatter fraction (SF). The SF and MRE were found as functions of target, filter, tube potential, phantom thickness, and the presence or absence of a grid. The SF was determined by separating scatter and primary by the angle of incidence on the detector, then finding the ratio of the measured scatter to the total number of detected events. The accuracy of the MRE was determined by placing ring-shaped tallies around the impulse and fitting those data to the point-spread function (PSF) equation using the value for MRE derived from the physical measurements. The goodness-of-fit was determined for each data set as a means of assessing the accuracy of the physical MRE data. The effect of breast glandularity on the SF, MRE, and apparent tissue thickness was also considered for a limited number of techniques. Results: The agreement between the physical measurements and the results of the Monte Carlo simulations was assessed. With a grid, the SFs ranged from 0.065 to 0.089, with absolute differences between the measured and simulated SFs averaging 0.02. Without a grid, the range was 0.28–0.51, with absolute differences averaging −0.01. The goodness-of-fit values comparing the Monte Carlo data to the PSF from the physical measurements ranged from 0.96 to 1.00 with a grid and 0.65 to 0.86 without a grid. Analysis of the data suggested that the nongrid data could be better described by a biexponential function than the single exponential used here. The simulations assessing the effect of breast composition on SF and MRE showed only a slight impact on these quantities. When compared to a mix of 50% glandular/50% adipose tissue, the impact of substituting adipose or glandular breast compositions on the apparent thickness of the tissue was about 5%. Conclusions: The findings show agreement between the physical measurements published previously and the Monte Carlo simulations presented here; the resulting data can therefore be used more confidently for an application such as image processing-based scatter correction. The findings also suggest that breast composition does not have a major impact on the scatter characteristics of breast tissue. Application of the scatter data to the development of a scatter-correction software program can be simplified by ignoring the variations in density among breast tissues.« less
Di Giallonardo, Francesca; Geoghegan, Jemma L; Docherty, Douglas E; McLean, Robert G; Zody, Michael C; Qu, James; Yang, Xiao; Birren, Bruce W; Malboeuf, Christine M; Newman, Ruchi M; Ip, Hon S; Holmes, Edward C
2016-01-15
The introduction of West Nile virus (WNV) into North America in 1999 is a classic example of viral emergence in a new environment, with its subsequent dispersion across the continent having a major impact on local bird populations. Despite the importance of this epizootic, the pattern, dynamics, and determinants of WNV spread in its natural hosts remain uncertain. In particular, it is unclear whether the virus encountered major barriers to transmission, or spread in an unconstrained manner, and if specific viral lineages were favored over others indicative of intrinsic differences in fitness. To address these key questions in WNV evolution and ecology, we sequenced the complete genomes of approximately 300 avian isolates sampled across the United States between 2001 and 2012. Phylogenetic analysis revealed a relatively star-like tree structure, indicative of explosive viral spread in the United States, although with some replacement of viral genotypes through time. These data are striking in that viral sequences exhibit relatively limited clustering according to geographic region, particularly for those viruses sampled from birds, and no strong phylogenetic association with well-sampled avian species. The genome sequence data analyzed here also contain relatively little evidence for adaptive evolution, particularly of structural proteins, suggesting that most viral lineages are of similar fitness and that WNV is well adapted to the ecology of mosquito vectors and diverse avian hosts in the United States. In sum, the molecular evolution of WNV in North America depicts a largely unfettered expansion within a permissive host and geographic population with little evidence of major adaptive barriers. How viruses spread in new host and geographic environments is central to understanding the emergence and evolution of novel infectious diseases and for predicting their likely impact. The emergence of the vector-borne West Nile virus (WNV) in North America in 1999 represents a classic example of this process. Using approximately 300 new viral genomes sampled from wild birds, we show that WNV experienced an explosive spread with little geographical or host constraints within birds and relatively low levels of adaptive evolution. From its introduction into the state of New York, WNV spread across the United States, reaching California and Florida within 4 years, a migration that is clearly reflected in our genomic sequence data, and with a general absence of distinct geographical clusters of bird viruses. However, some geographically distinct viral lineages were found to circulate in mosquitoes, likely reflecting their limited long-distance movement compared to avian species. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
The effect of unresolved contaminant stars on the cross-matching of photometric catalogues
NASA Astrophysics Data System (ADS)
Wilson, Tom J.; Naylor, Tim
2017-07-01
A fundamental process in astrophysics is the matching of two photometric catalogues. It is crucial that the correct objects be paired, and that their photometry does not suffer from any spurious additional flux. We compare the positions of sources in Wide-field Infrared Survey Explorer (WISE), INT Photometric H α Survey, Two Micron All Sky Survey and AAVSO Photometric All Sky Survey with Gaia Data Release 1 astrometric positions. We find that the separations are described by a combination of a Gaussian distribution, wider than naively assumed based on their quoted uncertainties, and a large wing, which some authors ascribe to proper motions. We show that this is caused by flux contamination from blended stars not treated separately. We provide linear fits between the quoted Gaussian uncertainty and the core fit to the separation distributions. We show that at least one in three of the stars in the faint half of a given catalogue will suffer from flux contamination above the 1 per cent level when the density of catalogue objects per point spread function area is above approximately 0.005. This has important implications for the creation of composite catalogues. It is important for any closest neighbour matches as there will be a given fraction of matches that are flux contaminated, while some matches will be missed due to significant astrometric perturbation by faint contaminants. In the case of probability-based matching, this contamination affects the probability density function of matches as a function of distance. This effect results in up to 50 per cent fewer counterparts being returned as matches, assuming Gaussian astrometric uncertainties for WISE-Gaia matching in crowded Galactic plane regions, compared with a closest neighbour match.
Stubbendieck, Reed M.; Straight, Paul D.
2015-01-01
Bacteria have diverse mechanisms for competition that include biosynthesis of extracellular enzymes and antibiotic metabolites, as well as changes in community physiology, such as biofilm formation or motility. Considered collectively, networks of competitive functions for any organism determine success or failure in competition. How bacteria integrate different mechanisms to optimize competitive fitness is not well studied. Here we study a model competitive interaction between two soil bacteria: Bacillus subtilis and Streptomyces sp. Mg1 (S. Mg1). On an agar surface, colonies of B. subtilis suffer cellular lysis and progressive degradation caused by S. Mg1 cultured at a distance. We identify the lytic and degradative activity (LDA) as linearmycins, which are produced by S. Mg1 and are sufficient to cause lysis of B. subtilis. We obtained B. subtilis mutants spontaneously resistant to LDA (LDAR) that have visibly distinctive morphology and spread across the agar surface. Every LDAR mutant identified had a missense mutation in yfiJK, which encodes a previously uncharacterized two-component signaling system. We confirmed that gain-of-function alleles in yfiJK cause a combination of LDAR, changes in colony morphology, and motility. Downstream of yfiJK are the yfiLMN genes, which encode an ATP-binding cassette transporter. We show that yfiLMN genes are necessary for LDA resistance. The developmental phenotypes of LDAR mutants are genetically separable from LDA resistance, suggesting that the two competitive functions are distinct, but regulated by a single two-component system. Our findings suggest that a subpopulation of B. subtilis activate an array of defensive responses to counter lytic stress imposed by competition. Coordinated regulation of development and antibiotic resistance is a streamlined mechanism to promote competitive fitness of bacteria. PMID:26647299
Restoration of non-uniform exposure motion blurred image
NASA Astrophysics Data System (ADS)
Luo, Yuanhong; Xu, Tingfa; Wang, Ningming; Liu, Feng
2014-11-01
Restoring motion-blurred image is the key technologies in the opto-electronic detection system. The imaging sensors such as CCD and infrared imaging sensor, which are mounted on the motion platforms, quickly move together with the platforms of high speed. As a result, the images become blur. The image degradation will cause great trouble for the succeeding jobs such as objects detection, target recognition and tracking. So the motion-blurred images must be restoration before detecting motion targets in the subsequent images. On the demand of the real weapon task, in order to deal with targets in the complex background, this dissertation uses the new theories in the field of image processing and computer vision to research the new technology of motion deblurring and motion detection. The principle content is as follows: 1) When the prior knowledge about degradation function is unknown, the uniform motion blurred images are restored. At first, the blur parameters, including the motion blur extent and direction of PSF(point spread function), are estimated individually in domain of logarithmic frequency. The direction of PSF is calculated by extracting the central light line of the spectrum, and the extent is computed by minimizing the correction between the fourier spectrum of the blurred image and a detecting function. Moreover, in order to remove the strip in the deblurred image, windows technique is employed in the algorithm, which makes the deblurred image clear. 2) According to the principle of infrared image non-uniform exposure, a new restoration model for infrared blurred images is developed. The fitting of infrared image non-uniform exposure curve is performed by experiment data. The blurred images are restored by the fitting curve.
Respiratory source control using a surgical mask: An in vitro study
Patel, Rajeev B.; Skaria, Shaji D.; Mansour, Mohamed M.; Smaldone, Gerald C.
2016-01-01
ABSTRACT Cough etiquette and respiratory hygiene are forms of source control encouraged to prevent the spread of respiratory infection. The use of surgical masks as a means of source control has not been quantified in terms of reducing exposure to others. We designed an in vitro model using various facepieces to assess their contribution to exposure reduction when worn at the infectious source (Source) relative to facepieces worn for primary (Receiver) protection, and the factors that contribute to each. In a chamber with various airflows, radiolabeled aerosols were exhaled via a ventilated soft-face manikin head using tidal breathing and cough (Source). Another manikin, containing a filter, quantified recipient exposure (Receiver). The natural fit surgical mask, fitted (SecureFit) surgical mask and an N95-class filtering facepiece respirator (commonly known as an “N95 respirator”) with and without a Vaseline-seal were tested. With cough, source control (mask or respirator on Source) was statistically superior to mask or unsealed respirator protection on the Receiver (Receiver protection) in all environments. To equal source control during coughing, the N95 respirator must be Vaseline-sealed. During tidal breathing, source control was comparable or superior to mask or respirator protection on the Receiver. Source control via surgical masks may be an important adjunct defense against the spread of respiratory infections. The fit of the mask or respirator, in combination with the airflow patterns in a given setting, are significant contributors to source control efficacy. Future clinical trials should include a surgical mask source control arm to assess the contribution of source control in overall protection against airborne infection. PMID:26225807
dPotFit: A computer program to fit diatomic molecule spectral data to potential energy functions
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.
2017-01-01
This paper describes program dPotFit, which performs least-squares fits of diatomic molecule spectroscopic data consisting of any combination of microwave, infrared or electronic vibrational bands, fluorescence series, and tunneling predissociation level widths, involving one or more electronic states and one or more isotopologs, and for appropriate systems, second virial coefficient data, to determine analytic potential energy functions defining the observed levels and other properties of each state. Four families of analytical potential functions are available for fitting in the current version of dPotFit: the Expanded Morse Oscillator (EMO) function, the Morse/Long-Range (MLR) function, the Double-Exponential/Long-Range (DELR) function, and the 'Generalized Potential Energy Function' (GPEF) of Šurkus, which incorporates a variety of polynomial functional forms. In addition, dPotFit allows sets of experimental data to be tested against predictions generated from three other families of analytic functions, namely, the 'Hannover Polynomial' (or "X-expansion") function, and the 'Tang-Toennies' and Scoles-Aziz 'HFD', exponential-plus-van der Waals functions, and from interpolation-smoothed pointwise potential energies, such as those obtained from ab initio or RKR calculations. dPotFit also allows the fits to determine atomic-mass-dependent Born-Oppenheimer breakdown functions, and singlet-state Λ-doubling, or 2Σ splitting radial strength functions for one or more electronic states. dPotFit always reports both the 95% confidence limit uncertainty and the "sensitivity" of each fitted parameter; the latter indicates the number of significant digits that must be retained when rounding fitted parameters, in order to ensure that predictions remain in full agreement with experiment. It will also, if requested, apply a "sequential rounding and refitting" procedure to yield a final parameter set defined by a minimum number of significant digits, while ensuring no significant loss of accuracy in the predictions yielded by those parameters.
A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread.
Swan, Amanda; Hillen, Thomas; Bowman, John C; Murtha, Albert D
2018-05-01
Gliomas are primary brain tumours arising from the glial cells of the nervous system. The diffuse nature of spread, coupled with proximity to critical brain structures, makes treatment a challenge. Pathological analysis confirms that the extent of glioma spread exceeds the extent of the grossly visible mass, seen on conventional magnetic resonance imaging (MRI) scans. Gliomas show faster spread along white matter tracts than in grey matter, leading to irregular patterns of spread. We propose a mathematical model based on Diffusion Tensor Imaging, a new MRI imaging technique that offers a methodology to delineate the major white matter tracts in the brain. We apply the anisotropic diffusion model of Painter and Hillen (J Thoer Biol 323:25-39, 2013) to data from 10 patients with gliomas. Moreover, we compare the anisotropic model to the state-of-the-art Proliferation-Infiltration (PI) model of Swanson et al. (Cell Prolif 33:317-329, 2000). We find that the anisotropic model offers a slight improvement over the standard PI model. For tumours with low anisotropy, the predictions of the two models are virtually identical, but for patients whose tumours show higher anisotropy, the results differ. We also suggest using the data from the contralateral hemisphere to further improve the model fit. Finally, we discuss the potential use of this model in clinical treatment planning.
Expanding Choice: Tax Credits and Educational Access in Idaho
ERIC Educational Resources Information Center
Carpenter, Dick M., II
2011-01-01
The past 30 years have seen a steady expansion in the educational choices available to parents as school choice programs have spread around the country. Enabling parents to choose schools that fit their children's unique needs is a win-win-win: Research shows that such school choice policies benefit the children who participate, give traditional…
SU-E-T-259: Particle Swarm Optimization in Radial Dose Function Fitting for a Novel Iodine-125 Seed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, X; Duan, J; Popple, R
2014-06-01
Purpose: To determine the coefficients of bi- and tri-exponential functions for the best fit of radial dose functions of the new iodine brachytherapy source: Iodine-125 Seed AgX-100. Methods: The particle swarm optimization (PSO) method was used to search for the coefficients of the biand tri-exponential functions that yield the best fit to data published for a few selected radial distances from the source. The coefficients were encoded into particles, and these particles move through the search space by following their local and global best-known positions. In each generation, particles were evaluated through their fitness function and their positions were changedmore » through their velocities. This procedure was repeated until the convergence criterion was met or the maximum generation was reached. All best particles were found in less than 1,500 generations. Results: For the I-125 seed AgX-100 considered as a point source, the maximum deviation from the published data is less than 2.9% for bi-exponential fitting function and 0.2% for tri-exponential fitting function. For its line source, the maximum deviation is less than 1.1% for bi-exponential fitting function and 0.08% for tri-exponential fitting function. Conclusion: PSO is a powerful method in searching coefficients for bi-exponential and tri-exponential fitting functions. The bi- and tri-exponential models of Iodine-125 seed AgX-100 point and line sources obtained with PSO optimization provide accurate analytical forms of the radial dose function. The tri-exponential fitting function is more accurate than the bi-exponential function.« less
Spatial sorting promotes the spread of maladaptive hybridization
Lowe, Winsor H.; Muhlfeld, Clint C.; Allendorf, Fred W.
2015-01-01
Invasive hybridization is causing loss of biodiversity worldwide. The spread of such introgression can occur even when hybrids have reduced Darwinian fitness, which decreases the frequency of hybrids due to low survival or reproduction through time. This paradox can be partially explained by spatial sorting, where genotypes associated with dispersal increase in frequency at the edge of expansion, fueling further expansion and allowing invasive hybrids to increase in frequency through space rather than time. Furthermore, because all progeny of a hybrid will be hybrids (i.e., will possess genes from both parental taxa), nonnative admixture in invaded populations can increase even when most hybrid progeny do not survive. Broader understanding of spatial sorting is needed to protect native biodiversity.
Microgravity flame spread over thick solids in low velocity opposed flow
NASA Astrophysics Data System (ADS)
Wang, Shuangfeng; Zhu, Feng
2016-07-01
Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.
Tanga, Chrysantus Mbi; Khamis, Fathiya Mbarak; Tonnang, Henri E. Z.; Rwomushana, Ivan; Mosomtai, Gladys; Mohamed, Samira A.; Ekesi, Sunday
2018-01-01
Integrative taxonomy has resolved the species status of the potentially invasive Ceratitis rosa Karsch into two separate species with distinct ecological requirements: C. rosa “lowland type” and the newly described species Ceratitis quilicii De Meyer, Mwatawala & Virgilio sp. nov. “highland type”. Both species are tephritid pests threatening the production of horticultural crops in Africa and beyond. Studies were carried out by constructing thermal reaction norms for each life stage of both species at constant and fluctuating temperatures. Non-linear functions were fitted to continuously model species development, mortality, longevity and oviposition to establish phenology models that were stochastically simulated to estimate the life table parameters of each species. For spatial analysis of pest risk, three generic risk indices were visualized using the advanced Insect Life Cycle Modeling software. The study revealed that the highest fecundity, intrinsic rate of natural increase and net reproductive rate for C. rosa and C. quilicii was at 25 and 30°C, respectively. The resulting model successfully fits the known distribution of C. rosa and C. quilicii in Africa and the two Indian Ocean islands of La Réunion and Mauritius. Globally, the model highlights the substantial invasion risk posed by C. rosa and C. quilicii to cropping regions in the Americas, Australia, India, China, Southeast Asia, Europe, and West and Central Africa. However, the proportion of the regions predicted to be climatically suitable for both pests is narrower for C. rosa in comparison with C. quilicii, suggesting that C. quilicii will be more tolerant to a wider range of climatic conditions than C. rosa. This implies that these pests are of significant concern to biosecurity agencies in the uninvaded regions. Therefore, these findings provide important information to enhance monitoring/surveillance and designing pest management strategies to limit the spread and reduce their impact in the invaded range. PMID:29304084
Fitness consequences of spousal relatedness in 46 small-scale societies.
Bailey, Drew H; Hill, Kim R; Walker, Robert S
2014-05-01
Social norms that regulate reproductive and marital decisions generate impressive cross-cultural variation in the prevalence of kin marriages. In some societies, marriages among kin are the norm and this inbreeding creates intensive kinship networks concentrated within communities. In others, especially forager societies, most marriages are between more genealogically and geographically distant individuals, which generates a larger number of kin and affines of lesser relatedness in more extensive kinship networks spread out over multiple communities. Here, we investigate the fitness consequence of kin marriages across a sample of 46 small-scale societies (12,439 marriages). Results show that some non-forager societies (including horticulturalists, agriculturalists and pastoralists), but not foragers, have intensive kinship societies where fitness outcomes (measured as the number of surviving children in genealogies) peak at commonly high levels of spousal relatedness. By contrast, the extensive kinship systems of foragers have worse fitness outcomes at high levels of spousal relatedness. Overall, societies with greater levels of inbreeding showed a more positive relationship between fitness and spousal relatedness. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Aβ seeds and prions: How close the fit?
Rasmussen, Jay; Jucker, Mathias; Walker, Lary C
2017-07-04
The prion paradigm is increasingly invoked to explain the molecular pathogenesis of neurodegenerative diseases involving the misfolding and aggregation of proteins other than the prion protein (PrP). Extensive evidence from in vitro and in vivo studies indicates that misfolded and aggregated Aβ peptide, which is the probable molecular trigger for Alzheimer's disease, manifests all of the key characteristics of canonical mammalian prions. These features include a β-sheet rich architecture, tendency to polymerize into amyloid, templated corruption of like protein molecules, ability to form structurally and functionally variant strains, systematic spread by neuronal transport, and resistance to inactivation by heat and formaldehyde. In addition to Aβ, a growing body of research supports the view that the prion-like molecular transformation of specific proteins drives the onset and course of a remarkable variety of clinicopathologically diverse diseases. As such, the expanded prion paradigm could conceptually unify fundamental and translational investigations of these disorders.
Obtaining the phase in the star test using genetic algorithms
NASA Astrophysics Data System (ADS)
Salazar Romero, Marcos A.; Vazquez-Montiel, Sergio; Cornejo-Rodriguez, Alejandro
2004-10-01
The star test is conceptually perhaps the most basic and simplest of all methods of testing image-forming optical systems, the irradiance distribution at the image of a point source (such as a star) is give for the Point Spread Function, PSF. The PSF is very sensitive to aberrations. One way to quantify the PSF is measuring the irradiance distribution on the image of the source point. On the other hand, if we know the aberrations introduced by the optical systems and utilizing the diffraction theory then we can calculate the PSF. In this work we propose a method in order to find the wavefront aberrations starting from the PSF, transforming the problem of fitting a polynomial of aberrations in a problem of optimization using Genetic Algorithm. Also, we show that this method is immune to the noise introduced in the register or recording of the image. Results of these methods are shown.
Using Stocking or Harvesting to Reverse Period-Doubling Bifurcations in Discrete Population Models
James F. Selgrade
1998-01-01
This study considers a general class of 2-dimensional, discrete population models where each per capita transition function (fitness) depends on a linear combination of the densities of the interacting populations. The fitness functions are either monotone decreasing functions (pioneer fitnesses) or one-humped functions (climax fitnesses). Four sets of necessary...
James F. Selgrade; James H. Roberds
1998-01-01
This study considers a general class of two-dimensional, discrete population models where each per capita transition function (fitness) depends on a linear combination of the densities of the interacting populations. The fitness functions are either monotone decreasing functions (pioneer fitnesses) or one-humped functions (climax fitnesses). Conditions are derived...
On the universality of Marangoni-driven spreading
NASA Astrophysics Data System (ADS)
Visser, Claas; van Capelleveen, Bram; Koldeweij, Robin; Lohse, Detlef
2017-11-01
When two liquids of different surface tensions come into contact, the liquid with lower surface tension spreads over the other. Here we measure the dynamics of this Marangoni-driven spreading in the drop-drop geometry, revealing universal behavior with respect to the control parameters as well as other geometries (such as spreading over a flat interface). The distance L over which the low-surface-tension liquid has covered the high-surface-tension droplet is measured as a function of time t, surface tension difference between the liquids Δσ , and viscosity η, revealing power-law behavior L(t) tα . The exponent α is discussed for the early and late spreading regimes. Spreading inhibition is observed at high viscosity, for which the threshold is discussed. Finally, we show that our results collapse onto a single curve of dimensionless L(t) as a function of dimensionless time, which also captures previous results for different geometries, surface tension modifiers, and miscibility. As this curve spans 7 orders of magnitude, Marangoni-induced spreading can be considered a universal phenomenon for many practically encountered liquid-liquid systems.
Fast calculation of the line-spread-function by transversal directions decoupling
NASA Astrophysics Data System (ADS)
Parravicini, Jacopo; Tartara, Luca; Hasani, Elton; Tomaselli, Alessandra
2016-07-01
We propose a simplified method to calculate the optical spread function of a paradigmatic system constituted by a pupil-lens with a line-shaped illumination (‘line-spread-function’). Our approach is based on decoupling the two transversal directions of the beam and treating the propagation by means of the Fourier optics formalism. This requires simpler calculations with respect to the more usual Bessel-function-based method. The model is discussed and compared with standard calculation methods by carrying out computer simulations. The proposed approach is found to be much faster than the Bessel-function-based one (CPU time ≲ 5% of the standard method), while the results of the two methods present a very good mutual agreement.
Optimum constrained image restoration filters
NASA Technical Reports Server (NTRS)
Riemer, T. E.; Mcgillem, C. D.
1974-01-01
The filter was developed in Hilbert space by minimizing the radius of gyration of the overall or composite system point-spread function subject to constraints on the radius of gyration of the restoration filter point-spread function, the total noise power in the restored image, and the shape of the composite system frequency spectrum. An iterative technique is introduced which alters the shape of the optimum composite system point-spread function, producing a suboptimal restoration filter which suppresses undesirable secondary oscillations. Finally this technique is applied to multispectral scanner data obtained from the Earth Resources Technology Satellite to provide resolution enhancement. An experimental approach to the problems involving estimation of the effective scanner aperture and matching the ERTS data to available restoration functions is presented.
Miller, Daniel P.; Hutcherson, Justin A.; Wang, Yan; Nowakowska, Zuzanna M.; Potempa, Jan; Yoder-Himes, Deborah R.; Scott, David A.; Whiteley, Marvin; Lamont, Richard J.
2017-01-01
Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis, and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq). Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism. PMID:28900609
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, E. V.; Dupuy, Trent J.; Allers, Katelyn N.
2015-05-01
We present the results of a Hubble Space Telescope Wide Field Camera 3 (WFC3) imaging survey of 11 of the lowest mass brown dwarfs in the Pleiades known (25–40 M{sub Jup}). These objects represent the predecessors to T dwarfs in the field. Using a semi-empirical binary point-spread function (PSF)-fitting technique, we are able to probe to 0.″ 03 (0.75 pixel), better than 2x the WFC3/UVIS diffraction limit. We did not find any companions to our targets. From extensive testing of our PSF-fitting method on simulated binaries, we compute detection limits which rule out companions to our targets with mass ratiosmore » of ≳0.7 and separations ≳4 AU. Thus, our survey is the first to attain the high angular resolution needed to resolve brown dwarf binaries in the Pleiades at separations that are most common in the field population. We constrain the binary frequency over this range of separation and mass ratio of 25–40 M{sub Jup} Pleiades brown dwarfs to be <11% for 1σ (<26% at 2σ). This binary frequency is consistent with both younger and older brown dwarfs in this mass range.« less
Bending the Rules: Widefield Microscopy and the Abbe Limit of Resolution
Verdaasdonk, Jolien S.; Stephens, Andrew D.; Haase, Julian; Bloom, Kerry
2014-01-01
One of the most fundamental concepts of microscopy is that of resolution–the ability to clearly distinguish two objects as separate. Recent advances such as structured illumination microscopy (SIM) and point localization techniques including photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM) strive to overcome the inherent limits of resolution of the modern light microscope. These techniques, however, are not always feasible or optimal for live cell imaging. Thus, in this review, we explore three techniques for extracting high resolution data from images acquired on a widefield microscope–deconvolution, model convolution, and Gaussian fitting. Deconvolution is a powerful tool for restoring a blurred image using knowledge of the point spread function (PSF) describing the blurring of light by the microscope, although care must be taken to ensure accuracy of subsequent quantitative analysis. The process of model convolution also requires knowledge of the PSF to blur a simulated image which can then be compared to the experimentally acquired data to reach conclusions regarding its geometry and fluorophore distribution. Gaussian fitting is the basis for point localization microscopy, and can also be applied to tracking spot motion over time or measuring spot shape and size. All together, these three methods serve as powerful tools for high-resolution imaging using widefield microscopy. PMID:23893718
Louis, E; Degli Esposti Boschi, C; Ortega, G; Andreu, E; Fernández, E; Sánchez-Andrés, J V
2002-04-19
Electrical properties of gap-junction connected cells (input voltage and length constant) are shown to depend strongly on fluctuations in membrane and contact conductances. This opens new possibilities and incorporates a further difficulty to the analysis of electrophysiological data, since four, instead of two, parameters (the average values and the magnitude of fluctuations of the two conductances) have to be used in fitting the experimental data. The discussion is illustrated by investigating the effects of dopamine on signal spreading in horizontal cells of turtle retina, assuming a linear cell arrangement. It is shown that while a standard fitting with the average values of the two conductances leads to the conclusion that both are equally affected by dopamine, including fluctuations allows fitting the data by varying just the average contact conductance plus the magnitude of fluctuations.
Tetrahydrocannabinol-induced suppression of macrophage spreading and phagocytic activity in vitro.
Lopez-Cepero, M; Friedman, M; Klein, T; Friedman, H
1986-06-01
The effects of tetrahydrocannabinol (THC) on several parameters of macrophage function in vitro were assessed. Delta 9 THC added to cultures of normal mouse peritoneal cells in vitro affected the ability of the cells to spread on glass surfaces and also had some effect on their ability to phagocytize yeast. These effects were dose related. A concentration of 20 micrograms of THC almost completely inhibited macrophage spreading, but it also decreased viability and the total number of these cells. Doses of 10 or 5 micrograms of THC also inhibited spreading but had little effect on cell viability or number. A dose of 1.0 microgram of THC had some inhibitory effect on spreading and the lowest dose affecting spreading appeared to be about 0.05 micrograms per culture. Higher doses of THC were necessary to inhibit phagocytosis of yeast particles as determined by direct microscopic examination or use of radiolabeled yeast as the test particles. These results indicate that several readily measured functions of macrophages may be suppressed by THC.
Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness.
Manokaran, Gayathri; Finol, Esteban; Wang, Chunling; Gunaratne, Jayantha; Bahl, Justin; Ong, Eugenia Z; Tan, Hwee Cheng; Sessions, October M; Ward, Alex M; Gubler, Duane J; Harris, Eva; Garcia-Blanco, Mariano A; Ooi, Eng Eong
2015-10-09
The global spread of dengue virus (DENV) infections has increased viral genetic diversity, some of which appears associated with greater epidemic potential. The mechanisms governing viral fitness in epidemiological settings, however, remain poorly defined. We identified a determinant of fitness in a foreign dominant (PR-2B) DENV serotype 2 (DENV-2) clade, which emerged during the 1994 epidemic in Puerto Rico and replaced an endemic (PR-1) DENV-2 clade. The PR-2B DENV-2 produced increased levels of subgenomic flavivirus RNA (sfRNA) relative to genomic RNA during replication. PR-2B sfRNA showed sequence-dependent binding to and prevention of tripartite motif 25 (TRIM25) deubiquitylation, which is critical for sustained and amplified retinoic acid-inducible gene 1 (RIG-I)-induced type I interferon expression. Our findings demonstrate a distinctive viral RNA-host protein interaction to evade the innate immune response for increased epidemiological fitness. Copyright © 2015, American Association for the Advancement of Science.
Dynamics of bid-ask spread return and volatility of the Chinese stock market
NASA Astrophysics Data System (ADS)
Qiu, Tian; Chen, Guang; Zhong, Li-Xin; Wu, Xiao-Run
2012-04-01
The bid-ask spread is taken as an important measure of the financial market liquidity. In this article, we study the dynamics of the spread return and the spread volatility of four liquid stocks in the Chinese stock market, including the memory effect and the multifractal nature. By investigating the autocorrelation function and the Detrended Fluctuation Analysis (DFA), we find that the spread return is the lack of long-range memory, while the spread volatility is long-range time correlated. Besides, the spread volatilities of different stocks present long-range cross-correlations. Moreover, by applying the Multifractal Detrended Fluctuation Analysis (MF-DFA), the spread return is observed to possess a strong multifractality, which is similar to the dynamics of a variety of financial quantities. Different from the spread return, the spread volatility exhibits a weak multifractal nature.
Properties of rice bran oil-derived functional ingredients
USDA-ARS?s Scientific Manuscript database
Lipid ingredients that demonstrate high stability and positive health profiles without the use of trans-fats are needed in the food supply. Rice bran oil can be fractionated at low temperatures to create a series of spreads that show promise as functional ingredients. A rice bran oil-derived spread ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skalski, Michael; Coppolino, Marc G.
2005-10-07
In this study, the role of SNARE-mediated membrane traffic in regulating integrin localization was examined and the requirement for SNARE function in cellular spreading was quantitatively assessed. Membrane traffic was inhibited with the VAMP-specific catalytic light chain from tetanus toxin (TeTx-LC), a dominant-negative form (E329Q) of N-ethylmaleimide-sensitive fusion protein (NSF), and brefeldin A (BfA). Inhibition of membrane traffic with either E329Q-NSF or TeTx-LC, but not BfA, significantly inhibited spreading of CHO cells on fibronectin. Spreading was rescued in TeTx-LC-expressing cells by co-transfection with a TeTx-resistant cellubrevin/VAMP3. E329Q-NSF, a general inhibitor of SNARE function, was a more potent inhibitor of cellmore » spreading than TeTx-LC, suggesting that tetanus toxin-insensitive SNAREs contribute to adhesion. It was found that E329Q-NSF prevented trafficking of {alpha}{sub 5}{beta}{sub 1} integrins from a central Rab11-containing compartment to sites of protrusion during cell adhesion, while TeTx-LC delayed this trafficking. These results are consistent with a model of cellular adhesion that implicates SNARE function as an important component of integrin trafficking during the process of cell spreading.« less
Pilotte, J; Kiosses, W; Chan, S W; Makarenkova, H P; Dupont-Versteegden, E; Vanderklish, P W
2018-05-09
RNA-binding proteins are emerging as key regulators of transitions in cell morphology. The RNA-binding motif protein 3 (RBM3) is a cold-inducible RNA-binding protein with broadly relevant roles in cellular protection, and putative functions in cancer and development. Several findings suggest that RBM3 has morphoregulatory functions germane to its roles in these contexts. For example, RBM3 helps maintain the morphological integrity of cell protrusions during cell stress and disease. Moreover, it is highly expressed in migrating neurons of the developing brain and in cancer invadopodia, suggesting roles in migration. We here show that RBM3 regulates cell polarity, spreading and migration. RBM3 was present in spreading initiation centers, filopodia and blebs that formed during cell spreading in cell lines and primary myoblasts. Reducing RBM3 triggered exaggerated spreading, increased RhoA expression, and a loss of polarity that was rescued by Rho kinase inhibition and overexpression of CRMP2. High RBM3 expression enhanced the motility of cells migrating by a mesenchymal mode involving extension of long protrusions, whereas RBM3 knockdown slowed migration, greatly reducing the ability of cells to extend protrusions and impairing multiple processes that require directional migration. These data establish novel functions of RBM3 of potential significance to tissue repair, metastasis and development.
Functional training improves club head speed and functional fitness in older golfers.
Thompson, Christian J; Cobb, Karen Myers; Blackwell, John
2007-02-01
Functional training programs have been used in a variety of rehabilitation settings with documented success. Based on that success, the concept of functional training has gained popularity in applied fitness settings to enhance sport performance. However, there has been little or no research studying the efficacy of functional training programs on the improvement of sport performance or functional fitness. Thus, it was the purpose of this study to determine the effect of a progressive functional training program on club head speed and functional fitness in older male golfers. Eighteen male golfers (age: 70.7 +/- 9.1 [SD] years) were randomly assigned to an exercise (N = 11) or control (N = 7) group. The exercise group participated in an 8-week progressive functional training program including flexibility exercises, core stability exercises, balance exercises, and resistance exercises. Pre- and postmeasurements included club head speed of a driver by radar (exercise and Control) and Fullerton Senior Fitness Test measurements (exercise only). One-way analysis of covariance was performed on club head speed measurements using pretest measurements as the covariate. Paired t-tests were performed to analyze Senior Fitness Test variables. After the intervention, maximal club head speed increased in the exercise group (127.3 +/- 13.4 to 133.6 +/- 14.2 km x hr(-1)) compared with the control group (134.5 +/- 14.6 to 133.3 +/- 11.2 km x hr(-1); p < 0.05). Additionally, improvements (p < 0.05) were detected for most Senior Fitness Test variables in the exercise group. In summary, this functional training program resulted in significant improvements in club head speed and several components of functional fitness. Future research should continue to examine the effect of functional training programs on sport performance and functional fitness in older adults.
Modified Gaussian influence function of deformable mirror actuators.
Huang, Linhai; Rao, Changhui; Jiang, Wenhan
2008-01-07
A new deformable mirror influence function based on a Gaussian function is introduced to analyze the fitting capability of a deformable mirror. The modified expressions for both azimuthal and radial directions are presented based on the analysis of the residual error between a measured influence function and a Gaussian influence function. With a simplex search method, we further compare the fitting capability of our proposed influence function to fit the data produced by a Zygo interferometer with that of a Gaussian influence function. The result indicates that the modified Gaussian influence function provides much better performance in data fitting.
NASA Astrophysics Data System (ADS)
Liu, Weiqiang; Chen, Rujun; Cai, Hongzhu; Luo, Weibin
2016-12-01
In this paper, we investigated the robust processing of noisy spread spectrum induced polarization (SSIP) data. SSIP is a new frequency domain induced polarization method that transmits pseudo-random m-sequence as source current where m-sequence is a broadband signal. The potential information at multiple frequencies can be obtained through measurement. Removing the noise is a crucial problem for SSIP data processing. Considering that if the ordinary mean stack and digital filter are not capable of reducing the impulse noise effectively in SSIP data processing, the impact of impulse noise will remain in the complex resistivity spectrum that will affect the interpretation of profile anomalies. We implemented a robust statistical method to SSIP data processing. The robust least-squares regression is used to fit and remove the linear trend from the original data before stacking. The robust M estimate is used to stack the data of all periods. The robust smooth filter is used to suppress the residual noise for data after stacking. For robust statistical scheme, the most appropriate influence function and iterative algorithm are chosen by testing the simulated data to suppress the outliers' influence. We tested the benefits of the robust SSIP data processing using examples of SSIP data recorded in a test site beside a mine in Gansu province, China.
Accretion-induced luminosity spreads in young clusters: evidence from stellar rotation
NASA Astrophysics Data System (ADS)
Littlefair, S. P.; Naylor, Tim; Mayne, N. J.; Saunders, Eric; Jeffries, R. D.
2011-05-01
We present an analysis of the rotation of young stars in the associations Cepheus OB3b, NGC 2264, 2362 and the Orion Nebula Cluster (ONC). We discover a correlation between rotation rate and position in a colour-magnitude diagram (CMD) such that stars which lie above an empirically determined median pre-main sequence rotate more rapidly than stars which lie below this sequence. The same correlation is seen, with a high degree of statistical significance, in each association studied here. If position within the CMD is interpreted as being due to genuine age spreads within a cluster, then the stars above the median pre-main sequence would be the youngest stars. This would in turn imply that the most rapidly rotating stars in an association are the youngest, and hence those with the largest moments of inertia and highest likelihood of ongoing accretion. Such a result does not fit naturally into the existing picture of angular momentum evolution in young stars, where the stars are braked effectively by their accretion discs until the disc disperses. Instead, we argue that, for a given association of young stars, position within the CMD is not primarily a function of age, but of accretion history. We show that this hypothesis could explain the correlation we observe between rotation rate and position within the CMD.
Vandepitte, K; Gristina, A S; De Hert, K; Meekers, T; Roldán-Ruiz, I; Honnay, O
2012-09-01
Colonization is crucial to habitat restoration projects that rely on the spontaneous regeneration of the original vegetation. However, as a previously declining plant species spreads again, the likelihood of founder effects increases through recurrent population founding and associated serial bottlenecks. We related Amplified Fragment Length Polymorphism markers genetic variation and fitness to colonization history for all extant populations of the outcrossing terrestrial orchid Dactylorhiza incarnata in an isolated coastal dune complex. Around 1970, D. incarnata suffered a severe bottleneck yet ultimately persisted and gradually spread throughout the spatially segregated dune slacks, aided by the restoration of an open vegetation. Genetic assignment demonstrated dispersal to vacant sites from few nearby extant populations and very limited inflow from outside the spatially isolated reserve. Results further indicated that recurrent founding from few local sources resulted in the loss of genetic diversity and promoted genetic divergence (F(ST) = 0.35) among populations, but did not influence population fitness. The few source populations initially available and the limited inflow of genes from outside the study reserve, as a consequence of habitat degradation and spatial isolation, may have magnified the genetic effects of recurrent population founding. © 2012 Blackwell Publishing Ltd.
Matz, Carsten; Nouri, Bianka; McCarter, Linda; Martinez-Urtaza, Jaime
2011-01-01
Genome analyses of marine microbial communities have revealed the widespread occurrence of genomic islands (GIs), many of which encode for protein secretion machineries described in the context of bacteria-eukaryote interactions. Yet experimental support for the specific roles of such GIs in aquatic community interactions remains scarce. Here, we test for the contribution of type III secretion systems (T3SS) to the environmental fitness of epidemic Vibrio parahaemolyticus. Comparisons of V. parahaemolyticus wild types and T3SS-defective mutants demonstrate that the T3SS encoded on genome island VPaI-7 (T3SS-2) promotes survival of V. parahaemolyticus in the interaction with diverse protist taxa. Enhanced persistence was found to be due to T3SS-2 mediated cytotoxicity and facultative parasitism of V. parahaemolyticus on coexisting protists. Growth in the presence of bacterivorous protists and the T3SS-2 genotype showed a strong correlation across environmental and clinical isolates of V. parahaemolyticus. Short-term microcosm experiments provide evidence that protistan hosts facilitate the invasion of T3SS-2 positive V. parahaemolyticus into a coastal plankton community, and that water temperature and productivity further promote enhanced survival of T3SS-2 positive V. parahaemolyticus. This study is the first to describe the fitness advantage of GI-encoded functions in a microbial food web, which may provide a mechanistic explanation for the global spread and the seasonal dynamics of V. parahaemolyticus pathotypes, including the pandemic serotype cluster O3:K6, in aquatic environments. PMID:21629787
González-Ferreiro, Eduardo; Arellano-Pérez, Stéfano; Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Álvarez-González, Juan Gabriel; Ruiz-González, Ana Daría
2017-01-01
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.
Disease Risk in a Dynamic Environment: The Spread of Tick-Borne Pathogens in Minnesota, USA
Robinson, Stacie J.; Neitzel, David F.; Moen, Ronald A.; Craft, Meggan E.; Hamilton, Karin E.; Johnson, Lucinda B.; Mulla, David J.; Munderloh, Ulrike G.; Redig, Patrick T.; Smith, Kirk E.; Turner, Clarence L.; Umber, Jamie K.; Pelican, Katharine M.
2015-01-01
As humans and climate change alter the landscape, novel disease risk scenarios emerge. Understanding the complexities of pathogen emergence and subsequent spread as shaped by landscape heterogeneity is crucial to understanding disease emergence, pinpointing high-risk areas, and mitigating emerging disease threats in a dynamic environment. Tick-borne diseases present an important public health concern and incidence of many of these diseases are increasing in the United States. The complex epidemiology of tick-borne diseases includes strong ties with environmental factors that influence host availability, vector abundance, and pathogen transmission. Here, we used 16 years of case data from the Minnesota Department of Health to report spatial and temporal trends in Lyme disease (LD), human anaplasmosis, and babesiosis. We then used a spatial regression framework to evaluate the impact of landscape and climate factors on the spread of LD. Finally, we use the fitted model, and landscape and climate datasets projected under varying climate change scenarios, to predict future changes in tick-borne pathogen risk. Both forested habitat and temperature were important drivers of LD spread in Minnesota. Dramatic changes in future temperature regimes and forest communities predict rising risk of tick-borne disease. PMID:25281302
NASA Astrophysics Data System (ADS)
Wei, Guopeng; Lo, Chieh; Walsh, Connor; Hiller, N. Luisa; Marculescu, Radu
2016-10-01
As understanding of bacterial regulatory systems and pathogenesis continues to increase, QSI has been a major focus of research. However, recent studies have shown that mechanisms of resistance to quorum sensing (QS) inhibitors (QSIs) exist, calling into question their clinical value. We propose a computational framework that considers bacteria genotypes relative to QS genes and QS-regulated products including private, quasi-public, and public goods according to their impacts on bacterial fitness. Our results show (1) QSI resistance spreads when QS positively regulates the expression of private or quasi-public goods. (2) Resistance to drugs targeting secreted compounds downstream of QS for a mix of private, public, and quasi-public goods also spreads. (3) Changing the micro-environment during treatment with QSIs may decrease the spread of resistance. At fundamental-level, our simulation framework allows us to directly quantify cell-cell interactions and biofilm dynamics. Practically, the model provides a valuable tool for the study of QSI-based therapies, and the simulations reveal experimental paths that may guide QSI-based therapies in a manner that avoids or decreases the spread of QSI resistance.
Disease risk in a dynamic environment: the spread of tick-borne pathogens in Minnesota, USA.
Robinson, Stacie J; Neitzel, David F; Moen, Ronald A; Craft, Meggan E; Hamilton, Karin E; Johnson, Lucinda B; Mulla, David J; Munderloh, Ulrike G; Redig, Patrick T; Smith, Kirk E; Turner, Clarence L; Umber, Jamie K; Pelican, Katharine M
2015-03-01
As humans and climate change alter the landscape, novel disease risk scenarios emerge. Understanding the complexities of pathogen emergence and subsequent spread as shaped by landscape heterogeneity is crucial to understanding disease emergence, pinpointing high-risk areas, and mitigating emerging disease threats in a dynamic environment. Tick-borne diseases present an important public health concern and incidence of many of these diseases are increasing in the United States. The complex epidemiology of tick-borne diseases includes strong ties with environmental factors that influence host availability, vector abundance, and pathogen transmission. Here, we used 16 years of case data from the Minnesota Department of Health to report spatial and temporal trends in Lyme disease (LD), human anaplasmosis, and babesiosis. We then used a spatial regression framework to evaluate the impact of landscape and climate factors on the spread of LD. Finally, we use the fitted model, and landscape and climate datasets projected under varying climate change scenarios, to predict future changes in tick-borne pathogen risk. Both forested habitat and temperature were important drivers of LD spread in Minnesota. Dramatic changes in future temperature regimes and forest communities predict rising risk of tick-borne disease.
Spiers, Andrew J.
2007-01-01
Bacterial adaptation to new environments often leads to the establishment of new genotypes with significantly altered phenotypes. In the Wrinkly Spreader (WS), ecological success in static liquid microcosms was through the rapid colonisation of the air-liquid interface by the production of a cellulose-based biofilm. Rapid surface spreading was also seen on agar plates, but in this two-dimensional environment the WS appears maladapted and rapidly reverts to the ancestral smooth (SM)-like colony genotype. In this work, the fitness of WS relative to SM in mixed colonies was found to be low, confirming the WS instability on agar plates. By examining defined WS mutants, the maladaptive characteristic was found to be the expression of cellulose. SM-like revertants had a higher growth rate than WS and no longer expressed significant amounts of cellulose, further confirming that the expression of this high-cost polymer was the basis of maladaptation and the target of compensatory mutation in developing colonies. However, examination of the fate of WS-founded populations in either multiple-colony or single mega-colony agar plate microcosms demonstrated that the loss of WS lineages could be reduced under conditions in which the rapid spreading colony phenotype could dominate nutrient and oxygen access more effectively than competing SM/SM-like genotypes. WS-like isolates recovered from such populations showed increased WS phenotype stability as well as changes in the degree of colony spreading, confirming that the WS was adapting to the two-dimensional agar plate microcosm. PMID:17710140
An analysis of the role of drift waves in equatorial spread F
NASA Technical Reports Server (NTRS)
Labelle, J.; Kelley, M. C.; Seyler, C. E.
1986-01-01
An account is given of results of rocket measurements of the wave number spectrum of equatorial spread F irregularities, with emphasis on wavelengths less than 100 m. The measurements were made from two sounding rockets launched from Peru as part of Project Condor. The Condor density fluctuation spectra display a break at a wavelength near 100 m, identical to that found in the PLUMEX experiment (Kelley et al., 1982). The Condor data also confirm a subrange in which the density and the wave potential obey the Boltzmann relation - a strong indication of the presence of low-frequency electrostatic waves with finite wavelength parallel to the magnetic field, perhaps low-frequency drift waves as proposed by Kelley et al. The Condor data are also consistent with the previous conjecture that drift waves only exist above 300 km altitude. To investigate the difference in spectra observed over two altitude ranges, the data must be fitted to a form for the power spectrum taken from Keskinen and Ossakow (1981). The fitted spectrum, along with empirically determined growth and dissipation rates, is used to calculate the energy pumped into the spectrum at long wavelengths as well as the energy dissipated at shorter wavelengths. It is found that the energy is balanced by classical collisional effects in the low-altitude case, but energy balance in the high-altitude case requires an enhanced dissipation of about 500 times that due to classical diffusion. The model is consistent with, but does not uniquely imply, an inverse cascade of drift wave turbulence in equatorial spread F.
Lee, Minyoung; Lim, Taehyun; Lee, Jaehyuk; Kim, Kimyeong; Yoon, BumChul
2017-11-01
Little is known about the optimal retraining time for regaining functional fitness through multicomponent training following long-term detraining in older adults. This study first investigated the time course of functional fitness changes during 12-month multicomponent training, 12-month detraining, and 9-month retraining in 18 older adults (68.33±3.46) and then determined the optimal retraining time for regaining the post-training functional fitness level after a 12-month detraining period. Functional fitness, including lower and upper limb strength, lower and upper limb flexibility, aerobic endurance, and dynamic balance, was assessed at baseline, 12 months post-training, 12 months post-detraining, and 3, 6, and 9 months post-retraining. There were significant increases in all of the functional fitness components except upper limb flexibility at post-training and no significant decreases at post-detraining. For lower and upper limb strength and lower limb flexibility, a 3-month period was required to regain the post-training condition. For aerobic endurance and dynamic balance, a retraining period ≥9months was necessary to regain the post-training functional fitness condition. To regain the post-training condition of all functional fitness components, a retraining period ≥9months was required. This information might be useful for health professionals to encourage older adults not to interrupt retraining until they regain their post-training functional fitness condition. Copyright © 2017 Elsevier B.V. All rights reserved.
Management of the thyroid gland during laryngectomy.
Li, S X; Polacco, M A; Gosselin, B J; Harrington, L X; Titus, A J; Paydarfar, J A
2017-08-01
This study aimed to: describe the incidence of thyroid gland involvement in advanced laryngeal cancer, analyse patterns of spread to the thyroid and elucidate predictors of thyroid involvement. A retrospective review was performed on patients who underwent laryngectomy from 1991 to 2015 as a primary or salvage treatment for squamous cell carcinoma of the larynx, hypopharynx or base of tongue. The incidence of thyroidectomy during total laryngectomy, type of thyroidectomy, incidence of gland involvement, route of spread, and positive predictors of spread were analysed and reported. A total of 188 patients fit the inclusion criteria. Of these, 125 (66 per cent) underwent thyroidectomy. The thyroid was involved in 10 of the 125 patients (8 per cent), 9 by direct extension and 1 by metastasis. Cartilage invasion was a predictor of thyroid gland involvement, with a positive predictive value of 26 per cent. There is a low incidence of thyroid gland involvement in laryngeal carcinoma. Most cases of gland involvement occurred by direct extension. Thyroidectomy during laryngectomy should be considered for advanced stage tumours with cartilage invasion.
Strike-slip tectonics during rift linkage
NASA Astrophysics Data System (ADS)
Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.
2017-12-01
The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.
The newfoundland basin - Ocean-continent boundary and Mesozoic seafloor spreading history
NASA Technical Reports Server (NTRS)
Sullivan, K. D.
1983-01-01
It is pointed out that over the past 15 years there has been considerable progress in the refinement of predrift fits and seafloor spreading models of the North Atlantic. With the widespread acceptance of these basic models has come increasing interest in resolution of specific paleogeographic and kinematic problems. Two such problems are the initial position of Iberia with respect to North America and the geometry and chronology of early (pre-80 m.y.) relative motions between these two plates. The present investigation is concerned with geophysical data from numerous Bedford Institute/Dalhousie University cruises to the Newfoundland Basin which were undrtaken to determine the location of the ocean-continent boundary (OCB) and the Mesozoic spreading history on the western side. From the examination of magnetic data in the Newfoundland Basin, the OCB east of the Grand Banks is defined as the seaward limit of the 'smooth' magnetic domain which characterizes the surrounding continental shelves. A substantial improvement in Iberia-North America paleographic reconstructions is achieved.
Emergence of two lamellas during impact of compound droplets
NASA Astrophysics Data System (ADS)
Liu, Dongdong; Tran, Tuan
2018-05-01
A compound droplet consisting of water and silicone oil either spreads or splashes upon impacting a solid surface. We show that the transition from spreading to splashing of this type of compound droplet can be changed by varying the volumetric oil ratio in the droplets. In the spreading regime, we observe a surprising emergence of two lamellas spreading one after the other: the first spreading lamella consists of only oil and the trailing one water. We show that the two lamellas eventually meet, significantly affecting the spreading dynamics. Finally, we quantify the maximum spreading radius and show that it is a function of both the impact velocity and the volumetric oil ratio.
Miyata, Ryota; Ota, Keisuke; Aonishi, Toru
2013-01-01
Recently reported experimental findings suggest that the hippocampal CA1 network stores spatio-temporal spike patterns and retrieves temporally reversed and spread-out patterns. In this paper, we explore the idea that the properties of the neural interactions and the synaptic plasticity rule in the CA1 network enable it to function as a hetero-associative memory recalling such reversed and spread-out spike patterns. In line with Lengyel’s speculation (Lengyel et al., 2005), we firstly derive optimally designed spike-timing-dependent plasticity (STDP) rules that are matched to neural interactions formalized in terms of phase response curves (PRCs) for performing the hetero-associative memory function. By maximizing object functions formulated in terms of mutual information for evaluating memory retrieval performance, we search for STDP window functions that are optimal for retrieval of normal and doubly spread-out patterns under the constraint that the PRCs are those of CA1 pyramidal neurons. The system, which can retrieve normal and doubly spread-out patterns, can also retrieve reversed patterns with the same quality. Finally, we demonstrate that purposely designed STDP window functions qualitatively conform to typical ones found in CA1 pyramidal neurons. PMID:24204822
Beam-width spreading of vortex beams in free space
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Li, Jinhong; Duan, Meiling
2018-01-01
Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.
Bargues, M Dolores; Zuriaga, M Angeles; Mas-Coma, Santiago
2014-01-01
A pseudogene, paralogous to rDNA 5.8S and ITS-2, is described in Meccus dimidiata dimidiata, M. d. capitata, M. d. maculippenis, M. d. hegneri, M. sp. aff. dimidiata, M. p. phyllosoma, M. p. longipennis, M. p. pallidipennis, M. p. picturata, M. p. mazzottii, Triatoma mexicana, Triatoma nitida and Triatoma sanguisuga, covering North America, Central America and northern South America. Such a nuclear rDNA pseudogene is very rare. In the 5.8S gene, criteria for pseudogene identification included length variability, lower GC content, mutations regarding the functional uniform sequence, and relatively high base substitutions in evolutionary conserved sites. At ITS-2 level, criteria were the shorter sequence and large proportion of insertions and deletions (indels). Pseudogenic 5.8S and ITS-2 secondary structures were different from the functional foldings, different one another, showing less negative values for minimum free energy (mfe) and centroid predictions, and lower fit between mfe, partition function, and centroid structures. A complete characterization indicated a processed pseudogenic unit of the ghost type, escaping from rDNA concerted evolution and with functionality subject to constraints instead of evolving free by neutral drift. Despite a high indel number, low mutation number and an evolutionary rate similar to the functional ITS-2, that pseudogene distinguishes different taxa and furnishes coherent phylogenetic topologies with resolution similar to the functional ITS-2. The discovery of a pseudogene in many phylogenetically related species is unique in animals and allowed for an estimation of its palaeobiogeographical origin based on molecular clock data, inheritance pathways, evolutionary rate and pattern, and geographical spread. Additional to the technical risk to be considered henceforth, this relict pseudogene, designated as "ps(5.8S+ITS-2)", proves to be a valuable marker for specimen classification, phylogenetic analyses, and systematic/taxonomic studies. It opens a new research field, Chagas disease epidemiology and control included, given its potential relationships with triatomine fitness, behaviour and adaptability. Copyright © 2013 Elsevier B.V. All rights reserved.
Bowen, Spencer L.; Byars, Larry G.; Michel, Christian J.; Chonde, Daniel B.; Catana, Ciprian
2014-01-01
Kinetic parameters estimated from dynamic 18F-fluorodeoxyglucose PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For OSEM, image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting 18F-fluorodeoxyglucose dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation GTM PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in CMRGlc estimates, although by less than 5% in most cases compared to the other PVC methods. The results indicate that the PVC implementation and choice of PSF modelling in the reconstruction can significantly impact model parameters. PMID:24052021
Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanikova, E.; Division of Fusion Plasma Physics, KTH Royal Institute of Technology, SE-10691 Stockholm; Peterka, M.
2016-11-15
A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence onmore » the actual magnetic configuration.« less
Mate-choice copying: A fitness-enhancing behavior that evolves by indirect selection.
Santos, Mauro; Sapage, Manuel; Matos, Margarida; Varela, Susana A M
2017-06-01
A spatially explicit, individual-based simulation model is used to study the spread of an allele for mate-choice copying (MCC) through horizontal cultural transmission when female innate preferences do or do not coevolve with a male viability-increasing trait. Evolution of MCC is unlikely when innate female preferences coevolve with the trait, as copier females cannot express a higher preference than noncopier females for high-fitness males. However, if a genetic polymorphism for innate preference persists in the population, MCC can evolve by indirect selection through hitchhiking: the copying allele hitchhikes on the male trait. MCC can be an adaptive behavior-that is, a behavior that increases a population's average fitness relative to populations without MCC-even though the copying allele itself may be neutral or mildly deleterious. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Voss, Michelle W; Weng, Timothy B; Burzynska, Agnieszka Z; Wong, Chelsea N; Cooke, Gillian E; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P; Olson, Erin A; McAuley, Edward; Kramer, Arthur F
2016-05-01
Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the default mode network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks. Copyright © 2015 Elsevier Inc. All rights reserved.
Voss, Michelle W.; Weng, Timothy B.; Burzynska, Agnieszka Z.; Wong, Chelsea N.; Cooke, Gillian E.; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P.; Olson, Erin A.; McAuley, Edward; Kramer, Arthur F.
2015-01-01
Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the Default Mode Network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks. PMID:26493108
Exploring the relations among physical fitness, executive functioning, and low academic achievement.
de Bruijn, A G M; Hartman, E; Kostons, D; Visscher, C; Bosker, R J
2018-03-01
Physical fitness seems to be related to academic performance, at least when taking the role of executive functioning into account. This assumption is highly relevant for the vulnerable population of low academic achievers because their academic performance might benefit from enhanced physical fitness. The current study examined whether physical fitness and executive functioning are independent predictors of low mathematics and spelling achievement or whether the relation between physical fitness and low achievement is mediated by specific executive functions. In total, 477 students from second- and third-grade classes of 12 primary schools were classified as either low or average-to-high achievers in mathematics and spelling based on their scores on standardized achievement tests. Multilevel structural equation models were built with direct paths between physical fitness and academic achievement and added indirect paths via components of executive functioning: inhibition, verbal working memory, visuospatial working memory, and shifting. Physical fitness was only indirectly related to low achievement via specific executive functions, depending on the academic domain involved. Verbal working memory was a mediator between physical fitness and low achievement in both domains, whereas visuospatial working memory had a mediating role only in mathematics. Physical fitness interventions aiming to improve low academic achievement, thus, could potentially be successful. The mediating effect of executive functioning suggests that these improvements in academic achievement will be preceded by enhanced executive functions, either verbal working memory (in spelling) or both verbal and visuospatial working memory (in mathematics). Copyright © 2017 Elsevier Inc. All rights reserved.
Olivares Pacheco, Jorge; Alvarez-Ortega, Carolina; Alcalde Rico, Manuel; Martínez, José Luis
2017-07-25
It is generally assumed that the acquisition of antibiotic resistance is associated with a fitness cost. We have shown that overexpression of the MexEF-OprN efflux pump does not decrease the fitness of a resistant Pseudomonas aeruginosa strain compared to its wild-type counterpart. This lack of fitness cost was associated with a metabolic rewiring that includes increased expression of the anaerobic nitrate respiratory chain when cells are growing under fully aerobic conditions. It was not clear whether this metabolic compensation was exclusive to strains overexpressing MexEF-OprN or if it extended to other resistant strains that overexpress similar systems. To answer this question, we studied a set of P. aeruginosa mutants that independently overexpress the MexAB-OprM, MexCD-OprJ, or MexXY efflux pumps. We observed increased expression of the anaerobic nitrate respiratory chain in all cases, with a concomitant increase in NO 3 consumption and NO production. These efflux pumps are proton/substrate antiporters, and their overexpression may lead to intracellular H + accumulation, which may in turn offset the pH homeostasis. Indeed, all studied mutants showed a decrease in intracellular pH under anaerobic conditions. The fastest way to eliminate the excess of protons is by increasing oxygen consumption, a feature also displayed by all analyzed mutants. Taken together, our results support metabolic rewiring as a general mechanism to avoid the fitness costs derived from overexpression of P. aeruginosa multidrug efflux pumps. The development of drugs that block this metabolic "reaccommodation" might help in reducing the persistence and spread of antibiotic resistance elements among bacterial populations. IMPORTANCE It is widely accepted that the acquisition of resistance confers a fitness cost in such a way that in the absence of antibiotics, resistant populations will be outcompeted by susceptible ones. Based on this assumption, antibiotic cycling regimes have been proposed in the belief that they will reduce the persistence and spread of resistance among bacterial pathogens. Unfortunately, trials testing this possibility have frequently failed, indicating that resistant microorganisms are not always outcompeted by susceptible ones. Indeed, some mutations do not result in a fitness cost, and in case they do, the cost may be compensated for by a secondary mutation. Here we describe an alternative nonmutational mechanism for compensating for fitness costs, which consists of the metabolic rewiring of resistant mutants. Deciphering the mechanisms involved in the compensation of fitness costs of antibiotic-resistant mutants may help in the development of drugs that will reduce the persistence of resistance by increasing said costs. Copyright © 2017 Olivares Pacheco et al.
Suzuki, Shingo; Horinouchi, Takaaki; Furusawa, Chikara
2016-02-01
the acquisition of antibiotic resistance in bacterial cells is often accompanied with a reduction of fitness in the absence of antibiotics, known as the "fitness cost". The magnitude of this fitness cost is an important biological parameter that influences the degree to which antibiotic resistant strains become widespread. However, the relationship between the fitness cost and comprehensive phenotypic and genotypic changes remains unclear. Here, we quantified the fitness cost of resistant strains obtained by experimental evolution in the presence of various antibiotics, and analyzed how the cost correlated to phenotypic and genotypic changes in the resistant strains. we measured the specific growth rate of the resistant strains in the presence of various concentrations of drugs or in their absence. In the absence of drugs, the resistant strains showed reductions of approximately 20% to 50% in growth rate compared with the parent strain, which corresponded to the fitness cost. We found that the decrease of the specific growth rate was correlated with overall expression changes between the parent and resistant strains, measured by the Euclid distance between expression profiles. We also found that there are a number of genes whose changes in expression levels were significantly correlated with the growth rate, which may account for the observed correlation between the fitness cost and overall expression changes. our analysis provides a basis for quantitative understanding of the mechanism of the fitness cost. This understanding may provide clues on how to influence the fitness cost that accompanies resistance acquisition and consequently how to limit the spread of antibiotic resistant strains.
Relationship of functional fitness with daily steps in community-dwelling older adults.
de Melo, Lucelia Luna; Menec, Verena H; Ready, A Elizabeth
2014-01-01
Walking is the main type of physical activity among community-dwelling older adults and it is associated with various health benefits. However, there is limited evidence about the relationship between functional fitness and walking performed under independent living conditions among older adults. This study examined the relationship between functional fitness and steps walked per day among older adults, both assessed objectively, with performance-based measures accounting for the effect of age, gender, and chronic conditions. In this cross-sectional study, 60 participants aged 65 years or older (mean = 76.9 ± 7.3 years, range 65-92 years) wore pedometers for 3 consecutive days. Functional fitness was measured using the Functional Fitness Test (lower and upper body strength, endurance, lower and upper body flexibility, agility/balance). The outcome measure was the mean number of steps walked for 3 days with participants classified into tertiles: low walkers (<3000 steps), medium walkers (≥3000 < 6500 steps), and high walkers (≥6500 steps). After controlling for age, gender, and the number of chronic conditions, none of the functional fitness parameters was significantly associated with steps taken per day when comparing medium walkers with low walkers. In contrast, all functional fitness parameters, except upper body flexibility, were significantly associated with steps taken per day when comparing high walkers with low walkers. In this sample of older adults, greater functional fitness was associated only with relatively high levels of walking involving 6500 steps per day or more. It was not related to medium walking levels. The findings point to the importance of interventions to maintain or enhance functional fitness among older adults.
Genomic and environmental selection patterns in two distinct lettuce crop–wild hybrid crosses
Hartman, Yorike; Uwimana, Brigitte; Hooftman, Danny A P; Schranz, Michael E; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; van Tienderen, Peter H
2013-01-01
Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop–wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids. We detected consistent results across field sites and crosses for a fitness QTL at linkage group 7, where a selective advantage was conferred by the wild allele. Two fitness QTL were detected on linkage group 5 and 6, which were unique to one of the crop–wild crosses. Average hybrid fitness was lower than the fitness of the wild parent, but several hybrid lineages outperformed the wild parent, especially in a novel habitat for the wild type. In early-generation hybrids, this may partly be due to heterosis effects, whereas in late-generation hybrids transgressive segregation played a major role. The study of genomic selection patterns can identify crop genomic regions under negative selection across multiple environments and cultivar–wild crosses that might be applicable in transgene mitigation strategies. At the same time, results were cultivar-specific, so that a case-by-case environmental risk assessment is still necessary, decreasing its general applicability. PMID:23789025
Genomic and environmental selection patterns in two distinct lettuce crop-wild hybrid crosses.
Hartman, Yorike; Uwimana, Brigitte; Hooftman, Danny A P; Schranz, Michael E; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; van Tienderen, Peter H
2013-06-01
Genomic selection patterns and hybrid performance influence the chance that crop (trans)genes can spread to wild relatives. We measured fitness(-related) traits in two different field environments employing two different crop-wild crosses of lettuce. We performed quantitative trait loci (QTL) analyses and estimated the fitness distribution of early- and late-generation hybrids. We detected consistent results across field sites and crosses for a fitness QTL at linkage group 7, where a selective advantage was conferred by the wild allele. Two fitness QTL were detected on linkage group 5 and 6, which were unique to one of the crop-wild crosses. Average hybrid fitness was lower than the fitness of the wild parent, but several hybrid lineages outperformed the wild parent, especially in a novel habitat for the wild type. In early-generation hybrids, this may partly be due to heterosis effects, whereas in late-generation hybrids transgressive segregation played a major role. The study of genomic selection patterns can identify crop genomic regions under negative selection across multiple environments and cultivar-wild crosses that might be applicable in transgene mitigation strategies. At the same time, results were cultivar-specific, so that a case-by-case environmental risk assessment is still necessary, decreasing its general applicability.
A Quasi-Parametric Method for Fitting Flexible Item Response Functions
ERIC Educational Resources Information Center
Liang, Longjuan; Browne, Michael W.
2015-01-01
If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not fit the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating…
NASA Technical Reports Server (NTRS)
Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.
2014-01-01
New multi-roll coronagraphic images of the HD181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/ deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain.We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass greater than 1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, Christopher C.; Kuchner, Marc J.; Schneider, Glenn
New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for themore » disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.« less
NASA Astrophysics Data System (ADS)
Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.
2014-07-01
New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
Hybridization rapidly reduces fitness of a native trout in the wild
Muhlfeld, C.C.; Kalinowski, S.T.; McMahon, T.E.; Taper, M.L.; Painter, S.; Leary, R.F.; Allendorf, F.W.
2009-01-01
Human-mediated hybridization is a leading cause of biodiversity loss worldwide. How hybridization affects fitness and what level of hybridization is permissible pose difficult conservation questions with little empirical information to guide policy and management decisions. This is particularly true for salmonids, where widespread introgression among non-native and native taxa has often created hybrid swarms over extensive geographical areas resulting in genomic extinction. Here, we used parentage analysis with multilocus microsatellite markers to measure how varying levels of genetic introgression with non-native rainbow trout (Oncorhynchus mykiss) affect reproductive success (number of offspring per adult) of native westslope cutthroat trout (Oncorhynchus clarkii lewisi) in the wild. Small amounts of hybridization markedly reduced fitness of male and female trout, with reproductive success sharply declining by approximately 50 per cent, with only 20 per cent admixture. Despite apparent fitness costs, our data suggest that hybridization may spread due to relatively high reproductive success of first-generation hybrids and high reproductive success of a few males with high levels of admixture. This outbreeding depression suggests that even low levels of admixture may have negative effects on fitness in the wild and that policies protecting hybridized populations may need reconsideration. ?? 2009 The Royal Society.
Kattner, Florian; Cochrane, Aaron; Green, C Shawn
2017-09-01
The majority of theoretical models of learning consider learning to be a continuous function of experience. However, most perceptual learning studies use thresholds estimated by fitting psychometric functions to independent blocks, sometimes then fitting a parametric function to these block-wise estimated thresholds. Critically, such approaches tend to violate the basic principle that learning is continuous through time (e.g., by aggregating trials into large "blocks" for analysis that each assume stationarity, then fitting learning functions to these aggregated blocks). To address this discrepancy between base theory and analysis practice, here we instead propose fitting a parametric function to thresholds from each individual trial. In particular, we implemented a dynamic psychometric function whose parameters were allowed to change continuously with each trial, thus parameterizing nonstationarity. We fit the resulting continuous time parametric model to data from two different perceptual learning tasks. In nearly every case, the quality of the fits derived from the continuous time parametric model outperformed the fits derived from a nonparametric approach wherein separate psychometric functions were fit to blocks of trials. Because such a continuous trial-dependent model of perceptual learning also offers a number of additional advantages (e.g., the ability to extrapolate beyond the observed data; the ability to estimate performance on individual critical trials), we suggest that this technique would be a useful addition to each psychophysicist's analysis toolkit.
Flammability Aspects of a Cotton-Fiberglass Fabric in Opposed and Concurrent Airflow in Microgravity
NASA Technical Reports Server (NTRS)
Ferkul, Paul V.; Olson, Sandra; Johnston, Michael C.; T'ien, James
2012-01-01
Microgravity combustion tests burning fabric samples were performed aboard the International Space Station. The cotton-fiberglass blend samples were mounted inside a small wind tunnel which could impose air flow speeds up to 40 cm/s. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed on flame appearance, flame growth, and spread rates were determined in both the opposed and concurrent flow configuration. For the opposed flow configuration, the flame quickly reached steady spread for each flow speed, and the spread rate was fastest at an intermediate value of flow speed. These tests show the enhanced flammability in microgravity for this geometry, since, in normal gravity air, a flame self-extinguishes in the opposed flow geometry (downward flame spread). In the concurrent flow configuration, flame size grew with time during the tests. A limiting length and steady spread rate were obtained only in low flow speeds ( 10 cm/s) for the short-length samples that fit in the small wind tunnel. For these conditions, flame spread rate increased linearly with increasing flow. This is the first time that detailed transient flame growth data was obtained in purely forced flows in microgravity. In addition, by decreasing flow speed to a very low value (around 1 cm/s), quenching extinction was observed. The valuable results from these long-duration experiments validate a number of theoretical predictions and also provide the data for a transient flame growth model under development.
From margarine to butter: predictors of changing bread spread in an 11-year population follow-up.
Prättälä, Ritva; Levälahti, Esko; Lallukka, Tea; Männistö, Satu; Paalanen, Laura; Raulio, Susanna; Roos, Eva; Suominen, Sakari; Mäki-Opas, Tomi
2016-06-01
Finland is known for a sharp decrease in the intake of saturated fat and cardiovascular mortality. Since 2000, however, the consumption of butter-containing spreads - an important source of saturated fats - has increased. We examined social and health-related predictors of the increase among Finnish men and women. An 11-year population follow-up. A representative random sample of adult Finns, invited to a health survey in 2000. Altogether 5414 persons aged 30-64 years at baseline in 2000 were re-invited in 2011. Of men 1529 (59 %) and of women 1853 (66 %) answered the questions on bread spreads at both time points. Respondents reported the use of bread spreads by choosing one of the following alternatives: no fat, soft margarine, butter-vegetable oil mixture and butter, which were later categorized into margarine/no spread and butter/butter-vegetable oil mixture (= butter). The predictors included gender, age, marital status, education, employment status, place of residence, health behaviours, BMI and health. Multinomial regression models were fitted. Of the 2582 baseline margarine/no spread users, 24.6% shifted to butter. Only a few of the baseline sociodemographic or health-related determinants predicted the change. Finnish women were more likely to change to butter than men. Living with a spouse predicted the change among men. The change from margarine to butter between 2000 and 2011 seemed not to be a matter of compliance with official nutrition recommendations. Further longitudinal studies on social, behavioural and motivational predictors of dietary changes are needed.
Movement patterns of nilgai antelope in South Texas: Implications for cattle fever tick management.
Foley, Aaron M; Goolsby, John A; Ortega-S, Alfonso; Ortega-S, J Alfonso; Pérez de León, A; Singh, Nirbhay K; Schwartz, Andy; Ellis, Dee; Hewitt, David G; Campbell, Tyler A
2017-10-01
Wildlife, both native and introduced, can harbor and spread diseases of importance to the livestock industry. Describing movement patterns of such wildlife is essential to formulate effective disease management strategies. Nilgai antelope (Boselaphus tragocamelus) are a free-ranging, introduced ungulate in southern Texas known to carry cattle fever ticks (CFT, Rhipicephalus (Boophilus) microplus, R. (B.) annulatus). CFT are the vector for the etiological agent of bovine babesiosis, a lethal disease causing high mortality in susceptible Bos taurus populations and severely affecting the beef cattle industry. Efforts to eradicate CFT from the United States have been successful. However, a permanent quarantine area is maintained between Texas and Mexico to check its entry from infested areas of neighboring Mexico states on wildlife and stray cattle. In recent years, there has been an increase in CFT infestations outside of the permanent quarantine area in Texas. Nilgai are of interest in understanding how CFT may be spread through the landscape. Thirty nilgai of both sexes were captured and fitted with satellite radio collars in South Texas to gain information about movement patterns, response to disturbances, and movement barriers. Median annual home range sizes were highly variable in males (4665ha, range=571-20,809) and females (1606ha, range=848-29,909). Female movement patterns appeared to be seasonal with peaks during June-August; these peaks appeared to be a function of break-ups in female social groups rather than environmental conditions. Nilgai, which reportedly are sensitive to disturbance, were more likely to relocate into new areas immediately after being captured versus four other types of helicopter activities. Nilgai did not cross 1.25m high cattle fences parallel to paved highways but did cross other fence types. Results indicate that females have a higher chance of spreading CFT through the landscape than males, but spread of CFT may be mitigated via maintenance of cattle fences running parallel with paved highways. Our results highlight the importance of documenting species-specific behavior in wildlife-livestock interfaces that can be used to develop effective disease management strategies in the United States and worldwide. Published by Elsevier B.V.
Ihle, Andreas; Gouveia, Élvio R; Gouveia, Bruna R; Freitas, Duarte L; Jurema, Jefferson; Ornelas, Rui T; Antunes, António M; Muniz, Bárbara R; Kliegel, Matthias
2018-06-01
It remains unclear so far whether the role of cognitive reserve for cognitive functioning in old age may differ between individuals with low, compared to those with high functional fitness status. Therefore, the present study set out to investigate the relation of education and cognitive leisure activity as key markers of cognitive reserve to mini-mental state in old age (as an indicator of the extent of cognitive impairment) and its interplay with functional fitness status in a large sample of older adults. We assessed MMSE in 701 older adults ( M = 70.4 years, SD = 6.9, range: 60-91). We measured functional fitness status using the Senior Fitness Test battery and interviewed individuals on their education and cognitive leisure activity. Results showed that better functional fitness status, longer education, and greater engagement in cognitive leisure activity were significantly related to higher MMSE scores. Moderation analyses showed that the relations of education and cognitive leisure activity to MMSE scores were significantly larger in individuals with low, compared to those with high functional fitness status. In conclusion, cognitive functioning in old age may more strongly depend on cognitive reserve accumulated during the life course in older adults with low, compared to those with high functional fitness status. These findings may be explained by cross-domain compensation effects in vulnerable individuals and may (at least partly) account for the large variability in cognitive reserve-cognition relations debated in the literature.
Research on Free Electron Lasers
1989-01-01
<exp(Aa)vo) >A = exp((YG -o/2) (67) For the exponential distribution function is another example that results from a symmetric angular spread in the...vo = 47 when there is an angular spread. This indicates that the actual peak moves to the right when 00 increases. The last term term decreases the...value of the gain at vo = F7 when either the angular spread ag or energy spread OG increases. 10. SPIE FEL Review Paper During the contracting period
Aanen, Duur K.; Spelbrink, Johannes N.; Beekman, Madeleine
2014-01-01
The peculiar biology of mitochondrial DNA (mtDNA) potentially has detrimental consequences for organismal health and lifespan. Typically, eukaryotic cells contain multiple mitochondria, each with multiple mtDNA genomes. The high copy number of mtDNA implies that selection on mtDNA functionality is relaxed. Furthermore, because mtDNA replication is not strictly regulated, within-cell selection may favour mtDNA variants with a replication advantage, but a deleterious effect on cell fitness. The opportunities for selfish mtDNA mutations to spread are restricted by various organism-level adaptations, such as uniparental transmission, germline mtDNA bottlenecks, germline selection and, during somatic growth, regular alternation between fusion and fission of mitochondria. These mechanisms are all hypothesized to maintain functional mtDNA. However, the strength of selection for maintenance of functional mtDNA progressively declines with age, resulting in age-related diseases. Furthermore, organismal adaptations that most probably evolved to restrict the opportunities for selfish mtDNA create secondary problems. Owing to predominantly maternal mtDNA transmission, recombination among mtDNA from different individuals is highly restricted or absent, reducing the scope for repair. Moreover, maternal inheritance precludes selection against mtDNA variants with male-specific effects. We finish by discussing the consequences of life-history differences among taxa with respect to mtDNA evolution and make a case for the use of microorganisms to experimentally manipulate levels of selection. PMID:24864309
Oppewal, Alyt; Hilgenkamp, Thessa I M; van Wijck, Ruud; Schoufour, Josje D; Evenhuis, Heleen M
2014-10-01
A high incidence of limitations in daily functioning is seen in older adults with intellectual disabilities (ID), along with poor physical fitness levels. The aim of this study was to assess the predictive value of physical fitness for daily functioning after 3 years, in 602 older adults with borderline to profound ID (≥ 50 years). At baseline, physical fitness levels and daily functioning (operationalized as basic activities of daily living [ADL] and mobility) were assessed. After 3 years, the measurements of daily functioning were repeated. At follow-up, 12.6% of the participants were completely independent in ADL and 48.5% had no mobility limitations. More than half of the participants (54.8%) declined in their ability to perform ADL and 37.5% declined in their mobility. Manual dexterity, visual reaction time, balance, comfortable and fast gait speed, muscular endurance, and cardiorespiratory fitness were significant predictors for a decline in ADL. For a decline in mobility, manual dexterity, balance, comfortable and fast walking speed, grip strength, muscular endurance, and cardiorespiratory fitness were all significant predictors. This proves the predictive validity of these physical fitness tests for daily functioning and stresses the importance of using physical fitness tests and implementing physical fitness enhancing programs in the care for older adults with ID. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brown, Angus M
2006-04-01
The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.
Malcicka, Miriama; Agosta, Salvatore J; Harvey, Jeffrey A
2015-09-01
Many invasive species are able to escape from coevolved enemies and thus enjoy a competitive advantage over native species. However, during the invasion phase, non-native species must overcome many ecological and/or physiological hurdles before they become established and spread in their new habitats. This may explain why most introduced species either fail to establish or remain as rare interstitials in their new ranges. Studies focusing on invasive species have been based on plants or animals where establishment requires the possession of preadapted traits from their native ranges that enables them to establish and spread in their new habitats. The possession of preadapted traits that facilitate the exploitation of novel resources or to colonize novel habitats is known as 'ecological fitting'. Some species have evolved traits and life histories that reflect highly intimate associations with very specific types of habitats or niches. For these species, their phenological windows are narrow, and thus the ability to colonize non-native habitats requires that a number of conditions need to be met in accordance with their more specialized life histories. Some of the strongest examples of more complex ecological fitting involve invasive parasites that require different animal hosts to complete their life cycles. For instance, the giant liver fluke, Fascioloides magna, is a major parasite of several species of ungulates in North America. The species exhibits a life cycle whereby newly hatched larvae must find suitable intermediate hosts (freshwater snails) and mature larvae, definitive hosts (ungulates). Intermediate and definitive host ranges of F. magna in its native range are low in number, yet this parasite has been successfully introduced into Europe where it has become a parasite of native European snails and deer. We discuss how the ability of these parasites to overcome multiple ecophysiological barriers represents an excellent example of 'multiple-level ecological fitting'. © 2015 John Wiley & Sons Ltd.
Estimating errors in least-squares fitting
NASA Technical Reports Server (NTRS)
Richter, P. H.
1995-01-01
While least-squares fitting procedures are commonly used in data analysis and are extensively discussed in the literature devoted to this subject, the proper assessment of errors resulting from such fits has received relatively little attention. The present work considers statistical errors in the fitted parameters, as well as in the values of the fitted function itself, resulting from random errors in the data. Expressions are derived for the standard error of the fit, as a function of the independent variable, for the general nonlinear and linear fitting problems. Additionally, closed-form expressions are derived for some examples commonly encountered in the scientific and engineering fields, namely ordinary polynomial and Gaussian fitting functions. These results have direct application to the assessment of the antenna gain and system temperature characteristics, in addition to a broad range of problems in data analysis. The effects of the nature of the data and the choice of fitting function on the ability to accurately model the system under study are discussed, and some general rules are deduced to assist workers intent on maximizing the amount of information obtained form a given set of measurements.
NASA Astrophysics Data System (ADS)
Pinheiro da Silva, L.; Auvergne, M.; Toublanc, D.; Rowe, J.; Kuschnig, R.; Matthews, J.
2006-06-01
Context: .Fitting photometry algorithms can be very effective provided that an accurate model of the instrumental point spread function (PSF) is available. When high-precision time-resolved photometry is required, however, the use of point-source star images as empirical PSF models can be unsatisfactory, due to the limits in their spatial resolution. Theoretically-derived models, on the other hand, are limited by the unavoidable assumption of simplifying hypothesis, while the use of analytical approximations is restricted to regularly-shaped PSFs. Aims: .This work investigates an innovative technique for space-based fitting photometry, based on the reconstruction of an empirical but properly-resolved PSF. The aim is the exploitation of arbitrary star images, including those produced under intentional defocus. The cases of both MOST and COROT, the first space telescopes dedicated to time-resolved stellar photometry, are considered in the evaluation of the effectiveness and performances of the proposed methodology. Methods: .PSF reconstruction is based on a set of star images, periodically acquired and presenting relative subpixel displacements due to motion of the acquisition system, in this case the jitter of the satellite attitude. Higher resolution is achieved through the solution of the inverse problem. The approach can be regarded as a special application of super-resolution techniques, though a specialised procedure is proposed to better meet the PSF determination problem specificities. The application of such a model to fitting photometry is illustrated by numerical simulations for COROT and on a complete set of observations from MOST. Results: .We verify that, in both scenarios, significantly better resolved PSFs can be estimated, leading to corresponding improvements in photometric results. For COROT, indeed, subpixel reconstruction enabled the successful use of fitting algorithms despite its rather complex PSF profile, which could hardly be modeled otherwise. For MOST, whose direct-imaging PSF is closer to the ordinary, comparison to other models or photometry techniques were carried out and confirmed the potential of PSF reconstruction in real observational conditions.
2017-10-01
AWARD NUMBER: W81XWH-16-1-0785 TITLE: Prosthetic Smart Socket Technology to Improve Patient Interaction, Usability, Comfort, Fit and Function...2016 - 29 Sep 2017 4. TITLE AND SUBTITLE Prosthetic Smart Socket Technology to Improve Patient Interaction, Usability, Comfort, Fit and Function 5a...discomfort. 2. KEYWORDS: Provide a brief list of keywords (limit to 20 words). Prosthesis, prosthesis fit, technology , skin problems, amputee
THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannella, Maurilio; Gabasch, Armin; Drory, Niv
2009-08-10
The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars in the universe preferentially belonging to the highest density regions. The whole catalog including morphological information and stellar mass estimates analyzed in this work is made publicly available.« less
2004-04-15
The loss of productivity due to flu is staggering. Costs range as much as $20 billio a year. High mutation rates of the flu virus have hindered development of new drugs or vaccines. The secret lies in a small molecule which is attached to the host cell's surface. Each flu virus, no matter what strain, must remove this small molecule to escape the host cell to spread infection. Using data from space and earth grown crystals, researchers from the Center of Macromolecular Crystallography (CMC) are desining drugs to bind with this protein's active site. This lock and key fit reduces the spread of flu in the body by blocking its escape route. In collaboration with its corporate partner, the CMC has refined drug structure in preparation for clinical trials. Tested and approved relief is expected to reach drugstores by year 2004.
[The present state and future of home care for gastric cancer patients].
Maeda, Yoshiharu; Sasaki, Eisaku; Mikoshiba, Michio; Kandabashi, Kouji; Omuro, Yasushi; Okamoto, Rumiko; Sasaki, Tsuneo
2006-05-01
Recently, cancer treatment has been shift from inpatient chemotherapy to outpatient chemotherapy, because of various medical circumstances. In chemotherapy of gastric cancer, outpatient chemotherapy was not spread in the last decade, because the chemotherapy protocol of gastric cancer was not fit for outpatient chemotherapy. But the development of new drugs as TS-1 make outpatient chemotherapy more frequent. So home care of patients has been important for management of gastric cancer. Various symptoms due to obstruction at primary lesion or other lesion prevent patients from living at home in gastric cancer. But recently, technical development and spread of home parenteral nutrition make a possible home care of patients with gastric cancer. It is necessary to make a system that supports patient life at home.
Shape measurement biases from underfitting and ellipticity gradients
Bernstein, Gary M.
2010-08-21
With this study, precision weak gravitational lensing experiments require measurements of galaxy shapes accurate to <1 part in 1000. We investigate measurement biases, noted by Voigt and Bridle (2009) and Melchior et al. (2009), that are common to shape measurement methodologies that rely upon fitting elliptical-isophote galaxy models to observed data. The first bias arises when the true galaxy shapes do not match the models being fit. We show that this "underfitting bias" is due, at root, to these methods' attempts to use information at high spatial frequencies that has been destroyed by the convolution with the point-spread function (PSF)more » and/or by sampling. We propose a new shape-measurement technique that is explicitly confined to observable regions of k-space. A second bias arises for galaxies whose ellipticity varies with radius. For most shape-measurement methods, such galaxies are subject to "ellipticity gradient bias". We show how to reduce such biases by factors of 20–100 within the new shape-measurement method. The resulting shear estimator has multiplicative errors < 1 part in 10 3 for high-S/N images, even for highly asymmetric galaxies. Without any training or recalibration, the new method obtains Q = 3000 in the GREAT08 Challenge of blind shear reconstruction on low-noise galaxies, several times better than any previous method.« less
NASA Technical Reports Server (NTRS)
Salomonson, V. V.; Nickeson, J. E.; Bodechtel, J.; Zilger, J.
1988-01-01
Point-spread functions (PSF) comparisons were made between the Modular Optoelectronic Multispectral Scanner (MOMS-01), the LANDSAT Thematic Mapper (TM) and the SPOT-HRV instruments, principally near Lake Nakuru, Kenya. The results, expressed in terms of the width of the point spread functions at the 50 percent power points as determined from the in-scene analysis show that the TM has a PSF equal to or narrower than the MOMS-01 instrument (50 to 55 for the TM versus 50 to 68 for the MOMS). The SPOT estimates of the PSF range from 36 to 40. When the MOMS results are adjusted for differences in edge scanning as compared to the TM and SPOT, they are nearer 40 in the 575 to 625 nm band.
Forte, Roberta; Pesce, Caterina; Leite, Joao Costa; De Vito, Giuseppe; Gibney, Eileen R; Tomporowski, Phillip D; Boreham, Colin A G
2013-06-01
Both physical and cognitive factors are known to independently predict functional mobility in older people. However, the combined predictive value of both physical fitness and cognitive factors on functional mobility has been less investigated. The aim of the present study was to assess if cognitive executive functions moderate the role of physical fitness in determining functional mobility of older individuals. Fifty-seven 65- to 75-year-old healthy participants performed tests of functional mobility (habitual and maximal walking speed, maximal walking speed while picking up objects/stepping over obstacles), physical fitness (peak power, knee extensors torque, back/lower limb flexibility, aerobic fitness), and executive function (inhibition and cognitive flexibility). Maximal walking speeds were predicted by physical fitness parameters and their interaction with cognitive factors. Knee extensor torque emerged as the main predictor of all tested locomotor performances at maximal speed. The effect of peak power and back/lower limb flexibility was moderated by executive functions. In particular, inhibition and cognitive flexibility differed in the way in which they moderate the role of fitness. High levels of cognitive flexibility seem necessary to take advantage of leg power for walking at maximal speed. In contrast, high levels of inhibitory capacity seem to compensate for low levels of back/lower limb flexibility when picking up movements are added to a locomotor task. These findings may have important practical implications for the design and implementation of multi-component training programs aimed at optimizing functional abilities in older adults.
NLINEAR - NONLINEAR CURVE FITTING PROGRAM
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1994-01-01
A common method for fitting data is a least-squares fit. In the least-squares method, a user-specified fitting function is utilized in such a way as to minimize the sum of the squares of distances between the data points and the fitting curve. The Nonlinear Curve Fitting Program, NLINEAR, is an interactive curve fitting routine based on a description of the quadratic expansion of the chi-squared statistic. NLINEAR utilizes a nonlinear optimization algorithm that calculates the best statistically weighted values of the parameters of the fitting function and the chi-square that is to be minimized. The inputs to the program are the mathematical form of the fitting function and the initial values of the parameters to be estimated. This approach provides the user with statistical information such as goodness of fit and estimated values of parameters that produce the highest degree of correlation between the experimental data and the mathematical model. In the mathematical formulation of the algorithm, the Taylor expansion of chi-square is first introduced, and justification for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations are derived, which are solved by matrix algebra. To achieve convergence, the algorithm requires meaningful initial estimates for the parameters of the fitting function. NLINEAR is written in Fortran 77 for execution on a CDC Cyber 750 under NOS 2.3. It has a central memory requirement of 5K 60 bit words. Optionally, graphical output of the fitting function can be plotted. Tektronix PLOT-10 routines are required for graphics. NLINEAR was developed in 1987.
GOCI image enhancement using an MTF compensation technique for coastal water applications.
Oh, Eunsong; Choi, Jong-Kuk
2014-11-03
The Geostationary Ocean Color Imager (GOCI) is the first optical sensor in geostationary orbit for monitoring the ocean environment around the Korean Peninsula. This paper discusses on-orbit modulation transfer function (MTF) estimation with the pulse-source method and its compensation results for the GOCI. Additionally, by analyzing the relationship between the MTF compensation effect and the accuracy of the secondary ocean product, we confirmed the optimal MTF compensation parameter for enhancing image quality without variation in the accuracy. In this study, MTF assessment was performed using a natural target because the GOCI system has a spatial resolution of 500 m. For MTF compensation with the Wiener filter, we fitted a point spread function with a Gaussian curve controlled by a standard deviation value (σ). After a parametric analysis for finding the optimal degradation model, the σ value of 0.4 was determined to be an optimal indicator. Finally, the MTF value was enhanced from 0.1645 to 0.2152 without degradation of the accuracy of the ocean color product. Enhanced GOCI images by MTF compensation are expected to recognize small-scale ocean products in coastal areas with sharpened geometric performance.
Joint estimation of preferential attachment and node fitness in growing complex networks
NASA Astrophysics Data System (ADS)
Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi
2016-09-01
Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit.
Joint estimation of preferential attachment and node fitness in growing complex networks
Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi
2016-01-01
Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit. PMID:27601314
Marti, Alejandro; Folch, Arnau; Costa, Antonio; Engwell, Samantha
2016-01-01
The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dynamics. To reconstruct the volume, intensity, and duration of the tephra dispersal, we applied a computational inversion method that explicitly accounts for the Plinian and co-ignimbrite phases and for gravitational spreading of the umbrella cloud. To verify the consistency of our results, we performed an additional single-phase inversion using an independent thickness dataset. Our better-fitting two-phase model suggests a higher mass eruption rate than previous studies, and estimates that 3/4 of the total fallout volume is co-ignimbrite in origin. Gravitational spreading of the umbrella cloud dominates tephra transport only within the first hundred kilometres due to strong stratospheric winds in our best-fit wind model. Finally, tephra fallout impacts would have interrupted the westward migration of modern hominid groups in Europe, possibly supporting the hypothesis of prolonged Neanderthal survival in South-Western Europe during the Middle to Upper Palaeolithic transition. PMID:26883449
Tuite, Ashleigh R; Gift, Thomas L; Chesson, Harrell W; Hsu, Katherine; Salomon, Joshua A; Grad, Yonatan H
2017-01-01
Abstract Background Increasing antibiotic resistance limits treatment options for gonorrhea. We examined the impact of a hypothetical point-of-care (POC) test reporting antibiotic susceptibility profiles on slowing resistance spread. Methods A mathematical model describing gonorrhea transmission incorporated resistance emergence probabilities and fitness costs associated with resistance based on characteristics of ciprofloxacin (A), azithromycin (B), and ceftriaxone (C). We evaluated time to 1% and 5% prevalence of resistant strains among all isolates with the following: (1) empiric treatment (B and C), and treatment guided by POC tests determining susceptibility to (2) A only and (3) all 3 antibiotics. Results Continued empiric treatment without POC testing was projected to result in >5% of isolates being resistant to both B and C within 15 years. Use of either POC test in 10% of identified cases delayed this by 5 years. The 3 antibiotic POC test delayed the time to reach 1% prevalence of triply-resistant strains by 6 years, whereas the A-only test resulted in no delay. Results were less sensitive to assumptions about fitness costs and test characteristics with increasing test uptake. Conclusions Rapid diagnostics reporting antibiotic susceptibility may extend the usefulness of existing antibiotics for gonorrhea treatment, but ongoing monitoring of resistance patterns will be critical. PMID:28968710
Marti, Alejandro; Folch, Arnau; Costa, Antonio; Engwell, Samantha
2016-02-17
The 39 ka Campanian Ignimbrite (CI) super-eruption was the largest volcanic eruption of the past 200 ka in Europe. Tephra deposits indicate two distinct plume forming phases, Plinian and co-ignimbrite, characteristic of many caldera-forming eruptions. Previous numerical studies have characterized the eruption as a single-phase event, potentially leading to inaccurate assessment of eruption dynamics. To reconstruct the volume, intensity, and duration of the tephra dispersal, we applied a computational inversion method that explicitly accounts for the Plinian and co-ignimbrite phases and for gravitational spreading of the umbrella cloud. To verify the consistency of our results, we performed an additional single-phase inversion using an independent thickness dataset. Our better-fitting two-phase model suggests a higher mass eruption rate than previous studies, and estimates that 3/4 of the total fallout volume is co-ignimbrite in origin. Gravitational spreading of the umbrella cloud dominates tephra transport only within the first hundred kilometres due to strong stratospheric winds in our best-fit wind model. Finally, tephra fallout impacts would have interrupted the westward migration of modern hominid groups in Europe, possibly supporting the hypothesis of prolonged Neanderthal survival in South-Western Europe during the Middle to Upper Palaeolithic transition.
Invasive mutualisms between a plant pathogen and insect vectors in the Middle East and Brazil
Queiroz, Renan Batista; Silva, Fábio Nascimento; Al-Mahmmoli, Issa Hashil; Al-Sadi, Abdullah Mohammed; Carvalho, Claudine Márcia; Elliot, Simon L.
2016-01-01
Complex multi-trophic interactions in vectorborne diseases limit our understanding and ability to predict outbreaks. Arthropod-vectored pathogens are especially problematic, with the potential for novel interspecific interactions during invasions. Variations and novelties in plant–arthropod–pathogen triumvirates present significant threats to global food security. We examined aspects of a phytoplasma pathogen of citrus across two continents. ‘Candidatus Phytoplasma aurantifolia’ causes Witches' Broom Disease of Lime (WBDL) and has devastated citrus production in the Middle East. A variant of this phytoplasma currently displays asymptomatic or ‘silent’ infections in Brazil. We first studied vector capacity and fitness impacts of the pathogen on its vectors. The potential for co-occurring weed species to act as pathogen reservoirs was analysed and key transmission periods in the year were also studied. We demonstrate that two invasive hemipteran insects—Diaphorina citri and Hishimonus phycitis—can vector the phytoplasma. Feeding on phytoplasma-infected hosts greatly increased reproduction of its invasive vector D. citri both in Oman and Brazil; suggesting that increased fitness of invasive insect vectors thereby further increases the pathogen's capacity to spread. Based on our findings, this is a robust system for studying the effects of invasions on vectorborne diseases and highlights concerns about its spread to warmer, drier regions of Brazil. PMID:28083099
The evolutionary advantage of limited network knowledge.
Larson, Jennifer M
2016-06-07
Groups of individuals have social networks that structure interactions within the groups; evolutionary theory increasingly uses this fact to explain the emergence of cooperation (Eshel and Cavalli-Sforza, 1982; Boyd and Richerson, 1988, 1989; Ohtsuki et al., 2006; Nowak et al., 2010; Van Veelen et al., 2012). This approach has resulted in a number of important insights for the evolution of cooperation in the biological and social sciences, but omits a key function of social networks that has persisted throughout recent evolutionary history (Apicella et al., 2012): their role in transmitting gossip about behavior within a group. Accounting for this well-established role of social networks among rational agents in a setting of indirect reciprocity not only shows a new mechanism by which the structure of networks is fitness-relevant, but also reveals that knowledge of social networks can be fitness-relevant as well. When groups enforce cooperation by sanctioning peers whom gossip reveals to have deviated, individuals in certain peripheral network positions are tempting targets of uncooperative behavior because gossip they share about misbehavior spreads slowly through the network. The ability to identify these individuals creates incentives to behave uncooperatively. Consequently, groups comprised of individuals who knew precise information about their social networks would be at a fitness disadvantage relative to groups of individuals with a coarser knowledge of their networks. Empirical work has consistently shown that modern humans know little about the structure of their own social networks and perform poorly when tasked with learning new ones. This robust empirical regularity may be the product of natural selection in an environment of strong selective pressure at the group level. Imprecise views of networks make enforcing cooperation easier. Copyright © 2016 Elsevier Ltd. All rights reserved.
Castedo-Dorado, Fernando; Hevia, Andrea; Vega, José Antonio; Vega-Nieva, Daniel; Ruiz-González, Ana Daría
2017-01-01
The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard. PMID:28448524
van Neerven, Sabien Ga; Bozkurt, Ahmet; O'Dey, Dan Mon; Scheffel, Juliane; Boecker, Arne H; Stromps, Jan-Philipp; Dunda, Sebastian; Brook, Gary A; Pallua, Norbert
2012-04-30
Evaluation of functional and structural recovery after peripheral nerve injury is crucial to determine the therapeutic effect of a nerve repair strategy. In the present study, we examined the relationship between the structural evaluation of regeneration by means of retrograde tracing and the functional analysis of toe spreading. Two standardized rat sciatic nerve injury models were used to address this relationship. As such, animals received either a 2 cm sciatic nerve defect (neurotmesis) followed by autologous nerve transplantation (ANT animals) or a crush injury with spontaneous recovery (axonotmesis; CI animals). Functional recovery of toe spreading was observed over an observation period of 84 days. In contrast to CI animals, ANT animals did not reach pre-surgical levels of toe spreading. After the observation period, the lipophilic dye DiI was applied to label sensory and motor neurons in dorsal root ganglia (DRG; sensory neurons) and spinal cord (motor neurons), respectively. No statistical difference in motor or sensory neuron counts could be detected between ANT and CI animals.In the present study we could indicate that there was no direct relationship between functional recovery (toe spreading) measured by SSI and the number of labelled (motor and sensory) neurons evaluated by retrograde tracing. The present findings demonstrate that a multimodal approach with a variety of independent evaluation tools is essential to understand and estimate the therapeutic benefit of a nerve repair strategy.
Li, Chunxiao; Khoo, Selina; Adnan, Athirah
2017-03-01
The aim of this review is to synthesize the evidence on the effects of aquatic exercise interventions on physical function and fitness among people with spinal cord injury. Six major databases were searched from inception till June 2015: MEDLINE, CINAHL, EMBASE, PsychInfo, SPORTDiscus, and Cochrane Center Register of Controlled Trials. Two reviewers independently rated methodological quality using the modified Downs and Black Scale and extracted and synthesized key findings (i.e., participant characteristics, study design, physical function and fitness outcomes, and adverse events). Eight of 276 studies met the inclusion criteria, of which none showed high research quality. Four studies assessed physical function outcomes and 4 studies evaluated aerobic fitness as outcome measures. Significant improvements on these 2 outcomes were generally found. Other physical or fitness outcomes including body composition, muscular strength, and balance were rarely reported. There is weak evidence supporting aquatic exercise training to improve physical function and aerobic fitness among adults with spinal cord injury. Suggestions for future research include reporting details of exercise interventions, evaluating other physical or fitness outcomes, and improving methodological quality.
Matzek, Virginia
2012-01-01
The question of why some introduced species become invasive and others do not is the central puzzle of invasion biology. Two of the principal explanations for this phenomenon concern functional traits: invasive species may have higher values of competitively advantageous traits than non-invasive species, or they may have greater phenotypic plasticity in traits that permits them to survive the colonization period and spread to a broad range of environments. Although there is a large body of evidence for superiority in particular traits among invasive plants, when compared to phylogenetically related non-invasive plants, it is less clear if invasive plants are more phenotypically plastic, and whether this plasticity confers a fitness advantage. In this study, I used a model group of 10 closely related Pinus species whose invader or non-invader status has been reliably characterized to test the relative contribution of high trait values and high trait plasticity to relative growth rate, a performance measure standing in as a proxy for fitness. When grown at higher nitrogen supply, invaders had a plastic RGR response, increasing their RGR to a much greater extent than non-invaders. However, invasive species did not exhibit significantly more phenotypic plasticity than non-invasive species for any of 17 functional traits, and trait plasticity indices were generally weakly correlated with RGR. Conversely, invasive species had higher values than non-invaders for 13 of the 17 traits, including higher leaf area ratio, photosynthetic capacity, photosynthetic nutrient-use efficiency, and nutrient uptake rates, and these traits were also strongly correlated with performance. I conclude that, in responding to higher N supply, superior trait values coupled with a moderate degree of trait variation explain invasive species' superior performance better than plasticity per se. PMID:23119098
The addition effect of Tunisian date seed fibers on the quality of chocolate spreads.
Bouaziz, Mohamed Ali; Abbes, Fatma; Mokni, Abir; Blecker, Christophe; Attia, Hamadi; Besbes, Souhail
2017-04-01
Novel chocolate spreads were enriched by soluble and insoluble dietary fibers from Tunisian Deglet Nour date seeds at 1, 2, 3, 4, and 5% levels in the conventional chocolate spread. Defatted Deglet Nour date seeds, date seed soluble fiber concentrate (DSSFC) and date seed insoluble fiber concentrate (DSIFC) were characterized by high levels of dietary fibers (80-90%). Chocolate spread enriched with 5% of DSSFC presented the highest oil binding capacity (304.62%) compared to the control (102%). Whatever the DSIFC and DSSFC incorporation levels, no significant difference was recorded between the firmness, chewiness, and adhesiveness of prepared chocolate spreads compared to the control (p < .05). Sensory evaluation revealed that all prepared chocolate spreads enriched by DSIFC and DSSFC were accepted by panelists. These results indicated the value of date seeds as new source of dietary fibers to develop chocolate spread and could also improve health benefits and functional properties. Tunisia is considered to be one of the dates-producing countries. The mean annual yield of date fruits is about 200,000 tons. From this, around 20,000 tons of date seeds could be collected. This by-product of date processing industries could be regarded as an excellent source of dietary fiber with interesting technological functionality and many beneficial effects on human health. Then, date seeds could present a value addition by extraction and use of date seed fiber concentrate in chocolate spread formulation. © 2016 Wiley Periodicals, Inc.
Plasmid-Mediated Bioaugmentation for the Bioremediation of Contaminated Soils
Garbisu, Carlos; Garaiyurrebaso, Olatz; Epelde, Lur; Grohmann, Elisabeth; Alkorta, Itziar
2017-01-01
Bioaugmentation, or the inoculation of microorganisms (e.g., bacteria harboring the required catabolic genes) into soil to enhance the rate of contaminant degradation, has great potential for the bioremediation of soils contaminated with organic compounds. Regrettably, cell bioaugmentation frequently turns into an unsuccessful initiative, owing to the rapid decrease of bacterial viability and abundance after inoculation, as well as the limited dispersal of the inoculated bacteria in the soil matrix. Genes that encode the degradation of organic compounds are often located on plasmids and, consequently, they can be spread by horizontal gene transfer into well-established, ecologically competitive, indigenous bacterial populations. Plasmid-mediated bioaugmentation aims to stimulate the spread of contaminant degradation genes among indigenous soil bacteria by the introduction of plasmids, located in donor cells, harboring such genes. But the acquisition of plasmids by recipient cells can affect the host’s fitness, a crucial aspect for the success of plasmid-mediated bioaugmentation. Besides, environmental factors (e.g., soil moisture, temperature, organic matter content) can play important roles for the transfer efficiency of catabolic plasmids, the expression of horizontally acquired genes and, finally, the contaminant degradation activity. For plasmid-mediated bioaugmentation to be reproducible, much more research is needed for a better selection of donor bacterial strains and accompanying plasmids, together with an in-depth understanding of indigenous soil bacterial populations and the environmental conditions that affect plasmid acquisition and the expression and functioning of the catabolic genes of interest. PMID:29062312
Extracting Fitness Relationships and Oncogenic Patterns among Driver Genes in Cancer.
Zhang, Xindong; Gao, Lin; Jia, Songwei
2017-12-25
Driver mutation provides fitness advantage to cancer cells, the accumulation of which increases the fitness of cancer cells and accelerates cancer progression. This work seeks to extract patterns accumulated by driver genes ("fitness relationships") in tumorigenesis. We introduce a network-based method for extracting the fitness relationships of driver genes by modeling the network properties of the "fitness" of cancer cells. Colon adenocarcinoma (COAD) and skin cutaneous malignant melanoma (SKCM) are employed as case studies. Consistent results derived from different background networks suggest the reliability of the identified fitness relationships. Additionally co-occurrence analysis and pathway analysis reveal the functional significance of the fitness relationships with signaling transduction. In addition, a subset of driver genes called the "fitness core" is recognized for each case. Further analyses indicate the functional importance of the fitness core in carcinogenesis, and provide potential therapeutic opportunities in medicinal intervention. Fitness relationships characterize the functional continuity among driver genes in carcinogenesis, and suggest new insights in understanding the oncogenic mechanisms of cancers, as well as providing guiding information for medicinal intervention.
VanderWaal, Kimberly; Perez, Andres; Torremorrell, Montse; Morrison, Robert M; Craft, Meggan
2018-04-12
Epidemiological models of the spread of pathogens in livestock populations primarily focus on direct contact between farms based on animal movement data, and in some cases, local spatial spread based on proximity between premises. The roles of other types of indirect contact among farms is rarely accounted for. In addition, data on animal movements is seldom available in the United States. However, the spread of porcine epidemic diarrhea virus (PEDv) in U.S. swine represents one of the best documented emergences of a highly infectious pathogen in the U.S. livestock industry, providing an opportunity to parameterize models of pathogen spread via direct and indirect transmission mechanisms in swine. Using observed data on pig movements during the initial phase of the PEDv epidemic, we developed a network-based and spatially explicit epidemiological model that simulates the spread of PEDv via both indirect and direct movement-related contact in order to answer unresolved questions concerning factors facilitating between-farm transmission. By modifying the likelihood of each transmission mechanism and fitting this model to observed epidemiological dynamics, our results suggest that between-farm transmission was primarily driven by direct mechanisms related to animal movement and indirect mechanisms related to local spatial spread based on geographic proximity. However, other forms of indirect transmission among farms, including contact via contaminated vehicles and feed, were responsible for high consequence transmission events resulting in the introduction of the virus into new geographic areas. This research is among the first reports of farm-level animal movements in the U.S. swine industry and, to our knowledge, represents the first epidemiological model of commercial U.S. swine using actual data on farm-level animal movement. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Koepferl, Christine M.; Robitaille, Thomas P.
2017-11-01
When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory. Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepferl, Christine M.; Robitaille, Thomas P., E-mail: koepferl@usm.lmu.de
When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied tomore » compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory . Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.« less
Astronomy in Denver: Spatial distributions of dust properties via far-IR broadband map with HerPlaNS
NASA Astrophysics Data System (ADS)
Asano, Kentaro; Ueta, Toshiya; Ladjal, Djazia; Exter, Katrina; Otsuka, Masaaki; HerPlaNS Consortium
2018-06-01
We present the results of our analyses on dust properties in all of Galactic planetary nebulae based on 5-band broadband images in the far-IR taken with the Herschel Space Observatory.By fitting surface brightness distributions of dust thermal emission at 70, 160, 250, 350 and 500 microns with a single-temperature modified black body function, we derive spatially resolved maps of the dust emissivity power-law index (beta) and dust temperature (Td), as well as the column density.We find that circumstellar dust grains in PNe occupy a specific region in the beta-Td space, which is distinct from that occupied by dust grains in the Interstellar Matter (ISM) and star forming regions (SFRs). Unlike those in the ISM and SFRs, dust grains in PNe exhibit little variation in beta while a large spread in Td, suggesting rather homogeneous dust properties.This work is part of the Herschel Planetary Nebula Survey Plus (HerPlaNS+) supported by the NASA Astrophysics Data Analysis Program.
Random diffusion and cooperation in continuous two-dimensional space.
Antonioni, Alberto; Tomassini, Marco; Buesser, Pierre
2014-03-07
This work presents a systematic study of population games of the Prisoner's Dilemma, Hawk-Dove, and Stag Hunt types in two-dimensional Euclidean space under two-person, one-shot game-theoretic interactions, and in the presence of agent random mobility. The goal is to investigate whether cooperation can evolve and be stable when agents can move randomly in continuous space. When the agents all have the same constant velocity cooperation may evolve if the agents update their strategies imitating the most successful neighbor. If a fitness difference proportional is used instead, cooperation does not improve with respect to the static random geometric graph case. When viscosity effects set-in and agent velocity becomes a quickly decreasing function of the number of neighbors they have, one observes the formation of monomorphic stable clusters of cooperators or defectors in the Prisoner's Dilemma. However, cooperation does not spread in the population as in the constant velocity case. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...
2015-06-15
Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less
The problems in quantum foundations in the light of gauge theories
NASA Astrophysics Data System (ADS)
Ne'Eman, Yuval
1986-04-01
We review the issues of nonseparability and seemingly acausal propagation of information in EPR, as displayed by experiments and the failure of Bell's inequalities. We show that global effects are in the very nature of the geometric structure of modern physical theories, occurring even at the classical level. The Aharonov-Bohm effect, magnetic monopoles, instantons, etc. result from the topology and homotopy features of the fiber bundle manifolds of gauge theories. The conservation of probabilities, a supposedly highly quantum effect, is also achieved through global geometry equations. The EPR observables all fit in such geometries, and space-time is a truncated representation and is not the correct arena for their understanding. Relativistic quantum field theory represents the global action of the measurement operators as the zero-momentum (and therefore spatially infinitely spread) limit of their wave functions (form factors). We also analyze the collapse of the state vector as a case of spontaneous symmetry breakdown in the apparatus-observed state interaction.
Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions
Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima
2013-01-01
The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm. PMID:23737718
Improving Vector Evaluated Particle Swarm Optimisation by incorporating nondominated solutions.
Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima
2013-01-01
The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.
Spatial resolution of imaging plate with flash X-rays and its utilization for radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaikh, A. M., E-mail: shaikham@barc.gov.in; Romesh, C.; Kolage, T. S.
2015-06-24
A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm{sup 2} is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode.more » It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry.« less
Quantitative evaluation of software packages for single-molecule localization microscopy.
Sage, Daniel; Kirshner, Hagai; Pengo, Thomas; Stuurman, Nico; Min, Junhong; Manley, Suliana; Unser, Michael
2015-08-01
The quality of super-resolution images obtained by single-molecule localization microscopy (SMLM) depends largely on the software used to detect and accurately localize point sources. In this work, we focus on the computational aspects of super-resolution microscopy and present a comprehensive evaluation of localization software packages. Our philosophy is to evaluate each package as a whole, thus maintaining the integrity of the software. We prepared synthetic data that represent three-dimensional structures modeled after biological components, taking excitation parameters, noise sources, point-spread functions and pixelation into account. We then asked developers to run their software on our data; most responded favorably, allowing us to present a broad picture of the methods available. We evaluated their results using quantitative and user-interpretable criteria: detection rate, accuracy, quality of image reconstruction, resolution, software usability and computational resources. These metrics reflect the various tradeoffs of SMLM software packages and help users to choose the software that fits their needs.
On the use of bismuth as a neutron filter
NASA Astrophysics Data System (ADS)
Adib, M.; Kilany, M.
2003-02-01
A formula is given which, for neutron energies in the range 10 -4< E<10 eV, permits calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of bismuth temperature and crystalline form. Computer programs have been developed which allow calculations for the Bi rhombohedral structure in its poly-crystalline form and its equivalent hexagonal close-packed structure. The calculated total neutron cross-sections for poly-crystalline Bi at different temperatures were compared with the measured values. An overall agreement is indicated between the formula fits and experimental data. Agreement was also obtained for values of Bi-single crystals, at room and liquid nitrogen temperatures. A feasibility study for use of Bi in powdered form, as a cold neutron filter, is detailed in terms of the optimum Bi-single crystal thickness, mosaic spread, temperature and cutting plane for efficient transmission of thermal-reactor neutrons, and also for rejection of the accompanying fast neutrons and gamma rays.
Improved spatial resolution of luminescence images acquired with a silicon line scanning camera
NASA Astrophysics Data System (ADS)
Teal, Anthony; Mitchell, Bernhard; Juhl, Mattias K.
2018-04-01
Luminescence imaging is currently being used to provide spatially resolved defect in high volume silicon solar cell production. One option to obtain the high throughput required for on the fly detection is the use a silicon line scan cameras. However, when using a silicon based camera, the spatial resolution is reduced as a result of the weakly absorbed light scattering within the camera's chip. This paper address this issue by applying deconvolution from a measured point spread function. This paper extends the methods for determining the point spread function of a silicon area camera to a line scan camera with charge transfer. The improvement in resolution is quantified in the Fourier domain and in spatial domain on an image of a multicrystalline silicon brick. It is found that light spreading beyond the active sensor area is significant in line scan sensors, but can be corrected for through normalization of the point spread function. The application of this method improves the raw data, allowing effective detection of the spatial resolution of defects in manufacturing.
Buckwalter, Joseph D.; Frimpong, Emmanuel A.; Angermeier, Paul L.; Barney, Jacob N.
2018-01-01
AimKnowledge of expanding and contracting ranges is critical for monitoring invasions and assessing conservation status, yet reliable data on distributional trends are lacking for most freshwater species. We developed a quantitative technique to detect the sign (expansion or contraction) and functional form of range‐size changes for freshwater species based on collections data, while accounting for possible biases due to variable collection effort. We applied this technique to quantify stream‐fish range expansions and contractions in a highly invaded river system.LocationUpper and middle New River (UMNR) basin, Appalachian Mountains, USA.MethodsWe compiled a 77‐year stream‐fish collections dataset partitioned into ten time periods. To account for variable collection effort among time periods, we aggregated the collections into 100 watersheds and expressed a species’ range size as detections per watershed (HUC) sampled (DPHS). We regressed DPHS against time by species and used an information‐theoretic approach to compare linear and nonlinear functional forms fitted to the data points and to classify each species as spreader, stable or decliner.ResultsWe analysed changes in range size for 74 UMNR fishes, including 35 native and 39 established introduced species. We classified the majority (51%) of introduced species as spreaders, compared to 31% of natives. An exponential functional form fits best for 84% of spreaders. Three natives were among the most rapid spreaders. All four decliners were New River natives.Main conclusionsOur DPHS‐based approach facilitated quantitative analyses of distributional trends for stream fishes based on collections data. Partitioning the dataset into multiple time periods allowed us to distinguish long‐term trends from population fluctuations and to examine nonlinear forms of spread. Our framework sets the stage for further study of drivers of stream‐fish invasions and declines in the UMNR and is widely transferable to other freshwater taxa and geographic regions.
Bhatter, Purva; Chatterjee, Anirvan; D'souza, Desiree; Tolani, Monica; Mistry, Nerges
2012-01-01
Background Multi Drug Resistant Tuberculosis (MDR TB) is a threat to global tuberculosis control. A significant fitness cost has been associated with DR strains from specific lineages. Evaluation of the influence of the competing drug susceptible strains on fitness of drug resistant strains may have an important bearing on understanding the spread of MDR TB. The aim of this study was to evaluate the fitness of MDR TB strains, from a TB endemic region of western India: Mumbai, belonging to 3 predominant lineages namely CAS, Beijing and MANU in the presence of drug susceptible strains from the same lineages. Methodology Drug susceptible strains from a single lineage were mixed with drug resistant strain, bearing particular non synonymous mutation (rpoB D516V; inhA, A16G; katG, S315T1/T2) from the same or different lineages. Fitness of M.tuberculosis (M.tb) strains was evaluated using the difference in growth rates obtained by using the CFU assay system. Conclusion/Significance While MANU were most fit amongst the drug susceptible strains of the 3 lineages, only Beijing MDR strains were found to grow in the presence of any of the competing drug susceptible strains. A disproportionate increase in Beijing MDR could be an alarm for an impending epidemic in this locale. In addition to particular non synonymous substitutions, the competing strains in an environment may impact the fitness of circulating drug resistant strains. PMID:22479407
Suchomel, Miranda; Diab-Elschahawi, Magda; Kundi, Michael; Assadian, Ojan
2013-08-30
Non-touch fittings have been reported to be susceptible for Pseudomonas aeruginosa accumulation. A number of factors may contribute to this, including the frequency of usage, duration of water stagnation, or presence of plastic materials. Programmable non-touch fittings are appearing which allow regular automated post-flushing with cold water to prevent water stagnation. However, the ideal duration of post-flushing is unknown as well as the effect of pre-rinsing with cold water before use. Eight non-touch fittings with brass valve blocks were mounted on a mobile test sink and connected to the same central water pipe source, differing only in presence or absence of water connection pipes, length of connection pipe, frequency of usage, and time intervals for pre- and post-usage water flush. The total bacteria colony-forming unit (cfu) counts were obtained by the spread plate technique. Low frequency of water use in combination with a long stagnating water column resulted in high bacterial cfu counts. Post-usage flushing for 2 seconds did not differ from no flushing. Flushing for 10 seconds with cold water after use or 30 seconds flush before use were both the most effective measures to prevent non-touch fittings from biofilm formation over a period of 20 weeks. Further improvements in water fitting technology could possibly solve the problem of bacterial water contamination in health care settings.
Sammito, S; Niebel, I
2013-01-01
Cardiovascular and metabolic risk factors are already common in the young adult population. The prevalence of obesity increases. More and more employees are not able to stand the physical demands at the workplace. In the course of increasing the statutory retirement age ("retirement with 67") more knowledge about the prevalence of cardiovascular risk factors and their influence on the physical fitness is necessary for a wise and goal-oriented primary prevention. A retrospective analysis of survey examinations from young German soldiers in terms of prevalence of cardiovascular risk factors and their physical fitness was undertaken. The causes for rejection were analysed. In the group of 646 test persons (in average 23.4 years old) there were large rates of people with overweight (37.9%) and obesity (10.8%). Smoking (55.6%), hypercholesteremia (18.6%) and hypertriglyceridemia (13.3%) were also common. Apparent diseases were rare. With an increasing number of cardiovascular risk factors, the physical fitness was significantly lower. High liver enzymes, obesity and lacking physical fitness were reasons for rejection. Already in this young adult collective cardiovascular risk factors are widely spread. This reduces the physical fitness directly or indirectly. A goal-oriented primary prevention is already necessary in this collective of young employees to avoid later limitations in ability to work. © Georg Thieme Verlag KG Stuttgart · New York.
Rogasch, Julian Mm; Hofheinz, Frank; Lougovski, Alexandr; Furth, Christian; Ruf, Juri; Großer, Oliver S; Mohnike, Konrad; Hass, Peter; Walke, Mathias; Amthauer, Holger; Steffen, Ingo G
2014-12-01
F18-fluorodeoxyglucose positron-emission tomography (FDG-PET) reconstruction algorithms can have substantial influence on quantitative image data used, e.g., for therapy planning or monitoring in oncology. We analyzed radial activity concentration profiles of differently reconstructed FDG-PET images to determine the influence of varying signal-to-background ratios (SBRs) on the respective spatial resolution, activity concentration distribution, and quantification (standardized uptake value [SUV], metabolic tumor volume [MTV]). Measurements were performed on a Siemens Biograph mCT 64 using a cylindrical phantom containing four spheres (diameter, 30 to 70 mm) filled with F18-FDG applying three SBRs (SBR1, 16:1; SBR2, 6:1; SBR3, 2:1). Images were reconstructed employing six algorithms (filtered backprojection [FBP], FBP + time-of-flight analysis [FBP + TOF], 3D-ordered subset expectation maximization [3D-OSEM], 3D-OSEM + TOF, point spread function [PSF], PSF + TOF). Spatial resolution was determined by fitting the convolution of the object geometry with a Gaussian point spread function to radial activity concentration profiles. MTV delineation was performed using fixed thresholds and semiautomatic background-adapted thresholding (ROVER, ABX, Radeberg, Germany). The pairwise Wilcoxon test revealed significantly higher spatial resolutions for PSF + TOF (up to 4.0 mm) compared to PSF, FBP, FBP + TOF, 3D-OSEM, and 3D-OSEM + TOF at all SBRs (each P < 0.05) with the highest differences for SBR1 decreasing to the lowest for SBR3. Edge elevations in radial activity profiles (Gibbs artifacts) were highest for PSF and PSF + TOF declining with decreasing SBR (PSF + TOF largest sphere; SBR1, 6.3%; SBR3, 2.7%). These artifacts induce substantial SUVmax overestimation compared to the reference SUV for PSF algorithms at SBR1 and SBR2 leading to substantial MTV underestimation in threshold-based segmentation. In contrast, both PSF algorithms provided the lowest deviation of SUVmean from reference SUV at SBR1 and SBR2. At high contrast, the PSF algorithms provided the highest spatial resolution and lowest SUVmean deviation from the reference SUV. In contrast, both algorithms showed the highest deviations in SUVmax and threshold-based MTV definition. At low contrast, all investigated reconstruction algorithms performed approximately equally. The use of PSF algorithms for quantitative PET data, e.g., for target volume definition or in serial PET studies, should be performed with caution - especially if comparing SUV of lesions with high and low contrasts.
ERIC Educational Resources Information Center
Cohen, Dan
2017-01-01
Over the past 25 years charter school policies have spread through the United States at a rapid pace. However, despite this rapid growth these policies have spread unevenly across the country with important variations in how charter school systems function in each state. Drawing on case studies in Michigan and Oregon, this article argues that…
Howard, Robert W
2014-09-01
The power law of practice holds that a power function best interrelates skill performance and amount of practice. However, the law's validity and generality are moot. Some researchers argue that it is an artifact of averaging individual exponential curves while others question whether the law generalizes to complex skills and to performance measures other than response time. The present study tested the power law's generality to development over many years of a very complex cognitive skill, chess playing, with 387 skilled participants, most of whom were grandmasters. A power or logarithmic function best fit grouped data but individuals showed much variability. An exponential function usually was the worst fit to individual data. Groups differing in chess talent were compared and a power function best fit the group curve for the more talented players while a quadratic function best fit that for the less talented. After extreme amounts of practice, a logarithmic function best fit grouped data but a quadratic function best fit most individual curves. Individual variability is great and the power law or an exponential law are not the best descriptions of individual chess skill development. Copyright © 2014 Elsevier B.V. All rights reserved.
Haapala, Eero A.
2013-01-01
Different elements of physical fitness in children have shown a declining trend during the past few decades. Cardiorespiratory fitness and motor skills have been associated with cognition, but the magnitude of this association remains unknown. The purpose of this review is to provide an overview of the relationship of cardiorespiratory fitness and motor skills with cognitive functions and academic performance in children up to 13 years of age. Cross-sectional studies suggest that children with higher cardiorespiratory fitness have more efficient cognitive processing at the neuroelectric level, as well as larger hippocampal and basal ganglia volumes, compared to children with lower cardiorespiratory fitness. Higher cardiorespiratory fitness has been associated with better inhibitory control in tasks requiring rigorous attention allocation. Better motor skills have been related to more efficient cognitive functions including inhibitory control and working memory. Higher cardiorespiratory fitness and better motor skills have also been associated with better academic performance. Furthermore, none of the studies on cardiorespiratory fitness have revealed independent associations with cognitive functions by controlling for motor skills. Studies concerning the relationship between motor skills and cognitive functions also did not consider cardiorespiratory fitness in the analyses. The results of this review suggest that high levels of cardiorespiratory fitness and motor skills may be beneficial for cognitive development and academic performance but the evidence relies mainly on cross-sectional studies. PMID:23717355
Glenn, Jordan M; Gray, Michelle; Binns, Ashley
2015-11-01
Physical function declines up to 4% per year after the age of 65. High-velocity training is important for maintaining muscular power and ultimately, physical function; however, whether performing high-velocity training without external resistance increases functional fitness among older adults remains unclear. The purpose of this investigation was to evaluate loaded and unloaded high-velocity training on lower body muscular power and functional fitness in older adults. Fifty-seven community-dwelling older adults (n = 16 males, n = 41 females) participated in this study. Inclusion criteria comprised ≥65 years of age, ≥24 on the Mini-mental state examination and no falls within past year. Two groups completed a 20-week high-velocity training intervention. The non-weighted group (UNLOAD, n = 27) performed the protocol without external load while the intervention group (LOAD, n = 30) used external loads via exercise machines. Functional fitness was assessed using the Short Physical Performance Battery (SPPB), Senior Fitness Test (SFT), hand-grip and lower body power measures. Multivariate ANOVA revealed that both groups had significant improvements for average (17.21%) and peak (9.26%) lower body power, along with the SFT arm curl (16.94%), chair stand (20.10%) and 8 ft. up-and-go (15.67%). Improvements were also noticed for SPPB 8 ft. walk (25.21%). However, improvements for all functional fitness measures were independent of training group. Unloaded high-velocity training increased functional fitness and power the same as loaded training. The ability of high-velocity movements to elicit gains in functional fitness without external loads may help health professionals develop fitness programs when time/space is limiting factor. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Differences in Sustained Attention Capacity as a Function of Aerobic Fitness.
Luque-Casado, Antonio; Perakakis, Pandelis; Hillman, Charles H; Kao, Shih-Chun; Llorens, Francesc; Guerra, Pedro; Sanabria, Daniel
2016-05-01
We investigated the relationship between aerobic fitness and sustained attention capacity by comparing task performance and brain function, by means of event-related potentials (ERP), in high- and low-fit young adults. Two groups of participants (22 higher-fit and 20 lower-fit) completed a 60-min version of the Psychomotor Vigilance Task (PVT). Behavioral (i.e., reaction time) and electrophysiological (ERP) (i.e., contingent negative variation and P3) were obtained and analyzed as a function of time-on-task. A submaximal cardiorespiratory fitness test confirmed the between-groups difference in terms of aerobic fitness. The results revealed shorter reaction time in higher-fit than in lower-fit participants in the first 36 min of the task. This was accompanied by larger contingent negative variation amplitude in the same period of the task in higher-fit than in lower-fit group. Crucially, higher-fit participants maintained larger P3 amplitude throughout the task compared to lower-fit, who showed a reduction in the P3 magnitude over time. Higher fitness was related to neuroelectric activity suggestive of better overall sustained attention demonstrating a better ability to allocate attentional resources over time. Moreover, higher fitness was related to enhanced response preparation in the first part of the task. Taken together, the current data set demonstrated a positive association between aerobic fitness, sustained attention, and response preparation.
Commonly Asked Questions about Children and Heart Disease
... heart is a pump with a built-in electrical system. Normally, electricity starts in the upper chamber and spreads to ... function. Heart block occurs when the spread of electricity from the upper chambers (atria) to the lower ...
Impact of the Equation of State in Models for Surfactant Spreading Experiments
NASA Astrophysics Data System (ADS)
Levy, Rachel
2014-11-01
Pulmonary surfactant spreading models often rely on an equation of state relating surfactant concentration to surface tension. Mathematically, these models have been analyzed with simple functional relationships. However, to model an experiment with a given fluid and surfactant, a physically meaningful equation of state can be derived from experimentally obtained isotherms. We discuss the comparison between model and experiment for NBD-PC lipid (surfactant) spreading on glycerol for an empirically-determined equation of state, and compare those results to simulations with traditionally employed functional forms. In particular we compare the timescales by tracking the leading edge of surfactant, the central fluid height and dynamics of the Marangoni ridge. We consider both outward spreading of a disk-shaped region of surfactant and the hole-closure problem in which a disk-shaped surfactant-free region self-heals. Support from NSF-DMS-FRG 0968154, RCSA-CCS-19788, and HHMI.
Meyers, Ron A
1997-07-01
Spread-wing postures of birds often have been studied with respect to the function of behavior, but ignored with regard to the mechanism by which the birds accomplish posture. The double-crested cormorant, Phalacrocorax auritus, was used as a model for this study of spread-wing posture. Those muscles capable of positioning and maintaining the wing in extension and protraction were assayed histochemically for the presence of slow (postural) muscle fibers. Within the forelimb of Phalacrocorax, Mm. coracobrachialis cranialis, pectoralis thoracicus (cranial portion), deltoideus minor, triceps scapularis, and extensor metacarpi radialis pars dorsalis and ventralis were found to contain populations of slow-twitch or slow-tonic muscle fibers. These slow fibers in the above muscles are considered to function during spread-wing posture in this species. J Morphol 233:67-76, 1997. © 1997 Wiley-Liss, Inc. Copyright © 1997 Wiley-Liss, Inc.
Identifying multiple influential spreaders based on generalized closeness centrality
NASA Astrophysics Data System (ADS)
Liu, Huan-Li; Ma, Chuang; Xiang, Bing-Bing; Tang, Ming; Zhang, Hai-Feng
2018-02-01
To maximize the spreading influence of multiple spreaders in complex networks, one important fact cannot be ignored: the multiple spreaders should be dispersively distributed in networks, which can effectively reduce the redundance of information spreading. For this purpose, we define a generalized closeness centrality (GCC) index by generalizing the closeness centrality index to a set of nodes. The problem converts to how to identify multiple spreaders such that an objective function has the minimal value. By comparing with the K-means clustering algorithm, we find that the optimization problem is very similar to the problem of minimizing the objective function in the K-means method. Therefore, how to find multiple nodes with the highest GCC value can be approximately solved by the K-means method. Two typical transmission dynamics-epidemic spreading process and rumor spreading process are implemented in real networks to verify the good performance of our proposed method.
Muir, W M; Howard, R D
2001-07-01
Any release of transgenic organisms into nature is a concern because ecological relationships between genetically engineered organisms and other organisms (including their wild-type conspecifics) are unknown. To address this concern, we developed a method to evaluate risk in which we input estimates of fitness parameters from a founder population into a recurrence model to predict changes in transgene frequency after a simulated transgenic release. With this method, we grouped various aspects of an organism's life cycle into six net fitness components: juvenile viability, adult viability, age at sexual maturity, female fecundity, male fertility, and mating advantage. We estimated these components for wild-type and transgenic individuals using the fish, Japanese medaka (Oryzias latipes). We generalized our model's predictions using various combinations of fitness component values in addition to our experimentally derived estimates. Our model predicted that, for a wide range of parameter values, transgenes could spread in populations despite high juvenile viability costs if transgenes also have sufficiently high positive effects on other fitness components. Sensitivity analyses indicated that transgene effects on age at sexual maturity should have the greatest impact on transgene frequency, followed by juvenile viability, mating advantage, female fecundity, and male fertility, with changes in adult viability, resulting in the least impact.
Near-source attenuation of high-frequency body waves beneath the New Madrid Seismic Zone
NASA Astrophysics Data System (ADS)
Pezeshk, Shahram; Sedaghati, Farhad; Nazemi, Nima
2018-03-01
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6 ≤ M ≤ 4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/ R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P = (115.80 ± 1.36) f (0.495 ± 0.129) and Q S = (161.34 ± 1.73) f (0.613 ± 0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/ Q P > 1, for 4 ≤ f ≤ 24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.
Alsaeed, Ibrahim; Alabkal, Jarrah R
2015-08-22
Considering the recent popularity of bodybuilding and the apparent spread of anabolic androgenic steroid (AAS) use amongst bodybuilding enthusiasts in Kuwait, there is a relative lack of scientific investigation into the use, knowledge and attitudes towards AAS amongst the population at risk of abusing it. Therefore, this study aims to investigate the frequency, knowledge, attitudes and practice of AAS use amongst male fitness centre attendees in Kuwait. A cross sectional survey utilizing a self-administered questionnaire was used. Information on demographics as well as knowledge and attitude about and towards the use of AAS was included in the questionnaire. Ten fitness centres in Kuwait were randomly selected and questionnaires were distributed to all individuals leaving each centre on randomly selected days and periods of time for each centre. Overall n = 400 questionnaires were distributed. A total of n = 194 questionnaires were returned completed (~49%). Of the responders, 22.7% used AAS. The 19-25 age group had the highest occurrence (46.8%) of first-time AAS use. In contrast with non-users, most (70.5%) of AAS users believed that having an optimally muscular body can only be achieved by using AAS, and a small minority (6.8%) believed that AAS usage would have significant harms to health. Only 18.2% of AAS users had appropriate knowledge regarding the side effects of AAS. Non-users were as much uninformed as AAS users regarding the side effects of AAS. The usage of AAS is high amongst male gym users in Kuwait and is likely to present an additional burden to the health service. An effective initiative to minimize the burden of AAS abuse should focus on changing the attitudes towards AAS rather than spreading awareness of their side effects.
Avila, G A; Davidson, M; van Helden, M; Fagan, L
2018-04-18
Diuraphis noxia (Kurdjumov), Russian wheat aphid, is one of the world's most invasive and economically important agricultural pests of wheat and barley. In May 2016, it was found for the first time in Australia, with further sampling confirming it was widespread throughout south-eastern regions. Russian wheat aphid is not yet present in New Zealand. The impacts of this pest if it establishes in New Zealand, could result in serious control problems in wheat- and barley-growing regions. To evaluate whether D. noxia could establish populations in New Zealand we used the climate modelling software CLIMEX to locate where potential viable populations might occur. We re-parameterised the existing CLIMEX model by Hughes and Maywald (1990) by improving the model fit using currently known distribution records of D. noxia, and we also considered the role of irrigation into the potential spread of this invasive insect. The updated model now fits the current known distribution better than the previous Hughes and Maywald CLIMEX model, particularly in temperate and Mediterranean areas in Australia and Europe; and in more semi-arid areas in north-western China and Middle Eastern countries. Our model also highlights new climatically suitable areas for the establishment of D. noxia, not previously reported, including parts of France, the UK and New Zealand. Our results suggest that, when suitable host plants are present, Russian wheat aphid could establish in these regions. The new CLIMEX projections in the present study are useful tools to inform risk assessments and target surveillance and monitoring efforts for identifying susceptible areas to invasion by Russian wheat aphid.
2008-01-01
Background Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because of the reproductive manipulation, we expect them to have an effect on the evolution of host dispersal rates. In addition, male killing endosymbionts are expected to approach fixation when fitness of infected individuals is larger than that of uninfected ones and when transmission from mother to offspring is nearly perfect. They then vanish as the host population crashes. High observed infection rates and among-population variation in natural systems can consequently not be explained if defense mechanisms are absent and when transmission efficiency is perfect. Results By simulating the host-endosymbiont dynamics in an individual-based metapopulation model we show that male killing endosymbionts increase host dispersal rates. No fitness compensations were built into the model for male killing endosymbionts, but they spread as a group beneficial trait. Host and parasite populations face extinction under panmictic conditions, i.e. conditions that favor the evolution of high dispersal in hosts. On the other hand, deterministic 'curing' (only parasite goes extinct) can occur under conditions of low dispersal, e.g. under low environmental stochasticity and high dispersal mortality. However, high and stable infection rates can be maintained in metapopulations over a considerable spectrum of conditions favoring intermediate levels of dispersal in the host. Conclusion Male killing endosymbionts without explicit fitness compensation spread as a group selected trait into a metapopulation. Emergent feedbacks through increased evolutionary stable dispersal rates provide an alternative explanation for both, the high male-killing endosymbiont infection rates and the high among-population variation in local infection rates reported for some natural systems. PMID:18764948
Unemo, Magnus; Seth-Smith, Helena M. B.; Cutcliffe, Lesley T.; Skilton, Rachel J.; Barlow, David; Goulding, David; Persson, Kenneth; Harris, Simon R.; Kelly, Anne; Bjartling, Carina; Fredlund, Hans; Olcén, Per; Thomson, Nicholas R.; Clarke, Ian N.
2010-01-01
Chlamydia trachomatis is a major cause of bacterial sexually transmitted infections worldwide. In 2006, a new variant of C. trachomatis (nvCT), carrying a 377 bp deletion within the plasmid, was reported in Sweden. This deletion included the targets used by the commercial diagnostic systems from Roche and Abbott. The nvCT is clonal (serovar/genovar E) and it spread rapidly in Sweden, undiagnosed by these systems. The degree of spread may also indicate an increased biological fitness of nvCT. The aims of this study were to describe the genome of nvCT, to compare the nvCT genome to all available C. trachomatis genome sequences and to investigate the biological properties of nvCT. An early nvCT isolate (Sweden2) was analysed by genome sequencing, growth kinetics, microscopy, cell tropism assay and antimicrobial susceptibility testing. It was compared with relevant C. trachomatis isolates, including a similar serovar E C. trachomatis wild-type strain that circulated in Sweden prior to the initially undetected expansion of nvCT. The nvCT genome does not contain any major genetic polymorphisms – the genes for central metabolism, development cycle and virulence are conserved – or phenotypic characteristics that indicate any altered biological fitness. This is supported by the observations that the nvCT and wild-type C. trachomatis infections are very similar in terms of epidemiological distribution, and that differences in clinical signs are only described, in one study, in women. In conclusion, the nvCT does not appear to have any altered biological fitness. Therefore, the rapid transmission of nvCT in Sweden was due to the strong diagnostic selective advantage and its introduction into a high-frequency transmitting population. PMID:20093289
Laser plasma x-ray line spectra fitted using the Pearson VII function
NASA Astrophysics Data System (ADS)
Michette, A. G.; Pfauntsch, S. J.
2000-05-01
The Pearson VII function, which is more general than the Gaussian, Lorentzian and other profiles, is used to fit the x-ray spectral lines produced in a laser-generated plasma, instead of the more usual, but computationally expensive, Voigt function. The mean full-width half-maximum of the fitted lines is 0.102+/-0.014 nm, entirely consistent with the value expected from geometrical considerations, and the fitted line profiles are generally inconsistent with being either Lorentzian or Gaussian.
Fitness of artemisinin-resistant Plasmodium falciparum in vitro
Hott, Amanda; Tucker, Matthew S.; Casandra, Debora; Sparks, Kansas; Kyle, Dennis E.
2015-01-01
Objectives Drug resistance confers a fitness advantage to parasites exposed to frequent drug pressure, yet these mutations also may incur a fitness cost. We assessed fitness advantages and costs of artemisinin resistance in Plasmodium falciparum in vitro to understand how drug resistance will spread and evolve in a competitive environment. Methods Genotyping of SNPs, drug susceptibility assays and copy number determination were used to assess the impact of artemisinin resistance on parasite fitness. An artemisinin-resistant clone (C9) selected in vitro from an isogenic parental clone (D6) was used to conduct competitive growth studies to assess fitness of artemisinin resistance. The resistant and susceptible clones were mixed or grown alone in the presence and absence of drug pressure (dihydroartemisinin or pyrimethamine) to quantify the rate at which artemisinin resistance was gained or lost. Results We experimentally demonstrate for the first time that artemisinin resistance provides a fitness advantage that is selected for with infrequent exposure to drug, but is lost in the absence of exposure to artemisinin drugs. The best correlations with artemisinin resistance were decreased in vitro drug susceptibility to artemisinin derivatives, increased copy number of Pf3D7_1030100 and an SNP in Pf3D7_0307600. An SNP conferring an E208K mutation in the kelch gene (Pf3D7_1343700) was not associated with resistance. Furthermore, we observed second-cycle ring-stage dormancy induced by pyrimethamine, suggesting that dormancy is a fitness trait that provides an advantage for survival from antimalarial drug stress. Conclusions Artemisinin-resistant P. falciparum have a fitness advantage to survive and predominate in the population even in the face of infrequent exposure to artemisinin drugs. PMID:26203183
Experimental Investigation of the Performance of Image Registration and De-aliasing Algorithms
2009-09-01
spread function In the literature these types of algorithms are sometimes hcluded under the broad umbrella of superresolution . However, in the current...We use one of these patterns to visually demonstrate successful de-aliasing 15. SUBJECT TERMS Image de-aliasing Superresolution Microscanning Image...undersampled point spread function. In the literature these types of algorithms are sometimes included under the broad umbrella of superresolution . However, in
NASA Astrophysics Data System (ADS)
Wu, Jheng-Syong; Chung, Yung-Chin; Chien, Jun-Jei; Chou, Chien
2018-01-01
A two-frequency laser scanning confocal fluorescence microscope (TF-LSCFM) based on intensity modulated fluorescence signal detection was proposed. The specimen-induced spherical aberration and scattering effect were suppressed intrinsically, and high image contrast was presented due to heterodyne interference. An improved axial point spread function in a TF-LSCFM compared with a conventional laser scanning confocal fluorescence microscope was demonstrated and discussed.
NASA Astrophysics Data System (ADS)
Shipilov, E. V.
2008-03-01
Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific system of the Canada Basin that finished its evolution in the Late Cretaceous and the North Atlantic system of the Makarov and Eurasia basins that came to take the place of the Paleopacific system. In contrast to traditional views, it has been suggested that asymmetry of the northern Norwegian-Greenland Basin is explained by two-stage development of this Atlantic segment with formation of primary and secondary spreading centers. The secondary spreading center of the Knipovich Ridge started to evolve approximately at the Oligocene-Miocene transition. This process resulted in the breaking off of the Hovgard continental block from the Barents Sea margin. Thus, the breakdown of Wegener’s Pangea and its Laurasian fragments with the formation of young spreading basins was a staged process that developed nearly from opposite sides. Before the Late Cretaceous (the first stage), the Pangea broke down from the side of Paleopacific to form the Canada Basin, an element of the Amerasia Basin (first phase of ocean formation). Since the Late Cretaceous, destructive pulses came from the side of the North Atlantic and resulted in the separation of Greenland from North America and the development of the Labrador-Baffin-Makarov spreading system (second phase of ocean formation). The Cenozoic was marked by the development of the second spreading branch and the formation of the Norwegian-Greenland and Eurasia oceanic basins (third phase of ocean formation). Spreading centers of this branch are functioning currently but at an extremely low rate.
Moran, John L; Solomon, Patricia J
2012-05-16
For the analysis of length-of-stay (LOS) data, which is characteristically right-skewed, a number of statistical estimators have been proposed as alternatives to the traditional ordinary least squares (OLS) regression with log dependent variable. Using a cohort of patients identified in the Australian and New Zealand Intensive Care Society Adult Patient Database, 2008-2009, 12 different methods were used for estimation of intensive care (ICU) length of stay. These encompassed risk-adjusted regression analysis of firstly: log LOS using OLS, linear mixed model [LMM], treatment effects, skew-normal and skew-t models; and secondly: unmodified (raw) LOS via OLS, generalised linear models [GLMs] with log-link and 4 different distributions [Poisson, gamma, negative binomial and inverse-Gaussian], extended estimating equations [EEE] and a finite mixture model including a gamma distribution. A fixed covariate list and ICU-site clustering with robust variance were utilised for model fitting with split-sample determination (80%) and validation (20%) data sets, and model simulation was undertaken to establish over-fitting (Copas test). Indices of model specification using Bayesian information criterion [BIC: lower values preferred] and residual analysis as well as predictive performance (R2, concordance correlation coefficient (CCC), mean absolute error [MAE]) were established for each estimator. The data-set consisted of 111663 patients from 131 ICUs; with mean(SD) age 60.6(18.8) years, 43.0% were female, 40.7% were mechanically ventilated and ICU mortality was 7.8%. ICU length-of-stay was 3.4(5.1) (median 1.8, range (0.17-60)) days and demonstrated marked kurtosis and right skew (29.4 and 4.4 respectively). BIC showed considerable spread, from a maximum of 509801 (OLS-raw scale) to a minimum of 210286 (LMM). R2 ranged from 0.22 (LMM) to 0.17 and the CCC from 0.334 (LMM) to 0.149, with MAE 2.2-2.4. Superior residual behaviour was established for the log-scale estimators. There was a general tendency for over-prediction (negative residuals) and for over-fitting, the exception being the GLM negative binomial estimator. The mean-variance function was best approximated by a quadratic function, consistent with log-scale estimation; the link function was estimated (EEE) as 0.152(0.019, 0.285), consistent with a fractional-root function. For ICU length of stay, log-scale estimation, in particular the LMM, appeared to be the most consistently performing estimator(s). Neither the GLM variants nor the skew-regression estimators dominated.
Proper Analytic Point Spread Function for Lateral Modulation
NASA Astrophysics Data System (ADS)
Chikayoshi Sumi,; Kunio Shimizu,; Norihiko Matsui,
2010-07-01
For ultrasonic lateral modulation for the imaging and measurement of tissue motion, better envelope shapes of the point spread function (PSF) than of a parabolic function are searched for within analytic functions or windows on the basis of the knowledge of the ideal shape of PSF previously obtained, i.e., having a large full width at half maximum and short feet. Through simulation of displacement vector measurement, better shapes are determined. As a better shape, a new window is obtained from a Turkey window by changing Hanning windows by power functions with an order larger than the second order. The order of measurement accuracies obtained is as follows, the new window > rectangular window > power function with a higher order > parabolic function > Akaike window.
2016-03-07
14 1.4d Antibacterial Drug Resistance .......................................................................... 17 1.4d1 Modification of the...Depending upon receptor engagement, Opa-mediated interactions can either activate the innate immune system via neutrophil activation or suppress the...himself was never able to develop the antibacterial mold he had discovered into a mass-produced antibiotic for human use, efforts by scientists in
On-eye optical quality of daily disposable contact lenses for different wearing times.
Montés-Micó, Robert; Belda-Salmerón, Lurdes; Ferrer-Blasco, Teresa; Albarrán-Diego, César; García-Lázaro, Santiago
2013-09-01
To quantify the optical quality of various daily disposable contact lenses in vivo and to ascertain its variation in terms of wearing time by means of objective non-invasive determination of wavefront patterns. The crx1 adaptive-optics system was used to measure the wavefront aberrations in 15 myopic eyes before and at 2-h intervals after contact lens fitting, over a 12-h wearing period. Seven types of contact lenses having different material, water content and lens design were evaluated in this study: Dailies Total1, Dailies AquaComfort Plus, Proclear 1 Day, 1-Day Acuvue TruEye, 1-Day Acuvue moist, SofLens daily disposable and Clariti 1-Day. The aberration data were analysed by fitting Zernike polynomials up to the 5th-order for 3 and 5-mm pupils. The optical quality under each condition and at each point in time was described by means of the Root-Mean-Square (RMS) value of wavefront aberration, Modulation Transfer Function (MTF), Point Spread Function and cut-off spatial frequency. A RMS increase was observed after contact lens fitting as well as over time, both for a 3-mm and a 5-mm pupil. Each type of lens induced a different amount of wavefront aberrations, which vary over time also in a different manner. Dailies Total1 showed the lowest RMS values both at baseline and at the end of the day. In addition, Dailies Total1 provided the best MTF out of all the contact lenses that were assessed. These observations were reflected in higher cut-off spatial frequencies and visual resolution both at baseline and after 12 h of wearing time. Aberrometry makes it possible to analyse accurately and in vivo the optical quality of contact lenses and to assess how lenses having different characteristics - such as material or water content - behave for different wearing times. These variations across contact lenses may result in differences in visual performance. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Regional Lg attenuation for the continental United States
Benz, H.M.; Frankel, A.; Boore, D.M.
1997-01-01
Measurements of the Fourier amplitude spectra of Lg phases recorded at high frequency (0.5 to 14.0 Hz) by broadband seismic stations are used to determine regional attenuation relationships for southern California, the Basin and Range Province, the central United States, and the northeastern United States and southeastern Canada. Fourier spectral amplitudes were measured every quarter octave from Lg phases windowed between 3.0 and 3.7 km sec-1 and recorded in the distance range of 150 to 1000 km. Attenuation at each frequency is determined by assuming a geometrical spreading exponent of 0.5 and inverting for Q and source and receiver terms. Both southern California and the Basin and Range Province are well described by low Lg Q and frequency-dependent attenuation. Lg spectral amplitudes in southern California are fit at low frequencies (0.625 to 0.875 Hz) by a constant Lg Q of 224 and by a frequency-dependent Lg Q function Q = 187-7+7 f0.55(??0.03) in the frequency band 1.0 to 7.0 Hz. The Basin and Range Province is characterized by a constant Lg Q of 192 for frequencies of 0.5 to 0.875 Hz and by the frequency-dependent Lg Q function Q = 235-11+11 f0.56(??0.04) in the frequency band 1.0 to 5.0 Hz. A change in frequency dependence above 5.0 Hz is possible due to contamination of the Lg window by Pn and Sn phases. Lg spectral amplitudes in the central United States are fit by a mean frequency-independent Lg Q of 1291 for frequencies of 1.5 to 7.0 Hz, while a frequency-dependent Lg Q of Q = 1052-83+91(f/1.5)0.22(??0.06) fits the Lg spectral amplitudes for the northeastern United States and southeastern Canada over the passband 1.5 to 14.0 Hz. Attenuation measurements for these areas were restricted to frequencies >1.5 Hz due to larger microseismic noise levels at the lower frequencies.
Effects of aquatic exercise on physical function and fitness among people with spinal cord injury
Li, Chunxiao; Khoo, Selina; Adnan, Athirah
2017-01-01
Abstract Objective: The aim of this review is to synthesize the evidence on the effects of aquatic exercise interventions on physical function and fitness among people with spinal cord injury. Data source: Six major databases were searched from inception till June 2015: MEDLINE, CINAHL, EMBASE, PsychInfo, SPORTDiscus, and Cochrane Center Register of Controlled Trials. Study appraisal and synthesis methods: Two reviewers independently rated methodological quality using the modified Downs and Black Scale and extracted and synthesized key findings (i.e., participant characteristics, study design, physical function and fitness outcomes, and adverse events). Results: Eight of 276 studies met the inclusion criteria, of which none showed high research quality. Four studies assessed physical function outcomes and 4 studies evaluated aerobic fitness as outcome measures. Significant improvements on these 2 outcomes were generally found. Other physical or fitness outcomes including body composition, muscular strength, and balance were rarely reported. Conclusions and implications of key findings: There is weak evidence supporting aquatic exercise training to improve physical function and aerobic fitness among adults with spinal cord injury. Suggestions for future research include reporting details of exercise interventions, evaluating other physical or fitness outcomes, and improving methodological quality. PMID:28296754
Catterson, James H.; Heck, Margarete M. S.; Hartley, Paul S.
2013-01-01
The vertebrate Kindlins are an evolutionarily conserved family of proteins critical for integrin signalling and cell adhesion. Kindlin-2 (KIND2) is associated with intercalated discs in mice, suggesting a role in cardiac syncytium development; however, deficiency of Kind2 leads to embryonic lethality. Morpholino knock-down of Kind2 in zebrafish has a pleiotropic effect on development that includes the heart. It therefore remains unclear whether cardiomyocyte Kind2 expression is required for cardiomyocyte junction formation and the development of normal cardiac function. To address this question, the expression of Fermitin 1 and Fermitin 2 (Fit1, Fit2), the two Drosophila orthologs of Kind2, was silenced in Drosophila cardiomyocytes. Heart development was assessed in adult flies by immunological methods and videomicroscopy. Silencing both Fit1 and Fit2 led to a severe cardiomyopathy characterised by the failure of cardiomyocytes to develop as a functional syncytium and loss of synchrony between cardiomyocytes. A null allele of Fit1 was generated but this had no impact on the heart. Similarly, the silencing of Fit2 failed to affect heart function. In contrast, the silencing of Fit2 in the cardiomyocytes of Fit1 null flies disrupted syncytium development, leading to severe cardiomyopathy. The data definitively demonstrate a role for Fermitins in the development of a functional cardiac syncytium in Drosophila. The findings also show that the Fermitins can functionally compensate for each other in order to control syncytium development. These findings support the concept that abnormalities in cardiomyocyte KIND2 expression or function may contribute to cardiomyopathies in humans. PMID:23690969
Heterogeneous incidence and propagation of spreading depolarizations
Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek
2016-01-01
Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866
NASA Astrophysics Data System (ADS)
Jain, Varun; Biesinger, Mark C.; Linford, Matthew R.
2018-07-01
X-ray photoelectron spectroscopy (XPS) is arguably the most important vacuum technique for surface chemical analysis, and peak fitting is an indispensable part of XPS data analysis. Functions that have been widely explored and used in XPS peak fitting include the Gaussian, Lorentzian, Gaussian-Lorentzian sum (GLS), Gaussian-Lorentzian product (GLP), and Voigt functions, where the Voigt function is a convolution of a Gaussian and a Lorentzian function. In this article we discuss these functions from a graphical perspective. Arguments based on convolution and the Central Limit Theorem are made to justify the use of functions that are intermediate between pure Gaussians and pure Lorentzians in XPS peak fitting. Mathematical forms for the GLS and GLP functions are presented with a mixing parameter m. Plots are shown for GLS and GLP functions with mixing parameters ranging from 0 to 1. There are fundamental differences between the GLS and GLP functions. The GLS function better follows the 'wings' of the Lorentzian, while these 'wings' are suppressed in the GLP. That is, these two functions are not interchangeable. The GLS and GLP functions are compared to the Voigt function, where the GLS is shown to be a decent approximation of it. Practically, both the GLS and the GLP functions can be useful for XPS peak fitting. Examples of the uses of these functions are provided herein.
Grove, Matthew
2014-01-01
Without Focal Adhesion Kinase (FAK), developing murine Schwann cells (SCs) proliferate poorly, sort axons inefficiently, and cannot myelinate peripheral nerves. Here we show that FAK is required for the development of SCs when their basal lamina (BL) is fragmentary, but not when it is mature in vivo. Mutant SCs fail to spread on fragmentary BL during development in vivo, and this is phenocopied by SCs lacking functional FAK on low laminin (LN) in vitro. Furthermore, SCs without functional FAK initiate differentiation prematurely, both in vivo and in vitro. In contrast to their behavior on high levels of LN, SCs lacking functional FAK grown on low LN display reduced spreading, proliferation, and indicators of contractility (i.e., stress fibers, arcs, and focal adhesions) and are primed to differentiate. Growth of SCs lacking functional FAK on increasing LN concentrations in vitro revealed that differentiation is not regulated by G1 arrest but rather by cell spreading and the level of contractile actomyosin. The importance of FAK as a critical regulator of the specific response of developing SCs to fragmentary BL was supported by the ability of adult FAK mutant SCs to remyelinate demyelinated adult nerves on mature BL in vivo. We conclude that FAK promotes the spreading and actomyosin contractility of immature SCs on fragmentary BL, thus maintaining their proliferation, and preventing differentiation until they reach high density, thereby promoting radial sorting. Hence, FAK has a critical role in the response of SCs to limiting BL by promoting proliferation and preventing premature SC differentiation. PMID:25274820
NASA Astrophysics Data System (ADS)
Smith, Geoffrey B.; Earp, Alan; Franklin, Jim B.; McCredie, Geoffrey
2001-11-01
Simple quantitative performance criteria are developed for translucent materials in terms of hemispherical visible transmittance, and angular spread of transmitted luminance using a half angle. Criteria are linked to applications in luminaires and skylights with emphasis on maximising visible throughput while minimising glare. These basic criteria are also extended to angle of incidence changes which are substantial. Example data is provided showing that acrylic pigmented with spherical polymer particles can have total hemispherical transmittance with weak thickness dependence, which is better than clear sheet, while the spread of transmitted light is quite thickness-sensitive and occurs over wider angles than inorganic pigments. This combination means significantly fewer lamps can achieve specified lux levels with low glare, and smaller skylights can provide higher, more uniform daylight illuminance.
3-Dimensional Protein Structure of Influenza
NASA Technical Reports Server (NTRS)
2004-01-01
The loss of productivity due to flu is staggering. Costs range as much as $20 billio a year. High mutation rates of the flu virus have hindered development of new drugs or vaccines. The secret lies in a small molecule which is attached to the host cell's surface. Each flu virus, no matter what strain, must remove this small molecule to escape the host cell to spread infection. Using data from space and earth grown crystals, researchers from the Center of Macromolecular Crystallography (CMC) are desining drugs to bind with this protein's active site. This lock and key fit reduces the spread of flu in the body by blocking its escape route. In collaboration with its corporate partner, the CMC has refined drug structure in preparation for clinical trials. Tested and approved relief is expected to reach drugstores by year 2004.
Constraints on continental accretion from sedimentation
NASA Technical Reports Server (NTRS)
Abbott, Dallas
1988-01-01
Heat loss in the ancient Earth was discussed assuming that classical sea floor spreading was the only mechanism. This may be expressed as faster spreading or longer total ridge length. These have important implications as to the size and number of cratonic plates in the distant past, the degree to which they are flooded, the kinds of sediments and volcanics that would be expected, and the amount of recycling of continental material taking place. The higher proportion of marine sedimentary rocks and oceanic volcanics in the Archean, and the relative paucity of evaporites and continental volcanics may in part be due to smaller cratonic blocks. A model was developed of the percentage of continental flooding which utilizes round continents and a constant width of the zone of flooding. This model produces a reasonable good fit to the percentage of flooding on the present day continents.
Glenn, Jordan M; Gray, Michelle; Binns, Ashley
When evaluating health in older adults, batteries of tests are typically utilized to assess functional fitness. Unfortunately, physician's visits are time-sensitive, and it may be important to develop faster methods to assess functional fitness that can be utilized in professional or clinical settings. Therefore, the purpose of this investigation was to examine the relationship of sit-to-stand (STS) power generated through the STS task with previously established measures of functional fitness, specifically strength, endurance, speed, agility, and flexibility in older adults with and without sarcopenia. This study consisted of 57 community-dwelling older adults (n = 16 males; n = 41 females). Functional fitness was assessed using the Short Physical Performance Battery (SPPB), Senior Fitness Test, handgrip, gait speed (habitual and maximal), balance, and STS power generated via the Tendo Weightlifting Analyzer. On the basis of data distribution, second-degree polynomial (quadratic) curvilinear models (lines of best fit) were applied for the relationships of 5-time STS time with average and peak power. Zero-order correlations were evaluated between STS power and all other functional fitness measures. Older adults with sarcopenia were also identified (n = 15), and relationships were reevaluated within this subset. STS power (average and peak) was significantly (P ≤ .01) correlated with physical performance measured via previously established assessments. For average power, this was observed during the senior fitness test (6-minute walk [r = 0.39], 8-ft up-and-go [r = -0.46], arm curl [r = 0.46], and chair stand [r = 0.55]), SPPB (5-time STS time [r = -0.63] and 8-ft walk [r = -0.32]), and other independent functional fitness measures (grip strength [r = 0.65] and maximal gait speed [r = -0.31]). Similar results were observed for peak power during the senior fitness test (6-minute walk [r = 0.39], 8-ft up-and-go [r = -0.46], arm curl [r = 0.45], chair stand [r = 0.52], and sit-and-reach [r = -0.27]), SPPB (5-time STS time [r = -0.60] and 8-ft walk [r = -0.33]), and other independent functional fitness measures (grip strength [r = 0.70] and maximal gait speed [r = -0.32]). Within the sarcopenic subset, for average and peak power, respectively, significant relationships were still retained for handgrip strength (r = 0.57 and r = 0.57), 6-minute walk (r = 0.55 and r = 0.61), chair stand (r = 0.76 and r = 0.81), and 5-time STS time (r = -0.76 and r = -0.80) tests. STS power generated via the STS task significantly relates to commonly administered functional fitness measures. These relationships also appear to exist when evaluating these relationships in older adults with sarcopenia. STS power may be utilized as an independent measure of functional fitness that is feasible to incorporate in clinical settings where time and space are often limiting factors.
Multiple Scattering Effects on Pulse Propagation in Optically Turbid Media.
NASA Astrophysics Data System (ADS)
Joelson, Bradley David
The effects of multiple scattering in a optically turbid media is examined for an impulse solution to the radiative transfer equation for a variety of geometries and phase functions. In regions where the complexities of the phase function proved too cumbersome for analytic methods Monte Carlo techniques were developed to describe the entire scalar radiance distribution. The determination of a general spread function is strongly dependent on geometry and particular regions where limits can be placed on the variables of the problem. Hence, the general spread function is first simplified by considering optical regions which reduce the complexity of the variable dependence. First, in the small-angle limit we calculate some contracted spread functions along with their moments and then use Monte Carlo techniques to establish the limitations imposed by the small-angle approximation in planar geometry. The point spread function (PSF) for a spherical geometry is calculated for the full angular spread in the forward direction of ocean waters using Monte Carlo methods in the optically thin and moderate depths and analytic methods in the diffusion domain. The angular dependence of the PSF for various ocean waters is examined for a range of optical parameters. The analytic method used in the diffusion calculation is justified by examining the angular dependence of the radiance of a impulse solution in a planar geometry for a prolongated Henyey-Greenstein phase function of asymmetry factor approximately equal to that of the ocean phase functions. The Legendre moments of the radiance are examined in order to examine the viability of the diffusion approximation which assumes a linearly anisotropic angular distribution for the radiance. A realistic lidar calculation is performed for a variety of ocean waters to determine the effects of multiple scattering on the determination of the speed of sound by using the range gated frequency spectrum of the lidar signal. It is shown that the optical properties of the ocean help to ensure single scatter form for the frequency spectra of the lidar signal. This spectra can then be used to compute the speed of sound and backscatter probability.
dftools: Distribution function fitting
NASA Astrophysics Data System (ADS)
Obreschkow, Danail
2018-05-01
dftools, written in R, finds the most likely P parameters of a D-dimensional distribution function (DF) generating N objects, where each object is specified by D observables with measurement uncertainties. For instance, if the objects are galaxies, it can fit a mass function (D=1), a mass-size distribution (D=2) or the mass-spin-morphology distribution (D=3). Unlike most common fitting approaches, this method accurately accounts for measurement in uncertainties and complex selection functions.
Lew, Matthew D.; Thompson, Michael A.; Badieirostami, Majid; Moerner, W. E.
2010-01-01
The point spread function (PSF) of a widefield fluorescence microscope is not suitable for three-dimensional super-resolution imaging. We characterize the localization precision of a unique method for 3D superresolution imaging featuring a double-helix point spread function (DH-PSF). The DH-PSF is designed to have two lobes that rotate about their midpoint in any transverse plane as a function of the axial position of the emitter. In effect, the PSF appears as a double helix in three dimensions. By comparing the Cramer-Rao bound of the DH-PSF with the standard PSF as a function of the axial position, we show that the DH-PSF has a higher and more uniform localization precision than the standard PSF throughout a 2 μm depth of field. Comparisons between the DH-PSF and other methods for 3D super-resolution are briefly discussed. We also illustrate the applicability of the DH-PSF for imaging weak emitters in biological systems by tracking the movement of quantum dots in glycerol and in live cells. PMID:20563317
Function approximation and documentation of sampling data using artificial neural networks.
Zhang, Wenjun; Barrion, Albert
2006-11-01
Biodiversity studies in ecology often begin with the fitting and documentation of sampling data. This study is conducted to make function approximation on sampling data and to document the sampling information using artificial neural network algorithms, based on the invertebrate data sampled in the irrigated rice field. Three types of sampling data, i.e., the curve species richness vs. the sample size, the curve rarefaction, and the curve mean abundance of newly sampled species vs.the sample size, are fitted and documented using BP (Backpropagation) network and RBF (Radial Basis Function) network. As the comparisons, The Arrhenius model, and rarefaction model, and power function are tested for their ability to fit these data. The results show that the BP network and RBF network fit the data better than these models with smaller errors. BP network and RBF network can fit non-linear functions (sampling data) with specified accuracy and don't require mathematical assumptions. In addition to the interpolation, BP network is used to extrapolate the functions and the asymptote of the sampling data can be drawn. BP network cost a longer time to train the network and the results are always less stable compared to the RBF network. RBF network require more neurons to fit functions and generally it may not be used to extrapolate the functions. The mathematical function for sampling data can be exactly fitted using artificial neural network algorithms by adjusting the desired accuracy and maximum iterations. The total numbers of functional species of invertebrates in the tropical irrigated rice field are extrapolated as 140 to 149 using trained BP network, which are similar to the observed richness.
On the analysis of Canadian Holstein dairy cow lactation curves using standard growth functions.
López, S; France, J; Odongo, N E; McBride, R A; Kebreab, E; AlZahal, O; McBride, B W; Dijkstra, J
2015-04-01
Six classical growth functions (monomolecular, Schumacher, Gompertz, logistic, Richards, and Morgan) were fitted to individual and average (by parity) cumulative milk production curves of Canadian Holstein dairy cows. The data analyzed consisted of approximately 91,000 daily milk yield records corresponding to 122 first, 99 second, and 92 third parity individual lactation curves. The functions were fitted using nonlinear regression procedures, and their performance was assessed using goodness-of-fit statistics (coefficient of determination, residual mean squares, Akaike information criterion, and the correlation and concordance coefficients between observed and adjusted milk yields at several days in milk). Overall, all the growth functions evaluated showed an acceptable fit to the cumulative milk production curves, with the Richards equation ranking first (smallest Akaike information criterion) followed by the Morgan equation. Differences among the functions in their goodness-of-fit were enlarged when fitted to average curves by parity, where the sigmoidal functions with a variable point of inflection (Richards and Morgan) outperformed the other 4 equations. All the functions provided satisfactory predictions of milk yield (calculated from the first derivative of the functions) at different lactation stages, from early to late lactation. The Richards and Morgan equations provided the most accurate estimates of peak yield and total milk production per 305-d lactation, whereas the least accurate estimates were obtained with the logistic equation. In conclusion, classical growth functions (especially sigmoidal functions with a variable point of inflection) proved to be feasible alternatives to fit cumulative milk production curves of dairy cows, resulting in suitable statistical performance and accurate estimates of lactation traits. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hwang, Jungyun; Kim, Kiyoung; Brothers, R Matthew; Castelli, Darla M; Gonzalez-Lima, F
2018-05-01
Studies of the effects of physical activity on cognition suggest that aerobic fitness can improve cognitive abilities. However, the physiological mechanisms for the cognitive benefit of aerobic fitness are less well understood. We examined the association between aerobic fitness and cerebrovascular function with neurocognitive functions in healthy, young adults. Participants aged 18-29 years underwent measurements of cerebral vasomotor reactivity (CVMR) in response to rebreathing-induced hypercapnia, maximal oxygen uptake (VO 2 max) during cycle ergometry to voluntary exhaustion, and simple- and complex-neurocognitive assessments at rest. Ten subjects were identified as having low-aerobic fitness (LF < 15th fitness percentile), and twelve subjects were identified as having high-aerobic fitness (HF > 80th fitness percentile). There were no LF versus HF group differences in cerebrovascular hemodynamics during the baseline condition. Changes in middle cerebral artery blood velocity and CVMR during hypercapnia were elevated more in the HF than the LF group. Compared to the LF, the HF performed better on a complex-cognitive task assessing fluid reasoning, but not on simple attentional abilities. Statistical modeling showed that measures of VO 2 max, CVMR, and fluid reasoning were positively inter-correlated. The relationship between VO 2 max and fluid reasoning, however, did not appear to be reliably mediated by CVMR. In conclusion, a high capacity for maximal oxygen uptake among healthy, young adults was associated with greater CVMR and better fluid reasoning, implying that high-aerobic fitness may promote cerebrovascular and cognitive functioning abilities.
Zhang, Bo; Li, Baoping; Meng, Ling
2014-01-01
The domed fitness functions are suggested to describe developmental patterns of progeny parasitoids in relation to host age at oviposition in solitary koinobint parasitoids that are engaged in single parasitism, but few studies have investigated the applicability of the functions as related to superparasitism. The present study was designed to compare fitness functions between single parasitism and superparasitism by examining developmental patterns of Meteorus pulchricornis (Wesmael) (Hymneoptera: Braconidae) progeny in relation to the beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae), either singly parasitized or self-superparasitized as second-fifth instar larvae. Self-superparasitism caused deleterious effects on the fitness-related traits of parasitoid progeny, as demonstrated by a prolonged egg-to-adult emergence time, a smaller body size, and shorter longevity of the emerging adults, and decreased survival to adult emergence. While the domed fitness function was detected for development time, survival, adult body size, and longevity in relation to host larvae that were singly parasitized, the function was observed only for progeny survival in relation to host larvae that were self-superparasitized. This study suggests that developmental fitness functions with self-superparasitism can deviate from those with single parasitism in solitary koinobiont parasitoids.
Zhang, Bo; Li, Baoping; Meng, Ling
2014-01-01
Abstract The domed fitness functions are suggested to describe developmental patterns of progeny parasitoids in relation to host age at oviposition in solitary koinobint parasitoids that are engaged in single parasitism, but few studies have investigated the applicability of the functions as related to superparasitism. The present study was designed to compare fitness functions between single parasitism and superparasitism by examining developmental patterns of Meteorus pulchricornis (Wesmael) (Hymneoptera: Braconidae) progeny in relation to the beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae), either singly parasitized or self-superparasitized as second–fifth instar larvae. Selfsuperparasitism caused deleterious effects on the fitness-related traits of parasitoid progeny, as demonstrated by a prolonged egg-to-adult emergence time, a smaller body size, and shorter longevity of the emerging adults, and decreased survival to adult emergence. While the domed fitness function was detected for development time, survival, adult body size, and longevity in relation to host larvae that were singly parasitized, the function was observed only for progeny survival in relation to host larvae that were self-superparasitized. This study suggests that developmental fitness functions with selfsuperparasitism can deviate from those with single parasitism in solitary koinobiont parasitoids. PMID:25201512
Yan, Koon-Kiu; Gerstein, Mark
2011-01-01
The presence of web-based communities is a distinctive signature of Web 2.0. The web-based feature means that information propagation within each community is highly facilitated, promoting complex collective dynamics in view of information exchange. In this work, we focus on a community of scientists and study, in particular, how the awareness of a scientific paper is spread. Our work is based on the web usage statistics obtained from the PLoS Article Level Metrics dataset compiled by PLoS. The cumulative number of HTML views was found to follow a long tail distribution which is reasonably well-fitted by a lognormal one. We modeled the diffusion of information by a random multiplicative process, and thus extracted the rates of information spread at different stages after the publication of a paper. We found that the spread of information displays two distinct decay regimes: a rapid downfall in the first month after publication, and a gradual power law decay afterwards. We identified these two regimes with two distinct driving processes: a short-term behavior driven by the fame of a paper, and a long-term behavior consistent with citation statistics. The patterns of information spread were found to be remarkably similar in data from different journals, but there are intrinsic differences for different types of web usage (HTML views and PDF downloads versus XML). These similarities and differences shed light on the theoretical understanding of different complex systems, as well as a better design of the corresponding web applications that is of high potential marketing impact.
Yan, Koon-Kiu; Gerstein, Mark
2011-01-01
The presence of web-based communities is a distinctive signature of Web 2.0. The web-based feature means that information propagation within each community is highly facilitated, promoting complex collective dynamics in view of information exchange. In this work, we focus on a community of scientists and study, in particular, how the awareness of a scientific paper is spread. Our work is based on the web usage statistics obtained from the PLoS Article Level Metrics dataset compiled by PLoS. The cumulative number of HTML views was found to follow a long tail distribution which is reasonably well-fitted by a lognormal one. We modeled the diffusion of information by a random multiplicative process, and thus extracted the rates of information spread at different stages after the publication of a paper. We found that the spread of information displays two distinct decay regimes: a rapid downfall in the first month after publication, and a gradual power law decay afterwards. We identified these two regimes with two distinct driving processes: a short-term behavior driven by the fame of a paper, and a long-term behavior consistent with citation statistics. The patterns of information spread were found to be remarkably similar in data from different journals, but there are intrinsic differences for different types of web usage (HTML views and PDF downloads versus XML). These similarities and differences shed light on the theoretical understanding of different complex systems, as well as a better design of the corresponding web applications that is of high potential marketing impact. PMID:21603617
betaFIT: A computer program to fit pointwise potentials to selected analytic functions
NASA Astrophysics Data System (ADS)
Le Roy, Robert J.; Pashov, Asen
2017-01-01
This paper describes program betaFIT, which performs least-squares fits of sets of one-dimensional (or radial) potential function values to four different types of sophisticated analytic potential energy functional forms. These families of potential energy functions are: the Expanded Morse Oscillator (EMO) potential [J Mol Spectrosc 1999;194:197], the Morse/Long-Range (MLR) potential [Mol Phys 2007;105:663], the Double Exponential/Long-Range (DELR) potential [J Chem Phys 2003;119:7398], and the "Generalized Potential Energy Function (GPEF)" form introduced by Šurkus et al. [Chem Phys Lett 1984;105:291], which includes a wide variety of polynomial potentials, such as the Dunham [Phys Rev 1932;41:713], Simons-Parr-Finlan [J Chem Phys 1973;59:3229], and Ogilvie-Tipping [Proc R Soc A 1991;378:287] polynomials, as special cases. This code will be useful for providing the realistic sets of potential function shape parameters that are required to initiate direct fits of selected analytic potential functions to experimental data, and for providing better analytical representations of sets of ab initio results.
Resolution improvement by nonconfocal theta microscopy.
Lindek, S; Stelzer, E H
1999-11-01
We present a novel scanning fluorescence microscopy technique, nonconfocal theta microscopy (NCTM), that provides almost isotropic resolution. In NCTM, multiphoton absorption from two orthogonal illumination directions is used to induce fluorescence emission. Therefore the point-spread function of the microscope is described by the product of illumination point-spread functions with reduced spatial overlap, which provides the resolution improvement and the more isotropic observation volume. We discuss the technical details of this new method.
Tracking perturbations in Boolean networks with spectral methods
NASA Astrophysics Data System (ADS)
Kesseli, Juha; Rämö, Pauli; Yli-Harja, Olli
2005-08-01
In this paper we present a method for predicting the spread of perturbations in Boolean networks. The method is applicable to networks that have no regular topology. The prediction of perturbations can be performed easily by using a presented result which enables the efficient computation of the required iterative formulas. This result is based on abstract Fourier transform of the functions in the network. In this paper the method is applied to show the spread of perturbations in networks containing a distribution of functions found from biological data. The advances in the study of the spread of perturbations can directly be applied to enable ways of quantifying chaos in Boolean networks. Derrida plots over an arbitrary number of time steps can be computed and thus distributions of functions compared with each other with respect to the amount of order they create in random networks.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States.
Eggo, Rosalind M; Cauchemez, Simon; Ferguson, Neil M
2011-02-06
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty.
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States
Eggo, Rosalind M.; Cauchemez, Simon; Ferguson, Neil M.
2011-01-01
There is still limited understanding of key determinants of spatial spread of influenza. The 1918 pandemic provides an opportunity to elucidate spatial determinants of spread on a large scale. To better characterize the spread of the 1918 major wave, we fitted a range of city-to-city transmission models to mortality data collected for 246 population centres in England and Wales and 47 cities in the US. Using a gravity model for city-to-city contacts, we explored the effect of population size and distance on the spread of disease and tested assumptions regarding density dependence in connectivity between cities. We employed Bayesian Markov Chain Monte Carlo methods to estimate parameters of the model for population, infectivity, distance and density dependence. We inferred the most likely transmission trees for both countries. For England and Wales, a model that estimated the degree of density dependence in connectivity between cities was preferable by deviance information criterion comparison. Early in the major wave, long distance infective interactions predominated, with local infection events more likely as the epidemic became widespread. For the US, with fewer more widely dispersed cities, statistical power was lacking to estimate population size dependence or the degree of density dependence, with the preferred model depending on distance only. We find that parameters estimated from the England and Wales dataset can be applied to the US data with no likelihood penalty. PMID:20573630
Contributions of Optical and Non-Optical Blur to Variation in Visual Acuity
McAnany, J. Jason; Shahidi, Mahnaz; Applegate, Raymond A.; Zelkha, Ruth; Alexander, Kenneth R.
2011-01-01
Purpose To determine the relative contributions of optical and non-optical sources of intrinsic blur to variations in visual acuity (VA) among normally sighted subjects. Methods Best-corrected VA of sixteen normally sighted subjects was measured using briefly presented (59 ms) tumbling E optotypes that were either unblurred or blurred through convolution with Gaussian functions of different widths. A standard model of intrinsic blur was used to estimate each subject’s equivalent intrinsic blur (σint) and VA for the unblurred tumbling E (MAR0). For 14 subjects, a radially averaged optical point spread function due to higher-order aberrations was derived by Shack-Hartmann aberrometry and fit with a Gaussian function. The standard deviation of the best-fit Gaussian function defined optical blur (σopt). An index of non-optical blur (η) was defined as: 1-σopt/σint. A control experiment was conducted on 5 subjects to evaluate the effect of stimulus duration on MAR0 and σint. Results Log MAR0 for the briefly presented E was correlated significantly with log σint (r = 0.95, p < 0.01), consistent with previous work. However, log MAR0 was not correlated significantly with log σopt (r = 0.46, p = 0.11). For subjects with log MAR0 equivalent to approximately 20/20 or better, log MAR0 was independent of log η, whereas for subjects with larger log MAR0 values, log MAR0 was proportional to log η. The control experiment showed a statistically significant effect of stimulus duration on log MAR0 (p < 0.01) but a non-significant effect on σint (p = 0.13). Conclusions The relative contributions of optical and non-optical blur to VA varied among the subjects, and were related to the subject’s VA. Evaluating optical and non-optical blur may be useful for predicting changes in VA following procedures that improve the optics of the eye in patients with both optical and non-optical sources of VA loss. PMID:21460756
Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; Ruigrok, Elmer; van der Neut, Joost; Draganov, Deyan
2011-01-01
The methodology of surface-wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface-wave Green's function. A point-spread function, derived from the same ambient noise field, quantifies the smearing in space and time of the virtual source of the Green's function. By multidimensionally deconvolving the retrieved Green's function by the point-spread function, the virtual source becomes better focussed in space and time and hence the accuracy of the retrieved surface-wave Green's function may improve significantly. We illustrate this at the hand of a numerical example and discuss the advantages and limitations of this new methodology.
The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.
Hoth, Sebastian; Dziemba, Oliver Christian
2017-12-01
: Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.
Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images
NASA Technical Reports Server (NTRS)
Blonski, Slawomir
2006-01-01
Characterization was conducted under the Memorandum of Understanding among Orbital Sciences Corp., ORBIMAGE, Inc., and NASA Applied Sciences Directorate. Acquired five OrbView-3 panchromatic images of the permanent Stennis Space Center edge targets painted on a concrete surface. Each image is available at two processing levels: Georaw and Basic. Georaw is an intermediate image in which individual pixels are aligned by a nominal shift in the along-scan direction to adjust for the staggered layout of the panchromatic detectors along the focal plane array. Georaw images are engineering data and are not delivered to customers. The Basic product includes a cubic interpolation to align the pixels better along the focal plane and to correct for sensor artifacts, such as smile and attitude smoothing. This product retains satellite geometry - no rectification is performed. Processing of the characterized images did not include image sharpening, which is applied by default to OrbView-3 image products delivered by ORBIMAGE to customers. Edge responses were extracted from images of tilted edges in two directions: along-scan and cross-scan. Each edge response was approximated with a superposition of three sigmoidal functions through a nonlinear least-squares curve-fitting. Line Spread Functions (LSF) were derived by differentiation of the analytical approximation. Modulation Transfer Functions (MTF) were obtained after applying the discrete Fourier transform to the LSF.
Marques, Elisa A; Baptista, Fátima; Santos, Rute; Vale, Susana; Santos, Diana A; Silva, Analiza M; Mota, Jorge; Sardinha, Luís B
2014-01-01
This cross-sectional study was designed to develop normative functional fitness standards for the Portuguese older adults, to analyze age and gender patterns of decline, to compare the fitness level of Portuguese older adults with that of older adults in other countries, and to evaluate the fitness level of Portuguese older adults relative to recently published criterion fitness standards associated with maintaining physical independence. A sample of 4,712 independent-living older adults, age 65-103 yr, was evaluated using the Senior Fitness Test battery. Age-group normative fitness scores are reported for the 10th, 25th, 50th, 75th, and 90th percentiles. Results indicate that both women and men experience age-related losses in all components of functional fitness, with their rate of decline being greater than that observed in other populations, a trend which may cause Portuguese older adults to be at greater risk for loss of independence in later years. These newly established normative standards make it possible to assess individual fitness level and provide a basis for implementing population-wide health strategies to counteract early loss of independence.
RANKING TEM CAMERAS BY THEIR RESPONSE TO ELECTRON SHOT NOISE
Grob, Patricia; Bean, Derek; Typke, Dieter; Li, Xueming; Nogales, Eva; Glaeser, Robert M.
2013-01-01
We demonstrate two ways in which the Fourier transforms of images that consist solely of randomly distributed electrons (shot noise) can be used to compare the relative performance of different electronic cameras. The principle is to determine how closely the Fourier transform of a given image does, or does not, approach that of an image produced by an ideal camera, i.e. one for which single-electron events are modeled as Kronecker delta functions located at the same pixels where the electrons were incident on the camera. Experimentally, the average width of the single-electron response is characterized by fitting a single Lorentzian function to the azimuthally averaged amplitude of the Fourier transform. The reciprocal of the spatial frequency at which the Lorentzian function falls to a value of 0.5 provides an estimate of the number of pixels at which the corresponding line-spread function falls to a value of 1/e. In addition, the excess noise due to stochastic variations in the magnitude of the response of the camera (for single-electron events) is characterized by the amount to which the appropriately normalized power spectrum does, or does not, exceed the total number of electrons in the image. These simple measurements provide an easy way to evaluate the relative performance of different cameras. To illustrate this point we present data for three different types of scintillator-coupled camera plus a silicon-pixel (direct detection) camera. PMID:23747527
NASA Astrophysics Data System (ADS)
Luo, L.; Fan, M.; Shen, M. Z.
2007-07-01
Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of no using the object support constraint in the algorithm. The performance validity of the method is examined by the computer simulation and the restoration of the real Alpha Psc astronomical image data. The results suggest that the blind deconvolution with the real optical band constraint can remove the effect of the atmospheric turbulence on the observed images and the spatial resolution of the object image can arrive at or exceed the diffraction-limited level.
Archer, Steven M.
2007-01-01
Purpose Ordinary spherocylindrical refractive errors have been recognized as a cause of monocular diplopia for over a century, yet explanation of this phenomenon using geometrical optics has remained problematic. This study tests the hypothesis that the diffraction theory treatment of refractive errors will provide a more satisfactory explanation of monocular diplopia. Methods Diffraction theory calculations were carried out for modulation transfer functions, point spread functions, and line spread functions under conditions of defocus, astigmatism, and mixed spherocylindrical refractive errors. Defocused photographs of inked and projected black lines were made to demonstrate the predicted consequences of the theoretical calculations. Results For certain amounts of defocus, line spread functions resulting from spherical defocus are predicted to have a bimodal intensity distribution that could provide the basis for diplopia with line targets. Multimodal intensity distributions are predicted in point spread functions and provide a basis for diplopia or polyopia of point targets under conditions of astigmatism. The predicted doubling effect is evident in defocused photographs of black lines, but the effect is not as robust as the subjective experience of monocular diplopia. Conclusions Monocular diplopia due to ordinary refractive errors can be predicted from diffraction theory. Higher-order aberrations—such as spherical aberration—are not necessary but may, under some circumstances, enhance the features of monocular diplopia. The physical basis for monocular diplopia is relatively subtle, and enhancement by neural processing is probably needed to account for the robustness of the percept. PMID:18427616
Practical training framework for fitting a function and its derivatives.
Pukrittayakamee, Arjpolson; Hagan, Martin; Raff, Lionel; Bukkapatnam, Satish T S; Komanduri, Ranga
2011-06-01
This paper describes a practical framework for using multilayer feedforward neural networks to simultaneously fit both a function and its first derivatives. This framework involves two steps. The first step is to train the network to optimize a performance index, which includes both the error in fitting the function and the error in fitting the derivatives. The second step is to prune the network by removing neurons that cause overfitting and then to retrain it. This paper describes two novel types of overfitting that are only observed when simultaneously fitting both a function and its first derivatives. A new pruning algorithm is proposed to eliminate these types of overfitting. Experimental results show that the pruning algorithm successfully eliminates the overfitting and produces the smoothest responses and the best generalization among all the training algorithms that we have tested.
Toe spreading ability in men with chronic pelvic pain syndrome
Yilmaz, Ugur; Rothman, Ivan; Ciol, Marcia A; Yang, Claire C; Berger, Richard E
2005-01-01
Background We examined toe-spreading ability in subjects with chronic pelvic pain syndrome (CPPS) to test the hypothesis that subjects with CPPS could have deficiencies in lower extremity functions innervated by sacral spinal roots. Methods Seventy two subjects with CPPS and 98 volunteer controls were examined as part of a larger study on CPPS. All the subjects underwent a detailed urologic and neurological examination including a toe-spreading examination with a quantitative scoring system. We compared the groups in terms of ability of toe-spreading as either "complete" (all toes spreading) or "incomplete" (at least one interdigital space not spreading) and also by comparing the number of interdigital spaces. For CPPS subjects only, we also analyzed the variation of the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) scales by toe-spreading categories. Results CPPS subjects were less often able to spread all toes than subjects without CPPS (p = 0.005). None of the NIH-CPSI sub-scales (pain, urinary symptoms, and quality of life), nor the total score showed an association with toe spreading ability. Conclusion We found toe spreading to be diminished in subjects with CPPS. We hypothesize that incomplete toe spreading in subjects with CPPS may be related to subtle deficits involving the most caudal part of the spinal segments. PMID:15949041
Influence of fitness and age on the endothelial response to acute inflammation.
Schroeder, Elizabeth C; Lane-Cordova, Abbi D; Ranadive, Sushant M; Baynard, Tracy; Fernhall, Bo
2018-06-01
What is the central question of the study? What are the effects of age and fitness on the vascular response to acute inflammation in younger and older adults? What is the main finding and its importance? In older adults, cardiorespiratory fitness level has a differential impact on endothelial function after acute inflammation. Compared with older adults with low fitness, older, moderately fit adults have a greater decrease in endothelial function, similar to that of younger adults. These findings have important implications in support of the beneficial effects of higher cardiorespiratory fitness in maintaining vascular reactivity and the ability to respond to stressors. Inflammation is associated with greater risk of cardiovascular events and reduced vascular function with ageing. Higher cardiorespiratory fitness is associated with lower risk of cardiovascular events and better vascular function. We evaluated the role of fitness in the vascular response to acute inflammation in 26 younger adults (YA) and 62 older adults (OA). We used an influenza vaccine to induce acute inflammation. Blood pressure, flow-mediated dilatation (FMD), augmentation index, carotid elastic modulus and inflammatory markers were measured before and 24 h after vaccination. Peak oxygen uptake was measured via a treadmill test. 'Fit' was defined as a peak oxygen uptake greater than the age- and sex-determined 50th percentile according to the American College of Sports Medicine. An interaction effect existed for the FMD response during acute inflammation (P < 0.05). The YA (low fit, from 11.5 ± 1.8 to 9.2 ± 1.3%; moderately fit, from 11.9 ± 0.8 to 9.0 ± 0.8%) and moderately fit OA (from 7.5 ± 1.0 to 3.9 ± 0.8%) had similar reductions in FMD at 24 h (P < 0.05). Low-fit OA did not reduce FMD at 24 h (from 5.5 ± 0.4 to 5.2 ± 0.5%, P > 0.05). The reduction in FMD in YA was similar between fitness groups (P > 0.05). All groups had similar reductions in mean arterial pressure and increases in inflammatory markers. The augmentation index and carotid elastic modulus did not change during acute inflammation. In conclusion, in OA, higher fitness is associated with a greater decrease in endothelial function during acute inflammation, and this response is similar to that of young adults. This suggests that moderately fit OA may maintain vascular reactivity in response to stress, indicating preserved vascular function in moderately fit versus low-fit OA. © 2018 The Authors. Experimental Physiology © 2018 The Physiological Society.
Efficient Evaluation Functions for Multi-Rover Systems
NASA Technical Reports Server (NTRS)
Agogino, Adrian; Tumer, Kagan
2004-01-01
Evolutionary computation can be a powerful tool in cresting a control policy for a single agent receiving local continuous input. This paper extends single-agent evolutionary computation to multi-agent systems, where a collection of agents strives to maximize a global fitness evaluation function that rates the performance of the entire system. This problem is solved in a distributed manner, where each agent evolves its own population of neural networks that are used as the control policies for the agent. Each agent evolves its population using its own agent-specific fitness evaluation function. We propose to create these agent-specific evaluation functions using the theory of collectives to avoid the coordination problem where each agent evolves a population that maximizes its own fitness function, yet the system has a whole achieves low values of the global fitness function. Instead we will ensure that each fitness evaluation function is both "aligned" with the global evaluation function and is "learnable," i.e., the agents can readily see how their behavior affects their evaluation function. We then show how these agent-specific evaluation functions outperform global evaluation methods by up to 600% in a domain where a set of rovers attempt to maximize the amount of information observed while navigating through a simulated environment.
Kunz, Anjali N.; Begum, Afrin A.; Wu, Hong; D'Ambrozio, Jonathan A.; Robinson, James M.; Shafer, William M.; Bash, Margaret C.; Jerse, Ann E.
2012-01-01
Background. Quinolone-resistant Neisseria gonorrhoeae (QRNG) arise from mutations in gyrA (intermediate resistance) or gyrA and parC (resistance). Here we tested the consequence of commonly isolated gyrA91/95 and parC86 mutations on gonococcal fitness. Methods. Mutant gyrA91/95 and parC86 alleles were introduced into wild-type gonococci or an isogenic mutant that is resistant to macrolides due to an mtrR−79 mutation. Wild-type and mutant bacteria were compared for growth in vitro and in competitive murine infection. Results. In vitro growth was reduced with increasing numbers of mutations. Interestingly, the gyrA91/95 mutation conferred an in vivo fitness benefit to wild-type and mtrR−79 mutant gonococci. The gyrA91/95, parC86 mutant, in contrast, showed a slight fitness defect in vivo, and the gyrA91/95, parC86, mtrR−79 mutant was markedly less fit relative to the parent strains. A ciprofloxacin-resistant (CipR) mutant was selected during infection with the gyrA91/95, parC86, mtrR−79 mutant in which the mtrR−79 mutation was repaired and the gyrA91 mutation was altered. This in vivo–selected mutant grew as well as the wild-type strain in vitro. Conclusions. gyrA91/95 mutations may contribute to the spread of QRNG. Further acquisition of a parC86 mutation abrogates this fitness advantage; however, compensatory mutations can occur that restore in vivo fitness and maintain CipR. PMID:22492860
Arms Control and Nonproliferation: A Catalog of Treaties and Agreements
2014-07-21
Europe in the waning years of the Cold War . Other arrangements seek to slow the spread of technologies that nations could use to develop advanced...This provides each nation with the freedom to mix their forces as they see fit. This change reflects, in part, a lesser concern with Cold War models...CFE provisions reflected Cold War assumptions and did not fairly address its new national security concerns. Further, it argued that economic hardship
Global stability of a two-mediums rumor spreading model with media coverage
NASA Astrophysics Data System (ADS)
Huo, Liang'an; Wang, Li; Song, Guoxiang
2017-09-01
Rumor spreading is a typical form of social communication and plays a significant role in social life, and media coverage has a great influence on the spread of rumor. In this paper, we present a new model with two media coverage to investigate the impact of the different mediums on rumor spreading. Then, we calculate the equilibria of the model and construct the reproduction number ℜ0. And we prove the global asymptotic stability of equilibria by using Lyapunov functions. Finally, we can conclude that the transition rate of the ignorants between two mediums has a direct effect on the scale of spreaders, and different media coverage has significant effects on the dynamics behaviors of rumor spreading.
NASA Astrophysics Data System (ADS)
Wang, Xi; Chen, Shouhui; Zheng, Tianyong; Ning, Xiangchun; Dai, Yifei
2018-03-01
The filament yarns spreading techniques of electronic fiberglass fabric were developed in the past few years in order to meet the requirements of the development of electronic industry. Copper clad laminate (CCL) requires that the warp and weft yarns of the fabric could be spread out of apart and formed flat. The penetration performance of resin could be improved due to the filament yarns spreading techniques of electronic fiberglass fabric, the same as peeling strength of CCL and drilling performance of printed circuit board (PCB). This paper shows the filament yarns spreading techniques of electronic fiberglass fabric from several aspects, such as methods and functions, also with the assessment methods of their effects.
Chowell, Gerardo; Viboud, Cécile
2016-10-01
The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing models that capture the baseline transmission characteristics in order to generate reliable epidemic forecasts. Improved models for epidemic forecasting could be achieved by identifying signature features of epidemic growth, which could inform the design of models of disease spread and reveal important characteristics of the transmission process. In particular, it is often taken for granted that the early growth phase of different growth processes in nature follow early exponential growth dynamics. In the context of infectious disease spread, this assumption is often convenient to describe a transmission process with mass action kinetics using differential equations and generate analytic expressions and estimates of the reproduction number. In this article, we carry out a simulation study to illustrate the impact of incorrectly assuming an exponential-growth model to characterize the early phase (e.g., 3-5 disease generation intervals) of an infectious disease outbreak that follows near-exponential growth dynamics. Specifically, we assess the impact on: 1) goodness of fit, 2) bias on the growth parameter, and 3) the impact on short-term epidemic forecasts. Designing transmission models and statistical approaches that more flexibly capture the profile of epidemic growth could lead to enhanced model fit, improved estimates of key transmission parameters, and more realistic epidemic forecasts.
NASA Astrophysics Data System (ADS)
Li, Wei; Gu, Jiao; Cai, Xu
2008-06-01
We study message spreading on a scale-free network, by introducing a novel forget-remember mechanism. Message, a general term which can refer to email, news, rumor or disease, etc, can be forgotten and remembered by its holder. The way the message is forgotten and remembered is governed by the forget and remember function, F and R, respectively. Both F and R are functions of history time t concerning individual's previous states, namely being active (with message) or inactive (without message). Our systematic simulations show at the low transmission rate whether or not the spreading can be efficient is primarily determined by the corresponding parameters for F and R.
Simulation and fitting of complex reaction network TPR: The key is the objective function
Savara, Aditya Ashi
2016-07-07
In this research, a method has been developed for finding improved fits during simulation and fitting of data from complex reaction network temperature programmed reactions (CRN-TPR). It was found that simulation and fitting of CRN-TPR presents additional challenges relative to simulation and fitting of simpler TPR systems. The method used here can enable checking the plausibility of proposed chemical mechanisms and kinetic models. The most important finding was that when choosing an objective function, use of an objective function that is based on integrated production provides more utility in finding improved fits when compared to an objective function based onmore » the rate of production. The response surface produced by using the integrated production is monotonic, suppresses effects from experimental noise, requires fewer points to capture the response behavior, and can be simulated numerically with smaller errors. For CRN-TPR, there is increased importance (relative to simple reaction network TPR) in resolving of peaks prior to fitting, as well as from weighting of experimental data points. Using an implicit ordinary differential equation solver was found to be inadequate for simulating CRN-TPR. Lastly, the method employed here was capable of attaining improved fits in simulation and fitting of CRN-TPR when starting with a postulated mechanism and physically realistic initial guesses for the kinetic parameters.« less
Qin, Zhaoping; Voorhees, John J; Fisher, Gary J; Quan, Taihao
2014-12-01
The dermal compartment of human skin is largely composed of dense collagen-rich fibrils, which provide structural and mechanical support. Skin dermal fibroblasts, the major collagen-producing cells, are interact with collagen fibrils to maintain cell spreading and mechanical force for function. A characteristic feature of aged human skin is fragmentation of collagen fibrils, which is initiated by matrix metalloproteinase 1 (MMP-1). Fragmentation impairs fibroblast attachment and thereby reduces spreading. Here, we investigated the relationship among fibroblast spreading, mechanical force, MMP-1 expression, and collagen fibril fragmentation. Reduced fibroblast spreading due to cytoskeletal disruption was associated with reduced cellular mechanical force, as determined by atomic force microscopy. These reductions substantially induced MMP-1 expression, which led to collagen fibril fragmentation and disorganization in three-dimensional collagen lattices. Constraining fibroblast size by culturing on slides coated with collagen micropatterns also significantly induced MMP-1 expression. Reduced spreading/mechanical force induced transcription factor c-Jun and its binding to a canonical AP-1 binding site in the MMP-1 proximal promoter. Blocking c-Jun function with dominant negative mutant c-Jun significantly reduced induction of MMP-1 expression in response to reduced spreading/mechanical force. Furthermore, restoration of fibroblast spreading/mechanical force led to decline of c-Jun and MMP-1 levels and eliminated collagen fibril fragmentation and disorganization. These data reveal a novel mechanism by which alteration of fibroblast shape/mechanical force regulates c-Jun/AP-1-dependent expression of MMP-1 and consequent collagen fibril fragmentation. This mechanism provides a foundation for understanding the cellular and molecular basis of age-related collagen fragmentation in human skin. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bowen, Spencer L.; Byars, Larry G.; Michel, Christian J.; Chonde, Daniel B.; Catana, Ciprian
2013-10-01
Kinetic parameters estimated from dynamic 18F-fluorodeoxyglucose (18F-FDG) PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For ordered subsets expectation maximization (OSEM), image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting 18F-FDG dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation geometric transfer matrix PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in cerebral metabolic rate of glucose estimates, although by less than 5% in most cases compared to the other PVC methods. The results indicate that the PVC implementation and choice of PSF modelling in the reconstruction can significantly impact model parameters.
Bowen, Spencer L; Byars, Larry G; Michel, Christian J; Chonde, Daniel B; Catana, Ciprian
2013-10-21
Kinetic parameters estimated from dynamic (18)F-fluorodeoxyglucose ((18)F-FDG) PET acquisitions have been used frequently to assess brain function in humans. Neglecting partial volume correction (PVC) for a dynamic series has been shown to produce significant bias in model estimates. Accurate PVC requires a space-variant model describing the reconstructed image spatial point spread function (PSF) that accounts for resolution limitations, including non-uniformities across the field of view due to the parallax effect. For ordered subsets expectation maximization (OSEM), image resolution convergence is local and influenced significantly by the number of iterations, the count density, and background-to-target ratio. As both count density and background-to-target values for a brain structure can change during a dynamic scan, the local image resolution may also concurrently vary. When PVC is applied post-reconstruction the kinetic parameter estimates may be biased when neglecting the frame-dependent resolution. We explored the influence of the PVC method and implementation on kinetic parameters estimated by fitting (18)F-FDG dynamic data acquired on a dedicated brain PET scanner and reconstructed with and without PSF modelling in the OSEM algorithm. The performance of several PVC algorithms was quantified with a phantom experiment, an anthropomorphic Monte Carlo simulation, and a patient scan. Using the last frame reconstructed image only for regional spread function (RSF) generation, as opposed to computing RSFs for each frame independently, and applying perturbation geometric transfer matrix PVC with PSF based OSEM produced the lowest magnitude bias kinetic parameter estimates in most instances, although at the cost of increased noise compared to the PVC methods utilizing conventional OSEM. Use of the last frame RSFs for PVC with no PSF modelling in the OSEM algorithm produced the lowest bias in cerebral metabolic rate of glucose estimates, although by less than 5% in most cases compared to the other PVC methods. The results indicate that the PVC implementation and choice of PSF modelling in the reconstruction can significantly impact model parameters.
Barbee, David L; Flynn, Ryan T; Holden, James E; Nickles, Robert J; Jeraj, Robert
2010-01-01
Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised of partial volume effects which may affect treatment prognosis, assessment, or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discover LS at positions of increasing radii from the scanner’s center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method’s correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom, and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV-PVC demonstrated that similar results could be reached using both methods, but large differences result for the arbitrary selection of SINV-PVC parameters. The presented SV-PVC method was performed without user intervention, requiring only a tumor mask as input. Research involving PET-imaged tumor heterogeneity should include correcting for partial volume effects to improve the quantitative accuracy of results. PMID:20009194
Use of a priori statistics to minimize acquisition time for RFI immune spread spectrum systems
NASA Technical Reports Server (NTRS)
Holmes, J. K.; Woo, K. T.
1978-01-01
The optimum acquisition sweep strategy was determined for a PN code despreader when the a priori probability density function was not uniform. A psuedo noise spread spectrum system was considered which could be utilized in the DSN to combat radio frequency interference. In a sample case, when the a priori probability density function was Gaussian, the acquisition time was reduced by about 41% compared to a uniform sweep approach.
Spatial and spectral imaging of point-spread functions using a spatial light modulator
NASA Astrophysics Data System (ADS)
Munagavalasa, Sravan; Schroeder, Bryce; Hua, Xuanwen; Jia, Shu
2017-12-01
We develop a point-spread function (PSF) engineering approach to imaging the spatial and spectral information of molecular emissions using a spatial light modulator (SLM). We show that a dispersive grating pattern imposed upon the emission reveals spectral information. We also propose a deconvolution model that allows the decoupling of the spectral and 3D spatial information in engineered PSFs. The work is readily applicable to single-molecule measurements and fluorescent microscopy.
1975-09-30
systems a linear model results in an object f being mappad into an image _ by a point spread function matrix H. Thus with noise j +Hf +n (1) The simplest... linear models for imaging systems are given by space invariant point spread functions (SIPSF) in which case H is block circulant. If the linear model is...Ij,...,k-IM1 is a set of two dimensional indices each distinct and prior to k. Modeling Procedare: To derive the linear predictor (block LP of figure
NASA Astrophysics Data System (ADS)
Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.
2018-06-01
The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey r-band images with artificial AGN point sources added that are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover point source and host galaxy magnitudes with smaller systematic error and a lower average scatter (49 per cent). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ± 50 per cent if it is trained on multiple PSFs. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN is more robust and easy to use than parametric methods as it requires no input parameters.
NASA Astrophysics Data System (ADS)
Pasewaldt, A.; Oberst, J.; Willner, K.; Beisembin, B.; Hoffmann, H.; Matz, K. D.; Roatsch, T.; Michael, G.; Cardesín-Moinelo, A.; Zubarev, A. E.
2015-08-01
Aims: From April 2008 to August 2011 Mars Express carried out 74 Phobos flybys at distances between 669 and 5579 km. Images taken with the Super Resolution Channel (SRC) were used to determine the spacecraft-centered right ascension and declination of this Martian moon. Methods: Image positions of Phobos were measured using the limb-fit and control-point measurement techniques. Camera pointing and pointing drift were controlled by means of background star observations that were compared to corresponding positions from reference catalogs. Blurred and noisy images were restored by applying an image-based point spread function in a Richardson-Lucy deconvolution. Results: Here, we report on a set of 158 Phobos astrometric observations with estimated accuracies between 0.224 and 3.405 km circular w.r.t. the line of sight to the satellite. Control point measurements yield slightly more accurate results than the limb fit ones. Our observations are in good agreement with the current Phobos ephemerides by the Jet Propulsion Laboratory (JPL) and the Royal Observatory of Belgium (ROB) with mean offsets of up to 335 m. Our data can be used for the maintenance and update of these models. Tables A.1 and A.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A28
Latour, Robert A
2015-03-01
The Langmuir adsorption isotherm provides one of the simplest and most direct methods to quantify an adsorption process. Because isotherm data from protein adsorption studies often appear to be fit well by the Langmuir isotherm model, estimates of protein binding affinity have often been made from its use despite that fact that none of the conditions required for a Langmuir adsorption process may be satisfied for this type of application. The physical events that cause protein adsorption isotherms to often provide a Langmuir-shaped isotherm can be explained as being due to changes in adsorption-induced spreading, reorientation, clustering, and aggregation of the protein on a surface as a function of solution concentration in contrast to being due to a dynamic equilibrium adsorption process, which is required for Langmuir adsorption. Unless the requirements of the Langmuir adsorption process can be confirmed, fitting of the Langmuir model to protein adsorption isotherm data to obtain thermodynamic properties, such as the equilibrium constant for adsorption and adsorption free energy, may provide erroneous values that have little to do with the actual protein adsorption process, and should be avoided. In this article, a detailed analysis of the Langmuir isotherm model is presented along with a quantitative analysis of the level of error that can arise in derived parameters when the Langmuir isotherm is inappropriately applied to characterize a protein adsorption process. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rupke, David S. N.; Gültekin, Kayhan; Veilleux, Sylvain
2017-11-01
The prevalence and properties of kiloparsec-scale outflows in nearby Type 1 quasars have been the subject of little previous attention. This work presents Gemini integral field spectroscopy of 10 Type 1 radio-quiet quasars at z< 0.3. The excellent image quality, coupled with a new technique to remove the point-spread function using spectral information, allows the fitting of the underlying host on a spaxel-by-spaxel basis. Fits to stars, line-emitting gas, and interstellar absorption show that 100% of the sample hosts warm ionized and/or cool neutral outflows with spatially averaged velocities (< {v}98 % > \\equiv < v+2σ > ) of 200-1300 {km} {{{s}}}-1 and peak velocities (maximum {v}98 % ) of 500-2600 {km} {{{s}}}-1. These minor-axis outflows are powered primarily by the central active galactic nucleus, reach scales of 3-12 kpc, and often fill the field of view. Including molecular data and Type 2 quasar measurements, nearby quasars show a wide range in mass outflow rates ({dM}/{dt}=1 to > 1000 {M}⊙ {{yr}}-1) and momentum boosts [(c {dp}/{dt})/{L}{AGN}=0.01{--}20]. After extending the mass scale to Seyferts, dM/dt and dE/dt correlate with black hole mass ({dM}/{dt}˜ {M}{BH}0.7+/- 0.3 and {dE}/{dt}˜ {M}{BH}1.3+/- 0.5). Thus, the most massive black holes in the local universe power the most massive and energetic quasar-mode winds.
A comprehensive study of the rich open star cluster NGC 2099 based on deep BVI CCD observations
NASA Astrophysics Data System (ADS)
Nilakshi,; Sagar, R.
2002-01-01
The CCD observations of the rich open star cluster NGC 2099 and its surrounding field region have been carried out up to a limiting magnitude of V ~ 22 mag in B, V and I passbands for the first time. A total of ~ 12 000 stars have been observed in the area of about 24arcmin x 34arcmin in the cluster region, as well as ~ 2180 stars in the ~ 12arcmin x 12arcmin area of the field region located ~ 45arcmin away from the cluster center. The cluster parameters determined by fitting the convective core overshoot isochrones in the V, (B-V) and V, (V-I) diagrams are E(B-V) = 0.30+/-0.04 mag, distance = 1360+/- 100 pc, age = 400 Myr and metallicity Z = 0.008. A well-defined cluster main sequence spread over about 8 mag in range is observed for the first time. Its intrinsic spread amounting to ~ 0.06 mag in colour is almost the same over the entire brightness and can be understood in terms of the presence of physical/optical binaries. The core and cluster radii determined from the radial stellar density profiles are 185 arcsec and 1000 arcsec respectively. Only about 22% of cluster members are present in the core region. The effects of mass segregation, most probably due to dynamical evolution, have been observed in the cluster. The mass function slope of the entire cluster is ~ -0.67+/-0.12. It becomes closer to the Salpeter value of -1.35, if flattening in the cluster mass function due to presence of both binaries and a much more extended corona is considered. Full Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/381/65
The norms and variances of the Gabor, Morlet and general harmonic wavelet functions
NASA Astrophysics Data System (ADS)
Simonovski, I.; Boltežar, M.
2003-07-01
This paper deals with certain properties of the continuous wavelet transform and wavelet functions. The norms and the spreads in time and frequency of the common Gabor and Morlet wavelet functions are presented. It is shown that the norm of the Morlet wavelet function does not satisfy the normalization condition and that the normalized Morlet wavelet function is identical to the Gabor wavelet function with the parameter σ=1. The general harmonic wavelet function is developed using frequency modulation of the Hanning and Hamming window functions. Several properties of the general harmonic wavelet function are also presented and compared to the Gabor wavelet function. The time and frequency spreads of the general harmonic wavelet function are only slightly higher than the time and frequency spreads of the Gabor wavelet function. However, the general harmonic wavelet function is simpler to use than the Gabor wavelet function. In addition, the general harmonic wavelet function can be constructed in such a way that the zero average condition is truly satisfied. The average value of the Gabor wavelet function can approach a value of zero but it cannot reach it. When calculating the continuous wavelet transform, errors occur at the start- and the end-time indexes. This is called the edge effect and is caused by the fact that the wavelet transform is calculated from a signal of finite length. In this paper, we propose a method that uses signal mirroring to reduce the errors caused by the edge effect. The success of the proposed method is demonstrated by using a simulated signal.
Toward a generalized theory of epidemic awareness in social networks
NASA Astrophysics Data System (ADS)
Wu, Qingchu; Zhu, Wenfang
We discuss the dynamics of a susceptible-infected-susceptible (SIS) model with local awareness in networks. Individual awareness to the infectious disease is characterized by a general function of epidemic information in its neighborhood. We build a high-accuracy approximate equation governing the spreading dynamics and derive an approximate epidemic threshold above which the epidemic spreads over the whole network. Our results extend the previous work and show that the epidemic threshold is dependent on the awareness function in terms of one infectious neighbor. Interestingly, when a pow-law awareness function is chosen, the epidemic threshold can emerge in infinite networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchhoff, William H.
2012-09-15
The extended logistic function provides a physically reasonable description of interfaces such as depth profiles or line scans of surface topological or compositional features. It describes these interfaces with the minimum number of parameters, namely, position, width, and asymmetry. Logistic Function Profile Fit (LFPF) is a robust, least-squares fitting program in which the nonlinear extended logistic function is linearized by a Taylor series expansion (equivalent to a Newton-Raphson approach) with no apparent introduction of bias in the analysis. The program provides reliable confidence limits for the parameters when systematic errors are minimal and provides a display of the residuals frommore » the fit for the detection of systematic errors. The program will aid researchers in applying ASTM E1636-10, 'Standard practice for analytically describing sputter-depth-profile and linescan-profile data by an extended logistic function,' and may also prove useful in applying ISO 18516: 2006, 'Surface chemical analysis-Auger electron spectroscopy and x-ray photoelectron spectroscopy-determination of lateral resolution.' Examples are given of LFPF fits to a secondary ion mass spectrometry depth profile, an Auger surface line scan, and synthetic data generated to exhibit known systematic errors for examining the significance of such errors to the extrapolation of partial profiles.« less
Ludyga, Sebastian; Gerber, Markus; Brand, Serge; Holsboer-Trachsler, Edith; Pühse, Uwe
2016-11-01
Whereas a wealth of studies have investigated acute effects of moderate aerobic exercise on executive function, the roles of age, fitness, and the component of executive function in this relationship still remain unclear. Therefore, the present meta-analysis investigates exercise-induced benefits on specific aspects of executive function in different age and aerobic fitness subgroups. Based on data from 40 experimental studies, a small effect of aerobic exercise on time-dependent measures (g = .35) and accuracy (g = .22) in executive function tasks was confirmed. The results further suggest that preadolescent children (g = .54) and older adults (g = .67) compared to other age groups benefit more from aerobic exercise when reaction time is considered as dependent variable. In contrast to age, aerobic fitness and the executive function component had no influence on the obtained effect sizes. Consequently, high aerobic fitness is no prerequisite for temporary improvements of the executive control system, and low- as well as high-fit individuals seem to benefit from exercise in a similar way. However, a higher sensitivity of executive function to acute aerobic exercise was found in individuals undergoing developmental changes. Therefore, preadolescent children and older adults in particular might strategically use a single aerobic exercise session to prepare for a situation demanding high executive control. © 2016 Society for Psychophysiological Research.
Spreading of blood drops over dry porous substrate: complete wetting case.
Chao, Tzu Chieh; Arjmandi-Tash, Omid; Das, Diganta B; Starov, Victor M
2015-05-15
The process of dried blood spot sampling involves simultaneous spreading and penetration of blood into a porous filter paper with subsequent evaporation and drying. Spreading of small drops of blood, which is a non-Newtonian liquid, over a dry porous layer is investigated from both theoretical and experimental points of view. A system of two differential equations is derived, which describes the time evolution of radii of both the drop base and the wetted region inside the porous medium. The system of equations does not include any fitting parameters. The predicted time evolutions of both radii are compared with experimental data published earlier. For a given power law dependency of viscosity of blood with different hematocrit level, radii of both drop base and wetted region, and contact angle fell on three universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and the wetted region inside the porous layer and dynamic contact angle on dimensionless time. The predicted theoretical relationships are three universal curves accounting satisfactorily for the experimental data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Rumor spreading in online social networks by considering the bipolar social reinforcement
NASA Astrophysics Data System (ADS)
Ma, Jing; Li, Dandan; Tian, Zihao
2016-04-01
Considering the bipolar social reinforcement which includes positive and negative effects, in this paper we explore the rumor spreading dynamics in online social networks. By means of the generation function and cavity method developed from statistical physics of disordered system, the rumor spreading threshold can be theoretically drawn. Simulation results indicate that decreasing the positive reinforcement factor or increasing the negative reinforcement factor can suppress the rumor spreading effectively. By analyzing the topological properties of the real world social network, we find that the nodes with lower degree usually have smaller weight. However, the nodes with lower degree may have larger k-shell. In order to curb rumor spreading, some control strategies that are based on the nodes' degree, k-shell and weight are presented. By comparison, we show that controlling those nodes that have larger degree or weight are two effective strategies to prevent the rumor spreading.
The spreading time in SIS epidemics on networks
NASA Astrophysics Data System (ADS)
He, Zhidong; Van Mieghem, Piet
2018-03-01
In a Susceptible-Infected-Susceptible (SIS) process, we investigate the spreading time Tm, which is the time when the number of infected nodes in the metastable state is first reached, starting from the outbreak of the epidemics. We observe that the spreading time Tm resembles a lognormal-like distribution, though with different deep tails, both for the Markovian and the non-Markovian infection process, which implies that the spreading time can be very long with a relatively high probability. In addition, we show that a stronger virus, with a higher effective infection rate τ or an earlier timing of the infection attempts, does not always lead to a shorter average spreading time E [Tm ] . We numerically demonstrate that the average spreading time E [Tm ] in the complete graph and the star graph scales logarithmically as a function of the network size N for a fixed fraction of infected nodes in the metastable state.
[Institutionalized elderly: functional capacity and physical fitness].
Gonçalves, Lúcia Hisako Takase; Silva, Aline Huber da; Mazo, Giovana Zarpsellon; Benedetti, Tânia R Bertoldo; dos Santos, Silvia Maria Azevedo; Marques, Sueli; Rodrigues, Rosalina A Partezani; Portella, Marilene Rodrigues; Scortegagna, Helenice de Moura; Santos, Silvana Sidney C; Pelzer, Marlene Teda; Souza, Andrea dos Santos; Meira, Edmeia Campos; Sena, Edite Lago da Silva; Creutzberg, Marion; Resende, Thais de Lima; Rezende, Tais de Lima
2010-09-01
This study analyzed the relationship between physical fitness and functional capacity in 78 residents of long-stay institutions for low-income elderly located in five regions of Brazil. The majority of the sample consisted of women, and mean age was 77.4 years (SD = 7.9). Physical fitness was assessed with the AAHPERD test, adjusted for institutionalized elderly. The Katz scale was used for functional capacity. The five components of physical fitness rated fair for flexibility, coordination, agility, and aerobic endurance and good for strength. The mean general physical fitness (GPF) index was fair. According to the findings, the greater the degree of dependency in institutionalized elderly, the lesser their strength and GPF level; meanwhile, better coordination and agility are associated with greater independence for performing activities of daily living. The results can contribute to appropriate physical exercise programs for maintenance and/or recovery of functionality.
Nawrocka, Agnieszka; Mynarski, Władysław; Cholewa, Jarosław
2017-12-23
Physical activity is an important factor in maintaining the health and functional fitness of elderly people. The aim of the study was to determine the number of senior women meeting the physical activity guidelines, and their level of functional fitness in comparison to women who are not sufficiently physically active. The study involved 61 women, aged 60-75. Physical activity was monitored on seven consecutive days of the week, using a triaxial accelerometer ActiGraph GT3X. Results of the assessment of physical activity were verified against the Global Recommendations of Physical Activity for Health. The Senior Fitness Test (Fullerton Test) was used to evaluate functional fitness. In the studied group, 36.1% achieved the recommended level of physical activity. All those examined mainly undertook physical activity of low intensity. Vigorous physical activity during the week was noted in only 6 seniors. Women who met the recommendations of physical activity achieved significantly better results in test trials, e.g. Chair Stands, Up and Go, Six Minute Step Test. Adherence to physical activity guidelines was associated with better functional fitness of older women. However, less than half of the examined seniors met the Global Recommendations on Physical Activity for Health.
An Empirical Fitting Method for Type Ia Supernova Light Curves: A Case Study of SN 2011fe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, WeiKang; Filippenko, Alexei V., E-mail: zwk@astro.berkeley.edu
We present a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe Ia). We find that a variant broken-power-law function provides a good fit, with the simple assumption that the optical emission is approximately the blackbody emission of the expanding fireball. This function is mathematically analytic and is derived directly from the photospheric velocity evolution. When deriving the function, we assume that both the blackbody temperature and photospheric velocity are constant, but the final function is able to accommodate these changes during the fitting procedure. Applying it to the case study of SN 2011fe givesmore » a surprisingly good fit that can describe the light curves from the first-light time to a few weeks after peak brightness, as well as over a large range of fluxes (∼5 mag, and even ∼7 mag in the g band). Since SNe Ia share similar light-curve shapes, this fitting method has the potential to fit most other SNe Ia and characterize their properties in large statistical samples such as those already gathered and in the near future as new facilities become available.« less
Zhu, Xun; Yang, Yanjv; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Guo, Zhaojiang; Kang, Shi; Xia, Jixing; Zhang, Youjun
2016-02-01
Resistance to Bacillus thuringiensis (Bt) formulations in insects may be associated with fitness costs. A lack of costs enables resistance alleles to persist, which may contribute to the rapid development and spread of resistance in populations. To assess the fitness costs associated with Bt Cry1Ac resistance in Plutella xylostella, life tables were constructed for a near-isogenic resistant strain (NIL-R) and a susceptible strain in this study. No fitness costs associated with Cry1Ac resistance in NIL-R were detected, based on the duration of egg and larval stages, the survival of eggs and larvae, adult longevity, fecundity, net reproductive rate, gross reproduction rate, finite rate of increase and mean generation time. Based on log dose-probit lines, resistance in NIL-R is incompletely recessive and results from a single, autosomal, recessive locus; the degree of dominance was estimated to be -0.74 and -0.71 for F1 (resistant ♀ × susceptible ♂) and F1 ' (susceptible ♀ × resistant ♂) progeny respectively. Assessment of near-isogenic Cry1Ac-resistant and Cry1Ac-susceptible strains of P. xylostella indicated that resistance is not accompanied with fitness costs, and that resistance is incompletely recessive. These findings should be useful in managing the development of Bt Cry1Ac resistance. © 2015 Society of Chemical Industry.
Le Menach, Arnaud; Vergu, Elisabeta; Grais, Rebecca F; Smith, David L; Flahault, Antoine
2006-01-01
Recent avian flu epidemics (A/H5N1) in Southeast Asia and case reports from around the world have led to fears of a human pandemic. Control of these outbreaks in birds would probably lead to reduced transmission of the avian virus to humans. This study presents a mathematical model based on stochastic farm-to-farm transmission that incorporates flock size and spatial contacts to evaluate the impact of control strategies. Fit to data from the recent epidemic in the Netherlands, we evaluate the efficacy of control strategies and forecast avian influenza dynamics. Our results identify high-risk areas of spread by mapping of the farm level reproductive number. Results suggest that an immediate depopulation of infected flocks following an accurate and quick diagnosis would have a greater impact than simply depopulating surrounding flocks. Understanding the relative importance of different control measures is essential for response planning. PMID:16959637
The reduction, verification and interpretation of MAGSAT magnetic data over Canada
NASA Technical Reports Server (NTRS)
Coles, R. L. (Principal Investigator); Haines, G. V.; Vanbeek, G. J.; Walker, J. K.; Newitt, L. R.; Nandi, A.
1982-01-01
Correlations between the MAGSAT scalar anomaly map produced at the Earth Physics ranch and other geophysical and geological data reveal relationships between high magnetic field and some metamorphic grade shields, as well as between low magnetic field and shield regions of lower metamorphic grade. An intriguing contrast exists between the broad low anomaly field over the Nasen-Gakkel Ridge (a spreading plate margin) and the high anomaly field over Iceland (part of a spreading margin). Both regions have high heat flow, and presumably thin magnetic crust. This indicates that Iceland is quite anomalous in its magnetic character, and possible similarities with the Alpha Ridge are suggested. Interesting correlations exist between MAGSAT anomalies around the North Atlantic, after reconstructing the fit of continents into a prerifting configuration. These correlations suggest that several orogenies in that region have not completely destroyed an ancient magnetization formed in high grade Precambrian rocks.
Lam, Tommy Tsan-Yuk; Ip, Hon S.; Ghedin, Elodie; Wentworth, David E.; Halpin, Rebecca A.; Stockwell, Timothy B.; Spiro, David J.; Dusek, Robert J.; Bortner, James B.; Hoskins, Jenny; Bales, Bradley D.; Yparraguirre, Dan R.; Holmes, Edward C.
2012-01-01
Despite the importance of migratory birds in the ecology and evolution of avian influenza virus (AIV), there is a lack of information on the patterns of AIV spread at the intra-continental scale. We applied a variety of statistical phylogeographic techniques to a plethora of viral genome sequence data to determine the strength, pattern and determinants of gene flow in AIV sampled from wild birds in North America. These analyses revealed a clear isolation-by-distance of AIV among sampling localities. In addition, we show that phylogeographic models incorporating information on the avian flyway of sampling proved a better fit to the observed sequence data than those specifying homogeneous or random rates of gene flow among localities. In sum, these data strongly suggest that the intra-continental spread of AIV by migratory birds is subject to major ecological barriers, including spatial distance and avian flyway.
Creep test observation of viscoelastic failure of edible fats
NASA Astrophysics Data System (ADS)
Vithanage, C. R.; Grimson, M. J.; Smith, B. G.; Wills, P. R.
2011-03-01
A rheological creep test was used to investigate the viscoelastic failure of five edible fats. Butter, spreadable blend and spread were selected as edible fats because they belong to three different groups according to the Codex Alimentarius. Creep curves were analysed according to the Burger model. Results were fitted to a Weibull distribution representing the strain-dependent lifetime of putative fibres in the material. The Weibull shape and scale (lifetime) parameters were estimated for each substance. A comparison of the rheometric measurements of edible fats demonstrated a clear difference between the three different groups. Taken together the results indicate that butter has a lower threshold for mechanical failure than spreadable blend and spread. The observed behaviour of edible fats can be interpreted using a model in which there are two types of bonds between fat crystals; primary bonds that are strong and break irreversibly, and secondary bonds, which are weaker but break and reform reversibly.
Macroalgae Has No Effect on the Severity and Dynamics of Caribbean Yellow Band Disease
Vu, Ivana; Smelick, Gillian; Harris, Sam; Lee, Sarah C.; Weil, Ernesto; Whitehead, Robert F.; Bruno, John F.
2009-01-01
By removing herbivores and promoting increases in macroalgae, overfishing is thought to indirectly cause coral disease and mortality. We performed three field manipulations to test the general hypothesis that overfishing and the subsequent alteration of coral reef trophic dynamics are a cause of coral epizootics. Specifically, we asked whether the presence of macroalgae can influence within- and among-colony spread rates of Caribbean Yellow Band Disease in Montastraea faveolata. Macroalgae were placed next to infected and healthy, adult and small coral colonies to measure effects on disease spread rate, coral growth and coral survival. Surprisingly, the addition of macroalgae did not affect disease severity or coral fitness. Our results indicate that macroalgae have no effect on the severity and dynamics of Caribbean Yellow Band Disease and that fisheries management alone will not mitigate the effects of this important epizootic. PMID:19223986
NASA Astrophysics Data System (ADS)
Asa'd, Randa S.; Vazdekis, Alexandre; Cerviño, Miguel; Noël, Noelia E. D.; Beasley, Michael A.; Kassab, Mahmoud
2017-11-01
The optical integrated spectra of three Large Magellanic Cloud young stellar clusters (NGC 1984, NGC 1994 and NGC 2011) exhibit concave continua and prominent molecular bands which deviate significantly from the predictions of single stellar population (SSP) models. In order to understand the appearance of these spectra, we create a set of young stellar population (MILES) models, which we make available to the community. We use archival International Ultraviolet Explorer integrated UV spectra to independently constrain the cluster masses and extinction, and rule out strong stochastic effects in the optical spectra. In addition, we also analyse deep colour-magnitude diagrams of the clusters to provide independent age determinations based on isochrone fitting. We explore hypotheses, including age spreads in the clusters, a top-heavy initial mass function, different SSP models and the role of red supergiant stars (RSG). We find that the strong molecular features in the optical spectra can be only reproduced by modelling an increased fraction of about ˜20 per cent by luminosity of RSG above what is predicted by canonical stellar evolution models. Given the uncertainties in stellar evolution at Myr ages, we cannot presently rule out the presence of Myr age spreads in these clusters. Our work combines different wavelengths as well as different approaches (resolved data as well as integrated spectra for the same sample) in order to reveal the complete picture. We show that each approach provides important information but in combination we can better understand the cluster stellar populations.
Tissue and cell tropism of Indian cassava mosaic virus (ICMV) and its AV2 (precoat) gene product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothenstein, Dirk; Krenz, Bjoern; Selchow, Olaf
2007-03-01
In order to establish defined viruses for challenging plants in resistance breeding programmes, Indian cassava mosaic virus (ICMV; family Geminiviridae) DNA clones were modified to monitor viral spread in plants by replacing the coat protein gene with the green fluorescent protein (GFP) reporter gene. Comparative in situ hybridization experiments showed that ICMV was restricted to the phloem in cassava and tobacco. GFP-tagged virus spread similarly, resulting in homogeneous fluorescence within nuclei and cytoplasm of infected cells. To analyze viral intercellular transport in further detail, GFP was fused to AV2, a protein that has been implicated in viral movement. Expressed frommore » replicating viruses or from plasmids, AV2:GFP became associated with the cell periphery in punctate spots, formed cytoplasmic as well as nuclear inclusion bodies, the latter as conspicuous paired globules. Upon particle bombardment of expression plasmids, AV2:GFP was transported into neighboring cells of epidermal tissues showing that the intercellular transport of the AV2 protein is not restricted to the phloem. The results are consistent with a redundant function of ICMV AV2 acting as a movement protein, presumably as an evolutionary relic of a monopartite geminivirus that may still increase virus fitness but is no longer necessary in a bipartite genome. The fusion of ICMV ORF AV2 to the GFP gene is the first example of a reporter construct that follows the whole track of viral DNA from inside the nucleus to the cell periphery and to the next cell.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W R; Mayeda, K; Malagnini, L
2007-02-01
We develop a new methodology to determine apparent attenuation for the regional seismic phases Pn, Pg, Sn, and Lg using coda-derived source spectra. The local-to-regional coda methodology (Mayeda, 1993; Mayeda and Walter, 1996; Mayeda et al., 2003) is a very stable way to obtain source spectra from sparse networks using as few as one station, even if direct waves are clipped. We develop a two-step process to isolate the frequency-dependent Q. First, we correct the observed direct wave amplitudes for an assumed geometrical spreading. Next, an apparent Q, combining path and site attenuation, is determined from the difference between themore » spreading-corrected amplitude and the independently determined source spectra derived from the coda methodology. We apply the technique to 50 earthquakes with magnitudes greater than 4.0 in central Italy as recorded by MEDNET broadband stations around the Mediterranean at local-to-regional distances. This is an ideal test region due to its high attenuation, complex propagation, and availability of many moderate sized earthquakes. We find that a power law attenuation of the form Q(f) = Q{sub 0}f{sup Y} fit all the phases quite well over the 0.5 to 8 Hz band. At most stations, the measured apparent Q values are quite repeatable from event to event. Finding the attenuation function in this manner guarantees a close match between inferred source spectra from direct waves and coda techniques. This is important if coda and direct wave amplitudes are to produce consistent seismic results.« less
Impact of individual behaviour change on the spread of emerging infectious diseases.
Yan, Q L; Tang, S Y; Xiao, Y N
2018-03-15
Human behaviour plays an important role in the spread of emerging infectious diseases, and understanding the influence of behaviour changes on epidemics can be key to improving control efforts. However, how the dynamics of individual behaviour changes affects the development of emerging infectious disease is a key public health issue. To develop different formula for individual behaviour change and introduce how to embed it into a dynamic model of infectious diseases, we choose A/H1N1 and Ebola as typical examples, combined with the epidemic reported cases and media related news reports. Thus, the logistic model with the health belief model is used to determine behaviour decisions through the health belief model constructs. Furthermore, we propose 4 candidate infectious disease models without and with individual behaviour change and use approximate Bayesian computation based on sequential Monte Carlo method for model selection. The main results indicate that the classical compartment model without behaviour change and the model with average rate of behaviour change depicted by an exponential function could fit the observed data best. The results provide a new way on how to choose an infectious disease model to predict the disease prevalence trend or to evaluate the influence of intervention measures on disease control. However, sensitivity analyses indicate that the accumulated number of hospital notifications and deaths could be largely reduced as the rate of behaviour change increases. Therefore, in terms of mitigating emerging infectious diseases, both media publicity focused on how to guide people's behaviour change and positive responses of individuals are critical. Copyright © 2017 John Wiley & Sons, Ltd.
Differential Dynamics of Platelet Contact and Spreading
Lee, Dooyoung; Fong, Karen P.; King, Michael R.; Brass, Lawrence F.; Hammer, Daniel A.
2012-01-01
Platelet spreading is critical for hemostatic plug formation and thrombosis. However, the detailed dynamics of platelet spreading as a function of receptor-ligand adhesive interactions has not been thoroughly investigated. Using reflection interference contrast microscopy, we found that both adhesive interactions and PAR4 activation affect the dynamics of platelet membrane contact formation during spreading. The initial growth of close contact area during spreading was controlled by the combination of different immobilized ligands or PAR4 activation on fibrinogen, whereas the growth of the total area of spreading was independent of adhesion type and PAR4 signaling. We found that filopodia extend to their maximal length and then contract over time; and that filopodial protrusion and expansion were affected by PAR4 signaling. Upon PAR4 activation, the integrin αIIbβ3 mediated close contact to fibrinogen substrata and led to the formation of ringlike patterns in the platelet contact zone. A systematic study of platelet spreading of GPVI-, α2-, or β3-deficient platelets on collagen or fibrinogen suggests the integrin α2 is indispensable for spreading on collagen. The platelet collagen receptors GPVI and α2 regulate integrin αIIbβ3-mediated platelet spreading on fibrinogen. This work elucidates quantitatively how receptor-ligand adhesion and biochemical signals synergistically control platelet spreading. PMID:22325269
Estimates of projection overlap and zones of convergence within frontal-striatal circuits.
Averbeck, Bruno B; Lehman, Julia; Jacobson, Moriah; Haber, Suzanne N
2014-07-16
Frontal-striatal circuits underlie important decision processes, and pathology in these circuits is implicated in many psychiatric disorders. Studies have shown a topographic organization of cortical projections into the striatum. However, work has also shown that there is considerable overlap in the striatal projection zones of nearby cortical regions. To characterize this in detail, we quantified the complete striatal projection zones from 34 cortical injection locations in rhesus monkeys. We first fit a statistical model that showed that the projection zone of a cortical injection site could be predicted with considerable accuracy using a cross-validated model estimated on only the other injection sites. We then examined the fraction of overlap in striatal projection zones as a function of distance between cortical injection sites, and found that there was a highly regular relationship. Specifically, nearby cortical locations had as much as 80% overlap, and the amount of overlap decayed exponentially as a function of distance between the cortical injection sites. Finally, we found that some portions of the striatum received inputs from all the prefrontal regions, making these striatal zones candidates as information-processing hubs. Thus, the striatum is a site of convergence that allows integration of information spread across diverse prefrontal cortical areas. Copyright © 2014 the authors 0270-6474/14/339497-09$15.00/0.
Implications of a wavelength-dependent PSF for weak lensing measurements
NASA Astrophysics Data System (ADS)
Eriksen, Martin; Hoekstra, Henk
2018-07-01
The convolution of galaxy images by the point spread function (PSF) is the dominant source of bias for weak gravitational lensing studies, and an accurate estimate of the PSF is required to obtain unbiased shape measurements. The PSF estimate for a galaxy depends on its spectral energy distribution (SED), because the instrumental PSF is generally a function of the wavelength. In this paper we explore various approaches to determine the resulting `effective' PSF using broad-band data. Considering the Euclid mission as a reference, we find that standard SED template fitting methods result in biases that depend on source redshift, although this may be remedied if the algorithms can be optimized for this purpose. Using a machine learning algorithm we show that, at least in principle, the required accuracy can be achieved with the current survey parameters. It is also possible to account for the correlations between photometric redshift and PSF estimates that arise from the use of the same photometry. We explore the impact of errors in photometric calibration, errors in the assumed wavelength dependence of the PSF model, and limitations of the adopted template libraries. Our results indicate that the required accuracy for Euclid can be achieved using the data that are planned to determine photometric redshifts.
Implications of a wavelength dependent PSF for weak lensing measurements.
NASA Astrophysics Data System (ADS)
Eriksen, Martin; Hoekstra, Henk
2018-05-01
The convolution of galaxy images by the point-spread function (PSF) is the dominant source of bias for weak gravitational lensing studies, and an accurate estimate of the PSF is required to obtain unbiased shape measurements. The PSF estimate for a galaxy depends on its spectral energy distribution (SED), because the instrumental PSF is generally a function of the wavelength. In this paper we explore various approaches to determine the resulting `effective' PSF using broad-band data. Considering the Euclid mission as a reference, we find that standard SED template fitting methods result in biases that depend on source redshift, although this may be remedied if the algorithms can be optimised for this purpose. Using a machine-learning algorithm we show that, at least in principle, the required accuracy can be achieved with the current survey parameters. It is also possible to account for the correlations between photometric redshift and PSF estimates that arise from the use of the same photometry. We explore the impact of errors in photometric calibration, errors in the assumed wavelength dependence of the PSF model and limitations of the adopted template libraries. Our results indicate that the required accuracy for Euclid can be achieved using the data that are planned to determine photometric redshifts.
Label-free biodetection using a smartphone.
Gallegos, Dustin; Long, Kenneth D; Yu, Hojeong; Clark, Peter P; Lin, Yixiao; George, Sherine; Nath, Pabitra; Cunningham, Brian T
2013-06-07
Utilizing its integrated camera as a spectrometer, we demonstrate the use of a smartphone as the detection instrument for a label-free photonic crystal biosensor. A custom-designed cradle holds the smartphone in fixed alignment with optical components, allowing for accurate and repeatable measurements of shifts in the resonant wavelength of the sensor. Externally provided broadband light incident upon an entrance pinhole is subsequently collimated and linearly polarized before passing through the biosensor, which resonantly reflects only a narrow band of wavelengths. A diffraction grating spreads the remaining wavelengths over the camera's pixels to display a high resolution transmission spectrum. The photonic crystal biosensor is fabricated on a plastic substrate and attached to a standard glass microscope slide that can easily be removed and replaced within the optical path. A custom software app was developed to convert the camera images into the photonic crystal transmission spectrum in the visible wavelength range, including curve-fitting analysis that computes the photonic crystal resonant wavelength with 0.009 nm accuracy. We demonstrate the functionality of the system through detection of an immobilized protein monolayer, and selective detection of concentration-dependent antibody binding to a functionalized photonic crystal. We envision the capability for an inexpensive, handheld biosensor instrument with web connectivity to enable point-of-care sensing in environments that have not been practical previously.
Dynamical consequences of compositional and thermal density stratification beneath spreading centers
NASA Technical Reports Server (NTRS)
Sotin, C.; Parmentier, E. M.
1989-01-01
Dynamical consequences of compositional buoyancy and the combined effects of compositional and thermal buoyancy on mantle flow and crustal production are explored. The results show that for a low enough mantle viscosity, buoyant upwelling can significantly enhance the crustal thickness relative to that which would be produced by plate spreading alone, while for a mantle viscosity of 10 to the 22nd Pa s, upwelling due to plate spreading is dominant and crustal thickness is predicted to be a function of spreading rate. The results indicate that thermal and compositional density variations result in opposing buoyancy forces that can cause time-dependent upwelling.
Computer program for calculating and fitting thermodynamic functions
NASA Technical Reports Server (NTRS)
Mcbride, Bonnie J.; Gordon, Sanford
1992-01-01
A computer program is described which (1) calculates thermodynamic functions (heat capacity, enthalpy, entropy, and free energy) for several optional forms of the partition function, (2) fits these functions to empirical equations by means of a least-squares fit, and (3) calculates, as a function of temperture, heats of formation and equilibrium constants. The program provides several methods for calculating ideal gas properties. For monatomic gases, three methods are given which differ in the technique used for truncating the partition function. For diatomic and polyatomic molecules, five methods are given which differ in the corrections to the rigid-rotator harmonic-oscillator approximation. A method for estimating thermodynamic functions for some species is also given.
Association of physical fitness and fatness with cognitive function in women with fibromyalgia.
Soriano-Maldonado, Alberto; Artero, Enrique G; Segura-Jiménez, Víctor; Aparicio, Virgina A; Estévez-López, Fernando; Álvarez-Gallardo, Inmaculada C; Munguía-Izquierdo, Diego; Casimiro-Andújar, Antonio J; Delgado-Fernández, Manuel; Ortega, Francisco B
2016-09-01
This study assessed the association of fitness and fatness with cognitive function in women with fibromyalgia, and the independent influence of their single components on cognitive tasks. A total of 468 women with fibromyalgia were included. Speed of information processing and working memory (Paced Auditory Serial Addition Task), as well as immediate and delayed recall, verbal learning and delayed recognition (Rey Auditory Verbal Learning Test) were assessed. Aerobic fitness, muscle strength, flexibility and motor agility were assessed with the Senior Fitness Test battery. Body mass index, percent body fat, fat-mass index and waist circumference were measured. Aerobic fitness was associated with attention and working memory (all, p < 0.05). All fitness components were generally associated with delayed recall, verbal learning and delayed recognition (all, p < 0.05). Aerobic fitness showed the most powerful association with attention, working memory, delayed recall and verbal learning, while motor agility was the most powerful indicator of delayed recognition. None of the fatness parameters were associated with any of the outcomes (all, p > 0.05). Our results suggest that fitness, but not fatness, is associated with cognitive function in women with fibromyalgia. Aerobic fitness appears to be the most powerful fitness component regarding the cognitive tasks evaluated.
"Simulated molecular evolution" or computer-generated artifacts?
Darius, F; Rojas, R
1994-11-01
1. The authors define a function with value 1 for the positive examples and 0 for the negative ones. They fit a continuous function but do not deal at all with the error margin of the fit, which is almost as large as the function values they compute. 2. The term "quality" for the value of the fitted function gives the impression that some biological significance is associated with values of the fitted function strictly between 0 and 1, but there is no justification for this kind of interpretation and finding the point where the fit achieves its maximum does not make sense. 3. By neglecting the error margin the authors try to optimize the fitted function using differences in the second, third, fourth, and even fifth decimal place which have no statistical significance. 4. Even if such a fit could profit from more data points, the authors should first prove that the region of interest has some kind of smoothness, that is, that a continuous fit makes any sense at all. 5. "Simulated molecular evolution" is a misnomer. We are dealing here with random search. Since the margin of error is so large, the fitted function does not provide statistically significant information about the points in search space where strings with cleavage sites could be found. This implies that the method is a highly unreliable stochastic search in the space of strings, even if the neural network is capable of learning some simple correlations. 6. Classical statistical methods are for these kind of problems with so few data points clearly superior to the neural networks used as a "black box" by the authors, which in the way they are structured provide a model with an error margin as large as the numbers being computed.7. And finally, even if someone would provide us with a function which separates strings with cleavage sites from strings without them perfectly, so-called simulated molecular evolution would not be better than random selection.Since a perfect fit would only produce exactly ones or zeros,starting a search in a region of space where all strings in the neighborhood get the value zero would not provide any kind of directional information for new iterations. We would just skip from one point to the other in a typical random walk manner.
Deep Space Network Scheduling Using Evolutionary Computational Methods
NASA Technical Reports Server (NTRS)
Guillaume, Alexandre; Lee, Seugnwon; Wang, Yeou-Fang; Terrile, Richard J.
2007-01-01
The paper presents the specific approach taken to formulate the problem in terms of gene encoding, fitness function, and genetic operations. The genome is encoded such that a subset of the scheduling constraints is automatically satisfied. Several fitness functions are formulated to emphasize different aspects of the scheduling problem. The optimal solutions of the different fitness functions demonstrate the trade-off of the scheduling problem and provide insight into a conflict resolution process.
NASA Astrophysics Data System (ADS)
Hajigeorgiou, Photos G.
2016-12-01
An analytical model for the diatomic potential energy function that was recently tested as a universal function (Hajigeorgiou, 2010) has been further modified and tested as a suitable model for direct-potential-fit analysis. Applications are presented for the ground electronic states of three diatomic molecules: oxygen, carbon monoxide, and hydrogen fluoride. The adjustable parameters of the extended Lennard-Jones potential model are determined through nonlinear regression by fits to calculated rovibrational energy term values or experimental spectroscopic line positions. The model is shown to lead to reliable, compact and simple representations for the potential energy functions of these systems and could therefore be classified as a suitable and attractive model for direct-potential-fit analysis.
Robust location and spread measures for nonparametric probability density function estimation.
López-Rubio, Ezequiel
2009-10-01
Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.
Thematic Mapper Protoflight Model Line Spread Function
NASA Technical Reports Server (NTRS)
Schueler, C.
1984-01-01
The Thematic Mapper (TM) Protoflight Model Spatial Line Spread Function (LSF) was not measured before launch. Therefore, methodology are developed to characterize LSF with protoflight model optics and electronics measurements that were made before launch. Direct prelaunch LSF measurements that were made from the flight model TM verified the protoflight TM LSF simulation. Results for two selected protoflight TM channels are presented here. It is shown that LSF data for the other ninety-four channels could be generated in the same fashion.
Fitness Landscapes of Functional RNAs.
Kun, Ádám; Szathmáry, Eörs
2015-08-21
The notion of fitness landscapes, a map between genotype and fitness, was proposed more than 80 years ago. For most of this time data was only available for a few alleles, and thus we had only a restricted view of the whole fitness landscape. Recently, advances in genetics and molecular biology allow a more detailed view of them. Here we review experimental and theoretical studies of fitness landscapes of functional RNAs, especially aptamers and ribozymes. We find that RNA structures can be divided into critical structures, connecting structures, neutral structures and forbidden structures. Such characterisation, coupled with theoretical sequence-to-structure predictions, allows us to construct the whole fitness landscape. Fitness landscapes then can be used to study evolution, and in our case the development of the RNA world.
Even, Deborah L; Henley, Allison M; Geraghty, Robert J
2006-08-01
Herpes simplex virus type 1 (HSV-1) spreads from an infected cell to an uninfected cell by virus entry, virus-induced cell fusion, and cell-cell spread. The three forms of virus spread require the viral proteins gB, gD, and gH-gL, as well as a cellular gD receptor. The mutual requirement for the fusion glycoproteins and gD receptor suggests that virus entry, cell fusion, and cell-cell spread occur by a similar mechanism. The goals of this study were to examine the role of the nectin-1alpha transmembrane domain and cytoplasmic tail in cell-cell spread and to obtain a better understanding of the receptor-dependent events occurring at the plasma membrane during cell-cell spread. We determined that an intact nectin-1alpha V-like domain was required for cell-cell spread, while a membrane-spanning domain and cytoplasmic tail were not. Chimeric forms of nectin-1 that were non-functional for virus entry did not mediate cell-cell spread regardless of whether they could mediate cell fusion. Also, cell-cell spread of syncytial isolates was dependent upon nectin-1alpha expression and occurred through a nectin-1-dependent mechanism. Taken together, our results indicate that nectin-1-dependent events occurring at the plasma membrane during cell-cell spread were equivalent to those for virus entry.
Herting, Megan M.; Nagel, Bonnie J.
2013-01-01
Aerobic fitness is associated with better memory performance as well as larger volumes in memory-related brain regions in children, adolescents, and elderly. It is unclear if aerobic exercise also influences learning and memory functional neural circuitry. Here, we examine brain activity in 17 high-fit (HF) and 17 low-fit (LF) adolescents during a subsequent memory encoding paradigm using fMRI. Despite similar memory performance, HF and LF youth displayed a number of differences in memory-related and default mode (DMN) brain regions during encoding later remembered versus forgotten word pairs. Specifically, HF youth displayed robust deactivation in DMN areas, including the ventral medial PFC and posterior cingulate cortex, whereas LF youth did not show this pattern. Furthermore, LF youth showed greater bilateral hippocampal and right superior frontal gyrus activation during encoding of later remembered versus forgotten word pairs. Follow-up task-dependent functional correlational analyses showed differences in hippocampus and DMN activity coupling during successful encoding between the groups, suggesting aerobic fitness during adolescents may impact functional connectivity of the hippocampus and DMN during memory encoding. To our knowledge, this study is the first to examine the influence of aerobic fitness on hippocampal function and memory-related neural circuitry using fMRI. Taken together with previous research, these findings suggest aerobic fitness can influence not only memory-related brain structure, but also brain function. PMID:23249350
Crystalline lens MTF measurement during simulated accommodation
NASA Astrophysics Data System (ADS)
Borja, David; Takeuchi, Gaku; Ziebarth, Noel; Acosta, Ana C.; Manns, Fabrice; Parel, Jean-Marie
2005-04-01
Purpose: To design and test an optical system to measure the optical quality of post mortem lenses during simulated accommodation. Methods: An optical bench top system was designed to measure the point spread function and calculate the modulation transfer function (MTF) of monkey and human ex-vivo crystalline lenses. The system consists of a super luminescent diode emitting at 850nm, collimated into a 3mm beam which is focused by the ex-vivo lens under test. The intensity distribution at the focus (point spread function) is re-imaged and magnified onto a beam profiler CCD camera. The optical quality in terms of spatial frequency response (modulation transfer function) is calculated by Fourier transform of the point spread function. The system was used on ex-vivo lenses with attached zonules, ciliary body and sclera. The sclera was glued to 8 separate PMMA segments and stretched radial by 5mm on an accommodation simulating lens stretching device. The point spread function was measured for each lens in the relaxed and stretched state for 5 human (ages 38-86 years) and 5 cynomolgus monkey (ages 53 - 67 months) fresh post mortem crystalline lenses. Results: Stretching induced measurable changes in the MTF. The cutoff frequency increased from 54.4+/-13.6 lp/mm unstretched to 59.5+/-21.4 lp/mm stretched in the post-presbyopic human and from 51.9+/-24.7 lp/mm unstretched to 57.7+/-18.5 lp/mm stretched cynomolgus monkey lenses. Conclusion: The results demonstrate the feasibility of measuring the optical quality of ex-vivo human and cynomolgus monkey lenses during simulated accommodation. Additional experiments are underway to quantify changes in optical quality induced by stretching.
Weighted Least Squares Fitting Using Ordinary Least Squares Algorithms.
ERIC Educational Resources Information Center
Kiers, Henk A. L.
1997-01-01
A general approach for fitting a model to a data matrix by weighted least squares (WLS) is studied. The approach consists of iteratively performing steps of existing algorithms for ordinary least squares fitting of the same model and is based on maximizing a function that majorizes WLS loss function. (Author/SLD)
Gross, David A.; Snapp, Erik L.; Silver, David L.
2010-01-01
Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2) belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9)AAA) in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9)AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation. PMID:20520733
Zhao, Yanan; Chung, Pak-Kwong; Tong, Tom K
This study examined the effectivenss of a balance-focused training program (i.e., Exercise for Balance Improvement Program, ExBP) in improving functional fitness of older nonfallers at risk of falling. Sixty-one participants were randomly assigned to receive 16 weeks of ExBP or Tai Chi (TC) training, or no treatment (CON) with an 8-week follow-up. The Senior Fitness Test battery was applied to assess functional fitness. After the intervention, results revealed significant improvements in all fitness components in the ExBP group. Compared with the CON group, the ExBP group demonstrated more improvements in lower extremity muscle strength, agility and balance, and aerobic endurance. The ExBP group also displayed more improvements in aerobic endurance than the TC group in posttest and follow-up test. Therefore, the balance-focused exercise can be applied as an effective way in improving overall functional fitness among older nonfallers who are at risk of falling. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gibbons, Ana D.; Whittaker, Joanne M.; Müller, R. Dietmar
2013-03-01
models for the Cretaceous seafloor-spreading history of East Gondwana result in unlikely tectonic scenarios for at least one of the plate boundaries involved and/or violate particular constraints from at least one of the associated ocean basins. We link East Gondwana spreading corridors by integrating magnetic and gravity anomaly data from the Enderby Basin off East Antarctica within a regional plate kinematic framework to identify a conjugate series of east-west-trending magnetic anomalies, M4 to M0 ( 126.7-120.4 Ma). The mid-ocean ridge that separated Greater India from Australia-Antarctica propagated from north to south, starting at 136 Ma northwest of Australia, and reached the southern tip of India at 126 Ma. Seafloor spreading in the Enderby Basin was abandoned at 115 Ma, when a ridge jump transferred the Elan Bank and South Kerguelen Plateau to the Antarctic plate. Our revised plate kinematic model helps resolve the problem of successive two-way strike-slip motion between Madagascar and India seen in many previously published reconstructions and also suggests that seafloor spreading between them progressed from south to north from 94 to 84 Ma. This timing is essential for tectonic flow lines to match the curved fracture zones of the Wharton and Enderby basins, as Greater India gradually began to unzip from Madagascar from 100 Ma. In our model, the 85-East Ridge and Kerguelen Fracture Zone formed as conjugate flanks of a "leaky" transform fault following the 100 Ma spreading reorganization. Our model also identifies the Afanasy Nikitin Seamounts as products of the Conrad Rise hotspot.
Zhang, Yuzhen; Vrancken, Bram; Feng, Yun; Dellicour, Simon; Yang, Qiqi; Yang, Weihong; Zhang, Yunzhi; Dong, Lu; Pybus, Oliver G; Zhang, Hailin; Tian, Huaiyu
2017-06-03
Rabies is an important but underestimated threat to public health, with most cases reported in Asia. Since 2000, a new epidemic wave of rabies has emerged in Yunnan Province, southwestern China, which borders three countries in Southeast Asia. We estimated gene-specific evolutionary rates for rabies virus using available data in GenBank, then used this information to calibrate the timescale of rabies virus (RABV) spread in Asia. We used 452 publicly available geo-referenced complete nucleoprotein (N) gene sequences, including 52 RABV sequences that were recently generated from samples collected in Yunnan between 2008 and 2012. The RABV N gene evolutionary rate was estimated to be 1.88 × 10 -4 (1.37-2.41 × 10 -4 , 95% Bayesian credible interval, BCI) substitutions per site per year. Phylogenetic reconstructions show that the currently circulating RABV lineages in Yunnan result from at least seven independent introductions (95% BCI: 6-9 introductions) and represent each of the three main Asian RABV lineages, SEA-1, -2 and -3. We find that Yunnan is a sink location for the domestic spread of RABV and connects RABV epidemics in North China, South China, and Southeast Asia. Cross-border spread from southeast Asia (SEA) into South China, and intermixing of the North and South China epidemics is also well supported. The influx of RABV into Yunnan from SEA was not well-supported, likely due to the poor sampling of SEA RABV diversity. We found evidence for a lineage displacement of the Yunnan SEA-2 and -3 lineages by Yunnan SEA-1 strains, and considered whether this could be attributed to fitness differences. Overall, our study contributes to a better understanding of the spread of RABV that could facilitate future rabies virus control and prevention efforts.
NASA Technical Reports Server (NTRS)
Lo, C. C.; Leskovar, B.
1976-01-01
Characteristics were measured for the Amperex 56 TVP 42 mm-diameter photomultiplier. Some typical photomultiplier characteristics-such as gain, dark current, transit and rise times-are compared with data provided. Photomultiplier characteristics generally not available such as the single photoelectron time spread, the relative collection efficiency, the relative anode pulse amplitude as a function of the voltage between the photocathode and focusing electrode, and the position of the photocathode sensing area were measured and are discussed for two 56 TVP's. The single photoelectron time spread, the relative collection efficiency, and the transit time difference as a function of the voltage between photocathode and focusing electrode were also measured and are discussed, particularly with respect to the optimization of photomultiplier operating conditions for timing applications.
Brown, A M
2001-06-01
The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.
NASA Astrophysics Data System (ADS)
Ninkov, Zoran
Stellar images taken with telescopes and detectors in space are usually undersampled, and to correct for this, an accurate pixel response function is required. The standard approach for HST and KEPLER has been to measure the telescope PSF combined ("convolved") with the actual pixel response function, super-sampled by taking into account dithered or offset observed images of many stars (Lauer [1999]). This combined response function has been called the "PRF" (Bryson et al. [2011]). However, using such results has not allowed astrometry from KEPLER to reach its full potential (Monet et al. [2010], [2014]). Given the precision of KEPLER photometry, it should be feasible to use a pre-determined detector pixel response function (PRF) and an optical point spread function (PSF) as separable quantities to more accurately correct photometry and astrometry for undersampling. Wavelength (i.e. stellar color) and instrumental temperature should be affecting each of these differently. Discussion of the PRF in the "KEPLER Instrument Handbook" is limited to an ad-hoc extension of earlier measurements on a quite different CCD. It is known that the KEPLER PSF typically has a sharp spike in the middle, and the main bulk of the PSF is still small enough to be undersampled, so that any substructure in the pixel may interact significantly with the optical PSF. Both the PSF and PRF are probably asymmetric. We propose to measure the PRF for an example of the CCD sensors used on KEPLER at sufficient sampling resolution to allow significant improvement of KEPLER photometry and astrometry, in particular allowing PSF fitting techniques to be used on the data archive.
Detecting Near-Earth Objects Using Cross-Correlation with a Point Spread Function
2009-03-01
greater than .001 seconds [Goodman, 2000]. Cross-Correlation Cross-Correlation measures the strength and direction of the linear relationship between...real(ifft2(fftshift(otf_long)))); %normalize point spread funtion 55 if (Corner == 1) psf_source = makeshift(psf*source_img(ccd_x/2,ccd_y/2
Venus' Chasmata and Earth's Spreading Centers: A Topographic Comparison
NASA Astrophysics Data System (ADS)
Stoddard, P. R.; Jurdy, D. M.
2008-12-01
Like the Earth, Venus has a global rift system, which has been cited as evidence of tectonic activity, despite the apparent lack of Earth-style plate tectonics. Both systems are marked by large ridges, usually with central grabens. On Earth, the topography of the rifts can be modeled well by a cooling half-space and the spreading of two divergent plates. The origin of the topographic signature on Venus, however, remains enigmatic. Venus' rift zones (termed "chasmata") can be fit by four great circle arcs extending 1000s of kilometers. The Venus chasmata system measures 54,464 km, which when corrected for the smaller size of the planet, nearly matches the 59,200-km total length of the spreading ridges determined for Earth. As on Earth, the chasmata with the greatest relief (7 km in just a 30-km run for Venus) represent the most recent tectonic activity. We use topographic profiles to look for well-understood terrestrial analogs to Venusian features. Focusing on mid-ocean ridge systems on Earth, we examine the variation along individual ridges, or rises, due to the gradual change in spreading rate (and thus cooling times). We then analyze the difference between fast and slow ridges, and propose that this technique may also be used to pick plate boundaries along spreading centers (SAM/AFR vs. NAM/AFR, e.g.). These profiles are then compared to those for Venus' rifts. Topographic profiles are based on the Magellan (Venus) and ETOPO5 (Earth) data sets. Long wavelength features appear similar to spreading systems on Earth, suggesting a deep, thermal cause. Short wavelength features, such as rift troughs and constructional edifices, are quite different, however, as expected from the vastly different surface conditions. Comparison of topographic profiles from Venus and Earth may lend insight into tectonic features and activity on our sister planet.
Genetic hitchhiking can promote the initial spread of strong altruism
2008-01-01
Background The evolutionary origin of strong altruism (where the altruist pays an absolute cost in terms of fitness) towards non-kin has never been satisfactorily explained since no mechanism (except genetic drift) seems to be able to overcome the fitness disadvantage of the individual who practiced altruism in the first place. Results Here we consider a multilocus, single-generation random group model and demonstrate that with low, but realistic levels of recombination and social heterosis (selecting for allelic diversity within groups) altruism can evolve without invoking kin selection, because sampling effects in the formation of temporary groups and selection for complementary haplotypes generate nonrandom associations between alleles at polymorphic loci. Conclusion By letting altruism get off the ground, selection on other genes favourably interferes with the eventual fate of the altruistic trait due to genetic hitchhiking. PMID:18847475
Peng, Mei; Jaeger, Sara R; Hautus, Michael J
2014-03-01
Psychometric functions are predominately used for estimating detection thresholds in vision and audition. However, the requirement of large data quantities for fitting psychometric functions (>30 replications) reduces their suitability in olfactory studies because olfactory response data are often limited (<4 replications) due to the susceptibility of human olfactory receptors to fatigue and adaptation. This article introduces a new method for fitting individual-judge psychometric functions to olfactory data obtained using the current standard protocol-American Society for Testing and Materials (ASTM) E679. The slope parameter of the individual-judge psychometric function is fixed to be the same as that of the group function; the same-shaped symmetrical sigmoid function is fitted only using the intercept. This study evaluated the proposed method by comparing it with 2 available methods. Comparison to conventional psychometric functions (fitted slope and intercept) indicated that the assumption of a fixed slope did not compromise precision of the threshold estimates. No systematic difference was obtained between the proposed method and the ASTM method in terms of group threshold estimates or threshold distributions, but there were changes in the rank, by threshold, of judges in the group. Overall, the fixed-slope psychometric function is recommended for obtaining relatively reliable individual threshold estimates when the quantity of data is limited.
Kori, Soichiro; Namiki, Hideo; Suzuki, Kingo
2009-09-01
Green tea polyphenols have been reported to have anti-inflammatory activities, although the molecular mechanisms responsible for this effect remain unclear. In the present study, we examined the effect of green tea extract and a variety of polyphenolic compounds on spreading of peripheral blood polymorphonuclear leukocytes (PMNs) over fibrinogen-coated surfaces. Green tea extract exerted a biphasic effect on PMN spreading; it induced or suppressed spreading at low and high concentrations, respectively. We also found that pyrogallol-bearing compounds have spreading induction activity. Among the compounds tested, tannic acid (TA) had the strongest activity; the concentrations required for induction of maximal spreading were 2 microM for TA, 200 microM for (-)-epigallocatechin gallate, and 2000 microM for the other active compounds. Furthermore, TA was the only compound showing a biphasic effect similar to that of green tea extract; TA at 20 or 200 microM suppressed spreading. The spreading-stimulatory signal was still latent during PMN exposure to TA at concentrations that inhibited spreading, because the pre-exposed PMNs underwent spreading when plated after removal of free TA by centrifugation. The spreading-inhibitory effect of TA at high concentrations overcame the induction of spreading by other stimuli, including phorbol 12-myristate 13-acetate, hydrogen peroxide, denatured fibrinogen surfaces, and naked plastic surfaces. These results suggest that TA as well as green tea extract is bi-functional, having pro-inflammatory and anti-inflammatory effects at low and high concentrations, respectively. Pharmacological use of TA may thus provide new strategies aimed at regulation of PMN spreading for control of inflammation.
The Benefits of High Intensity Functional Training (HIFT) Fitness Programs for Military Personnel
Haddock, Christopher K.; Poston, Walker S.C.; Heinrich, Katie M.; Jahnke, Sara A.; Jitnarin, Nattinee
2016-01-01
High intensity functional training (HIFT) programs are designed to address multiple fitness domains, potentially providing improved physical and mental readiness in a changing operational environment. Programs consistent with HIFT principals such as CrossFit, SEALFIT and the US Marine Corps’ High Intensity Tactical Training (HITT) program are increasingly popular among military personnel. This article reviews the practical, health, body composition, and military fitness implications of HIFT exercise programs. We conclude that, given the unique benefits of HIFT, the military should consider evaluating whether these programs should be the standard for military fitness training. PMID:27849484
Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.
Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej
2018-05-17
Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.
Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter.
Cejnar, M; Kobler, H; Hunyor, S N
1993-03-01
Finger blood volume is commonly determined from measurement of infra-red (IR) light transmittance using the Lambert-Beer law of light absorption derived for use in non-scattering media, even when such transmission involves light scatter around the phalangeal bone. Simultaneous IR transmittance and finger volume were measured over the full dynamic range of vascular volumes in seven subjects and outcomes compared with data fitted according to the Lambert-Beer exponential function and an inverse function derived for light attenuation by scattering materials. Curves were fitted by the least-squares method and goodness of fit was compared using standard errors of estimate (SEE). The inverse function gave a better data fit in six of the subjects: mean SEE 1.9 (SD 0.7, range 0.7-2.8) and 4.6 (2.2, 2.0-8.0) respectively (p < 0.02, paired t-test). Thus, when relating IR transmittance to blood volume, as occurs in the finger during measurements of arterial compliance, an inverse function derived from a model of light attenuation by scattering media gives more accurate results than the traditional exponential fit.
Johnson, Nathan F; Gold, Brian T; Bailey, Alison L; Clasey, Jody L; Hakun, Jonathan G; White, Matthew; Long, Doug E; Powell, David K
2016-05-01
A growing body of evidence indicates that cardiorespiratory fitness attenuates some age-related cerebral declines. However, little is known about the role that myocardial function plays in this relationship. Brain regions with high resting metabolic rates, such as the default mode network (DMN), may be especially vulnerable to age-related declines in myocardial functions affecting cerebral blood flow (CBF). This study explored the relationship between a measure of myocardial mechanics, global longitudinal strain (GLS), and CBF to the DMN. In addition, we explored how cardiorespiratory affects this relationship. Participants were 30 older adults between the ages of 59 and 69 (mean age=63.73years, SD=2.8). Results indicated that superior cardiorespiratory fitness and myocardial mechanics were positively associated with DMN CBF. Moreover, results of a mediation analysis revealed that the relationship between GLS and DMN CBF was accounted for by individual differences in fitness. Findings suggest that benefits of healthy heart function to brain function are modified by fitness. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vogelsang, R.; Hoheisel, C.
1987-02-01
Molecular-dynamics (MD) calculations are reported for three thermodynamic states of a Lennard-Jones fluid. Systems of 2048 particles and 105 integration steps were used. The transverse current autocorrelation function, Ct(k,t), has been determined for wave vectors of the range 0.5<||k||σ<1.5. Ct(k,t) was fitted by hydrodynamic-type functions. The fits returned k-dependent decay times and shear viscosities which showed a systematic behavior as a function of k. Extrapolation to the hydrodynamic region at k=0 gave shear viscosity coefficients in good agreement with direct Green-Kubo results obtained in previous work. The two-exponential model fit for the memory function proposed by other authors does not provide a reasonable description of the MD results, as the fit parameters show no systematic wave-vector dependence, although the Ct(k,t) functions are somewhat better fitted. Similarly, the semiempirical interpolation formula for the decay time based on the viscoelastic concept proposed by Akcasu and Daniels fails to reproduce the correct k dependence for the wavelength range investigated herein.
Snejdrlova, Michaela; Kalvach, Zdenek; Topinkova, Eva; Vrablik, Michal; Prochazkova, Renata; Kvasilova, Marie; Lanska, Vera; Zlatohlavek, Lukas; Prusikova, Martina; Ceska, Richard
2011-01-01
Life expectancy is determined by a combination of genetic predisposition (~25%) and environmental influences (~75%). Nevertheless a stronger genetic influence is anticipated in long-living individuals. Apolipoprotein E (APOE) gene belongs among the most studied candidate genes of longevity. We evaluated the relation of APOE polymorphism and fitness status in the elderly. We examined a total number of 128 subjects, over 80 years of age. Using a battery of functional tests their fitness status was assessed and the subjects were stratified into 5 functional categories according to Spirduso´s classification. Biochemistry analysis was performed by enzymatic method using automated analyzers. APOE gene polymorphism was analysed performed using PCR-RFLP. APOE4 allele carriers had significantly worse fitness status compared to non-carriers (p=0.025). Multiple logistic regression analysis showed the APOE4 carriers had higher risk (p=0.05) of functional unfitness compared to APOE2/E3 individuals. APOE gene polymorphism seems be an important genetic contributor to frailty development in the elderly. While APOE2 carriers tend to remain functionally fit till higher age, the functional status of APOE4 carriers deteriorates more rapidly. © 2011 Neuroendocrinology Letters
Rowe, A; Hernandez, P; Kuhle, S; Kirkland, S
2017-10-01
Decreased lung function has health impacts beyond diagnosable lung disease. It is therefore important to understand the factors that may influence even small changes in lung function including obesity, physical fitness and physical activity. The aim of this study was to determine the anthropometric measure most useful in examining the association with lung function and to determine how physical activity and physical fitness influence this association. The current study used cross-sectional data on 4662 adults aged 40-79 years from the Canadian Health Measures Survey Cycles 1 and 2. Linear regression models were used to examine the association between the anthropometric and lung function measures (forced expiratory volume in 1 s [FEV 1 ] and forced vital capacity [FVC]); R 2 values were compared among models. Physical fitness and physical activity terms were added to the models and potential confounding was assessed. Models using sum of 5 skinfolds and waist circumference consistently had the highest R 2 values for FEV 1 and FVC, while models using body mass index consistently had among the lowest R 2 values for FEV 1 and FVC and for men and women. Physical activity and physical fitness were confounders of the relationships between waist circumference and the lung function measures. Waist circumference remained a significant predictor of FVC but not FEV 1 after adjustment for physical activity or physical fitness. Waist circumference is an important predictor of lung function. Physical activity and physical fitness should be considered as potential confounders of the relationship between anthropometric measures and lung function. Copyright © 2017. Published by Elsevier Ltd.
Fitness of artemisinin-resistant Plasmodium falciparum in vitro.
Hott, Amanda; Tucker, Matthew S; Casandra, Debora; Sparks, Kansas; Kyle, Dennis E
2015-10-01
Drug resistance confers a fitness advantage to parasites exposed to frequent drug pressure, yet these mutations also may incur a fitness cost. We assessed fitness advantages and costs of artemisinin resistance in Plasmodium falciparum in vitro to understand how drug resistance will spread and evolve in a competitive environment. Genotyping of SNPs, drug susceptibility assays and copy number determination were used to assess the impact of artemisinin resistance on parasite fitness. An artemisinin-resistant clone (C9) selected in vitro from an isogenic parental clone (D6) was used to conduct competitive growth studies to assess fitness of artemisinin resistance. The resistant and susceptible clones were mixed or grown alone in the presence and absence of drug pressure (dihydroartemisinin or pyrimethamine) to quantify the rate at which artemisinin resistance was gained or lost. We experimentally demonstrate for the first time that artemisinin resistance provides a fitness advantage that is selected for with infrequent exposure to drug, but is lost in the absence of exposure to artemisinin drugs. The best correlations with artemisinin resistance were decreased in vitro drug susceptibility to artemisinin derivatives, increased copy number of Pf3D7_1030100 and an SNP in Pf3D7_0307600. An SNP conferring an E208K mutation in the kelch gene (Pf3D7_1343700) was not associated with resistance. Furthermore, we observed second-cycle ring-stage dormancy induced by pyrimethamine, suggesting that dormancy is a fitness trait that provides an advantage for survival from antimalarial drug stress. Artemisinin-resistant P. falciparum have a fitness advantage to survive and predominate in the population even in the face of infrequent exposure to artemisinin drugs. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
de Greeff, J. W.; Hartman, E.; Mullender-Wijnsma, M. J.; Bosker, R. J.; Doolaard, S.; Visscher, C.
2016-01-01
Integrating physical activity into the curriculum has potential health and cognitive benefits in primary school children. The aim of this study was to investigate the effects of physically active academic lessons on cardiovascular fitness, muscular fitness and executive functions. In the current randomized controlled trial, 499 second and third…
Lateral Spread of Orientation Selectivity in V1 is Controlled by Intracortical Cooperativity
Chavane, Frédéric; Sharon, Dahlia; Jancke, Dirk; Marre, Olivier; Frégnac, Yves; Grinvald, Amiram
2011-01-01
Neurons in the primary visual cortex receive subliminal information originating from the periphery of their receptive fields (RF) through a variety of cortical connections. In the cat primary visual cortex, long-range horizontal axons have been reported to preferentially bind to distant columns of similar orientation preferences, whereas feedback connections from higher visual areas provide a more diverse functional input. To understand the role of these lateral interactions, it is crucial to characterize their effective functional connectivity and tuning properties. However, the overall functional impact of cortical lateral connections, whatever their anatomical origin, is unknown since it has never been directly characterized. Using direct measurements of postsynaptic integration in cat areas 17 and 18, we performed multi-scale assessments of the functional impact of visually driven lateral networks. Voltage-sensitive dye imaging showed that local oriented stimuli evoke an orientation-selective activity that remains confined to the cortical feedforward imprint of the stimulus. Beyond a distance of one hypercolumn, the lateral spread of cortical activity gradually lost its orientation preference approximated as an exponential with a space constant of about 1 mm. Intracellular recordings showed that this loss of orientation selectivity arises from the diversity of converging synaptic input patterns originating from outside the classical RF. In contrast, when the stimulus size was increased, we observed orientation-selective spread of activation beyond the feedforward imprint. We conclude that stimulus-induced cooperativity enhances the long-range orientation-selective spread. PMID:21629708
Integrated Information Increases with Fitness in the Evolution of Animats
Edlund, Jeffrey A.; Chaumont, Nicolas; Hintze, Arend; Koch, Christof; Tononi, Giulio; Adami, Christoph
2011-01-01
One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent (“animat”) evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its “fit” to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data. PMID:22028639
Fitting a function to time-dependent ensemble averaged data.
Fogelmark, Karl; Lomholt, Michael A; Irbäck, Anders; Ambjörnsson, Tobias
2018-05-03
Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.
Mathematical models of human mobility of relevance to malaria transmission in Africa.
Marshall, John M; Wu, Sean L; Sanchez C, Hector M; Kiware, Samson S; Ndhlovu, Micky; Ouédraogo, André Lin; Touré, Mahamoudou B; Sturrock, Hugh J; Ghani, Azra C; Ferguson, Neil M
2018-05-16
As Africa-wide malaria prevalence declines, an understanding of human movement patterns is essential to inform how best to target interventions. We fitted movement models to trip data from surveys conducted at 3-5 sites throughout each of Mali, Burkina Faso, Zambia and Tanzania. Two models were compared in terms of their ability to predict the observed movement patterns - a gravity model, in which movement rates between pairs of locations increase with population size and decrease with distance, and a radiation model, in which travelers are cumulatively "absorbed" as they move outwards from their origin of travel. The gravity model provided a better fit to the data overall and for travel to large populations, while the radiation model provided a better fit for nearby populations. One strength of the data set was that trips could be categorized according to traveler group - namely, women traveling with children in all survey countries and youth workers in Mali. For gravity models fitted to data specific to these groups, youth workers were found to have a higher travel frequency to large population centers, and women traveling with children a lower frequency. These models may help predict the spatial transmission of malaria parasites and inform strategies to control their spread.
Obesity, Cardiovascular Fitness, and Inhibition Function: An Electrophysiological Study
Song, Tai-Fen; Chi, Lin; Chu, Chien-Heng; Chen, Feng-Tzu; Zhou, Chenglin; Chang, Yu-Kai
2016-01-01
The purpose of the present study was to examine how obesity and cardiovascular fitness are associated with the inhibition aspect of executive function from behavioral and electrophysiological perspectives. One hundred college students, aged 18–25 years, were categorized into four groups of equal size on the basis of body mass index and cardiovascular fitness: a normal-weight and high-fitness (NH) group, an obese-weight and high-fitness (OH) group, a normal-weight and low-fitness (NL) group, and an obese-weight and low-fitness (OL) group. Behavioral measures of response time and number of errors, as well as event-related potential measures of P3 and N1, were assessed during the Stroop Task. The results revealed that, in general, the NH group exhibited shorter response times and larger P3 amplitudes relative to the NL and OL groups, wherein the OL group exhibited the longest response time in the incongruent condition. No group differences in N1 indices were also revealed. These findings suggest that the status of being both normal weight and having high cardiovascular fitness is associated with better behavioral and later stages of electrophysiological indices of cognitive function. PMID:27512383
GPU-Accelerated Hybrid Algorithm for 3D Localization of Fluorescent Emitters in Dense Clusters
NASA Astrophysics Data System (ADS)
Jung, Yoon; Barsic, Anthony; Piestun, Rafael; Fakhri, Nikta
In stochastic switching-based super-resolution imaging, a random subset of fluorescent emitters are imaged and localized for each frame to construct a single high resolution image. However, the condition of non-overlapping point spread functions (PSFs) imposes constraints on experimental parameters. Recent development in post processing methods such as dictionary-based sparse support recovery using compressive sensing has shown up to an order of magnitude higher recall rate than single emitter fitting methods. However, the computational complexity of this approach scales poorly with the grid size and requires long runtime. Here, we introduce a fast and accurate compressive sensing algorithm for localizing fluorescent emitters in high density in 3D, namely sparse support recovery using Orthogonal Matching Pursuit (OMP) and L1-Homotopy algorithm for reconstructing STORM images (SOLAR STORM). SOLAR STORM combines OMP with L1-Homotopy to reduce computational complexity, which is further accelerated by parallel implementation using GPUs. This method can be used in a variety of experimental conditions for both in vitro and live cell fluorescence imaging.
Deep learning for studies of galaxy morphology
NASA Astrophysics Data System (ADS)
Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.
2017-06-01
Establishing accurate morphological measurements of galaxies in a reasonable amount of time for future big-data surveys such as EUCLID, the Large Synoptic Survey Telescope or the Wide Field Infrared Survey Telescope is a challenge. Because of its high level of abstraction with little human intervention, deep learning appears to be a promising approach. Deep learning is a rapidly growing discipline that models high-level patterns in data as complex multilayered networks. In this work we test the ability of deep convolutional networks to provide parametric properties of Hubble Space Telescope like galaxies (half-light radii, Sérsic indices, total flux etc..). We simulate a set of galaxies including point spread function and realistic noise from the CANDELS survey and try to recover the main galaxy parameters using deep-learning. We compare the results with the ones obtained with the commonly used profile fitting based software GALFIT. This way showing that with our method we obtain results at least equally good as the ones obtained with GALFIT but, once trained, with a factor 5 hundred time faster.
Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza
León Morcillo, Rafael Jorge; Ocampo, Juan A.; García Garrido, José M.
2012-01-01
The establishment of an Arbuscular Mycorrhizal symbiotic interaction (MA) is a successful strategy to substantially promote plant growth, development and fitness. Numerous studies have supported the hypothesis that plant hormones play an important role in the recognition and establishment of symbiosis. Particular attention has been devoted to jasmonic acid (JA) and its derivates, the jasmonates, which are believed to play a major role in AM symbiosis. Jasmonates belong to a diverse class of lipid metabolites known as oxylipins that include other biologically active molecules. Recent transcriptional analyses revealed upregulation of the oxylipin pathway during AM symbiosis in mycorrhizal tomato roots and point a key regulatory feature for oxylipins during AM symbiosis in tomato, particularly these derived from the action of 9-lipoxygenases (9-LOX). In this mini-review we highlight recent progress understanding the function of oxylipins in the establishment of the AM symbiosis and hypothesize that the activation of the 9-LOX pathway might be part of the activation of host defense responses which will then contribute to both, the control of AM fungal spread and the increased resistance to fungal pathogens in mycorrhizal plants. PMID:23073021
NASA Astrophysics Data System (ADS)
Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh M.; Meir, Rinat; Zalevsky, Zeev
2017-02-01
Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold nanoparticles tagged sample using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is then further enhanced also for tracking of single fluorescent particles within a three dimensional (3D) cellular environment based on image processing algorithms that can significantly increases localization accuracy of the 3D point spread function in respect to regular Gaussian fitting. All proposed concepts are validated both on simulated data as well as experimentally.
Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method
NASA Astrophysics Data System (ADS)
Nakajima, Reiko; Bernstein, Gary
2007-04-01
We implement the elliptical Gauss-Laguerre (EGL) galaxy-shape measurement method proposed by Bernstein & Jarvis and quantify the shear recovery accuracy in weak-lensing analysis. This method uses a deconvolution fitting scheme to remove the effects of the point-spread function (PSF). The test simulates >107 noisy galaxy images convolved with anisotropic PSFs and attempts to recover an input shear. The tests are designed to be immune to statistical (random) distributions of shapes, selection biases, and crowding, in order to test more rigorously the effects of detection significance (signal-to-noise ratio [S/N]), PSF, and galaxy resolution. The systematic error in shear recovery is divided into two classes, calibration (multiplicative) and additive, with the latter arising from PSF anisotropy. At S/N > 50, the deconvolution method measures the galaxy shape and input shear to ~1% multiplicative accuracy and suppresses >99% of the PSF anisotropy. These systematic errors increase to ~4% for the worst conditions, with poorly resolved galaxies at S/N simeq 20. The EGL weak-lensing analysis has the best demonstrated accuracy to date, sufficient for the next generation of weak-lensing surveys.
NASA Astrophysics Data System (ADS)
Lee, Hye-In; Pak, Soojong; Lee, Jae-Joon; Mace, Gregory N.; Jaffe, Daniel Thomas
2017-06-01
We developed an observation control software for the IGRINS (Immersion Grating Infrared Spectrograph) silt-viewing camera module, which points the astronomical target onto the spectroscopy slit and sends tracking feedbacks to the telescope control system (TCS). The point spread function (PSF) image is not following symmetric Gaussian profile. In addition, bright targets are easily saturated and shown as a donut shape. It is not trivial to define and find the center of the asymmetric PSF especially when most of the stellar PSF falls inside the slit. We made a center balancing algorithm (CBA) which derives the expected center position along the slit-width axis by referencing the stray flux ratios of both upper and lower sides of the slit. We compared accuracies of the CBA and those of a two-dimensional Gaussian fitting (2DGA) through simulations in order to evaluate the center finding algorithms. These methods were then verified with observational data. In this poster, we present the results of our tests and suggest a new algorithm for centering targets in the slit image of a spectrograph.
Cardiovascular fitness and executive control during task-switching: an ERP study.
Scisco, Jenna L; Leynes, P Andrew; Kang, Jie
2008-07-01
Cardiovascular fitness recently has been linked to executive control function in older adults. The present study examined the relationship between cardiovascular fitness and executive control in young adults using event-related potentials (ERPs). Participants completed a two-part experiment. In part one, a graded exercise test (GXT) was administered using a cycle ergometer to obtain VO(2)max, a measure of maximal oxygen uptake. High-fit participants had VO(2)max measures at or above the 70th percentile based on age and sex, and low-fit participants had VO(2)max measures at or below the 30th percentile. In part two, a task-switching paradigm was used to investigate executive control. Task-switching trials produced slower response times and greater amplitude for both the P3a and P3b components of the ERP relative to a non-switch trial block. No ERP components varied as a function of fitness group. These findings, combined with results from previous research, suggest that the relationship between greater cardiovascular fitness and better cognitive function emerges after early adulthood.
Wong, Chelsea N.; Chaddock-Heyman, Laura; Voss, Michelle W.; Burzynska, Agnieszka Z.; Basak, Chandramallika; Erickson, Kirk I.; Prakash, Ruchika S.; Szabo-Reed, Amanda N.; Phillips, Siobhan M.; Wojcicki, Thomas; Mailey, Emily L.; McAuley, Edward; Kramer, Arthur F.
2015-01-01
Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59–80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function. PMID:26321949
Biological growth functions describe published site index curves for Lake States timber species.
Allen L. Lundgren; William A. Dolid
1970-01-01
Two biological growth functions, an exponential-monomolecular function and a simple monomolecular function, have been fit to published site index curves for 11 Lake States tree species: red, jack, and white pine, balsam fir, white and black spruce, tamarack, white-cedar, aspen, red oak, and paper birch. Both functions closely fit all published curves except those for...
Simplified curve fits for the thermodynamic properties of equilibrium air
NASA Technical Reports Server (NTRS)
Srinivasan, S.; Tannehill, J. C.; Weilmuenster, K. J.
1987-01-01
New, improved curve fits for the thermodynamic properties of equilibrium air have been developed. The curve fits are for pressure, speed of sound, temperature, entropy, enthalpy, density, and internal energy. These curve fits can be readily incorporated into new or existing computational fluid dynamics codes if real gas effects are desired. The curve fits are constructed from Grabau-type transition functions to model the thermodynamic surfaces in a piecewise manner. The accuracies and continuity of these curve fits are substantially improved over those of previous curve fits. These improvements are due to the incorporation of a small number of additional terms in the approximating polynomials and careful choices of the transition functions. The ranges of validity of the new curve fits are temperatures up to 25 000 K and densities from 10 to the -7 to 10 to the 3d power amagats.
Hyper-Fit: Fitting Linear Models to Multidimensional Data with Multivariate Gaussian Uncertainties
NASA Astrophysics Data System (ADS)
Robotham, A. S. G.; Obreschkow, D.
2015-09-01
Astronomical data is often uncertain with errors that are heteroscedastic (different for each data point) and covariant between different dimensions. Assuming that a set of D-dimensional data points can be described by a (D - 1)-dimensional plane with intrinsic scatter, we derive the general likelihood function to be maximised to recover the best fitting model. Alongside the mathematical description, we also release the hyper-fit package for the R statistical language (http://github.com/asgr/hyper.fit) and a user-friendly web interface for online fitting (http://hyperfit.icrar.org). The hyper-fit package offers access to a large number of fitting routines, includes visualisation tools, and is fully documented in an extensive user manual. Most of the hyper-fit functionality is accessible via the web interface. In this paper, we include applications to toy examples and to real astronomical data from the literature: the mass-size, Tully-Fisher, Fundamental Plane, and mass-spin-morphology relations. In most cases, the hyper-fit solutions are in good agreement with published values, but uncover more information regarding the fitted model.
On the estimation of spread rate for a biological population
Jim Clark; Lajos Horváth; Mark Lewis
2001-01-01
We propose a nonparametric estimator for the rate of spread of an introduced population. We prove that the limit distribution of the estimator is normal or stable, depending on the behavior of the moment generating function. We show that resampling methods can also be used to approximate the distribution of the estimators.
Dynamic data driven bidirectional reflectance distribution function measurement system
NASA Astrophysics Data System (ADS)
Nauyoks, Stephen E.; Freda, Sam; Marciniak, Michael A.
2014-09-01
The bidirectional reflectance distribution function (BRDF) is a fitted distribution function that defines the scatter of light off of a surface. The BRDF is dependent on the directions of both the incident and scattered light. Because of the vastness of the measurement space of all possible incident and reflected directions, the calculation of BRDF is usually performed using a minimal amount of measured data. This may lead to poor fits and uncertainty in certain regions of incidence or reflection. A dynamic data driven application system (DDDAS) is a concept that uses an algorithm on collected data to influence the collection space of future data acquisition. The authors propose a DDD-BRDF algorithm that fits BRDF data as it is being acquired and uses on-the-fly fittings of various BRDF models to adjust the potential measurement space. In doing so, it is hoped to find the best model to fit a surface and the best global fit of the BRDF with a minimum amount of collection space.
Diffusion in Colocation Contact Networks: The Impact of Nodal Spatiotemporal Dynamics.
Thomas, Bryce; Jurdak, Raja; Zhao, Kun; Atkinson, Ian
2016-01-01
Temporal contact networks are studied to understand dynamic spreading phenomena such as communicable diseases or information dissemination. To establish how spatiotemporal dynamics of nodes impact spreading potential in colocation contact networks, we propose "inducement-shuffling" null models which break one or more correlations between times, locations and nodes. By reconfiguring the time and/or location of each node's presence in the network, these models induce alternative sets of colocation events giving rise to contact networks with varying spreading potential. This enables second-order causal reasoning about how correlations in nodes' spatiotemporal preferences not only lead to a given contact network but ultimately influence the network's spreading potential. We find the correlation between nodes and times to be the greatest impediment to spreading, while the correlation between times and locations slightly catalyzes spreading. Under each of the presented null models we measure both the number of contacts and infection prevalence as a function of time, with the surprising finding that the two have no direct causality.
Astrometry and orbits of Nix, Kerberos, AND Hydra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buie, Marc W.; Grundy, William M.; Tholen, David J., E-mail: buie@boulder.swri.edu, E-mail: grundy@lowell.edu, E-mail: tholen@ifa.hawaii.edu
We present new Hubble Space Telescope observations of three of Pluto's outer moons, Nix, Kerberos, and Hydra. This work revises previously published astrometry of Nix and Hydra from 2002 to 2003. New data from a four-month span during 2007 include observations designed to better measure the positions of Nix and Hydra. A third data set from 2010 also includes data on Nix and Hydra as well as some pre-discovery observations of Kerberos. The data were fitted using numerical point-spread function (PSF) fitting techniques to get accurate positions but also to remove the extended wings of the Pluto and Charon PSFsmore » when working on these faint satellites. The resulting astrometric data were fitted with two-body Keplerian orbits that are useful for short-term predictions of the future positions of these satellites for stellar occultation and for guiding encounter planning for the upcoming New Horizons flyby of the Pluto system. The mutual inclinations of the satellites are all within 0.°2 of the plane of Charon's orbit. The periods for all continue to show that their orbits are near but distinct from integer period ratios relative to Charon. Based on our results, the period ratios are Hydra:Charon = 5.98094 ± 0.00001, Kerberos:Charon = 5.0392 ± 0.0003, and Nix:Charon = 3.89135 ± 0.00001. Based on period ratios alone, there is a trend of increased distance from an integer period ratio with decreasing distance from Charon. Our analysis shows that orbital uncertainties for Nix and Hydra are now low enough to permit useful stellar occultation predictions and for New Horizons encounter planning. In 2015 July, our orbits predict a position error of 60 km for Nix and 38 km for Hydra, well below other limiting errors that affect targeting. The orbit for Kerberos, however, still needs a lot of work as its uncertainty in 2015 is quite large at 22,000 km based on these data.« less
Fitting of hearing aids with different technical parameters to a patient with dead regions
NASA Astrophysics Data System (ADS)
Hojan-Jezierska, Dorota; Skrodzka, Ewa
2009-01-01
The purpose of the study was to determine an optimal hearing aid fitting procedure for a patient with well diagnosed high-frequency ‘dead regions’ in both cochleas. The patient reported non-symmetrical hearing problems of sensorineural origin. For binaural amplification two similar independent hearing aids were used as well as a pair of dependent devices with an ear-to-ear function. Two fitting methods were used: DSLi/o and NAL-NL1, and four different strategies of fitting were tested: the initial fitting based on the DSLi/o or NAL-NL1 method with necessary loudness corrections, the second fitting taking into account all the available functions of hearing instruments, the third fitting (based on the second one) but with significantly reduced amplification well above one octave of frequency inside dead region, and the final fitting with significantly reduced gain slightly below one octave inside dead regions. The results of hearing aids fitting were assessed using an APHAB procedure.
Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals.
Gamsjäger, Ernst; Wiessner, Manfred
2018-01-01
Thermodynamic data of various crystalline solids are assessed from low temperature heat capacity measurements, i.e., from almost absolute zero to 300 K by means of semi-empirical models. Previous studies frequently present fit functions with a large amount of coefficients resulting in almost perfect agreement with experimental data. It is, however, pointed out in this work that special care is required to avoid overfitting. Apart from anomalies like phase transformations, it is likely that data from calorimetric measurements can be fitted by a relatively simple Debye-Einstein integral with sufficient precision. Thereby, reliable values for the heat capacities, standard enthalpies, and standard entropies at T = 298.15 K are obtained. Standard thermodynamic functions of various compounds strongly differing in the number of atoms in the formula unit can be derived from this fitting procedure and are compared to the results of previous fitting procedures. The residuals are of course larger when the Debye-Einstein integral is applied instead of using a high number of fit coefficients or connected splines, but the semi-empiric fit coefficients keep their meaning with respect to physics. It is suggested to use the Debye-Einstein integral fit as a standard method to describe heat capacities in the range between 0 and 300 K so that the derived thermodynamic functions are obtained on the same theory-related semi-empiric basis. Additional fitting is recommended when a precise description for data at ultra-low temperatures (0-20 K) is requested.
Artificial testing targets with controllable blur for adaptive optics microscopes
NASA Astrophysics Data System (ADS)
Hattori, Masayuki; Tamada, Yosuke; Murata, Takashi; Oya, Shin; Hasebe, Mitsuyasu; Hayano, Yutaka; Kamei, Yasuhiro
2017-08-01
This letter proposes a method of configuring a testing target to evaluate the performance of adaptive optics microscopes. In this method, a testing slide with fluorescent beads is used to simultaneously determine the point spread function and the field of view. The point spread function is reproduced to simulate actual biological samples by etching a microstructure on the cover glass. The fabrication process is simplified to facilitate an onsite preparation. The artificial tissue consists of solid materials and silicone oil and is stable for use in repetitive experiments.
NASA Astrophysics Data System (ADS)
Duarte, B.; Baeta, A.; Rousseau-Gueutin, M.; Ainouche, M.; Marques, J. C.; Caçador, I.
2015-12-01
Salt marshes are facing a new threat: the invasion by non-indigenous species (NIS), Although its introduction time is not established yet, in 1999 Spartina versicolor was already identified as a NIS in the Mediterranean marshes, significantly spreading its area of colonization. Using the Mediterranean native Spartina maritima as a reference, the present research studied the ecophysiological fitness of this NIS in its new environment, as a tool to understand its potential invasiveness. It was found that Spartina versicolor had a stable photobiological pattern, with only minor fluctuations during an annual cycle, and lower efficiencies comparated to S. maritima. The NIS seems to be rather insensitive to the observed abiotic factors fluctuations (salinity and pH of the sediment), and thus contrasts with the native S. maritima, known to be salinity dependent with higher productivity values in higher salinity environments. Most of the differences observed between the photobiology of these species could be explained by their nitrogen nutrition (here evaluated by the δ15N stable isotope) and directly related with the Mediterranean climate. Enhanced by a higher N availability during winter, the primary production of S. maritima which lead to dilution of the foliar δ15N concentration in the newly formed biomass, similarly to what is observed along a rainfall gradient. On the other hand, S. versicolor showed an increased δ15N in its tissues along the annual rainfall gradient, probably due to a δ15N concentration effect during low biomass production periods (winter and autumn). Together with the photobiological traits, these isotopic data point out to a climatic misfit of S. versicolor to the Mediterranean climate compared to the native S. maritima. This appears to be the major constrain shaping the ecophysiological fitness of this NIS, its primary production and consequently, its spreading rate along the Mediterranean marshes.
NASA Astrophysics Data System (ADS)
Gaina, Carmen; Watson, Robin; Cirbus, Juraj
2015-04-01
Cretaceous extension that resulted in the formation of several sedimentary basins along the North American and western and southwestern Greenland margin was followed by seafloor spreading in the Labrador Sea and Baffin Bay. Controversy regarding the timing of the oldest oceanic crust in these basins spanned more than 25 years and it is still not resolved due to the complexity of the margins and non-uniqueness of potential field data interpretation. Here we revisit the geophysical data (in particular the magnetic and gravity data) available for the Labrador Sea and Baffin Bay in order to identify the age of oceanic crust and infer new parameters that can be used for quantitative kinematic reconstructions. We identify chrons 20 to 29 for the central part of the basin. For the crust formed near the extinct spreading ridge we have modelled chrons 19 to 15 assuming an ultraslow spreading rate. Oceanic crust older than chron 29 is uncertain and may be part of a transitional crust that possibly contains other type of crust or exhumed mantle. The new magnetic anomaly identifications were inverted using the Hellinger (1981) criterion of fit. In this method the magnetic data are regarded as points on two conjugate isochrons consisting of great circle segments. This method has been extensively used for kinematic reconstructions since Royer and Chang (1991) first implemented it for quantitative plate tectonics, and is now available as a new interactive tool in the open-source software GPlates (www.gplates.org). The GPlates Hellinger tool lets the user interactively generate a best-fit rotation pole to a series of segmented magnetic picks. The fitting and determination of uncertainties are based on the FORTRAN program hellinger1 (Chang, 1988; Hellinger, 1981; Hanna and Chang, 1990); Royer and Chang, 1991). Input data can be viewed and adjusted both tabularly and graphically, and the best fit can be viewed and tested on the GPlates globe. The new set of rotations and their uncertainties are combined with a regional model and used to infer the plate boundaries during the formation of Labrador Sea and Baffin Bay. Challenges for establishing the continuation of these plate boundaries the Arctic domain are also discussed. References Chang, T. (1988), Estimating the relative rotation of two tectonic plates from boundary crossings, J. Am. Stat. Assoc., 83, 1178-1183. Hellinger, S. J. (1981), The uncertainties of finite rotations in plate tectonics, J Geophys Res, 86, 9312-9318. Hanna, M.S and T. Chang (1990), On graphically representing the confidence region for an unknown rotation in three dimensions. Computers & Geosciences 16 (2), 163-194. Royer, J. Y., and T. Chang (1991), Evidence for Relative Motions between the Indian and Australian Plates during the Last 20 My from Plate Tectonic Reconstructions - Implications for the Deformation of the Indo-Australian Plate, J Geophys Res, 96(B7), 11779-11802.
NASA Technical Reports Server (NTRS)
Tschunko, H. F. A.
1983-01-01
Reference is made to a study by Tschunko (1979) in which it was discussed how apodization modifies the modulation transfer function for various central obstruction ratios. It is shown here how apodization, together with the central obstruction ratio, modifies the point spread function, which is the basic element for the comparison of imaging performance and for the derivation of energy integrals and other functions. At high apodization levels and lower central obstruction (less than 0.1), new extended radial zones are formed in the outer part of the central ring groups. These transmutation of the image functions are of more than theoretical interest, especially if the irradiance levels in the outer ring zones are to be compared to the background irradiance levels. Attention is then given to the energy distribution in point images generated by annular apertures apodized by various transmission functions. The total energy functions are derived; partial energy integrals are determined; and background irradiance functions are discussed.
NASA Astrophysics Data System (ADS)
Zhao, Ke; Ji, Yaoyao; Pan, Boan; Li, Ting
2018-02-01
The continuous-wave Near-infrared spectroscopy (NIRS) devices have been highlighted for its clinical and health care applications in noninvasive hemodynamic measurements. The baseline shift of the deviation measurement attracts lots of attentions for its clinical importance. Nonetheless current published methods have low reliability or high variability. In this study, we found a perfect polynomial fitting function for baseline removal, using NIRS. Unlike previous studies on baseline correction for near-infrared spectroscopy evaluation of non-hemodynamic particles, we focused on baseline fitting and corresponding correction method for NIRS and found that the polynomial fitting function at 4th order is greater than the function at 2nd order reported in previous research. Through experimental tests of hemodynamic parameters of the solid phantom, we compared the fitting effect between the 4th order polynomial and the 2nd order polynomial, by recording and analyzing the R values and the SSE (the sum of squares due to error) values. The R values of the 4th order polynomial function fitting are all higher than 0.99, which are significantly higher than the corresponding ones of 2nd order, while the SSE values of the 4th order are significantly smaller than the corresponding ones of the 2nd order. By using the high-reliable and low-variable 4th order polynomial fitting function, we are able to remove the baseline online to obtain more accurate NIRS measurements.
Hyodo, Kazuki; Dan, Ippeita; Kyutoku, Yasushi; Suwabe, Kazuya; Byun, Kyeongho; Ochi, Genta; Kato, Morimasa; Soya, Hideaki
2016-01-15
Previous studies have shown that higher aerobic fitness is related to higher cognitive function and higher task-related prefrontal activation in older adults. However, a holistic picture of these factors has yet to be presented. As a typical age-related change of brain activation, less lateralized activity in the prefrontal cortex during cognitive tasks has been observed in various neuroimaging studies. Thus, this study aimed to reveal the relationship between aerobic fitness, cognitive function, and frontal lateralization. Sixty male older adults each performed a submaximal incremental exercise test to determine their oxygen intake (V·O2) at ventilatory threshold (VT) in order to index their aerobic fitness. They performed a color-word Stroop task while prefrontal activation was monitored using functional near infrared spectroscopy. As an index of cognitive function, Stroop interference time was analyzed. Partial correlation analyses revealed significant correlations among higher VT, shorter Stroop interference time and greater left-lateralized dorsolateral prefrontal cortex (DLPFC) activation when adjusting for education. Moreover, mediation analyses showed that left-lateralized DLPFC activation significantly mediated the association between VT and Stroop interference time. These results suggest that higher aerobic fitness is associated with cognitive function via lateralized frontal activation in older adults. Copyright © 2015 Elsevier Inc. All rights reserved.
Alcalá-Quintana, Rocío; García-Pérez, Miguel A
2013-12-01
Research on temporal-order perception uses temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks in their binary SJ2 or ternary SJ3 variants. In all cases, two stimuli are presented with some temporal delay, and observers judge the order of presentation. Arbitrary psychometric functions are typically fitted to obtain performance measures such as sensitivity or the point of subjective simultaneity, but the parameters of these functions are uninterpretable. We describe routines in MATLAB and R that fit model-based functions whose parameters are interpretable in terms of the processes underlying temporal-order and simultaneity judgments and responses. These functions arise from an independent-channels model assuming arrival latencies with exponential distributions and a trichotomous decision space. Different routines fit data separately for SJ2, SJ3, and TOJ tasks, jointly for any two tasks, or also jointly for the three tasks (for common cases in which two or even the three tasks were used with the same stimuli and participants). Additional routines provide bootstrap p-values and confidence intervals for estimated parameters. A further routine is included that obtains performance measures from the fitted functions. An R package for Windows and source code of the MATLAB and R routines are available as Supplementary Files.
Understanding EROS2 observations toward the spiral arms within a classical Galactic model framework
NASA Astrophysics Data System (ADS)
Moniez, M.; Sajadian, S.; Karami, M.; Rahvar, S.; Ansari, R.
2017-08-01
Aims: EROS (Expérience de Recherche d'Objets Sombres) has searched for microlensing toward four directions in the Galactic plane away from the Galactic center. The interpretation of the catalog optical depth is complicated by the spread of the source distance distribution. We compare the EROS microlensing observations with Galactic models (including the Besançon model), tuned to fit the EROS source catalogs, and take into account all observational data such as the microlensing optical depth, the Einstein crossing durations, and the color and magnitude distributions of the catalogued stars. Methods: We simulated EROS-like source catalogs using the HIgh-Precision PARallax COllecting Satellite (Hipparcos) database, the Galactic mass distribution, and an interstellar extinction table. Taking into account the EROS star detection efficiency, we were able to produce simulated color-magnitude diagrams that fit the observed diagrams. This allows us to estimate average microlensing optical depths and event durations that are directly comparable with the measured values. Results: Both the Besançon model and our Galactic model allow us to fully understand the EROS color-magnitude data. The average optical depths and mean event durations calculated from these models are in reasonable agreement with the observations. Varying the Galactic structure parameters through simulation, we were also able to deduce contraints on the kinematics of the disk, the disk stellar mass function (at a few kpc distance from the Sun), and the maximum contribution of a thick disk of compact objects in the Galactic plane (Mthick< 5 - 7 × 1010M⊙ at 95%, depending on the model). We also show that the microlensing data toward one of our monitored directions are significantly sensitive to the Galactic bar parameters, although much larger statistics are needed to provide competitive constraints. Conclusions: Our simulation gives a better understanding of the lens and source spatial distributions in the microlensing events. The goodness of a global fit taking into account all the observables (from the color-magnitude diagrams and microlensing observations) shows the validity of the Galactic models. Our tests with the parameters excursions show the unique sensitivity of the microlensing data to the kinematical parameters and stellar initial mass function. http://www.lal.in2p3.fr/recherche/eros
Adaptive optics system performance approximations for atmospheric turbulence correction
NASA Astrophysics Data System (ADS)
Tyson, Robert K.
1990-10-01
Analysis of adaptive optics system behavior often can be reduced to a few approximations and scaling laws. For atmospheric turbulence correction, the deformable mirror (DM) fitting error is most often used to determine a priori the interactuator spacing and the total number of correction zones required. This paper examines the mirror fitting error in terms of its most commonly used exponential form. The explicit constant in the error term is dependent on deformable mirror influence function shape and actuator geometry. The method of least squares fitting of discrete influence functions to the turbulent wavefront is compared to the linear spatial filtering approximation of system performance. It is found that the spatial filtering method overstimates the correctability of the adaptive optics system by a small amount. By evaluating fitting error for a number of DM configurations, actuator geometries, and influence functions, fitting error constants verify some earlier investigations.
Edwards, Meghan K; Loprinzi, Paul D
2017-02-15
Sedentary behavior, cardiorespiratory fitness, cognition and age are interrelated and associated with cardiovascular function. No study, however, has specifically evaluated the independent and combined associations of cardiorespiratory fitness and sedentary behavior on cognition, which was this study's purpose. Data from the 1999-2002 NHANES were used (N=2451; 60-85yrs). Sedentary behavior was assessed via self-report; cardiorespiratory fitness was assessed from a medical-related algorithm; and cognition function was assessed from the Digit Symbol Substitution Test (DSST). Being in the bottom quartile for sedentary behavior (β=2.13; 95% CI: 0.49-3.77; P=0.01) and the top quartile for cardiorespiratory fitness (β=7.48; 95% CI: 5.4-9.5; P<0.001) were independently associated with higher cognitive function. In the additive model, those with an index score of 1 (vs. 0) and 2 (vs. 0), respectively, had a 3.87 (β=3.87; 95% CI: 1.76-5.98; P=0.001) and 10.40 (β=10.4; 95% CI: 7.31-13.5; P<0.001) higher DSST score. High cardiorespiratory fitness and low sedentary behavior were jointly associated with the highest cognitive function. This has important cardiovascular implications as a progression of neurocognitive impairment is associated with increasingly severe manifestations of cardiovascular disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Visual attention spreads broadly but selects information locally.
Shioiri, Satoshi; Honjyo, Hajime; Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro
2016-10-19
Visual attention spreads over a range around the focus as the spotlight metaphor describes. Spatial spread of attentional enhancement and local selection/inhibition are crucial factors determining the profile of the spatial attention. Enhancement and ignorance/suppression are opposite effects of attention, and appeared to be mutually exclusive. Yet, no unified view of the factors has been provided despite their necessity for understanding the functions of spatial attention. This report provides electroencephalographic and behavioral evidence for the attentional spread at an early stage and selection/inhibition at a later stage of visual processing. Steady state visual evoked potential showed broad spatial tuning whereas the P3 component of the event related potential showed local selection or inhibition of the adjacent areas. Based on these results, we propose a two-stage model of spatial attention with broad spread at an early stage and local selection at a later stage.
Numerical simulations of fire spread in a Pinus pinaster needles fuel bed
NASA Astrophysics Data System (ADS)
Menage, D.; Chetehouna, K.; Mell, W.
2012-11-01
The main aim of this paper is to extend the cases of WFDS model validation by comparing its predictions to literature data on a ground fire spreading in a Pinus pinaster needles fuel bed. This comparison is based on the experimental results of Mendes-Lopes and co-workers. This study is performed using the same domain as in the experiments (3.0m×1.2m×0.9m) with a mesh of 49,280 cells. We investigate the influence of wind (varied between 0 and 2 m/s) and moisture content (10 and 18%) on the rate of spread. The WFDS rate of spread is determined using a cross-correlation function of ground temperature profiles. The simulated rate of spread, as well as temperature, compared favourably to experimental values and show the WFDS model capacity to predict ground fires in Pinus Pinaster fuel beds.
Creating buzz: the neural correlates of effective message propagation.
Falk, Emily B; Morelli, Sylvia A; Welborn, B Locke; Dambacher, Karl; Lieberman, Matthew D
2013-07-01
Social interaction promotes the spread of values, attitudes, and behaviors. Here, we report on neural responses to ideas that are destined to spread. We scanned message communicators using functional MRI during their initial exposure to the to-be-communicated ideas. These message communicators then had the opportunity to spread the messages and their corresponding subjective evaluations to message recipients outside the scanner. Successful ideas were associated with neural responses in the communicators' mentalizing systems and reward systems when they first heard the messages, prior to spreading them. Similarly, individuals more able to spread their own views to others produced greater mentalizing-system activity during initial encoding. Unlike prior social-influence studies that focused on the individuals being influenced, this investigation focused on the brains of influencers. Successful social influence is reliably associated with an influencer-to-be's state of mind when first encoding ideas.
Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Mamalui, M.; Yeung, D.
2014-01-15
Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systemsmore » and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm{sup 2}; the modulation width can be varied in steps of 0.3 g/cm{sup 2} or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm{sup 2}, larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence on range (up to 4%/mm). A linear increase in dose/MU as a function of instantaneous MU rate is observed. The dose/MU model describes the measurements with an accuracy of ±2%. Neutron dose is found to be 146 ± 102 μSv/Gy at the contralateral eye and 19 ± 13 μSv/Gy at the chest. Conclusions: Measurements show the proton eyeline meets the requirements to effectively treat ocular disease.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slopsema, R. L., E-mail: rslopsema@floridaproton.org; Mamalui, M.; Yeung, D.
Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systemsmore » and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm{sup 2}; the modulation width can be varied in steps of 0.3 g/cm{sup 2} or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm{sup 2}, larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence on range (up to 4%/mm). A linear increase in dose/MU as a function of instantaneous MU rate is observed. The dose/MU model describes the measurements with an accuracy of ±2%. Neutron dose is found to be 146 ± 102 μSv/Gy at the contralateral eye and 19 ± 13 μSv/Gy at the chest. Conclusions: Measurements show the proton eyeline meets the requirements to effectively treat ocular disease.« less
A lattice model for influenza spreading.
Liccardo, Antonella; Fierro, Annalisa
2013-01-01
We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the dynamic contact network of individuals. An age distributed population is placed on the lattice and moves on it. The displacement from a site to a nearest neighbor empty site, allows individuals to change the number and identities of their contacts. The dynamics on the lattice is governed by an attractive interaction between individuals belonging to the same age-class. The parameters, which regulate the pattern dynamics, are fixed fitting the data on the age-dependent daily contact numbers, furnished by the Polymod survey. A simple SIR transmission model with a nearest neighbors interaction and some very basic adaptive mobility restrictions complete the model. The model is validated against the age-distributed Italian epidemiological data for the influenza A(H1N1) during the [Formula: see text] season, with sensible predictions for the epidemiological parameters. For an appropriate topology of the lattice, we find that, whenever the accordance between the contact patterns of the model and the Polymod data is satisfactory, there is a good agreement between the numerical and the experimental epidemiological data. This result shows how rich is the information encoded in the average contact patterns of individuals, with respect to the analysis of the epidemic spreading of an infectious disease.
The Effects of Vaccination and Immunity on Bacterial Infection Dynamics In Vivo
Coward, Chris; Restif, Olivier; Dybowski, Richard; Grant, Andrew J.; Maskell, Duncan J.; Mastroeni, Pietro
2014-01-01
Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body. PMID:25233077
Risk-based management of invading plant disease.
Hyatt-Twynam, Samuel R; Parnell, Stephen; Stutt, Richard O J H; Gottwald, Tim R; Gilligan, Christopher A; Cunniffe, Nik J
2017-05-01
Effective control of plant disease remains a key challenge. Eradication attempts often involve removal of host plants within a certain radius of detection, targeting asymptomatic infection. Here we develop and test potentially more effective, epidemiologically motivated, control strategies, using a mathematical model previously fitted to the spread of citrus canker in Florida. We test risk-based control, which preferentially removes hosts expected to cause a high number of infections in the remaining host population. Removals then depend on past patterns of pathogen spread and host removal, which might be nontransparent to affected stakeholders. This motivates a variable radius strategy, which approximates risk-based control via removal radii that vary by location, but which are fixed in advance of any epidemic. Risk-based control outperforms variable radius control, which in turn outperforms constant radius removal. This result is robust to changes in disease spread parameters and initial patterns of susceptible host plants. However, efficiency degrades if epidemiological parameters are incorrectly characterised. Risk-based control including additional epidemiology can be used to improve disease management, but it requires good prior knowledge for optimal performance. This focuses attention on gaining maximal information from past epidemics, on understanding model transferability between locations and on adaptive management strategies that change over time. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Lew, Matthew D.; Lee, Steven F.; Badieirostami, Majid; Moerner, W. E.
2011-01-01
We describe the corkscrew point spread function (PSF), which can localize objects in three dimensions throughout a 3.2 µm depth of field with nanometer precision. The corkscrew PSF rotates as a function of the axial (z) position of an emitter. Fisher information calculations show that the corkscrew PSF can achieve nanometer localization precision with limited numbers of photons. We demonstrate three-dimensional super-resolution microscopy with the corkscrew PSF by imaging beads on the surface of a triangular polydimethylsiloxane (PDMS) grating. With 99,000 photons detected, the corkscrew PSF achieves a localization precision of 2.7 nm in x, 2.1 nm in y, and 5.7 nm in z. PMID:21263500
Lew, Matthew D; Lee, Steven F; Badieirostami, Majid; Moerner, W E
2011-01-15
We describe the corkscrew point spread function (PSF), which can localize objects in three dimensions throughout a 3.2 μm depth of field with nanometer precision. The corkscrew PSF rotates as a function of the axial (z) position of an emitter. Fisher information calculations show that the corkscrew PSF can achieve nanometer localization precision with limited numbers of photons. We demonstrate three-dimensional super-resolution microscopy with the corkscrew PSF by imaging beads on the surface of a triangular polydimethylsiloxane (PDMS) grating. With 99,000 photons detected, the corkscrew PSF achieves a localization precision of 2.7 nm in x, 2.1 nm in y, and 5.7 nm in z.
SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, A; Ahmad, M; Chen, Z
2014-06-01
Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilitiesmore » of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions. Conclusion: LOOP can cooperate with any fitting routine functioning as a “robust fit”. In addition, it can be set as a benchmark for film-dose calibration fitting performance.« less
Geisinger, Edward
2017-01-01
Abstract Diseases caused by antibiotic-resistant bacteria in hospitals are the outcome of complex relationships between several dynamic factors, including bacterial pathogenicity, the fitness costs of resistance in the human host, and selective forces resulting from interventions such as antibiotic therapy. The emergence and fate of mutations that drive antibiotic resistance are governed by these interactions. In this review, we will examine how different forms of antibiotic resistance modulate bacterial fitness and virulence potential, thus influencing the ability of pathogens to evolve in the context of nosocomial infections. We will focus on 3 important multidrug-resistant pathogens that are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. An understanding of how antibiotic resistance mutations shape the pathobiology of multidrug-resistant infections has the potential to drive novel strategies that can control the development and spread of drug resistance. PMID:28375515
Ruminant self-medication against gastrointestinal nematodes: evidence, mechanism, and origins.
Villalba, Juan J; Miller, James; Ungar, Eugene D; Landau, Serge Y; Glendinning, John
2014-01-01
Gastrointestinal helminths challenge ruminants in ways that reduce their fitness. In turn, ruminants have evolved physiological and behavioral adaptations that counteract this challenge. Ruminants display anorexia and avoidance behaviors, which tend to reduce the incidence of parasitism. In addition, ruminants appear to learn to self-medicate against gastrointestinal parasites by increasing consumption of plant secondary compounds with antiparasitic actions. This selective feeding improves health and fitness. Here, we review the evidence for self-medication in ruminants, propose a hypothesis to explain self-medicative behaviors (based on post-ingestive consequences), and discuss mechanisms (e.g., enhanced neophilia, social transmission) that may underlie the ontogeny and spread of self-medicative behaviors in social groups. A better understanding of the mechanisms that underlie and trigger self-medication in parasitized animals will help scientists devise innovative and more sustainable management strategies for improving ruminant health and well-being. © J.J. Villalba et al., published by EDP Sciences, 2014.
The p-wave upper mantle structure beneath an active spreading centre - The Gulf of California
NASA Technical Reports Server (NTRS)
Walck, M. C.
1984-01-01
Over 1400 seismograms of earthquakes in Mexico are analyzed and data sets for the travel time, apparent phase velocity, and relative amplitude information are utilized to produce a tightly constrained, detailed model for depths to 900 km beneath an active oceanic ridge region, the Gulf of California. The data are combined by first inverting the travel times, perturbing that model to fit the p-delta data, and then performing trial and error synthetic seismogram modelling to fit the short-period waveforms. The final model satisfies all three data sets. The ridge model is similar to existing upper mantle models for shield, tectonic-continental, and arc-trench regimes below 400 km, but differs significantly in the upper 350 km. Ridge model velocities are very low in this depth range; the model 'catches up' with the others with a very large velocity gradient from 225 to 390 km.
Ruminant self-medication against gastrointestinal nematodes: evidence, mechanism, and origins☆
Villalba, Juan J.; Miller, James; Ungar, Eugene D.; Landau, Serge Y.; Glendinning, John
2014-01-01
Gastrointestinal helminths challenge ruminants in ways that reduce their fitness. In turn, ruminants have evolved physiological and behavioral adaptations that counteract this challenge. Ruminants display anorexia and avoidance behaviors, which tend to reduce the incidence of parasitism. In addition, ruminants appear to learn to self-medicate against gastrointestinal parasites by increasing consumption of plant secondary compounds with antiparasitic actions. This selective feeding improves health and fitness. Here, we review the evidence for self-medication in ruminants, propose a hypothesis to explain self-medicative behaviors (based on post-ingestive consequences), and discuss mechanisms (e.g., enhanced neophilia, social transmission) that may underlie the ontogeny and spread of self-medicative behaviors in social groups. A better understanding of the mechanisms that underlie and trigger self-medication in parasitized animals will help scientists devise innovative and more sustainable management strategies for improving ruminant health and well-being. PMID:24971486
Boore, David M.
2012-01-01
Stress parameters (Δσ) are determined for nine relatively well-recorded earthquakes in eastern North America for ten attenuation models. This is an update of a previous study by Boore et al. (2010). New to this paper are observations from the 2010 Val des Bois earthquake, additional observations for the 1988 Saguenay and 2005 Riviere du Loup earthquakes, and consideration of six attenuation models in addition to the four used in the previous study. As in that study, it is clear that Δσ depends strongly on the rate of geometrical spreading (as well as other model parameters). The observations necessary to determine conclusively which attenuation model best fits the data are still lacking. At this time, a simple 1/R model seems to give as good an overall fit to the data as more complex models.
Study of NiFe2O4 nanoparticles using Mössbauer spectroscopy with a high velocity resolution
NASA Astrophysics Data System (ADS)
Oshtrakh, M. I.; Ushakov, M. V.; Senthilkumar, B.; Selvan, R. Kalai; Sanjeeviraja, C.; Felner, I.; Semionkin, V. A.
2013-04-01
The nanocrystalline NiFe2O4 particles prepared by solution combustion synthesis technique using different fuels such as ethylene-diamine-tetra-acetic acid (NA sample) and urea (NB sample) were studied using magnetic measurement and 57Fe Mössbauer spectroscopy with a high velocity resolution. The temperature dependence of magnetization is different for the two samples. Mössbauer spectra demonstrate the necessity to use more than two magnetic sextets, usually used to fit the NiFe2O4 nanoparticles spectra. Evaluation of the different local microenvironments for Fe in both tetrahedral (A) and octahedral (B) sites, caused by different Ni2 + occupation of octahedral sites, demonstrates at least five different local microenvironments for both A and B sites. Therefore, the Mössbauer spectra were fitted by using ten magnetic sextets which are related to the spread 57Fe location in octahedral and tetrahedral sites.
Neves, Lucas M; Fortaleza, Ana C; Rossi, Fabrício E; Diniz, Tiego A; Codogno, Jamile S; Gobbo, Luis A; Gobbi, Sebastião; Freitas, Ismael F
2017-04-01
This randomized clinical trial with concealed allocations, and blinding of the assessors and the data analyst, was aimed at determining the effects of 16 weeks of functional training on the body composition, functional fitness and lipid profiles in postmenopausal women. The study began with 64 subjects (N.=32 functional training and N.=32 control group) and ended with 50 subjects (N.=28 functional training and N.=22 control group). The exercise was conducted in circuit training format with 8 stations related to the development of muscular strength (using elastic bands for resistance) plus 3 stations focused on balance, coordination, and agility. The training session also incorporated an 18 to 30 minute walk. The control group did not participate in the exercise programs during the period of study. The participants were evaluated before and after the training period as regards their body composition (fat and lean mass), functional fitness, abdominal strength and blood chemistry variables. Significant reductions were observed in all body composition variables related to fat (FM= -3.4 and Android FM= -7.7%) (P<0.05). The functional fitness components had significant improvements in coordination (-33.3%), strength (66.5%), agility (-19.5%) and aerobic capacity (-7%), and significant improvement in abdominal strength (188.2%). We observed significant improvements in total cholesterol (-4.4%) and HDL (-9.9%). The observed data lead us to conclude that functional training utilizing with elastic bands and unstable bases causes significantly improved in body composition, functional fitness and lipid profiles.
The role of roadsides in plant invasions: a demographic approach.
Christen, Douglas; Matlack, Glenn
2006-04-01
Non-native plant species are common along roadsides, but presence does not necessarily indicate spread along the road axis. Roadsides may serve merely as habitat for a species spreading independently of roads. The potential conduit function of roads depends on the habitat specificity of the spreading species, its dispersal range relative to the spacing of roads in the landscape, and the relative importance of long- and short-range dispersal. We describe a demographic model of the road x species interaction and suggest methods of assessing conduit function in the field based on the model results. A species limited to roadside habitat will be constrained to spread along the road axis unless its long-range dispersal is sufficient to carry it across the intervening unfavorable area to another road. It will propagate along a road corridor at a rate determined by the scale of short-range dispersal. Effective management of an invasion requires distinguishing between the habitat and conduit functions, a distinction difficult to make with only snapshot data. Invasions can be reconstructed by several methods, but none is totally satisfactory. We suggest comparing stem distributions on transects parallel and perpendicular to the road axis, and beside the road, and away from it, with an idealized Gaussian curve. Such comparisons would allow discrimination between pattern determined by habitat suitability and pattern reflecting random and facilitated dispersal.
Analysis of flame spread over multicomponent combustibles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohtani, H.; Sato, J.
1985-01-01
A theoretical model of volatile component diffusion in the condensed phase is carried out in order to form a basis for predicting the flame spread rate in thermally thick multicomponent combustibles in a non-fluid condensed phase. The fuels could be, e.g., crude oil, heavy oil, or light oil. Mass transfer occurs only by diffusion so the gas phase volatile concentration at the surface is estimated from the condensed phase volatile concentration and the surface temperature, which increases close to the leading flame edge. The flame spread rate is assumed steady. The velocity of the flame spread is shown to bemore » a function of the initial condensed phase temperature and the temperature at the leading flame edge.« less
Prediction of ISO 9705 Room/Corner Test Results. Volume 1
1999-11-01
spread rates depend on the flame length , so that it is not a unique function of the material being burned. The flame spread model developed by Mowrer and...height is expressed as: = kf (5) xp -X16 16I The parameter, kf is a correlating factor used to define the flame length . Cleary and Quintiere (1991
The spread of invasive species and infectious disease as drivers of ecosystem change.
Todd A. Crowl; Thomas O. Crist; Robert R. Parmenter; Gary Belovsky; Ariel E. Lugo
2008-01-01
Invasive species, disease vectors, and pathogens affect biodiversity, ecosystem function and services, and human health. Climate change, land use, and transport vectors interact in complex ways to determine the spread of native and non-native invasive species, pathogens, and their effects on ecosystem dynamics. Early detection and in-depth understanding of invasive...
The Resolved Stellar Populations Early Release Science Program
NASA Astrophysics Data System (ADS)
Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.
2017-11-01
We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.
Zenni, Rafael D; Hoban, Sean M
2015-07-01
Identifying the genes underlying rapid evolutionary changes, describing their function and ascertaining the environmental pressures that determine fitness are the central elements needed for understanding of evolutionary processes and phenotypic changes that improve the fitness of populations. It has been hypothesized that rapid adaptive changes in new environments may contribute to the rapid spread and success of invasive plants and animals. As yet, studies of adaptation during invasion are scarce, as is knowledge of the genes underlying adaptation, especially in multiple replicated invasions. Here, we quantified how genotype frequencies change during invasions, resulting in rapid evolution of naturalized populations. We used six fully replicated common garden experiments in Brazil where Pinus taeda (loblolly pine) was introduced at the same time, in the same numbers, from the same seed sources, and has formed naturalized populations expanding outward from the plantations. We used a combination of nonparametric, population genetics and multivariate statistics to detect changes in genotype frequencies along each of the six naturalization gradients and their association with climate as well as shifts in allele frequencies compared to the source populations. Results show 25 genes with significant shifts in genotype frequencies. Six genes had shifts in more than one population. Climate explained 25% of the variation in the groups of genes under selection across all locations, but specific genes under strong selection during invasions did not show climate-related convergence. In conclusion, we detected rapid evolutionary changes during invasive range expansions, but the particular gene-level patterns of evolution may be population specific. © 2015 John Wiley & Sons Ltd.
Neutron Multiplicity: LANL W Covariance Matrix for Curve Fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, James G.
2016-12-08
In neutron multiplicity counting one may fit a curve by minimizing an objective function, χmore » $$2\\atop{n}$$. The objective function includes the inverse of an n by n matrix of covariances, W. The inverse of the W matrix has a closed form solution. In addition W -1 is a tri-diagonal matrix. The closed form and tridiagonal nature allows for a simpler expression of the objective function χ$$2\\atop{n}$$. Minimization of this simpler expression will provide the optimal parameters for the fitted curve.« less
Constraining the Enceladus plume using numerical simulation and Cassini data
NASA Astrophysics Data System (ADS)
Yeoh, Seng Keat; Li, Zheng; Goldstein, David B.; Varghese, Philip L.; Levin, Deborah A.; Trafton, Laurence M.
2017-01-01
Since its discovery, the Enceladus plume has been subjected to intense study due to the major effects that it has on the Saturnian system and the window that it provides into the interior of Enceladus. However, several questions remain and we attempt to answer some of them in this work. In particular, we aim to constrain the H2O production rate from the plume, evaluate the relative importance of the jets and the distributed sources along the Tiger Stripes, and make inferences about the source of the plume by accurately modeling the plume and constraining the model using the Cassini INMS and UVIS data. This is an extension of a previous work (Yeoh, S.K., et al. [2015] Icarus, 253, 205-222) in which we only modeled the collisional part of the Enceladus plume and studied its important physical processes. In this work, we propagate the plume farther into space where the flow has become free-molecular and the Cassini INMS and UVIS data were sampled. Then, we fit this part of the plume to the INMS H2O density distributions sampled along the E3, E5 and E7 trajectories and also compare some of the fit results with the UVIS measurements of the plume optical depth collected during the solar occultation observation on 18 May 2010. We consider several vent conditions and source configurations for the plume. By constraining our model using the INMS and UVIS data, we estimate H2O production rates of several hundred kgs-1: 400-500 kg/s during the E3 and E7 flybys and ∼900 kg/s during the E5 flyby. These values agree with other estimates and are consistent with the observed temporal variability of the plume over the orbital period of Enceladus (Hedman, M.M., et al. [2013] Nature, 500, 182-184). In addition, we determine that one of the Tiger Stripes, Cairo, exhibits a local temporal variability consistent with the observed overall temporal variability of the plume. We also find that the distributed sources along the Tiger Stripes are likely dominant while the jets provide a lesser contribution. Moreover, our best-fit solutions for the plume are sensitive to the vent conditions chosen. The spreading angle of the jet produced is the main difference among the vent conditions and thus it appears to be an important parameter in fitting to these INMS data sets. In general, we find that narrow jets produce better fits, suggesting high Mach numbers (> 5) at the vents. This is supported by certain narrow features believed to be jets in both the INMS and UVIS data sets. This tends to rule out sublimation from the surface but points to a deep underground source for the plume. However, the underground source can be either sublimation from an icy reservoir or evaporation from a liquid reservoir. A high Mach number at the vent also suggests subsurface channels with large variations in width and not fairly straight channels so that the gas can undergo sufficient expansion. Additionally, the broad spreading angles inferred for the μm-sized grains (Ingersoll, A.P. and Ewald, S.P. [2011] Icarus, 216, 492-506; Postberg, F., et al. [2011] Nature, 474, 620-622) cannot be due to spreading by the gas above the surface alone. Some other mechanism(s) must also be responsible, perhaps occurring below the surface, which further points to an underground source for the plume.
NASA Astrophysics Data System (ADS)
Schlickeiser, R.; Krakau, S.; Supsar, M.
2013-11-01
The interaction of TeV gamma-rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon-photon annihilation process. Using the linear instability analysis in the kinetic limit, which properly accounts for the longitudinal and the small but finite perpendicular momentum spread in the pair momentum distribution function, the growth rate of parallel propagating electrostatic oscillations in the intergalactic medium is calculated. Contrary to the claims of Miniati and Elyiv, we find that neither the longitudinal nor the perpendicular spread in the relativistic pair distribution function significantly affect the electrostatic growth rates. The maximum kinetic growth rate for no perpendicular spread is even about an order of magnitude greater than the corresponding reactive maximum growth rate. The reduction factors in the maximum growth rate due to the finite perpendicular spread in the pair distribution function are tiny and always less than 10-4. We confirm earlier conclusions by Broderick et al. and our group that the created pair beam distribution function is quickly unstable in the unmagnetized intergalactic medium. Therefore, there is no need to require the existence of small intergalactic magnetic fields to scatter the produced pairs, so that the explanation (made by several authors) for the Fermi non-detection of the inverse Compton scattered GeV gamma-rays by a finite deflecting intergalactic magnetic field is not necessary. In particular, the various derived lower bounds for the intergalactic magnetic fields are invalid due to the pair beam instability argument.
On the Complexity of Item Response Theory Models.
Bonifay, Wes; Cai, Li
2017-01-01
Complexity in item response theory (IRT) has traditionally been quantified by simply counting the number of freely estimated parameters in the model. However, complexity is also contingent upon the functional form of the model. We examined four popular IRT models-exploratory factor analytic, bifactor, DINA, and DINO-with different functional forms but the same number of free parameters. In comparison, a simpler (unidimensional 3PL) model was specified such that it had 1 more parameter than the previous models. All models were then evaluated according to the minimum description length principle. Specifically, each model was fit to 1,000 data sets that were randomly and uniformly sampled from the complete data space and then assessed using global and item-level fit and diagnostic measures. The findings revealed that the factor analytic and bifactor models possess a strong tendency to fit any possible data. The unidimensional 3PL model displayed minimal fitting propensity, despite the fact that it included an additional free parameter. The DINA and DINO models did not demonstrate a proclivity to fit any possible data, but they did fit well to distinct data patterns. Applied researchers and psychometricians should therefore consider functional form-and not goodness-of-fit alone-when selecting an IRT model.
Effects of virtual reality exercise for Korean adults with schizophrenia in a closed ward.
Jo, Garam; Rossow-Kimball, Brenda; Park, Gwitaek; Lee, Yongho
2018-02-01
The purpose of this study was to examine the effects of virtual reality exercise (VRE) using Nintendo Wii-Fit on physical fitness of Korean adults with schizophrenia living in a mental health facility located in South Korea. Two male participants diagnosed with schizophrenia, ages 53 and 61, were recruited and selected for inclusion in this study. The intervention using the Nintendo Wii-Fit consisted of 35-min sessions, 3 times per week for 8 weeks and was facilitated by the primary researcher and two graduate students. The senior fitness test and 10-m walking test were used to measure the physical functioning, specifically, physical fitness and mobility, of the participants. The study was divided into three phases using an A-B-A single-subject design and involved multiple repeated measures of functional physical fitness. Both participants were evaluated each week for the duration of 18 weeks. Both participants exhibited measureable improvement in some of the physical fitness measures, but not in the mobility. These results thus provide preliminary evidence to support the use of VRE to improve physical function for Korean adults with schizophrenia as an alternative exercise regimen to the conventional exercise.
Crins, Martine H P; Terwee, Caroline B; Klausch, Thomas; Smits, Niels; de Vet, Henrica C W; Westhovens, Rene; Cella, David; Cook, Karon F; Revicki, Dennis A; van Leeuwen, Jaap; Boers, Maarten; Dekker, Joost; Roorda, Leo D
2017-07-01
The objective of this study was to assess the psychometric properties of the Dutch-Flemish Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function item bank in Dutch patients with chronic pain. A bank of 121 items was administered to 1,247 Dutch patients with chronic pain. Unidimensionality was assessed by fitting a one-factor confirmatory factor analysis and evaluating resulting fit statistics. Items were calibrated with the graded response model and its fit was evaluated. Cross-cultural validity was assessed by testing items for differential item functioning (DIF) based on language (Dutch vs. English). Construct validity was evaluated by calculation correlations between scores on the Dutch-Flemish PROMIS Physical Function measure and scores on generic and disease-specific measures. Results supported the Dutch-Flemish PROMIS Physical Function item bank's unidimensionality (Comparative Fit Index = 0.976, Tucker Lewis Index = 0.976) and model fit. Item thresholds targeted a wide range of physical function construct (threshold-parameters range: -4.2 to 5.6). Cross-cultural validity was good as four items only showed DIF for language and their impact on item scores was minimal. Physical Function scores were strongly associated with scores on all other measures (all correlations ≤ -0.60 as expected). The Dutch-Flemish PROMIS Physical Function item bank exhibited good psychometric properties. Development of a computer adaptive test based on the large bank is warranted. Copyright © 2017 Elsevier Inc. All rights reserved.
Functional Fitness Testing Results Following Long-Duration ISS Missions.
Laughlin, Mitzi S; Guilliams, Mark E; Nieschwitz, Bruce A; Hoellen, David
2015-12-01
Long-duration spaceflight missions lead to the loss of muscle strength and endurance. Significant reduction in muscle function can be hazardous when returning from spaceflight. To document these losses, NASA developed medical requirements that include measures of functional strength and endurance. Results from this Functional Fitness Test (FFT) battery are also used to evaluate the effectiveness of in-flight exercise countermeasures. The purpose of this paper is to document results from the FFT and correlate this information with performance of in-flight exercise on board the International Space Station. The FFT evaluates muscular strength and endurance, flexibility, and agility and includes the following eight measures: sit and reach, cone agility, push-ups, pull-ups, sliding crunches, bench press, leg press, and hand grip dynamometry. Pre- to postflight functional fitness measurements were analyzed using dependent t-tests and correlation analyses were used to evaluate the relationship between functional fitness measurements and in-flight exercise workouts. Significant differences were noted post space flight with the sit and reach, cone agility, leg press, and hand grip measurements while other test scores were not significantly altered. The relationships between functional fitness and in-flight exercise measurements showed minimal to moderate correlations for most in-flight exercise training variables. The change in FFT results can be partially explained by in-flight exercise performance. Although there are losses documented in the FFT results, it is important to realize that the crewmembers are successfully performing activities of daily living and are considered functional for normal activities upon return to Earth.
Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees.
Schenk, Mariela; Krauss, Jochen; Holzschuh, Andrea
2018-01-01
Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3 days and (iii) a mismatch of 6 days, with bees occurring earlier than flowers in the latter two cases. A mismatch of 6 days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3 days as under perfect synchronization. However, O. cornuta decreased the number of female offspring, whereas O. bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3 days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O. bicornis. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees. Although our results suggest that bees have evolved species-specific strategies to mitigate fitness losses after temporal mismatches, the bees were not able to completely compensate for impacts on their fitness after temporal mismatches with their food resources. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
NASA Astrophysics Data System (ADS)
Yankee, S. J.; Pletka, B. J.
1993-09-01
Splats of hydroxylapatite (HA) and alumina were obtained via plasma spraying using systematically varied combinations of plasma velocity and temperature, which were achieved by altering the primary plasma gas flow rate and plasma gas composition. Particle size was also varied in the case of alumina. Splat spreading was quantified via computer- aided image analysis as a function of processing variations. A comparison of the predicted splat dimensions from a model developed by Madejski with experimental observations of HA and alumina splats was performed. The model tended to underestimate the HA splat sizes, suggesting that evaporation of smaller particles occurred under the chosen experimental conditions, and to overestimate the observed alumina splat dimensions. Based on this latter result and on the surface appearance of the substrates, incomplete melting appeared to take place in all but the smaller alumina particles. Analysis of the spreading data as a function of the processing variations indicated that the particle size as well as the plasma temperature and velocity influenced the extent of particle melting. Based on these data and other considerations, a physical model was developed that described the degree of particle melting in terms of material and processing parameters. The physical model correctly predicted the relative splat spreading behavior of HA and alumina, assuming that spreading was directly linked to the extent of particle melting.
Epidemic spreading between two coupled subpopulations with inner structures
NASA Astrophysics Data System (ADS)
Ruan, Zhongyuan; Tang, Ming; Gu, Changgui; Xu, Jinshan
2017-10-01
The structure of underlying contact network and the mobility of agents are two decisive factors for epidemic spreading in reality. Here, we study a model consisting of two coupled subpopulations with intra-structures that emphasizes both the contact structure and the recurrent mobility pattern of individuals simultaneously. We show that the coupling of the two subpopulations (via interconnections between them and round trips of individuals) makes the epidemic threshold in each subnetwork to be the same. Moreover, we find that the interconnection probability between two subpopulations and the travel rate are important factors for spreading dynamics. In particular, as a function of interconnection probability, the epidemic threshold in each subpopulation decreases monotonously, which enhances the risks of an epidemic. While the epidemic threshold displays a non-monotonic variation as travel rate increases. Moreover, the asymptotic infected density as a function of travel rate in each subpopulation behaves differently depending on the interconnection probability.
Accretion mode of oceanic ridges governed by axial mechanical strength
NASA Astrophysics Data System (ADS)
Sibrant, A. L. R.; Mittelstaedt, E.; Davaille, A.; Pauchard, L.; Aubertin, A.; Auffray, L.; Pidoux, R.
2018-04-01
Oceanic spreading ridges exhibit structural changes as a function of spreading rate, mantle temperature and the balance of tectonic and magmatic accretion. The role that these or other processes have in governing the overall shape of oceanic ridges is unclear. Here, we use laboratory experiments to simulate ridge spreading in colloidal aqueous dispersions whose rheology evolves from purely viscous to elastic and brittle when placed in contact with a saline water solution. We find that ridge shape becomes increasingly linear with spreading rate until reaching a minimum tortuosity. This behaviour is predicted by the axial failure parameter ΠF, a dimensionless number describing the balance of brittle and plastic failure of axial lithosphere. Slow-spreading, fault-dominated and fast-spreading, fluid intrusion-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value, suggesting that the axial failure mode governs ridge geometry. Values of ΠF can also be calculated for different mantle temperatures and applied to other planets or the early Earth. For higher mantle temperatures during the Archaean, our results preclude the predicted formation of large tectonic plates at high spreading velocity.
Dispersal of the Pearl River plume over continental shelf in summer
NASA Astrophysics Data System (ADS)
Chen, Zhaoyun; Gong, Wenping; Cai, Huayang; Chen, Yunzhen; Zhang, Heng
2017-07-01
Satellite images of turbidity were used to study the climatological, monthly, and typical snapshot distributions of the Pearl River plume over the shelf in summer from 2003 to 2016. These images show that the plume spreads offshore over the eastern shelf and is trapped near the coast over the western shelf. Eastward extension of the plume retreats from June to August. Monthly spatial variations of the plume are characterized by eastward spreading, westward spreading, or both. Time series of monthly plume area was quantified by applying the K-mean clustering method to identify the turbid plume water. Decomposition of the 14-year monthly turbidity data by the empirical orthogonal function (EOF) analysis isolated the 1st mode in both the eastward and westward spreading pattern as the time series closely related to the Pearl River discharge, and the 2nd mode with out-of-phase turbidity anomalies over the eastern and western shelves that is associated with the prevailing wind direction. Eight typical plume types were detected from the satellite snapshots. They are characterized by coastal jet, eastward offshore spreading, westward spreading, bidirectional spreading, bulge, isolated patch, offshore branch, and offshore filaments, respectively. Their possible mechanisms are discussed.
Empirical calibration of the near-infrared Ca II triplet - III. Fitting functions
NASA Astrophysics Data System (ADS)
Cenarro, A. J.; Gorgas, J.; Cardiel, N.; Vazdekis, A.; Peletier, R. F.
2002-02-01
Using a near-infrared stellar library of 706 stars with a wide coverage of atmospheric parameters, we study the behaviour of the CaII triplet strength in terms of effective temperature, surface gravity and metallicity. Empirical fitting functions for recently defined line-strength indices, namely CaT*, CaT and PaT, are provided. These functions can be easily implemented into stellar population models to provide accurate predictions for integrated CaII strengths. We also present a thorough study of the various error sources and their relation to the residuals of the derived fitting functions. Finally, the derived functional forms and the behaviour of the predicted CaII are compared with those of previous works in the field.
Benda, Nathalie M M; Seeger, Joost P H; Stevens, Guus G C F; Hijmans-Kersten, Bregina T P; van Dijk, Arie P J; Bellersen, Louise; Lamfers, Evert J P; Hopman, Maria T E; Thijssen, Dick H J
2015-01-01
Physical fitness is an important prognostic factor in heart failure (HF). To improve fitness, different types of exercise have been explored, with recent focus on high-intensity interval training (HIT). We comprehensively compared effects of HIT versus continuous training (CT) in HF patients NYHA II-III on physical fitness, cardiovascular function and structure, and quality of life, and hypothesize that HIT leads to superior improvements compared to CT. Twenty HF patients (male:female 19:1, 64±8 yrs, ejection fraction 38±6%) were allocated to 12-weeks of HIT (10*1-minute at 90% maximal workload-alternated by 2.5 minutes at 30% maximal workload) or CT (30 minutes at 60-75% of maximal workload). Before and after intervention, we examined physical fitness (incremental cycling test), cardiac function and structure (echocardiography), vascular function and structure (ultrasound) and quality of life (SF-36, Minnesota living with HF questionnaire (MLHFQ)). Training improved maximal workload, peak oxygen uptake (VO2peak) related to the predicted VO2peak, oxygen uptake at the anaerobic threshold, and maximal oxygen pulse (all P<0.05), whilst no differences were present between HIT and CT (N.S.). We found no major changes in resting cardiovascular function and structure. SF-36 physical function score improved after training (P<0.05), whilst SF-36 total score and MLHFQ did not change after training (N.S.). Training induced significant improvements in parameters of physical fitness, although no evidence for superiority of HIT over CT was demonstrated. No major effect of training was found on cardiovascular structure and function or quality of life in HF patients NYHA II-III. Nederlands Trial Register NTR3671.
Upper mantle structure of the Tonga-Lau-Fiji region from Rayleigh wave tomography
NASA Astrophysics Data System (ADS)
Wei, S. Shawn; Zha, Yang; Shen, Weisen; Wiens, Douglas A.; Conder, James A.; Webb, Spahr C.
2016-11-01
We investigate the upper mantle seismic structure in the Tonga-Lau-Fiji region by jointly fitting the phase velocities of Rayleigh waves from ambient-noise and two-plane-wave tomography. The results suggest a wide low-velocity zone beneath the Lau Basin, with a minimum SV-velocity of about 3.7 ± 0.1 km/s, indicating upwelling hot asthenosphere with extensive partial melting. The variations of velocity anomalies along the Central and Eastern Lau Spreading Centers suggest varying mantle porosity filled with melt. In the north where the spreading centers are distant from the Tonga slab, the inferred melting commences at about 70 km depth, and forms an inclined zone in the mantle, dipping to the west away from the arc. This pattern suggests a passive decompression melting process supplied by the Australian plate mantle from the west. In the south, as the supply from the Australian mantle is impeded by the Lau Ridge lithosphere, flux melting controlled by water from the nearby slab dominates in the back-arc. This source change results in the rapid transition in geochemistry and axial morphology along the spreading centers. The remnant Lau Ridge and the Fiji Plateau are characterized by a 60-80 km thick lithosphere underlain by a low-velocity asthenosphere. Our results suggest the removal of the lithosphere of the northeastern Fiji Plateau-Lau Ridge beneath the active Taveuni Volcano. Azimuthal anisotropy shows that the mantle flow direction rotates from trench-perpendicular beneath Fiji to spreading-perpendicular beneath the Lau Basin, which provides evidence for the southward flow of the mantle wedge and the Samoan plume.
Yang, Hui-Ju; Chen, Kuei-Min; Chen, Ming-De; Wu, Hui-Chuan; Chang, Wen-Jane; Wang, Yueh-Chin; Huang, Hsin-Ting
2015-10-01
The transtheoretical model was applied to promote behavioural change and test the effects of a group senior elastic band exercise programme on the functional fitness of community older adults in the contemplation and preparation stages of behavioural change. Forming regular exercise habits is challenging for older adults. The transtheoretical model emphasizes using different strategies in various stages to facilitate behavioural changes. Quasi-experimental design with pre-test and post-tests on two groups. Six senior activity centres were randomly assigned to either the experimental or control group. The data were collected during 2011. A total of 199 participants were recruited and 169 participants completed the study (experimental group n = 84, control group n = 85). The elastic band exercises were performed for 40 minutes, three times per week for 6 months. The functional fitness of the participants was evaluated at baseline and at the third and sixth month of the intervention. Statistical analyses included a two-way mixed design analysis of variance, one-way repeated measures analysis of variance and an analysis of covariance. All of the functional fitness indicators had significant changes at post-tests from pre-test in the experimental group. The experimental group had better performances than the control group in all of the functional fitness indicators after three months and 6 months of the senior elastic band exercises. The exercise programme provided older adults with appropriate strategies for maintaining functional fitness, which improved significantly after the participants exercising regularly for 6 months. © 2015 John Wiley & Sons Ltd.
Gomez-Pulido, Juan A; Cerrada-Barrios, Jose L; Trinidad-Amado, Sebastian; Lanza-Gutierrez, Jose M; Fernandez-Diaz, Ramon A; Crawford, Broderick; Soto, Ricardo
2016-08-31
Metaheuristics are widely used to solve large combinatorial optimization problems in bioinformatics because of the huge set of possible solutions. Two representative problems are gene selection for cancer classification and biclustering of gene expression data. In most cases, these metaheuristics, as well as other non-linear techniques, apply a fitness function to each possible solution with a size-limited population, and that step involves higher latencies than other parts of the algorithms, which is the reason why the execution time of the applications will mainly depend on the execution time of the fitness function. In addition, it is usual to find floating-point arithmetic formulations for the fitness functions. This way, a careful parallelization of these functions using the reconfigurable hardware technology will accelerate the computation, specially if they are applied in parallel to several solutions of the population. A fine-grained parallelization of two floating-point fitness functions of different complexities and features involved in biclustering of gene expression data and gene selection for cancer classification allowed for obtaining higher speedups and power-reduced computation with regard to usual microprocessors. The results show better performances using reconfigurable hardware technology instead of usual microprocessors, in computing time and power consumption terms, not only because of the parallelization of the arithmetic operations, but also thanks to the concurrent fitness evaluation for several individuals of the population in the metaheuristic. This is a good basis for building accelerated and low-energy solutions for intensive computing scenarios.