Optimizing Hybrid Spreading in Metapopulations
Zhang, Changwang; Zhou, Shi; Miller, Joel C.; Cox, Ingemar J.; Chain, Benjamin M.
2015-01-01
Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. We show the existence of critically hybrid epidemics where neither spreading mechanism alone can cause a noticeable spread but a combination of the two spreading mechanisms would produce an enormous outbreak. Our results provide new strategies for maximising beneficial epidemics and estimating the worst outcome of damaging hybrid epidemics. PMID:25923411
Optimizing hybrid spreading in metapopulations.
Zhang, Changwang; Zhou, Shi; Miller, Joel C; Cox, Ingemar J; Chain, Benjamin M
2015-04-29
Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. We show the existence of critically hybrid epidemics where neither spreading mechanism alone can cause a noticeable spread but a combination of the two spreading mechanisms would produce an enormous outbreak. Our results provide new strategies for maximising beneficial epidemics and estimating the worst outcome of damaging hybrid epidemics.
Geodynamic environments of ultra-slow spreading
NASA Astrophysics Data System (ADS)
Kokhan, Andrey; Dubinin, Evgeny
2015-04-01
Ultra-slow spreading is clearly distinguished as an outstanding type of crustal accretion by recent studies. Spreading ridges with ultra-slow velocities of extension are studied rather well. But ultra-slow spreading is characteristic feature of not only spreading ridges, it can be observed also on convergent and transform plate boundaries. Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on divergent plate boundaries: 1. On spreading ridges with ultra-slow spreading, both modern (f.e. Gakkel, South-West Indian, Aden spreading center) and ceased (Labrador spreading center, Aegir ridge); 2. During transition from continental rifting to early stages of oceanic spreading (all spreading ridges during incipient stages of their formation); 3. During incipient stages of formation of spreading ridges on oceanic crust as a result of ridge jumps and reorganization of plate boundaries (f.e. Mathematicians rise and East Pacific rise); 4. During propagation of spreading ridge into the continental crust under influence of hotspot (Aden spreading center and Afar triple junction), under presence of strike-slip faults preceding propagation (possibly, rift zone of California Bay). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on transform plate boundaries: 1. In transit zones between two "typical" spreading ridges (f.e. Knipovich ridge); 2. In semi strike-slip/extension zones on the oceanic crust (f.e. American-Antarctic ridge); 3. In the zones of local extension in regional strike-slip areas in pull-apart basins along transform boundaries (Cayman trough, pull-apart basins of the southern border of Scotia plate). Ultra-slow spreading is observed now or could have been observed in the past in the following geodynamic environments on convergent plate boundaries: 1. During back-arc rifting on the stage of transition into back-arc spreading (central part of Bransfield rift); 2. During back-arc inter-subduction spreading (Ayu trough, northern Fiji basin), 3. During diffuse back-arc spreading (area on the south-eastern border of Scotia sea), 4. During back-arc spreading under splitting of island arc (northern extremity of Mariana trough). Each of the geodynamic environments is characterized by peculiar topographic, geological and geophysical features forming under the same spreading velocities. Development of ultra-slow spreading in each of these environments results in formation of peculiar extension sedimentary basins.
Effects of rewiring strategies on information spreading in complex dynamic networks
NASA Astrophysics Data System (ADS)
Ally, Abdulla F.; Zhang, Ning
2018-04-01
Recent advances in networks and communication services have attracted much interest to understand information spreading in social networks. Consequently, numerous studies have been devoted to provide effective and accurate models for mimicking information spreading. However, knowledge on how to spread information faster and more widely remains a contentious issue. Yet, most existing works are based on static networks which limit the reality of dynamism of entities that participate in information spreading. Using the SIR epidemic model, this study explores and compares effects of two rewiring models (Fermi-Dirac and Linear functions) on information spreading in scale free and small world networks. Our results show that for all the rewiring strategies, the spreading influence replenishes with time but stabilizes in a steady state at later time-steps. This means that information spreading takes-off during the initial spreading steps, after which the spreading prevalence settles toward its equilibrium, with majority of the population having recovered and thus, no longer affecting the spreading. Meanwhile, rewiring strategy based on Fermi-Dirac distribution function in one way or another impedes the spreading process, however, the structure of the networks mimic the spreading, even with a low spreading rate. The worst case can be when the spreading rate is extremely small. The results emphasize that despite a big role of such networks in mimicking the spreading, the role of the parameters cannot be simply ignored. Apparently, the probability of giant degree neighbors being informed grows much faster with the rewiring strategy of linear function compared to that of Fermi-Dirac distribution function. Clearly, rewiring model based on linear function generates the fastest spreading across the networks. Therefore, if we are interested in speeding up the spreading process in stochastic modeling, linear function may play a pivotal role.
Dynamics of bid-ask spread return and volatility of the Chinese stock market
NASA Astrophysics Data System (ADS)
Qiu, Tian; Chen, Guang; Zhong, Li-Xin; Wu, Xiao-Run
2012-04-01
The bid-ask spread is taken as an important measure of the financial market liquidity. In this article, we study the dynamics of the spread return and the spread volatility of four liquid stocks in the Chinese stock market, including the memory effect and the multifractal nature. By investigating the autocorrelation function and the Detrended Fluctuation Analysis (DFA), we find that the spread return is the lack of long-range memory, while the spread volatility is long-range time correlated. Besides, the spread volatilities of different stocks present long-range cross-correlations. Moreover, by applying the Multifractal Detrended Fluctuation Analysis (MF-DFA), the spread return is observed to possess a strong multifractality, which is similar to the dynamics of a variety of financial quantities. Different from the spread return, the spread volatility exhibits a weak multifractal nature.
Winkler, Maren Kl; Dengler, Nora; Hecht, Nils; Hartings, Jed A; Kang, Eun J; Major, Sebastian; Martus, Peter; Vajkoczy, Peter; Woitzik, Johannes; Dreier, Jens P
2017-05-01
Multimodal neuromonitoring in neurocritical care increasingly includes electrocorticography to measure epileptic events and spreading depolarizations. Spreading depolarization causes spreading depression of activity (=isoelectricity) in electrically active tissue. If the depression is long-lasting, further spreading depolarizations occur in still isoelectric tissue where no activity can be suppressed. Such spreading depolarizations are termed isoelectric and are assumed to indicate energy compromise. However, experimental and clinical recordings suggest that long-lasting spreading depolarization-induced depression and isoelectric spreading depolarizations are often recorded outside of the actual ischemic zones, allowing the remote diagnosis of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Here, we analyzed simultaneous electrocorticography and tissue partial pressure of oxygen recording in 33 aneurysmal subarachnoid hemorrhage patients. Multiple regression showed that both peak total depression duration per recording day and mean baseline tissue partial pressure of oxygen were independent predictors of outcome. Moreover, tissue partial pressure of oxygen preceding spreading depolarization was similar and differences in tissue partial pressure of oxygen responses to spreading depolarization were only subtle between isoelectric spreading depolarizations and spreading depressions. This further supports that, similar to clustering of spreading depolarizations, long spreading depolarization-induced periods of isoelectricity are useful to detect energy compromise remotely, which is valuable because the exact location of future developing pathology is unknown at the time when the neurosurgeon implants recording devices.
The potential and realized spread of wildfires across Canada.
Wang, Xianli; Parisien, Marc-André; Flannigan, Mike D; Parks, Sean A; Anderson, Kerry R; Little, John M; Taylor, Steve W
2014-08-01
Given that they can burn for weeks or months, wildfires in temperate and boreal forests may become immense (eg., 10(0) - 10(4) km(2) ). However, during the period within which a large fire is 'active', not all days experience weather that is conducive to fire spread; indeed most of the spread occurs on a small proportion (e.g., 1 - 15 days) of not necessarily consecutive days during the active period. This study examines and compares the Canada-wide patterns in fire-conducive weather ('potential' spread) and the spread that occurs on the ground ('realized' spread). Results show substantial variability in distributions of potential and realized spread days across Canada. Both potential and realized spread are higher in western than in eastern Canada; however, whereas potential spread generally decreases from south to north, there is no such pattern with realized spread. The realized-to-potential fire-spread ratio is considerably higher in northern Canada than in the south, indicating that proportionally more fire-conducive days translate into fire progression. An exploration of environmental correlates to spread show that there may be a few factors compensating for the lower potential spread in northern Canada: a greater proportion of coniferous (i.e., more flammable) vegetation, lesser human impacts (i.e., less fragmented landscapes), sufficient fire ignitions, and intense droughts. Because a linear relationship exists between the frequency distributions of potential spread days and realized spread days in a fire zone, it is possible to obtain one from the other using a simple conversion factor. Our methodology thus provides a means to estimate realized fire spread from weather-based data in regions where fire databases are poor, which may improve our ability to predict future fire activity. © 2014 John Wiley & Sons Ltd.
Topographic Cues Reveal Two Distinct Spreading Mechanisms in Blood Platelets
Sandmann, Rabea; Köster, Sarah
2016-01-01
Blood platelets are instrumental in blood clotting and are thus heavily involved in early wound closure. After adhering to a substrate they spread by forming protrusions like lamellipodia and filopodia. However, the interaction of these protrusions with the physical environment of platelets while spreading is not fully understood. Here we dynamically image platelets during this spreading process and compare their behavior on smooth and on structured substrates. In particular we analyze the temporal evolution of the spread area, the cell morphology and the dynamics of individual filopodia. Interestingly, the topographic cues enable us to distinguish two spreading mechanisms, one that is based on numerous persistent filopodia and one that rather involves lamellipodia. Filopodia-driven spreading coincides with a strong response of platelet morphology to the substrate topography during spreading, whereas lamellipodia-driven spreading does not. Thus, we quantify different degrees of filopodia formation in platelets and the influence of filopodia in spreading on structured substrates. PMID:26934830
Estimating wildland fire rate of spread in a spatially nonuniform environment
Francis M Fujioka
1985-01-01
Estimating rate of fire spread is a key element in planning for effective fire control. Land managers use the Rothermel spread model, but the model assumptions are violated when fuel, weather, and topography are nonuniform. This paper compares three averaging techniques--arithmetic mean of spread rates, spread based on mean fuel conditions, and harmonic mean of spread...
Non-aqueous phase liquid spreading during soil vapor extraction
Kneafsey, Timothy J.; Hunt, James R.
2010-01-01
Many non-aqueous phase liquids (NAPLs) are expected to spread at the air – water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE. PMID:14734243
On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels
NASA Astrophysics Data System (ADS)
Kumar, Chenthil; Kumar, Amit
2012-06-01
In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).
Spreading in online social networks: the role of social reinforcement.
Zheng, Muhua; Lü, Linyuan; Zhao, Ming
2013-07-01
Some epidemic spreading models are usually applied to analyze the propagation of opinions or news. However, the dynamics of epidemic spreading and information or behavior spreading are essentially different in many aspects. Centola's experiments [Science 329, 1194 (2010)] on behavior spreading in online social networks showed that the spreading is faster and broader in regular networks than in random networks. This result contradicts with the former understanding that random networks are preferable for spreading than regular networks. To describe the spreading in online social networks, a unknown-known-approved-exhausted four-status model was proposed, which emphasizes the effect of social reinforcement and assumes that the redundant signals can improve the probability of approval (i.e., the spreading rate). Performing the model on regular and random networks, it is found that our model can well explain the results of Centola's experiments on behavior spreading and some former studies on information spreading in different parameter space. The effects of average degree and network size on behavior spreading process are further analyzed. The results again show the importance of social reinforcement and are accordant with Centola's anticipation that increasing the network size or decreasing the average degree will enlarge the difference of the density of final approved nodes between regular and random networks. Our work complements the former studies on spreading dynamics, especially the spreading in online social networks where the information usually requires individuals' confirmations before being transmitted to others.
Flame Spread and Extinction Over a Thick Solid Fuel in Low-Velocity Opposed and Concurrent Flows
NASA Astrophysics Data System (ADS)
Zhu, Feng; Lu, Zhanbin; Wang, Shuangfeng
2016-05-01
Flame spread and extinction phenomena over a thick PMMA in purely opposed and concurrent flows are investigated by conducting systematical experiments in a narrow channel apparatus. The present tests focus on low-velocity flow regime and hence complement experimental data previously reported for high and moderate velocity regimes. In the flow velocity range tested, the opposed flame is found to spread much faster than the concurrent flame at a given flow velocity. The measured spread rates for opposed and concurrent flames can be correlated by corresponding theoretical models of flame spread, indicating that existing models capture the main mechanisms controlling the flame spread. In low-velocity gas flows, however, the experimental results are observed to deviate from theoretical predictions. This may be attributed to the neglect of radiative heat loss in the theoretical models, whereas radiation becomes important for low-intensity flame spread. Flammability limits using oxygen concentration and flow velocity as coordinates are presented for both opposed and concurrent flame spread configurations. It is found that concurrent spread has a wider flammable range than opposed case. Beyond the flammability boundary of opposed spread, there is an additional flammable area for concurrent spread, where the spreading flame is sustainable in concurrent mode only. The lowest oxygen concentration allowing concurrent flame spread in forced flow is estimated to be approximately 14 % O2, substantially below that for opposed spread (18.5 % O2).
Rumor spreading model with the different attitudes towards rumors
NASA Astrophysics Data System (ADS)
Hu, Yuhan; Pan, Qiuhui; Hou, Wenbing; He, Mingfeng
2018-07-01
Rumor spreading has a profound influence on people's well-being and social stability. There are many factors influencing rumor spreading. In this paper, we recommended an assumption that among the common mass there are three attitudes towards rumors: to like rumor spreading, to dislike rumor spreading, and to be hesitant (or neutral) to rumor spreading. Based on such an assumption, a Susceptible-Hesitating-Affected-Resistant(SHAR) model is established, which considered individuals' different attitudes towards rumor spreading. We also analyzed the local and global stability of rumor-free equilibrium and rumor-existence equilibrium, calculated the basic reproduction number of our model. With numerical simulations, we illustrated the effect of parameter changes on rumor spreading, analyzing the parameter sensitivity of the model. The results of the theoretical analysis and numerical simulations illustrated the conclusions of this study. People having different attitudes towards rumors may play different roles in the process of rumor spreading. It was surprising to find, in our research, that people who hesitate to spread rumors have a positive effect on the spread of rumors.
The effect of thallus spreading method on productivity of Gracilaria sp. culture
NASA Astrophysics Data System (ADS)
Hidayatulbaroroh, R.; Nurhudah, M.; Edy, M. H.; Suharyadi
2018-04-01
The aim of this study was to determine growth of (Gracilaria sp.) with different spreading time of thallus. The study was conducted from March to April 2017 in pond located in Domas Village, Serang Region, Banten Province. The experiment followed completely randomized design with the treatment of different time on spreading of seaweed thallus during the culture period (45 days). Treatments were without spreading (as control), spreading every 2 weeks, and spreading every 3 weeks. The observed variables were weight of seaweed thallus and several water quality parameters. Analysis of seaweed weight used ANOVA test and Tukey HSD test. The results showed that the spread seaweed thallus had a significant effect on weight gain in 0.05 level. It used 100 gram Gracilaria sp. as initial weight, treatment without spreading thallus produced 508 gram, spreading every 2 weeks produced 906 gram and spreading every 3 weeks produced 790 gram. Based on the weight gain of thallus, seaweed culture by spreading thallus every 3 weeks and 2 weeks seem to be able to increase productivity by 56 % and 78 %, respectively.
Assimilative and non-assimilative color spreading in the watercolor configuration.
Kimura, Eiji; Kuroki, Mikako
2014-01-01
A colored line flanking a darker contour will appear to spread its color onto an area enclosed by the line (watercolor effect). The watercolor effect has been characterized as an assimilative effect, but non-assimilative color spreading has also been demonstrated in the same spatial configuration; e.g., when a black inner contour (IC) is paired with a blue outer contour (OC), yellow color spreading can be observed. To elucidate visual mechanisms underlying these different color spreading effects, this study investigated the effects of luminance ratio between the double contours on the induced color by systematically manipulating the IC and the OC luminance (Experiment 1) as well as the background luminance (Experiment 2). The results showed that the luminance conditions suitable for assimilative and non-assimilative color spreading were nearly opposite. When the Weber contrast of the IC to the background luminance (IC contrast) was smaller in size than that of the OC (OC contrast), the induced color became similar to the IC color (assimilative spreading). In contrast, when the OC contrast was smaller than or equal to the IC contrast, the induced color became yellow (non-assimilative spreading). Extending these findings, Experiment 3 showed that bilateral color spreading, i.e., assimilative spreading on one side and non-assimilative spreading on the other side, can also be observed in the watercolor configuration. These results suggest that the assimilative and the non-assimilative spreading were mediated by different visual mechanisms. The properties of the assimilative spreading are consistent with the model proposed to account for neon color spreading (Grossberg and Mingolla, 1985) and extended for the watercolor effect (Pinna and Grossberg, 2005). However, the present results suggest that additional mechanisms are needed to account for the non-assimilative color spreading.
Suppressing disease spreading by using information diffusion on multiplex networks.
Wang, Wei; Liu, Quan-Hui; Cai, Shi-Min; Tang, Ming; Braunstein, Lidia A; Stanley, H Eugene
2016-07-06
Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.
Dreier, Jens P; Fabricius, Martin; Ayata, Cenk; Sakowitz, Oliver W; William Shuttleworth, C; Dohmen, Christian; Graf, Rudolf; Vajkoczy, Peter; Helbok, Raimund; Suzuki, Michiyasu; Schiefecker, Alois J; Major, Sebastian; Winkler, Maren Kl; Kang, Eun-Jeung; Milakara, Denny; Oliveira-Ferreira, Ana I; Reiffurth, Clemens; Revankar, Gajanan S; Sugimoto, Kazutaka; Dengler, Nora F; Hecht, Nils; Foreman, Brandon; Feyen, Bart; Kondziella, Daniel; Friberg, Christian K; Piilgaard, Henning; Rosenthal, Eric S; Westover, M Brandon; Maslarova, Anna; Santos, Edgar; Hertle, Daniel; Sánchez-Porras, Renán; Jewell, Sharon L; Balança, Baptiste; Platz, Johannes; Hinzman, Jason M; Lückl, Janos; Schoknecht, Karl; Schöll, Michael; Drenckhahn, Christoph; Feuerstein, Delphine; Eriksen, Nina; Horst, Viktor; Bretz, Julia S; Jahnke, Paul; Scheel, Michael; Bohner, Georg; Rostrup, Egill; Pakkenberg, Bente; Heinemann, Uwe; Claassen, Jan; Carlson, Andrew P; Kowoll, Christina M; Lublinsky, Svetlana; Chassidim, Yoash; Shelef, Ilan; Friedman, Alon; Brinker, Gerrit; Reiner, Michael; Kirov, Sergei A; Andrew, R David; Farkas, Eszter; Güresir, Erdem; Vatter, Hartmut; Chung, Lee S; Brennan, K C; Lieutaud, Thomas; Marinesco, Stephane; Maas, Andrew Ir; Sahuquillo, Juan; Dahlem, Markus A; Richter, Frank; Herreras, Oscar; Boutelle, Martyn G; Okonkwo, David O; Bullock, M Ross; Witte, Otto W; Martus, Peter; van den Maagdenberg, Arn Mjm; Ferrari, Michel D; Dijkhuizen, Rick M; Shutter, Lori A; Andaluz, Norberto; Schulte, André P; MacVicar, Brian; Watanabe, Tomas; Woitzik, Johannes; Lauritzen, Martin; Strong, Anthony J; Hartings, Jed A
2017-05-01
Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches.
Fabricius, Martin; Ayata, Cenk; Sakowitz, Oliver W; William Shuttleworth, C; Dohmen, Christian; Graf, Rudolf; Vajkoczy, Peter; Helbok, Raimund; Suzuki, Michiyasu; Schiefecker, Alois J; Major, Sebastian; Winkler, Maren KL; Kang, Eun-Jeung; Milakara, Denny; Oliveira-Ferreira, Ana I; Reiffurth, Clemens; Revankar, Gajanan S; Sugimoto, Kazutaka; Dengler, Nora F; Hecht, Nils; Foreman, Brandon; Feyen, Bart; Kondziella, Daniel; Friberg, Christian K; Piilgaard, Henning; Rosenthal, Eric S; Westover, M Brandon; Maslarova, Anna; Santos, Edgar; Hertle, Daniel; Sánchez-Porras, Renán; Jewell, Sharon L; Balança, Baptiste; Platz, Johannes; Hinzman, Jason M; Lückl, Janos; Schoknecht, Karl; Schöll, Michael; Drenckhahn, Christoph; Feuerstein, Delphine; Eriksen, Nina; Horst, Viktor; Bretz, Julia S; Jahnke, Paul; Scheel, Michael; Bohner, Georg; Rostrup, Egill; Pakkenberg, Bente; Heinemann, Uwe; Claassen, Jan; Carlson, Andrew P; Kowoll, Christina M; Lublinsky, Svetlana; Chassidim, Yoash; Shelef, Ilan; Friedman, Alon; Brinker, Gerrit; Reiner, Michael; Kirov, Sergei A; Andrew, R David; Farkas, Eszter; Güresir, Erdem; Vatter, Hartmut; Chung, Lee S; Brennan, KC; Lieutaud, Thomas; Marinesco, Stephane; Maas, Andrew IR; Sahuquillo, Juan; Dahlem, Markus A; Richter, Frank; Herreras, Oscar; Boutelle, Martyn G; Okonkwo, David O; Bullock, M Ross; Witte, Otto W; Martus, Peter; van den Maagdenberg, Arn MJM; Ferrari, Michel D; Dijkhuizen, Rick M; Shutter, Lori A; Andaluz, Norberto; Schulte, André P; MacVicar, Brian; Watanabe, Tomas; Woitzik, Johannes; Lauritzen, Martin; Strong, Anthony J; Hartings, Jed A
2016-01-01
Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly recorded during multimodal neuromonitoring in neurocritical care as a causal biomarker providing a diagnostic summary measure of metabolic failure and excitotoxic injury. Focal ischemia causes spreading depolarization within minutes. Further spreading depolarizations arise for hours to days due to energy supply-demand mismatch in viable tissue. Spreading depolarizations exacerbate neuronal injury through prolonged ionic breakdown and spreading depolarization-related hypoperfusion (spreading ischemia). Local duration of the depolarization indicates local tissue energy status and risk of injury. Regional electrocorticographic monitoring affords even remote detection of injury because spreading depolarizations propagate widely from ischemic or metabolically stressed zones; characteristic patterns, including temporal clusters of spreading depolarizations and persistent depression of spontaneous cortical activity, can be recognized and quantified. Here, we describe the experimental basis for interpreting these patterns and illustrate their translation to human disease. We further provide consensus recommendations for electrocorticographic methods to record, classify, and score spreading depolarizations and associated spreading depressions. These methods offer distinct advantages over other neuromonitoring modalities and allow for future refinement through less invasive and more automated approaches. PMID:27317657
21 CFR 133.175 - Pasteurized cheese spread.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized cheese spread. 133.175 Section 133.175... Cheese and Related Products § 133.175 Pasteurized cheese spread. Pasteurized cheese spread is the food... statement of ingredients, prescribed for pasteurized process cheese spread by § 133.179, except that no...
Reverse preferential spread in complex networks
NASA Astrophysics Data System (ADS)
Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio
2012-08-01
Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.
Effect of solution and leaf surface polarity on droplet spread area and contact angle.
Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M
2016-03-01
How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Singh, Sumitra; Mahala, Pramila; Pal, Suchandan
2018-01-01
This work evaluates the effect of graphene, indium tin oxide (ITO) and Ni/Au as contact/current spreading layer/current spreading layer for GaN vertical light emitting diodes (V-LEDs). In this simulation study, the effect of these contact/current spreading layers on different performance parameters of GaN V-LEDs has been studied. By using these three different types of contact/current spreading layers, we have comparatively studied the effect on light extraction efficiency (LEE), optical output power, wall plug efficiency and radiant intensity of V-LEDs. As per the simulation results, it shows that using graphene contact/current spreading layers, it is possible to achieve better performance than using ITO and Ni/Au contact/current spreading layers. For graphene/(Ni/Au) contact/current spreading layers, the LEE is improved by 36.77% whereas for ITO/(Ni/Au) contact/current spreading layers it is improved by 13.74%. Also, by using graphene/(Ni/Au) contact/current spreading layers, the optical output power of LEDs improved by 11.11% whereas for ITO/(Ni/Au) contact/current spreading layers shown 4.16% improvement. The radiant intensity is enhanced by 37.65% for graphene/(Ni/Au) contact/current spreading layers and 13.5% for ITO/(Ni/Au) contact/current spreading layers. In this report, we have given a detailed analysis of the obtained simulation results. The simulation was carried out in SimuLED tool.
Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks
NASA Astrophysics Data System (ADS)
Li, Ming; Liu, Run-Ran; Peng, Dan; Jia, Chun-Xiao; Wang, Bing-Hong
2018-02-01
Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.
Ischemia-induced spreading depolarization in the retina
Srienc, Anja I; Biesecker, Kyle R; Shimoda, Angela M; Kur, Joanna
2016-01-01
Cortical spreading depolarization is a metabolically costly phenomenon that affects the brain in both health and disease. Following severe stroke, subarachnoid hemorrhage, or traumatic brain injury, cortical spreading depolarization exacerbates tissue damage and enlarges infarct volumes. It is not known, however, whether spreading depolarization also occurs in the retina in vivo. We report now that spreading depolarization episodes are generated in the in vivo rat retina following retinal vessel occlusion produced by photothrombosis. The properties of retinal spreading depolarization are similar to those of cortical spreading depolarization. Retinal spreading depolarization waves propagate at a velocity of 3.0 ± 0.1 mm/min and are associated with a negative shift in direct current potential, a transient cessation of neuronal spiking, arteriole constriction, and a decrease in tissue O2 tension. The frequency of retinal spreading depolarization generation in vivo is reduced by administration of the NMDA antagonist MK-801 and the 5-HT(1D) agonist sumatriptan. Branch retinal vein occlusion is a leading cause of vision loss from vascular disease. Our results suggest that retinal spreading depolarization could contribute to retinal damage in acute retinal ischemia and demonstrate that pharmacological agents can reduce retinal spreading depolarization frequency after retinal vessel occlusion. Blocking retinal spreading depolarization generation may represent a therapeutic strategy for preserving vision in branch retinal vein occlusion patients. PMID:27389181
NASA Astrophysics Data System (ADS)
Yang, Juan-Cheng; Qi, Tian-Yu; Han, Tian-Yang; Zhang, Jie; Ni, Ming-Jiu
2018-01-01
The spreading characteristics of a liquid GaInSn alloy droplet on a glass surface with the action of a horizontal magnetic field have been experimentally investigated in the present paper. With changing the impact velocity from 0.1 m/s to 1.2 m/s and increasing the magnetic field from 0 T to 1.6 T, we focus on studying the influence of the horizontal magnetic field on the spreading characteristics of a liquid metal droplet using the shadow-graph method. The elliptical spreading pattern of a liquid metal droplet induced by the horizontal magnetic field was discovered by experiments. By introducing a numerical method in getting the distribution of current lines and the Lorentz force inside the droplet, we give a detailed explanation on the mechanism of elliptical spreading. Furthermore, some quantitative results on a maximum spreading factor and time at moment of maximum spreading varied with the Hartmann number and Weber number are shown to give us a comprehensive understanding of the elliptical spreading. With the increasing of the magnetic field, the maximum spreading factor in the front view is reduced while that in the side view is increased, which reveals a larger deformation happened during the spreading process. While with the increasing of impact velocity, the spreading factor increased. Finally, we present a non-dimensional parameter to get scaling laws for the averaged maximum spreading factor and the aspect ratio of the maximum spreading factor; results show that the predict data can agree with experimental data in a certain degree.
Kori, Soichiro; Namiki, Hideo; Suzuki, Kingo
2009-09-01
Green tea polyphenols have been reported to have anti-inflammatory activities, although the molecular mechanisms responsible for this effect remain unclear. In the present study, we examined the effect of green tea extract and a variety of polyphenolic compounds on spreading of peripheral blood polymorphonuclear leukocytes (PMNs) over fibrinogen-coated surfaces. Green tea extract exerted a biphasic effect on PMN spreading; it induced or suppressed spreading at low and high concentrations, respectively. We also found that pyrogallol-bearing compounds have spreading induction activity. Among the compounds tested, tannic acid (TA) had the strongest activity; the concentrations required for induction of maximal spreading were 2 microM for TA, 200 microM for (-)-epigallocatechin gallate, and 2000 microM for the other active compounds. Furthermore, TA was the only compound showing a biphasic effect similar to that of green tea extract; TA at 20 or 200 microM suppressed spreading. The spreading-stimulatory signal was still latent during PMN exposure to TA at concentrations that inhibited spreading, because the pre-exposed PMNs underwent spreading when plated after removal of free TA by centrifugation. The spreading-inhibitory effect of TA at high concentrations overcame the induction of spreading by other stimuli, including phorbol 12-myristate 13-acetate, hydrogen peroxide, denatured fibrinogen surfaces, and naked plastic surfaces. These results suggest that TA as well as green tea extract is bi-functional, having pro-inflammatory and anti-inflammatory effects at low and high concentrations, respectively. Pharmacological use of TA may thus provide new strategies aimed at regulation of PMN spreading for control of inflammation.
A method of PSF generation for 3D brightfield deconvolution.
Tadrous, P J
2010-02-01
This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function.
Toe spreading ability in men with chronic pelvic pain syndrome
Yilmaz, Ugur; Rothman, Ivan; Ciol, Marcia A; Yang, Claire C; Berger, Richard E
2005-01-01
Background We examined toe-spreading ability in subjects with chronic pelvic pain syndrome (CPPS) to test the hypothesis that subjects with CPPS could have deficiencies in lower extremity functions innervated by sacral spinal roots. Methods Seventy two subjects with CPPS and 98 volunteer controls were examined as part of a larger study on CPPS. All the subjects underwent a detailed urologic and neurological examination including a toe-spreading examination with a quantitative scoring system. We compared the groups in terms of ability of toe-spreading as either "complete" (all toes spreading) or "incomplete" (at least one interdigital space not spreading) and also by comparing the number of interdigital spaces. For CPPS subjects only, we also analyzed the variation of the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) scales by toe-spreading categories. Results CPPS subjects were less often able to spread all toes than subjects without CPPS (p = 0.005). None of the NIH-CPSI sub-scales (pain, urinary symptoms, and quality of life), nor the total score showed an association with toe spreading ability. Conclusion We found toe spreading to be diminished in subjects with CPPS. We hypothesize that incomplete toe spreading in subjects with CPPS may be related to subtle deficits involving the most caudal part of the spinal segments. PMID:15949041
RECOGNIZE: A Social Norms Campaign to Reduce Rumor Spreading in a Junior High School
ERIC Educational Resources Information Center
Cross, Jennifer E.; Peisner, William
2009-01-01
This article studied changes in rumor spreading and perceptions of peers' rumor spreading among students at one public junior high school following a social norms marketing campaign. Results of the study show that perceptions of peer rumor spreading fell following the campaign, but self-reports of rumor spreading did not decrease. Results suggest…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
..., the Exchange implemented specific definitions and margin requirements for butterfly spreads and box spreads.\\7\\ In a butterfly spread, a two-legged spread is combined with a second two- legged spread (same type--put or call--and same underlying security) as in the following example: \\7\\ The butterfly and box...
Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects
NASA Technical Reports Server (NTRS)
Olson, S. L.
1991-01-01
Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.
Flame spread behavior over combustible thick solid of paper, bagasse and mixed paper/bagasse
NASA Astrophysics Data System (ADS)
Azahari Razali, Mohd; Mohd, Sofian; Sapit, Azwan; Nizam Mohammed, Akmal; Husaini Ismail, Ahmad; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir
2017-09-01
Flame spread behavior on combustible solid is one of important research related to Fire Safety Engineering. Now, there are a lot of combustible solid composed from mixed materials. In this study, experiments have been conducted to investigate flame spread behavior over combustible solid composed by paper, bagasse and mixed paper/bagasse. Experimental data is captured by using video recording and examined flame spread shape and rate. From the results obtained, shows that the different materials produce different flame spread shape and rate. Different flame shape is seen between all types of samples. Flame spread rate of 100% paper is faster than the one of 100% bagasse. Based on the result, it is also inferred that the material composition can be influenced on the flame spread shape and flame spread rate of mixed paper/bagasse.
Gill, Kamal S; Beier, Frank; Goldberg, Harvey A
2008-07-01
The mammalian growth plate is a dynamic structure rich in extracellular matrix (ECM). Interactions of growth plate chondrocytes with ECM proteins regulate cell behavior. In this study, we compared chondrocyte adhesion and spreading dynamics on fibronectin (FN) and bone sialoprotein (BSP). Chondrocyte adhesion and spreading were also compared with fibroblasts to analyze potential cell-type-specific effects. Chondrocyte adhesion to BSP is independent of posttranslational modifications but is dependent on the RGD sequence in BSP. Whereas chondrocytes and fibroblasts adhered at similar levels on FN and BSP, cells displayed more actin-dependent spread on FN despite a 16x molar excess of BSP adsorbed to plastic. To identify intracellular mediators responsible for this difference in spreading, we investigated focal adhesion kinase (FAK)-Src and Rho-Rho kinase (ROCK) signaling. Although activated FAK localized to the vertices of adhered chondrocytes, levels of FAK activation did not correlate with the extent of spreading. Furthermore, Src inhibition reduced chondrocyte spreading on both FN and BSP, suggesting that FAK-Src signaling is not responsible for less cell spreading on BSP. In contrast, inhibition of Rho and ROCK in chondrocytes increased cell spreading on BSP and membrane protrusiveness on FN but did not affect cell adhesion. In fibroblasts, Rho inhibition increased fibroblast spreading on BSP while ROCK inhibition changed membrane protrusiveness of FN and BSP. In summary, we identify a novel role for Rho-ROCK signaling in regulating chondrocyte spreading and demonstrate both cell- and matrix molecule-specific mechanisms controlling cell spreading.
Gill, Kamal S.; Beier, Frank; Goldberg, Harvey A.
2008-01-01
The mammalian growth plate is a dynamic structure rich in extracellular matrix (ECM). Interactions of growth plate chondrocytes with ECM proteins regulate cell behavior. In this study, we compared chondrocyte adhesion and spreading dynamics on fibronectin (FN) and bone sialoprotein (BSP). Chondrocyte adhesion and spreading were also compared with fibroblasts to analyze potential cell-type-specific effects. Chondrocyte adhesion to BSP is independent of posttranslational modifications but is dependent on the RGD sequence in BSP. Whereas chondrocytes and fibroblasts adhered at similar levels on FN and BSP, cells displayed more actin-dependent spread on FN despite a 16× molar excess of BSP adsorbed to plastic. To identify intracellular mediators responsible for this difference in spreading, we investigated focal adhesion kinase (FAK)-Src and Rho-Rho kinase (ROCK) signaling. Although activated FAK localized to the vertices of adhered chondrocytes, levels of FAK activation did not correlate with the extent of spreading. Furthermore, Src inhibition reduced chondrocyte spreading on both FN and BSP, suggesting that FAK-Src signaling is not responsible for less cell spreading on BSP. In contrast, inhibition of Rho and ROCK in chondrocytes increased cell spreading on BSP and membrane protrusiveness on FN but did not affect cell adhesion. In fibroblasts, Rho inhibition increased fibroblast spreading on BSP while ROCK inhibition changed membrane protrusiveness of FN and BSP. In summary, we identify a novel role for Rho-ROCK signaling in regulating chondrocyte spreading and demonstrate both cell- and matrix molecule-specific mechanisms controlling cell spreading. PMID:18463228
Emergence of two lamellas during impact of compound droplets
NASA Astrophysics Data System (ADS)
Liu, Dongdong; Tran, Tuan
2018-05-01
A compound droplet consisting of water and silicone oil either spreads or splashes upon impacting a solid surface. We show that the transition from spreading to splashing of this type of compound droplet can be changed by varying the volumetric oil ratio in the droplets. In the spreading regime, we observe a surprising emergence of two lamellas spreading one after the other: the first spreading lamella consists of only oil and the trailing one water. We show that the two lamellas eventually meet, significantly affecting the spreading dynamics. Finally, we quantify the maximum spreading radius and show that it is a function of both the impact velocity and the volumetric oil ratio.
Dynamic properties of epidemic spreading on finite size complex networks
NASA Astrophysics Data System (ADS)
Li, Ying; Liu, Yang; Shan, Xiu-Ming; Ren, Yong; Jiao, Jian; Qiu, Ben
2005-11-01
The Internet presents a complex topological structure, on which computer viruses can easily spread. By using theoretical analysis and computer simulation methods, the dynamic process of disease spreading on finite size networks with complex topological structure is investigated. On the finite size networks, the spreading process of SIS (susceptible-infected-susceptible) model is a finite Markov chain with an absorbing state. Two parameters, the survival probability and the conditional infecting probability, are introduced to describe the dynamic properties of disease spreading on finite size networks. Our results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks. Also, knowledge about the dynamic character of virus spreading is helpful for adopting immunity policy.
A new method for the analysis of fire spread modeling errors
Francis M. Fujioka
2002-01-01
Fire spread models have a long history, and their use will continue to grow as they evolve from a research tool to an operational tool. This paper describes a new method to analyse two-dimensional fire spread modeling errors, particularly to quantify the uncertainties of fire spread predictions. Measures of error are defined from the respective spread distances of...
Textural, Rheological and Sensory Properties and Oxidative Stability of Nut Spreads—A Review
Shakerardekani, Ahmad; Karim, Roselina; Ghazali, Hasanah Mohd; Chin, Nyuk Ling
2013-01-01
Tree nuts are rich in macro and micronutrients, phytochemicals, tocopherols and phenolic compounds. The development of nut spreads would potentially increase the food uses of nuts and introduce consumers with a healthier, non-animal breakfast snack food. Nut spreads are spreadable products made from nuts that are ground into paste. Roasting and milling (particle size reduction) are two important stages for the production of nut spreads that affected the textural, rheological characteristic and overall quality of the nut spread. Textural, color, and flavor properties of nut spreads play a major role in consumer appeal, buying decisions and eventual consumption. Stability of nut spreads is influenced by its particle size. Proper combination of ingredients (nut paste, sweetener, vegetable oil and protein sources) is also required to ensure a stable nut spread product is produced. Most of the nut spreads behaved like a non-Newtonian pseudo-plastic fluid under yield stress which help the producers how to start pumping and stirring of the nut spreads. Similar to other high oil content products, nut spreads are susceptible to autoxidation. Their oxidation can be controlled by application of antioxidants, using processing techniques that minimize tocopherol and other natural antioxidant losses. PMID:23429239
NASA Astrophysics Data System (ADS)
Jourdain, A.; Singh, S. C.; Klinger, Y.
2013-12-01
Transform faults are the major discontinuities and define the main segment boundaries along spreading centres but their anatomy is poorly understood because of their complex seafloor morphology, even though they are observed at all types of spreading centres. Here, we present high-resolution seismic reflection images across the sedimented Andaman Sea Transform Fault where the sediments record the faulting and allow studying the evolution of the transform fault both in space and time. Furthermore, sediments allow the imaging of the faults down to the Moho depth that provides insight on the interplay between tectonic and magmatic processes. On the other hand, overlapping spreading centres (OSC) are small-scale discontinuities, possibly transient, and are observed only along fast or intermediate spreading centres. Exceptionally, an overlapping spreading centre is present at the slow spreading Andaman Sea Spreading Centre, which, we suggest, is due to the presence of thick sediments that hamper the efficient hydrothermal circulation allowing magma to stay much longer in the crust at different depths, and up to close to the segment ends, leading to the development of an overlapping spreading. The seismic reflection images across the OSC indicate the presence of large magma bodies in the crust. Seismic images also provide images of active faults allowing to study the link between faulting and magmatism. Interestingly, an earthquake swarm occurred at propagating limb of the OSC in 2006, after the great 2004 Andaman-Sumatra earthquake of Mw=9.3, highlighting the migration of the OSC westward. In this paper, we will show seismic reflection images and interpret these images in the light of bathymetry and earthquake data, and provide the anatomy of the ridge discontinuities along the slow spreading sedimented Andaman Sea Spreading Centre.
Even, Deborah L; Henley, Allison M; Geraghty, Robert J
2006-08-01
Herpes simplex virus type 1 (HSV-1) spreads from an infected cell to an uninfected cell by virus entry, virus-induced cell fusion, and cell-cell spread. The three forms of virus spread require the viral proteins gB, gD, and gH-gL, as well as a cellular gD receptor. The mutual requirement for the fusion glycoproteins and gD receptor suggests that virus entry, cell fusion, and cell-cell spread occur by a similar mechanism. The goals of this study were to examine the role of the nectin-1alpha transmembrane domain and cytoplasmic tail in cell-cell spread and to obtain a better understanding of the receptor-dependent events occurring at the plasma membrane during cell-cell spread. We determined that an intact nectin-1alpha V-like domain was required for cell-cell spread, while a membrane-spanning domain and cytoplasmic tail were not. Chimeric forms of nectin-1 that were non-functional for virus entry did not mediate cell-cell spread regardless of whether they could mediate cell fusion. Also, cell-cell spread of syncytial isolates was dependent upon nectin-1alpha expression and occurred through a nectin-1-dependent mechanism. Taken together, our results indicate that nectin-1-dependent events occurring at the plasma membrane during cell-cell spread were equivalent to those for virus entry.
Flame-spreading phenomena in the fin-slot region of a solid rocket motor
NASA Astrophysics Data System (ADS)
Kuo, K. K.; Kokal, R. A.; Paulauskas, M.; Alaksin, P.; Lee, L. S.
1993-06-01
Flame-spreading processes in the fin-slot regions of solid-propellant motor grains have the potential to influence the behavior of the overall ignition transient. The work being done on this project is aimed at obtaining a better understanding of the flame-spreading processes in rocket motors with aft-end fin slots. Non-intrusive optical diagnostic methods were employed to acquire flame-spreading measurements in the fin-slot region of a subscale rocket motor. Highly non-uniform flame-spreading processes were observed in both the deep and shallow fin regions of the test rig. The average flame-spreading rates in the fin-slot region were found to be two orders of magnitude less than those in the circular port region of a typical rocket motor. The flame-spreading interval was found to correlate well with the local pressurization rates. A higher pressurization rate produces a shorter flame-spreading time interval.
Spontaneous Spreading of a Droplet: The Role of Solid Continuity and Advancing Contact Angle.
Jiang, Youhua; Sun, Yujin; Drelich, Jaroslaw W; Choi, Chang-Hwan
2018-05-01
Spontaneous spreading of a droplet on a solid surface is poorly understood from a macroscopic level down to a molecular level. Here, we investigate the effect of surface topography and wettability on spontaneous spreading of a water droplet. Spreading force is measured for a suspended droplet that minimizes interference of kinetic energy in the spontaneous spreading during its contact with solid surfaces of discontinuous (pillar) and continuous (pore) patterns with various shapes and dimensions. Results show that a droplet cannot spread spontaneously on pillared surfaces regardless of their shapes or dimensions because of the solid discontinuity. On the contrary, a droplet on pored surfaces can undergo spontaneous spreading whose force increases with a decrease in the advancing contact angle. Theoretical models based on both the system free energy and capillary force along the contact line validate the direct and universal dependency of the spontaneous spreading force on the advancing contact angle.
Spreading granular material with a blade
NASA Astrophysics Data System (ADS)
Dressaire, Emilie; Singh, Vachitar; Grimaldi, Emma; Sauret, Alban
2015-11-01
The spreading of a complex fluid with a blade is encountered in applications that range from the bulldozing of granular material in construction projects to the coating of substrates with fluids in industrial applications. This spreading process is also present in everyday life, when we use a knife to turn a lump of peanut butter into a thin layer over our morning toast. In this study, we rely on granular media in a model experiment to describe the three-dimensional spreading of the material. Our experimental set-up allows tracking the spreading of a sandpile on a translating flat surface as the blade remains fixed. We characterize the spreading dynamics and the shape of the spread fluid layer when varying the tilt of the blade, its spacing with the surface and its speed. Our findings suggest that it is possible to tune the spreading parameters to optimize the coating.
Influence of slope on fire spread rate
B.W. Butler; W.R. Anderson; E.A. Catchpole
2007-01-01
Data demonstrate the effect of slope on heading and backing fires burning through woody fuels. The data indicate that the upper limit of heading fire rate of spread is defined by the rate of spread up a vertical fuel array, and the lower limit is defined by the rate of spread of a backing fire burning downslope. The minimum spread rate is found to occur at nominally --...
Multicarrier orthogonal spread-spectrum (MOSS) data communications
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2008-01-01
Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.
Url, C; Schartinger, V H; Riechelmann, H; Glückert, R; Maier, H; Trumpp, M; Widmann, G
2013-10-01
Extracapsular spread of cervical lymph nodes deteriorates the prognosis of patients with head and neck squamous cell carcinoma. Postoperative radiochemotherapy is superior to postoperative radiotherapy alone in patients with histologically proven extracapsular spread. If extracapsular spread can be detected preoperatively, patients may favor primary radiochemotherapy instead of primary surgery plus postoperative radiochemotherapy. Computed tomography (CT) scans of nodal positive head and neck squamous cell carcinoma patients treated between 2008 and 2010 with comprehensive neck dissection as part of first line surgical treatment were retrospectively scanned for extracapsular spread by two blinded radiologists. If a positive lymph node was identified by the pathologist, CT scans were assessed for extracapsular spread retrospectively. CT criteria for Extracapsular spread were apparent fat and soft tissue infiltration or infiltration of sternocleidomastoid muscle, internal jugular vein or carotid artery. Radiologic judgment was compared with histological evidence of extracapsular spread and specificity and sensitivity of CT detection was calculated. Forty-nine patients with histologically proven positive lymph nodes (pN+) were included. Extracapsular spread was histologically proven in 17 cases; the number of all affected lymph nodes was not listed. Radiologist 1 found extracapsular spread in CT scans of 15/49 patients and radiologist 2 in 16/49 patients (Cohen's kappa=0.86; p<0.01). Sensitivity of radiologic extracapsular spread detection was 73% (95% confidential index (CI): 44.0-89.7%) and specificity 91% (75.0-98.0%). Extracapsular spread depicted on computed tomography using strict criteria has high specificity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sibrant, A.; Davaille, A.; Mittelstaedt, E. L.
2016-12-01
Oceanic ridges exhibit significant changes in their structural, morphological, and volcanic characteristics with changes in spreading velocity. However, separating the role of correlated affects such as spreading rate and lithospheric thickness on the segmentation of the ridge axis is difficult with only field data. The goal of this study is (a) to conduct properly scaled laboratory simulations of oceanic ridges, and (b) to investigate how the morphology and geometry of spreading-normal oceanic ridges vary separately with extension rate and lithospheric thickness. We present a series of analogue experiments using colloidal silica dispersions as an Earth analogue. Saline water solutions placed in contact with these fluids, cause formation of a skin through salt diffusion, whose rheology evolves from purely viscous to elastic and brittle with increasing salinity. Applying a fixed spreading rate to this pre-formed, brittle plate resulting in cracks, faults and axial ridge structures. Lithospheric (skin) thickness at a given extension rate is varied by changing salinity of the surface water layer. With increasing spreading rate, we observe several regimes: (1) at the slowest spreading rates, the spreading axis is composed of several segments separated by non-transform offsets and has a fault-bounded, deep, U-shaped axial valley. The axis has a large sinuosity, rough topography, and jumps repeatedly. (2) At intermediate spreading rates, the spreading axis shows low sinuosity, overlapping spreading centers (OSC) , a smooth axial morphology, and very few to no jumps. The axial valley is shallow and shows a V-shape morphology. The OSCs have a ratio of length to width of 3 to 1. (3) At faster spreading rates, the axis is continuous and presents an axial high topography. (4) At the fastest spreading rates tested, the spreading axis is again segmented. Each segment is offset by well developed transform faults and the axis has a sinuosity comparable to those of regimes 2 and 3. Rotating and growing microplates are also observed in regimes 3 and 4. For the first time, we are able to independently control spreading rate, lithospheric thickness, and mechanical properties of a simulated ridge axis in the laboratory. We present results of these experiments and discuss the implications for oceanic ridges on Earth.
Epidemic spreading through direct and indirect interactions.
Ganguly, Niloy; Krueger, Tyll; Mukherjee, Animesh; Saha, Sudipta
2014-09-01
In this paper we study the susceptible-infected-susceptible epidemic dynamics, considering a specialized setting where popular places (termed passive entities) are visited by agents (termed active entities). We consider two types of spreading dynamics: direct spreading, where the active entities infect each other while visiting the passive entities, and indirect spreading, where the passive entities act as carriers and the infection is spread via them. We investigate in particular the effect of selection strategy, i.e., the way passive entities are chosen, in the spread of epidemics. We introduce a mathematical framework to study the effect of an arbitrary selection strategy and derive formulas for prevalence, extinction probabilities, and epidemic thresholds for both indirect and direct spreading. We also obtain a very simple relationship between the extinction probability and the prevalence. We pay special attention to preferential selection and derive exact formulas. The analysis reveals that an increase in the diversity in the selection process lowers the epidemic thresholds. Comparing the direct and indirect spreading, we identify regions in the parameter space where the prevalence of the indirect spreading is higher than the direct one.
Spreading to localized targets in complex networks
NASA Astrophysics Data System (ADS)
Sun, Ye; Ma, Long; Zeng, An; Wang, Wen-Xu
2016-12-01
As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and news propagation, the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.
Epidemic spreading through direct and indirect interactions
NASA Astrophysics Data System (ADS)
Ganguly, Niloy; Krueger, Tyll; Mukherjee, Animesh; Saha, Sudipta
2014-09-01
In this paper we study the susceptible-infected-susceptible epidemic dynamics, considering a specialized setting where popular places (termed passive entities) are visited by agents (termed active entities). We consider two types of spreading dynamics: direct spreading, where the active entities infect each other while visiting the passive entities, and indirect spreading, where the passive entities act as carriers and the infection is spread via them. We investigate in particular the effect of selection strategy, i.e., the way passive entities are chosen, in the spread of epidemics. We introduce a mathematical framework to study the effect of an arbitrary selection strategy and derive formulas for prevalence, extinction probabilities, and epidemic thresholds for both indirect and direct spreading. We also obtain a very simple relationship between the extinction probability and the prevalence. We pay special attention to preferential selection and derive exact formulas. The analysis reveals that an increase in the diversity in the selection process lowers the epidemic thresholds. Comparing the direct and indirect spreading, we identify regions in the parameter space where the prevalence of the indirect spreading is higher than the direct one.
Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex
Major, Sebastian; Pannek, Heinz-Wolfgang; Woitzik, Johannes; Scheel, Michael; Wiesenthal, Dirk; Martus, Peter; Winkler, Maren K.L.; Hartings, Jed A.; Fabricius, Martin; Speckmann, Erwin-Josef; Gorji, Ali
2012-01-01
Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating channels initiates spreading depression of brain activity. In contrast, epileptic seizures show modest ion translocation and sustained depolarization below the inactivation threshold for action potential generating channels. Such modest sustained depolarization allows synchronous, highly frequent neuronal firing; ictal epileptic field potentials being its electrocorticographic and epileptic seizure its clinical correlate. Nevertheless, Leão in 1944 and Van Harreveld and Stamm in 1953 described in animals that silencing of brain activity induced by spreading depolarization changed during minimal electrical stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We here report on such spreading convulsions in monopolar subdural recordings in 2 of 25 consecutive aneurismal subarachnoid haemorrhage patients in vivo and neocortical slices from 12 patients with intractable temporal lobe epilepsy in vitro. The in vitro results suggest that γ-aminobutyric acid-mediated inhibition protects from spreading convulsions. Moreover, we describe arterial pulse artefacts mimicking epileptic field potentials in three patients with subarachnoid haemorrhage that ride on the slow potential peak. Twenty-one of the 25 subarachnoid haemorrhage patients (84%) had 656 spreading depolarizations in contrast to only three patients (12%) with 55 ictal epileptic events isolated from spreading depolarizations. Spreading depolarization frequency and depression periods per 24 h recording episodes showed an early and a delayed peak on Day 7. Patients surviving subarachnoid haemorrhage with poor outcome at 6 months showed significantly higher total and peak numbers of spreading depolarizations and significantly longer total and peak depression periods during the electrocorticographic monitoring than patients with good outcome. In a semi-structured telephone interview 3 years after the initial haemorrhage, 44% of the subarachnoid haemorrhage survivors had developed late post-haemorrhagic seizures requiring anti-convulsant medication. In those patients, peak spreading depolarization number had been significantly higher [15.1 (11.4–30.8) versus 7.0 (0.8–11.2) events per day, P = 0.045]. In summary, monopolar recordings here provided unequivocal evidence of spreading convulsions in patients. Hence, practically all major pathological cortical network events in animals have now been observed in people. Early spreading depolarizations may indicate a risk for late post-haemorrhagic seizures. PMID:22120143
Cooperative spreading processes in multiplex networks.
Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An
2016-06-01
This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.
Dielectric fluid directional spreading under the action of corona discharge
NASA Astrophysics Data System (ADS)
Zhou, Shangru; Liu, Jie; Hu, Qun; Jiang, Teng; Yang, Jinchu; Liu, Sheng; Zheng, Huai
2018-01-01
Liquid spreading is a very common nature phenomenon and of significant importance for a broad range of applications. In this study, a dielectric fluid directional spreading phenomenon is presented. Under the action of corona discharge, a dielectric fluid, here a typical silicone directionally spreads along conductive patterns on conductive/nonconductive substrates. Directional spreading behaviors of silicone were experimentally observed on different conductive patterns in detail. Spreading speeds were analyzed at different driving voltages, which induced the corona discharge. The presented phenomenon may be useful to inspire several techniques of manipulating liquid transportation and fabricating micropatterns.
Differential Dynamics of Platelet Contact and Spreading
Lee, Dooyoung; Fong, Karen P.; King, Michael R.; Brass, Lawrence F.; Hammer, Daniel A.
2012-01-01
Platelet spreading is critical for hemostatic plug formation and thrombosis. However, the detailed dynamics of platelet spreading as a function of receptor-ligand adhesive interactions has not been thoroughly investigated. Using reflection interference contrast microscopy, we found that both adhesive interactions and PAR4 activation affect the dynamics of platelet membrane contact formation during spreading. The initial growth of close contact area during spreading was controlled by the combination of different immobilized ligands or PAR4 activation on fibrinogen, whereas the growth of the total area of spreading was independent of adhesion type and PAR4 signaling. We found that filopodia extend to their maximal length and then contract over time; and that filopodial protrusion and expansion were affected by PAR4 signaling. Upon PAR4 activation, the integrin αIIbβ3 mediated close contact to fibrinogen substrata and led to the formation of ringlike patterns in the platelet contact zone. A systematic study of platelet spreading of GPVI-, α2-, or β3-deficient platelets on collagen or fibrinogen suggests the integrin α2 is indispensable for spreading on collagen. The platelet collagen receptors GPVI and α2 regulate integrin αIIbβ3-mediated platelet spreading on fibrinogen. This work elucidates quantitatively how receptor-ligand adhesion and biochemical signals synergistically control platelet spreading. PMID:22325269
Barretto, Naina; Sainz, Bruno; Hussain, Snawar
2014-01-01
ABSTRACT Hepatitis C virus (HCV) infects 180 million people worldwide and is a leading cause of liver diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma. It has been shown that HCV can spread to naive cells using two distinct entry mechanisms, “cell-free” entry of infectious extracellular virions that have been released by infected cells and direct “cell-to-cell” transmission. Here, we examined host cell requirements for HCV spread and found that the cholesterol uptake receptor NPC1L1, which we recently identified as being an antiviral target involved in HCV cell-free entry/spread, is also required for the cell-to-cell spread. In contrast, the very low density lipoprotein (VLDL) pathway, which is required for the secretion of cell-free infectious virus and thus has been identified as an antiviral target for blocking cell-free virus secretion/spread, is not required for cell-to-cell spread. Noting that HCV cell-free and cell-to-cell spread share some common factors but not others, we tested the therapeutic implications of these observations and demonstrate that inhibitors that target cell factors required for both forms of HCV spread exhibit synergy when used in combination with interferon (a representative inhibitor of intracellular HCV production), while inhibitors that block only cell-free spread do not. This provides insight into the mechanistic basis of synergy between interferon and HCV entry inhibitors and highlights the broader, previously unappreciated impact blocking HCV cell-to-cell spread can have on the efficacy of HCV combination therapies. IMPORTANCE HCV can spread to naive cells using distinct mechanisms: “cell-free” entry of extracellular virus and direct “cell-to-cell” transmission. Herein, we identify the host cell HCV entry factor NPC1L1 as also being required for HCV cell-to-cell spread, while showing that the VLDL pathway, which is required for the secretion of cell-free infectious virus, is not required for cell-to-cell spread. While both these host factors are considered viable antiviral targets, we demonstrate that only inhibitors that block factors required for both forms of HCV entry/spread (i.e., NPC1L1) exhibit synergy when used in combination with interferon, while inhibitors that block factors required only for cell-free spread (i.e., VLDL pathway components) do not. Thus, this study advances our understanding of HCV cell-to-cell spread, provides mechanistic insight into the basis of drug synergy, and highlights inhibition of HCV spread as a previously unappreciated consideration in HCV therapy design. PMID:24554660
Predicting the evolution of spreading on complex networks
Chen, Duan-Bing; Xiao, Rui; Zeng, An
2014-01-01
Due to the wide applications, spreading processes on complex networks have been intensively studied. However, one of the most fundamental problems has not yet been well addressed: predicting the evolution of spreading based on a given snapshot of the propagation on networks. With this problem solved, one can accelerate or slow down the spreading in advance if the predicted propagation result is narrower or wider than expected. In this paper, we propose an iterative algorithm to estimate the infection probability of the spreading process and then apply it to a mean-field approach to predict the spreading coverage. The validation of the method is performed in both artificial and real networks. The results show that our method is accurate in both infection probability estimation and spreading coverage prediction. PMID:25130862
Market reaction to a bid-ask spread change: A power-law relaxation dynamics
NASA Astrophysics Data System (ADS)
Ponzi, Adam; Lillo, Fabrizio; Mantegna, Rosario N.
2009-07-01
We study the relaxation dynamics of the bid-ask spread and of the midprice after a sudden variation of the spread in a double auction financial market. We find that the spread decays as a power law to its normal value. We measure the price reversion dynamics and the permanent impact, i.e., the long-time effect on price, of a generic event altering the spread and we find an approximately linear relation between immediate and permanent impact. We hypothesize that the power-law decay of the spread is a consequence of the strategic limit order placement of liquidity providers. We support this hypothesis by investigating several quantities, such as order placement rates and distribution of prices and times of submitted orders, which affect the decay of the spread.
Padilla, Monica; Landsberger, David M
2016-03-01
Channel interaction from a broad spread of excitation is likely to be a limiting factor in performance by cochlear implant users. Although partial tripolar stimulation has been shown to reduce spread of excitation, the magnitude of the reduction is highly variable across subjects. Because the reduction in spread of excitation is typically only measured at one electrode for a given subject, the degree of variability across cochlear locations is unknown. The first goal of the present study was to determine if the reduction in spread of excitation observed from partial tripolar current focusing systematically varies across the cochlea. The second goal was to measure the variability in reduction of spread of excitation relative to monopolar stimulation across the cochlea. The third goal was to expand upon previous results that suggest that scaling of verbal descriptors can be used to predict the reduction in spread of excitation, by increasing the limited number of sites previously evaluated and verify the relationships remain with the larger dataset. The spread of excitation for monopolar and partial tripolar stimulation was measured at 5 cochlear locations using a psychophysical forward masking task. Results of the present study suggest that although partial tripolar stimulation typically reduces spread of excitation, the degree of reduction in spread of excitation was found to be highly variable and no effect of cochlear location was found. Additionally, subjective scaling of certain verbal descriptors (Clean/Dirty, Pure/Noisy) correlated with the reduction in spread of excitation suggesting sound quality scaling might be used as a quick clinical estimate of channels providing a reduction in spread of excitation. This quick scaling technique might help clinicians determine which patients would be most likely to benefit from a focused strategy. Copyright © 2016 Elsevier B.V. All rights reserved.
Padilla, Monica; Landsberger, David M.
2016-01-01
Channel interaction from a broad spread of excitation is likely to be a limiting factor in performance by cochlear implant users. Although partial tripolar stimulation has been shown to reduce spread of excitation, the magnitude of the reduction is highly variable across subjects. Because the reduction in spread of excitation is typically only measured at one electrode for a given subject, the degree of variability across cochlear locations is unknown. The first goal of the present study was to determine if the reduction in spread of excitation observed from partial tripolar current focusing systematically varies across the cochlea. The second goal was to measure the variability in reduction of spread of excitation relative to monopolar stimulation across the cochlea. The third goal was to expand upon previous results that suggest that scaling of verbal descriptors can be used to predict the reduction in spread of excitation, by increasing the limited number of sites previously evaluated and verify the relationships remain with the larger dataset. The spread of excitation for monopolar and partial tripolar stimulation was measured at 5 cochlear locations using a psychophysical forward masking task. Results of the present study suggest that although partial tripolar stimulation typically reduces spread of excitation, the degree of reduction in spread of excitation was found to be highly variable and no effect of cochlear location was found. Additionally, subjective scaling of certain verbal descriptors (Clean/Dirty, Pure/Noisy) correlated with the reduction in spread of excitation suggesting sound quality scaling might be used as a quick clinical estimate of channels providing a reduction in spread of excitation. This quick scaling technique might help clinicians determine which patients would be most likely to benefit from a focused strategy. PMID:26778546
NASA Astrophysics Data System (ADS)
Lee, C. C.; Chen, W. S.
2015-06-01
This study is to know how the characteristics of sporadic E-layer (Es-layer) affect the generation of spread-F in the nighttime ionosphere near the crest of equatorial ionization anomaly during solar minimum. The data of Es-layer parameters and spread-F are obtained from the Chungli ionograms of 1996. The Es-layer parameters include foEs (critical frequency of Es-layer), fbEs (blanketing frequency of Es-layer), and Δf (≡foEs-fbEs). Results show that the nighttime variations of foEs and fbEs medians (Δf medians) are different from (similar to) that of the occurrence probabilities of spread-F. Because the total number of Es-layer events is greater than that of spread-F events, the comparison between the medians of Es-layer parameters and the occurrence probabilities of spread-F might have a shortfall. Further, we categorize the Es-layer and spread-F events into each frequency interval of Es-layer parameters. For the occurrence probabilities of spread-F versus foEs, an increasing trend is found in post-midnight of all three seasons. The increasing trend also exists in pre-midnight of the J-months and in post-midnight of all seasons, for the occurrence probabilities of spread-F versus Δf. These demonstrate that the spread-F occurrence increases with increasing foEs and/or Δf. Moreover, the increasing trends indicate that polarization electric fields generated in Es-layer assist to produce spread-F, through the electrodynamical coupling of Es-layer and F-region. Regarding the occurrence probabilities of spread-F versus fbEs, the significant trend only appears in post-midnight of the E-months. This implies that fbEs might not be a major factor for the spread-F formation.
Epidemics in Complex Networks: The Diversity of Hubs
NASA Astrophysics Data System (ADS)
Kitsak, Maksim; Gallos, Lazaros K.; Havlin, Shlomo; Stanley, H. Eugene; Makse, Hernan A.
2009-03-01
Many complex systems are believed to be vulnerable to spread of viruses and information owing to their high level of interconnectivity. Even viruses of low contagiousness easily proliferate the Internet. Rumors, fads, and innovation ideas are prone to efficient spreading in various social systems. Another commonly accepted standpoint is the importance of the most connected elements (hubs) in the spreading processes. We address following questions. Do all hubs conduct epidemics in the same manner? How does the epidemics spread depend on the structure of the network? What is the most efficient way to spread information over the system? We analyze several large-scale systems in the framework of of the susceptible/infective/removed (SIR) disease spread model which can also be mapped to the problem of rumor or fad spreading. We show that hubs are often ineffective in the transmission of virus or information owing to the highly heterogeneous topology of most networks. We also propose a new tool to evaluate the efficiency of nodes in spreading virus or information.
Spreading Speed of Magnetopause Reconnection X-Lines Using Ground-Satellite Coordination
NASA Astrophysics Data System (ADS)
Zou, Ying; Walsh, Brian M.; Nishimura, Yukitoshi; Angelopoulos, Vassilis; Ruohoniemi, J. Michael; McWilliams, Kathryn A.; Nishitani, Nozomu
2018-01-01
Conceptual and numerical models predict that magnetic reconnection starts at a localized region and then spreads out of the reconnection plane. At the Earth's magnetopause this spreading would occur primarily in local time along the boundary. Different simulations have found the spreading to occur at different speeds such as the Alfvén speed and speed of the current carriers. We use conjugate Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and Super Dual Auroral Radar Network (SuperDARN) radar measurements to observationally determine the X-line spreading speed at the magnetopause. THEMIS probes the reconnection parameters locally, and SuperDARN tracks the reconnection development remotely. Spreading speeds under different magnetopause boundary conditions are obtained and compared with model predictions. We find that while spreading under weak guide field could be explained by either the current carriers or the Alfvén waves, spreading under strong guide field is consistent only with the current carriers.
A novel information cascade model in online social networks
NASA Astrophysics Data System (ADS)
Tong, Chao; He, Wenbo; Niu, Jianwei; Xie, Zhongyu
2016-02-01
The spread and diffusion of information has become one of the hot issues in today's social network analysis. To analyze the spread of online social network information and the attribute of cascade, in this paper, we discuss the spread of two kinds of users' decisions for city-wide activities, namely the "want to take part in the activity" and "be interested in the activity", based on the users' attention in "DouBan" and the data of the city-wide activities. We analyze the characteristics of the activity-decision's spread in these aspects: the scale and scope of the cascade subgraph, the structure characteristic of the cascade subgraph, the topological attribute of spread tree, and the occurrence frequency of cascade subgraph. On this basis, we propose a new information spread model. Based on the classical independent diffusion model, we introduce three mechanisms, equal probability, similarity of nodes, and popularity of nodes, which can generate and affect the spread of information. Besides, by conducting the experiments in six different kinds of network data set, we compare the effects of three mechanisms above mentioned, totally six specific factors, on the spread of information, and put forward that the node's popularity plays an important role in the information spread.
Spreading activation in nonverbal memory networks.
Foster, Paul S; Wakefield, Candias; Pryjmak, Scott; Roosa, Katelyn M; Branch, Kaylei K; Drago, Valeria; Harrison, David W; Ruff, Ronald
2017-09-01
Theories of spreading activation primarily involve semantic memory networks. However, the existence of separate verbal and visuospatial memory networks suggests that spreading activation may also occur in visuospatial memory networks. The purpose of the present investigation was to explore this possibility. Specifically, this study sought to create and describe the design frequency corpus and to determine whether this measure of visuospatial spreading activation was related to right hemisphere functioning and spreading activation in verbal memory networks. We used word frequencies taken from the Controlled Oral Word Association Test and design frequencies taken from the Ruff Figural Fluency Test as measures of verbal and visuospatial spreading activation, respectively. Average word and design frequencies were then correlated with measures of left and right cerebral functioning. The results indicated that a significant relationship exists between performance on a test of right posterior functioning (Block Design) and design frequency. A significant negative relationship also exists between spreading activation in semantic memory networks and design frequency. Based on our findings, the hypotheses were supported. Further research will need to be conducted to examine whether spreading activation exists in visuospatial memory networks as well as the parameters that might modulate this spreading activation, such as the influence of neurotransmitters.
Spatial spreading of infectious disease via local and national mobility networks in South Korea
NASA Astrophysics Data System (ADS)
Kwon, Okyu; Son, Woo-Sik
2017-12-01
We study the spread of infectious disease based on local- and national-scale mobility networks. We construct a local mobility network using data on urban bus services to estimate local-scale movement of people. We also construct a national mobility network from orientation-destination data of vehicular traffic between highway tollgates to evaluate national-scale movement of people. A metapopulation model is used to simulate the spread of epidemics. Thus, the number of infected people is simulated using a susceptible-infectious-recovered (SIR) model within the administrative division, and inter-division spread of infected people is determined through local and national mobility networks. In this paper, we consider two scenarios for epidemic spread. In the first, the infectious disease only spreads through local-scale movement of people, that is, the local mobility network. In the second, it spreads via both local and national mobility networks. For the former, the simulation results show infected people sequentially spread to neighboring divisions. Yet for the latter, we observe a faster spreading pattern to distant divisions. Thus, we confirm the national mobility network enhances synchronization among the incidence profiles of all administrative divisions.
Flame Spread Along Free Edges of Thermally Thin Samples in Microgravity
NASA Technical Reports Server (NTRS)
Mell, W. E.; Olson, S. L.; Kashiwagi, T.
2000-01-01
The effects of imposed flow velocity on flame spread along open edges of a thermally thin cellulosic sample in microgravity are studied experimentally and theoretically. In this study, the sample is ignited locally at the middle of the 4 cm wide sample and subsequent flame spread reaches both open edges of the sample. The following flame behaviors are observed in the experiments and predicted by the numerical calculation; in order of increased imposed flow velocity: (1) ignition but subsequent flame spread is not attained, (2) flame spreads upstream (opposed mode) without any downstream flame, and (3) the upstream flame and two separate downstream flames traveling along the two open edges (concurrent mode). Generally, the upstream and downstream edge flame spread rates are faster than the central flame spread rate for an imposed flow velocity of up to 5 cm/s. This is due to greater oxygen supply from the outer free stream to the edge flames than the central flames, For the upstream edge flame, the greater oxygen supply results in a flame spread rate that is nearly independent of, or decreases gradually, with the imposed flow velocity. The spread rate of the downstream edge, however, increases significantly with the imposed flow velocity.
Information spreading dynamics in hypernetworks
NASA Astrophysics Data System (ADS)
Suo, Qi; Guo, Jin-Li; Shen, Ai-Zhong
2018-04-01
Contact pattern and spreading strategy fundamentally influence the spread of information. Current mathematical methods largely assume that contacts between individuals are fixed by networks. In fact, individuals are affected by all his/her neighbors in different social relationships. Here, we develop a mathematical approach to depict the information spreading process in hypernetworks. Each individual is viewed as a node, and each social relationship containing the individual is viewed as a hyperedge. Based on SIS epidemic model, we construct two spreading models. One model is based on global transmission, corresponding to RP strategy. The other is based on local transmission, corresponding to CP strategy. These models can degenerate into complex network models with a special parameter. Thus hypernetwork models extend the traditional models and are more realistic. Further, we discuss the impact of parameters including structure parameters of hypernetwork, spreading rate, recovering rate as well as information seed on the models. Propagation time and density of informed nodes can reveal the overall trend of information dissemination. Comparing these two models, we find out that there is no spreading threshold in RP, while there exists a spreading threshold in CP. The RP strategy induces a broader and faster information spreading process under the same parameters.
USDA-ARS?s Scientific Manuscript database
Cell spreading is an integral component of insect hemocytic immune reactions to infections and invasions. Cell spreading is accomplished by cytoskeleton rearrangement, which is activated by three major immune mediators, biogenic monoamines, plasmatocyte-spreading peptide (PSP), and eicosanoids, part...
21 CFR 133.175 - Pasteurized cheese spread.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized cheese spread. 133.175 Section 133.175... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.175 Pasteurized cheese spread. Pasteurized cheese spread is the food...
21 CFR 133.175 - Pasteurized cheese spread.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized cheese spread. 133.175 Section 133.175... FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.175 Pasteurized cheese spread. Pasteurized cheese spread is the food...
Exploring the Morphology of oceanic ridges with experiments using colloidal dispersions
NASA Astrophysics Data System (ADS)
Davaille, Anne; Sibrant, Aurore; Mittelstaedt, Eric; Aubertin, Alban; Auffray, Lionel; Pidoux, Raphael
2017-04-01
Mid-ocean ridges exhibit significant changes in their structural, morphological, and volcanic characteristics with changes in lithospheric thickness and/or spreading velocity. However, to separate the respective roles of those two partly correlated effects is difficult with only field data. We therefore designed a series of laboratory experiments using colloidal silica dispersions as an Earth analogue. Saline water solutions placed in contact with these fluids, cause formation of a skin through salt diffusion, whose rheology evolves from purely viscous to elastic and brittle with increasing salinity. Applying a fixed spreading rate to this pre- formed, brittle plate results in cracks, faults and axial ridge structures. Lithospheric (skin) thickness at a given extension rate can be varied by changing the surface water layer salinity. Moreover, the mechanical properties of the skin can also be independently controlled by changing the type of colloid. We focus here on cases where the spreading direction is perpendicular to the ridge axis. For a given dispersion and salinity, we observe four regimes as the spreading rate increases: (1) at the slowest spreading rates, the spreading axis is composed of several segments separated by non-transform offsets and has a fault-bounded, deep, U-shaped axial valley. The axis has a large sinuosity, rough topography, and jumps repeatedly. (2) At intermediate spreading rates, the spreading axis shows low sinuosity, overlapping spreading centers (OSC) , a smooth axial morphology, and very few to no jumps. The axial valley is shallow and shows a V-shape morphology. The OSCs have a ratio of length to width of 3 to 1. (3) At faster spreading rates, the axis is continuous and presents an axial high topography. (4) At the fastest spreading rates tested, the spreading axis is again segmented. Each segment is offset by well developed transform faults and the axis has a sinuosity comparable to those of regimes 2 and 3. Rotating and growing microplates are also observed in regimes 3 and 4. These four regimes, as well as the decrease in sinuosity with increasing spreading rate (regime 1) down to a critical value (regimes 2 to 4), present strong similarities with natural cases. This is predicted by a new dimensionless number ΠF comparing the maximum fracture length attainable without plasticity to the axial thickness. Slow spreading, fault-dominated ridges and fast spreading, dike-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value. Moreover, our results suggests that the fraction M of spreading rate accomodated by magmatic dyke opening is closely related to ΠF.
Asymmetrically interacting spreading dynamics on complex layered networks.
Wang, Wei; Tang, Ming; Yang, Hui; Younghae Do; Lai, Ying-Cheng; Lee, GyuWon
2014-05-29
The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics.
Transport and Chemical Effects on Concurrent and Opposed-flow Flame Spread at Microgravity
NASA Technical Reports Server (NTRS)
Son, Y.; Honda, L. K.; Ronney, P. D.
2001-01-01
Flame spread over flat solid fuel beds is a useful means of understanding more complex two-phase non-premixed spreading flames, such as those that may occur due to accidents in inhabited buildings and orbiting spacecraft. The role of buoyant convection on flame spread is substantial, especially for thermally-thick fuels. The conventional view, as supported by computations and space experiments, is that for quiescent mu-g conditions, the spread rate must be unsteady and decreasing until extinction occurs due to radiative losses. However, this view does not consider that radiative transfer to the fuel surface can enhance flame spread. In this work we suggest that radiative transfer from the flame itself, not just from an external source, can lead to steady flame spread at mu-g over thick fuel beds.
Asymmetrically interacting spreading dynamics on complex layered networks
Wang, Wei; Tang, Ming; Yang, Hui; Younghae Do; Lai, Ying-Cheng; Lee, GyuWon
2014-01-01
The spread of disease through a physical-contact network and the spread of information about the disease on a communication network are two intimately related dynamical processes. We investigate the asymmetrical interplay between the two types of spreading dynamics, each occurring on its own layer, by focusing on the two fundamental quantities underlying any spreading process: epidemic threshold and the final infection ratio. We find that an epidemic outbreak on the contact layer can induce an outbreak on the communication layer, and information spreading can effectively raise the epidemic threshold. When structural correlation exists between the two layers, the information threshold remains unchanged but the epidemic threshold can be enhanced, making the contact layer more resilient to epidemic outbreak. We develop a physical theory to understand the intricate interplay between the two types of spreading dynamics. PMID:24872257
Energy efficiency in wireless communication systems
Caffrey, Michael Paul; Palmer, Joseph McRae
2012-12-11
Wireless communication systems and methods utilize one or more remote terminals, one or more base terminals, and a communication channel between the remote terminal(s) and base terminal(s). The remote terminal applies a direct sequence spreading code to a data signal at a spreading factor to provide a direct sequence spread spectrum (DSSS) signal. The DSSS signal is transmitted over the communication channel to the base terminal which can be configured to despread the received DSSS signal by a spreading factor matching the spreading factor utilized to spread the data signal. The remote terminal and base terminal can dynamically vary the matching spreading factors to adjust the data rate based on an estimation of operating quality over time between the remote terminal and base terminal such that the amount of data being transmitted is substantially maximized while providing a specified quality of service.
Impacts of suppressing guide on information spreading
NASA Astrophysics Data System (ADS)
Xu, Jinghong; Zhang, Lin; Ma, Baojun; Wu, Ye
2016-02-01
It is quite common that guides are introduced to suppress the information spreading in modern society for different purposes. In this paper, an agent-based model is established to quantitatively analyze the impacts of suppressing guides on information spreading. We find that the spreading threshold depends on the attractiveness of the information and the topology of the social network with no suppressing guides at all. Usually, one would expect that the existence of suppressing guides in the spreading procedure may result in less diffusion of information within the overall network. However, we find that sometimes the opposite is true: the manipulating nodes of suppressing guides may lead to more extensive information spreading when there are audiences with the reversal mind. These results can provide valuable theoretical references to public opinion guidance on various information, e.g., rumor or news spreading.
NASA Astrophysics Data System (ADS)
Mikami, Masato; Saputro, Herman; Seo, Takehiko; Oyagi, Hiroshi
2018-03-01
Stable operation of liquid-fueled combustors requires the group combustion of fuel spray. Our study employs a percolation approach to describe unsteady group-combustion excitation based on findings obtained from microgravity experiments on the flame spread of fuel droplets. We focus on droplet clouds distributed randomly in three-dimensional square lattices with a low-volatility fuel, such as n-decane in room-temperature air, where the pre-vaporization effect is negligible. We also focus on the flame spread in dilute droplet clouds near the group-combustion-excitation limit, where the droplet interactive effect is assumed negligible. The results show that the occurrence probability of group combustion sharply decreases with the increase in mean droplet spacing around a specific value, which is termed the critical mean droplet spacing. If the lattice size is at smallest about ten times as large as the flame-spread limit distance, the flame-spread characteristics are similar to those over an infinitely large cluster. The number density of unburned droplets remaining after completion of burning attained maximum around the critical mean droplet spacing. Therefore, the critical mean droplet spacing is a good index for stable combustion and unburned hydrocarbon. In the critical condition, the flame spreads through complicated paths, and thus the characteristic time scale of flame spread over droplet clouds has a very large value. The overall flame-spread rate of randomly distributed droplet clouds is almost the same as the flame-spread rate of a linear droplet array except over the flame-spread limit.
Pioz, Maryline; Guis, Hélène; Crespin, Laurent; Gay, Emilie; Calavas, Didier; Durand, Benoît; Abrial, David; Ducrot, Christian
2012-01-01
Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007-2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread.
Pioz, Maryline; Guis, Hélène; Crespin, Laurent; Gay, Emilie; Calavas, Didier; Durand, Benoît; Abrial, David; Ducrot, Christian
2012-01-01
Understanding where and how fast an infectious disease will spread during an epidemic is critical for its control. However, the task is a challenging one as numerous factors may interact and drive the spread of a disease, specifically when vector-borne diseases are involved. We advocate the use of simultaneous autoregressive models to identify environmental features that significantly impact the velocity of disease spread. We illustrate this approach by exploring several environmental factors influencing the velocity of bluetongue (BT) spread in France during the 2007–2008 epizootic wave to determine which ones were the most important drivers. We used velocities of BT spread estimated in 4,495 municipalities and tested sixteen covariates defining five thematic groups of related variables: elevation, meteorological-related variables, landscape-related variables, host availability, and vaccination. We found that ecological factors associated with vector abundance and activity (elevation and meteorological-related variables), as well as with host availability, were important drivers of the spread of the disease. Specifically, the disease spread more slowly in areas with high elevation and when heavy rainfall associated with extreme temperature events occurred one or two months prior to the first clinical case. Moreover, the density of dairy cattle was correlated negatively with the velocity of BT spread. These findings add substantially to our understanding of BT spread in a temperate climate. Finally, the approach presented in this paper can be used with other infectious diseases, and provides a powerful tool to identify environmental features driving the velocity of disease spread. PMID:22916249
9 CFR 319.762 - Ham spread, tongue spread, and similar products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Ham spread, tongue spread, and similar products. 319.762 Section 319.762 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... AND VOLUNTARY INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Meat...
9 CFR 319.762 - Ham spread, tongue spread, and similar products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Ham spread, tongue spread, and similar products. 319.762 Section 319.762 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... AND VOLUNTARY INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Meat...
NASA Astrophysics Data System (ADS)
Wang, Pu; González, Marta; Barabási, Albert-László.
2008-03-01
Standard operating systems and Bluetooth technology will be a trend for future cell phone features. These will enable cell phone viruses to spread either through SMS or by sending Bluetooth requests when cell phones are physically close enough. The difference in spreading methods gives these two types of viruses' different epidemiological characteristics. SMS viruses' spread is mainly based on people's social connections, whereas the spreading of Bluetooth viruses is affected by people's mobility patterns and population distribution. Using cell phone data recording calls, SMS and locations of more than 6 million users, we study the spread of SMS and Bluetooth viruses and characterize how the social network and the mobility of mobile phone users affect such spreading processes.
NASA Astrophysics Data System (ADS)
Li, Dandan; Ma, Jing
2017-03-01
We explore the impact of punishment of governments and sensitivity of individuals on the rumor spreading in this paper. Considering the facts that some rumors that relate to the hot events could be disseminated repeatedly, however, some other rumors will never be disseminated after they have been popular for some time. Therefore, we investigate two types (SIS and SIR) of rumor spreading models in which the punishment of government and sensitivity of individuals are considered. Based on the mean-field method, we have calculated the spreading threshold of SIS and SIR model, respectively. Furthermore, we perform the rumor spreading process in the Facebook and POK social networks, and achieve that there is an excellent agreement between the theoretical and numerical results of spreading threshold. The results indicate that improving the punishment of government and increasing the sensitivity of individuals could control the spreading of rumor effectively.
Perineural spread in head and neck tumors.
Brea Álvarez, B; Tuñón Gómez, M
2014-01-01
Perineural spread is the dissemination of some types of head and neck tumors along nervous structures. Perineural spread has negative repercussions on treatment because it requires more extensive resection and larger fields of irradiation. Moreover, perineural spread is associated with increased local recurrence, and it is considered an independent indicator of poor prognosis in the TNM classification for tumor staging. However, perineural spread often goes undetected on imaging studies. In this update, we review the concept of perineural spread, its pathogenesis, and the main pathways and connections among the facial nerves, which are essential to understand this process. Furthermore, we discuss the appropriate techniques for imaging studies, and we describe and illustrate the typical imaging signs that help identify perineural spread on CT and MRI. Finally, we discuss the differential diagnosis with other entities. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.
Experiences Spreading Organic Solid Wastes on Forest Land
J.H. Wilhoit; L.J. Samuelson
1998-01-01
This paper reviews experiences spreading organic solid wastes on forest land over the past six years. Presented are some of the first-ever reported results on tree growth responses from fertilizing pine trees with poultry litter, spreader distribution pattern results for spreading in a pine plantation stand, and a discussion of equipment-related experiences spreading...
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HENNIGAN, GARY; SHADID, JOHN; SJAARDEMA, GREGORY
2009-06-08
Nem_spread reads it's input command file (default name nem_spread.inp), takes the named ExodusII geometry definition and spreads out the geometry (and optionally results) contained in that file out to a parallel disk system. The decomposition is taken from a scalar Nemesis load balance file generated by the companion utility nem_slice.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-01
... the Introduction and Spread of Aquatic Invasive Species: Water Gardening These voluntary guidelines... spread of aquatic invasive species by water gardening. The goal of the two committees was to develop... to address the potential spread of aquatic invasive species by water gardening. The product, a draft...
Development of Pistachio (Pistacia vera L.) spread.
Shakerardekani, Ahmad; Karim, Roselina; Ghazali, Hasanah Mohd; Chin, Nyuk Ling
2013-03-01
Pistachio nut (Pistacia vera L.) is one of the most delicious and nutritious nuts in the world. Pistachio spreads were developed using pistachio paste as the main component, icing sugar, soy protein isolate (SPI), and red palm oil (RPO), at different ratios. The highest mean scores of all the sensory attributes were depicted by spreads that were made without addition of SPI. It was found that the work of shear was 0 to 11.0 kg s for an acceptable spread. Sensory spreadability, overall texture, spreadability, and overall acceptability were negatively correlated (R > 0.83) with the work of shear of spreads. The findings indicated that the presence of RPO had a direct effect on the viscoelastic behavior of the pistachio spreads. The a values, which are related to the green color of the pistachio product ranged from 1.7 to 3.9 for spread without addition of RPO, and 4.0 to 5.3 in the presence of RPO. The development of pistachio spread would potentially increase the food uses of pistachio and introduce consumers with a healthier snack food. © 2013 Institute of Food Technologists®
A model of spreading of sudden events on social networks
NASA Astrophysics Data System (ADS)
Wu, Jiao; Zheng, Muhua; Zhang, Zi-Ke; Wang, Wei; Gu, Changgui; Liu, Zonghua
2018-03-01
Information spreading has been studied for decades, but its underlying mechanism is still under debate, especially for those ones spreading extremely fast through the Internet. By focusing on the information spreading data of six typical events on Sina Weibo, we surprisingly find that the spreading of modern information shows some new features, i.e., either extremely fast or slow, depending on the individual events. To understand its mechanism, we present a susceptible-accepted-recovered model with both information sensitivity and social reinforcement. Numerical simulations show that the model can reproduce the main spreading patterns of the six typical events. By this model, we further reveal that the spreading can be speeded up by increasing either the strength of information sensitivity or social reinforcement. Depending on the transmission probability and information sensitivity, the final accepted size can change from continuous to discontinuous transition when the strength of the social reinforcement is large. Moreover, an edge-based compartmental theory is presented to explain the numerical results. These findings may be of significance on the control of information spreading in modern society.
Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.
Schertzer, E; Staver, A C; Levin, S A
2015-01-01
The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.
An investigation of flame spread over shallow liquid pools in microgravity and nonair environments
NASA Technical Reports Server (NTRS)
Ross, Howard D.; Sotos, Raymond G.
1991-01-01
Experiments of interest to combustion fundamentals and spacecraft fire safety investigated flame spread of alcohol fuels over shallow, 15 cm diameter pools in a 5.2 sec free-fall, microgravity facility. Results showed that, independent O2 concentrations, alcohol fuel, and diluent types, microgravity flame spread rates were nearly identical to those corresponding normal-gravity flames for conditions where the normal gravity flames spread uniformly. This similarity indicated buoyancy-related convection in either phase does not affect flame spread, at least for the physical scale of the experiments. However, microgravity extinction coincided with the onset conditions for pulsating spread in normal gravity, implicating gas phase, buoyant flow as a requirement for pulsating spread. When the atmospheric nitrogen was replaced with argon, the conditions for the onset of normal-gravity pulsating flame spread and microgravity flame extinction were changed, in agreement with the expected lowering of the flash point through the thermal properties of the diluent. Helium-diluted flames, however, showed unexpected results with a shift to apparently higher flash-point temperatures and high normal gravity pulsation amplitudes.
An Investigation of Flame Spread over Shallow Liquid Pools in Microgravity and Nonair Environments
NASA Technical Reports Server (NTRS)
Ross, Howard D.; Sotos, Raymond G.
1989-01-01
Experiments of interest to combustion fundamentals and spacecraft fire safety investigated flame spread of alcohol fuels over shallow, 15 cm diameter pools in a 5.2 sec free-fall, microgravity facility. Results showed that, independent O2 concentration, alcohol fuel, and diluent types, microgravity flame spread rates were nearly identical to those corresponding normal-gravity flames for conditions where the normal gravity flames spread uniformly. This similarity indicated buoyancy-related convection in either phase does not affect flame spread, at least for the physical scale of the experiments. However, microgravity extinction coincided with the onset conditions for pulsating spread in normal gravity, implicating gas phase, buoyant flow as a requirement for pulsating spread. When the atmospheric nitrogen was replaced with argon, the conditions for the onset of normal-gravity pulsating flame spread and microgravity flame extinction were changed, in agreement with the expected lowering of the flash point through the thermal properties of the diluent. Helium-diluted flames, however, showed unexpected results with a shift to apparently higher flash-point temperatures and high normal gravity pulsation amplitudes.
Segers, Laurent; Tiete, Jelmer; Braeken, An; Touhafi, Abdellah
2014-01-01
Indoor localization of persons and objects poses a great engineering challenge. Previously developed localization systems demonstrate the use of wideband techniques in ultrasound ranging systems. Direct sequence and frequency hopping spread spectrum ultrasound signals have been proven to achieve a high level of accuracy. A novel ranging method using the frequency hopping spread spectrum with finite impulse response filtering will be investigated and compared against the direct sequence spread spectrum. In the first setup, distances are estimated in a single-access environment, while in the second setup, two senders and one receiver are used. During the experiments, the micro-electromechanical systems are used as ultrasonic sensors, while the senders were implemented using field programmable gate arrays. Results show that in a single-access environment, the direct sequence spread spectrum method offers slightly better accuracy and precision performance compared to the frequency hopping spread spectrum. When two senders are used, measurements point out that the frequency hopping spread spectrum is more robust to near-far effects than the direct sequence spread spectrum. PMID:24553084
Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks
Pei, Sen; Tang, Shaoting; Zheng, Zhiming
2015-01-01
Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of humans’ physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (Facebook, coauthor, and email social networks), we find that the excitable sensor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods. PMID:25950181
Marek, Tomas; Howe, B Matthew; Amrami, Kimberly K; Spinner, Robert J
2018-06-01
Perineural spread leading to brachial plexopathy has recently been described in cases of melanoma. The occurrence and mechanism for nonmelanoma skin cancer spread to the brachial plexus is poorly understood. A retrospective chart review of the Mayo Clinic database was conducted to identify patients with nonmelanoma skin cancer and brachial plexopathy between 2000 and 2017. Inclusion criteria were a history of nonmelanoma skin cancer, a clinical diagnosis of brachial plexopathy, imaging features of perineural spread, and a positive result of examination of a biopsy specimen showing tumor in a skin nerve. Thirty-seven patients with a history of nonmelanoma skin cancer and brachial plexopathy were identified. Inclusion criteria were fulfilled in 2 cases of cutaneous squamous cell carcinoma. One case of recurrent basal cell carcinoma with perineural spread confirmed in the brachial plexus by pathologic examination was excluded because confirmatory evidence of perineural spread from the skin to the brachial plexus was not available. Perineural spread of nonmelanoma skin cancer leading to brachial plexopathy is rare. Our 2 cases and the cases found in the literature demonstrate different entry points to the neural highway resulting in neurologic deficits. The cervical plexus serves as a hub for further spread in certain cases of perineural spread of skin cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
Fluorescent visualization of a spreading surfactant
NASA Astrophysics Data System (ADS)
Fallest, David W.; Lichtenberger, Adele M.; Fox, Christopher J.; Daniels, Karen E.
2010-07-01
The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R~tδ. We find spreading exponents δH≈0.30 and δΓ≈0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of δ=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.
Effects of the distance among multiple spreaders on the spreading
NASA Astrophysics Data System (ADS)
Hu, Z.-L.; Liu, J.-G.; Yang, G.-Y.; Ren, Z.-M.
2014-04-01
It is very important to investigate the multiple spreaders' effects since the spreading phenomenon is ubiquitous in many complex systems. In this letter, we investigate the effects of the distance among the initial multiple spreaders for regular networks and WS (Watts-Strogatz) small-world networks based on the SIR (Susceptible-Infected-Recovered) model. Assuming the epidemics can spread over the network, the theoretical and experimental results show that for regular networks the larger the distance between spreaders is, the more effective the spreading is. For WS networks, the spreading efficiency will decrease when the distance exceeds a certain value, and a larger connection probability and average degree will result in a smaller distance of the most effective spreading. A better spreading strategy using n spreaders is to choose either the highest k or ks nodes with the condition that there are not any pairs of the n spreaders linked directly (Kitsak M. et al., Nat. Phys., 6 (2010) 888). However, we find that the spreading will be more effective when the distances among the largest-degree spreaders increase. All these results are independent of the network size for the two initial spreaders case. This work may give new insights to explore more effective methods to inhibit the epidemic spreading or increase the information diffusion.
Moving Cell Boundaries Drive Nuclear Shaping during Cell Spreading.
Li, Yuan; Lovett, David; Zhang, Qiao; Neelam, Srujana; Kuchibhotla, Ram Anirudh; Zhu, Ruijun; Gundersen, Gregg G; Lele, Tanmay P; Dickinson, Richard B
2015-08-18
The nucleus has a smooth, regular appearance in normal cells, and its shape is greatly altered in human pathologies. Yet, how the cell establishes nuclear shape is not well understood. We imaged the dynamics of nuclear shaping in NIH3T3 fibroblasts. Nuclei translated toward the substratum and began flattening during the early stages of cell spreading. Initially, nuclear height and width correlated with the degree of cell spreading, but over time, reached steady-state values even as the cell continued to spread. Actomyosin activity, actomyosin bundles, microtubules, and intermediate filaments, as well as the LINC complex, were all dispensable for nuclear flattening as long as the cell could spread. Inhibition of actin polymerization as well as myosin light chain kinase with the drug ML7 limited both the initial spreading of cells and flattening of nuclei, and for well-spread cells, inhibition of myosin-II ATPase with the drug blebbistatin decreased cell spreading with associated nuclear rounding. Together, these results show that cell spreading is necessary and sufficient to drive nuclear flattening under a wide range of conditions, including in the presence or absence of myosin activity. To explain this observation, we propose a computational model for nuclear and cell mechanics that shows how frictional transmission of stress from the moving cell boundaries to the nuclear surface shapes the nucleus during early cell spreading. Our results point to a surprisingly simple mechanical system in cells for establishing nuclear shapes. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Z.; Ding, W.; Zhao, X.; Qiu, N.; Lin, J.; Li, C.
2017-12-01
In Internaltional Ocean Discovery Program (IODP) Expedition 349, four sites were drilled and cored successfully in the South China Sea (SCS). Three of them are close to the central spreading ridge (Sites U1431, U1433 and U1434), and one (Site U1435) is located on an outer rise,,providingsignificant information on the spreading history of the SCS.In order to constrain the spreading historymore accurately with the core results, we analyzed the identifiable macrostructures (over 300 fractures, veins and slickensides)from all the consolidated samples of these four drill sites. Then we made a retrograde reconstruction of the SCS spreading history with the constraints of the estimated fractures and veins, post-spreading volcanism,seismic interpretation, as well as free-air gravity and magnetic anomaly and topography analysis. Our study indicates that the spreading of the SCS experienced at least one ridge jump event and two events of ridge orientation and spreading direction adjustment, which mademagnetic anomaly orientation, ridge positionand facture zone directionskeep changing in the South China Sea. During the last spreading stage, the spreading direction was north-southward but lasted for a very short time period. The oceanic crust is wider in the eastern SCS and tapers out toward west.Due to the subductionof SCS beneath the Philippine Sea plate, the seafloor began to develop new fractures:the NWW-to EW-trending R' shear faults and the NE-trending P faultsbecame dominant faults and controlled the eruption of post-drift volcanism.
Moving Cell Boundaries Drive Nuclear Shaping during Cell Spreading
Li, Yuan; Lovett, David; Zhang, Qiao; Neelam, Srujana; Kuchibhotla, Ram Anirudh; Zhu, Ruijun; Gundersen, Gregg G.; Lele, Tanmay P.; Dickinson, Richard B.
2015-01-01
The nucleus has a smooth, regular appearance in normal cells, and its shape is greatly altered in human pathologies. Yet, how the cell establishes nuclear shape is not well understood. We imaged the dynamics of nuclear shaping in NIH3T3 fibroblasts. Nuclei translated toward the substratum and began flattening during the early stages of cell spreading. Initially, nuclear height and width correlated with the degree of cell spreading, but over time, reached steady-state values even as the cell continued to spread. Actomyosin activity, actomyosin bundles, microtubules, and intermediate filaments, as well as the LINC complex, were all dispensable for nuclear flattening as long as the cell could spread. Inhibition of actin polymerization as well as myosin light chain kinase with the drug ML7 limited both the initial spreading of cells and flattening of nuclei, and for well-spread cells, inhibition of myosin-II ATPase with the drug blebbistatin decreased cell spreading with associated nuclear rounding. Together, these results show that cell spreading is necessary and sufficient to drive nuclear flattening under a wide range of conditions, including in the presence or absence of myosin activity. To explain this observation, we propose a computational model for nuclear and cell mechanics that shows how frictional transmission of stress from the moving cell boundaries to the nuclear surface shapes the nucleus during early cell spreading. Our results point to a surprisingly simple mechanical system in cells for establishing nuclear shapes. PMID:26287620
An intraorganizational model for developing and spreading quality improvement innovations.
Kellogg, Katherine C; Gainer, Lindsay A; Allen, Adrienne S; OʼSullivan, Tatum; Singer, Sara J
Recent policy reforms encourage quality improvement (QI) innovations in primary care, but practitioners lack clear guidance regarding spread inside organizations. We designed this study to identify how large organizations can facilitate intraorganizational spread of QI innovations. We conducted ethnographic observation and interviews in a large, multispecialty, community-based medical group that implemented three QI innovations across 10 primary care sites using a new method for intraorganizational process development and spread. We compared quantitative outcomes achieved through the group's traditional versus new method, created a process model describing the steps in the new method, and identified barriers and facilitators at each step. The medical group achieved substantial improvement using its new method of intraorganizational process development and spread of QI innovations: standard work for rooming and depression screening, vaccine error rates and order compliance, and Pap smear error rates. Our model details nine critical steps for successful intraorganizational process development (set priorities, assess the current state, develop the new process, and measure and refine) and spread (develop support, disseminate information, facilitate peer-to-peer training, reinforce, and learn and adapt). Our results highlight the importance of utilizing preexisting organizational structures such as established communication channels, standardized roles, common workflows, formal authority, and performance measurement and feedback systems when developing and spreading QI processes inside an organization. In particular, we detail how formal process advocate positions in each site for each role can facilitate the spread of new processes. Successful intraorganizational spread is possible and sustainable. Developing and spreading new QI processes across sites inside an organization requires creating a shared understanding of the necessary process steps, considering the barriers that may arise at each step, and leveraging preexisting organizational structures to facilitate intraorganizational process development and spread.
An intraorganizational model for developing and spreading quality improvement innovations
Kellogg, Katherine C.; Gainer, Lindsay A.; Allen, Adrienne S.; O'Sullivan, Tatum; Singer, Sara J.
2017-01-01
Background: Recent policy reforms encourage quality improvement (QI) innovations in primary care, but practitioners lack clear guidance regarding spread inside organizations. Purpose: We designed this study to identify how large organizations can facilitate intraorganizational spread of QI innovations. Methodology/Approach: We conducted ethnographic observation and interviews in a large, multispecialty, community-based medical group that implemented three QI innovations across 10 primary care sites using a new method for intraorganizational process development and spread. We compared quantitative outcomes achieved through the group’s traditional versus new method, created a process model describing the steps in the new method, and identified barriers and facilitators at each step. Findings: The medical group achieved substantial improvement using its new method of intraorganizational process development and spread of QI innovations: standard work for rooming and depression screening, vaccine error rates and order compliance, and Pap smear error rates. Our model details nine critical steps for successful intraorganizational process development (set priorities, assess the current state, develop the new process, and measure and refine) and spread (develop support, disseminate information, facilitate peer-to-peer training, reinforce, and learn and adapt). Our results highlight the importance of utilizing preexisting organizational structures such as established communication channels, standardized roles, common workflows, formal authority, and performance measurement and feedback systems when developing and spreading QI processes inside an organization. In particular, we detail how formal process advocate positions in each site for each role can facilitate the spread of new processes. Practice Implications: Successful intraorganizational spread is possible and sustainable. Developing and spreading new QI processes across sites inside an organization requires creating a shared understanding of the necessary process steps, considering the barriers that may arise at each step, and leveraging preexisting organizational structures to facilitate intraorganizational process development and spread. PMID:27428788
Influence of temperature on the spreading velocity of simplified-step adhesive systems.
Pazinatto, Flávia Bittencourt; Marquezini, Luiz; Atta, Maria Teresa
2006-01-01
Flowability and viscosity vary for different adhesive systems owing to differences in their composition. These characteristics can be modified by environmental temperature. The purpose of this study was to determine the influence of temperature on the spreading (flow capacity) of simplified-step adhesive systems. Spreading velocities of adhesive systems (Adper Single Bond and Single Bond Plus [3M ESPE, St. Paul, MN, USA]; Prime & Bond 2.1 and Prime & Bond NT [Dentsply Indústria e Comércio Ltda, Petrópolis, RJ, Brazil]; Adper Prompt [3M ESPE]; and One Up Bond F [Tokuyama Corp, Tokyo, Japan]) were analyzed at intervals of 10, 15, 20, and 30 seconds at both 25 degrees C and 37 degrees C by placing 10 microL drops on a glass slide surface with an inclination of 45 degrees. The spreading of each adhesive system was measured in millimeters per second. Data were analyzed by two-way analysis of variance and Student-Newman-Keuls tests. Regression analysis was used to determine a correlation between spreading velocity and time. Statistical significance was considered at a confidence level of 95%. Temperature influenced the spreading velocity, increasing it for Single Bond and Prime & Bond 2.1 and decreasing it for Adper Prompt (p < .05). No differences on spreading were observed for the other adhesives studied (p >.05). Regression analysis of each adhesive system demonstrated an inverse correlation between mean spreading velocity and time (R2 = .999) on both temperatures. Temperature increases yielded an increase of spreading for Single Bond and Prime & Bond 2.1. The influence of temperature on the spreading velocity was material dependent. Environmental temperature can influence the rate of spreading of the adhesive system in clinically relevant times and may influence adhesive thickness on cavity walls.
Seafloor spreading on the Amsterdam-St. Paul hotspot plateau
NASA Astrophysics Data System (ADS)
Conder, James A.; Scheirer, Daniel S.; Forsyth, Donald W.
2000-04-01
The Amsterdam-St. Paul (ASP) platform on the intermediate rate Southeast Indian Ridge (SEIR) is the only oceanic hotspot plateau outside the Atlantic Ocean containing an active, mid-ocean ridge spreading axis. Because the ASP hotspot is small and remotely located, it has been relatively unstudied, and the ridge axis location in many places near the ASP plateau was previously unknown or ambiguous. We mapped the SEIR out to 1 Ma crust (Jaramillo anomaly) both on and near the ASP platform. We located the spreading center to within a few kilometers, based on side-scan sonar reflectivity. Recent off-platform magnetic anomalies and lineated abyssal hill topography are consistent with a simple spreading history. Off-platform full spreading rates increase from ˜63 km/Myr on segment H to the north of the platform to ˜65.5 km/Myr on segment K to the south. In contrast, inversions of seafloor magnetization based on uniform and variable thickness magnetic source layers reflect a complex on-platform tectonic history with ridge jumps, off-axis volcanism, and propagating rifts. On one section of the ASP plateau the spreading location has stabilized and is beginning to rift the plateau apart, generating symmetric magnetic anomalies and lineated topography for the last several hundred thousand years. The larger, more stable, spreading segments of the ASP platform are aligned with major volcanic edifices, suggesting that along-axis magma flow away from plume-fed centers is an important influence on spreading geometry. Many complex tectonic features observed on the ASP plateau, such as ridge jumps, en echelon, oblique spreading centers, and transforms oblique to the spreading direction, are comparable to features observed on Iceland. The similarities suggest that moderate crustal thickening at an intermediate rate spreading center may have similar effects to pronounced thickening at a slow rate spreading center.
Efficiency and Safety: The Best Time to Valve a Plaster Cast.
Steiner, Samuel R H; Gendi, Kirollos; Halanski, Matthew A; Noonan, Kenneth J
2018-04-18
The act of applying, univalving, and spreading a plaster cast to accommodate swelling is commonly performed; however, cast saws can cause thermal and/or abrasive injury to the patient. This study aims to identify the optimal time to valve a plaster cast so as to reduce the risk of cast-saw injury and increase spreading efficiency. Plaster casts were applied to life-sized pediatric models and were univalved at set-times of 5, 8, 12, or 25 minutes. Outcome measures included average and maximum force applied during univalving, blade-to-skin touches, cut time, force needed to spread, number of spread attempts, spread completeness, spread distance, saw blade temperature, and skin surface temperature. Casts allowed to set for ≥12 minutes had significantly fewer blade-to-skin touches compared with casts that set for <12 minutes (p < 0.001). For average and maximum saw blade force, no significant difference was observed between individual set-times. However, in a comparison of the shorter group (<12 minutes) and the longer group (≥12 minutes), the longer group had a higher average force (p = 0.009) but a lower maximum force (p = 0.036). The average temperature of the saw blade did not vary between groups. The maximum force needed to "pop," or spread, the cast was greater for the 5-minute and 8-minute set-times. Despite requiring more force to spread the cast, 0% of attempts at 5 minutes and 54% of attempts at 8 minutes were successful in completely spreading the cast, whereas 100% of attempts at 12 and 25 minutes were successful. The spread distance was greatest for the 12-minute set-time at 5.7 mm. Allowing casts to set for 12 minutes is associated with decreased blade-to-skin contact, less maximum force used with the saw blade, and a more effective spread. Adherence to the 12-minute interval could allow for fewer cast-saw injuries and more effective spreading.
[Microtubules suppress blebbing and stimulate lamellae extension in spreading fibroblasts].
Tvorogova, A V; Vorob'ev, I A
2012-01-01
We compared spreading of Vero fibroblasts when microtubules were depolymerized or stabilized. After initial attachment cells start blebbing that continues for different time and abruptly transfers into spreading. After spreading initiation, most cells spread in an anisotropic manner through stochastic formation of lamellipodia. A second mode was rapid, isotropic spreading via formation of circular lamellum that occurs in 15% of cells. The rate of spreading was maximal at the beginning and decreased during the first hour according to logarithmic law. After 60 min many cells formed stable efges and started migrating on the substrate. However, cell area slowly continued to increase. Actin bundles are formed 20 min after cell attachment and they first run along cell boundary. This system disassembles within 20-40 min and is substituted with stress fibers crossing the cell. In the isotropically spread cells no actin bunbles are seen. Microtubules in the spreading cells enter into large blebs and all nascent lamella and later form radial array. When MTs has been depolymerized or stabilized blebbing started before cells attached to the substrate and continue much longer than in control cells. In both cases the initial rate of spreading decrease several fold, and remains constant for many hours. After 24 h the mean area occupied by cells with altered MT system was the same as in control. Alteration of MT system had moderate effect on actin system--formation of actin cables started at the same time as in control (within 20 min upon cell attachment), however, they grew even in cells undergoing prolonged blebbing. Actin cables running along cell margin were similar to tat in control cells, but they did not disappear up to 1 h. When stabilized, microtubules form chaotic array: they do not enter blebs and in spread cells run parallel to the cell margin at a distance of 3-5 microm. We conclude that dynamic microtubules speed up completion of blebbing and promote early stages of fibroblasts spreading.
NASA Technical Reports Server (NTRS)
Olson, S. L.; Lee, J. R.; Fujita, O.; Kikuchi, M.; Kashiwagi, T.
2013-01-01
The effect of low velocity forced flow on microgravity flame spread is examined using quantitative analysis of infrared video imaging. The objective of the quantitative analysis is to provide insight into the mechanisms of flame spread in microgravity where the flame is able to spread from a central location on the fuel surface, rather than from an edge. Surface view calibrated infrared images of ignition and flame spread over a thin cellulose fuel were obtained along with a color video of the surface view and color images of the edge view using 35 mm color film at 2 Hz. The cellulose fuel samples were mounted in the center of a 12 cm wide by 16 cm tall flow duct and were ignited in microgravity using a straight hot wire across the center of the 7.5 cm wide by 14 cm long samples. Four cases, at 1 atm. 35%O2 in N2, at forced flows from 2 cm/s to 20 cm/s are presented here. This flow range captures flame spread from strictly upstream spread at low flows, to predominantly downstream spread at high flow. Surface temperature profiles are evaluated as a function of time, and temperature gradients for upstream and downstream flame spread are measured. Flame spread rates from IR image data are compared to visible image spread rate data. IR blackbody temperatures are compared to surface thermocouple readings to evaluate the effective emissivity of the pyrolyzing surface. Preheat lengths and pyrolysis lengths are evaluated both upstream and downstream of the central ignition point. A surface energy balance estimates the net heat flux from the flame to the fuel surface along the length of the fuel. Surface radiative loss and gas-phase radiation from soot are measured relative to the net heat feedback from the flame. At high surface heat loss relative to heat feedback, the downstream flame spread does not occur.
Santos, Maria J; Khanna, Shruti; Hestir, Erin L; Greenberg, Jonathan A; Ustin, Susan L
2016-09-01
Processes of spread and patterns of persistence of invasive species affect species and communities in the new environment. Predicting future rates of spread is of great interest for timely management decisions, but this depends on models that rely on understanding the processes of invasion and historic observations of spread and persistence. Unfortunately, the rates of spread and patterns of persistence are difficult to model or directly observe, especially when multiple rates of spread and diverse persistence patterns may be co-occurring over the geographic distribution of the invaded ecosystem. Remote sensing systematically acquires data over large areas at fine spatial and spectral resolutions over multiple time periods that can be used to quantify spread processes and persistence patterns. We used airborne imaging spectroscopy data acquired once a year for 5 years from 2004 to 2008 to map an invaded submerged aquatic vegetation (SAV) community across 2220 km 2 of waterways in the Sacramento-San Joaquin River Delta, California, USA, and measured its spread rate and its persistence. Submerged aquatic vegetation covered 13-23 km 2 of the waterways (6-11%) every year. Yearly new growth accounted for 40-60% of the SAV area, ~50% of which survived to following year. Spread rates were overall negative and persistence decreased with time. From this dataset, we were able to identify both radial and saltatorial spread of the invaded SAV in the entire extent of the Delta over time. With both decreasing spread rate and persistence, it is possible that over time the invasion of this SAV community could decrease its ecological impact. A landscape-scale approach allows measurements of all invasion fronts and the spatial anisotropies associated with spread processes and persistence patterns, without spatial interpolation, at locations both proximate and distant to the focus of invasion at multiple points in time. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Peebles, D. E.; Peebles, H. C.; Ohlhausen, J. A.; Hurst, M. J.
1996-02-01
A specially designed ultrahigh vacuum in situ surface analysis and wetting system has been constructed to study the spreading of liquid metal solders on carefully prepared and well-characterized solid substrates. The system consists of a standard ultrahigh vacuum surface analysis chamber linked to a reaction chamber for wetting or other experiments at pressures up to atmospheric. A sophisticated video system allows real-time monitoring of the spreading of the liquid metal through both side and top views. An infrared imaging system allows accurate remote temperature measurements. Sample surfaces are prepared and spreading experiments performed without intermediate exposure of the surfaces to the contaminating atmospheres. Solder spreading is performed under 50 Torr of highly purified helium gas to allow for adequate thermal coupling between the solder and the substrate. Initial studies have been completed for the spreading of pure tin solder on copper substrates in the absence of any fluxing agent. Three types of copper substrate surfaces were investigated in these experiments: the sputter-cleaned, air-exposed, and the as-received surface. Surface chemical analysis by x-ray photoelectron spectroscopy showed the air-exposed surface to consist of about 3 nm of Cu2O, while the as-received surface consisted of about 8 nm of Cu2O. The sputter-cleaned surface contained less than one monolayer (0.3 nm) of Cu2O. Spreading experiments utilizing a linear temperature ramp show that pure tin solder spreads readily on oxidized copper surfaces at elevated temperatures. The initiation temperature for rapid tin spreading on the as-received copper surface was 325 °C. Decreasing the thickness of the oxide on the surface lowered the observed temperature for the initiation of spreading and increased the rate of spreading. On the sputter-cleaned copper surface, rapid solder spreading was observed immediately upon melting of the solder.
Magnetic and gravity anomalies of the slow-spreading system in the Gulf of Aden
NASA Astrophysics Data System (ADS)
Nakanishi, M.; Fujimoto, H.; Tamaki, K.; Okino, K.
2002-12-01
The spreading system in the Gulf of Aden between Somalia, NE Africa, and Arabia has an ENE-WSW trend and its half spreading rate is about 1.0 cm/yr (e.g., Jestin et al., 1994). Previous studies (e.g., Tamsett and Searle, 1988) provided the general morphology of the spreading system. To reveal detailed morphology and tectonics of the spreading system in the Gulf of Aden, geophysical investigation was conducted along the spreading system between 45°30OE and 50°20OE by the R/V Hakuho-maru from December 2000 to January 2001. Bathymetric data were collected using an echo sounder SEA BEAM 2120 aboard R/V Hakuho-maru. Magnetic and gravity data were collected by towed proton magnetometer and shipboard gravimeter, respectively. The strike of the spreading centers east of 46°30OE is N65°W. The topographic expression of the spreading centers east of N46°30OE is an axial rift valley offset by transform faults siilar to that observed at slow spreading centers in other areas. The bathymetric feature of the spreading centers between 45°50OE and 46°30OE with a strike N80°E is N65°W trending en-echelon basins. The spreading center west of 45°50OE with a strike E-W is bouned by linear ridges and its bathymetric expression is N65°W trending en-echelon ridges. The axial rift valley west of N46°30OE is not offset by any prominent transform faults. Negative magnetic anomaly is dominant over the axial valleys. Its amplitude is about 500 nT and the wavelength is about 30 km. Prominent linear negative magnetic anomaly, which is more than 1000 nT, exists west of N46°30OE. The strike of the linear magnetic anomaly correlates with that of axial valleys west of N46°30OE. Mantle Bouguer gravity anomaly of the spreading centers increases eastward. This trend correlates with the eastward deepening of spreading centers.
Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.
2001-01-01
Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.
NASA Astrophysics Data System (ADS)
Kardell, D. A.; Christeson, G. L.; Reece, R.; Carlson, R. L.
2017-12-01
The upper section of oceanic crust (layer 2A) commonly exhibits relatively low seismic velocities due to abundant pore and crack space created by the extrusive emplacement of magma and extensional faulting at the spreading ridge. While this is generally true for all spreading rates, previous studies have shown that slow seafloor spreading can yield much higher levels of upper crustal heterogeneity than observed for faster spreading rates. We use a recent multichannel seismic dataset collected with a 12.5 km streamer during the CREST cruise (Crustal Reflectivity Experiment Southern Transect) to build eleven 60-80 km-long tomographic velocity models. These two-dimensional models include both ridge-normal and ridge-parallel orientations and cover oceanic crust produced at slow to intermediate spreading rates. Crustal ages range between 0 and 70 m.y., spreading rates range between slow-spreading and intermediate-spreading, and sedimentary cover thickness ranges from 0 m close to the spreading center to 500 m proximal to the Rio Grande Rise. Our results show a trend of increasing layer 2A velocities with age out to the midpoint of the seismic transect. There is a rapid increase in velocities from 2.8 km/s near the ridge to 4.3 km/s around 10 Ma, and a slower increase to velocities around 5 km/s in 37 m.y. old crust. While this indicates an ongoing evolution in oceanic crust older than expected, the velocities do level off in the older half of the transect, averaging 5 km/s. Crust covered by a thicker sedimentary section can exhibit velocities up to 1 km/s faster than adjacent non-sedimented crust, accounting for much of the local variations. This is possibly due to the effects of a sealed hydrothermal system. We also observe a more heterogeneous velocity structure parallel to the ridge than in the ridge-normal orientation, and more velocity heterogeneity for slow-spreading crust compared to intermediate-spreading crust.
NASA Astrophysics Data System (ADS)
La Femina, P. C.; Dixon, T. H.; Malservisi, R.; Árnadóttir, T.; Sigmundsson, F.; Sturkell, E.
2004-12-01
Overlapping spreading centers (OSCs) and propagating ridges are important classes of mid-ocean ridges. Kinematic models of OSCs predict along strike variability in spreading rate associated with the propagation of one center and deactivation of the other. Iceland offers a unique opportunity to investigate strain accumulation and partitioning across slow, overlapping spreading centers, and the influence of a ridge centered hotspot on ridge kinematics and morphology. We present results of detailed GPS observations across the Eastern and Western Volcanic Zones, south Iceland, spanning a seven to nine year inter-rifting period, and compare our observations with two-dimensional elastic half-space models that simulate the long-term spreading process. We then compare the elastic half-space models with simple viscoelastic coupling models. We model three velocity profiles across the EVZ-WVZ system, solving for the spreading rate, locking depth and horizontal location of each spreading center. Our spreading rate estimates indicate along strike variations as expected in an OSC system and total spreading rates consistent with geodetic and geologic plate motion models. Spreading rates in the WVZ increase from northeast (3 ±1 mm/yr) to southwest (7 ±1 mm/yr). Spreading rates in the southwest propagating EVZ decrease from northeast (17 ±1 mm/yr) to southwest (12 ±1 mm/yr). These results are consistent with a model whereby the WVZ is deactivating in the direction of EVZ propagation. The morphology of the two spreading centers reflects the spreading rate differences and their location relative to the Iceland hotspot. The predicted locations of the spreading axis for each zone are consistent with mapped Holocene fissure swarms. The neovolcanic zone of the slower WVZ consists of a narrow (10-20 km wide) axial graben and has had few Holocene eruptions. The faster EVZ consists of two parallel neovolcanic zones separated by a 20 km gap of inactivity, little normal faulting, higher topography and five historical fissure eruptions, reflecting its proximity to the hotspot. The maximum velocity gradient in the EVZ is located on the Veidivotn fissure swarm, which had a small volume eruption in 1864. The last major fissure eruption in the EVZ was the 1783 Lakagigar, located 20 km to the east. This pattern of current and past strain accumulation and release suggests intra-ridge jumping of activity and crustal accretion across a 60 km wide area.
The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex
Lückl, Janos; Lemale, Coline L; Kola, Vasilis; Horst, Viktor; Khojasteh, Uldus; Oliveira-Ferreira, Ana I; Major, Sebastian; Winkler, Maren K L; Kang, Eun-Jeung; Schoknecht, Karl; Martus, Peter; Hartings, Jed A; Woitzik, Johannes
2018-01-01
Abstract Spreading depolarizations are characterized by abrupt, near-complete breakdown of the transmembrane ion gradients, neuronal oedema, mitochondrial depolarization, glutamate excitotoxicity and activity loss (depression). Spreading depolarization induces either transient hyperperfusion in normal tissue; or hypoperfusion (inverse coupling = spreading ischaemia) in tissue at risk for progressive injury. The concept of the spreading depolarization continuum is critical since many spreading depolarizations have intermediate characteristics, as opposed to the two extremes of spreading depolarization in either severely ischaemic or normal tissue. In animals, the spreading depolarization extreme in ischaemic tissue is characterized by prolonged depolarization durations, in addition to a slow baseline variation termed the negative ultraslow potential. The negative ultraslow potential is initiated by spreading depolarization and similar to the negative direct current (DC) shift of prolonged spreading depolarization, but specifically refers to a negative potential component during progressive recruitment of neurons into cell death in the wake of spreading depolarization. We here first quantified the spreading depolarization-initiated negative ultraslow potential in the electrocorticographic DC range and the activity depression in the alternate current range after middle cerebral artery occlusion in rats. Relevance of these variables to the injury was supported by significant correlations with the cortical infarct volume and neurological outcome after 72 h of survival. We then identified negative ultraslow potential-containing clusters of spreading depolarizations in 11 patients with aneurysmal subarachnoid haemorrhage. The human platinum/iridium-recorded negative ultraslow potential showed a tent-like shape. Its amplitude of 45.0 (39.0, 69.4) mV [median (first, third quartile)] was 6.6 times larger and its duration of 3.7 (3.3, 5.3) h was 34.9 times longer than the negative DC shift of spreading depolarizations in less compromised tissue. Using Generalized Estimating Equations applied to a logistic regression model, we found that negative ultraslow potential displaying electrodes were significantly more likely to overlie a developing ischaemic lesion (90.0%, 27/30) than those not displaying a negative ultraslow potential (0.0%, 0/20) (P = 0.004). Based on serial neuroimages, the lesions under the electrodes developed within a time window of 72 (56, 134) h. The negative ultraslow potential occurred in this time window in 9/10 patients. It was often preceded by a spreading depolarization cluster with increasingly persistent spreading depressions and progressively prolonged DC shifts and spreading ischaemias. During the negative ultraslow potential, spreading ischaemia lasted for 40.0 (28.0, 76.5) min, cerebral blood flow fell from 57 (53, 65) % to 26 (16, 42) % (n = 4) and tissue partial pressure of oxygen from 12.5 (9.2, 15.2) to 3.3 (2.4, 7.4) mmHg (n = 5). Our data suggest that the negative ultraslow potential is the electrophysiological correlate of infarction in human cerebral cortex and a neuromonitoring-detected medical emergency. PMID:29668855
The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex.
Lückl, Janos; Lemale, Coline L; Kola, Vasilis; Horst, Viktor; Khojasteh, Uldus; Oliveira-Ferreira, Ana I; Major, Sebastian; Winkler, Maren K L; Kang, Eun-Jeung; Schoknecht, Karl; Martus, Peter; Hartings, Jed A; Woitzik, Johannes; Dreier, Jens P
2018-06-01
Spreading depolarizations are characterized by abrupt, near-complete breakdown of the transmembrane ion gradients, neuronal oedema, mitochondrial depolarization, glutamate excitotoxicity and activity loss (depression). Spreading depolarization induces either transient hyperperfusion in normal tissue; or hypoperfusion (inverse coupling = spreading ischaemia) in tissue at risk for progressive injury. The concept of the spreading depolarization continuum is critical since many spreading depolarizations have intermediate characteristics, as opposed to the two extremes of spreading depolarization in either severely ischaemic or normal tissue. In animals, the spreading depolarization extreme in ischaemic tissue is characterized by prolonged depolarization durations, in addition to a slow baseline variation termed the negative ultraslow potential. The negative ultraslow potential is initiated by spreading depolarization and similar to the negative direct current (DC) shift of prolonged spreading depolarization, but specifically refers to a negative potential component during progressive recruitment of neurons into cell death in the wake of spreading depolarization. We here first quantified the spreading depolarization-initiated negative ultraslow potential in the electrocorticographic DC range and the activity depression in the alternate current range after middle cerebral artery occlusion in rats. Relevance of these variables to the injury was supported by significant correlations with the cortical infarct volume and neurological outcome after 72 h of survival. We then identified negative ultraslow potential-containing clusters of spreading depolarizations in 11 patients with aneurysmal subarachnoid haemorrhage. The human platinum/iridium-recorded negative ultraslow potential showed a tent-like shape. Its amplitude of 45.0 (39.0, 69.4) mV [median (first, third quartile)] was 6.6 times larger and its duration of 3.7 (3.3, 5.3) h was 34.9 times longer than the negative DC shift of spreading depolarizations in less compromised tissue. Using Generalized Estimating Equations applied to a logistic regression model, we found that negative ultraslow potential displaying electrodes were significantly more likely to overlie a developing ischaemic lesion (90.0%, 27/30) than those not displaying a negative ultraslow potential (0.0%, 0/20) (P = 0.004). Based on serial neuroimages, the lesions under the electrodes developed within a time window of 72 (56, 134) h. The negative ultraslow potential occurred in this time window in 9/10 patients. It was often preceded by a spreading depolarization cluster with increasingly persistent spreading depressions and progressively prolonged DC shifts and spreading ischaemias. During the negative ultraslow potential, spreading ischaemia lasted for 40.0 (28.0, 76.5) min, cerebral blood flow fell from 57 (53, 65) % to 26 (16, 42) % (n = 4) and tissue partial pressure of oxygen from 12.5 (9.2, 15.2) to 3.3 (2.4, 7.4) mmHg (n = 5). Our data suggest that the negative ultraslow potential is the electrophysiological correlate of infarction in human cerebral cortex and a neuromonitoring-detected medical emergency.awy102media15775596049001.
Comparing methods for measuring the rate of spread of invading populations
Marius Gilbert; Andrew Liebhold
2010-01-01
Measuring rates of spread during biological invasions is important for predicting where and when invading organisms will spread in the future as well as for quantifying the influence of environmental conditions on invasion speed. While several methods have been proposed in the literature to measure spread rates, a comprehensive comparison of their accuracy when applied...
Code of Federal Regulations, 2010 CFR
2010-01-01
... to prevent spread of disease; ascertainment of value and compensation. 71.14 Section 71.14 Animals... or other animals to prevent spread of disease; ascertainment of value and compensation. When, in order to prevent the spread of any contagious, infectious, or communicable disease, it becomes necessary...
Code of Federal Regulations, 2011 CFR
2011-01-01
... to prevent spread of disease; ascertainment of value and compensation. 71.14 Section 71.14 Animals... or other animals to prevent spread of disease; ascertainment of value and compensation. When, in order to prevent the spread of any contagious, infectious, or communicable disease, it becomes necessary...
Code of Federal Regulations, 2012 CFR
2012-01-01
... to prevent spread of disease; ascertainment of value and compensation. 71.14 Section 71.14 Animals... or other animals to prevent spread of disease; ascertainment of value and compensation. When, in order to prevent the spread of any contagious, infectious, or communicable disease, it becomes necessary...
Code of Federal Regulations, 2014 CFR
2014-01-01
... to prevent spread of disease; ascertainment of value and compensation. 71.14 Section 71.14 Animals... or other animals to prevent spread of disease; ascertainment of value and compensation. When, in order to prevent the spread of any contagious, infectious, or communicable disease, it becomes necessary...
Code of Federal Regulations, 2013 CFR
2013-01-01
... to prevent spread of disease; ascertainment of value and compensation. 71.14 Section 71.14 Animals... or other animals to prevent spread of disease; ascertainment of value and compensation. When, in order to prevent the spread of any contagious, infectious, or communicable disease, it becomes necessary...
Beam-width spreading of vortex beams in free space
NASA Astrophysics Data System (ADS)
Wang, Weiwei; Li, Jinhong; Duan, Meiling
2018-01-01
Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.
Dynamics for a diffusive prey-predator model with different free boundaries
NASA Astrophysics Data System (ADS)
Wang, Mingxin; Zhang, Yang
2018-03-01
To understand the spreading and interaction of prey and predator, in this paper we study the dynamics of the diffusive Lotka-Volterra type prey-predator model with different free boundaries. These two free boundaries, which may intersect each other as time evolves, are used to describe the spreading of prey and predator. We investigate the existence and uniqueness, regularity and uniform estimates, and long time behaviors of global solution. Some sufficient conditions for spreading and vanishing are established. When spreading occurs, we provide the more accurate limits of (u , v) as t → ∞, and give some estimates of asymptotic spreading speeds of u , v and asymptotic speeds of g , h. Some realistic and significant spreading phenomena are found.
Epidemic spread in bipartite network by considering risk awareness
NASA Astrophysics Data System (ADS)
Han, She; Sun, Mei; Ampimah, Benjamin Chris; Han, Dun
2018-02-01
Human awareness plays an important role in the spread of infectious diseases and the control of propagation patterns. Exploring the interplay between human awareness and epidemic spreading is a topic that has been receiving increasing attention. Considering the fact, some well-known diseases only spread between different species we propose a theoretical analysis of the Susceptible-Infected-Susceptible (SIS) epidemic spread from the perspective of bipartite network and risk aversion. Using mean field theory, the epidemic threshold is calculated theoretically. Simulation results are consistent with the proposed analytic model. The results show that, the final infection density is negative linear with the value of individuals' risk awareness. Therefore, the epidemic spread could be effectively suppressed by improving individuals' risk awareness.
NASA Astrophysics Data System (ADS)
Lee, C. C.; Chen, W. S.
2018-04-01
The aim of this study is to examine the effects of Es-layer characteristics on spread-F generation in the nighttime midlatitude ionosphere. The Es-layer parameters and spread-F appearance of the 23rd solar cycle (1996-2008) are recorded by the Kokubunji ionosonde. The Es-layer parameters are foEs (critical frequency of Es-layer), fbEs (blanketing frequency of Es-layer), and Δf (≡foEs-fbEs). In order to completely explore the effects, the pre-midnight and post-midnight data are classified by seasons, solar activities, and geomagnetic conditions. Results show that the spread-F occurs more frequently in post-midnight and in summer. And, the occurrence probabilities of spread-F are greater, when the solar activity is lower. For the occurrence probabilities of spread-F versus foEs and Δf under geomagnetic quiet-conditions, the trend is increasing, when the associated probabilities are significant. These indicate that the spread-F occurrence increases with increasing foEs and/or Δf. Further, the increasing trends demonstrate that polarization electric fields generated in Es-layer would be helpful to generate spread-F, through the electrodynamical coupling of Es-layer and F-region. Moreover, this electrodynamical coupling is efficient not only under quiet-conditions but under disturbed-conditions, since the significant increasing trend can also be found under disturbed-conditions. Regarding the occurrence probabilities of spread-F versus fbEs, the evident trends are not in the majority. This implies that fbEs might not be a major factor for the spread-F formation.
Effects of interleukin-1ß on cortical spreading depolarization and cerebral vasculature
Eitner, Annett; Leuchtweis, Johannes; Bauer, Reinhard; Lehmenkühler, Alfred; Schaible, Hans-Georg
2016-01-01
During brain damage and ischemia, the cytokine interleukin-1ß is rapidly upregulated due to activation of inflammasomes. We studied whether interleukin-1ß influences cortical spreading depolarization, and whether lipopolysaccharide, often used for microglial stimulation, influences cortical spreading depolarizations. In anaesthetized rats, cortical spreading depolarizations were elicited by microinjection of KCl. Interleukin-1ß, the IL-1 receptor 1 antagonist, the GABAA receptor blocker bicuculline, and lipopolysaccharide were administered either alone or combined (interleukin-1ß + IL-1 receptor 1 antagonist; interleukin-1ß + bicuculline; lipopolysaccharide + IL-1 receptor 1 antagonist) into a local cortical treatment area. Using microelectrodes, cortical spreading depolarizations were recorded in a non-treatment and in the treatment area. Plasma extravasation in cortical grey matter was assessed with Evans blue. Local application of interleukin-1ß reduced cortical spreading depolarization amplitudes in the treatment area, but not at a high dose. This reduction was prevented by IL-1 receptor 1 antagonist and by bicuculline. However, interleukin-1ß induced pronounced plasma extravasation independently on cortical spreading depolarizations. Application of lipopolysaccharide reduced cortical spreading depolarization amplitudes but prolonged their duration; EEG activity was still present. These effects were also blocked by IL-1 receptor 1 antagonist. Interleukin-1ß evokes changes of neuronal activity and of vascular functions. Thus, although the reduction of cortical spreading depolarization amplitudes at lower doses of interleukin-1ß may reduce deleterious effects of cortical spreading depolarizations, the sum of interleukin-1ß effects on excitability and on the vasculature rather promote brain damaging mechanisms. PMID:27037093
Spread F in the Midlatitude Ionosphere According to DPS-4 Ionosonde Data
NASA Astrophysics Data System (ADS)
Panchenko, V. A.; Telegin, V. A.; Vorob'ev, V. G.; Zhbankov, G. A.; Yagodkina, O. I.; Rozhdestvenskaya, V. I.
2018-03-01
The results of studying spread F obtained from the DPS-4 ionosonde data at the observatory of the Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (Moscow) are presented. The methodical questions that arise during the study of a spread F phenomenon in the ionosphere are considered; the current results of terrestrial observations are compared with previously published data and the results of sounding onboard an Earth-satellite vehicle. The automated algorithm for estimation of the intensity of frequency spread F, which was developed by the authors and was successfully verified via comparison of the data of the digisonde DPS-4 and the results of manual processing, is described. The algorithm makes it possible to quantify the intensity of spread F in megahertz (the dFs parameter) and in the number of points (0, 1, 2, 3). The strongest spread (3 points) is shown to be most likely around midnight, while the weakest spread (0 points) is highly likely to occur during the daytime. The diurnal distribution of a 1-2 point spread F in the winter indicates the presence of additional maxima at 0300-0600 UT and 1400-1700 UT, which may appear due to the terminator. Despite the large volume of processed data, we can not definitively state that the appearance of spread F depends on the magnetic activity indices Kp, Dst, and AL, although the values of the dFs frequency spread interval strongly increased both at day and night during the magnetic storm of March 17-22, 2015, especially in the phase of storm recovery on March 20-22.
Wojaczynski, Gregory J; Engel, Esteban A; Steren, Karina E; Enquist, Lynn W; Patrick Card, J
2015-01-01
The use of viruses as transneuronal tracers has become an increasingly powerful technique for defining the synaptic organization of neural networks. Although a number of recombinant alpha herpesviruses are known to spread selectively in the retrograde direction through neural circuits only one strain, the H129 strain of herpes simplex virus type 1, is reported to selectively spread in the anterograde direction. However, it is unclear from the literature whether there is an absolute block or an attenuation of retrograde spread of H129. Here, we demonstrate efficient anterograde spread, and temporally delayed retrograde spread, of H129 and three novel recombinants. In vitro studies revealed no differences in anterograde and retrograde spread of parental H129 and its recombinants through superior cervical ganglion neurons. In vivo injections of rat striatum revealed a clear bias of anterograde spread, although evidence of deficient retrograde transport was also present. Evidence of temporally delayed retrograde transneuronal spread of H129 in the retina was observed following injection of the lateral geniculate nucleus. The data also demonstrated that three novel recombinants efficiently express unique fluorescent reporters and have the capacity to infect the same neurons in dual infection paradigms. From these experiments we conclude that H129 and its recombinants not only efficiently infect neurons through anterograde transneuronal passage, but also are capable of temporally delayed retrograde transneuronal spread. In addition, the capacity to produce dual infection of projection targets following anterograde transneuronal passage provides an important addition to viral transneuronal tracing technology.
Event ambiguity fuels the effective spread of rumors
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Zhang, Yi
2015-08-01
In this paper, a new rumor spreading model which quantifies a specific rumor spreading feature is proposed. The specific feature focused on is the important role the event ambiguity plays in the rumor spreading process. To study the impact of this event ambiguity on the spread of rumors, the probability p(t) that an individual becomes a rumor spreader from an initially unaware person at time t is built. p(t) reflects the extent of event ambiguity, and a parameter c of p(t) is used to measure the speed at which the event moves from ambiguity to confirmation. At the same time, a principle is given to decide on the correct value for parameter c A rumor spreading model is then developed with this function added as a parameter to the traditional model. Then, several rumor spreading model simulations are conducted with different values for c on both regular networks and ER random networks. The simulation results indicate that a rumor spreads faster and more broadly when c is smaller. This shows that if events are ambiguous over a longer time, rumor spreading appears to be more effective, and is influenced more significantly by parameter c in a random network than in a regular network. We then determine parameters of this model through data fitting of the missing Malaysian plane, and apply this model to an analysis of the missing Malaysian plane. The simulation results demonstrate that the most critical time for authorities to control rumor spreading is in the early stages of a critical event.
Wojaczynski, Gregory J.; Engel, Esteban A.; Steren, Karina E.; Enquist, Lynn W.; Card, J. Patrick
2014-01-01
The use of viruses as transneuronal tracers has become an increasingly powerful technique for defining the synaptic organization of neural networks. Although a number of recombinant alpha herpesviruses are known to spread selectively in the retrograde direction through neural circuits only one strain, the H129 strain of herpes simplex virus type 1, is reported to selectively spread in the anterograde direction. However, it is unclear from the literature whether there is an absolute block or an attenuation of retrograde spread of H129. Here we demonstrate efficient anterograde spread, and temporally delayed retrograde spread, of H129 and three novel recombinants. In vitro studies revealed no differences in anterograde and retrograde spread of parental H129 and its recombinants through superior cervical ganglion neurons. In vivo injections of rat striatum revealed a clear bias of anterograde spread, although evidence of deficient retrograde transport was also present. Evidence of temporally delayed retrograde transneuronal spread of H129 in the retina was observed following injection of the lateral geniculate nucleus. The data also demonstrated that three novel recombinants efficiently express unique fluorescent reporters and have the capacity to infect the same neurons in dual infection paradigms. From these experiments we conclude that H129 and its recombinants efficiently infect neurons through anterograde transneuronal passage, but also are capable of temporally delayed retrograde transneuronal spread. In addition, the capacity to produce dual infection of projection targets following anterograde transneuronal passage provides an important addition to viral transneuronal tracing technology. PMID:24585022
NASA Astrophysics Data System (ADS)
Wörner, M.; Cai, X.; Alla, H.; Yue, P.
2018-03-01
The Cox–Voinov law on dynamic spreading relates the difference between the cubic values of the apparent contact angle (θ) and the equilibrium contact angle to the instantaneous contact line speed (U). Comparing spreading results with this hydrodynamic wetting theory requires accurate data of θ and U during the entire process. We consider the case when gravitational forces are negligible, so that the shape of the spreading drop can be closely approximated by a spherical cap. Using geometrical dependencies, we transform the general Cox law in a semi-analytical relation for the temporal evolution of the spreading radius. Evaluating this relation numerically shows that the spreading curve becomes independent from the gas viscosity when the latter is less than about 1% of the drop viscosity. Since inertia may invalidate the made assumptions in the initial stage of spreading, a quantitative criterion for the time when the spherical-cap assumption is reasonable is derived utilizing phase-field simulations on the spreading of partially wetting droplets. The developed theory allows us to compare experimental/computational spreading curves for spherical-cap shaped droplets with Cox theory without the need for instantaneous data of θ and U. Furthermore, the fitting of Cox theory enables us to estimate the effective slip length. This is potentially useful for establishing relationships between slip length and parameters in numerical methods for moving contact lines.
Schrauwen, Eefje J. A.; Herfst, Sander; Leijten, Lonneke M.; van Run, Peter; Bestebroer, Theo M.; Linster, Martin; Bodewes, Rogier; Kreijtz, Joost H. C. M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D. M. E.; Fouchier, Ron A. M.; Kuiken, Thijs
2012-01-01
The route by which highly pathogenic avian influenza (HPAI) H5N1 virus spreads systemically, including the central nervous system (CNS), is largely unknown in mammals. Especially, the olfactory route, which could be a route of entry into the CNS, has not been studied in detail. Although the multibasic cleavage site (MBCS) in the hemagglutinin (HA) of HPAI H5N1 viruses is a major determinant of systemic spread in poultry, the association between the MBCS and systemic spread in mammals is less clear. Here we determined the virus distribution of HPAI H5N1 virus in ferrets in time and space—including along the olfactory route—and the role of the MBCS in systemic replication. Intranasal inoculation with wild-type H5N1 virus revealed extensive replication in the olfactory mucosa, from which it spread to the olfactory bulb and the rest of the CNS, including the cerebrospinal fluid (CSF). Virus spread to the heart, liver, pancreas, and colon was also detected, indicating hematogenous spread. Ferrets inoculated intranasally with H5N1 virus lacking an MBCS demonstrated respiratory tract infection only. In conclusion, HPAI H5N1 virus can spread systemically via two different routes, olfactory and hematogenous, in ferrets. This systemic spread was dependent on the presence of the MBCS in HA. PMID:22278228
Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)
2000-01-01
Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.
Williams, Jennifer L; Levine, Jonathan M
2018-04-01
Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.
An effective wind speed for models of fire spread
Ralph M. Nelson
2002-01-01
In previous descriptions of wind-slope interaction and the spread rate of wildland fires it is assumed that the separate effects of wind and slope are independent and additive and that corrections for these effects may be applied to spread rates computed from existing rate of spread models. A different approach is explored in the present paper in which the upslope...
A fundamental look at fire spread in California chaparral
David R. Weise; Thomas Fletcher; Larry Baxter; Shankar Mahalingam; Xiangyang Zhou; Patrick Pagni; Rod Linn; Bret Butler
2004-01-01
The USDA Forest Service National Fire Plan funded a research program to study fire spread in live fuels of the southwestern United States. In the U.S. current operational fire spread models do not distinguish between live and dead fuels in a sophisticated manner because the study of live fuels has been limited. The program is experimentally examining fire spread at 3...
A simple physical model for forest fire spread
E. Koo; P. Pagni; J. Woycheese; S. Stephens; D. Weise; J. Huff
2005-01-01
Based on energy conservation and detailed heat transfer mechanisms, a simple physical model for fire spread is presented for the limit of one-dimensional steady-state contiguous spread of a line fire in a thermally-thin uniform porous fuel bed. The solution for the fire spread rate is found as an eigenvalue from this model with appropriate boundary conditions through a...
Spreading of a Lidocaine Formulation on Microneedle-Treated Skin.
Nayak, Atul; Das, Diganta B; Chao, Tzu C; Starov, Victor M
2015-12-01
The spreadability of a liquid drug formulation on skin is an indication of it either remaining stationary or distributing (spreading) as a droplet. Factors determining droplet spreadability of the formulation are spreading area, diameter of the droplet base, viscosity of the liquid, contact angle, volume of droplet on skin and any others. The creation of microcavities from the application of microneedle (MN) has the potential to control droplet spreading, and hence, target specific areas of skin for drug delivery. However, there is little work that demonstrates spreading of liquid drug formulation on MN-treated skin. Below, spreading of a lidocaine hydrogel formulation and lidocaine solution (reference liquid) on porcine skin is investigated over MN-treated skin. Controlled spreadability was achieved with the lidocaine hydrogel on MN-treated skin as compared with lidocaine solution. It was observed that the droplet spreading parameters such as spreading radius, droplet height and dynamic contact angle were slightly lower for the lidocaine hydrogel than the lidocaine solution on skin. Also, the lidocaine hydrogel on MN-treated skin resulted in slower dynamic reduction of droplet height, contact angle and reduced time taken in attaining static advancing droplets because of the MN microcavities. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Dwyer, Sandra P O'; O'Beirne, David; Ní Eidhin, Deirdre; O'Kennedy, Brendan T
2012-12-01
This study examined the effectiveness of fat and water soluble antioxidants on the oxidative stability of omega (ω)-3 rich table spreads, produced using novel multiple emulsion technology. Table spreads were produced by dispersing an oil-in-water (O/W) emulsion (500 g/kg 85 camelina/15 fish oil blend) in a hardstock/rapeseed oil blend, using sodium caseinate and polyglycerol polyricinoleate as emulsifiers. The O/W and oil-in-water-in-oil (O/W/O) emulsions contained either a water soluble antioxidant (green tea extract [GTE]), an oil soluble antioxidant (α-Tocopherol), or both. Spreads containing α-Tocopherol had the highest lipid hydroperoxide values, whereas spreads containing GTE had the lowest (P < 0.05), during storage at 5°C, while p-Anisidine values did not differ significantly. Particle size was generally unaffected by antioxidant type (P < 0.05). Double emulsion (O/W/O) structures were clearly seen in confocal images of the spreads. By the end of storage, none of the spreads had significantly different G' values. Firmness (Newtons) of all spreads generally increased during storage (P < 0.05). © 2012 Institute of Food Technologists®
Lega, Bradley; Dionisio, Sasha; Flanigan, Patrick; Bingaman, William; Najm, Imad; Nair, Dileep; Gonzalez-Martinez, Jorge
2015-09-01
Cortico-cortical evoked potentials offer the possibility of understanding connectivity within seizure networks to improve diagnosis and more accurately identify candidates for seizure surgery. We sought to determine if cortico-cortical evoked potentials and post-stimulation oscillatory changes differ for sites of EARLY versus LATE ictal spread. 37 patients undergoing stereoelectroencephalography were tested using a cortico-cortical evoked potential paradigm. All electrodes were classified according to the speed of ictal spread. EARLY spread sites were matched to a LATE spread site equidistant from the onset zone. Root-mean-square was used to quantify evoked responses and post-stimulation gamma band power and coherence were extracted and compared. Sites of EARLY spread exhibited significantly greater evoked responses after stimulation across all patients (t(36)=2.973, p=0.004). Stimulation elicited enhanced gamma band activity at EARLY spread sites (t(36)=2.61, p=0.03, FDR corrected); this gamma band oscillation was highly coherent with the onset zone. Cortico-cortical evoked potentials and post-stimulation changes in gamma band activity differ between sites of EARLY versus LATE ictal spread. The oscillatory changes can help visualize connectivity within the seizure network. Copyright © 2015 Elsevier B.V. All rights reserved.
[Cortical spreading depolarization: a new pathophysiological mechanism in neurological diseases].
Sánchez-Porras, Renán; Robles-Cabrera, Adriana; Santos, Edgar
2014-05-20
Cortical spreading depolarization is a wave of almost complete depolarization of the neuronal and glial cells that occurs in different neurological diseases such as migraine with aura, subarachnoid hemorrhage, intracerebral hemorrhage, head trauma and stroke. These depolarization waves are characterized by a change in the negative potential with an amplitude between -10 and -30mV, duration of ∼1min and changes in the ion homeostasis between the intra- and extracellular space. This results in neuronal edema and dendritic distortion. Under pathologic states of hypoperfusion, cortical spreading depolarization can produce oxidative stress, worsen hypoxia and induce neuronal death. This is due to intense arterial vasoconstriction produced by an inverse response called spreading ischemia. Only in the last years there has been an electrophysiological confirmation of cortical spreading depolarization in human brains. Occurrence of cortical spreading depolarization has been associated with worse outcome in patients. Currently, increased knowledge regarding the pathophysiologic mechanisms supports the hypothetical correlation of cortical spreading depolarization with brain damage in humans. There are diverse therapeutic alternatives that promise inhibition of cortical spreading depolarization and subsequent better outcomes. Copyright © 2013 Elsevier España, S.L. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui
2016-03-01
Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.
Very-low-energy-spread ion sources
NASA Astrophysics Data System (ADS)
Lee, Y.
1997-05-01
Ion beams with low axial energy spread are required in many applications such as ion projection lithography, isobaric separation in radioactive ion beam experiments, and ion beam deposition processes. In an ion source, the spread of the axial ion energy is caused by the nonuniformity of the plasma potential distribution along the source axis. Multicusp ion sources are capable of production positive and negative ions with good beam quality and relatively low energy spread. By intorducing a magnetic filter inside the multicusp source chamber, the axial plasma potential distribution is modified and the energy spread of positive hydrogen ions can be reduced to as low as 1 eV. The energy spread measurements of multicusp sources have been conducted by employing three different techniques: an electrostatic energy analyzer at the source exit; a magnetic deflection spectrometer; and a retarding-field energy analyzer for the accelerated beam. These different measurements confirmed tha! t ! the axial energy spread of positive and negative ions generated in the filter-equipped multicusp sources are small. New ion source configurations are now being investigated at LBNL with the purpose of achieving enen lower energy spread (<1eV) and of maximizing source performance such as reliability and lifetime.
Microgravity flame spread over thick solids in low velocity opposed flow
NASA Astrophysics Data System (ADS)
Wang, Shuangfeng; Zhu, Feng
2016-07-01
Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.
Deterministic ripple-spreading model for complex networks.
Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel
2011-04-01
This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.
Exploring the Complex Pattern of Information Spreading in Online Blog Communities
Pei, Sen; Muchnik, Lev; Tang, Shaoting; Zheng, Zhiming; Makse, Hernán A.
2015-01-01
Information spreading in online social communities has attracted tremendous attention due to its utmost practical values in applications. Despite that several individual-level diffusion data have been investigated, we still lack the detailed understanding of the spreading pattern of information. Here, by comparing information flows and social links in a blog community, we find that the diffusion processes are induced by three different spreading mechanisms: social spreading, self-promotion and broadcast. Although numerous previous studies have employed epidemic spreading models to simulate information diffusion, we observe that such models fail to reproduce the realistic diffusion pattern. In respect to users behaviors, strikingly, we find that most users would stick to one specific diffusion mechanism. Moreover, our observations indicate that the social spreading is not only crucial for the structure of diffusion trees, but also capable of inducing more subsequent individuals to acquire the information. Our findings suggest new directions for modeling of information diffusion in social systems, and could inform design of efficient propagation strategies based on users behaviors. PMID:25985081
Exploring the complex pattern of information spreading in online blog communities.
Pei, Sen; Muchnik, Lev; Tang, Shaoting; Zheng, Zhiming; Makse, Hernán A
2015-01-01
Information spreading in online social communities has attracted tremendous attention due to its utmost practical values in applications. Despite that several individual-level diffusion data have been investigated, we still lack the detailed understanding of the spreading pattern of information. Here, by comparing information flows and social links in a blog community, we find that the diffusion processes are induced by three different spreading mechanisms: social spreading, self-promotion and broadcast. Although numerous previous studies have employed epidemic spreading models to simulate information diffusion, we observe that such models fail to reproduce the realistic diffusion pattern. In respect to users behaviors, strikingly, we find that most users would stick to one specific diffusion mechanism. Moreover, our observations indicate that the social spreading is not only crucial for the structure of diffusion trees, but also capable of inducing more subsequent individuals to acquire the information. Our findings suggest new directions for modeling of information diffusion in social systems, and could inform design of efficient propagation strategies based on users behaviors.
Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread.
Klein, E Y
2013-04-01
The emergence of resistance to former first-line antimalarial drugs has been an unmitigated disaster. In recent years, artemisinin class drugs have become standard and they are considered an essential tool for helping to eradicate the disease. However, their ability to reduce morbidity and mortality and to slow transmission requires the maintenance of effectiveness. Recently, an artemisinin delayed-clearance phenotype was described. This is believed to be the precursor to resistance and threatens local elimination and global eradication plans. Understanding how resistance emerges and spreads is important for developing strategies to contain its spread. Resistance is the result of two processes: (i) drug selection of resistant parasites; and (ii) the spread of resistance. In this review, we examine the factors that lead to both drug selection and the spread of resistance. We then examine strategies for controlling the spread of resistance, pointing out the complexities and deficiencies in predicting how resistance will spread. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Effect of Heterogeneous Interest Similarity on the Spread of Information in Mobile Social Networks
NASA Astrophysics Data System (ADS)
Zhao, Narisa; Sui, Guoqin; Yang, Fan
2018-06-01
Mobile social networks (MSNs) are important platforms for spreading news. The fact that individuals usually forward information aligned with their own interests inevitably changes the dynamics of information spread. Thereby, first we present a theoretical model based on the discrete Markov chain and mean field theory to evaluate the effect of interest similarity on the information spread in MSNs. Meanwhile, individuals' interests are heterogeneous and vary with time. These two features result in interest shift behavior, and both features are considered in our model. A leveraging simulation demonstrates the accuracy of our model. Moreover, the basic reproduction number R0 is determined. Further extensive numerical analyses based on the model indicate that interest similarity has a critical impact on information spread at the early spreading stage. Specifically, the information always spreads more quickly and widely if the interest similarity between an individual and the information is higher. Finally, five actual data sets from Sina Weibo illustrate the validity of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daryl Leon Wasden; Hussein Moradi; Behrouz Farhang-Broujeny
2014-06-01
This paper presents a theoretical analysis of the performance of a filter bank-based multicarrier spread spectrum (FB-MC-SS) system. We consider an FB-MC-SS setup where each data symbol is spread across multiple subcarriers, but there is no spreading in time. The results are then compared with those of the well-known direct sequence spread spectrum (DS-SS) system with a rake receiver for its best performance. We compare the two systems when the channel noise is white. We prove that as the processing gains of the two systems tend to infinity both approach the same performance. However, numerical simulations show that, in practice,more » where processing gain is limited, FB-MC-SS outperforms DS-SS.« less
Santos, Edgar; León, Fiorella; Silos, Humberto; Sanchez-Porras, Renan; Shuttleworth, C William; Unterberg, Andreas; Sakowitz, Oliver W
2016-12-01
The aim was to characterize the effects of magnesium sulfate, using i.v. bolus and local administration, using intrinsic signal imaging, and on electrocorticographic activity during the induction and propagation of spreading depolarizations in the gyrencephalic porcine brain. Local application of magnesium sulfate led to a complete inhibition of spreading depolarizations. One hour after washing out the topical magnesium sulfate, re-incidence of the spreading depolarizations was observed in 50% of the hemispheres. Those spreading depolarizations showed attenuation in hemodynamic characteristics and speed in intrinsic optical signal imaging. The electrical amplitude decreased through electrocorticographic activity. Intravenous magnesium therapy showed no significant effects on spreading depolarization incidence and characteristics. © The Author(s) 2016.
Single molecular force across single integrins dictates cell spreading.
Chowdhury, Farhan; Li, Isaac T S; Leslie, Benjamin J; Doğanay, Sultan; Singh, Rishi; Wang, Xuefeng; Seong, Jihye; Lee, Sang-Hak; Park, Seongjin; Wang, Ning; Ha, Taekjip
2015-10-01
Cells' ability to sense and interpret mechanical signals from the extracellular milieu modulates the degree of cell spreading. Yet how cells detect such signals and activate downstream signaling at the molecular level remain elusive. Herein, we utilize tension gauge tether (TGT) platform to investigate the underlying molecular mechanism of cell spreading. Our data from both differentiated cells of cancerous and non-cancerous origin show that for the same stiff underlying glass substrates and for same ligand density it is the molecular forces across single integrins that ultimately determine cell spreading responses. Furthermore, by decoupling molecular stiffness and molecular tension we demonstrate that molecular stiffness has little influence on cell spreading. Our data provide strong evidence that links molecular forces at the cell-substrate interface to the degree of cell spreading.
Pharmacological targeting of spreading depression in migraine
Eikermann-Haerter, Katharina; Can, Anil; Ayata, Cenk
2012-01-01
Migraine, particularly with aura, is a genetically heterogeneous disorder of ion channels, pumps or transporters associated with increased cortical excitability. Spreading depression, as one reflection of hyperexcitability, is the electrophysiological event underlying aura symptoms and a trigger for headache. Endogenous (e.g., genes and hormones) and exogenous factors (e.g., drugs) modulating migraine susceptibility have also been shown to modulate spreading depression susceptibility concordantly, suggesting that spreading depression can be a relevant therapeutic target in migraine. In support of this, several migraine prophylactic drugs used in clinical practice have been shown to suppress spreading depression susceptibility as a probable mechanism of action, despite belonging to widely different pharmacological classes. Hence, susceptibility to spreading depression can be a useful preclinical model with good positive and negative predictive value for drug screening. PMID:22364328
NASA Technical Reports Server (NTRS)
Ross, Howard D.; Miller, Fletcher; Schiller, David; Sirignano, William
1995-01-01
Recent reviews of our understanding of flame spread across liquids show that there are many unresolved issues regarding the phenomenology and causal mechanisms affecting ignition susceptibility, flame spread characteristics, and flame spread rates. One area of discrepancy is the effect of buoyancy in both the uniform and pulsating spread regimes. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity (1g) and microgravity (micro g) experiments; and (2) numerical modeling at different gravitational levels. Of special interest to this work, as discussed at the previous workshop, is the determination of whether, and under what conditions, pulsating spread occurs in micro g. Microgravity offers a unique ability to modify and control the gas-phase flow pattern by utilizing a forced air flow over the pool surface.
NASA Astrophysics Data System (ADS)
Shipilov, E. V.
2008-03-01
Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific system of the Canada Basin that finished its evolution in the Late Cretaceous and the North Atlantic system of the Makarov and Eurasia basins that came to take the place of the Paleopacific system. In contrast to traditional views, it has been suggested that asymmetry of the northern Norwegian-Greenland Basin is explained by two-stage development of this Atlantic segment with formation of primary and secondary spreading centers. The secondary spreading center of the Knipovich Ridge started to evolve approximately at the Oligocene-Miocene transition. This process resulted in the breaking off of the Hovgard continental block from the Barents Sea margin. Thus, the breakdown of Wegener’s Pangea and its Laurasian fragments with the formation of young spreading basins was a staged process that developed nearly from opposite sides. Before the Late Cretaceous (the first stage), the Pangea broke down from the side of Paleopacific to form the Canada Basin, an element of the Amerasia Basin (first phase of ocean formation). Since the Late Cretaceous, destructive pulses came from the side of the North Atlantic and resulted in the separation of Greenland from North America and the development of the Labrador-Baffin-Makarov spreading system (second phase of ocean formation). The Cenozoic was marked by the development of the second spreading branch and the formation of the Norwegian-Greenland and Eurasia oceanic basins (third phase of ocean formation). Spreading centers of this branch are functioning currently but at an extremely low rate.
Upper mantle electrical resistivity structure beneath back-arc spreading centers
NASA Astrophysics Data System (ADS)
Seama, N.; Shibata, Y.; Kimura, M.; Shindo, H.; Matsuno, T.; Nogi, Y.; Okino, K.
2011-12-01
We compare four electrical resistivity structure images of the upper mantle across back-arc spreading centers (Mariana Trough at 18 N and 13 N, and the Eastern Lau at 19.7 S and 21.3 S) to provide geophysical constraints on issues of mantle dynamics beneath the back-arc spreading system related to the subducting slab. The central Mariana Trough at 18 N has the full spreading rate of 25 km/Myr, and shows characteristic slow-spreading features; existence of median valley neovolcanic zone and "Bull's eyes" mantle Bouguer anomaly (MBA) along the axes. On the other hand, the southern Mariana Trough at 13 N shows an EPR type axial relief in morphology and lower MBA than that in the central Mariana Trough (Kitada et al., 2006), suggesting abundance of magma supply, even though the full spreading rate is 35 km/Myr that is categorized as a slow spreading ridge. At the Eastern Lau spreading center, crustal thickness and morphology vary systematically with arc proximity and shows the opposed trends against spreading rate: The full spreading rate increases from 65 km/Myr at 21.3 S to 85 km/Myr at 19.7 S, while the crustal thicknesses decrease together with morphology transitions from shallow peaked volcanic highs to a deeper flat axis (Martinez et al., 2006). Matsuno et al. (2010) provides a resistivity structure image of the upper mantle across the central Mariana subduction system, which contains several key features: There is an uppermost resistive layer with a thickness of 80-100 km beneath the central Mariana Trough, suggesting dry residual from the plate accretion process. But there is no evidence for a conductive feature beneath the back-arc spreading center at 18 N, and this feature is clearly independent from the conductive region beneath the volcanic arc below 60 km depth that reflects melting and hydration driven by water release from the subducting slab. The resultant upper mantle resistivity structure well support that the melt supply is not abundant, resulting in characteristic slow-spreading features at the surface. We have conducted marine magnetotelluric (MT) surveys at the southern Mariana in 2010 and at the Eastern Lau in 2009-2010. We obtained 10 ocean bottom electro-magnetometer (OBEM) data from a 130 km length MT transect across the southern Mariana spreading axis at 13 N, while we obtained 2 OBEM data and 11 ocean bottom magnetometer data from two 160 km length MT transects across the Eastern Lau spreading axes at 19.7 S and 21.3 S. After calculation of MT response functions and their correction for topographic distortion, two-dimensional electrical resistivity structures will be derived using an inversion algorithm. At this meeting, first we will show the resistivity structure images of the upper mantle beneath these spreading axes. Then, these structure images will be compared to identify differences in the mantle dynamics and the melt supply beneath the back-arc spreading system related to the subducting slab.
Scott, Angela Bullanday; Toribio, Jenny-Ann L. M. L.; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta
2018-01-01
This study quantified and compared the probability of avian influenza (AI) spread within and between Australian commercial chicken farms via specified spread pathways using scenario tree mathematical modeling. Input values for the models were sourced from scientific literature, expert opinion, and a farm survey conducted during 2015 and 2016 on Australian commercial chicken farms located in New South Wales (NSW) and Queensland. Outputs from the models indicate that the probability of no establishment of infection in a shed is the most likely end-point after exposure and infection of low-pathogenic avian influenza (LPAI) in one chicken for all farm types (non-free range meat chicken, free range meat chicken, cage layer, barn layer, and free range layer farms). If LPAI infection is established in a shed, LPAI is more likely to spread to other sheds and beyond the index farm due to a relatively low probability of detection and reporting during LPAI infection compared to high-pathogenic avian influenza (HPAI) infection. Among farm types, the median probability for HPAI spread between sheds and between farms is higher for layer farms (0.0019, 0.0016, and 0.0031 for cage, barn, and free range layer, respectively) than meat chicken farms (0.00025 and 0.00043 for barn and free range meat chicken, respectively) due to a higher probability of mutation in layer birds, which relates to their longer production cycle. The pathway of LPAI spread between sheds with the highest average median probability was spread via equipment (0.015; 5–95%, 0.0058–0.036) and for HPAI spread between farms, the pathway with the highest average median probability was spread via egg trays (3.70 × 10−5; 5–95%, 1.47 × 10−6–0.00034). As the spread model did not explicitly consider volume and frequency of the spread pathways, these results provide a comparison of spread probabilities per pathway. These findings highlight the importance of performing biosecurity practices to limit spread of the AI virus. The models can be updated as new information on the mechanisms of the AI virus and on the volume and frequency of movements shed-to-shed and of movements between commercial chicken farms becomes available. PMID:29686993
NASA Astrophysics Data System (ADS)
Deng, P.; Mei, L.; Liu, J.; Liu, M.
2016-12-01
During the post-rift period, the northern continental margin of the South China Sea experienced syn-spreading stage related to the seafloor spreading from 32-15.5 Ma and post-spreading stage from 15.5-0 Ma. To recognize the structural difference and transformation between the syn- and post-spreading stags, we based on the interpretation of the high quality of 3D seismic data and comprehensively analyze the geometry and kinematics of faults, volcanism, magmatic diapirs and fluid actions of post-rift in Baiyun sag. The analysis reveals the syn-spreading stage can be divided into three episodes, namely Nanhai Episode One (32-29Ma), Nanhai Episode Two (24.4-21Ma) and Nanhai Episode Three (18.5-16.5Ma). Each of the three episodes has different geodynamic background: the first one is response to weak extensional structural environment at the beginning of the seafloor spreading, the second one is response to northward migration of the shelf slope-break in Baiyun sag, and the third one is response to strong subsidence of the Main Baiyun sag. During the syn-spreading stage, amount of effusive magma and polygonal faults developed, and the dynamics of the seafloor spreading shows migratory direction from south to north. The Post-spreading stage, which is response to the subduction compression from the Philippine plate in the east, can be divided into two episodes: Dongsha Episode One (12.5-10.5Ma) and Dongsha Episode Two (5.33-3.6Ma). During the post-spreading stage, each of episode has similar structural property and shows dynamic migration direction from east to west, besides there are much strong tectonism which are different from that of the syn-spreading stage's, such as magmatic diapirs and gas chimney. The structure has obvious transformation from syn- to post-spreading stage in Baiyun sag: faults plane pattern's transformation from dispersive and weak belt-like to X-shaped conjugated shear zone; tectonic evolution migration's transformation from northward migration to westward migration; structural type's transformation from effusive magma and polygonal faults to magmatic diapirs and gas chimney. This study has an enlightening significance of the recognition of structural characteristics in the northern continental margin of the South China Sea during the post-rift period.
Scott, Angela Bullanday; Toribio, Jenny-Ann L M L; Singh, Mini; Groves, Peter; Barnes, Belinda; Glass, Kathryn; Moloney, Barbara; Black, Amanda; Hernandez-Jover, Marta
2018-01-01
This study quantified and compared the probability of avian influenza (AI) spread within and between Australian commercial chicken farms via specified spread pathways using scenario tree mathematical modeling. Input values for the models were sourced from scientific literature, expert opinion, and a farm survey conducted during 2015 and 2016 on Australian commercial chicken farms located in New South Wales (NSW) and Queensland. Outputs from the models indicate that the probability of no establishment of infection in a shed is the most likely end-point after exposure and infection of low-pathogenic avian influenza (LPAI) in one chicken for all farm types (non-free range meat chicken, free range meat chicken, cage layer, barn layer, and free range layer farms). If LPAI infection is established in a shed, LPAI is more likely to spread to other sheds and beyond the index farm due to a relatively low probability of detection and reporting during LPAI infection compared to high-pathogenic avian influenza (HPAI) infection. Among farm types, the median probability for HPAI spread between sheds and between farms is higher for layer farms (0.0019, 0.0016, and 0.0031 for cage, barn, and free range layer, respectively) than meat chicken farms (0.00025 and 0.00043 for barn and free range meat chicken, respectively) due to a higher probability of mutation in layer birds, which relates to their longer production cycle. The pathway of LPAI spread between sheds with the highest average median probability was spread via equipment (0.015; 5-95%, 0.0058-0.036) and for HPAI spread between farms, the pathway with the highest average median probability was spread via egg trays (3.70 × 10 -5 ; 5-95%, 1.47 × 10 -6 -0.00034). As the spread model did not explicitly consider volume and frequency of the spread pathways, these results provide a comparison of spread probabilities per pathway. These findings highlight the importance of performing biosecurity practices to limit spread of the AI virus. The models can be updated as new information on the mechanisms of the AI virus and on the volume and frequency of movements shed-to-shed and of movements between commercial chicken farms becomes available.
Metastatic cancer is cancer that spreads from its site of origin to another part of the body. Learn how cancer spreads, possible symptoms, common sites where cancer spreads, and how to find out about treatment options.
D.R. Weise; E. Koo; X. Zhou; S. Mahalingam
2011-01-01
Observed fire spread rates from 240 laboratory fires in horizontally-oriented single-species live fuel beds were compared to predictions from various implementations and modifications of the Rothermel rate of spread model and a physical fire spread model developed by Pagni and Koo. Packing ratio of the laboratory fuel beds was generally greater than that observed in...
A Simple Model to Rank Shellfish Farming Areas Based on the Risk of Disease Introduction and Spread.
Thrush, M A; Pearce, F M; Gubbins, M J; Oidtmann, B C; Peeler, E J
2017-08-01
The European Union Council Directive 2006/88/EC requires that risk-based surveillance (RBS) for listed aquatic animal diseases is applied to all aquaculture production businesses. The principle behind this is the efficient use of resources directed towards high-risk farm categories, animal types and geographic areas. To achieve this requirement, fish and shellfish farms must be ranked according to their risk of disease introduction and spread. We present a method to risk rank shellfish farming areas based on the risk of disease introduction and spread and demonstrate how the approach was applied in 45 shellfish farming areas in England and Wales. Ten parameters were used to inform the risk model, which were grouped into four risk themes based on related pathways for transmission of pathogens: (i) live animal movement, (ii) transmission via water, (iii) short distance mechanical spread (birds) and (iv) long distance mechanical spread (vessels). Weights (informed by expert knowledge) were applied both to individual parameters and to risk themes for introduction and spread to reflect their relative importance. A spreadsheet model was developed to determine quantitative scores for the risk of pathogen introduction and risk of pathogen spread for each shellfish farming area. These scores were used to independently rank areas for risk of introduction and for risk of spread. Thresholds were set to establish risk categories (low, medium and high) for introduction and spread based on risk scores. Risk categories for introduction and spread for each area were combined to provide overall risk categories to inform a risk-based surveillance programme directed at the area level. Applying the combined risk category designation framework for risk of introduction and spread suggested by European Commission guidance for risk-based surveillance, 4, 10 and 31 areas were classified as high, medium and low risk, respectively. © 2016 Crown copyright.
NASA Astrophysics Data System (ADS)
Wang, Zhengjun; Wu, Jianguo; Shang, Hanwu; Cheng, Jiaan
2011-02-01
The spread of invasive species is a complex ecological process that is affected by both the biology of the species and the spatial structure of a landscape. The rice water weevil ( Lissorhoptrus oryzophilus Kuschel), a notorious crop pest found in many parts of the world, is one of the most devastating invasive species in China, and has caused enormous economic losses and ecological damage. Little is known, however, as to how habitat and landscape features affect the spatial spread of this pest. Thus, the main goal of this study was to investigate the relationship between the observed spread pattern of L. oryzophilus and landscape structural factors in Zhejiang Province, China between 1993 and 2001. We quantified the invasive spread of the weevil in terms of both the proportion of infected area and spread distance each year as well as landscape structure and connectivity of rice paddies with landscape metrics. Our results showed that the spread of L. oryzophilus took place primarily in the southwest-northeast direction along coastal areas at a speed of about 36 km per year. The composition and spatial arrangement of landscape elements were key determinants of this unique spread pattern. In particular, the connectivity of early rice paddies was crucial for the invasive spread while other factors such as meteorological and geographical conditions may also have been relevant. To control the spread of the pest, we propose four management measures: (1) to implement a landscape-level planning scheme of cropping systems to minimize habitat area and connectivity for the pest, (2) to reduce the source populations at a local scale using integrated control methods, (3) to monitor and report invasive spread in a timely manner, and (4) to strengthen the quarantine system. To be most effective, all four management measures need to be implemented together through an integrated, multi-scaled approach.
Non-Orthogonality of Seafloor Spreading: A New Look at Fast Spreading Centers
NASA Astrophysics Data System (ADS)
Zhang, T.; Gordon, R. G.
2015-12-01
Most of Earth's surface is created by seafloor spreading. While most seafloor spreading is orthogonal, that is, the strike of mid-ocean ridge segments is perpendicular to nearby transform faults, examples of significant non-orthogonality have been noted since the 1970s, in particular in regions of slow seafloor spreading such as the western Gulf of Aden with non-orthogonality up to 45°. In contrast, here we focus on fast and ultra-fast seafloor spreading along the East Pacific Rise. To estimate non-orthogonality, we compare ridge-segment strikes with the direction of plate motion determined from the angular velocity that best fits all the data along the boundary of a single plate pair [DeMets et al., 2010]. The advantages of this approach include greater accuracy and the ability to estimate non-orthogonality where there are no nearby transform faults. Estimating the strikes of fast-spreading mid-ocean ridge segments present several challenges as non-transform offsets on various scales affect the estimate of the strike. While spreading is orthogonal or nearly orthogonal along much of the East Pacific Rise, some ridge segments along the Pacific-Nazca boundary near 30°S and near 16°S-22°S deviate from orthogonality by as much as 6°-12° even when we exclude the portions of mid-ocean ridge segments involved in overlapping spreading centers. Thus modest but significant non-orthogonality occurs where seafloor spreading is the fastest on the planet. If a plume lies near the ridge segment, we assume it contributes to magma overpressure along the ridge segment [Abelson & Agnon, 1997]. We further assume that the contribution to magma overpressure is proportional to the buoyancy flux of the plume [Sleep, 1990] and inversely proportional to the distance between the mid-ocean ridge segment and a given plume. We find that the non-orthogonal angle tends to decrease with increasing spreading rate and with increasing distance between ridge segment and plume.
... How Is Mono Spread? Print My sister has mononucleosis. I drank out of her drink before we ... that I have mono now? – Kyle* Mono, or mononucleosis, is spread through direct contact with saliva. This ...
Lattice model for influenza spreading with spontaneous behavioral changes.
Fierro, Annalisa; Liccardo, Antonella
2013-01-01
Individual behavioral response to the spreading of an epidemic plays a crucial role in the progression of the epidemic itself. The risk perception induces individuals to adopt a protective behavior, as for instance reducing their social contacts, adopting more restrictive hygienic measures or undergoing prophylaxis procedures. In this paper, starting with a previously developed lattice-gas SIR model, we construct a coupled behavior-disease model for influenza spreading with spontaneous behavioral changes. The focus is on self-initiated behavioral changes that alter the susceptibility to the disease, without altering the contact patterns among individuals. Three different mechanisms of awareness spreading are analyzed: the local spreading due to the presence in the neighborhood of infective individuals; the global spreading due to the news published by the mass media and to educational campaigns implemented at institutional level; the local spreading occurring through the "thought contagion" among aware and unaware individuals. The peculiarity of the present approach is that the awareness spreading model is calibrated on available data on awareness and concern of the population about the risk of contagion. In particular, the model is validated against the A(H1N1) epidemic outbreak in Italy during the 2009/2010 season, by making use of the awareness data gathered by the behavioral risk factor surveillance system (PASSI). We find that, increasing the accordance between the simulated awareness spreading and the PASSI data on risk perception, the agreement between simulated and experimental epidemiological data improves as well. Furthermore, we show that, within our model, the primary mechanism to reproduce a realistic evolution of the awareness during an epidemic, is the one due to globally available information. This result highlights how crucial is the role of mass media and educational campaigns in influencing the epidemic spreading of infectious diseases.
True and fake information spreading over the Facebook
NASA Astrophysics Data System (ADS)
Yang, Dong; Chow, Tommy W. S.; Zhong, Lu; Tian, Zhaoyang; Zhang, Qingpeng; Chen, Guanrong
2018-09-01
Social networks have involved more and more users who search for and share information extensively and frequently. Tremendous evidence in Facebook, Twitter, Flickr and Google+ alike shows that such social networks are the major information sources as well as the most effective platforms for information transmission and exchange. The dynamic propagation of various information may gradually disseminate, drastically increase, strongly compete with each other, or slowly decrease. These observations had led to the present study of the spreading process of true and fake information over social networks, particularly the Facebook. Specifically, in this paper the topological structure of two huge-scale Facebook network datasets are investigated regarding their statistical properties. Based on that, an information model for simulating the true and fake information spreading over the Facebook is established. Through controlling the spreading parameters in extensive large-scale simulations, it is found that the final density of stiflers increases with the growth of the spreading rate, while it would decline with the increase of the removal rate. Moreover, it is found that the spreading process of the true-fake information is closely related to the node degrees on the network. Hub-individuals with high degrees have large probabilities to learn hidden information and then spread it. Interestingly, it is found that the spreading rate of the true information but not of the fake information has a great effect on the information spreading process, reflecting the human nature in believing and spreading truths in social activities. The new findings validate the proposed model to be capable of characterizing the dynamic evolution of true and fake information over the Facebook, useful and informative for future social science studies.
Is a Retrolaminar Approach to the Thoracic Paravertebral Space Possible?: A Human Cadaveric Study.
Sabouri, A Sassan; Crawford, Lane; Bick, Sarah K; Nozari, Ala; Anderson, Thomas A
2018-06-19
The retrolaminar block (RB) is used for truncal analgesia, but its mechanism of neural blockade remains obscure. We sought to learn the pattern of local anesthetic spread after thoracic RB using cadaveric models. In 8 fresh cadavers, an ultrasound-guided T4 RB was performed with 20 mL of methylene blue 1% and bupivacaine 0.5%. For comparison, an RB at T9 in 1 cadaver and a T4 thoracic paravertebral block in another cadaver were performed. Subsequently, posterior and anterior thoracic dissections were performed to examination where the dye spread. After T4 RB, dye was noted to spread in the ipsilateral retrolaminar plane (all 8 cadavers, median cephalad spread 3.5 cm, caudad spread 10.7 cm, lateral spread 2.5 cm), the contralateral retrolaminar plane (6 cadavers), the paravertebral space (5 cadavers, median of 3 segments, T3-T5), the intercostal space (5 cadavers, median of 3.5 cm laterally), the T4 epidural space (6 cadavers), and the intervertebral foramina (4 cadavers, median of 2 segments, T4-T5). After T9 retrolaminar injection, dye was noted in the ipsilateral retrolaminar plane (5.5 cm cephalad, 13.5 cm caudad, and 2.5 cm lateral), the contralateral retrolaminar plane, and the epidural space. Dye after T4 traditional paravertebral block spread to T1-T6 paravertebral space with 15-cm lateral spread. Injectate spread to the paravertebral space, epidural space, intercostal space, and intervertebral foramina is possible in the RB but is quite variable. In comparison to the thoracic paravertebral block, injectate spread within the paravertebral space is more limited.
Influence of needle position on lumbar segmental nerve root block selectivity.
Wolff, André P; Groen, Gerbrand J; Wilder-Smith, Oliver H
2006-01-01
In patients with chronic low back pain radiating to the leg, segmental nerve root blocks (SNRBs) are performed to predict surgical outcome and identify the putative symptomatic spinal nerve. Epidural spread may lead to false interpretation, affecting clinical decision making. Systematic fluoroscopic analysis of epidural local anesthetic spread and its relationship to needle tip location has not been published to date. Study aims include assessment of epidural local anesthetic spread and its relationship to needle position during fluoroscopy-assisted blocks. Patients scheduled for L4, L5, and S1 blocks were included in this prospective observational study. Under fluoroscopy and electrostimulation, they received 0.5 mL of a mixture containing lidocaine 5 mg and iohexol 75 mg. X-rays with needle tip and contrast were scored for no epidural spread (grade 0), local spread epidurally (grade 1), or to adjacent nerve roots (grade 2). Sixty-five patients were analyzed for epidural spread, 62 for needle position. Grade 1 epidural spread occurred in 47% of L4 and 28% of L5 blocks and grade 2 spread in 3 blocks (5%; L5 n = 1, S1 n = 2). For lumbar blocks, the needle was most frequently found in the lateral upper half of the intervertebral foramen. Epidural spread occurred more frequently with medial needle positions (P = .06). The findings suggest (P = .06) that the risk of grade 1 and 2 lumbar epidural spread, which results in decreased SNRB selectivity, is greater with medial needle positions in the intervertebral foramen. The variability in anatomic position of the dorsal root ganglion necessitates electrostimulation to guide SNRB in addition to fluoroscopy.
Hefermehl, Lukas J; Largo, Remo A; Hermanns, Thomas; Poyet, Cédric; Sulser, Tullio; Eberli, Daniel
2014-08-01
To assess critical heat spread of cautery instruments used in robot-assisted laparoscopic (RAL) surgery. Thermal spread along bovine musculofascial tissues was examined by infrared camera, histology and enzyme assay. Currently used monopolar, bipolar and ultrasonic laparoscopic instruments were investigated at various power settings and application times. The efficacy of using an additional Maryland clamp as a heat sink was evaluated. A temperature of 45 °C was considered the threshold temperature for possible nerve damage. Monopolar instruments exhibited a mean (sem) critical thermal spread of 3.5 (2.3) mm when applied at 60 W for 1 s. After 2 s, the spread was >20 mm. For adjustable bipolar instruments the mean (sem) critical thermal spread was 2.2 (0.6) mm at 60 W and 1 s, and 3.6 (1.3) mm at 2 s. The PK and LigaSure forceps had mean (sem) critical thermal spreads of 3.9 (0.8) and 2.8 (0.6) mm respectively, whereas the ultrasonic instrument reached 2.9 (0.8) mm. Application of an additional Maryland clamp as a heat sink, significantly reduced the thermal spread. Histomorphometric analyses and enzyme assay supported these findings. All coagulation devices used in RAL surgery have distinct thermal spreads depending on power setting and application time. Cautery may be of concern due to lateral temperature spread, causing potential damage to sensitive structures including nerves. Our results provide surgeons with a resource for educated decision-making when using coagulation devices during robotic procedures. © 2013 The Authors. BJU International © 2013 BJU International.
SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size
NASA Astrophysics Data System (ADS)
Dong, Suyalatu; Deng, Yan-Bin; Huang, Yong-Chang
2017-10-01
Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network. Supported by National Natural Science Foundation of China under Grant Nos. 11275017 and 11173028
Comments on Landau damping due to synchrotron frequency spread
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, K.Y.; /Fermilab
2005-01-01
An inductive/space-charge impedance shifts the synchrotron frequency downwards above/below transition, but it is often said that the coherent synchrotron frequency of the bunch is not shifted in the rigid-dipole mode. On the other hand, the incoherent synchrotron frequency due to the sinusoidal rf always spreads in the downward direction. This spread will therefore not be able to cover the coherent synchrotron frequency, implying that there will not be any Landau damping no matter how large the frequency spread is. By studying the dispersion relation, it is shown that the above argument is incorrect, and there will be Landau damping ifmore » there is sufficient frequency spread. The main reason is that the coherent frequency of the rigid-dipole mode will no longer remain unshifted in the presence of a synchrotron frequency spread.« less
Continuous versus Arrested Spreading of Biofilms at Solid-Gas Interfaces: The Role of Surface Forces
NASA Astrophysics Data System (ADS)
Trinschek, Sarah; John, Karin; Lecuyer, Sigolène; Thiele, Uwe
2017-08-01
We introduce and analyze a model for osmotically spreading bacterial colonies at solid-air interfaces that includes wetting phenomena, i.e., surface forces. The model is based on a hydrodynamic description for liquid suspensions which is supplemented by bioactive processes. We show that surface forces determine whether a biofilm can expand laterally over a substrate and provide experimental evidence for the existence of a transition between continuous and arrested spreading for Bacillus subtilis biofilms. In the case of arrested spreading, the lateral expansion of the biofilm is confined, albeit the colony is biologically active. However, a small reduction in the surface tension of the biofilm is sufficient to induce spreading. The incorporation of surface forces into our hydrodynamic model allows us to capture this transition in biofilm spreading behavior.
Rapid evolution accelerates plant population spread in fragmented experimental landscapes.
Williams, Jennifer L; Kendall, Bruce E; Levine, Jonathan M
2016-07-29
Predicting the speed of biological invasions and native species migrations requires an understanding of the ecological and evolutionary dynamics of spreading populations. Theory predicts that evolution can accelerate species' spread velocity, but how landscape patchiness--an important control over traits under selection--influences this process is unknown. We manipulated the response to selection in populations of a model plant species spreading through replicated experimental landscapes of varying patchiness. After six generations of change, evolving populations spread 11% farther than nonevolving populations in continuously favorable landscapes and 200% farther in the most fragmented landscapes. The greater effect of evolution on spread in patchier landscapes was consistent with the evolution of dispersal and competitive ability. Accounting for evolutionary change may be critical when predicting the velocity of range expansions. Copyright © 2016, American Association for the Advancement of Science.
Drop spreading and gelation of thermoresponsive polymers.
de Ruiter, R; Royon, L; Snoeijer, J H; Brunet, P
2018-04-25
Spreading and solidification of liquid droplets are elementary processes of relevance for additive manufacturing. Here we investigate the effect of heat transfer on spreading of a thermoresponsive solution (Pluronic F127) that undergoes a sol-gel transition above a critical temperature Tm. By controlling the concentration of Pluronic F127 we systematically vary Tm, while also imposing a broad range of temperatures of the solid and the liquid. We subsequently monitor the spreading dynamics over several orders of magnitude in time and determine when solidification stops the spreading. It is found that the main parameter is the difference between the substrate temperature and Tm, pointing to a local mechanism for arrest near the contact line. Unexpectedly, the spreading is also found to stop below the gelation temperature, which we attribute to a local enhancement in polymer concentration due to evaporation near the contact line.
The Effect of Microgravity on Flame Spread over a Thin Fuel
NASA Technical Reports Server (NTRS)
Olson, Sandra L.
1987-01-01
A flame spreading over a thermally thin cellulose fuel was studied in a quiescent microgravity environment. Flame spread over two different fuel thicknesses was studied in ambient oxygen-nitrogen environments from the limiting oxygen concentration to 100 percent oxygen at 1 atm pressure. Comparative normal-gravity tests were also conducted. Gravity was found to play an important role in the mechanism of flame spread. In lower oxygen environments, the buoyant flow induced in normal gravity was found to accelerate the flame spread rate as compared to the microgravity flame spread rates. It was also found to stabilize the flame in oxidizer environments, where microgravity flames in a quiescent environment extinguish. In oxygen-rich environments, however, it was determined that gravity does not play an important role in the flame spread mechanism. Fuel thickness influences the flame spread rate in both normal gravity and microgravity. The flame spread rate varies inversely with fuel thickness in both normal gravity and in an oxygen-rich microgravity environment. In lower oxygen microgravity environments, however, the inverse relationship breaks down because finite-rate kinetics and heat losses become important. Two different extinction limits were found in microgravity for the two thicknesses of fuel. This is in contrast to the normal-gravity extinction limit, which was found to be independent of fuel thickness. In microgravity the flame is quenched because of excessive thermal losses, whereas in normal gravity the flame is extinguished by blowoff.
Theory of rumour spreading in complex social networks
NASA Astrophysics Data System (ADS)
Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M.
2007-01-01
We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.
Community Size Effects on Epidemic Spreading in Multiplex Social Networks.
Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie
2016-01-01
The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people's reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals' alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals' risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals' protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes.
Community Size Effects on Epidemic Spreading in Multiplex Social Networks
Liu, Ting; Li, Ping; Chen, Yan; Zhang, Jie
2016-01-01
The dynamical process of epidemic spreading has drawn much attention of the complex network community. In the network paradigm, diseases spread from one person to another through the social ties amongst the population. There are a variety of factors that govern the processes of disease spreading on the networks. A common but not negligible factor is people’s reaction to the outbreak of epidemics. Such reaction can be related information dissemination or self-protection. In this work, we explore the interactions between disease spreading and population response in terms of information diffusion and individuals’ alertness. We model the system by mapping multiplex networks into two-layer networks and incorporating individuals’ risk awareness, on the assumption that their response to the disease spreading depends on the size of the community they belong to. By comparing the final incidence of diseases in multiplex networks, we find that there is considerable mitigation of diseases spreading for full phase of spreading speed when individuals’ protection responses are introduced. Interestingly, the degree of community overlap between the two layers is found to be critical factor that affects the final incidence. We also analyze the consequences of the epidemic incidence in communities with different sizes and the impacts of community overlap between two layers. Specifically, as the diseases information makes individuals alert and take measures to prevent the diseases, the effective protection is more striking in small community. These phenomena can be explained by the multiplexity of the networked system and the competition between two spreading processes. PMID:27007112
Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes
NASA Astrophysics Data System (ADS)
Farzan Sabahi, Mohammad; Dehghanfard, Ali
2014-12-01
The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.
The spread of substance use and delinquency between adolescent twins.
Laursen, Brett; Hartl, Amy C; Vitaro, Frank; Brendgen, Mara; Dionne, Ginette; Boivin, Michel
2017-02-01
This investigation examines the spread of problem behaviors (substance use and delinquency) between twin siblings. A sample of 628 twins (151 male twin pairs and 163 female twin pairs) drawn from the Quebec Newborn Twin Study completed inventories describing delinquency and substance use at ages 13, 14, and 15. A 3-wave longitudinal actor-partner interdependence model (APIM) identified avenues whereby problem behaviors spread from one twin to another. Problems did not spread directly between twins across domains. Instead, 2 indirect pathways were identified: (a) Problems first spread interindividually (between twins) within a behavioral domain, then spread intraindividually (within twins) across behavioral domains (e.g., Twin A delinquency → Twin B delinquency → Twin B substance use); and (b) problems first spread intraindividually (within twins) across behavioral domains, then spread interindividually (between twins) within a behavioral domain (e.g., Twin A delinquency → Twin A substance use → Twin B substance use). Controls for genetic effects, gene-environment correlations, friend substance use and delinquency, and parenting behaviors increase confidence in the conclusion that twin siblings uniquely contribute to the spread of problem behaviors during adolescence. Twin sibling influence is a risk factor for illicit substance use, both because substance use by one twin predicts substance use by the other twin, but also because delinquency in one twin predicts delinquency in the other twin, which then gives rise to greater substance use. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Spreading Characteristics and Thrust of Jets from Asymmetric Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1995-01-01
The spreading characteristics of jets from several asymmetric nozzles are studied in comparison to those of an axisymmetric jet, over the Mach number (M(sub J)) range of 0.3 to 1.96. The effect of tabs in two cases, the axisymmetric nozzle fitted with four tabs and a rectangular nozzle fitted with two large tabs, is also included in the comparison. Compared to the axisymmetric jet, the asymmetric jets spread only slightly faster at subsonic conditions, while at supersonic conditions, when screech occurs, they spread much faster. Screech profoundly increases the spreading of all jets. The effect varies in the different stages of screech, and the corresponding unsteady flowfield characteristics are documented via phase-averaged measurement of the fluctuating total pressure. An organization and intensification of the azimuthal vortical structures under the screeching condition is believed to be responsible for the increased spreading. Curiously, the jet from a 'lobed mixer' nozzle spreads much less at supersonic conditions compared to all other cases. This is due to the absence of screech with this nozzle. Jet spreading for the two tab configurations, on the other hand, is significantly more than any of the no-tab cases. This is true in the subsonic regime, as well as in the supersonic regime in spite of the fact that screech is essentially eliminated by the tabs. The dynamics of the streamwise vortex pairs produced by the tabs cause the most efficient jet spreading thus far observed in the study.
Jason Forthofer; Bret Butler
2007-01-01
A computational fluid dynamics (CFD) model and a mass-consistent model were used to simulate winds on simulated fire spread over a simple, low hill. The results suggest that the CFD wind field could significantly change simulated fire spread compared to traditional uniform winds. The CFD fire spread case may match reality better because the winds used in the fire...
Digital Construction and Characterization of Noise-like Spread Spectrum Signals
2016-11-01
Digital Construction and Characterization of Noise -like Spread Spectrum Signals Donald C. Buzanowski II, Frederick J. Block, Thomas C. Royster MIT...Lincoln Laboratory Lexington, MA 02420 Abstract—A new method for generating digital noise -like spread spectrum signals is proposed. A standard binary...employing signals that are noise -like (e.g., [1]). Direct sequence spread spectrum (DSSS) signals provide benefits such as protection against jamming, low
Fecteau, Marie-Eve; Hovingh, Ernest; Whitlock, Robert H; Sweeney, Raymond W
2013-11-01
The goal of this study was to determine the persistence of Mycobacterium avium subsp. paratuberculosis (MAP) in soil, crops, and ensiled feeds following manure spreading. This bacterium was often found in soil samples, but less frequently in harvested feeds and silage. Spreading of manure on fields used for crop harvest is preferred to spreading on grazing pastures.
Juan C. Corley; José M. Villacide; Andrew M. Liebhold
2014-01-01
Though rarely used in this way, biological control could potentially be exploited for managing spread of invasive species. Because spread of invasive species emerges from the combined action of population growth and dispersal, natural enemies that affect either of these processes should also affect spread. Dispersal of parasitoid species plays a key role in determining...
A qualitative comparison of fire spread models incorporating wind and slope effects
David R. Weise; Gregory S. Biging
1997-01-01
Wind velocity and slope are two critical variables that affect wildland fire rate of spread. The effects of these variables on rate of spread are often combined in rate-of-spread models using vector addition. The various methods used to combine wind and slope effects have seldom been validated or compared due to differences in the models or to lack of data. In this...
Modeling the potential of different countries for pandemic spread over the global air network
NASA Astrophysics Data System (ADS)
Sun, Zhe; Lv, Baolei; Xu, Bing
2017-04-01
Air network plays an important role in the spread of global epidemics due to its superior speed and range. Understanding the disease transmission pattern via network is the foundation for the prevention and control of future pandemics. In this study, we measured the potential of different countries for the pandemic spread by using a disease transmission model which integrated inter-country air traffic flow and geographic distance. The model was verified on the spread pattern of 2003 SARS, 2009 H1N1 influenza and 2014 Ebola by setting starting point at China, Mexico and Guinea respectively. Results showed that the model well reproduced the spread direction during the early stage as the time course were in good agreement with the reported arrival dates. Then the model was used to simulate the potential risk of each country in spreading the disease as the origin country. We observed that countries in North America, Europe and East Asia had the highest risk of transmission considering their high degree in the air network. We also found that for most starting countries, United States, United Kingdom, Germany and France would become the most-important spreading cores. Compared with empirical Susceptible-Infectious-Recover model, this model could respond much faster to the disease spread with no need for empirical disease transmission parameters.
Kwon, Won Kyoung; Kim, Ah Na; Lee, Pil Moo; Park, Cheol Hwan; Kim, Jae Hun
2016-01-01
Background. Caudal epidural steroid injections (CESIs) are an effective treatment for pain. If the injection spreads in a specific pattern depending on the needle position or bevel direction, it would be possible to inject the agent into a specific and desired area. Objectives. We conducted a prospective randomized trial to determine if the needle position and bevel direction have any effect on the epidural spreading pattern in CESI. Methods. Demographic data of the patient were collected. During CESI, the needle position (middle or lateral) and direction (ventral or dorsal) were randomly allocated. Following fluoroscope-guided injection of 4 mL contrast media and 10 mL of injectates, the epidural spreading patterns (ventral or dorsal, bilateral or lateral) were imaged. Results. In the 210 CESIs performed, the needle tip position and bevel direction did not influence the epidural spreading patterns at L4-5 and L5-S1 disc levels. A history of Lumbar spine surgery was associated with a significantly limited spread to each disc level. A midline needle tip position was more effective than the lateral position in spreading to the distant disc levels. Conclusions. Neither the needle tip position nor the bevel direction affected the epidural drug spreading pattern during CESI. PMID:27445609
Wu, Cyuan-Jhang; Singh, Vickramjeet; Sheng, Yu-Jane; Tsao, Heng-Kwong
2017-08-01
Solute separation of aqueous mixtures is mainly dominated by water vaporization. The evaporation rate of an aqueous drop grows with increasing the liquid-gas interfacial area. The spontaneous spreading behavior of a water droplet on a total wetting surface provides huge liquid-gas interfacial area per unit volume; however, it is halted by the self-pinning phenomenon upon addition of nonvolatile solutes. In this work, it is shown that the solute-induced self-pinning can be overcome by gravity, leading to anisotropic spreading much faster than isotropic spreading. The evaporation rate of anisotropic spreading on a zwitterionic sulfobetaine surface is 25 times larger as that on a poly(methyl methacrylate) surface. Dramatic enhancement of evaporation is demonstrated by simultaneous formation of fog atop liquid film. During anisotropic spreading, the solutes are quickly precipitated out within 30 s, showing the rapid solute-water separation. After repeated spreading process for the dye-containing solution, the mean concentration of the collection is doubled, revealing the concentration efficiency as high as 100%. Gravity-enhanced spreading on total wetting surfaces at room temperature is easy to scale-up with less energy consumption, and thus it has great potentials for the applications of solute separation and concentration.
Huang, Cheng-Kuang; Donald, Athene
2015-01-01
Since the dawn of in vitro cell cultures, how cells interact and proliferate within a given external environment has always been an important issue in the study of cell biology. It is now well known that mammalian cells typically exhibit a three-phase sigmoid spreading on encountering a substrate. To further this understanding, we examined the influence of cell shape towards the second rapid expansion phase of spreading. Specifically, 3T3 fibroblasts were seeded onto silicon elastomer films made from polydimethylsiloxane (PDMS), and micro-contact printed with fibronectin stripes of various dimensions. PDMS is adopted in our study for its biocompatibility, its ease in producing very smooth surfaces, and in the fabrication of micro-contact printing stamps. The substrate patterns are compared with respect to their influence on cell spreading over time. Our studies reveal, during the early rapid expansion phase, 3T3 fibroblasts are found to spread radially following a law; meanwhile, they proliferated in a lengthwise fashion on the striped patterns, following a law. We account for the observed differences in kinetics through a simple geometric analysis which predicted similar trends. In particular, a t2 law for radial spreading cells, and a t1 law for lengthwise spreading cells. PMID:25551146
Wetting and spreading at the molecular scale
NASA Technical Reports Server (NTRS)
Koplik, Joel; Banavar, Jayanth R.
1994-01-01
We have studied the microscopic aspects of the spreading of liquid drops on a solid surface by molecular dynamics simulations of coexisting three-phase Lennard-Jones systems of liquid, vapor and solid. We consider both spherically symmetric atoms and chain-like molecules, and a range of interaction strengths. As the attraction between liquid and solid increases we observed a smooth transition in spreading regimes, from partial to complete to terraced wetting. In the terraced case, where distinct monomolecular layers spread with different velocities, the layers are ordered but not solid, with qualitative behavior resembling recent experimental findings, but with interesting differences in the spreading rate.
Wang, Chenmiao; Qiao, Chunyan; Song, Wenlong; Sun, Hongchen
2015-08-19
In this contribution, superhydrophilic chitosan-based scaffolds with ultrafast spreading property were fabricated and used to improve the trapped efficiency of cells. The ultrafast spreading property allowed cells to be trapped into the internal 3D porous structures of the prepared scaffolds more quickly and effectively. Cell adhesion, growth, and proliferation were also improved, which could be attributed to the combination of UV irradiation and ultrafast spreading property. The construction of ultrafast spreading property on the scaffold surface will offer a novel way to design more effective scaffold in tissue engineering that could largely shorten the therapeutic time for patients.
Empirical study of the role of the topology in spreading on communication networks
NASA Astrophysics Data System (ADS)
Medvedev, Alexey; Kertesz, Janos
2017-03-01
Topological aspects, like community structure, and temporal activity patterns, like burstiness, have been shown to severely influence the speed of spreading in temporal networks. We study the influence of the topology on the susceptible-infected (SI) spreading on time stamped communication networks, as obtained from a dataset of mobile phone records. We consider city level networks with intra- and inter-city connections. The networks using only intra-city links are usually sparse, where the spreading depends mainly on the average degree. The inter-city links serve as bridges in spreading, speeding up considerably the process. We demonstrate the effect also on model simulations.
NASA Astrophysics Data System (ADS)
Miyatake, Teruhiko; Chiba, Kazuki; Hamamura, Masanori; Tachikawa, Shin'ichi
We propose a novel asynchronous direct-sequence codedivision multiple access (DS-CDMA) using feedback-controlled spreading sequences (FCSSs) (FCSS/DS-CDMA). At the receiver of FCSS/DS-CDMA, the code-orthogonalizing filter (COF) produces a spreading sequence, and the receiver returns the spreading sequence to the transmitter. Then the transmitter uses the spreading sequence as its updated version. The performance of FCSS/DS-CDMA is evaluated over time-dispersive channels. The results indicate that FCSS/DS-CDMA greatly suppresses both the intersymbol interference (ISI) and multiple access interference (MAI) over time-invariant channels. FCSS/DS-CDMA is applicable to the decentralized multiple access.
Thread angle dependency on flame spread shape over kenaf/polyester combined fabric
NASA Astrophysics Data System (ADS)
Azahari Razali, Mohd; Sapit, Azwan; Nizam Mohammed, Akmal; Nor Anuar Mohamad, Md; Nordin, Normayati; Sadikin, Azmahani; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir
2017-09-01
Understanding flame spread behavior is crucial to Fire Safety Engineering. It is noted that the natural fiber exhibits different flame spread behavior than the one of the synthetic fiber. This different may influences the flame spread behavior over combined fabric. There is a research has been done to examined the flame spread behavior over kenaf/polyester fabric. It is seen that the flame spread shape is dependent on the thread angle dependency. However, the explanation of this phenomenon is not described in detail in that research. In this study, explanation about this phenomenon is given in detail. Results show that the flame spread shape is dependent on the position of synthetic thread. For thread angle, θ = 0°, the polyester thread is breaking when the flame approach to the thread and the kenaf thread tends to move to the breaking direction. This behavior produces flame to be ‘V’ shape. However, for thread angle, θ = 90°, the polyester thread melts while the kenaf thread decomposed and burned. At this angle, the distance between kenaf threads remains constant as flame approaches.
Walter, Katharine S.; Pepin, Kim M.; Webb, Colleen T.; Gaff, Holly D.; Krause, Peter J.; Pitzer, Virginia E.; Diuk-Wasser, Maria A.
2016-01-01
Modelling the spatial spread of vector-borne zoonotic pathogens maintained in enzootic transmission cycles remains a major challenge. The best available spatio-temporal data on pathogen spread often take the form of human disease surveillance data. By applying a classic ecological approach—occupancy modelling—to an epidemiological question of disease spread, we used surveillance data to examine the latent ecological invasion of tick-borne pathogens. Over the last half-century, previously undescribed tick-borne pathogens including the agents of Lyme disease and human babesiosis have rapidly spread across the northeast United States. Despite their epidemiological importance, the mechanisms of tick-borne pathogen invasion and drivers underlying the distinct invasion trajectories of the co-vectored pathogens remain unresolved. Our approach allowed us to estimate the unobserved ecological processes underlying pathogen spread while accounting for imperfect detection of human cases. Our model predicts that tick-borne diseases spread in a diffusion-like manner with occasional long-distance dispersal and that babesiosis spread exhibits strong dependence on Lyme disease. PMID:27252022
On the universality of Marangoni-driven spreading
NASA Astrophysics Data System (ADS)
Visser, Claas; van Capelleveen, Bram; Koldeweij, Robin; Lohse, Detlef
2017-11-01
When two liquids of different surface tensions come into contact, the liquid with lower surface tension spreads over the other. Here we measure the dynamics of this Marangoni-driven spreading in the drop-drop geometry, revealing universal behavior with respect to the control parameters as well as other geometries (such as spreading over a flat interface). The distance L over which the low-surface-tension liquid has covered the high-surface-tension droplet is measured as a function of time t, surface tension difference between the liquids Δσ , and viscosity η, revealing power-law behavior L(t) tα . The exponent α is discussed for the early and late spreading regimes. Spreading inhibition is observed at high viscosity, for which the threshold is discussed. Finally, we show that our results collapse onto a single curve of dimensionless L(t) as a function of dimensionless time, which also captures previous results for different geometries, surface tension modifiers, and miscibility. As this curve spans 7 orders of magnitude, Marangoni-induced spreading can be considered a universal phenomenon for many practically encountered liquid-liquid systems.
Laws of spreading: When hydrodynamic equations are not enough
NASA Astrophysics Data System (ADS)
Kavehpour, Pirouz; Mohammad Karim, Alireza; Rothstein, Jonathan; Davis, Stephen
2017-11-01
For nearly 50 years, most of the researchers in the area of wetting and spreading have used a relationship between the dynamics contact angle and velocity and the equilibrium contact angle. Different forms of this relationship are known as Tanner's law, Hoffman-Voinov-Tanner law or Cox model, all of them are derived based on hydrodynamics assumptions. In this talk, we will discuss several common situations that this relationship is not valid and we propose a new way to look at spreading problem and its underlying physics. Our experimental result agrees with this interpretation of spreading dynamics. In addition, the experimental study has been performed using forced spreading with tensiometer to obtain the dependence of dynamic contact angle to the contact line velocity to describe the spreading dynamics of Newtonian liquids on the micro-textured surfaces. The effect of the geometrical descriptions of the micro-posts along with the physical properties of liquids on the spreading dynamics on micro-textured Teflon plates have been also studied. It was shown that hydrodynamic results are not valid for certain combination of fluid/solid systems.
Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge.
Edwards, M H; Kurras, G J; Tolstoy, M; Bohnenstiehl, D R; Coakley, B J; Cochran, J R
2001-02-15
Seafloor spreading is accommodated by volcanic and tectonic processes along the global mid-ocean ridge system. As spreading rate decreases the influence of volcanism also decreases, and it is unknown whether significant volcanism occurs at all at ultraslow spreading rates (<1.5 cm yr(-1)). Here we present three-dimensional sonar maps of the Gakkel ridge, Earth's slowest-spreading mid-ocean ridge, located in the Arctic basin under the Arctic Ocean ice canopy. We acquired this data using hull-mounted sonars attached to a nuclear-powered submarine, the USS Hawkbill. Sidescan data for the ultraslow-spreading (approximately 1.0 cm yr(-1)) eastern Gakkel ridge depict two young volcanoes covering approximately 720 km2 of an otherwise heavily sedimented axial valley. The western volcano coincides with the average location of epicentres for more than 250 teleseismic events detected in 1999, suggesting that an axial eruption was imaged shortly after its occurrence. These findings demonstrate that eruptions along the ultraslow-spreading Gakkel ridge are focused at discrete locations and appear to be more voluminous and occur more frequently than was previously thought.
NASA Astrophysics Data System (ADS)
Tambunan, L.; Salamah, H.; Asriana, N.
2017-03-01
This study aims to determine the influence of architectural design on the risk of fire spread in densely urban settlement area. Cellular Automata (CA) is used to analyse the fire spread pattern, speed, and the extent of damage. Four cells represent buildings, streets, and fields characteristic in the simulated area, as well as their flammability level and fire spread capabilities. Two fire scenarios are used to model the spread of fire: (1) fire origin in a building with concrete and wood material majority, and (2) fire origin in building with wood material majority. Building shape, building distance, road width, and total area of wall openings are considered constant, while wind is ignored. The result shows that fire spread faster in the building area with wood majority than with concrete majority. Significant amount of combustible building material, absence of distance between buildings, narrow streets and limited fields are factors which influence fire spread speed and pattern as well as extent of damage when fire occurs in the densely urban settlement area.
Understanding the spreading patterns of mobile phone viruses
NASA Astrophysics Data System (ADS)
Wang, Pu; Gonzalez, Marta; Hidalgo, Cesar; Barabasi, Albert-Laszlo
2009-03-01
Mobile viruses are little more than a nuisance today, but given our increased reliance on wireless communication, in the near future they could pose more risk than their PC based counterparts. Despite of the more than three hundred mobile viruses known so far, little is known about their spreading pattern, partly due to a lack of data on the communication and travel patterns of mobile phone users. Starting from the traffic and the communication pattern of six million mobile phone users, we model the vulnerability of mobile communications against potential virus outbreaks. We show that viruses exploiting Bluetooth and multimedia messaging services (MMS) follow markedly different spreading patterns. The Bluetooth virus can reach all susceptible handsets, but spreads relatively slowly, as its spread is driven by human mobility. In contrast, an MMS virus can spread rapidly, but because the underlying social network is fragmented, it can reach only a small fraction of all susceptible users. This difference affects both their spreading rate, the number of infected users, as well as the defense measures one needs to take to protect the system against potential viral outbreak.
An Analysis of Numerical Weather Prediction of the Diabatic Rossby Vortex
2014-06-01
Forecast SLP Mean and Spread ...............................................................................................148 2. DRV02 72 Hour...ECMWF Ensemble Forecast SLP Mean and Spread ...............................................................................................149 3...DRV03 72 Hour ECMWF Ensemble Forecast SLP Mean and Spread
An updated rate-of-spread clock
Kolaks, Jeremy; Grabner, Keith W.; Hartman, George; Cutter, Bruce E.; Loewenstein, Edward F.
2005-01-01
Several years ago, Blank and Simard (1983) described an electronic timer, frequently referred to as a rate-of-spread (ROS) clock—a relatively simple instrument used in measuring fire spread. Although other techniques for measuring rate of spread are available (such as data loggers), the basic ROS clock remains a valuable and relatively inexpensive tool. However, several items described in the original article have changed. Therefore, we are describing an updated version of the ROS clock.
2017-10-01
AWARD NUMBER: W81XWH-16-C-0161 TITLE: Hypothermia for Patients Requiring Evacuation of Subdural Hematoma: Effect on Spreading Depolarizations...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-16-C-0161 Hypothermia for Patients Requiring Evacuation of Subdural Hematoma: Effect on Spreading...in a sub-study of the HOPES trial to assess the effects of hypothermia on the pathologic mechanism of spreading depolarizations (SD). HOPES is a
NASA Technical Reports Server (NTRS)
Shang, P. C.; Altenkirch, R. A.; Eichhorn, R.
1978-01-01
The role of buoyancy on the flame spread rate over paper and its effect on extinction was studied by changing the gravity level and pressure. It was found that the flame spread rate decreases as the buoyancy induced flow increases. A method for correlating flame spread data using dimensionless parameters is presented. The Damkohler number is shown to be the dependent variable.
Hybrid epidemics--a case study on computer worm conficker.
Zhang, Changwang; Zhou, Shi; Chain, Benjamin M
2015-01-01
Conficker is a computer worm that erupted on the Internet in 2008. It is unique in combining three different spreading strategies: local probing, neighbourhood probing, and global probing. We propose a mathematical model that combines three modes of spreading: local, neighbourhood, and global, to capture the worm's spreading behaviour. The parameters of the model are inferred directly from network data obtained during the first day of the Conficker epidemic. The model is then used to explore the tradeoff between spreading modes in determining the worm's effectiveness. Our results show that the Conficker epidemic is an example of a critically hybrid epidemic, in which the different modes of spreading in isolation do not lead to successful epidemics. Such hybrid spreading strategies may be used beneficially to provide the most effective strategies for promulgating information across a large population. When used maliciously, however, they can present a dangerous challenge to current internet security protocols.
Rumor spreading in online social networks by considering the bipolar social reinforcement
NASA Astrophysics Data System (ADS)
Ma, Jing; Li, Dandan; Tian, Zihao
2016-04-01
Considering the bipolar social reinforcement which includes positive and negative effects, in this paper we explore the rumor spreading dynamics in online social networks. By means of the generation function and cavity method developed from statistical physics of disordered system, the rumor spreading threshold can be theoretically drawn. Simulation results indicate that decreasing the positive reinforcement factor or increasing the negative reinforcement factor can suppress the rumor spreading effectively. By analyzing the topological properties of the real world social network, we find that the nodes with lower degree usually have smaller weight. However, the nodes with lower degree may have larger k-shell. In order to curb rumor spreading, some control strategies that are based on the nodes' degree, k-shell and weight are presented. By comparison, we show that controlling those nodes that have larger degree or weight are two effective strategies to prevent the rumor spreading.
The spreading time in SIS epidemics on networks
NASA Astrophysics Data System (ADS)
He, Zhidong; Van Mieghem, Piet
2018-03-01
In a Susceptible-Infected-Susceptible (SIS) process, we investigate the spreading time Tm, which is the time when the number of infected nodes in the metastable state is first reached, starting from the outbreak of the epidemics. We observe that the spreading time Tm resembles a lognormal-like distribution, though with different deep tails, both for the Markovian and the non-Markovian infection process, which implies that the spreading time can be very long with a relatively high probability. In addition, we show that a stronger virus, with a higher effective infection rate τ or an earlier timing of the infection attempts, does not always lead to a shorter average spreading time E [Tm ] . We numerically demonstrate that the average spreading time E [Tm ] in the complete graph and the star graph scales logarithmically as a function of the network size N for a fixed fraction of infected nodes in the metastable state.
Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, II
NASA Astrophysics Data System (ADS)
Du, Yihong; Guo, Zongming
We study the diffusive logistic equation with a free boundary in higher space dimensions and heterogeneous environment. Such a model may be used to describe the spreading of a new or invasive species, with the free boundary representing the expanding front. For simplicity, we assume that the environment and the solution are radially symmetric. In the special case of one space dimension and homogeneous environment, this free boundary problem was investigated in Du and Lin (2010) [10]. We prove that the spreading-vanishing dichotomy established in Du and Lin (2010) [10] still holds in the more general and ecologically realistic setting considered here. Moreover, when spreading occurs, we obtain best possible upper and lower bounds for the spreading speed of the expanding front. When the environment is asymptotically homogeneous at infinity, these two bounds coincide. Our results indicate that the asymptotic spreading speed determined by this model does not depend on the spatial dimension.
SICR rumor spreading model in complex networks: Counterattack and self-resistance
NASA Astrophysics Data System (ADS)
Zan, Yongli; Wu, Jianliang; Li, Ping; Yu, Qinglin
2014-07-01
Rumor is an important form of social interaction. However, spreading of harmful rumors could have a significant negative impact on the well-being of the society. In this paper, considering the counterattack mechanism of the rumor spreading, we introduce two new models: Susceptible-Infective-Counterattack-Refractory (SICR) model and adjusted-SICR model. We then derive mean-field equations to describe their dynamics in homogeneous networks and conduct the steady-state analysis. We also introduce the self-resistance parameter τ, and study the influence of this parameter on rumor spreading. Numerical simulations are performed to compare the SICR model with the SIR model and the adjusted-SICR model, respectively, and we investigate the spreading peak of the rumor and the final size of the rumor with various parameters. Simulation results are congruent exactly with the theoretical analysis. The experiment reveals some interesting patterns of rumor spreading involved with counterattack force.
Complex social contagion makes networks more vulnerable to disease outbreaks.
Campbell, Ellsworth; Salathé, Marcel
2013-01-01
Social network analysis is now widely used to investigate the dynamics of infectious disease spread. Vaccination dramatically disrupts disease transmission on a contact network, and indeed, high vaccination rates can potentially halt disease transmission altogether. Here, we build on mounting evidence that health behaviors - such as vaccination, and refusal thereof - can spread across social networks through a process of complex contagion that requires social reinforcement. Using network simulations that model health behavior and infectious disease spread, we find that under otherwise identical conditions, the process by which the health behavior spreads has a very strong effect on disease outbreak dynamics. This dynamic variability results from differences in the topology within susceptible communities that arise during the health behavior spreading process, which in turn depends on the topology of the overall social network. Our findings point to the importance of health behavior spread in predicting and controlling disease outbreaks.
Spreading of Neutrophils: From Activation to Migration
Sengupta, Kheya; Aranda-Espinoza, Helim; Smith, Lee; Janmey, Paul; Hammer, Daniel
2006-01-01
Neutrophils rely on rapid changes in morphology to ward off invaders. Time-resolved dynamics of spreading human neutrophils after activation by the chemoattractant fMLF (formyl methionyl leucyl phenylalanine) was observed by RICM (reflection interference contrast microscopy). An image-processing algorithm was developed to identify the changes in the overall cell shape and the zones of close contact with the substrate. We show that in the case of neutrophils, cell spreading immediately after exposure of fMLF is anisotropic and directional. The dependence of spreading area, A, of the cell as a function of time, t, shows several distinct regimes, each of which can be fitted as power laws (A ∼ tb). The different spreading regimes correspond to distinct values of the exponent b and are related to the adhesion state of the cell. Treatment with cytochalasin-B eliminated the anisotropy in the spreading. PMID:17012330
Climate change alters diffusion of forest pest: A model study
NASA Astrophysics Data System (ADS)
Jo, Woo Seong; Kim, Hwang-Yong; Kim, Beom Jun
2017-01-01
Population dynamics with spatial information is applied to understand the spread of pests. We introduce a model describing how pests spread in discrete space. The number of pest descendants at each site is controlled by local information such as temperature, precipitation, and the density of pine trees. Our simulation leads to a pest spreading pattern comparable to the real data for pine needle gall midge in the past. We also simulate the model in two different climate conditions based on two different representative concentration pathways scenarios for the future. We observe that after an initial stage of a slow spread of pests, a sudden change in the spreading speed occurs, which is soon followed by a large-scale outbreak. We found that a future climate change causes the outbreak point to occur earlier and that the detailed spatio-temporal pattern of the spread depends on the source position from which the initial pest infection starts.
Hybrid Epidemics—A Case Study on Computer Worm Conficker
Zhang, Changwang; Zhou, Shi; Chain, Benjamin M.
2015-01-01
Conficker is a computer worm that erupted on the Internet in 2008. It is unique in combining three different spreading strategies: local probing, neighbourhood probing, and global probing. We propose a mathematical model that combines three modes of spreading: local, neighbourhood, and global, to capture the worm’s spreading behaviour. The parameters of the model are inferred directly from network data obtained during the first day of the Conficker epidemic. The model is then used to explore the tradeoff between spreading modes in determining the worm’s effectiveness. Our results show that the Conficker epidemic is an example of a critically hybrid epidemic, in which the different modes of spreading in isolation do not lead to successful epidemics. Such hybrid spreading strategies may be used beneficially to provide the most effective strategies for promulgating information across a large population. When used maliciously, however, they can present a dangerous challenge to current internet security protocols. PMID:25978309
NASA Astrophysics Data System (ADS)
Deschamps, Anne; Lallemand, Serge
2002-12-01
Based on geological and geophysical data collected from the West Philippine Basin and its boundaries, we propose a comprehensive Cenozoic history of the basin. Our model shows that it is a back arc basin that developed between two opposed subduction zones. Rifting started around 55 Ma and spreading ended at 33/30 Ma. The initial spreading axis was parallel to the paleo-Philippine Arc but became inactive when a new spreading ridge propagated from the eastern part of the basin, reaching the former one at an R-R-R triple junction. Spreading occurred mainly from this second axis, with a quasi-continuous counter-clockwise rotation of the spreading direction. The Gagua and Palau-Kyushu ridges acted as transform margins accommodating the opening. Arc volcanism occurred along the Palau-Kyushu Ridge (eastern margin) during the whole opening of the basin, whereas the paleo-Philippine Arc decreased its activity between 43 and 36 Ma. The western margin underwent a compressive event in late Eocene-early Oligocene time, leading to the rising of the Gagua Ridge and to a short subduction episode along Eastern Luzon. In the western part of the basin, the spreading system was highly disorganized due to the presence of a mantle plume. Overlapping spreading centers and ridge jumps occurred toward the hot region and a microplate developed. Shortly after the end of the spreading, a late stage of amagmatic extension occurred between 30 and 26 Ma in the central part of the basin, being responsible for the deep rift valley that cut across the older spreading fabric.
Garsetti, Marcella; Balentine, Douglas A.; Zock, Peter L.; Blom, Wendy A.M.; Wanders, Anne J.
2016-01-01
Abstract Worldwide, the fat composition of spreads and margarines (“spreads”) has significantly changed over the past decades. Data on fat composition of US spreads are limited and outdated. This paper compares the fat composition of spreads sold in 2013 to that sold in 2002 in the USA. The fat composition of 37 spreads representing >80% of the US market sales volume was determined by standard analytical methods. Sales volume weighted averages were calculated. In 2013, a 14 g serving of spread contained on average 7.1 g fat and 0.2 g trans-fatty acids and provided 22% and 15% of the daily amounts recommended for male adults in North America of omega-3 α-linolenic acid and omega-6 linoleic acid, respectively. Our analysis of the ingredient list on the food label showed that 86% of spreads did not contain partially hydrogenated vegetable oils (PHVO) in 2013. From 2002 to 2013, based on a 14 g serving, total fat and trans-fatty acid content of spreads decreased on average by 2.2 g and 1.5 g, respectively. In the same period, the overall fat composition improved as reflected by a decrease of solid fat (from 39% to 30% of total-fatty acids), and an increase of unsaturated fat (from 61% to 70% of total-fatty acids). The majority of US spreads no longer contains PHVO and can contribute to meeting dietary recommendations by providing unsaturated fat. PMID:27046021
Railroad-highway grade crossing handbook : 2nd edition
DOT National Transportation Integrated Search
1997-11-01
Spread footings are most often less expensive than deep foundations. In an effort to improve the reliability of spread footings, this research project was undertaken. The results consist of: (1) a user friendly microcomputer data base of spread footi...
Lexical Ambiguity: Making a Case against Spread
ERIC Educational Resources Information Center
Kaplan, Jennifer J.; Rogness, Neal T.; Fisher, Diane G.
2012-01-01
We argue for decreasing the use of the word "spread" when describing the statistical idea of dispersion or variability in introductory statistics courses. In addition, we argue for increasing the use of the word "variability" as a replacement for "spread."
Epidemic spreading in time-varying community networks.
Ren, Guangming; Wang, Xingyuan
2014-06-01
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold qc. The epidemic will survive when q > qc and die when q < qc. These results can help understanding the impacts of human travel on the epidemic spreading in complex networks with community structure.
Heterogeneous incidence and propagation of spreading depolarizations
Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek
2016-01-01
Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866
[Achromatic watercolor effect: about requirement of formation of sumi painting effect].
Takashima, Midori
2008-10-01
The watercolor effect (Pinna, Brelstaff, & Spillmann, 2001) is a new color spreading phenomenon. Pinna et al. (2001) proposed that the watercolor effect is a new Gestalt factor because it determines figure-ground organization more strongly than classical Gestalt factors. We used achroriatic watercolor patterns and varied the lightness of the background and two border lines to study the relationship between the color spreading effect and figure-ground organization. The results demonstrated (a)a bidirectional color spreading phenomenon when the background lightness was between the two border-lines' lightness, and that (b) some patterns elicit only a color spreading effect without organization of figure-ground, while others elicit only figure-ground organization without a color spreading effect.
Competitive Wetting in Active Brazes
Chandross, Michael Evan
2014-05-01
We found that the wetting and spreading of molten filler materials (pure Al, pure Ag, and AgAl alloys) on a Kovar ™ (001) substrate was studied with molecular dynamics simulations. A suite of different simulations was used to understand the effects on spreading rates due to alloying as well as reactions with the substrate. Moreover, the important conclusion is that the presence of Al in the alloy enhances the spreading of Ag, while the Ag inhibits the spreading of Al.
Research on Free Electron Lasers
1989-01-01
<exp(Aa)vo) >A = exp((YG -o/2) (67) For the exponential distribution function is another example that results from a symmetric angular spread in the...vo = 47 when there is an angular spread. This indicates that the actual peak moves to the right when 00 increases. The last term term decreases the...value of the gain at vo = F7 when either the angular spread ag or energy spread OG increases. 10. SPIE FEL Review Paper During the contracting period
Effect of Longitudinal Oscillations on Downward Flame Spread over Thin Solid Fuels
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Sacksteder, Kurt
2013-01-01
Downward flame spread rates over vertically vibrated thin fuel samples are measured in air at one atmospheric pressure under normal gravity. Unlike flame spread against forced-convective flows, the present results show that with increasing vibration acceleration the flame spread rate increases before being blown off at high acceleration levels causing flame extinction. A simple scaling analysis seems to explain this phenomenon, which may have important implications to flammability studies including in microgravity environments.
The Effects of Angular Orientation on Flame Spread over Thin Materials
1999-12-01
Notation 7 5 Upward Spread With Burnout 8 6a Observed Flame Lengths on Napkins, Increments 2.5 cm 9 6b Observed Flame Lengths on Pet Film, Increments...Frequency of Extinguishment During Flame Spread 21 15 Flame Spread Velocity 21 VI 16 Flame Length Measured Parallel to the Surface 22 17 Comparison of... flame length (Lf) were measured from a video recording of the test. Despite erratic burn fronts with discontinuous flaming regions, the maximum
Prescribed Burn at Pine Bluff Arsenal
2000-03-01
length (ft) backfire flame length (ft) hf rate of spread (ch/hr) bf rate of spread (ch/hr) Minimum behavior headfire flame length (ft) backfire... flame length (ft) hf rate of spread (ch/hr) bf rate of spread (ch/hr) 8. FUEL AND WEATHER PRESCRIPTION Source of weather: National Weather Service...and left the site. No spots occurred. Backfire flame lengths were 0.2-3 feet through pine needles and grass. Flanking fire flame lengths were 2-4
Schmidt, Tom L.; Barton, Nicholas H.; Rašić, Gordana; Turley, Andrew P.; Montgomery, Brian L.; Iturbe-Ormaetxe, Inaki; Cook, Peter E.; Ryan, Peter A.; Ritchie, Scott A.; Hoffmann, Ary A.; O’Neill, Scott L.
2017-01-01
Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100–200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation. PMID:28557993
Schmidt, Tom L; Barton, Nicholas H; Rašić, Gordana; Turley, Andrew P; Montgomery, Brian L; Iturbe-Ormaetxe, Inaki; Cook, Peter E; Ryan, Peter A; Ritchie, Scott A; Hoffmann, Ary A; O'Neill, Scott L; Turelli, Michael
2017-05-01
Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100-200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transformation.
Geodynamics of seafloor spreading extinction: Constraints from the South China Sea
NASA Astrophysics Data System (ADS)
Zhang, X.; Lin, J.; Behn, M. D.
2016-12-01
We investigate magmatism and mantle thermal structure beneath fossil spreading centers in the South China Sea (SCS), focusing on two aspects: (1) mantle thermal structure and melting, and (2) magmatism associated with seamounts. We carried out 3D geodynamic models to study thermal structure beneath the SCS during the process from initiation to cessation of seafloor spreading. Modeling results suggested that the overall mantle temperatures of the East Subbasin were significantly greater than that of the Southwest Subbasin when the seafloor spreading of both subbasins ceased at about 15-16 Ma. However, the differences in thermal structure between the two subbasins were calculated to have decreased with time. Work is in progress to couple geochemical and geophysical constraints with geodynamic modeling to investigate melt generation, fractional crystallization, and melt extraction at the fossil spreading centers in the SCS. Among the seamounts that can be identified on multi-beam bathymetry data, about half of them are located along the fossil spreading centers while the remaining located off axis. This is in contrast to fossil spreading ridges in the West Scotia Sea and Phoenix Ridge, where most seamounts are located off axis. The off-axis seamounts in the SCS also show strong asymmetry about the fossil spreading centers with most seamounts concentrated in the northern flank. Work is in progress to investigate the melting processes associated with seamounts.
New Synthesis of Ocean Crust Velocity Structure From Two-Dimensional Profiles
NASA Astrophysics Data System (ADS)
Christeson, G. L.; Goff, J.; Carlson, R. L.; Reece, R.
2017-12-01
The velocity structure of typical oceanic crust consists of Layer 2, where velocities increase rapidly with depth from seafloor, and Layer 3, which is thicker and has a lower velocity gradient. Previous syntheses have found no correlation of velocity structure with spreading rate, even though we know that magmatic processes differ between slow-spreading and fast-spreading crust. We present a new synthesis of ocean crust velocity structure, compiling observations from two-dimensional studies in the Atlantic, Pacific, and Indian ocean basins. The Layer 2/3 boundary was picked from each publication at a change in gradient either on velocity-depth functions or contour plots (with at least 0.5 km/s contour interval), or from the appropriate layer boundary for layered models. We picked multiple locations at each seismic refraction profile if warranted by model variability. Preliminary results show statistically significant differences in average Layer 2 and Layer 3 thicknesses between slow-spreading and superfast-spreading crust, with Layer 2 thinner and Layer 3 thicker for the higher spreading rate crust. The thickness changes are about equivalent, resulting in no change in mean crustal thickness. The Layer 2/3 boundary is often interpreted as the top of the gabbros; however, a comparison with mapped magma lens depths at the ridge axis shows that the boundary is typically deeper than average axial melt lens depth at superfast-spreading crust, and shallower at intermediate-spreading crust.
Effects of individual popularity on information spreading in complex networks
NASA Astrophysics Data System (ADS)
Gao, Lei; Li, Ruiqi; Shu, Panpan; Wang, Wei; Gao, Hui; Cai, Shimin
2018-01-01
In real world, human activities often exhibit preferential selection mechanism based on the popularity of individuals. However, this mechanism is seldom taken into account by previous studies about spreading dynamics on networks. Thus in this work, an information spreading model is proposed by considering the preferential selection based on individuals' current popularity, which is defined as the number of individuals' cumulative contacts with informed neighbors. A mean-field theory is developed to analyze the spreading model. Through systematically studying the information spreading dynamics on uncorrelated configuration networks as well as real-world networks, we find that the popularity preference has great impacts on the information spreading. On the one hand, the information spreading is facilitated, i.e., a larger final prevalence of information and a smaller outbreak threshold, if nodes with low popularity are preferentially selected. In this situation, the effective contacts between informed nodes and susceptible nodes are increased, and nodes almost have uniform probabilities of obtaining the information. On the other hand, if nodes with high popularity are preferentially selected, the final prevalence of information is reduced, the outbreak threshold is increased, and even the information cannot outbreak. In addition, the heterogeneity of the degree distribution and the structure of real-world networks do not qualitatively affect the results. Our research can provide some theoretical supports for the promotion of spreading such as information, health related behaviors, and new products, etc.
Transport And Chemical Effects On Concurrent And Opposed-Flow Flame Spread At Microgravity
NASA Technical Reports Server (NTRS)
Son, Y.; Zouein, G.; Ronney, P. D.; Gokoglu, S.
2003-01-01
Flame spread over flat solid fuel beds is a useful means of understanding more complex two-phase non-premixed spreading flames, such as those that may occur due to accidents in inhabited buildings and orbiting spacecraft. The role of buoyant convection on flame spread is substantial, especially for thermally-thick fuels. With suitable assumptions, deRis showed that the spread rate (S(sub f)) is proportional to the buoyant or forced convection velocity (U) and thus suggests that S(sub f) is indeterminate at mu g (since S(sub f) = U) unless a forced flow is applied. (In contrast, for thermally thin fuels, the ideal S(sub f) is independent of U.) The conventional view, as supported by computations and space experiments, is that for quiescent g conditions, S(sub f) must be unsteady and decreasing until extinction occurs due to radiative losses. However, this view does not consider that radiative transfer to the fuel surface can enhance flame spread. In recent work we have found evidence that radiative transfer from the flame itself can lead to steady flame spread at mu g over thick fuel beds. Our current work focuses on refining these experiments and a companion modeling effort toward the goal of a space flight experiment called Radiative Enhancement Effects on Flame Spread (REEFS) planned for the International Space Station (ISS) c. 2007.
Rumor evolution in social networks
NASA Astrophysics Data System (ADS)
Zhang, Yichao; Zhou, Shi; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng
2013-03-01
The social network is a main tunnel of rumor spreading. Previous studies concentrated on a static rumor spreading. The content of the rumor is invariable during the whole spreading process. Indeed, the rumor evolves constantly in its spreading process, which grows shorter, more concise, more easily grasped, and told. In an early psychological experiment, researchers found about 70% of details in a rumor were lost in the first six mouth-to-mouth transmissions. Based on these observations, we investigate rumor spreading on social networks, where the content of the rumor is modified by the individuals with a certain probability. In the scenario, they have two choices, to forward or to modify. As a forwarder, an individual disseminates the rumor directly to their neighbors. As a modifier, conversely, an individual revises the rumor before spreading it out. When the rumor spreads on the social networks, for instance, scale-free networks and small-world networks, the majority of individuals actually are infected by the multirevised version of the rumor, if the modifiers dominate the networks. The individuals with more social connections have a higher probability to receive the original rumor. Our observation indicates that the original rumor may lose its influence in the spreading process. Similarly, a true information may turn out to be a rumor as well. Our result suggests the rumor evolution should not be a negligible question, which may provide a better understanding of the generation and destruction of a rumor.
Odenthal, Tim; Smeets, Bart; Van Liedekerke, Paul; Tijskens, Engelbert; Van Oosterwyck, Hans; Ramon, Herman
2013-01-01
Adhesion governs to a large extent the mechanical interaction between a cell and its microenvironment. As initial cell spreading is purely adhesion driven, understanding this phenomenon leads to profound insight in both cell adhesion and cell-substrate interaction. It has been found that across a wide variety of cell types, initial spreading behavior universally follows the same power laws. The simplest cell type providing this scaling of the radius of the spreading area with time are modified red blood cells (RBCs), whose elastic responses are well characterized. Using a mechanistic description of the contact interaction between a cell and its substrate in combination with a deformable RBC model, we are now able to investigate in detail the mechanisms behind this universal power law. The presented model suggests that the initial slope of the spreading curve with time results from a purely geometrical effect facilitated mainly by dissipation upon contact. Later on, the spreading rate decreases due to increasing tension and dissipation in the cell's cortex as the cell spreads more and more. To reproduce this observed initial spreading, no irreversible deformations are required. Since the model created in this effort is extensible to more complex cell types and can cope with arbitrarily shaped, smooth mechanical microenvironments of the cells, it can be useful for a wide range of investigations where forces at the cell boundary play a decisive role. PMID:24146605
NASA Astrophysics Data System (ADS)
Sleeper, Jonathan D.
This dissertation examines magmatic and tectonic processes in backarc basins, and how they are modulated by plate- and mantle-driven mechanisms. Backarc basins initiate by tectonic rifting near the arc volcanic front and transition to magmatic seafloor spreading. As at mid-ocean ridges (MORs), spreading can be focused in narrow plate boundary zones, but we also describe a diffuse spreading mode particular to backarc basins. At typical MORs away from hot spots and other melting anomalies, spreading rate is the primary control on the rate of mantle upwelling and decompression melting. At backarc spreading centers, water derived from the subducting slab creates an additional mantle-driven source of melt and buoyant upwelling. Furthermore, because basins open primarily in response to trench rollback, which is inherently a non-rigid process, backarc extensional systems often have to respond to a constantly evolving stress regime, generating complex tectonics and unusual plate boundaries not typically found at MORs. The interplay between these plate- and mantle-driven processes gives rise to the variety of tectonic and volcanic morphologies peculiar to backarc basins. Chapter 2 is focused on the Fonualei Rift and Spreading Center in the Lau Basin. The southern portion of the axis is spreading at ultraslow (<20 mm/yr) opening rates in close proximity to the arc volcanic front and axial morphology abruptly changes from a volcanic ridge to spaced volcanic cones resembling arc volcanoes. Spreading rate and arc proximity appear to control transitions between two-dimensional and three-dimensional mantle upwelling and volcanism. In the second study (Chapter 3), I develop a new model for the rollback-driven kinematic and tectonic evolution of the Lau Basin, where microplate tectonics creates rapidly changing plate boundary configurations. The third study (Chapter 4) focuses on the southern Mariana Trough and the transitions between arc rifting, seafloor spreading, and a new mode of "diffuse spreading," where new crust is accreted in broad zones rather than along a narrow spreading axis, apparently controlled by a balance between slab water addition and its extraction due to melting and crustal accretion.
Spot Radiative Ignition and Subsequent Three Dimensional Flame Spread Over Thin Cellulose Fuels
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Kashiwagi, T.; Kikuchi, M.; Fujita, O.; Ito, K.
1999-01-01
Spontaneous radiative ignition and transition to flame spread over thin cellulose fuel samples was studied aboard the USMP-3 STS-75 Space Shuttle mission, and in three test series in the 10 second Japan Microgravity Center (JAMIC). A focused beam from a tungsten/halogen lamp was used to ignite the center of the fuel sample while an external air flow was varied from 0 to 10 cm/s. Non-piloted radiative ignition of the paper was found to occur more easily in microgravity than in normal gravity. Ignition of the sample was achieved under all conditions studied (shuttle cabin air, 21%-50% O2 in JAMIC), with transition to flame spread occurring for all but the lowest oxygen and flow conditions. While radiative ignition in a quiescent atmosphere was achieved, the flame quickly extinguished in air. The ignition delay time was proportional to the gas-phase mixing time, which is estimated using the inverse flow rate. The ignition delay was a much stronger function of flow at lower oxygen concentrations. After ignition, the flame initially spread only upstream, in a fan-shaped pattern. The fan angle increased with increasing external flow and oxygen concentration from zero angle (tunneling flame spread) at the limiting 0.5 cm/s external air flow, to 90 degrees (semicircular flame spread) for external flows at and above 5 cm/s, and higher oxygen concentrations. The fan angle was shown to be directly related to the limiting air flow velocity. Despite the convective heating from the upstream flame, the downstream flame was inhibited due to the 'oxygen shadow' of the upstream flame for the air flow conditions studied. Downstream flame spread rates in air, measured after upstream flame spread was complete and extinguished, were slower than upstream flame spread rates at the same flow. The quench regime for the transition to flame spread was skewed toward the downstream, due to the augmenting role of diffusion for opposed flow flame spread, versus the canceling effect of diffusion at very low cocurrent flows.
Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland
NASA Astrophysics Data System (ADS)
Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.
2017-12-01
Spreading centers in Iceland are offset from the regional trend of the Mid-Atlantic Ridge by the Tjörnes Fracture Zone (TFZ) in the north and the South Iceland Seismic Zone (SISZ) in the south. Rift propagation away from the center of the Iceland hotspot, has resulted in migration of these transform faults to the N and S, respectively. As they migrate, new transform faults develop in older crust between offset spreading centers. Active transform faults, and abandoned transform structures left in their wakes, show features that reflect different amounts (and durations) of slip that can be viewed as a series of snapshots of different stages of transform fault evolution in thick, oceanic crust. This crust has a highly anisotropic, spreading fabric with pervasive zones of weakness created by spreading-related normal faults, fissures and dike margins oriented parallel to the spreading centers where they formed. These structures have a strong influence on the mechanical properties of the crust. By integrating available data, we suggest a series of stages of transform development: 1) Formation of an oblique rift (or leaky transform) with magmatic centers, linked by bookshelf fault zones (antithetic strike-slip faults at a high angle to the spreading direction) (Grimsey Fault Zone, youngest part of the TFZ); 2) broad zone of conjugate faulting (tens of km) (Hreppar Block N of the SISZ); 3) narrower ( 20 km) zone of bookshelf faulting aligned with the spreading direction (SISZ); 4) mature, narrow ( 1 km) through-going transform fault zone bounded by deformation (bookshelf faulting and block rotations) distributed over 10 km to either side (Húsavík-Flatey Fault Zone in the TFZ). With progressive slip, the transform zone becomes progressively narrower and more closely aligned with the spreading direction. The transform and non-transform (beyond spreading centers) domains may be truncated by renewed propagation and separated by subsequent spreading. This perspective provides an analog for the evolution of migrating transforms along mid-ocean ridge spreading centers or other places where plate boundary rearrangements result in the formation of a new transform fault in highly anisotropic oceanic crust.
Magnetic Anomaly Lineations in the Gulf of Aden
NASA Astrophysics Data System (ADS)
Noguchi, Y.; Nakanishi, M.; Tamaki, K.; Fujimoto, H.; Huchon, P.; Leroy, S. D.; Styles, P.
2014-12-01
We present the magnetic anomaly lineations in the Gulf of Aden. The Gulf of Aden has slow spreading ridges between the Arabia Plate and Somalia Plate. The Arabian plate moves away from Somalia Plate in an NE direction, at a rate of about 2 cm/yr. Previous works indicates that seafloor spreading started about 20 Ma in the eastern part of the Gulf of Aden and propagated westward. The spreading axis has a E-W trend west of 46 E and that east of 46 E has a N60 W trend. We examined magnetic data acquired in the cruises by R/V L'Atalante in 1995, R/V Hakuho-maru from 2000 to 2001, R/V Maurice Ewing in 2001, and Shackleton in 1975 and 1979. We also used data obtained from National Geophysical Data Center, NOAA. We calculated magnetic anomalies using the latest Internation Geomagnetic Reference Field. Elongated negative magnetic anomalies, which amplitude are more than 500 nT, observed over the spreading centers. Most of the elongated anomalies are parallel with the spreading centers. The elongated magnetic anomalies west of 46 30'E have an E-W trend around the spreading centers. Several discontinuities in the magnetic anomaly contour map illustrate the position of the fracture zones concealed by sediments. We identified magnetic lineations from 43 E to 52 E. Most of magnetic lineations west and east of 46 30'E have N-E and N60-65 W strikes, respectively. The oldest lineations are C3r (5.48~5.74 Ma) between 43 10'E and 44 E and C5Ar (12.4~12.7 Ma) east of 44 E. Our identification of magnetic anomaly lineations indicates a symmetric seafloor spreading with a spreading rate of about 1.0 cm/yr, although Leroy et al. (2004) showed an asymmetric seafloor spreading of the Sheba Ridge, east of our study area. The kinematics of the Arabia plate changed about 5 Ma, but our results did not show any coeval change in spreading rates of the spreading system in the Gulf of Aden.
The Effects of Ridge Axis Width on Mantle Melting at Mid-Ocean Ridges
NASA Astrophysics Data System (ADS)
Montesi, L.; Magni, V.; Gaina, C.
2017-12-01
Mantle upwelling in response to plate divergence produces melt at mid-ocean ridges. Melt starts when the solidus is crossed and stops when conductive cooling overcomes heat advection associated with the upwelling. Most mid-ocean ridge models assume that divergence takes place only in a narrow zone that defines the ridge axis, resulting in a single upwelling. However, more complex patterns of divergence are occasionally observed. The rift axis can be 20 km wide at ultraslow spreading center. Overlapping spreading center contain two parallel axes. Rifting in backarc basins is sometimes organized as a series of parallel spreading centers. Distributing plate divergence over several rifts reduces the intensity of upwelling and limits melting. Can this have a significant effect on the expected crustal thickness and on the mode of melt delivery at the seafloor? We address this question by modeling mantle flow and melting underneath two spreading centers separated by a rigid block. We adopt a non-linear rheology that includes dislocation creep, diffusion creep and yielding and include hydrothermal cooling by enhancing thermal conductivity where yielding takes place. The crustal thickness decreases if the rifts are separated by 30 km or more but only if the half spreading rate is between 1 and 2 cm/yr. At melting depth, a single upwelling remains the norm until the separation of the rifts exceeds a critical value ranging from 15 km in the fastest ridges to more than 50 km at ultraslow spreading centers. The stability of the central upwelling is due to hydrothermal cooling, which prevents hot mantle from reaching the surface at each spreading center. When hydrothermal cooling is suppressed, or the spreading centers are sufficiently separated, the rigid block becomes extremely cold and separates two distinct, highly asymmetric upwellings that may focus melt beyond the spreading center. In that case, melt delivery might drive further and further the divergence centers, whereas, when a single upwelling is retained, melt delivery would drive the spreading centers closer together. Thus, the system composed of two rifts is unstable and, if observed in nature, indicates either a transient geodynamic regime, like a recent change in spreading rates, or control structural or stress heterogeneities.
... the day. Zika can be passed from a mother to her baby. This can happen in the uterus or at the time of birth. Zika is not spread through breastfeeding. The virus can be spread through sex. People with Zika can spread the disease to ...
Traveler's guide to avoiding infectious diseases
... other birth defects. Zika can spread from a mother to her baby in the uterus (in utero) or at the time of birth. A man with Zika can spread the disease to his sex partners. There have been reports of Zika spreading ...
Free energy analysis of cell spreading.
McEvoy, Eóin; Deshpande, Vikram S; McGarry, Patrick
2017-10-01
In this study we present a steady-state adaptation of the thermodynamically motivated stress fiber (SF) model of Vigliotti et al. (2015). We implement this steady-state formulation in a non-local finite element setting where we also consider global conservation of the total number of cytoskeletal proteins within the cell, global conservation of the number of binding integrins on the cell membrane, and adhesion limiting ligand density on the substrate surface. We present a number of simulations of cell spreading in which we consider a limited subset of the possible deformed spread-states assumed by the cell in order to examine the hypothesis that free energy minimization drives the process of cell spreading. Simulations suggest that cell spreading can be viewed as a competition between (i) decreasing cytoskeletal free energy due to strain induced assembly of cytoskeletal proteins into contractile SFs, and (ii) increasing elastic free energy due to stretching of the mechanically passive components of the cell. The computed minimum free energy spread area is shown to be lower for a cell on a compliant substrate than on a rigid substrate. Furthermore, a low substrate ligand density is found to limit cell spreading. The predicted dependence of cell spread area on substrate stiffness and ligand density is in agreement with the experiments of Engler et al. (2003). We also simulate the experiments of Théry et al. (2006), whereby initially circular cells deform and adhere to "V-shaped" and "Y-shaped" ligand patches. Analysis of a number of different spread states reveals that deformed configurations with the lowest free energy exhibit a SF distribution that corresponds to experimental observations, i.e. a high concentration of highly aligned SFs occurs along free edges, with lower SF concentrations in the interior of the cell. In summary, the results of this study suggest that cell spreading is driven by free energy minimization based on a competition between decreasing cytoskeletal free energy and increasing passive elastic free energy. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pamuk, Eren; Önsen, Funda; Turan, Seçil
2014-05-01
Shear-wave velocity is so critical parameter for evaluating the dynamic behaviour of soil in the subsurface investigations. Multichannel Analysis of Surface Waves (MASW) is a popular method to utilize shear-wave velocity in shallow depth surveys. This method uses the dispersive properties of shear-waves for imaging the subsurface layers. In MASW method, firstly data are acquired multichannel field records (or shot gathers), then dispersion curves are extracted. Finally, these dispersion curves are inverted to obtain one dimension (1D) Vs depth profiles. Reliable and accurate results of evaluating shear wave velocity depends on dispersion curves. Therefore, determination of basic mode dispersion curve is very important. In this study, MASW measurements were carried out different types of spread and various offsets to obtain better results in İzmir, Turkey. The types of spread were selected as pairs geophone group of spread, increase spread and constant interval spread. The data were collected in the Campus of Tinaztepe, Dokuz Eylul University, Izmir (Buca). 24 channel Geometrix Geode seismic instruments, 4.5 Hz low frequency receiver (geophone) and sledge hammer (8kg) as an energy source were used in this study. The data were collected with forward shots. MASW measurements were applied different profiles and their lengths were 24 m. Geophone intervals were selected 1 m in the constant interval spread and offsets were selected respectively 1, 4, 8, 12, 24 m in all spreads. In the first stage of this study, the measurements, which were taken in these offsets, were compared between each other in all spreads. The results show that higher resolution dispersion curves were observed at 1 m, 2 m and 4 m offsets. In the other offsets (8, 12, 24 m), distinguishability between basic and higher modes dispersion curves became difficult. In the second stage of this study, obtained dispersion curves of different spread were compared to all spread type of MASW survey.
Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires.
Prat-Guitart, Nuria; Rein, Guillermo; Hadden, Rory M; Belcher, Claire M; Yearsley, Jon M
2016-12-01
The gravimetric moisture content of peat is the main factor limiting the ignition and spread propagation of smouldering fires. Our aim is to use controlled laboratory experiments to better understand how the spread of smouldering fires is influenced in natural landscape conditions where the moisture content of the top peat layer is not homogeneous. In this paper, we study for the first time the spread of peat fires across a spatial matrix of two moisture contents (dry/wet) in the laboratory. The experiments were undertaken using an open-top insulated box (22×18×6cm) filled with milled peat. The peat was ignited at one side of the box initiating smouldering and horizontal spread. Measurements of the peak temperature inside the peat, fire duration and longwave thermal radiation from the burning samples revealed important local changes of the smouldering behaviour in response to sharp gradients in moisture content. Both, peak temperatures and radiation in wetter peat (after the moisture gradient) were sensitive to the drier moisture condition (preceding the moisture gradient). Drier peat conditions before the moisture gradient led to higher temperatures and higher radiation flux from the fire during the first 6cm of horizontal spread into a wet peat patch. The total spread distance into a wet peat patch was affected by the moisture content gradient. We predicted that in most peat moisture gradients of relevance to natural ecosystems the fire self-extinguishes within the first 10cm of horizontal spread into a wet peat patch. Spread distances of more than 10cm are limited to wet peat patches below 160% moisture content (mass of water per mass of dry peat). We found that spatial gradients of moisture content have important local effects on the horizontal spread and should be considered in field and modelling studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Wetting and spreading behavior of molten brazing filler metallic alloys on metallic substrate
NASA Astrophysics Data System (ADS)
Kogi, Satoshi; Kajiura, Tetsurou; Hanada, Yukiakira; Miyazawa, Yasuyuki
2014-08-01
Wetting and spreading of molten brazing filler material are important factors that influence the brazing ability of a joint to be brazed. Several investigations into the wetting ability of a brazing filler alloy and its surface tension in molten state, in addition to effects of brazing time and temperature on the contact angle, have been carried out. In general, dissimilar-metals brazing technology and high-performance brazed joint are necessities for the manufacturing field in the near future. Therefore, to address this requirement, more such studies on wetting and spreading of filler material are required for a deeper understanding. Generally, surface roughness and surface conditions affect spreading of molten brazing filler material during brazing. Wetting by and interfacial reactions of the molten brazing filler material with the metallic substrate, especially, affect strongly the spreading of the filler material. In this study, the effects of surface roughness and surface conditions on the spreading of molten brazing filler metallic alloys were investigated. Ag-(40-x)Cu-xIn and Ag- (40-x)Cu-xSn (x=5, 10, 15, 20, 25) alloys were used as brazing filler materials. A mild-steel square plate (S45C (JIS); side: 30 mm; thickness: 3mm) was employed as the substrate. A few surfaces with varying roughness were prepared using emery paper. Brazing filler material and metallic base plate were first washed with acetone, and then a flux was applied to them. The filler, 50 mg, was placed on the center of the metallic base with the flux. A spreading test was performed under Ar gas using an electrically heated furnace, after which, the original spreading area, defined as the sessile drop area, and the apparent spreading area, produced by the capillary grooves, were both evaluated. It was observed that the spreading area decreased with increasing In and Sn content.
Multidimensional Effects on Ignition, Transition, and Flame Spread in Microgravity
NASA Technical Reports Server (NTRS)
Kashiwagi, T.; Mell, W. E.; Nakamura, Y.; Olson, S. L.; Baum, H. R.; McGrattan, K. B.
2001-01-01
Localized ignition is initiated by an external radiant source at the middle of a thermally thin sample under external slow flow, simulating fire initiation in a spacecraft with a slow ventilation flow. Two ignition configurations are simulated, one across the sample surface creating a line shaped flame front (two-dimensional, 2-D, configuration) and the other a small circular ignition (three-dimensional, 3-D, configuration). Ignition, subsequent transition to simultaneously upstream and downstream flame spread, and flame growth behavior are studied experimentally and theoretically. Details of our theoretical models and numerical techniques can be found in previous publications. The effects of the sample width on the transition and subsequent flame spread, and flame spread along open edges of a thermally thin paper sample are determined. Experimental observations of flame spread phenomena were conducted in the 10 s drop tower and also on the space shuttle STS-75 flight to determine the effects of oxygen concentration and external flow velocity on flame spread rate and flame growth pattern. Finally, effects of confinement in a small test chamber on the transition and subsequent flame spread are examined. The results of these studies are briefly reported.
Numerical study of liquid film rupture after droplet spreading on a superhydrophilic surface
NASA Astrophysics Data System (ADS)
Guo, Yisen; Lian, Yongsheng
2017-11-01
When a droplet impacts onto a solid surface, different outcomes can be observed, such as rebound, spreading and splashing. We present numerical simulation results on liquid film rupture after spreading of a droplet impact on a smooth superhydrophilic surface. The Navier-Stokes equations are solved using the variable density pressure projection method and the moment-of-fluid method is used to track the droplet interface. A superhydrophilic or superwetting surface has strong affinity to liquid and we assume the contact angle between solid and liquid is almost zero degree. The droplet spreading and film rupture process occurs in two stages: the droplet first spreads onto the surface and flattens into a thin film as it reaches the maximum diameter, then the film rim becomes unstable and the film rupture initiates from the rim toward the center gradually until the entire film breaks up into secondary droplets. The duration of the film rupture stage is much shorter than the spreading stage. The simulation result is compared with experiment and good agreement is achieved. We investigate the film thickness evolution during spreading and the effect of surface wettability on film rupture.
Modeling universal dynamics of cell spreading on elastic substrates.
Fan, Houfu; Li, Shaofan
2015-11-01
A three-dimensional (3D) multiscale moving contact line model is combined with a soft matter cell model to study the universal dynamics of cell spreading over elastic substrates. We have studied both the early stage and the late stage cell spreading by taking into account the actin tension effect. In this work, the cell is modeled as an active nematic droplet, and the substrate is modeled as a St. Venant Kirchhoff elastic medium. A complete 3D simulation of cell spreading has been carried out. The simulation results show that the spreading area versus spreading time at different stages obeys specific power laws, which is in good agreement with experimental data and theoretical prediction reported in the literature. Moreover, the simulation results show that the substrate elasticity may affect force dipole distribution inside the cell. The advantage of this approach is that it combines the hydrodynamics of actin retrograde flow with moving contact line model so that it can naturally include actin tension effect resulting from actin polymerization and actomyosin contraction, and thus it might be capable of simulating complex cellular scale phenomenon, such as cell spreading or even crawling.
Gossip spread in social network Models
NASA Astrophysics Data System (ADS)
Johansson, Tobias
2017-04-01
Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.
Accretion mode of oceanic ridges governed by axial mechanical strength
NASA Astrophysics Data System (ADS)
Sibrant, A. L. R.; Mittelstaedt, E.; Davaille, A.; Pauchard, L.; Aubertin, A.; Auffray, L.; Pidoux, R.
2018-04-01
Oceanic spreading ridges exhibit structural changes as a function of spreading rate, mantle temperature and the balance of tectonic and magmatic accretion. The role that these or other processes have in governing the overall shape of oceanic ridges is unclear. Here, we use laboratory experiments to simulate ridge spreading in colloidal aqueous dispersions whose rheology evolves from purely viscous to elastic and brittle when placed in contact with a saline water solution. We find that ridge shape becomes increasingly linear with spreading rate until reaching a minimum tortuosity. This behaviour is predicted by the axial failure parameter ΠF, a dimensionless number describing the balance of brittle and plastic failure of axial lithosphere. Slow-spreading, fault-dominated and fast-spreading, fluid intrusion-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value, suggesting that the axial failure mode governs ridge geometry. Values of ΠF can also be calculated for different mantle temperatures and applied to other planets or the early Earth. For higher mantle temperatures during the Archaean, our results preclude the predicted formation of large tectonic plates at high spreading velocity.
Dispersal of the Pearl River plume over continental shelf in summer
NASA Astrophysics Data System (ADS)
Chen, Zhaoyun; Gong, Wenping; Cai, Huayang; Chen, Yunzhen; Zhang, Heng
2017-07-01
Satellite images of turbidity were used to study the climatological, monthly, and typical snapshot distributions of the Pearl River plume over the shelf in summer from 2003 to 2016. These images show that the plume spreads offshore over the eastern shelf and is trapped near the coast over the western shelf. Eastward extension of the plume retreats from June to August. Monthly spatial variations of the plume are characterized by eastward spreading, westward spreading, or both. Time series of monthly plume area was quantified by applying the K-mean clustering method to identify the turbid plume water. Decomposition of the 14-year monthly turbidity data by the empirical orthogonal function (EOF) analysis isolated the 1st mode in both the eastward and westward spreading pattern as the time series closely related to the Pearl River discharge, and the 2nd mode with out-of-phase turbidity anomalies over the eastern and western shelves that is associated with the prevailing wind direction. Eight typical plume types were detected from the satellite snapshots. They are characterized by coastal jet, eastward offshore spreading, westward spreading, bidirectional spreading, bulge, isolated patch, offshore branch, and offshore filaments, respectively. Their possible mechanisms are discussed.
Free Electron Laser Analysis For the Innovative Navy Prototype
2008-03-01
important measure of electron beam quality is transverse emittance, which is the product of the RMS width and the angular spread of the beam, as measured...respect to s . This is possible because the electron’s position in s is uniquely defined for any given time by s = vst ≈ ct , therefore d 2 dt 2...Longitudinal emittance (keV ps) 70 dgog Beam energy spread (%) 0.37 dthetax Beam angular spread, x rms (mrad) 0.17 dthetay Beam angular spread, y rms (mrad
Studies on the population dynamics of a rumor-spreading model in online social networks
NASA Astrophysics Data System (ADS)
Dong, Suyalatu; Fan, Feng-Hua; Huang, Yong-Chang
2018-02-01
This paper sets up a rumor spreading model in online social networks based on the European fox rabies SIR model. The model considers the impact of changing number of online social network users, combines the transmission dynamics to set up a population dynamics of rumor spreading model in online social networks. Simulation is carried out on online social network, and results show that the new rumor spreading model is in accordance with the real propagation characteristics in online social networks.
Propagation dynamics for a spatially periodic integrodifference competition model
NASA Astrophysics Data System (ADS)
Wu, Ruiwen; Zhao, Xiao-Qiang
2018-05-01
In this paper, we study the propagation dynamics for a class of integrodifference competition models in a periodic habitat. An interesting feature of such a system is that multiple spreading speeds can be observed, which biologically means different species may have different spreading speeds. We show that the model system admits a single spreading speed, and it coincides with the minimal wave speed of the spatially periodic traveling waves. A set of sufficient conditions for linear determinacy of the spreading speed is also given.
1983-12-17
weeks bensuygthsfrRd-omn:’-" been studying this for Reed- Solomon ago and they are doing more than lookingintoit.The remakng gros 95 codes where the...were formed in four basic areas: ’a) array signal processing in the spread spectrum environment, (b) spread spectrum communication in jamming, (c...research areas. Panels were formed in four basic areas: (a) array signal processing in the spread spectrum environment, (b) spread spectrum
Effect of epidemic spreading on species coexistence in spatial rock-paper-scissors games.
Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2010-04-01
A fundamental question in nonlinear science and evolutionary biology is how epidemic spreading may affect coexistence. We address this question in the framework of mobile species under cyclic competitions by investigating the roles of both intra- and interspecies spreading. A surprising finding is that intraspecies infection can strongly promote coexistence while interspecies spreading cannot. These results are quantified and a theoretical paradigm based on nonlinear partial differential equations is derived to explain the numerical results.
The LOX Invasion: Stopping the Spread of Breast Cancer | Center for Cancer Research
Metastasis is the primary cause of death in breast cancer patients. In 10% of breast cancer diagnoses, the cancer has already spread to distant organs in the body. Although breast cancer has the potential to spread to almost any region of the body, the most common is the bone, followed by the lung and liver. Understanding the mechanisms for breast cancer invasion and metastasis is therefore vital for designing new therapies to prevent the spread of the disease.
Pulsations, interpulsations, and sea-floor spreading.
NASA Technical Reports Server (NTRS)
Pessagno, E. A., Jr.
1973-01-01
It is postulated that worldwide transgressions (pulsations) and regressions (interpulsations) through the course of geologic time are related to the elevation and subsidence of oceanic ridge systems and to sea-floor spreading. Two multiple working hypotheses are advanced to explain major transgressions and regressions and the elevation and subsidence of oceanic ridge systems. One hypothesis interrelates the sea-floor spreading hypothesis to the hypothesis of sub-Mohorovicic serpentinization. The second hypothesis relates the sea-floor spreading hypothesis to a hypothesis involving thermal expansion and contraction.
Laboratory Experiments Lead to a New Understanding of Wildland Fire Spread
NASA Astrophysics Data System (ADS)
Cohen, J. D.; Finney, M.; McAllister, S.
2015-12-01
Wildfire flame spread results from a sequence of ignitions where adjacent fuel particles heat from radiation and convection leading to their ignition. Surprisingly, after decades of fire behavior research an experimentally based, fundamental understanding of wildland fire spread processes has not been established. Modelers have commonly assumed radiation to be the dominant heating mechanism; that is, radiation heat transfer primarily determines wildland fire spread. We tested this assumption by focusing on how fuel ignition occurs with a renewed emphasis on experimental research. Our experiments show that fuel particle size can non-linearly influence a fuel particle's convective heat transfer. Fine fuels (less than 1 mm) can convectively cool in ambient air such that radiation heating is insufficient for ignition and thus fire spread. Given fire spread with insufficient radiant heating, fuel particle ignition must occur convectively from flame contact. Further experimentation reveals that convective heating and particle ignition occur when buoyancy-induced instabilities and vorticity force flames down and forward to produce intermittent contact with the adjacent fuel bed. Experimental results suggest these intermittent forward flame extensions are buoyancy driven with predictable average frequencies for flame zones ranging from laboratory (10-2 m) to field scales (101m). Measured fuel particle temperatures and boundary conditions during spreading laboratory fires reveal that convection heat transfer from intermittent flame contact is the principal mechanism responsible for heating fine fuel particles to ignition. Our experimental results describe how fine fuel particles convectively heat to ignition from flame contact related to the buoyant dynamics of spreading flame fronts. This research has caused a rethinking of some of the most basic concepts in wildland fuel particle ignition and flame spread.
Mixed Connective Tissue Disease and Epitope Spreading: An Historical Cohort Study.
Escolà-Vergé, Laura; Pinal-Fernandez, Iago; Fernandez-Codina, Andreu; Callejas-Moraga, Eduardo L; Espinosa, Juan; Marin, Ana; Labrador-Horrillo, Moises; Selva-O'Callaghan, Albert
2017-04-01
Mixed connective tissue disease (MCTD) is characterized by the presence of anti-U1-snRNP autoantibodies and a variable set of associated clinical features. Some MCTD patients test positive over time to autoantibodies against Sm, proteins spatially related with U1-snRNP. This situation has been attributed to expanding of the autoimmune response by a phenomenon known as epitope spreading. Our aim was to study the frequency of this phenomenon in MCTD patients and the specific clinical features of those with epitope spreading. All anti-U1-RNP-positive patients (2010-2015) were retrospectively reviewed, and those meeting the MCTD criteria were included in the study. Patients showing epitope spreading were compared with the remainder of the MCTD cohort. In addition, the clinical features of patients with epitope spreading were compared before and after the phenomenon occurred. Among 72 anti-U1-RNP-positive patients, 40 (37 women) were diagnosed with MCTD. Thirteen MCTD patients (43%) presented epitope spreading, mainly during the first 2 years after the diagnosis of the disease (median, 1.4 years). Patients with epitope spreading had a significantly lower prevalence of skin sclerosis (0% vs. 44%, P = 0.004) and a greater prevalence of interstitial lung disease (46% vs. 15%, P = 0.05) than those without. Arthritis (92% vs. 25%, P = 0.02) and muscle involvement (67% vs. 17%, P = 0.02) were less frequent after epitope spreading had occurred. Epitope spreading is common in MCTD, occurring early after the diagnosis. The clinical manifestations in patients with this phenomenon differ from those without, and their clinical features change after the immunological phenomenon has occurred.
Gravity and Magnetic Signatures of Different Types of Spreading at the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Alodia, G.; Green, C. M.; McCaig, A. M.; Paton, D.; Campbell, S.
2017-12-01
In recent years it has been recognised that parts of slow spreading ridges such as the mid-Atlantic Ridge (MAR) are characterised by typical magmatic spreading, while other parts are characterised by the formation of detachment faults and oceanic core complexes (OCC). These different spreading modes can be clearly identified in the near-ridge environment in the bathymetry, with magmatic mode crust characterised by linear fault-bounded ridges, and detachment mode crust by more chaotic bathymetric signatures. The aim of this project is to characterise the magnetic and gravity signatures of lithosphere created by different modes of spreading, with the aim of using these signatures to identify different modes of spreading in ocean-continent transitions where the bathymetry is often hidden beneath sediment. In this presentation, we first characterise different modes of spreading using available high-resolution bathymetry data in the 28-32 N section of the MAR up to 20 My of age. The identified characteristics are then related to the corresponding ship-borne gravity and magnetic data in the same area. As most magnetic anomalies found in the near-axis environment are caused by the remanent magnetisation, it is found that in places where OCCs are present, magnetic anomalies are not as symmetrical as those found in magmatic mode regions. In both gravity and magnetic data, gradients are strongly clustered in the spreading direction in magmatic mode crust, but much more variable in detachment mode. We present a range of parameters extracted from the data that characterise different spreading modes, and use these to test whether transitions between detachment and magmatic mode crust identified in the bathymetry can be readily identified in gravity and magnetic data with different degrees of resolution.
Zhou, Qing-he; Xiao, Wang-pin; Shen, Ying-yan
2014-07-01
The spread of spinal anesthesia is highly unpredictable. In patients with increased abdominal girth and short stature, a greater cephalad spread after a fixed amount of subarachnoidally administered plain bupivacaine is often observed. We hypothesized that there is a strong correlation between abdominal girth/vertebral column length and cephalad spread. Age, weight, height, body mass index, abdominal girth, and vertebral column length were recorded for 114 patients. The L3-L4 interspace was entered, and 3 mL of 0.5% plain bupivacaine was injected into the subarachnoid space. The cephalad spread (loss of temperature sensation and loss of pinprick discrimination) was assessed 30 minutes after intrathecal injection. Linear regression analysis was performed for age, weight, height, body mass index, abdominal girth, vertebral column length, and the spread of spinal anesthesia, and the combined linear contribution of age up to 55 years, weight, height, abdominal girth, and vertebral column length was tested by multiple regression analysis. Linear regression analysis showed that there was a significant univariate correlation among all 6 patient characteristics evaluated and the spread of spinal anesthesia (all P < 0.039) except for age and loss of temperature sensation (P > 0.068). Multiple regression analysis showed that abdominal girth and the vertebral column length were the key determinants for spinal anesthesia spread (both P < 0.0001), whereas age, weight, and height could be omitted without changing the results (all P > 0.059, all 95% confidence limits < 0.372). Multiple regression analysis revealed that the combination of a patient's 5 general characteristics, especially abdominal girth and vertebral column length, had a high predictive value for the spread of spinal anesthesia after a given dose of plain bupivacaine.
NASA Astrophysics Data System (ADS)
Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng
2018-02-01
Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.
Epidemic spreading with activity-driven awareness diffusion on multiplex network.
Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming
2016-04-01
There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.
Epidemic spreading with activity-driven awareness diffusion on multiplex network
NASA Astrophysics Data System (ADS)
Guo, Quantong; Lei, Yanjun; Jiang, Xin; Ma, Yifang; Huo, Guanying; Zheng, Zhiming
2016-04-01
There has been growing interest in exploring the interplay between epidemic spreading with human response, since it is natural for people to take various measures when they become aware of epidemics. As a proper way to describe the multiple connections among people in reality, multiplex network, a set of nodes interacting through multiple sets of edges, has attracted much attention. In this paper, to explore the coupled dynamical processes, a multiplex network with two layers is built. Specifically, the information spreading layer is a time varying network generated by the activity driven model, while the contagion layer is a static network. We extend the microscopic Markov chain approach to derive the epidemic threshold of the model. Compared with extensive Monte Carlo simulations, the method shows high accuracy for the prediction of the epidemic threshold. Besides, taking different spreading models of awareness into consideration, we explored the interplay between epidemic spreading with awareness spreading. The results show that the awareness spreading can not only enhance the epidemic threshold but also reduce the prevalence of epidemics. When the spreading of awareness is defined as susceptible-infected-susceptible model, there exists a critical value where the dynamical process on the awareness layer can control the onset of epidemics; while if it is a threshold model, the epidemic threshold emerges an abrupt transition with the local awareness ratio α approximating 0.5. Moreover, we also find that temporal changes in the topology hinder the spread of awareness which directly affect the epidemic threshold, especially when the awareness layer is threshold model. Given that the threshold model is a widely used model for social contagion, this is an important and meaningful result. Our results could also lead to interesting future research about the different time-scales of structural changes in multiplex networks.
Triple Junctions, Boninites, and a New Microplate in the Western Pacific
NASA Astrophysics Data System (ADS)
Flores, J. A.; Casey, J.
2017-12-01
A new microplate has been discovered while trying to correlate melting processes in subduction zones that are forming boninites along the southern Mariana Plate. The westward boundary between the Mariana plate and the Philippine Sea plate is along a well-defined back-arc spreading center. The southern extension of this spreading center to the intersection with the Mariana Trench does not have a recognized morphological boundary. Previous work has hypothesized that subduction beneath a spreading center provides conditions required for boninite petrogenesis. Therefore, the exact location of the trench-trench-ridge triple junction needs to be found and correlated with known boninite locations. The triple junction was found using fault plane solutions to constrain the southern boundary of the two plates as it transects across the forearc. Normal faults suggest the triple junction to be at approximately 11.9N 144.1W; slip direction of reverse faults associated with the subducting plate are dominantly north-south west of this junction and northwest-southeast on the east side. While locating the southern boundary, the nucleation of a new spreading center that creates a ridge-ridge-ridge triple junction was found. The main spreading center trends mostly north-south until about 12.5N 143W, where two other spreading centers meet. The western spreading zone trends mostly east-west and seems to be in its infancy whereas there is another spreading center trending northwest-southeast. It is this last spreading center that forms the trench-ridge-trench triple junction. Discovery of these triple junctions isolates a piece of lithosphere that we interpret to be a new microplate that we name the Challenger Microplate.
Global stability of a two-mediums rumor spreading model with media coverage
NASA Astrophysics Data System (ADS)
Huo, Liang'an; Wang, Li; Song, Guoxiang
2017-09-01
Rumor spreading is a typical form of social communication and plays a significant role in social life, and media coverage has a great influence on the spread of rumor. In this paper, we present a new model with two media coverage to investigate the impact of the different mediums on rumor spreading. Then, we calculate the equilibria of the model and construct the reproduction number ℜ0. And we prove the global asymptotic stability of equilibria by using Lyapunov functions. Finally, we can conclude that the transition rate of the ignorants between two mediums has a direct effect on the scale of spreaders, and different media coverage has significant effects on the dynamics behaviors of rumor spreading.
A study of the conditions necessary for the onset of mid-latitude spread F
NASA Technical Reports Server (NTRS)
Zinchenko, G. N.
1976-01-01
Ionospheric conditions associated with the initiation of spread F in the mid-latitude ionosphere were observed. The morphology of spread F at Puerto Rico was investigated. Data from 7 nights was examined for Arecibo, five with spread F and two without. The relative height of the F layer maximum and the vertically integreted Pedersen conductivity, the relation between E and F region conductivities, the coupling lengths between the E and F regions, and vertical and horizontal gradients of electron density were examined. At Millstone Hill 13 nights were examined for all of which spread F was observed. The EW and NS velocities and the vertical velocities and the electric ion temperature ratio were examined.
Epidemic spreading in time-varying community networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Guangming, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024; Wang, Xingyuan, E-mail: wangxy@dlut.edu.cn, E-mail: ren-guang-ming@163.com
2014-06-15
The spreading processes of many infectious diseases have comparable time scale as the network evolution. Here, we present a simple networks model with time-varying community structure, and investigate susceptible-infected-susceptible epidemic spreading processes in this model. By both theoretic analysis and numerical simulations, we show that the efficiency of epidemic spreading in this model depends intensively on the mobility rate q of the individuals among communities. We also find that there exists a mobility rate threshold q{sub c}. The epidemic will survive when q > q{sub c} and die when q < q{sub c}. These results can help understanding the impacts of human travel onmore » the epidemic spreading in complex networks with community structure.« less
NASA Astrophysics Data System (ADS)
Wang, Xi; Chen, Shouhui; Zheng, Tianyong; Ning, Xiangchun; Dai, Yifei
2018-03-01
The filament yarns spreading techniques of electronic fiberglass fabric were developed in the past few years in order to meet the requirements of the development of electronic industry. Copper clad laminate (CCL) requires that the warp and weft yarns of the fabric could be spread out of apart and formed flat. The penetration performance of resin could be improved due to the filament yarns spreading techniques of electronic fiberglass fabric, the same as peeling strength of CCL and drilling performance of printed circuit board (PCB). This paper shows the filament yarns spreading techniques of electronic fiberglass fabric from several aspects, such as methods and functions, also with the assessment methods of their effects.
Modeling the effects of social impact on epidemic spreading in complex networks
NASA Astrophysics Data System (ADS)
Ni, Shunjiang; Weng, Wenguo; Zhang, Hui
2011-11-01
We investigate by mean-field analysis and extensive simulations the effects of social impact on epidemic spreading in various typical networks with two types of nodes: active nodes and passive nodes, of which the behavior patterns are modeled according to the social impact theory. In this study, nodes are not only the media to spread the virus, but also disseminate their opinions on the virus-whether there is a need for certain self-protection measures to be taken to reduce the risk of being infected. Our results indicate that the interaction between epidemic spreading and opinion dynamics can have significant influences on the spreading of infectious diseases and related applications, such as the implementation of prevention and control measures against the infectious diseases.
Ranking the spreading ability of nodes in network core
NASA Astrophysics Data System (ADS)
Tong, Xiao-Lei; Liu, Jian-Guo; Wang, Jiang-Pan; Guo, Qiang; Ni, Jing
2015-11-01
Ranking nodes by their spreading ability in complex networks is of vital significance to better understand the network structure and more efficiently spread information. The k-shell decomposition method could identify the most influential nodes, namely network core, with the same ks values regardless to their different spreading influence. In this paper, we present an improved method based on the k-shell decomposition method and closeness centrality (CC) to rank the node spreading influence of the network core. Experiment results on the data from the scientific collaboration network and U.S. aviation network show that the accuracy of the presented method could be increased by 31% and 45% than the one obtained by the degree k, 32% and 31% than the one by the betweenness.
Increased Spreading Activation in Depression
ERIC Educational Resources Information Center
Foster, Paul S.; Yung, Raegan C.; Branch, Kaylei K.; Stringer, Kristi; Ferguson, Brad J.; Sullivan, William; Drago, Valeria
2011-01-01
The dopaminergic system is implicated in depressive disorders and research has also shown that dopamine constricts lexical/semantic networks by reducing spreading activation. Hence, depression, which is linked to reductions of dopamine, may be associated with increased spreading activation. However, research has generally found no effects of…
Dependence of credit spread and macro-conditions based on an alterable structure model.
Xie, Yun; Tian, Yixiang; Xiao, Zhuang; Zhou, Xiangyun
2018-01-01
The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds.
Tetrahydrocannabinol-induced suppression of macrophage spreading and phagocytic activity in vitro.
Lopez-Cepero, M; Friedman, M; Klein, T; Friedman, H
1986-06-01
The effects of tetrahydrocannabinol (THC) on several parameters of macrophage function in vitro were assessed. Delta 9 THC added to cultures of normal mouse peritoneal cells in vitro affected the ability of the cells to spread on glass surfaces and also had some effect on their ability to phagocytize yeast. These effects were dose related. A concentration of 20 micrograms of THC almost completely inhibited macrophage spreading, but it also decreased viability and the total number of these cells. Doses of 10 or 5 micrograms of THC also inhibited spreading but had little effect on cell viability or number. A dose of 1.0 microgram of THC had some inhibitory effect on spreading and the lowest dose affecting spreading appeared to be about 0.05 micrograms per culture. Higher doses of THC were necessary to inhibit phagocytosis of yeast particles as determined by direct microscopic examination or use of radiolabeled yeast as the test particles. These results indicate that several readily measured functions of macrophages may be suppressed by THC.
Dependence of credit spread and macro-conditions based on an alterable structure model
2018-01-01
The fat-tail financial data and cyclical financial market makes it difficult for the fixed structure model based on Gaussian distribution to characterize the dynamics of corporate bonds spreads. Using a flexible structure model based on generalized error distribution, this paper focuses on the impact of macro-level factors on the spreads of corporate bonds in China. It is found that in China's corporate bonds market, macroeconomic conditions have obvious structural transformational effects on bonds spreads, and their structural features remain stable with the downgrade of bonds ratings. The impact of macroeconomic conditions on spreads is significant for different structures, and the differences between the structures increase as ratings decline. For different structures, the persistent characteristics of bonds spreads are obviously stronger than those of recursive ones, which suggest an obvious speculation in bonds market. It is also found that the structure switching of bonds with different ratings is not synchronous, which indicates the shift of investment between different grades of bonds. PMID:29723295
Iwamatsu, Masao
2017-07-01
The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ∼t^{-α} with the spreading exponent α, which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.
Spreading of Electrolyte Drops on Charged Surfaces: Electric Double Layer Effects on Drop Dynamics
NASA Astrophysics Data System (ADS)
Bae, Kyeong; Sinha, Shayandev; Chen, Guang; Das, Siddhartha
2015-11-01
Drop spreading is one of the most fundamental topics of wetting. Here we study the spreading of electrolyte drops on charged surfaces. The electrolyte solution in contact with the charged solid triggers the formation of an electric double layer (EDL). We develop a theory to analyze how the EDL affects the drop spreading. The drop dynamics is studied by probing the EDL effects on the temporal evolution of the contact angle and the base radius (r). The EDL effects are found to hasten the spreading behaviour - this is commensurate to the EDL effects causing a ``philic'' tendency in the drops (i.e., drops attaining a contact angle smaller than its equilibrium value), as revealed by some of our recent papers. We also develop scaling laws to illustrate the manner in which the EDL effects make the r versus time (t) variation deviate from the well known r ~tn variation, thereby pinpointing the attainment of different EDL-mediated spreading regimes.
Diffusion in Colocation Contact Networks: The Impact of Nodal Spatiotemporal Dynamics.
Thomas, Bryce; Jurdak, Raja; Zhao, Kun; Atkinson, Ian
2016-01-01
Temporal contact networks are studied to understand dynamic spreading phenomena such as communicable diseases or information dissemination. To establish how spatiotemporal dynamics of nodes impact spreading potential in colocation contact networks, we propose "inducement-shuffling" null models which break one or more correlations between times, locations and nodes. By reconfiguring the time and/or location of each node's presence in the network, these models induce alternative sets of colocation events giving rise to contact networks with varying spreading potential. This enables second-order causal reasoning about how correlations in nodes' spatiotemporal preferences not only lead to a given contact network but ultimately influence the network's spreading potential. We find the correlation between nodes and times to be the greatest impediment to spreading, while the correlation between times and locations slightly catalyzes spreading. Under each of the presented null models we measure both the number of contacts and infection prevalence as a function of time, with the surprising finding that the two have no direct causality.
Ionosonde observations of daytime spread F at low latitudes
NASA Astrophysics Data System (ADS)
Jiang, Chunhua; Yang, Guobin; Liu, Jing; Yokoyama, Tatsuhiro; Komolmis, Tharadol; Song, Huan; Lan, Ting; Zhou, Chen; Zhang, Yuannong; Zhao, Zhengyu
2016-12-01
Spread F on ionograms has been considered to be a phenomenon mainly occurred at nighttime. This study presented a case study of daytime spread F observed by the ionosonde installed at Puer (PUR; 22.7°N, 101.05°E; dip latitude 12.9°N), where daytime spread F that lasted for more than 2 h (about 08:30 LT 10:45 LT) was observed on 14 November 2015. To investigate the possible mechanism, ionograms recorded at PUR and Chiang Mai (18.76°N, 98.93°E; dip latitude 9.04°N) were used in this study. We found that traveling ionospheric disturbances were observed before the occurrence of daytime spread F. Meanwhile, the movement of the peak height of the ionosphere was downward. We suggested that downward vertical neutral winds excited by traveling atmospheric disturbances/atmospheric gravity waves might play a significant role in forming daytime spread F over PUR during geomagnetic storms.
Human mobility and the spatial transmission of influenza in the United States.
Charu, Vivek; Zeger, Scott; Gog, Julia; Bjørnstad, Ottar N; Kissler, Stephen; Simonsen, Lone; Grenfell, Bryan T; Viboud, Cécile
2017-02-01
Seasonal influenza epidemics offer unique opportunities to study the invasion and re-invasion waves of a pathogen in a partially immune population. Detailed patterns of spread remain elusive, however, due to lack of granular disease data. Here we model high-volume city-level medical claims data and human mobility proxies to explore the drivers of influenza spread in the US during 2002-2010. Although the speed and pathways of spread varied across seasons, seven of eight epidemics likely originated in the Southern US. Each epidemic was associated with 1-5 early long-range transmission events, half of which sparked onward transmission. Gravity model estimates indicate a sharp decay in influenza transmission with the distance between infectious and susceptible cities, consistent with spread dominated by work commutes rather than air traffic. Two early-onset seasons associated with antigenic novelty had particularly localized modes of spread, suggesting that novel strains may spread in a more localized fashion than previously anticipated.
A comprehensive database of the geographic spread of past human Ebola outbreaks
Mylne, Adrian; Brady, Oliver J.; Huang, Zhi; Pigott, David M.; Golding, Nick; Kraemer, Moritz U.G.; Hay, Simon I.
2014-01-01
Ebola is a zoonotic filovirus that has the potential to cause outbreaks of variable magnitude in human populations. This database collates our existing knowledge of all known human outbreaks of Ebola for the first time by extracting details of their suspected zoonotic origin and subsequent human-to-human spread from a range of published and non-published sources. In total, 22 unique Ebola outbreaks were identified, composed of 117 unique geographic transmission clusters. Details of the index case and geographic spread of secondary and imported cases were recorded as well as summaries of patient numbers and case fatality rates. A brief text summary describing suspected routes and means of spread for each outbreak was also included. While we cannot yet include the ongoing Guinea and DRC outbreaks until they are over, these data and compiled maps can be used to gain an improved understanding of the initial spread of past Ebola outbreaks and help evaluate surveillance and control guidelines for limiting the spread of future epidemics. PMID:25984346
The spread model of food safety risk under the supply-demand disturbance.
Wang, Jining; Chen, Tingqiang
2016-01-01
In this paper, based on the imbalance of the supply-demand relationship of food, we design a spreading model of food safety risk, which is about from food producers to consumers in the food supply chain. We use theoretical analysis and numerical simulation to describe the supply-demand relationship and government supervision behaviors' influence on the risk spread of food safety and the behaviors of the food producers and the food retailers. We also analyze the influence of the awareness of consumer rights protection and the level of legal protection of consumer rights on the risk spread of food safety. This model contributes to the explicit investigation of the influence relationship among supply-demand factors, the regulation behavioral choice of government, the behavioral choice of food supply chain members and food safety risk spread. And this paper provides a new viewpoint for considering food safety risk spread in the food supply chain, which has a great reference for food safety management.
Ecological multiplex interactions determine the role of species for parasite spread amplification
Stella, Massimo; Selakovic, Sanja; Antonioni, Alberto
2018-01-01
Despite their potential interplay, multiple routes of many disease transmissions are often investigated separately. As a unifying framework for understanding parasite spread through interdependent transmission paths, we present the ‘ecomultiplex’ model, where the multiple transmission paths among a diverse community of interacting hosts are represented as a spatially explicit multiplex network. We adopt this framework for designing and testing potential control strategies for Trypanosoma cruzi spread in two empirical host communities. We show that the ecomultiplex model is an efficient and low data-demanding method to identify which species enhances parasite spread and should thus be a target for control strategies. We also find that the interplay between predator-prey and host-parasite interactions leads to a phenomenon of parasite amplification, in which top predators facilitate T. cruzi spread, offering a mechanistic interpretation of previous empirical findings. Our approach can provide novel insights in understanding and controlling parasite spreading in real-world complex systems. PMID:29683427
[Effect of colcemid on the radial spreading of fibroblasts in culture].
Ivanova, O Iu; Komm, S G; Vasil'ev, Iu M; Gel'fand, I M
1977-02-01
Effect of colcemide upon the spreading of mouse embryo fibroblast-like cells on the substrate was studied with the aid of time-lapse microcinematography and scanning electron microscopy. On the glass, colcemide did not prevent the transition of cells into a well-attached state, however, the time needed for this transition was seen considerably increased as compared with the control cultures. Intermediate stages of spreading on flat glass had the following abnormal features in colcemide-containing medium: a) shapes of cytoplasmic outgrowths formed by the cell were altered and their distribution along the cell border appeared less regular; b) partial detachments of the attached parts of cells occurred very frequently; c) the spreading of various parts of the cells was not correlated. Possible mechanisms of colcemide action on the cell spreading are discussed, and it is suggested that intracellular structures sensitive to colcemide are essential for coordination of reactions that occur in various parts of the cell in the course of spreading.
A comprehensive database of the geographic spread of past human Ebola outbreaks.
Mylne, Adrian; Brady, Oliver J; Huang, Zhi; Pigott, David M; Golding, Nick; Kraemer, Moritz U G; Hay, Simon I
2014-01-01
Ebola is a zoonotic filovirus that has the potential to cause outbreaks of variable magnitude in human populations. This database collates our existing knowledge of all known human outbreaks of Ebola for the first time by extracting details of their suspected zoonotic origin and subsequent human-to-human spread from a range of published and non-published sources. In total, 22 unique Ebola outbreaks were identified, composed of 117 unique geographic transmission clusters. Details of the index case and geographic spread of secondary and imported cases were recorded as well as summaries of patient numbers and case fatality rates. A brief text summary describing suspected routes and means of spread for each outbreak was also included. While we cannot yet include the ongoing Guinea and DRC outbreaks until they are over, these data and compiled maps can be used to gain an improved understanding of the initial spread of past Ebola outbreaks and help evaluate surveillance and control guidelines for limiting the spread of future epidemics.
Dynamic wetting and spreading and the role of topography.
McHale, Glen; Newton, Michael I; Shirtcliffe, Neil J
2009-11-18
The spreading of a droplet of a liquid on a smooth solid surface is often described by the Hoffman-de Gennes law, which relates the edge speed, v(e), to the dynamic and equilibrium contact angles θ and θ(e) through [Formula: see text]. When the liquid wets the surface completely and the equilibrium contact angle vanishes, the edge speed is proportional to the cube of the dynamic contact angle. When the droplets are non-volatile this law gives rise to simple power laws with time for the contact angle and other parameters in both the capillary and gravity dominated regimes. On a textured surface, the equilibrium state of a droplet is strongly modified due to the amplification of the surface chemistry induced tendencies by the topography. The most common example is the conversion of hydrophobicity into superhydrophobicity. However, when the surface chemistry favors partial wetting, topography can result in a droplet spreading completely. A further, frequently overlooked consequence of topography is that the rate at which an out-of-equilibrium droplet spreads should also be modified. In this report, we review ideas related to the idea of topography induced wetting and consider how this may relate to dynamic wetting and the rate of droplet spreading. We consider the effect of the Wenzel and Cassie-Baxter equations on the driving forces and discuss how these may modify power laws for spreading. We relate the ideas to both the hydrodynamic viscous dissipation model and the molecular-kinetic theory of spreading. This suggests roughness and solid surface fraction modified Hoffman-de Gennes laws relating the edge speed to the dynamic and equilibrium contact angle. We also consider the spreading of small droplets and stripes of non-volatile liquids in the capillary regime and large droplets in the gravity regime. In the case of small non-volatile droplets spreading completely, a roughness modified Tanner's law giving the dependence of dynamic contact angle on time is presented. We review existing data for the spreading of small droplets of polydimethylsiloxane oil on surfaces decorated with micro-posts. On these surfaces, the initial droplet spreads with an approximately constant volume and the edge speed-dynamic contact angle relationship follows a power law [Formula: see text]. As the surface texture becomes stronger the exponent goes from p = 3 towards p = 1 in agreement with a Wenzel roughness driven spreading and a roughness modified Hoffman-de Gennes power law. Finally, we suggest that when a droplet spreads to a final partial wetting state on a rough surface, it approaches its Wenzel equilibrium contact angle in an exponential manner with a time constant dependent on roughness.
Hybrid Spreading Mechanisms and T Cell Activation Shape the Dynamics of HIV-1 Infection
Zhang, Changwang; Zhou, Shi; Groppelli, Elisabetta; Pellegrino, Pierre; Williams, Ian; Borrow, Persephone; Chain, Benjamin M.; Jolly, Clare
2015-01-01
HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments’ influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies. PMID:25837979
Migraine prophylaxis, ischemic depolarizations and stroke outcomes in mice
Eikermann-Haerter, Katharina; Lee, Jeong Hyun; Yalcin, Nilufer; Yu, Esther Sori; Daneshmand, Ali; Wei, Ying; Zheng, Yi; Can, Anil; Sengul, Buse; Ferrari, Michel D.; van den Maagdenberg, Arn M. J. M.; Ayata, Cenk
2014-01-01
Background and Purpose Migraine with aura is an established stroke risk factor, and excitatory mechanisms such as spreading depression are implicated in the pathogenesis of both migraine and stroke. Spontaneous spreading depression waves originate within the peri-infarct tissue and exacerbate the metabolic mismatch during focal cerebral ischemia. Genetically enhanced spreading depression susceptibility facilitates anoxic depolarizations and peri-infarct spreading depressions and accelerates infarct growth, suggesting that susceptibility to spreading depression is a critical determinant of vulnerability to ischemic injury. Because chronic treatment with migraine prophylactic drugs suppresses spreading depression susceptibility, we tested whether migraine prophylaxis can also suppress ischemic depolarizations and improve stroke outcome. Methods We measured the cortical susceptibility to spreading depression and ischemic depolarizations, and determined tissue and neurological outcome after middle cerebral artery occlusion in wild type and familial hemiplegic migraine type 1 knock-in mice treated with vehicle, topiramate or lamotrigine daily for 7 weeks or as a single dose shortly before testing. Results Chronic treatment with topiramate or lamotrigine reduces the susceptibility to KCl- or electrical stimulation-induced spreading depressions as well as ischemic depolarizations in both wild-type and familial hemiplegic migraine type 1 mutant mice. Consequently, both tissue and neurological outcomes are improved. Notably, treatment with a single dose of either drug is ineffective. Conclusions These data underscore the importance of hyperexcitability as a mechanism for increased stroke risk in migraineurs, and suggest that migraine prophylaxis may not only prevent migraine attacks but also protect migraineurs against ischemic injury. PMID:25424478
The addition effect of Tunisian date seed fibers on the quality of chocolate spreads.
Bouaziz, Mohamed Ali; Abbes, Fatma; Mokni, Abir; Blecker, Christophe; Attia, Hamadi; Besbes, Souhail
2017-04-01
Novel chocolate spreads were enriched by soluble and insoluble dietary fibers from Tunisian Deglet Nour date seeds at 1, 2, 3, 4, and 5% levels in the conventional chocolate spread. Defatted Deglet Nour date seeds, date seed soluble fiber concentrate (DSSFC) and date seed insoluble fiber concentrate (DSIFC) were characterized by high levels of dietary fibers (80-90%). Chocolate spread enriched with 5% of DSSFC presented the highest oil binding capacity (304.62%) compared to the control (102%). Whatever the DSIFC and DSSFC incorporation levels, no significant difference was recorded between the firmness, chewiness, and adhesiveness of prepared chocolate spreads compared to the control (p < .05). Sensory evaluation revealed that all prepared chocolate spreads enriched by DSIFC and DSSFC were accepted by panelists. These results indicated the value of date seeds as new source of dietary fibers to develop chocolate spread and could also improve health benefits and functional properties. Tunisia is considered to be one of the dates-producing countries. The mean annual yield of date fruits is about 200,000 tons. From this, around 20,000 tons of date seeds could be collected. This by-product of date processing industries could be regarded as an excellent source of dietary fiber with interesting technological functionality and many beneficial effects on human health. Then, date seeds could present a value addition by extraction and use of date seed fiber concentrate in chocolate spread formulation. © 2016 Wiley Periodicals, Inc.
Different modes of herpes simplex virus type 1 spread in brain and skin tissues.
Tsalenchuck, Yael; Tzur, Tomer; Steiner, Israel; Panet, Amos
2014-02-01
Herpes simplex virus type 1 (HSV-1) initially infects the skin and subsequently spreads to the nervous system. To investigate and compare HSV-1 mode of propagation in the two clinically relevant tissues, we have established ex vivo infection models, using native tissues of mouse and human skin, as well as mouse brain, maintained in organ cultures. HSV-1, which is naturally restricted to the human, infects and spreads in the mouse and human skin tissues in a similar fashion, thus validating the mouse model. The spread of HSV-1 in the skin was concentric to form typical plaques of limited size, predominantly of cytopathic cells. By contrast, HSV-1 spread in the brain tissue was directed along specific neuronal networks with no apparent cytopathic effect. Two additional differences were noted following infection of the skin and brain tissues. First, only a negligible amount of extracellular progeny virus was produced of the infected brain tissues, while substantial quantity of infectious progeny virus was released to the media of the infected skin. Second, antibodies against HSV-1, added following the infection, effectively restricted viral spread in the skin but have no effect on viral spread in the brain tissue. Taken together, these results reveal that HSV-1 spread within the brain tissue mostly by direct transfer from cell to cell, while in the skin the progeny extracellular virus predominates, thus facilitating the infection to new individuals.
Omega-3 fatty acids enriched chocolate spreads using soybean and coconut oils.
Jeyarani, T; Banerjee, T; Ravi, R; Krishna, A G Gopala
2015-02-01
Chocolate spreads were developed by incorporating two different soybean oil margarines, fat phases prepared using 85 % soybean oil (M1) and 1:1 blend of soybean oil and coconut oil (M2) with commercial palm stearin. Eight formulations were tried by varying skim milk powder (SMP)/fluid skimmed milk (FSM), type of fats (M1, M2, a commercial margarine and a table spread), sugar and cocoa powder and their quality characteristics were compared with a commercial hazelnut cocoa spread. The moisture and fat content were 5-6.1 % and 31.4-32.8 % for formulations with SMP and 21.5-24.7 % and 15.6-21.4 % respectively for those with FSM. Rheological studies of FSM spreads showed higher G″ value (loss modulus) than G' (storage modulus) indicating better spreadability. Descriptive sensory analysis revealed that the products had acceptability score of 8.3 to 10.5 (maximum score: 15). Fat extracted from spreads prepared using M1 and M2 was found to contain 43.9 and 22.3 % linoleic acid and 2.1 and 4.4 % linolenic acid respectively, were free from trans fat while the commercial hazelnut spread had 9.8 % linoleic acid but did not contain linolenic acid. Hence, the developed chocolate spreads have the potential to overcome ω-3 deficiency, ω-6/ω-3 imbalance and to enhance the health standard of people.
Influence of trust in the spreading of information
NASA Astrophysics Data System (ADS)
Wu, Hongrun; Arenas, Alex; Gómez, Sergio
2017-01-01
The understanding and prediction of information diffusion processes on networks is a major challenge in network theory with many implications in social sciences. Many theoretical advances occurred due to stochastic spreading models. Nevertheless, these stochastic models overlooked the influence of rational decisions on the outcome of the process. For instance, different levels of trust in acquaintances do play a role in information spreading, and actors may change their spreading decisions during the information diffusion process accordingly. Here, we study an information-spreading model in which the decision to transmit or not is based on trust. We explore the interplay between the propagation of information and the trust dynamics happening on a two-layer multiplex network. Actors' trustable or untrustable states are defined as accumulated cooperation or defection behaviors, respectively, in a Prisoner's Dilemma setup, and they are controlled by a memory span. The propagation of information is abstracted as a threshold model on the information-spreading layer, where the threshold depends on the trustability of agents. The analysis of the model is performed using a tree approximation and validated on homogeneous and heterogeneous networks. The results show that the memory of previous actions has a significant effect on the spreading of information. For example, the less memory that is considered, the higher is the diffusion. Information is highly promoted by the emergence of trustable acquaintances. These results provide insight into the effect of plausible biases on spreading dynamics in a multilevel networked system.
Luyet, Cédric; Eng, Kenneth T; Kertes, Peter J; Avila, Arsenio; Muni, Rajeev H; McHardy, Paul
2012-01-01
The aims of this prospective observational study were to assess the incidence of intraconal spread during peribulbar (extraconal) anesthesia by real-time ultrasound imaging of the retro-orbital compartment and to determine whether a complete sensory and motor block (with akinesia) of the eye is directly related to the intraconal spread. Ultrasound imaging was performed in 100 patients who underwent a surgical procedure on the posterior segment of the eye. All patients received a peribulbar block using the inferolateral approach. Once the needle was in place, a linear ultrasound transducer was placed over the eyelid and the spread of local anesthetics was assessed during the injection (real time). Akinesia was assessed by a blinded observer 10 minutes after block placement. The incidence of intraconal spread and its correlation with a complete akinesia was measured. The overall block failure rate was 28% in terms of akinesia, and the rate of rescue blocks was 20%. Clear intraconal spread during injection of the local anesthetic mixture could be detected with ultrasound imaging in 61 of 100 patients. The positive predictive value for successful block when intraconal spread was detected was 98% (95% confidence interval, 91%-100%). The association between clear and no evidence of intraconal spread and effective block was statistically significant (χ test, P < 0.001). Ultrasound imaging provides information of local anesthetic spread within the retro-orbital space, which might assist in the prediction of block success.
Nasiri, Hossein; Boloorani, Ali Darvishi; Sabokbar, Hassan Ali Faraji; Jafari, Hamid Reza; Hamzeh, Mohamad; Rafii, Yusef
2013-01-01
Flood spreading is a suitable strategy for controlling and benefiting from floods. Selecting suitable areas for flood spreading and directing the floodwater into permeable formations are amongst the most effective strategies in flood spreading projects. Having combined geographic information systems (GIS) and multi-criteria decision analysis approaches, the present study sought to locate the most suitable areas for flood spreading operation in the Garabaygan Basin of Iran. To this end, the data layers relating to the eight effective factors were prepared in GIS environment. This stage was followed by elimination of the exclusionary areas for flood spreading while determining the potentially suitable ones. Having closely examined the potentially suitable areas using the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II and analytic hierarchy process (AHP) methods, the land suitability map for flood spreading was produced. The PROMETHEE II and AHP were used for ranking all the alternatives and weighting the criteria involved, respectively. The results of the study showed that most suitable areas for the artificial groundwater recharge are located in Quaternary Q(g) and Q(gsc) geologic units and in geomorphological units of pediment and Alluvial fans with slopes not exceeding 3%. Furthermore, significant correspondence between the produced map and the control areas, where the flood spreading projects were successfully performed, provided further evidence for the acceptable efficiency of the integrated PROMETHEE II-AHP method in locating suitable flood spreading areas.
Realistic Bomber Training Initiative. Environmental Impact Statement. Volume 1
2000-01-01
spreading, atmospheric absorption, and lateral attenuation. Spherical spreading is, in essence , the reduction in noise due to the spreading of sound...Sanders Jasmine 008301 626 Saunders Gordon 008205/8253 581/601 Schiller Arthur 008226 590 Schinlund Gus 008096 531 Scudday Jim 008132 549 Sforza Tony
21 CFR 133.179 - Pasteurized process cheese spread.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese spread. 133.179 Section... (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.179 Pasteurized process cheese spread. (a)(1) Pasteurized...
English Language Spread in Local Contexts: Turkey, Latvia and France
ERIC Educational Resources Information Center
Uysal, Hacer Hande; Plakans, Lia; Dembovskaya, Svetlana
2007-01-01
In the discussion of English language spread policies, scholars have taken various viewpoints. One approach concerns the "diffusion-of-English" and "language ecology" paradigms, which distinguish externally dominant English spread and resistance to this hegemony. Others have questioned this approach, and proposed that English…
Lithosperic rheology controls on oceanic spreading patterns
NASA Astrophysics Data System (ADS)
Gerya, T.
2012-04-01
Mid-ocean ridges sectioned by transform faults represent one of the most prominent surface expressions of terrestrial plate tectonics. A fundamental long standing problem of plate tectonics is how and why ridge-transform spreading patterns are formed and maintained. On the one hand, geometrical correspondence between mid-ocean ridges and respective rifted margins apparently suggests that many oceanic transform faults are inherited structures that persisted throughout the entire history of oceanic spreading. On the other hand, data from incipient oceanic spreading regions show that transform faults are not directly inherited from transverse rift structures and start to develop as or after oceanic spreading nucleate. Based on self-consistent 3D thermomechanical numerical model of oceanic spreading we demonstrate that only limited range of oceanic lithosphere rheologies can reproduce natural spreading patterns. In particular, spontaneous formation and long-term stability of orthogonal ridge-transform spreading pattern requires visco-brittle/plastic rheology of plates with strong dynamic weakening of spontaneously forming faults. Our, numerical models of incipient oceanic spreading demonstrate that one or several oceanic transform faults can form gradually within broad non-transform accommodation zones connecting initially offset spreading centers. Orientation of transform faults and spreading centers changes exponentially with time as the result of new oceanic crust growth. The resulting orthogonal ridge-transform system is established within few millions of years after the beginning of oceanic spreading. By its fundamental physical origin, this system is a crustal growth pattern governed by space accommodation and not a plate breakup pattern governed by stress distribution. It is demonstrated that the characteristic extension-parallel orientation of oceanic transform faults can be obtained from space accommodation criteria as a steady state orientation of a strike-slip fault sustaining in between simultaneously growing offset crustal segments. Numerical models also suggest that transform faults can develop at single straight ridge as the result of dynamical instability of constructive plate boundaries caused by weakening of forming brittle/plastic fractures. Boundary instability from asymmetric plate growth can spontaneously start in alternate directions along successive ridge sections; the resultant curved ridges become transform faults within a few million years. Offsets along the transform faults change continuously with time by asymmetric plate growth and discontinuously by ridge jumps. Degree of asymmetric plate accretion increases with increasing degree of brittle/plastic weakening. It is also strongly dependent on the brittle/plastic yielding criterion and is notably reduced in models with pressure-dependent brittle/plastic plate strength compared to models with pressure-independent strength.
Predicting the dynamics of local adaptation in invasive species
USDA-ARS?s Scientific Manuscript database
An invasive plant species may restrict its spread to only one habitat, or, after some time, may continue to spread into a different, secondary, habitat. The question of whether evolution is required for an invasive species to spread from one habitat to another is currently hotly debated. In order fo...
How IHI Promotes Learning Systems and Knowledge Management
2011-01-26
promote social gatherings for individuals with similar age, etc. Early discharge planning 1.Flu/ Influenza -H1N1 Programs 2.Silver Sneakers Shared...Spread Aim: Prevent Ventilator Associated Pneumonia Spread What: Ventilator Bundle Target Goals: Zero Cases of VAP Spread to Whom: All ICUs in
An examination of fuel particle heating during fire spread
Jack D. Cohen; Mark A. Finney
2010-01-01
Recent high intensity wildfires and our demonstrated inability to control extreme fire behavior suggest a need for alternative approaches for preventing wildfire disasters. Current fire spread models are not sufficiently based on a basic understanding of fire spread processes to provide more effective management alternatives. An experimental and theoretical approach...
7 CFR 58.738 - Pasteurized process cheese spread and related products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Pasteurized process cheese spread and related products... and Grading Service 1 Quality Specifications for Finished Products § 58.738 Pasteurized process cheese... of Identity for Pasteurized Process Cheese Spreads, Food and Drug Administration. The pH of...
21 CFR 133.176 - Pasteurized cheese spread with fruits, vegetables, or meats.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized cheese spread with fruits, vegetables... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.176 Pasteurized cheese spread with...
21 CFR 133.178 - Pasteurized neufchatel cheese spread with other foods.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized neufchatel cheese spread with other... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.178 Pasteurized neufchatel cheese spread...
21 CFR 133.178 - Pasteurized neufchatel cheese spread with other foods.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized neufchatel cheese spread with other... HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.178 Pasteurized neufchatel cheese spread...
7 CFR 58.738 - Pasteurized process cheese spread and related products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Pasteurized process cheese spread and related products... and Grading Service 1 Quality Specifications for Finished Products § 58.738 Pasteurized process cheese... of Identity for Pasteurized Process Cheese Spreads, Food and Drug Administration. The pH of...
21 CFR 133.176 - Pasteurized cheese spread with fruits, vegetables, or meats.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized cheese spread with fruits, vegetables... AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.176 Pasteurized cheese spread with...
A Deadly Path: Bacterial Spread During Bubonic Plague
Gonzalez, Rodrigo J.; Miller, Virginia L.
2016-01-01
Yersinia pestis causes bubonic plague, a fulminant disease where host immune responses are abrogated. Recently developed in vivo models of plague have resulted in new ideas regarding bacterial spread in the body. Deciphering bacterial spread is key to understanding Y. pestis and the immune responses it encounters during infection. PMID:26875618
21 CFR 133.176 - Pasteurized cheese spread with fruits, vegetables, or meats.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., or meats. 133.176 Section 133.176 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... Requirements for Specific Standardized Cheese and Related Products § 133.176 Pasteurized cheese spread with... the requirements for label statement of ingredients, prescribed for pasteurized cheese spread by § 133...
Molecular genetics of Asian longhorned beetles: introduction, invasion, and spread in North America
M. D. Ginzel; L. M. Hanks; K. N. Paige
2003-01-01
We have used molecular techniques to study the genetic structure of Asian longhorned beetle (ALB) populations in North America, allowing us to assess the dispersal behavior of the adult beetles, the extent to which populations have spread in urban areas, and the potential for future spread.
Masked Priming Effects in Aphasia: Evidence of Altered Automatic Spreading Activation
ERIC Educational Resources Information Center
Silkes, JoAnn P.; Rogers, Margaret A.
2012-01-01
Purpose: Previous research has suggested that impairments of automatic spreading activation may underlie some aphasic language deficits. The current study further investigated the status of automatic spreading activation in individuals with aphasia as compared with typical adults. Method: Participants were 21 individuals with aphasia (12 fluent, 9…
Beam energy spread in FERMI@elettra gun and linac induced by intrabeam scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zholents, Alexander A; Zholents, Alexander A; Zolotorev, Max S.
Intrabeam scattering (IBS) of electrons in the pre-cathode area in the electron guns know in the literature as Boersh effect is responsible for a growth of the electron beam energy spread there. Albeit most visible within the electron gun where the electron beam density is large and the energy spread is small, the IBS acts all along the entire electron beam pass through the Linac. In this report we calculate the energy spread induced by IBS in the FERMI@elettra electron gun.
Mid-latitude spread-F structure
NASA Astrophysics Data System (ADS)
Meehan, D. H.; From, W. R.
1988-07-01
Observations of spread-F at frequencies of 1.98, 3.84, and 5.80 MHz and multiple angles of arrival have been obtained with an HF radar near Brisbane. It is suggested that the spreading of the ionogram trace is due to a spread in the arrival angles of echoes, and that the reflection process may involve total specular reflection rather than scattering. The results indicate that the structure cannot be purely frontal with purely linear movement. The velocities are found to be much less than for coexisting traveling ionospheric disturbances.
Coding for spread spectrum packet radios
NASA Technical Reports Server (NTRS)
Omura, J. K.
1980-01-01
Packet radios are often expected to operate in a radio communication network environment where there tends to be man made interference signals. To combat such interference, spread spectrum waveforms are being considered for some applications. The use of convolutional coding with Viterbi decoding to further improve the performance of spread spectrum packet radios is examined. At 0.00001 bit error rates, improvements in performance of 4 db to 5 db can easily be achieved with such coding without any change in data rate nor spread spectrum bandwidth. This coding gain is more dramatic in an interference environment.
Effect of hydrocortisone on cell morphology in C6 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berliner, J.A.; Bennett, K.; de Vellis, J.
Hydrocortisone has been found to induce cell spreading in rat glial C6 cells by 24 hours after its addition. This spreading phenomenon is correlated with an increase in the fraction of the peripheral cytoplasm occupied by microfilaments. Cytochalasin B causes disorganization of microfilaments in the peripheral cytoplasm of the cells. Additionally, it also prevents cell spreading in response to hormonal stimulation. High levels of calcium prevent recovery of normal microfilament organization and cell spreading following removal of cytochalasin B, but have no effect on normal microfilament organization alone. Additionally both the hydrocortisone induced spreading of C6 cells and increases inmore » peripheral microfilaments are shown to be dependent on RNA and protein synthesis. The levels of protein co-electrophorescing with actin are not affected by hydrocortisone.« less
Spreading gossip in social networks.
Lind, Pedro G; da Silva, Luciano R; Andrade, José S; Herrmann, Hans J
2007-09-01
We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.
Spreading gossip in social networks
NASA Astrophysics Data System (ADS)
Lind, Pedro G.; da Silva, Luciano R.; Andrade, José S., Jr.; Herrmann, Hans J.
2007-09-01
We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.
Flame spread along thermally thick horizontal rods
NASA Astrophysics Data System (ADS)
Higuera, F. J.
2002-06-01
An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.
Epidemic spreading in a hierarchical social network.
Grabowski, A; Kosiński, R A
2004-09-01
A model of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The structure of interpersonal connections is based on a scale-free network. Spatial localization of individuals belonging to different social groups, and the mobility of a contemporary community, as well as the effectiveness of different interpersonal interactions, are taken into account. Typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, are discussed. The influence of preventive vaccinations on the spreading process is investigated. The critical value of preventively vaccinated individuals that is sufficient for the suppression of an epidemic is calculated. Our results are compared with solutions of the master equation for the spreading process and good agreement of the character of this process is found.
Rumor Spreading Model with Trust Mechanism in Complex Social Networks
NASA Astrophysics Data System (ADS)
Wang, Ya-Qi; Yang, Xiao-Yuan; Han, Yi-Liang; Wang, Xu-An
2013-04-01
In this paper, to study rumor spreading, we propose a novel susceptible-infected-removed (SIR) model by introducing the trust mechanism. We derive mean-field equations that describe the dynamics of the SIR model on homogeneous networks and inhomogeneous networks. Then a steady-state analysis is conducted to investigate the critical threshold and the final size of the rumor spreading. We show that the introduction of trust mechanism reduces the final rumor size and the velocity of rumor spreading, but increases the critical thresholds on both networks. Moreover, the trust mechanism not only greatly reduces the maximum rumor influence, but also postpones the rumor terminal time, which provides us with more time to take measures to control the rumor spreading. The theoretical results are confirmed by sufficient numerical simulations.
NASA Astrophysics Data System (ADS)
Jia, Nan; Ding, Li; Liu, Yu-Jing; Hu, Ping
2018-07-01
In this paper, we consider two interacting pathogens spreading on multiplex networks. Each pathogen spreads only on its single layer, and different layers have the same individuals but different network topology. A state-dependent infectious rate is proposed to describe the nonlinear mutual interaction during the propagation of two pathogens. Then a novel epidemic spreading model incorporating treatment control strategy is established. We investigate the global asymptotic stability of the equilibrium points by using Dulac's criterion, Poincaré-Bendixson theorem and Lyapunov method. Furthermore, we discuss an optimal strategy to minimize the total number of the infected individuals and the cost associated with treatment control for both spreading of two pathogens. Finally, numerical simulations are presented to show the validity and efficiency of our results.
Experimental Measurements of Spreading of Volatile Liquid Droplets
NASA Technical Reports Server (NTRS)
Zhang, Neng-Li; Chao, David F.
2001-01-01
Based on the laser shadowgraphic system used by the first author of the present paper, a simple optical system, which combined the laser shadowgraphy and the direct magnified-photography, has been developed to measure the contact angle, the spreading speed, and the evaporation rate. Additionally, the system can also visualize thermocapillary convection inside of a sessile drop simultaneously. The experimental results show that evaporation/condensation and thermocapillary convection in the sessile drop induced by the evaporation strongly affects the wetting and spreading of the drop. Condensation always promotes the wetting and spreading of the drop. Evaporation may increase or decrease the contact angle of the evaporating sessile drops, depending on the evaporation rate. The thermocapillary convection in the drop induced by the evaporation enhances the effects of evaporation to suppress the spreading.
The effects of global awareness on the spreading of epidemics in multiplex networks
NASA Astrophysics Data System (ADS)
Zang, Haijuan
2018-02-01
It is increasingly recognized that understanding the complex interplay patterns between epidemic spreading and human behavioral is a key component of successful infection control efforts. In particular, individuals can obtain the information about epidemics and respond by altering their behaviors, which can affect the spreading dynamics as well. Besides, because the existence of herd-like behaviors, individuals are very easy to be influenced by the global awareness information. Here, in this paper, we propose a global awareness controlled spreading model (GACS) to explore the interplay between the coupled dynamical processes. Using the global microscopic Markov chain approach, we obtain the analytical results for the epidemic thresholds, which shows a high accuracy by comparison with lots of Monte Carlo simulations. Furthermore, considering other classical models used to describe the coupled dynamical processes, including the local awareness controlled contagion spreading (LACS) model, Susceptible-Infected-Susceptible-Unaware-Aware-Unaware (SIS-UAU) model and the single layer occasion, we make a detailed comparisons between the GACS with them. Although the comparisons and results depend on the parameters each model has, the GACS model always shows a strong restrain effects on epidemic spreading process. Our results give us a better understanding of the coupled dynamical processes and highlights the importance of considering the spreading of global awareness in the control of epidemics.
Secure information transmission in filter bank multi-carrier spread spectrum systems
Majid, Arslan; Moradi, Hussein; Farhang-Boroujeny, Behrouz
2015-12-17
This report discusses the issue of secure information transmission for a spread-spectrum system, which in our case is Filter-Bank Multi-Carrier spread spectrum (FB-MC SS). We develop a novel method for generating a secret key to augment the security of the spread spectrum system. The proposed key generation takes advantage of the channel reciprocity exhibited between two communicating parties.We validate the key generation aspect of our system by using real-world measurements. It is found that our augmentation of strongest path cancellation (SPC) is shown to be highly effective in our measurement scenarios where the adversary’s key would otherwise be significantly correlatedmore » with the legitimate nodes. Our approach in using the proposed key generation method as a part of FB-MC SS allows for it to be fault tolerant and it is not necessarily limited to FB-MC SS or spread-spectrum system in general. However, the advantage that our approach has in the domain of spread-spectrum security is that it significantly decorrelates the adversary’s key from the authentic parties. This aspect is crucial because if the adversary’s key is similar to the legitamate parties, then the adversary obtains a sizable advantage due to the fault tolerance nature of the developed spread spectrum key.« less
NASA Technical Reports Server (NTRS)
Ha, Tri T.; Pratt, Timothy
1989-01-01
The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel.
Liquid ``Coffee Rings'' and the Spreading of Volatile Liquid Mixtures
NASA Astrophysics Data System (ADS)
Wood, Clay; Pye, Justin; Burton, Justin
When a volatile liquid drop is placed on a wetting surface, it rapidly spreads and evaporates. The spreading dynamics and drop geometry are determined by a balance between thermal and interfacial forces, including Marangoni effects. However, this spreading behavior is drastically altered when drops contain a miniscule amount of a less-volatile miscible liquid (solute) in the bulk (solvent); contact line instabilities in the form of ``fingers'' develop. Characteristic finger size increases with increasing solute concentration and is apparent for concentrations as small as 0.1% by volume. Also, the spreading rate depends sensitively on the solute concentration, especially if the solute preferentially wets the substrate. At higher solute concentrations, the spreading droplet will form ``beads'' at the contact line, rather than fingers, and are deposited as the solvent recedes and evaporates, leaving behind a complex pattern of solute micro-droplets. Liquid ``coffee rings'' are often left behind after evaporation because there is a high evaporation rate of the solvent at the contact line, which increases the concentration of the solute, and the longevity of the rings depends on the solute vapor pressure. These results highlight the unusual sensitivity to contamination of volatile spreading, and the complex patterns of liquid contamination deposited following evaporation from a wetted surface. NSF 1455086.
Secure information transmission in filter bank multi-carrier spread spectrum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majid, Arslan; Moradi, Hussein; Farhang-Boroujeny, Behrouz
This report discusses the issue of secure information transmission for a spread-spectrum system, which in our case is Filter-Bank Multi-Carrier spread spectrum (FB-MC SS). We develop a novel method for generating a secret key to augment the security of the spread spectrum system. The proposed key generation takes advantage of the channel reciprocity exhibited between two communicating parties.We validate the key generation aspect of our system by using real-world measurements. It is found that our augmentation of strongest path cancellation (SPC) is shown to be highly effective in our measurement scenarios where the adversary’s key would otherwise be significantly correlatedmore » with the legitimate nodes. Our approach in using the proposed key generation method as a part of FB-MC SS allows for it to be fault tolerant and it is not necessarily limited to FB-MC SS or spread-spectrum system in general. However, the advantage that our approach has in the domain of spread-spectrum security is that it significantly decorrelates the adversary’s key from the authentic parties. This aspect is crucial because if the adversary’s key is similar to the legitamate parties, then the adversary obtains a sizable advantage due to the fault tolerance nature of the developed spread spectrum key.« less
Economic impact from unrestricted spread of potato cyst nematodes in australia.
Hodda, M; Cook, D C
2009-12-01
ABSTRACT Potato cyst nematodes (PCN) (Globodera spp.) are quarantine pests with serious potential economic consequences. Recent new detections in Australia, Canada, and the United States have focussed attention on the consequences of spread and economic justifications for alternative responses. Here, a full assessment of the economic impact of PCN spread from a small initial incursion is presented. Models linking spread, population growth, and economic impact are combined to estimate costs of spread without restriction in Australia. Because the characteristics of the Australian PCN populations are currently unknown, the known ranges of parameters were used to obtain cost scenarios, an approach which makes the model predictions applicable generally. Our analysis indicates that mean annual costs associated with spread of PCN would increase rapidly initially, associated with increased testing. Costs would then increase more slowly to peak at over AUD$20 million per year approximately 10 years into the future. Afterward, this annual cost would decrease slightly due to discounting factors. Mean annual costs over 20 years were $18.7 million, with a 90% confidence interval between AUD$11.9 million and AUD$27.0 million. Thus, cumulative losses to Australian agriculture over 20 years may exceed $370 million without action to prevent spread of PCN and entry to new areas.
NASA Astrophysics Data System (ADS)
Zhao, Laijun; Wang, Qin; Cheng, Jingjing; Chen, Yucheng; Wang, Jiajia; Huang, Wei
2011-07-01
Rumor is an important form of social interaction, and its spreading has a significant impact on people’s lives. In the age of Web, people are using electronic media more frequently than ever before, and blog has become one of the main online social interactions. Therefore, it is essential to learn the evolution mechanism of rumor spreading on homogeneous network in consideration of the forgetting mechanism of spreaders. Here we study a rumor spreading model on an online social blogging platform called LiveJournal. In comparison with the Susceptible-Infected-Removed (SIR) model, we provide a more detailed and realistic description of rumor spreading process with combination of forgetting mechanism and the SIR model of epidemics. A mathematical model has been presented and numerical solutions of the model were used to analyze the impact factors of rumor spreading, such as the average degree, forgetting rate and stifling rate. Our results show that there exist a threshold of the average degree of LiveJournal and above which the influence of rumor reaches saturation. Forgetting mechanism and stifling rate exert great influence on rumor spreading on online social network. The analysis results can guide people’s behaviors in view of the theoretical and practical aspects.
Coupling effects on turning points of infectious diseases epidemics in scale-free networks.
Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung
2017-05-31
Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.
Cool, Simon R.; Pieters, Jan G.; Seatovic, Dejan; Mertens, Koen C.; Nuyttens, David; Van De Gucht, Tim C.; Vangeyte, Jürgen
2017-01-01
Centrifugal fertilizer spreaders are by far the most commonly used granular fertilizer spreader type in Europe. Their spread pattern however is error-prone, potentially leading to an undesired distribution of particles in the field and losses out of the field, which is often caused by poor calibration of the spreader for the specific fertilizer used. Due to the large environmental impact of fertilizer use, it is important to optimize the spreading process and minimize these errors. Spreader calibrations can be performed by using collection trays to determine the (field) spread pattern, but this is very time-consuming and expensive for the farmer and hence not common practice. Therefore, we developed an innovative multi-camera system to predict the spread pattern in a fast and accurate way, independent of the spreader configuration. Using high-speed stereovision, ejection parameters of particles leaving the spreader vanes were determined relative to a coordinate system associated with the spreader. The landing positions and subsequent spread patterns were determined using a ballistic model incorporating the effect of tractor motion and wind. Experiments were conducted with a commercial spreader and showed a high repeatability. The results were transformed to one spatial dimension to enable comparison with transverse spread patterns determined in the field and showed similar results. PMID:28617339
Andrew, Rex K; Ganse, Andrew; White, Andrew W; Mercer, James A; Dzieciuch, Matthew A; Worcester, Peter F; Colosi, John A
2016-07-01
Observations of the spread of wander-corrected averaged pulses propagated over 510 km for 54 h in the Philippine Sea are compared to Monte Carlo predictions using a parabolic equation and path-integral predictions. Two simultaneous m-sequence signals are used, one centered at 200 Hz, the other at 300 Hz; both have a bandwidth of 50 Hz. The internal wave field is estimated at slightly less than unity Garrett-Munk strength. The observed spreads in all the early ray-like arrivals are very small, <1 ms (for pulse widths of 17 and 14 ms), which are on the order of the sampling period. Monte Carlo predictions show similar very small spreads. Pulse spread is one consequence of scattering, which is assumed to occur primarily at upper ocean depths where scattering processes are strongest and upward propagating rays refract downward. If scattering effects in early ray-like arrivals accumulate with increasing upper turning points, spread might show a similar dependence. Real and simulation results show no such dependence. Path-integral theory prediction of spread is accurate for the earliest ray-like arrivals, but appears to be increasingly biased high for later ray-like arrivals, which have more upper turning points.
Wave directional spreading from point field measurements.
McAllister, M L; Venugopal, V; Borthwick, A G L
2017-04-01
Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465 , 3361-3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices.
NASA Astrophysics Data System (ADS)
Bennett, Haydon E.; Taylor, Scott D.; Fugett, James H.; Shrout, Joshua L.; Davison, Paul O.; Ryan, S. Eric; Coad, James E.
2017-02-01
Penetrating thermal tissue damage/spread is an important aspect of many electrosurgical devices and correlates with effective tissue cutting, hemostasis, preservation of adjacent critical structures and tissue healing. This study compared the thermal damage/spread associated with the PhotonBlade, Valleylab Pencil, Valleylab EDGE Coated Pencil, PlasmaBlade 3.0S and PlasmaBlade 4.0, when performing a single pass dynamic tissue cut in fresh extirpated porcine longissimus muscle. These devices were used in a fashion that emulated their use in the clinical setting. Each device's thermal damage/spread, at Minimum, Median and Maximum power input settings, was assessed with nitroblue tetrazolium viability staining in the WVU Pathology Laboratory for Translational Medicine. The thermal damage/spread associated with the PhotonBlade was compared with the other devices tested based on the individual treatment results (n=179 cuts combined). In summary, the PhotonBlade overall demonstrated the least penetrating thermal tissue damage/spread, followed by the PlasmaBlade 4.0, then Valleylab Pencil and PlasmaBlade 3.0S and then Valleylab EDGE Coated Pencil in order of increasing thermal damage/spread depths.
Jin, Sen; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Zhang, Ji-Li
2012-01-01
Aimed to understand the fire behavior of Mongolian oak leaves fuel-bed under field condition, the leaves of a secondary Mongolian oak forest in Northeast Forestry University experimental forest farm were collected and brought into laboratory to construct fuel-beds with varied loading, height, and moisture content, and a total of 100 experimental fires were burned under no-wind and zero-slope conditions. It was observed that the fire spread rate of the fuel-beds was less than 0.5 m x min(-1). Fuel-bed loading, height, and moisture contents all had significant effects on the fire spread rate. The effect of fuel-bed moisture content on the fire spread had no significant correlations with fuel-bed loading and height, but the effect of fuel-bed height was related to the fuel-bed loading. The packing ratio of fuel-beds had less effect on the fire spread rate. Taking the fuel-bed loading, height, and moisture content as predictive variables, a prediction model for the fire spread rate of Mongolian oak leaves fuel-bed was established, which could explain 83% of the variance of the fire spread rate, with a mean absolute error 0.04 m x min(-1) and a mean relative error less than 17%.
Keefe, Douglas H
2012-11-01
A click-evoked otoacoustic emission (CEOAE) has group delay and spread as first- and second-order temporal moments varying over frequency, and instantaneous frequency and bandwidth as first- and second-order spectral moments varying over time. Energy-smoothed moments were calculated from a CEOAE database over 0.5-15 kHz bandwidth and 0.25-20 ms duration. Group delay and instantaneous frequency were calculated without phase unwrapping using a coherence synchrony measure that accurately classified ears with hearing loss. CEOAE moment measurements were repeatable in individual ears. Group delays were similar for CEOAEs and stimulus-frequency OAEs. Group spread is a frequency-specific measure of temporal spread in an emission, related to spatial spread across tonotopic generation sites along the cochlea. In normal ears, group delay and spread increased with frequency and decreased with level. A direct measure of cochlear tuning above 4 kHz was analyzed using instantaneous frequency and bandwidth. Synchronized spontaneous OAEs were present in most ears below 4 kHz, and confounded interpretation of moments. In ears with sensorineural hearing loss, group delay and spread varied with audiometric classification and amount of hearing loss; group delay differed between older males and females. CEOAE moments reveal clinically relevant information on cochlear tuning in ears with normal and impaired hearing.
Pattern of spread and prognosis in lower limb-onset ALS
TURNER, MARTIN R.; BROCKINGTON, ALICE; SCABER, JAKUB; HOLLINGER, HANNAH; MARSDEN, RACHAEL; SHAW, PAMELA J.; TALBOT, KEVIN
2011-01-01
Our objective was to establish the pattern of spread in lower limb-onset ALS (contra- versus ipsi-lateral) and its contribution to prognosis within a multivariate model. Pattern of spread was established in 109 sporadic ALS patients with lower limb-onset, prospectively recorded in Oxford and Sheffield tertiary clinics from 2001 to 2008. Survival analysis was by univariate Kaplan-Meier log-rank and multivariate Cox proportional hazards. Variables studied were time to next limb progression, site of next progression, age at symptom onset, gender, diagnostic latency and use of riluzole. Initial progression was either to the contralateral leg (76%) or ipsilateral arm (24%). Factors independently affecting survival were time to next limb progression, age at symptom onset, and diagnostic latency. Time to progression as a prognostic factor was independent of initial direction of spread. In a regression analysis of the deceased, overall survival from symptom onset approximated to two years plus the time interval for initial spread. In conclusion, rate of progression in lower limb-onset ALS is not influenced by whether initial spread is to the contralateral limb or ipsilateral arm. The time interval to this initial spread is a powerful factor in predicting overall survival, and could be used to facilitate decision-making and effective care planning. PMID:20001488
Wave directional spreading from point field measurements
Venugopal, V.; Borthwick, A. G. L.
2017-01-01
Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465, 3361–3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices. PMID:28484326
Fire spread estimation on forest wildfire using ensemble kalman filter
NASA Astrophysics Data System (ADS)
Syarifah, Wardatus; Apriliani, Erna
2018-04-01
Wildfire is one of the most frequent disasters in the world, for example forest wildfire, causing population of forest decrease. Forest wildfire, whether naturally occurring or prescribed, are potential risks for ecosystems and human settlements. These risks can be managed by monitoring the weather, prescribing fires to limit available fuel, and creating firebreaks. With computer simulations we can predict and explore how fires may spread. The model of fire spread on forest wildfire was established to determine the fire properties. The fire spread model is prepared based on the equation of the diffusion reaction model. There are many methods to estimate the spread of fire. The Kalman Filter Ensemble Method is a modified estimation method of the Kalman Filter algorithm that can be used to estimate linear and non-linear system models. In this research will apply Ensemble Kalman Filter (EnKF) method to estimate the spread of fire on forest wildfire. Before applying the EnKF method, the fire spread model will be discreted using finite difference method. At the end, the analysis obtained illustrated by numerical simulation using software. The simulation results show that the Ensemble Kalman Filter method is closer to the system model when the ensemble value is greater, while the covariance value of the system model and the smaller the measurement.
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Hegde, U.; Bhattacharjee, S.; Deering, J. L.; Tang, L.; Altenkirch, R. A.
2003-01-01
A series of 6-minute microgravity combustion experiments of opposed flow flame spread over thermally-thick PMMA has been conducted to extend data previously reported at high opposed flows to almost two decades lower in flow. The effect of flow velocity on flame spread shows a square root power law dependence rather than the linear dependence predicted by thermal theory. The experiments demonstrate that opposed flow flame spread is viable to very low velocities and more robust than expected from the numerical model, which predicts that at very low velocities (less than 5 centimeters per second), flame spread rates fall off more rapidly as flow is reduced. It is hypothesized that the enhanced flame spread observed in the experiments may be due to three- dimensional hydrodynamic effects, which are not included in the zero-gravity, two-dimensional hydrodynamic model. The effect of external irradiation was found to be more complex that the model predicted over the 0-2 Watts per square centimeter range. In the experiments, the flame compensated for the increased irradiation by stabilizing farther from the surface. A surface energy balance reveals that the imposed flux was at least partially offset by a reduced conductive flux from the increased standoff distance, so that the effect on flame spread was weaker than anticipated.
NASA Astrophysics Data System (ADS)
Regelous, Marcel; Weinzierl, Christoph G.; Haase, Karsten M.
2016-09-01
Variations in the volume and major element composition of basalt erupted along the global mid-ocean ridge system have been attributed to differences in mantle potential temperature, mantle composition, or plate spreading rate and lithosphere thickness. Abyssal peridotites, the residues of mantle melting beneath mid-ocean ridges, provide additional information on the melting process, which could be used to test these hypotheses. We compiled a global database of abyssal peridotite compositions averaged over the same ridge segments defined by Gale et al. (2013). In addition, we calculated the distance of each ridge segment to the nearest hotspots. We show that Cr# in spinel in abyssal peridotites is negatively correlated with Na90 in basalts from the same ridge segments on a global scale. Ridge segments that erupt basalts apparently produced by larger degrees of mantle melting are thus underlain by peridotites from which large amounts of melt have been extracted. We find that near-ridge hotspots have a more widespread influence on mid-ocean ridge basalt (MORB) composition and ridge depth than previously thought. However, when these hotspot-influenced ridge segments are excluded, the remaining segments show clear relationships between MORB composition, peridotite composition, and ridge depth with spreading rate. Very slow-spreading ridges (<20 mm/yr) are deeper, erupt basalts with higher Na90, Al90, K90/Ti90, and lower Fe90, Ca90/Al90, and expose peridotites with lower Cr# than intermediate and fast-spreading ridges. We show that away from hotspots, the spreading-rate dependence of the maximum degree of mantle melting inferred from Cr# in peridotites (FM) and the bulk degree of melting inferred from Na90 in basalts (FB) from the same ridge segments is unlikely to be due to variations in mantle composition. Nor can the effects of dynamic mantle upwelling or incomplete melt extraction at low spreading rates satisfactorily explain the observed compositions of abyssal peridotites and MORB from very slow-spreading ridges. Instead, the distinctive compositions of abyssal peridotites and MORB from very slow-spreading ridges could result from the presence of a thick lithospheric lid, leading to a lower average degree of melting, and a higher contribution to melting from more fertile mantle lithologies. Alternatively, spreading rate influences the thermal structure of the upper mantle such that the mantle beneath very slow-spreading ridges is cooler.
Upward And Downward Flame Spreading And Extinction In Partial Gravity Environments
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.; Feier, Ioan I.; Ferkul, Paul V.; Kumar, Amit; T'ien, James S.
2003-01-01
The premise of this research effort has been to begin exploring the gap in the literature between studies of material flammability and flame spread phenomena in normal-gravity and those conducted in the microgravity environment, with or without forced flows. From a fundamental point of view, flame spreading in upward (concurrent) buoyant flow is considerably different from concurrent forced flow. The flow accelerates throughout the length of the buoyant flame bringing the streamlines and the flame closer to the fuel surface and strengthening the interaction between the flame and fuel. Forced flows are diverted around the flame and away from the fuel surface, except where the flow might be constrained by a finite duct. The differences may be most clearly felt as the atmospheric conditions, viz. pressure or oxygen content, approach the flammability limit. From a more practical point of view, flame spreading and material flammability behavior have not been studied under the partial gravity conditions that are the natural state in space exploration destinations such as the Moon and Mars. This effort constitutes the beginning of the research needed to engineer fire safety provisions for such future missions. In this program we have performed partial-gravity experiments (from 0.1 to 1 g/g(sub Earth)) considering both upward and downward flame spread over thin solid fuels aboard the NASA KC-135 aircraft. In those tests, the atmospheric pressure and the fuel sample width were varied. Steady flame spread rates and approximate extinction boundaries were determined. Flame images were recorded using video cameras and two-dimensional fuel surface temperature distributions were determined using an IR camera. These results are available, and complement our earlier work in downward spread in partial gravity varying oxygen content. In conjunction with the experiment, three-dimensional models of flame spreading in buoyant flow have been developed. Some of the computed results on upward spreading have been presented. A derivative three-dimensional model of downward spreading has been developed. It is currently being used to evaluate the standard limiting oxygen index (LOI) measuring device and its potential performance in different gravity levels.
Melt distribution along the axis of ultraslow spreading mid-ocean ridges
NASA Astrophysics Data System (ADS)
Schlindwein, V. S. N.; Schmid, F.; Meier, M.
2017-12-01
Ultraslow spreading mid-ocean ridges (<15 mm/y full spreading rate) differ from faster spreading ridges by their uneven melt distribution. Crustal thickness varies along axis from zero to more than 8 km at volcanic centers. These volcanic centers receive more melt than the regional average and may be sustained for millions of years. The segmentation pattern and active volcanism at ultraslow spreading ridges greatly differs from faster spreading ridges. Using networks of ocean bottom seismometers at three differing ridge segments, we could show that the maximum depth of brittle faulting, equivalent approximately to temperatures of 600-700°C, varies drastically along axis. Ridge sections that lack an igneous crust exhibit a thick lithosphere as evidenced by the deepest mid-ocean ridge earthquakes observed so far at more than 30 km depth. Beneath areas of basalt exposure, in particular beneath pronounced volcanic centers, the axial lithosphere may be more than 15 km thinner allowing for melt flow at the base of the lithosphere towards the volcanoes, a process that has been postulated to explain the uneven along-axis melt distribution. Spreading events at ultraslow spreading ridges are unusual as we found from two spreading episodes at 85°E Gakkel Ridge and Segment 8 volcano on the Southwest Indian Ridge. These eruptions were preceded or accompanied by large (M>5) and long-lasting earthquake swarms and active magmatism lasted over 3-16 years. A massive hydrothermal event plume and sounds from deep submarine explosive volcanism were observed at Gakkel Ridge. At the Segment 8 volcano, we imaged a melt reservoir extending to about 8 km depth below the volcano that potentially fed a sill intrusion recorded by an ocean bottom seismometers about 30 km away at a neighboring subordinate volcanic center. To better understand the segmentation and melt transport at ultraslow spreading rigdes, we recently conducted a segment-scale seismicity survey of Knipovich Ridge in the Norwegian-Greenland Sea. Here we deployed 28 ocean bottom seismometers along 160 km of ridge axis for one year, the currently largest mid-ocean ridge microseismicity experiment.
Stundner, O; Meissnitzer, M; Brummett, C M; Moser, S; Forstner, R; Koköfer, A; Danninger, T; Gerner, P; Kirchmair, L; Fritsch, G
2016-03-01
Ultrasound guidance allows for the use of much lower volumes of local anaesthetics for nerve blocks, which may be associated with less aberrant spread and fewer complications. This randomized, controlled study used contrast magnetic resonance imaging to view the differential-volume local anaesthetic distribution, and compared analgesic efficacy and respiratory impairment. Thirty patients undergoing shoulder surgery were randomized to receive ultrasound-guided interscalene block by a single, blinded operator with injection of ropivacaine 0.75% (either 20 or 5 ml) plus the contrast dye gadopentetate dimeglumine, followed by magnetic resonance imaging. The primary outcome was epidural spread. Secondary outcomes were central non-epidural spread, contralateral epidural spread, spread to the phrenic nerve, spirometry, ultrasound investigation of the diaphragm, block duration, pain scores during the first 24 h, time to first analgesic consumption, and total analgesic consumption. All blocks provided fast onset and adequate intra- and postoperative analgesia, with no significant differences in pain scores at any time point. Epidural spread occurred in two subjects of each group (13.3%); however, spread to the intervertebral foramen and phrenic nerve and extensive i.m. local anaesthetic deposition were significantly more frequent in the 20 ml group. Diaphragmatic paralysis occurred twice as frequently (n=8 vs 4), and changes from baseline peak respiratory flow rate were larger [Δ=-2.66 (1.99 sd) vs -1.69 (2.0 sd) l min(-1)] in the 20 ml group. This study demonstrates that interscalene block is associated with epidural spread irrespective of injection volume; however, less central (foraminal) and aberrant spread after low-volume injection may be associated with a more favourable risk profile. This study was registered with the European Medicines Agency (Eudra-CT number 2013-004219-36) and with the US National Institutes' of Health registry and results base, clinicaltrials.gov (identifier NCT02175069). © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The dynamic behavior of an insoluble surfactant monolayer spreading on a thin liquid film
NASA Astrophysics Data System (ADS)
Matar, Omar Kamal
The spreading of surface active material on thin liquid films is studied by investigating the dynamics of a finite reservoir of insoluble surfactant spreading on a thin layer of Newtonian liquid. The first part of this thesis examines the unperturbed spreading process. It is shown that Marangoni dominated spreading leads to large deformations in the underlying liquid layer which diminish when the relative contribution of surface diffusion, capillary and gravitational forces is increased. A comparison between experimental measurements of the film deformation obtained by Moiré topography with theoretical predictions, performed for the first time, reveals excellent agreement. This study also shows that the mass of surfactant that participates in the spreading is a miniscule fraction of the total mass deposited. Simulations of surfactant delivery in model pulmonary airways demonstrate the adverse effect of a non-uniform field of pre-existing contaminants on the spreading and the importance of its inclusion in determining an optimal set of conditions for rapid and efficacious spreading. The second part describes efforts aimed at identifying the physical mechanisms responsible for some unusual fingered spreading patterns observed experimentally. A linear stability analysis of self-similar solutions governing Marangoni dominated spreading in rectilinear geometry, conducted in the quasi-steady-state- approximation, predicts stable modes. A similar analysis including effects of surface diffusion and capillarity also yields asymptotically stable flow. A transient growth analysis of the non-normal operators governing the evolution of disturbances yields amplification of initially infinitesimal perturbations by orders of magnitude on time scales comparable to Marangoni shear times. Disturbances of all wavenumbers eventually decay in agreement with the long time analyses. Numerical simulations of the nonlinear governing equations, however, show that, for the parameter values considered, the large amplification is insufficient to drive sustained finger formation and unstable flow in the nonlinear regime. Simulations of mode coupling interactions reveal that coalescence of adjacent fingers leads to an overall shift of the fingering patterns to longer transverse length scales. Preliminary results also indicate that van der Waals forces can enhance the growth of transverse disturbances in the thinning region of the film leading to possible asymptotic growth.
Haran, Julien; Roques, Alain; Bernard, Alexis; Robinet, Christelle; Roux, Géraldine
2015-01-01
Mountain ranges may delimit the distribution of native species as well as constitute potential barriers to the spread of invasive species. The invasive pinewood nematode, Bursaphelenchus xylophilus, is a severe forest pest inducing pine wilt disease. It is vectored in Europe by a native long-horned beetle, Monochamus galloprovincialis. This study explored the potential of the Pyrenean chain to slow or prevent the natural spread of nematode-infested beetles from the Iberian Peninsula, where the nematode is established and is expanding its range, towards France and the rest of Europe. An analysis of the genetic structure and migration patterns of the beetle populations throughout the Pyrenean mountain range was combined with a spread model simulating the potential movements of nematode-infested beetles across it. The central part of the Pyrenees, which corresponds to the highest elevation zone, was shown to prevent gene flow between the French and Spanish populations of M. galloprovincialis on each side of the mountains. Conversely, strong admixture was detected between populations located on both sides of low elevation hills, and especially at the east and west extremities of the mountain range. Simulations of the spread of nematode-infested beetles under various thresholds of beetle survival and pine wilt disease expression gave results consistent with the variation in genetic make-up, suggesting that western and eastern hillsides may represent corridors favoring natural spread of the nematode from the Iberian Peninsula to France. Simulations also showed that temperature rise due to climate change may significantly reduce the extent of the barrier formed by highest elevations. Our results support the hypothesis that the Pyrenean chain represents a partial barrier to the natural spread of nematode-infested beetles. These results, which have to be considered together with potential human-assisted long-distance spread of the nematode, highlight priority zones for future pest monitoring and management programs. More generally, such an integrated approach could be used to assess the role of mountain chains in the potential spread of other invasive pests.
Development of MPS Method for Analyzing Melt Spreading Behavior and MCCI in Severe Accidents
NASA Astrophysics Data System (ADS)
Yamaji, Akifumi; Li, Xin
2016-08-01
Spreading of molten core (corium) on reactor containment vessel floor and molten corium-concrete interaction (MCCI) are important phenomena in the late phase of a severe accident for assessment of the containment integrity and managing the severe accident. The severe accident research at Waseda University has been advancing to show that simulations with moving particle semi-implicit (MPS) method (one of the particle methods) can greatly improve the analytical capability and mechanical understanding of the melt behavior in severe accidents. MPS models have been developed and verified regarding calculations of radiation and thermal field, solid-liquid phase transition, buoyancy, and temperature dependency of viscosity to simulate phenomena, such as spreading of corium, ablation of concrete by the corium, crust formation and cooling of the corium by top flooding. Validations have been conducted against experiments such as FARO L26S, ECOKATS-V1, Theofanous, and SPREAD for spreading, SURC-2, SURC-4, SWISS-1, and SWISS-2 for MCCI. These validations cover melt spreading behaviors and MCCI by mixture of molten oxides (including prototypic UO2-ZrO2), metals, and water. Generally, the analytical results show good agreement with the experiment with respect to the leading edge of spreading melt and ablation front history of concrete. The MPS results indicate that crust formation may play important roles in melt spreading and MCCI. There is a need to develop a code for two dimensional MCCI experiment simulation with MPS method as future study, which will be able to simulate anisotropic ablation of concrete.
Coffman, Lan G; Burgos-Ojeda, Daniela; Wu, Rong; Cho, Kathleen; Bai, Shoumei; Buckanovich, Ronald J
2016-09-01
Emerging evidence suggest that many high-grade serous "ovarian" cancers (HGSOC) start in the fallopian tube. Cancer cells are then recruited to the ovary and then spread diffusely through the abdomen. The mechanism of ovarian cancer spread was thought to be largely due to direct shedding of tumor cells into the peritoneal cavity with vascular spread being of limited importance. Recent work challenges this dogma, suggesting hematogenous spread of ovarian cancer may play a larger role in ovarian cancer cell metastasis than previously thought. One reason the role of vascular spread of ovarian cancer has not been fully elucidated is the lack of easily accessible models of vascular ovarian cancer metastasis. Here, we present 3 metastatic models of ovarian cancer which confirm the ability of ovarian cancer to hematogenously spread. Strikingly, we observe a high rate of metastasis to the ovary with the development of ascites in these models. Interestingly, oophorectomy resulted in a complete loss of peritoneal metastases and ascites. Taken together, our data indicate that hematogenously disseminated HGSOC cells have a unique tropism for the ovary and that hematogenous spread in ovarian cancer may be more common than appreciated. Furthermore, our studies support a critical role for the ovary in promoting HGSOC cell metastasis to the abdomen. The models developed here represent important new tools to evaluate both the mechanism of cancer cell recruitment to the ovary and understand and target key steps in ovarian cancer metastasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Coffman, Lan G; Burgos-Ojeda, Daniela; Wu, Rong; Cho, Kathleen; Bai, Shoumei; Buckanovich, Ronald J
2016-01-01
Emerging evidence suggest that many high grade serous ‘ovarian’ cancers (HGSOC) start in the fallopian tube. Cancer cells are then recruited to the ovary and then spread diffusely through the abdomen. The mechanism of ovarian cancer spread was thought to be largely due to direct shedding of tumor cells into the peritoneal cavity with vascular spread being of limited importance. Recent work challenges this dogma, suggesting hematogenous spread of ovarian cancer may play a larger role in ovarian cancer cell metastasis than previously thought. One reason the role of vascular spread of ovarian cancer has not been fully elucidated is the lack of easily accessible models of vascular ovarian cancer metastasis. Here we present three metastatic models of ovarian cancer which confirm the ability of ovarian cancer to hematogenously spread. Strikingly, we observe a high rate of metastasis to the ovary with the development of ascites in these models. Interestingly, oophorectomy resulted in a complete loss of peritoneal metastases and ascites. Taken together our data indicates that hematogenously disseminated HGSOC cells have a unique tropism for the ovary and that hematogenous spread in ovarian cancer may be more common than appreciated. Furthermore our studies support a critical role for the ovary in promoting HGSOC cell metastasis to the abdomen. The models developed here represent important new tools to evaluate both the mechanism of cancer cell recruitment to the ovary and to understand and target key steps in ovarian cancer metastasis. PMID:27083386
Characterizing super-spreading in microblog: An epidemic-based information propagation model
NASA Astrophysics Data System (ADS)
Liu, Yu; Wang, Bai; Wu, Bin; Shang, Suiming; Zhang, Yunlei; Shi, Chuan
2016-12-01
As the microblogging services are becoming more prosperous in everyday life for users on Online Social Networks (OSNs), it is more favorable for hot topics and breaking news to gain more attraction very soon than ever before, which are so-called "super-spreading events". In the information diffusion process of these super-spreading events, messages are passed on from one user to another and numerous individuals are influenced by a relatively small portion of users, a.k.a. super-spreaders. Acquiring an awareness of super-spreading phenomena and an understanding of patterns of wide-ranged information propagations benefits several social media data mining tasks, such as hot topic detection, predictions of information propagation, harmful information monitoring and intervention. Taking into account that super-spreading in both information diffusion and spread of a contagious disease are analogous, in this study, we build a parameterized model, the SAIR model, based on well-known epidemic models to characterize super-spreading phenomenon in tweet information propagation accompanied with super-spreaders. For the purpose of modeling information diffusion, empirical observations on a real-world Weibo dataset are statistically carried out. Both the steady-state analysis on the equilibrium and the validation on real-world Weibo dataset of the proposed model are conducted. The case study that validates the proposed model shows that the SAIR model is much more promising than the conventional SIR model in characterizing a super-spreading event of information propagation. In addition, numerical simulations are carried out and discussed to discover how sensitively the parameters affect the information propagation process.
Tamura, Takahiro; Kitamura, Kana; Yokota, Shuichi; Ito, Shigeki; Shibata, Yasuyuki; Nishiwaki, Kimitoshi
2018-05-01
Several types of quadratus lumborum block (QLB) are used for postoperative analgesia and are believed to be effective against both somatic and visceral pain via a local anesthetic (LA) effect in the paravertebral space (PVS). However, it remains unclear whether all QLB techniques result in LA spread into the PVS. We hypothesized that LA administered via intramuscular QLB would spread into the paravertebral space and investigated the spread and sensory block area of LA in intramuscular QLB. This volunteer study included 5 healthy men and 1 woman, with no previous medical history. Intramuscular QLB and lateral transversus abdominis plane block were performed under real-time ultrasound guidance for comparison of sensory deprivation range. Two days later, the same procedure was performed on the contralateral side of the body. The spread of LA via intramuscular QLB spread to the PVS was assessed 1 hour after the first injections using magnetic resonance imaging. Sensory perception was also evaluated by the pinprick test at 90 minutes after injection. In total, we performed 11 intramuscular QLBs and 11 lateral transversus abdominis plane blocks. Magnetic resonance imaging showed that LA did not spread into the PVS after ultrasound-guided intramuscular QLB. The analgesic area corresponded to the side of the body that was ipsilateral to the block. Ultrasound-guided intramuscular QLBs are not clinically useful for procedures requiring LA spread into the PVS but do result in an ipsilateral analgesic effect in healthy volunteers. This study was registered at University Hospital Medical Information Network Clinical Trials Registry, UMIN 000019149.
Current status of genome editing in vector mosquitoes: A review.
Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah
2017-01-16
Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.
Validation of the Gravity Model in Predicting the Global Spread of Influenza
Li, Xinhai; Tian, Huidong; Lai, Dejian; Zhang, Zhibin
2011-01-01
The gravity model is often used in predicting the spread of influenza. We use the data of influenza A (H1N1) to check the model’s performance and validation, in order to determine the scope of its application. In this article, we proposed to model the pattern of global spread of the virus via a few important socio-economic indicators. We applied the epidemic gravity model for modelling the virus spread globally through the estimation of parameters of a generalized linear model. We compiled the daily confirmed cases of influenza A (H1N1) in each country as reported to the WHO and each state in the USA, and established the model to describe the relationship between the confirmed cases and socio-economic factors such as population size, per capita gross domestic production (GDP), and the distance between the countries/states and the country where the first confirmed case was reported (i.e., Mexico). The covariates we selected for the model were all statistically significantly associated with the global spread of influenza A (H1N1). However, within the USA, the distance and GDP were not significantly associated with the number of confirmed cases. The combination of the gravity model and generalized linear model provided a quick assessment of pandemic spread globally. The gravity model is valid if the spread period is long enough for estimating the model parameters. Meanwhile, the distance between donor and recipient communities has a good gradient. Besides, the spread should be at the early stage if a single source is taking into account. PMID:21909295
Validation of the gravity model in predicting the global spread of influenza.
Li, Xinhai; Tian, Huidong; Lai, Dejian; Zhang, Zhibin
2011-08-01
The gravity model is often used in predicting the spread of influenza. We use the data of influenza A (H1N1) to check the model's performance and validation, in order to determine the scope of its application. In this article, we proposed to model the pattern of global spread of the virus via a few important socio-economic indicators. We applied the epidemic gravity model for modelling the virus spread globally through the estimation of parameters of a generalized linear model. We compiled the daily confirmed cases of influenza A (H1N1) in each country as reported to the WHO and each state in the USA, and established the model to describe the relationship between the confirmed cases and socio-economic factors such as population size, per capita gross domestic production (GDP), and the distance between the countries/states and the country where the first confirmed case was reported (i.e., Mexico). The covariates we selected for the model were all statistically significantly associated with the global spread of influenza A (H1N1). However, within the USA, the distance and GDP were not significantly associated with the number of confirmed cases. The combination of the gravity model and generalized linear model provided a quick assessment of pandemic spread globally. The gravity model is valid if the spread period is long enough for estimating the model parameters. Meanwhile, the distance between donor and recipient communities has a good gradient. Besides, the spread should be at the early stage if a single source is taking into account.
Tobacco mosaic virus Movement Protein Enhances the Spread of RNA Silencing
Vogler, Hannes; Kwon, Myoung-Ok; Dang, Vy; Sambade, Adrian; Fasler, Monika; Ashby, Jamie; Heinlein, Manfred
2008-01-01
Eukaryotic cells restrain the activity of foreign genetic elements, including viruses, through RNA silencing. Although viruses encode suppressors of silencing to support their propagation, viruses may also exploit silencing to regulate host gene expression or to control the level of their accumulation and thus to reduce damage to the host. RNA silencing in plants propagates from cell to cell and systemically via a sequence-specific signal. Since the signal spreads between cells through plasmodesmata like the viruses themselves, virus-encoded plasmodesmata-manipulating movement proteins (MP) may have a central role in compatible virus:host interactions by suppressing or enhancing the spread of the signal. Here, we have addressed the propagation of GFP silencing in the presence and absence of MP and MP mutants. We show that the protein enhances the spread of silencing. Small RNA analysis indicates that MP does not enhance the silencing pathway but rather enhances the transport of the signal through plasmodesmata. The ability to enhance the spread of silencing is maintained by certain MP mutants that can move between cells but which have defects in subcellular localization and do not support the spread of viral RNA. Using MP expressing and non-expressing virus mutants with a disabled silencing suppressing function, we provide evidence indicating that viral MP contributes to anti-viral silencing during infection. Our results suggest a role of MP in controlling virus propagation in the infected host by supporting the spread of silencing signal. This activity of MP involves only a subset of its properties implicated in the spread of viral RNA. PMID:18389061
Ludlow, M.; Nguyen, D. T.; Silin, D.; Lyubomska, O.; de Vries, R. D.; von Messling, V.; McQuaid, S.; De Swart, R. L.
2012-01-01
The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDVSH) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDVSH (rCDVSH) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV5804P and the prototypic wild-type CDVR252 showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDVSH-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis. PMID:22553334
Age-Related Changes in Spreading Activation during Infancy
ERIC Educational Resources Information Center
Barr, Rachel; Walker, Joanne; Gross, Julien; Hayne, Harlene
2014-01-01
The concept of spreading activation describes how retrieval of one memory cues retrieval of other memories that are associated with it. This study explored spreading activation in 6-, 12-, and 18-month-old infants. Infants (n = 144) learned two tasks within the same experimental session; one task, deferred imitation (DI), is typically remembered…
21 CFR 133.180 - Pasteurized process cheese spread with fruits, vegetables, or meats.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese spread with fruits... HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.180 Pasteurized process cheese spread...
21 CFR 133.180 - Pasteurized process cheese spread with fruits, vegetables, or meats.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process cheese spread with fruits... HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.180 Pasteurized process cheese spread...
Islamic Universities Spread through Africa
ERIC Educational Resources Information Center
Lindow, Megan
2007-01-01
This article reports on new universities for Muslims, many supported by groups in the Middle East, which are spreading through the sub-Saharan region. The Islamic University in Uganda is a prime example of a new kind of institution that has slowly been spreading its way across the continent. Embracing both conservative Muslim values and modern…
Influencing factors on vegetative cogongrass spread into pine forests on the Mississippi gulf coast
Jon D. Prevost; Donald L. Grebner; Jeanne C. Jones; Stephen C. Grado; Keith L. Belli; John D. Byrd
2010-01-01
Cogongrass [Imperata cylindrical (L.) Beauv.] is an invasive species that is spreading throughout forested ecosystems across the Southeastern United States. A field experiment was conducted in Hancock County, MS to determine if mid-rotation mechanical disturbance increased the rate of growth and spread of roadside cogongrass patches into adjacent...
Clonal Spread in Second Growth Stands of Coast Redwood, Sequoia sempervirens
Vladimir Douhovnikoff; Richard S. Dodd
2007-01-01
Coast redwood (Sequoia sempervirens) is one of the rare conifers to reproduce successfully through clonal spread. The importance of this mode of reproduction in stand development is largely unknown. Understanding the importance of clonal spread and the spatial structure of clones is crucial for stand management strategies that would aim to maximize...
Fast and Accurate Detection of Spread Source in Large Complex Networks
the patient one in epidemics, or source of rumor spreading in social network. Pinto, Thiran and Vetterli introduced an algorithm (PTVA) to solve the...important case of this problem in which a limited set of nodes act as observers and report times at which the spread reached them. PTVA uses all
Hal E. Anderson
1969-01-01
Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...
ERIC Educational Resources Information Center
de Wit, Bianca; Kinoshita, Sachiko
2015-01-01
Semantic priming effects are popularly explained in terms of an automatic spreading activation process, according to which the activation of a node in a semantic network spreads automatically to interconnected nodes, preactivating a semantically related word. It is expected from this account that semantic priming effects should be routinely…
Human activity and the spread of Phytophthora ramorum
Hall J. Cushman; Michelle Cooper; Ross K. Meentemeyer; Shelly Benson
2008-01-01
Increasing numbers of studies are finding that humans can facilitate the spread of exotic plant species in protected wildlands. Hiking trails commonly serve as conduits for invaders and the number of exotic plant species occurring in protected areas is often correlated positively with visitation rates. Despite such evidence linking human activity to the spread of...
Christopher M. Oswalt; Sonja N. Oswalt
2007-01-01
We investigated the impacts of winter litter disturbance on the spread of the nonnative invasive plant Microstegium vimineum (Trin.) A. Camus through experimental removals. We hypothesized that light penetration through the litter layer facilitates the spread of M. vimineum in forested systems. Our objective, therefore, was to...
An examination of fire spread thresholds in discontinuous fuel beds
Mark A. Finney; Jack D. Cohen; Isaac C. Grenfell; Kara M. Yedinak
2010-01-01
Many fuel beds, especially live vegetation canopies (conifer forests, shrub fields, bunch-grasses) contain gaps between vegetation clumps. Fires burning in these fuel types often display thresholds for spread that are observed to depend on environmental factors like wind, slope, and fuel moisture content. To investigate threshold spread behaviours, we conducted a set...
Effects of local and global network connectivity on synergistic epidemics
NASA Astrophysics Data System (ADS)
Broder-Rodgers, David; Pérez-Reche, Francisco J.; Taraskin, Sergei N.
2015-12-01
Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.
Effects of local and global network connectivity on synergistic epidemics.
Broder-Rodgers, David; Pérez-Reche, Francisco J; Taraskin, Sergei N
2015-12-01
Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.
A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering
Su, Jian-Yuan; Ting, Shang-Chieh; Chang, Yu-Hung; Yang, Jing-Tang
2012-01-01
We demonstrate experimentally that a passerine exploits tail spreading to intercept the downward flow induced by its wings to facilitate the recovery of its posture. The periodic spreading of its tail by the White-eye bird exhibits a phase correlation with both wingstroke motion and body oscillation during hovering flight. During a downstroke, a White-eye's body undergoes a remarkable pitch-down motion, with the tail undergoing an upward swing. This pitch-down motion becomes appropriately suppressed at the end of the downstroke; the bird's body posture then recovers gradually to its original status. Employing digital particle-image velocimetry, we show that the strong downward flow induced by downstroking the wings serves as an external jet flow impinging upon the tail, providing a depressing force on the tail to counteract the pitch-down motion of the bird's body. Spreading of the tail enhances a rapid recovery of the body posture because increased forces are experienced. The maximum force experienced by a spread tail is approximately 2.6 times that of a non-spread tail. PMID:22258552
A passerine spreads its tail to facilitate a rapid recovery of its body posture during hovering.
Su, Jian-Yuan; Ting, Shang-Chieh; Chang, Yu-Hung; Yang, Jing-Tang
2012-07-07
We demonstrate experimentally that a passerine exploits tail spreading to intercept the downward flow induced by its wings to facilitate the recovery of its posture. The periodic spreading of its tail by the White-eye bird exhibits a phase correlation with both wingstroke motion and body oscillation during hovering flight. During a downstroke, a White-eye's body undergoes a remarkable pitch-down motion, with the tail undergoing an upward swing. This pitch-down motion becomes appropriately suppressed at the end of the downstroke; the bird's body posture then recovers gradually to its original status. Employing digital particle-image velocimetry, we show that the strong downward flow induced by downstroking the wings serves as an external jet flow impinging upon the tail, providing a depressing force on the tail to counteract the pitch-down motion of the bird's body. Spreading of the tail enhances a rapid recovery of the body posture because increased forces are experienced. The maximum force experienced by a spread tail is approximately 2.6 times that of a non-spread tail.
Spreading of Emulsions on Glass Substrates
NASA Astrophysics Data System (ADS)
Mohammad Karim, Alireza; Kavehpour, Pirouz
2012-11-01
The wettability of emulsions is an important factor with explicit influence in an extensive variety of industrial applications ranging from the petroleum to food industries. Surprisingly, there is no comprehensive study of emulsion spreading to date; this is due to the complexity of the structure of the emulsions and non-homogeneity of the dispersed phase bubbles in size as well as distribution through the emulsion. The spreading of water/silicone oil emulsions on glass substrates was investigated. The emulsions were prepared with varying volume fractions of water dispersed in silicone oil, with addition of small amounts of surfactant to stabilize the emulsion structure. The time dependent variation of dynamic contact angle, base diameter, and the spreading rate of the droplets of an emulsion are different from a pure substance. The effect of water/silicone oil weight percentage as well as the droplet size and dispersed phase bubble size were also investigated. The weight percentage of water/silicone oil emulsion and droplet size did not have significant influence on the spreading dynamics; however the dispersed phase drop size affected the spreading dynamics substantially.
Rupture and Spreading Dynamics of Lipid Membranes on a Solid Surface
NASA Astrophysics Data System (ADS)
Perazzo, Antonio; Shin, Sangwoo; Colosqui, Carlos; Young, Yuan-Nan; Stone, Howard A.
2017-11-01
The spreading of lipid membranes on solid surfaces is a dynamic phenomenon relevant to drug delivery, endocytosis, biofouling, and the synthesis of supported lipid bilayers. Current technological developments are limited by an incomplete understanding of the spreading and adhesion dynamics of a lipid bilayer under different physicochemical conditions. Here, we present recent experimental and theoretical results for the spreading of giant unilamellar vesicles (GUVs), where the vesicle shell consists of a lipid bilayer. In particular, we study the effect of different background ion concentrations, osmolarity mismatches between the interior and the exterior of the vesicles, and different surface chemistries of the glass substrate. In all of the studied cases, we observe a delay time before a GUV in contact with the solid surface eventually ruptures. The rupture kinetics and subsequent spreading dynamics is controlled by the ionic screening within the thin film of liquid between the vesicle and the surface. Different rupture mechanisms, mobilities of the spreading vesicle, and degrees of substrate coverage are observed by varying the electrolyte concentration, solid surface charge, and osmolarity mismatch.
Maximum spreading of liquid drop on various substrates with different wettabilities
NASA Astrophysics Data System (ADS)
Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun
2017-09-01
This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.
Infections on the move: how transient phases of host movement influence disease spread
Fenton, A.; Dell, A. I.
2017-01-01
Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes. PMID:29263283
Novel Maximum-based Timing Acquisition for Spread-Spectrum Communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibbetty, Taylor; Moradiz, Hussein; Farhang-Boroujeny, Behrouz
This paper proposes and analyzes a new packet detection and timing acquisition method for spread spectrum systems. The proposed method provides an enhancement over the typical thresholding techniques that have been proposed for direct sequence spread spectrum (DS-SS). The effective implementation of thresholding methods typically require accurate knowledge of the received signal-to-noise ratio (SNR), which is particularly difficult to estimate in spread spectrum systems. Instead, we propose a method which utilizes a consistency metric of the location of maximum samples at the output of a filter matched to the spread spectrum waveform to achieve acquisition, and does not require knowledgemore » of the received SNR. Through theoretical study, we show that the proposed method offers a low probability of missed detection over a large range of SNR with a corresponding probability of false alarm far lower than other methods. Computer simulations that corroborate our theoretical results are also presented. Although our work here has been motivated by our previous study of a filter bank multicarrier spread-spectrum (FB-MC-SS) system, the proposed method is applicable to DS-SS systems as well.« less
Clark, K D; Pech, L L; Strand, M R
1997-09-12
Insect blood cells (hemocytes) play an essential role in defense against parasites and other pathogenic organisms that infect insects. A key class of hemocytes involved in insect cellular immunity is plasmatocytes. Here we describe the isolation and identification of a peptide from the moth Pseudoplusia includens that mediates the spreading of plasmatocytes to foreign surfaces. This peptide, designated plasmatocyte-spreading peptide (PSP1), contains 23 amino acid residues in the following sequence: H-ENFNGGCLAGYMRTADGRCKPTF-OH. In vitro assays using the synthetic peptide at concentrations >/=2 nM induced plasmatocytes from P. includens to spread on the surface of culture dishes. Injection of this peptide into P. includens larvae caused a transient depletion of plasmatocytes from circulation. Labeling studies indicated that this peptide induced 75% of plasmatocytes that were double-labeled by the monoclonal antibodies 49G3A3 and 43E9A8 to spread, whereas plasma induced significantly more plasmatocytes to spread. This suggests that only a certain subpopulation of plasmatocytes responds to the peptide and that other peptidyl factors mediate plasmatocyte adhesion responses.
Assessing the role of spatial correlations during collective cell spreading
Treloar, Katrina K.; Simpson, Matthew J.; Binder, Benjamin J.; McElwain, D. L. Sean; Baker, Ruth E.
2014-01-01
Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher's equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations. PMID:25026987
Modelling the influence of human behaviour on the spread of infectious diseases: a review.
Funk, Sebastian; Salathé, Marcel; Jansen, Vincent A A
2010-09-06
Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps.
Kertesz, Szabolcs; Szabo, Geza; Udvari, Szabolcs; Levay, Gyorgy; Matyus, Peter; Harsing, Laszlo G
2013-01-25
We used isolated chicken retina to induce spreading depression by the glutamate receptor agonist N-methyl-d-aspartate. The N-methyl-d-aspartate-induced latency time of spreading depression was extended by the glycine(B) binding site competitive antagonist 7-chlorokynurenic acid. Addition of the glycine transporter type-1 inhibitors NFPS and Org-24461 reversed the inhibitory effect of 7-chlorokynurenic acid on N-methyl-d-aspartate-evoked spreading depression. The glycine uptake inhibitory activity of Org-24461, NFPS, and some newly synthesized analogs of NFPS was determined in CHO cells stably expressing human glycine transporter type-1b isoform. Compounds, which failed to inhibit glycine transporter type-1, also did not have effect on retinal spreading depression. These experiments indicate that the spreading depression model in chicken retina is a useful in vitro test to determine activity of glycine transporter type-1 inhibitors. In addition, our data serve further evidence for the role of glycine transporter type-1 in retinal neurotransmission and light processing. Copyright © 2012 Elsevier B.V. All rights reserved.
Modelling the influence of human behaviour on the spread of infectious diseases: a review
Funk, Sebastian; Salathé, Marcel; Jansen, Vincent A. A.
2010-01-01
Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps. PMID:20504800
Terraced spreading of simple liquids on solid surfaces
NASA Technical Reports Server (NTRS)
Yang, Ju-Xing; Koplik, Joel; Banavar, Jayanth R.
1992-01-01
We have studied the spreading of liquid drops on a solid surface by molecular-dynamics simulations of coexisting three-phase Lennard-Jones systems of liquid, vapor, and solid. We consider both spherically symmetric atoms and diatomic molecules, and a range of interaction strengths. As the attraction between liquid and solid increases we observe a smooth transition in spreading regimes, from partial to complete to terraced wetting. In the terraced case, where distinct monomolecular layers spread with different velocities, the layers are ordered but not solid, with substantial molecular diffusion both within and between layers. The quantitative behavior resembles recent experimental findings, but the detailed dynamics differ. In particular, the layers exhibit an unusual spreading law, where their radii vary in time as R-squared approximately equal to log10t, which disagrees with experiments on polymeric liquids as well as recent calculations.
Rogers, Geoffrey
2018-06-01
The Yule-Nielsen effect is an influence on halftone color caused by the diffusion of light within the paper upon which the halftone ink is printed. The diffusion can be characterized by a point spread function. In this paper, a point spread function for paper is derived using the multiple-path model of reflection. This model treats the interaction of light with turbid media as a random walk. Using the multiple-path point spread function, a general expression is derived for the average reflectance of light from a frequency-modulated halftone, in which dot size is constant and the number of dots is varied, with the arrangement of dots random. It is also shown that the line spread function derived from the multiple-path model has the form of a Lorentzian function.
Lymph Node Macrophages Restrict Murine Cytomegalovirus Dissemination
Farrell, Helen E.; Davis-Poynter, Nick; Bruce, Kimberley; Lawler, Clara; Dolken, Lars; Mach, Michael
2015-01-01
ABSTRACT Cytomegaloviruses (CMVs) establish chronic infections that spread from a primary entry site to secondary vascular sites, such as the spleen, and then to tertiary shedding sites, such as the salivary glands. Human CMV (HCMV) is difficult to analyze, because its spread precedes clinical presentation. Murine CMV (MCMV) offers a tractable model. It is hypothesized to spread from peripheral sites via vascular endothelial cells and associated monocytes. However, viral luciferase imaging showed footpad-inoculated MCMV first reaching the popliteal lymph nodes (PLN). PLN colonization was rapid and further spread was slow, implying that LN infection can be a significant bottleneck. Most acutely infected PLN cells were CD169+ subcapsular sinus macrophages (SSM). Replication-deficient MCMV also reached them, indicating direct infection. Many SSM expressed viral reporter genes, but few expressed lytic genes. SSM expressed CD11c, and MCMV with a cre-sensitive fluorochrome switch showed switched infected cells in PLN of CD11c-cre mice but yielded little switched virus. SSM depletion with liposomal clodronate or via a CD169-diphtheria toxin receptor transgene shifted infection to ER-TR7+ stromal cells, increased virus production, and accelerated its spread to the spleen. Therefore, MCMV disseminated via LN, and SSM slowed this spread by shielding permissive fibroblasts and poorly supporting viral lytic replication. IMPORTANCE HCMV chronically infects most people, and it can cause congenital disability and harm the immunocompromised. A major goal of vaccination is to prevent systemic infection. How this is established is unclear. Restriction to humans makes HCMV difficult to analyze. We show that peripheral MCMV infection spreads via lymph nodes. Here, MCMV infected filtering macrophages, which supported virus replication poorly. When these macrophages were depleted, MCMV infected susceptible fibroblasts and spread faster. The capacity of filtering macrophages to limit MCMV spread argued that their infection is an important bottleneck in host colonization and might be a good vaccine target. PMID:25926638
NASA Astrophysics Data System (ADS)
He, Enyuan; Zhao, Minghui; Qiu, Xuelin; Sibuet, Jean-Claude; Wang, Jian; Zhang, Jiazheng
2016-05-01
The 140-km wide last phase of opening of the South China Sea (SCS) corresponds to a N145° direction of spreading with rift features identified on swath bathymetric data trending N055° (Sibuet et al., 2016). These N055° seafloor spreading features of the East Sub-basin are cut across by a post-spreading volcanic ridge oriented approximately E-W in its western part (Zhenbei-Huangyan seamounts chain). The knowledge of the deep crustal structure beneath this volcanic ridge is essential to elucidate not only the formation and tectonic evolution of the SCS, but also the mechanism of emplacement of the post-spreading magmatism. We use air-gun shots recorded by ocean bottom seismometers to image the deep crustal structure along the N-S oriented G8G0 seismic profile, which is perpendicular to the Zhenbei-Huangyan seamounts chain but located in between the Zhenbei and Huangyan seamounts, where topographic changes are minimum. The velocity structure presents obvious lateral variations. The crust north and south of the Zhenbei-Huangyan seamounts chain is ca. 4-6 km in thickness and velocities are largely comparable with those of normal oceanic crust of Atlantic type. To the south, the Jixiang seamount with a 7.2-km thick crust, seems to be a tiny post-spreading volcanic seamount intruded along the former extinct spreading ridge axis. In the central part, a 1.5-km thick low velocity zone (3.3-3.7 km/s) in the uppermost crust is explained by the presence of extrusive rocks intercalated with thin sedimentary layers as those drilled at IODP Site U1431. Both the Jixiang seamount and the Zhenbei-Huangyan seamounts chain started to form by the intrusion of decompressive melt resulting from the N-S post-spreading phase of extension and intruded through the already formed oceanic crust. The Jixiang seamount probably formed before the emplacement of the E-W post-spreading seamounts chain.
A Kinematic Model for Opening of the Gulf of Mexico between 169-150 Ma
NASA Astrophysics Data System (ADS)
Harry, D. L.; Jha, S.
2016-12-01
Lineated magnetic anomalies interpreted to be seafloor spreading isochrons are identified in the central and eastern Gulf of Mexico. The southernmost of these anomalies coincides with a strong positive vertical gravity gradient interpreted to mark the location of the extinct spreading ridge in the Gulf. Together, the magnetic and gravity anomalies reveal a concave-south fossil spreading system that accommodated counterclockwise rotation of Yucatan away from North America during Jurassic opening of the Gulf. Magnetic models show that the magnetic lineations correlate with geomagnetic time scale chrons M22n (150 Ma), M33n (161 Ma), M39n (165 Ma), and Toar-Aal N (174 Ma). M22n lies astride the fossil ridge and defines the age at which seafloor spreading ended. M33n lies between the ridge and the Florida shelf. M39n lies close to the shelf edge in the eastern Gulf. Taor-Aal N is the oldest recognized seafloor spreading anomaly and is present only in the central Gulf, laying near the ocean-continent transition (OCT). The magnetic anomalies define an Euler pole located at 22°N, 82ºW. Rotating Yucatan clockwise 29° about this pole places the northeast Yucatan shelf edge tightly against the southwestern Florida shelf, closing the southeastern Gulf. An additional 12° clockwise rotation juxtaposes the OCT on the northwestern Yucatan margin against the North American OCT in the central Gulf. These constraints on Yucatan's past position indicate that continental extension propagated from the western into the eastern Gulf between 215-174 Ma as Yucatan began to rotate away from North America. Seafloor spreading began 174 Ma and was asymmetric, with all extension occurring north of the spreading ridge. Symmetric seafloor spreading was established by 165 Ma and continued until 150 Ma. A total of 41°counterclockwise rotation of Yucatan relative to North America is predicted to have occurred during continental extension and seafloor spreading.
Droplet impact dynamics for two liquids impinging on anisotropic superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Pearson, John T.; Maynes, Daniel; Webb, Brent W.
2012-09-01
Droplet impingement experiments were performed on grooved hydrophobic surfaces with cavity fractions of 0, 80, and 93 % using droplets of water and a 50 %/50 % water/glycerol mixture. The influence of liquid viscosity, cavity fraction, and spreading direction, relative to the surface grooves, is explored qualitatively and quantitatively. The maximum droplet spread diameter, velocity of the rebounding jet, and the time delay between droplet impact and jet emission were characterized for Weber numbers, We, based on droplet impact speed and diameter, up to 500. The unequal shear stresses and contact angles influence the maximum spread diameters in the two primary spread directions. At We > 100, the ratio of the spread diameter along the direction of the grooves to the spread diameter perpendicular to the grooves increases above unity with increasing We. The maximum droplet spread diameter is compared to recent predictive models, and the data reveal differing behavior for the two fluids considered. The results also reveal the existence of very high relative jet velocities in the range 5 ≤ We ≤ 15 for water droplets, while such jets were not observed for the more viscous mixture. Further, in the range 115 ≤ We ≤ 265, the water/glycerol jet formation dynamics are radically different from the water behavior. Most evident is the existence of two-pronged jets, which arise from the anisotropy of the surface and the unequal shear stresses and contact angles that prevail on the surfaces. It is these influences that give rise to differences in the maximum spread diameters in the two primary spread directions. Similar two-pronged jet emission was observed for water over the very narrow range of We from 91 to 96. The issuing jet velocities were also observed to increase with increasing cavity fraction for both fluids and over the entire range of We explored. Lastly, the elapsed time between droplet impact and jet emission decreased with increasing cavity fraction.
Feldman, Ross D; Ding, Qingming; Hussain, Yasin; Limbird, Lee E; Pickering, J Geoffrey; Gros, Robert
2016-06-01
Although aldosterone is a known regulator of renal and cardiovascular function, its role as a regulator of cancer growth and spread has not been widely considered. This study tested the hypothesis that aldosterone regulates cancer cell growth/spread via G protein-coupled estrogen receptor (GPER) activation. In vitro in murine renal cortical adenocarcinoma (RENCA) cells, a widely used murine in vitro model for the study of renal cell adenocarcinoma, aldosterone increased RENCA cell proliferation to a maximum of 125 ± 3% of control at a concentration of 10 nM, an effect blocked by the GPER antagonist G15 or by GPER knockdown using short interfering (sh) RNA techniques. Further, aldosterone increased RENCA cell migration to a maximum of 170 ± 20% of control at a concentration of 100 nM, an effect also blocked by G15 or by GPER down-regulation. In vivo, after orthotopic RENCA cell renal transplantation, pulmonary tumor spread was inhibited by pharmacologic blockade of aldosterone effects with spironolactone (percentage of lung occupied by metastasis: control = 68 ± 13, spironolactone = 26 ± 8, P < 0.05) or inhibition of aldosterone synthesis with a high dietary salt diet (percentage of lung: control = 44 ± 6, high salt = 12 ± 3, P < 0.05), without reducing primary tumor size. Additionally, adrenalectomy significantly reduced the extent of pulmonary tumor spread, whereas aldosterone infusion recovered pulmonary metastatic spread toward baseline levels. Finally, inhibition of GPER either with the GPER antagonist G15 or by GPER knockdown comparably inhibited RENCA cell pulmonary metastatic cancer spread. Taken together, these findings provide strong evidence for aldosterone serving a causal role in renal cell cancer regulation via its GPER receptor; thus, antagonism of GPER represents a potential new target for treatment to reduce metastatic spread.-Feldman, R. D., Ding, Q., Hussain, Y., Limbird, L. E., Pickering, J. G., Gros, R. Aldosterone mediates metastatic spread of renal cancer via the G protein-coupled estrogen receptor (GPER). © FASEB.
Jones, Roger A C
2018-01-01
The capacity to spread by diverse transmission pathways enhances a virus' ability to spread effectively and survive when circumstances change. This review aims to improve understanding of how plant and insect viruses spread through natural and managed environments by drawing attention to 12 novel or neglected virus transmission pathways whose contribution is underestimated. For plant viruses, the pathways reviewed are vertical and horizontal transmission via pollen, and horizontal transmission by parasitic plants, natural root grafts, wind-mediated contact, chewing insects, and contaminated water or soil. For insect viruses, they are transmission by plants serving as passive "vectors," arthropod vectors, and contamination of pollen and nectar. Based on current understanding of the spatiotemporal dynamics of virus spread, the likely roles of each pathway in creating new primary infection foci, enlarging previously existing infection foci, and promoting generalized virus spread are estimated. All pathways except transmission via parasitic plants, root grafts, and wind-mediated contact transmission are likely to produce new primary infection foci. All 12 pathways have the capability to enlarge existing infection foci, but only to a limited extent when spread occurs via virus-contaminated soil or vertical pollen transmission. All pathways except those via parasitic plant, root graft, contaminated soil, and vertical pollen transmission likely contribute to generalized virus spread, but to different extents. For worst-case scenarios, where mixed populations of host species occur under optimal virus spread conditions, the risk that host species jumps or virus emergence events will arise is estimated to be "high" for all four insect virus pathways considered, and, "very high" or "moderate" for plant viruses transmitted by parasitic plant and root graft pathways, respectively. To establish full understanding of virus spread and thereby optimize effective virus disease management, it is important to examine all transmission pathways potentially involved, regardless of whether the virus' ecology is already presumed to be well understood or otherwise. © 2018 Elsevier Inc. All rights reserved.
Kheyfets, Vitaly O; Kieweg, Sarah L
2013-06-01
HIV/AIDS is a growing global pandemic. A microbicide is a formulation of a pharmaceutical agent suspended in a delivery vehicle, and can be used by women to protect themselves against HIV infection during intercourse. We have developed a three-dimensional (3D) computational model of a shear-thinning power-law fluid spreading under the influence of gravity to represent the distribution of a microbicide gel over the vaginal epithelium. This model, accompanied by a new experimental methodology, is a step in developing a tool for optimizing a delivery vehicle's structure/function relationship for clinical application. We compare our model with experiments in order to identify critical considerations for simulating 3D free-surface flows of shear-thinning fluids. Here we found that neglecting lateral spreading, when modeling gravity-induced flow, resulted in up to 47% overestimation of the experimental axial spreading after 90 s. In contrast, the inclusion of lateral spreading in 3D computational models resulted in rms errors in axial spreading under 7%. In addition, the choice of the initial condition for shape in the numerical simulation influences the model's ability to describe early time spreading behavior. Finally, we present a parametric study and sensitivity analysis of the power-law parameters' influence on axial spreading, and to examine the impact of changing rheological properties as a result of dilution or formulation conditions. Both the shear-thinning index (n) and consistency (m) impacted the spreading length and deceleration of the moving front. The sensitivity analysis showed that gels with midrange m and n values (for the ranges in this study) would be most sensitive (over 8% changes in spreading length) to 10% changes (e.g., from dilution) in both rheological properties. This work is applicable to many industrial and geophysical thin-film flow applications of non-Newtonian fluids; in addition to biological applications in microbicide drug delivery.
Kheyfets, Vitaly O.; Kieweg, Sarah L.
2013-01-01
HIV/AIDS is a growing global pandemic. A microbicide is a formulation of a pharmaceutical agent suspended in a delivery vehicle, and can be used by women to protect themselves against HIV infection during intercourse. We have developed a three-dimensional (3D) computational model of a shear-thinning power-law fluid spreading under the influence of gravity to represent the distribution of a microbicide gel over the vaginal epithelium. This model, accompanied by a new experimental methodology, is a step in developing a tool for optimizing a delivery vehicle's structure/function relationship for clinical application. We compare our model with experiments in order to identify critical considerations for simulating 3D free-surface flows of shear-thinning fluids. Here we found that neglecting lateral spreading, when modeling gravity-induced flow, resulted in up to 47% overestimation of the experimental axial spreading after 90 s. In contrast, the inclusion of lateral spreading in 3D computational models resulted in rms errors in axial spreading under 7%. In addition, the choice of the initial condition for shape in the numerical simulation influences the model's ability to describe early time spreading behavior. Finally, we present a parametric study and sensitivity analysis of the power-law parameters' influence on axial spreading, and to examine the impact of changing rheological properties as a result of dilution or formulation conditions. Both the shear-thinning index (n) and consistency (m) impacted the spreading length and deceleration of the moving front. The sensitivity analysis showed that gels with midrange m and n values (for the ranges in this study) would be most sensitive (over 8% changes in spreading length) to 10% changes (e.g., from dilution) in both rheological properties. This work is applicable to many industrial and geophysical thin-film flow applications of non-Newtonian fluids; in addition to biological applications in microbicide drug delivery. PMID:23699721
In-situ seismic record of potential sill intrusion at the ultraslow spreading Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Meier, M.; Schlindwein, V. S. N.
2017-12-01
Ultraslow spreading mid-ocean ridges with full spreading rates up to 15 mm/yr are described as the melt poor endmember of the entire mid-ocean ridge system. The melt supply along ultraslow spreading ridges is uneven resulting in the formation of volcanic centres and amagmatic segments. Amagmatic segments show thicker brittle lithosphere of up to 30 km, whereas magmatic segments have much thinner lithosphere of up to less than 15 km. It is supposed that melt travels along the lithosphere asthenosphere boundary from amagmatic segments to magmatic segments, where it can reach the seafloor and erupt. These spreading events are rare at ultraslow spreading ridges compared to faster spreading ridges and insitu observations hardly exist. During an ocean bottom seismometer (OBS) experiment at the eastern Southwest Indian Ridge two earthquake swarms were accidentally recorded. The swarms occurred in January and April 2013 and both lasted for a few days. The events of the earthquake swarms were relatively located with HypoDD for better spatial resolution. This unique dataset allowed for studying active spreading processes at an ultraslow spreading ridge. The earthquakes occurred in depths, where the magma chamber of the nearby Segment-8 volcano is located. This magma chamber potentially fed a sill intrusion, which was recorded as earthquake swarms. During the first hours of the first earthquake swarm a migration pattern was identified. The hypocentres migrated away from the Segment-8 volcanic centre and slightly downwards. Later events occurred more randomly in the active area. Simultaneously seismic tremor was recorded at the station closest to the swarm locations. The tremor lasted longer for the shorter earthquake swarm in April. During both tremor phases the signal was modulated with a 12 hour period. We speculate that a hydrothermal system was affected by the intrusion and fluid flow modulated by the tides produced the tremor signal.
Spreading dynamics of a SIQRS epidemic model on scale-free networks
NASA Astrophysics Data System (ADS)
Li, Tao; Wang, Yuanmei; Guan, Zhi-Hong
2014-03-01
In order to investigate the influence of heterogeneity of the underlying networks and quarantine strategy on epidemic spreading, a SIQRS epidemic model on the scale-free networks is presented. Using the mean field theory the spreading dynamics of the virus is analyzed. The spreading critical threshold and equilibria are derived. Theoretical results indicate that the critical threshold value is significantly dependent on the topology of the underlying networks and quarantine rate. The existence of equilibria is determined by threshold value. The stability of disease-free equilibrium and the permanence of the disease are proved. Numerical simulations confirmed the analytical results.
AlGaInP light-emitting diodes with SACNTs as current-spreading layer
2014-01-01
Transparent conductive current-spreading layer is important for quantum efficiency and thermal performance of light-emitting diodes (LEDs). The increasing demand for tin-doped indium oxide (ITO) caused the price to greatly increase. Super-aligned carbon nanotubes (SACNTs) and Au-coated SACNTs as current-spreading layer were applied on AlGaInP LEDs. The LEDs with Au-coated SACNTs showed good current spreading effect. The voltage bias at 20 mA dropped about 0.15 V, and the optical power increased about 10% compared with the LEDs without SACNTs. PMID:24712527
The Road to Advocacy—Searching for the Rainbow
Avery, Byllye; Bashir, Samiya
2003-01-01
The essence of public health advocacy is spreading the word—spreading the word to members of one’s community about ways to protect and promote health, and spreading the word to decisionmakers about health policies that need to be enacted. The authors profile 2 women who spread the word—one who focuses on breast cancer in the Asian American community and one who works in cooperation with churches in the fight against HIV/AIDS in African and African American communities—and discuss the importance of “creating shoulders for others to stand on” in the fight for social change. PMID:12893596
Gaubas, E; Ceponis, T; Kusakovskij, J
2011-08-01
A technique for the combined measurement of barrier capacitance and spreading resistance profiles using a linearly increasing voltage pulse is presented. The technique is based on the measurement and analysis of current transients, due to the barrier and diffusion capacitance, and the spreading resistance, between a needle probe and sample. To control the impact of deep traps in the barrier capacitance, a steady state bias illumination with infrared light was employed. Measurements of the spreading resistance and barrier capacitance profiles using a stepwise positioned probe on cross sectioned silicon pin diodes and pnp structures are presented.
Automated clinical system for chromosome analysis
NASA Technical Reports Server (NTRS)
Castleman, K. R.; Friedan, H. J.; Johnson, E. T.; Rennie, P. A.; Wall, R. J. (Inventor)
1978-01-01
An automatic chromosome analysis system is provided wherein a suitably prepared slide with chromosome spreads thereon is placed on the stage of an automated microscope. The automated microscope stage is computer operated to move the slide to enable detection of chromosome spreads on the slide. The X and Y location of each chromosome spread that is detected is stored. The computer measures the chromosomes in a spread, classifies them by group or by type and also prepares a digital karyotype image. The computer system can also prepare a patient report summarizing the result of the analysis and listing suspected abnormalities.
Dynamics of Cell Area and Force during Spreading
Brill-Karniely, Yifat; Nisenholz, Noam; Rajendran, Kavitha; Dang, Quynh; Krishnan, Ramaswamy; Zemel, Assaf
2014-01-01
Experiments on human pulmonary artery endothelial cells are presented to show that cell area and the force exerted on a substrate increase simultaneously, but with different rates during spreading; rapid-force increase systematically occurred several minutes past initial spreading. We examine this theoretically and present three complementary mechanisms that may accompany the development of lamellar stress during spreading and underlie the observed behavior. These include: 1), the dynamics of cytoskeleton assembly at the cell basis; 2), the strengthening of acto-myosin forces in response to the generated lamellar stresses; and 3), the passive strain-stiffening of the cytoskeleton. PMID:25517168
The Role of Node Heterogeneity in the Coupled Spreading of Epidemics and Awareness.
Guo, Quantong; Lei, Yanjun; Xia, Chengyi; Guo, Lu; Jiang, Xin; Zheng, Zhiming
2016-01-01
Exploring the interplay between information spreading and epidemic spreading is a topic that has been receiving increasing attention. As an efficient means of depicting the spreading of information, which manifests as a cascade phenomenon, awareness cascading is utilized to investigate this coupled transmission. Because in reality, different individuals facing the same epidemic will exhibit distinct behaviors according to their own experiences and attributes, it is important for us to consider the heterogeneity of individuals. Consequently, we propose a heterogeneous spreading model. To describe the heterogeneity, two of the most important but radically different methods for this purpose, the degree and k-core measures, are studied in this paper through three models based on different assumptions. Adopting a Markov chain approach, we succeed in predicting the epidemic threshold trend. Furthermore, we find that when the k-core measure is used to classify individuals, the spreading process is robust to these models, meaning that regardless of the model used, the spreading process is nearly identical at the macroscopic level. In addition, the k-core measure leads to a much larger final epidemic size than the degree measure. These results are cross-checked through numerous simulations, not only of a synthetic network but also of a real multiplex network. The presented findings provide a better understanding of k-core individuals and reveal the importance of considering network structure when investigating various dynamic processes.
Spatio-temporal epidemiology of the cholera outbreak in Papua New Guinea, 2009-2011.
Horwood, Paul F; Karl, Stephan; Mueller, Ivo; Jonduo, Marinjho H; Pavlin, Boris I; Dagina, Rosheila; Ropa, Berry; Bieb, Sibauk; Rosewell, Alexander; Umezaki, Masahiro; Siba, Peter M; Greenhill, Andrew R
2014-08-20
Cholera continues to be a devastating disease in many developing countries where inadequate safe water supply and poor sanitation facilitate spread. From July 2009 until late 2011 Papua New Guinea experienced the first outbreak of cholera recorded in the country, resulting in >15,500 cases and >500 deaths. Using the national cholera database, we analysed the spatio-temporal distribution and clustering of the Papua New Guinea cholera outbreak. The Kulldorff space-time permutation scan statistic, contained in the software package SatScan v9.2 was used to describe the first 8 weeks of the outbreak in Morobe Province before cholera cases spread throughout other regions of the country. Data were aggregated at the provincial level to describe the spread of the disease to other affected provinces. Spatio-temporal and cluster analyses revealed that the outbreak was characterized by three distinct phases punctuated by explosive propagation of cases when the outbreak spread to a new region. The lack of road networks across most of Papua New Guinea is likely to have had a major influence on the slow spread of the disease during this outbreak. Identification of high risk areas and the likely mode of spread can guide government health authorities to formulate public health strategies to mitigate the spread of the disease through education campaigns, vaccination, increased surveillance in targeted areas and interventions to improve water, sanitation and hygiene.
Importance of small-degree nodes in assortative networks with degree-weight correlations
NASA Astrophysics Data System (ADS)
Ma, Sijuan; Feng, Ling; Monterola, Christopher Pineda; Lai, Choy Heng
2017-10-01
It has been known that assortative network structure plays an important role in spreading dynamics for unweighted networks. Yet its influence on weighted networks is not clear, in particular when weight is strongly correlated with the degrees of the nodes as we empirically observed in Twitter. Here we use the self-consistent probability method and revised nonperturbative heterogenous mean-field theory method to investigate this influence on both susceptible-infective-recovered (SIR) and susceptible-infective-susceptible (SIS) spreading dynamics. Both our simulation and theoretical results show that while the critical threshold is not significantly influenced by the assortativity, the prevalence in the supercritical regime shows a crossover under different degree-weight correlations. In particular, unlike the case of random mixing networks, in assortative networks, the negative degree-weight correlation leads to higher prevalence in their spreading beyond the critical transmissivity than that of the positively correlated. In addition, the previously observed inhibition effect on spreading velocity by assortative structure is not apparent in negatively degree-weight correlated networks, while it is enhanced for that of the positively correlated. Detailed investigation into the degree distribution of the infected nodes reveals that small-degree nodes play essential roles in the supercritical phase of both SIR and SIS spreadings. Our results have direct implications in understanding viral information spreading over online social networks and epidemic spreading over contact networks.
Spread of activation and deactivation in the brain: does age matter?
Gordon, Brian A.; Tse, Chun-Yu; Gratton, Gabriele; Fabiani, Monica
2014-01-01
Cross-sectional aging functional MRI results are sometimes difficult to interpret, as standard measures of activation and deactivation may confound variations in signal amplitude and spread, which however, may be differentially affected by age-related changes in various anatomical and physiological factors. To disentangle these two types of measures, here we propose a novel method to obtain independent estimates of the peak amplitude and spread of the BOLD signal in areas activated (task-positive) and deactivated (task-negative) by a Sternberg task, in 14 younger and 28 older adults. The peak measures indicated that, compared to younger adults, older adults had increased activation of the task-positive network, but similar levels of deactivation in the task-negative network. Measures of signal spread revealed that older adults had an increased spread of activation in task-positive areas, but a starkly reduced spread of deactivation in task-negative areas. These effects were consistent across regions within each network. Further, there was greater variability in the anatomical localization of peak points in older adults, leading to reduced cross-subject overlap. These results reveal factors that may confound the interpretation of studies of aging. Additionally, spread measures may be linked to local connectivity phenomena and could be particularly useful to analyze age-related deactivation patterns, complementing the results obtained with standard peak and region of interest analyses. PMID:25360115
Nonlinear model of epidemic spreading in a complex social network.
Kosiński, Robert A; Grabowski, A
2007-10-01
The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.
The Role of Node Heterogeneity in the Coupled Spreading of Epidemics and Awareness
2016-01-01
Exploring the interplay between information spreading and epidemic spreading is a topic that has been receiving increasing attention. As an efficient means of depicting the spreading of information, which manifests as a cascade phenomenon, awareness cascading is utilized to investigate this coupled transmission. Because in reality, different individuals facing the same epidemic will exhibit distinct behaviors according to their own experiences and attributes, it is important for us to consider the heterogeneity of individuals. Consequently, we propose a heterogeneous spreading model. To describe the heterogeneity, two of the most important but radically different methods for this purpose, the degree and k-core measures, are studied in this paper through three models based on different assumptions. Adopting a Markov chain approach, we succeed in predicting the epidemic threshold trend. Furthermore, we find that when the k-core measure is used to classify individuals, the spreading process is robust to these models, meaning that regardless of the model used, the spreading process is nearly identical at the macroscopic level. In addition, the k-core measure leads to a much larger final epidemic size than the degree measure. These results are cross-checked through numerous simulations, not only of a synthetic network but also of a real multiplex network. The presented findings provide a better understanding of k-core individuals and reveal the importance of considering network structure when investigating various dynamic processes. PMID:27517715
A Cellular Automaton Framework for Infectious Disease Spread Simulation
Pfeifer, Bernhard; Kugler, Karl; Tejada, Maria M; Baumgartner, Christian; Seger, Michael; Osl, Melanie; Netzer, Michael; Handler, Michael; Dander, Andreas; Wurz, Manfred; Graber, Armin; Tilg, Bernhard
2008-01-01
In this paper, a cellular automaton framework for processing the spatiotemporal spread of infectious diseases is presented. The developed environment simulates and visualizes how infectious diseases might spread, and hence provides a powerful instrument for health care organizations to generate disease prevention and contingency plans. In this study, the outbreak of an avian flu like virus was modeled in the state of Tyrol, and various scenarios such as quarantine, effect of different medications on viral spread and changes of social behavior were simulated. The proposed framework is implemented using the programming language Java. The set up of the simulation environment requires specification of the disease parameters and the geographical information using a population density colored map, enriched with demographic data. The results of the numerical simulations and the analysis of the computed parameters will be used to get a deeper understanding of how the disease spreading mechanisms work, and how to protect the population from contracting the disease. Strategies for optimization of medical treatment and vaccination regimens will also be investigated using our cellular automaton framework. In this study, six different scenarios were simulated. It showed that geographical barriers may help to slow down the spread of an infectious disease, however, when an aggressive and deadly communicable disease spreads, only quarantine and controlled medical treatment are able to stop the outbreak, if at all. PMID:19415136
Don't put all your eggs in one nest: spread them and cut time at risk.
Andersson, Malte; Åhlund, Matti
2012-09-01
In many egg-laying animals, some females spread their clutch among several nests. The fitness effects of this reproductive tactic are obscure. Using mathematical modeling and field observations, we analyze an unexplored benefit of egg spreading in brood parasitic and other breeding systems: reduced time at risk for offspring. If a clutch takes many days to lay until incubation and embryo development starts after the last egg, by spreading her eggs a parasitic female can reduce offspring time in the vulnerable nest at risk of predation or other destruction. The model suggests that she can achieve much of this benefit by spreading her eggs among a few nests, even if her total clutch is large. Field data from goldeneye ducks Bucephala clangula show that egg spreading enables a fecund female to lay a clutch that is much larger than average without increasing offspring time at risk in a nest. This advantage increases with female condition (fecundity) and can markedly raise female reproductive success. These results help explain the puzzle of nesting parasites in some precocial birds, which lay eggs in the nests of other females before laying eggs in their own nest. Risk reduction by egg spreading may also play a role in the evolution of other breeding systems and taxa-for instance, polyandry with male parental care in some birds and fishes.
Bai, Xing-hua
2014-11-01
The history of international spread of Chinese acupuncture and moxibustion is divided into three sta ges in this paper, and the spreading characteristics are analyzed. The first stage is approximately from the 6th century to the end of the 15th century, during which acupuncture and moxibustion were spread to neighboring countries by personnel exchanges; the spread towards Korean peninsula, Japan and Vietnam was considered the most successful communication. The second stage lasts from the beginning of 16th century to 1970. At the early time of this stage, the employees of the Dutch East Indian Company introduced acupuncture and moxibustion to European countries through Indonesia and Japan, leading to a short and small fashion; also the United States and Australia were involved. At the late time of this stage, by medical aid teams dispatched by China government, acupuncture and moxibustion were introduced to African countries. The third stage starts from 1971. With the establishment of Sino-US diplomatic relations as an opportunity, acupuncture and moxibustion were being spread rapidly to the world through radio, TV and internet. So far it has been introduced to more than 140 countries and areas. Performing serious studies on the spreading characteristics of three stages will promote the international communication of acupuncture and moxibustion, by which the world will have a better understanding onthe broad and profound traditional cultures of China.
Predicting the global spread of H5N1 avian influenza
Kilpatrick, A. Marm; Chmura, Aleksei A.; Gibbons, David W.; Fleischer, Robert C.; Marra, Peter P.; Daszak, Peter
2006-01-01
The spread of highly pathogenic H5N1 avian influenza into Asia, Europe, and Africa has resulted in enormous impacts on the poultry industry and presents an important threat to human health. The pathways by which the virus has and will spread between countries have been debated extensively, but have yet to be analyzed comprehensively and quantitatively. We integrated data on phylogenetic relationships of virus isolates, migratory bird movements, and trade in poultry and wild birds to determine the pathway for 52 individual introduction events into countries and predict future spread. We show that 9 of 21 of H5N1 introductions to countries in Asia were most likely through poultry, and 3 of 21 were most likely through migrating birds. In contrast, spread to most (20/23) countries in Europe was most likely through migratory birds. Spread in Africa was likely partly by poultry (2/8 introductions) and partly by migrating birds (3/8). Our analyses predict that H5N1 is more likely to be introduced into the Western Hemisphere through infected poultry and into the mainland United States by subsequent movement of migrating birds from neighboring countries, rather than from eastern Siberia. These results highlight the potential synergism between trade and wild animal movement in the emergence and pandemic spread of pathogens and demonstrate the value of predictive models for disease control. PMID:17158217
Code of Federal Regulations, 2010 CFR
2010-01-01
... spread of disease by artificial insemination of turkeys. 147.27 Section 147.27 Animals and Animal... recommended to prevent the spread of disease by artificial insemination of turkeys. (a) The vehicle... diseased flock should be inseminated. If evidence of active disease is noted after insemination is begun...
Code of Federal Regulations, 2011 CFR
2011-01-01
... spread of disease by artificial insemination of turkeys. 147.27 Section 147.27 Animals and Animal... recommended to prevent the spread of disease by artificial insemination of turkeys. (a) The vehicle... diseased flock should be inseminated. If evidence of active disease is noted after insemination is begun...
USDA-ARS?s Scientific Manuscript database
Ready-to-use therapeutic food (RUTF) spread has been shown to be very effective in the rehabilitation of severely malnourished children and facilitates home-based therapy of these children. RUTF spread is an edible lipid-based paste that is energy dense, resists bacterial contamination, and requires...
Nomographs for estimating surface fire behavior characteristics
Joe H. Scott
2007-01-01
A complete set of nomographs for estimating surface fire rate of spread and flame length for the original 13 and new 40 fire behavior fuel models is presented. The nomographs allow calculation of spread rate and flame length for wind in any direction with respect to slope and allow for nonheading spread directions. Basic instructions for use are included.
A Deadly Path: Bacterial Spread During Bubonic Plague.
Gonzalez, Rodrigo J; Miller, Virginia L
2016-04-01
Yersinia pestis causes bubonic plague, a fulminant disease where host immune responses are abrogated. Recently developed in vivo models of plague have resulted in new ideas regarding bacterial spread in the body. Deciphering bacterial spread is key to understanding Y. pestis and the immune responses it encounters during infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fire spread characteristics determined in the laboratory
Richard C. Rothermel; Hal E. Anderson
1966-01-01
Fuel beds of ponderosa pine needles and white pine needles were burned under controlled environmental conditions to determine the effects of fuel moisture and windspeed upon the rate of fire spread. Empirical formulas are presented to show the effect of these parameters. A discussion of rate of spread and some simple experiments show how fuel may be preheated before...
21 CFR 133.180 - Pasteurized process cheese spread with fruits, vegetables, or meats.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., vegetables, or meats. 133.180 Section 133.180 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Requirements for Specific Standardized Cheese and Related Products § 133.180 Pasteurized process cheese spread... spread by § 133.179, except that: (1) It contains one or any mixture of two or more of the following: Any...
Using HFire for spatial modeling of fire in shrublands
Seth H. Peterson; Marco E. Morais; Jean M. Carlson; Philip E. Dennison; Dar A. Roberts; Max A. Moritz; David R. Weise
2009-01-01
An efficient raster fire-spread model named HFire is introduced. HFire can simulate single-fire events or long-term fire regimes, using the same fire-spread algorithm. This paper describes the HFire algorithm, benchmarks the model using a standard set of tests developed for FARSITE, and compares historical and predicted fire spread perimeters for three southern...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... Spread Executor will pay to or collect from OCC will be the same (except for very small discrepancies due... Price Differential Spread Executor receives slightly less or pays slightly more than it would have... Spread Executors are entitled to receive more or pay less as a result of OCC's rounding procedures. While...
Dogwood Anthracnose and its Spread in the South
Robert L. Anderson; John L. Knighten; Keith Langdon; Floyd Hedrix; Ron Roncadori
In the 15 years since it was first reported in the United States, dogwood anthracnose (caused by Discula destructive sp. nov.) has spread rapidly and caused serious losses among flowering dogwoods (Cornus florida L.), particularly in the South. Infection begins in leaves and spreads to twigs and branches, which dieback. Main-stem infections cause cankers, which kill...
ERIC Educational Resources Information Center
Kaye, Sharon
2008-01-01
In humanities, there does not seem to be any good reason to privilege the academic journal over other venues. If the goal of humanities publishing is to spread new ideas, then it seems that creating a popular Internet blog would be the better choice. However, the goal of humanities publishing is not just to spread new ideas, but to spread "good"…
Mapping spread of the goldspotted oak borer (Agrilus auroguttatus)
Thomas A. Scott; Kevin Turner; Cara Washington; Kim Corella
2015-01-01
The earliest signs of goldspotted oak borer (Agrilus auroguttatus, GSOB)-associated oak declines can be found in 1996 aerial photo images from the Descanso area of San Diego County. By 2014, GSOB had spread over a 4000 km2 area, with a patchy distribution similar to the early spread of the emerald ash borer (Agrilus...
Code of Federal Regulations, 2013 CFR
2013-01-01
... spread of disease by artificial insemination of turkeys. 147.27 Section 147.27 Animals and Animal... recommended to prevent the spread of disease by artificial insemination of turkeys. (a) The vehicle transporting the insemination crew should be left as far as practical from the turkey pens. (b) The personnel...
Code of Federal Regulations, 2012 CFR
2012-01-01
... spread of disease by artificial insemination of turkeys. 147.27 Section 147.27 Animals and Animal... recommended to prevent the spread of disease by artificial insemination of turkeys. (a) The vehicle transporting the insemination crew should be left as far as practical from the turkey pens. (b) The personnel...
Code of Federal Regulations, 2014 CFR
2014-01-01
... spread of disease by artificial insemination of turkeys. 147.27 Section 147.27 Animals and Animal... recommended to prevent the spread of disease by artificial insemination of turkeys. (a) The vehicle transporting the insemination crew should be left as far as practical from the turkey pens. (b) The personnel...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-05
... Change Relating to Multi-Class Spread Orders November 29, 2013. Pursuant to Section 19(b)(1) of the... Substance of the Proposed Rule Change CBOE proposes to amend its rule related to Multi-Class Broad-Based Index Option Spread Orders (referred to herein as ``Multi-Class Spread Orders''). The text of the...
Opposed-Flow Flame Spread over Thin Solid Fuels in a Narrow Channel under Different Gravity
NASA Astrophysics Data System (ADS)
Zhang, Xia; Yu, Yong; Wan, Shixin; Wei, Minggang; Hu, Wen-Rui
Flame spread over solid surface is critical in combustion science due to its importance in fire safety in both ground and manned spacecraft. Eliminating potential fuels from materials is the basic method to protect spacecraft from fire. The criterion of material screening is its flamma-bility [1]. Since gas flow speed has strong effect on flame spread, the combustion behaviors of materials in normal and microgravity will be different due to their different natural convec-tion. To evaluate the flammability of materials used in the manned spacecraft, tests should be performed under microgravity. Nevertheless, the cost is high, so apparatus to simulate mi-crogravity combustion under normal gravity was developed. The narrow channel is such an apparatus in which the buoyant flow is restricted effectively [2, 3]. The experimental results of the horizontal narrow channel are consistent qualitatively with those of Mir Space Station. Quantitatively, there still are obvious differences. However, the effect of the channel size on flame spread has only attracted little attention, in which concurrent-flow flame spread over thin solid in microgravity is numerically studied[4], while the similarity of flame spread in different gravity is still an open question. In addition, the flame spread experiments under microgravity are generally carried out in large wind tunnels without considering the effects of the tunnel size [5]. Actually, the materials are always used in finite space. Therefore, the flammability given by experiments using large wind tunnels will not correctly predict the flammability of materials in the real environment. In the present paper, the effect of the channel size on opposed-flow flame spread over thin solid fuels in both normal and microgravity was investigated and compared. In the horizontal narrow channel, the flame spread rate increased before decreased as forced flow speed increased. In low speed gas flows, flame spread appeared the same trend as that in microgravity. This showed that the horizontal narrow channel can restrict natural convection effectively. In the vertical narrow channel, flame spread became slower as the forced gas flow speed increased. In low speed gas flows, flame spread was not near quench limit. Instead, the spread rate got its maximum value. This was entirely different from the result of microgravity and showed that the vertical narrow channel can not restrict natural convection. For the horizontal narrow channel, when the channel height lowered to 1 cm (The Grashof number was 149 using the half height as a characteristic length), the natural convection was restricted. For vertical narrow channel, a lower height was needed to restrict natural convection. References 1. NASA Technical Standard, "Flammability, Odor, Offgassing, and Compatibility Require-ments and Test Procedures for Materials in Environments That Support Combustion", NASA STD-6001, 1998. 2. Ivanov, A. V., Balashov, Ye. V., Andreeva, T. V., and et al., "Experimental Verification of Material Flammability in Space", NASA CR-1999-209405, 1999. 3. Melikhov, A. S., Bolodyan, I. A., Potyakin, V. I., and et al., "The study of polymer material combustion in simulated microgravity by physical modeling method", In: Sacksteder K, ed, "Fifth Int Microgravity Comb Workshop", NASA CP-1999-208917, 1999, 361. 4. T'ien, J. S., Shih, H.-Y., Jiang, C.-B., and et al., "Mechanisms of flame spread and smol-der wave propagation", In: Ross, H. D., ed, "Microgravity Combustion: Fire in Free Fall", Academic Press, 2001. 299. 5. Olson, S. L., Comb Sci Tech, 76, 233, 1991.
NASA Technical Reports Server (NTRS)
Mooney, D. J.; Langer, R.; Ingber, D. E.
1995-01-01
This study was undertaken to analyze how cell binding to extracellular matrix produces changes in cell shape. We focused on the initial process of cell spreading that follows cell attachment to matrix and, thus, cell 'shape' changes are defined here in terms of alterations in projected cell areas, as determined by computerized image analysis. Cell spreading kinetics and changes in microtubule and actin microfilament mass were simultaneously quantitated in hepatocytes plated on different extracellular matrix substrata. The initial rate of cell spreading was highly dependent on the matrix coating density and decreased from 740 microns 2/h to 50 microns 2/h as the coating density was lowered from 1000 to 1 ng/cm2. At approximately 4 to 6 hours after plating, this initial rapid spreading rate slowed and became independent of the matrix density regardless of whether laminin, fibronectin, type I collagen or type IV collagen was used for cell attachment. Analysis of F-actin mass revealed that cell adhesion to extracellular matrix resulted in a 20-fold increase in polymerized actin within 30 minutes after plating, before any significant change in cell shape was observed. This was followed by a phase of actin microfilament disassembly which correlated with the most rapid phase of cell extension and ended at about 6 hours; F-actin mass remained relatively constant during the slow matrix-independent spreading phase. Microtubule mass increased more slowly in spreading cells, peaking at 4 hours, the time at which the transition between rapid and slow spreading rates was observed. However, inhibition of this early rise in microtubule mass using either nocodazole or cycloheximide did not prevent this transition. Use of cytochalasin D revealed that microfilament integrity was absolutely required for hepatocyte spreading whereas interference with microtubule assembly (using nocodazole or taxol) or protein synthesis (using cycloheximide) only partially suppressed cell extension. In contrast, cell spreading could be completely inhibited by combining suboptimal doses of cytochalasin D and nocodazole, suggesting that intact microtubules can stabilize cell form when the microfilament lattice is partially compromised. The physiological relevance of the cytoskeleton and cell shape in hepatocyte physiology was highlighted by the finding that a short exposure (6 hour) of cells to nocodazole resulted in production of smaller cells 42 hours later that exhibited enhanced production of a liver-specific product (albumin). These data demonstrate that spreading and flattening of the entire cell body is not driven directly by net polymerization of either microfilaments or microtubules.(ABSTRACT TRUNCATED AT 400 WORDS).
Nigsch, Annette; Costard, Solenne; Jones, Bryony A; Pfeiffer, Dirk U; Wieland, Barbara
2013-03-01
African swine fever (ASF) is a notifiable viral pig disease with high mortality and serious socio-economic consequences. Since ASF emerged in Georgia in 2007 the disease has spread to several neighbouring countries and cases have been detected in areas bordering the European Union (EU). It is uncertain how fast the virus would be able to spread within the unrestricted European trading area if it were introduced into the EU. This project therefore aimed to develop a model for the spread of ASF within and between the 27 Member States (MS) of the EU during the high risk period (HRP) and to identify MS during that period would most likely contribute to ASF spread ("super-spreaders") or MS that would most likely receive cases from other MS ("super-receivers"). A stochastic spatio-temporal state-transition model using simulated individual farm records was developed to assess silent ASF virus spread during different predefined HRPs of 10-60 days duration. Infection was seeded into farms of different pig production types in each of the 27 MS. Direct pig-to-pig transmission and indirect transmission routes (pig transport lorries and professional contacts) were considered the main pathways during the early stages of an epidemic. The model was parameterised using data collated from EUROSTAT, TRACES, a questionnaire sent to MS, and the scientific literature. Model outputs showed that virus circulation was generally limited to 1-2 infected premises per outbreak (95% IQR: 1-4; maximum: 10) with large breeder farms as index case resulting in most infected premises. Seven MS caused between-MS spread due to intra-Community trade during the first 10 days after seeding infection. For a HRP of 60 days from virus introduction, movements of infected pigs will originate at least once from 16 MS, with 6 MS spreading ASF in more than 10% of iterations. Two thirds of all intra-Community spread was linked to six trade links only. Denmark, the Netherlands, Lithuania and Latvia were identified as "super-spreaders"; Germany and Poland as "super-receivers". In the sensitivity analysis, the total number of premises per country involved in intra-Community trade was found to be a key determinant for the between-MS spread dynamic and needs to be further investigated. It was concluded that spread during the HRP is likely to be limited, especially if the HRP is short. This emphasises the importance of having good disease awareness in all MS for early disease detection. Copyright © 2013 Elsevier B.V. All rights reserved.
Qin, Zhaoping; Voorhees, John J; Fisher, Gary J; Quan, Taihao
2014-12-01
The dermal compartment of human skin is largely composed of dense collagen-rich fibrils, which provide structural and mechanical support. Skin dermal fibroblasts, the major collagen-producing cells, are interact with collagen fibrils to maintain cell spreading and mechanical force for function. A characteristic feature of aged human skin is fragmentation of collagen fibrils, which is initiated by matrix metalloproteinase 1 (MMP-1). Fragmentation impairs fibroblast attachment and thereby reduces spreading. Here, we investigated the relationship among fibroblast spreading, mechanical force, MMP-1 expression, and collagen fibril fragmentation. Reduced fibroblast spreading due to cytoskeletal disruption was associated with reduced cellular mechanical force, as determined by atomic force microscopy. These reductions substantially induced MMP-1 expression, which led to collagen fibril fragmentation and disorganization in three-dimensional collagen lattices. Constraining fibroblast size by culturing on slides coated with collagen micropatterns also significantly induced MMP-1 expression. Reduced spreading/mechanical force induced transcription factor c-Jun and its binding to a canonical AP-1 binding site in the MMP-1 proximal promoter. Blocking c-Jun function with dominant negative mutant c-Jun significantly reduced induction of MMP-1 expression in response to reduced spreading/mechanical force. Furthermore, restoration of fibroblast spreading/mechanical force led to decline of c-Jun and MMP-1 levels and eliminated collagen fibril fragmentation and disorganization. These data reveal a novel mechanism by which alteration of fibroblast shape/mechanical force regulates c-Jun/AP-1-dependent expression of MMP-1 and consequent collagen fibril fragmentation. This mechanism provides a foundation for understanding the cellular and molecular basis of age-related collagen fragmentation in human skin. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland
NASA Astrophysics Data System (ADS)
Karson, J. A.
2015-12-01
Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.
Almagor, Jonatan; Temkin, Elizabeth; Benenson, Itzhak; Fallach, Noga; Carmeli, Yehuda
2018-01-01
Extensive antibiotic use over the years has led to the emergence and spread of antibiotic resistant bacteria (ARB). Antibiotic resistance poses a major threat to public health since for many infections antibiotic treatment is no longer effective. Hospitals are focal points for ARB spread. Antibiotic use in hospitals exerts selective pressure, accelerating the spread of ARB. We used an agent-based model to explore the impact of antibiotics on the transmission dynamics and to examine the potential of stewardship interventions in limiting ARB spread in a hospital. Agents in the model consist of patients and health care workers (HCW). The transmission of ARB occurs through contacts between patients and HCW and between adjacent patients. In the model, antibiotic use affects the risk of transmission by increasing the vulnerability of susceptible patients and the contagiousness of colonized patients who are treated with antibiotics. The model shows that increasing the proportion of patients receiving antibiotics increases the rate of acquisition non-linearly. The effect of antibiotics on the spread of resistance depends on characteristics of the antibiotic agent and the density of antibiotic use. Antibiotic's impact on the spread increases when the bacterial strain is more transmissible, and decreases as resistance prevalence rises. The individual risk for acquiring ARB increases in parallel with antibiotic density both for patients treated and not treated with antibiotics. Antibiotic treatment in the hospital setting plays an important role in determining the spread of resistance. Interventions to limit antibiotic use have the potential to reduce the spread of resistance, mainly by choosing an agent with a favorable profile in terms of its impact on patient's vulnerability and contagiousness. Methods to measure these impacts of antibiotics should be developed, standardized, and incorporated into drug development programs and approval packages.
NASA Astrophysics Data System (ADS)
Deng, Peng; Mei, Lianfu; Liu, Jun; Zheng, Jinyun; Liu, Minghui; Cheng, Zijie; Guo, Fengtai
2018-03-01
Considerable post-breakup extensional deformation is recorded in the continental margins of the South China Sea (SCS). To recognize the nature and origin of the significant deformation during the syn-spreading stage (32-15.5 Ma) in the SCS, we comprehensively analyzed the geometry and kinematics of the faults and contemporaneous magmas in the Baiyun sag, northern margin of the SCS, using high-resolution regional three-dimensional seismic data. The kinematic analyses indicate that the faults in the Baiyun sag are recently formed following the onset of seafloor spreading in the SCS. The faults exhibit multiple episodes of growth history, with three active episodes, 32-29, 23.8-21 and 18.5-16.5 Ma, separated by periods of inactivity. Four volcanic groups comprising 98 volcanic mounds have been identified and described, located separately in the northwestern, the central, the southeastern and the northern slope areas. The occurrence of multiple palaeo-seafloors, complemented by the biostratigraphic and K-Ar dating data, reveals multiple extrusive events of the syn-spreading magmas in the Baiyun sag, with three active periods of 23.8-21, 18.5-17.5 and 17.5-16.5 Ma. This study confirms that the normal faulting has a shared genetic origin with the contemporaneous magmatism during the syn-spreading stage in the deep-offshore Baiyun sag, northern margin of the SCS. The episodic fault growth and magmatic extrusive events reveal that the Baiyun sag has undergone at least three episodic tectonic events during the syn-spreading stage, which evolved in response to the multi-stage seafloor spreading of the SCS.
NASA Technical Reports Server (NTRS)
Niehaus, Justin E.; Ferkul, Paul V.; Gokoglu, Suleyman A.; Ruff, Gary A.
2015-01-01
Flammability experiments on silicone samples were conducted in anticipation of the Spacecraft Fire Experiment (Saffire). The sample geometry was chosen to match the NASA 6001 Test 1 specification, namely 5 cm wide by 30 cm tall. Four thicknesses of silicone (0.25, 0.36, 0.61 and 1.00 mm) were examined. Tests included traditional upward buoyant flame spread using Test 1 procedures, downward opposed-flow flame spread, horizontal and angled flame spread, and forced-flow upward and downward flame spread. In addition to these configurations, upward and downward tests were conducted in a chamber with varying oxygen concentrations. In the upward buoyant flame spread tests, the flame generally did not burn the entire sample. As thickness was increased, the flame spread distance decreased before flame extinguishment. For the thickest sample, ignition could not be achieved. In the downward tests, the two thinnest samples permitted the flame to burn the entire sample, but the spread rate was lower compared to the corresponding upward values. The other two thicknesses could not be ignited in the downward configuration. The increased flammability for downward spreading flames relative to upward ones is uncommon. The two thinnest samples also burned completely in the horizontal configuration, as well as at angles up to 75 degrees from the horizontal. Upward tests in air with an added forced flow were more flammable. The upward and downward flammability behavior was compared in atmospheres of varying oxygen concentration to determine a maximum oxygen concentration for each configuration. Complementary analyses using EDS, TGA, and SEM techniques suggest the importance of the silica layer deposited downstream onto the unburned sample surface.
Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges
NASA Astrophysics Data System (ADS)
Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.
2014-12-01
Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the ultraslow spreading ridges is also presumable.
Ludlow, M; Nguyen, D T; Silin, D; Lyubomska, O; de Vries, R D; von Messling, V; McQuaid, S; De Swart, R L; Duprex, W P
2012-07-01
The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDV(SH)) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDV(SH) (rCDV(SH)) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV(5804P) and the prototypic wild-type CDV(R252) showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDV(SH)-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis.
Potential for epidemic take-off from the primary outbreak farm via livestock movements
2011-01-01
Background We consider the potential for infection to spread in a farm population from the primary outbreak farm via livestock movements prior to disease detection. We analyse how this depends on the time of the year infection occurs, the species transmitting, the length of infectious period on the primary outbreak farm, location of the primary outbreak, and whether a livestock market becomes involved. We consider short infectious periods of 1 week, 2 weeks and 4 weeks, characteristic of acute contagious livestock diseases. The analysis is based on farms in Scotland from 1 January 2003 to 31 July 2007. Results The proportion of primary outbreaks from which an acute contagious disease would spread via movement of livestock is generally low, but exhibits distinct annual cyclicity with peaks in May and August. The distance that livestock are moved varies similarly: at the time of the year when the potential for spread via movements is highest, the geographical spread via movements is largest. The seasonal patterns for cattle differ from those for sheep whilst there is no obvious seasonality for pigs. When spread via movements does occur, there is a high risk of infection reaching a livestock market; infection of markets can amplify disease spread. The proportion of primary outbreaks that would spread infection via livestock movements varies significantly between geographical regions. Conclusions In this paper we introduce a set-up for analysis of movement data that allows for a generalized assessment of the risk associated with infection spreading from a primary outbreak farm via livestock movements, applying this to Scotland, we assess how this risk depends upon the time of the year, species transmitting, location of the farm and other factors. PMID:22115121
NASA Astrophysics Data System (ADS)
McBride, J. F.; Simmons, C. S.; Cary, J. W.
1992-10-01
The spreading coefficient, Csp, determines whether an organic immiscible liquid, OIL, will form a lens ( Csp < 0) or will spread spontaneously ( Csp > 0) on a water surface. An OIL that forms a lens does not perfectly wet the water surface and therefore has a contact angle greater than 0°. The one-dimensional rate at which an OIL spreads spontaneously on a water surface is proportional to the square root of Csp. Of the OIL's that pose a contaminant threat to the subsurface, the majority has a non-zero Csp. To test the influence of such interfacial spreading phenomena on OIL infiltration in a pristine vadose zone, upward OIL and water imbibition infiltration experiments were performed in glass-bead columns, moistened with water, by using OIL's with different Csp. An analytical model for saturated liquid front rise was used to inversely estimate the effective capillary pressure head at the front and the average liquid conductivity. A nonspreading OIL ( Csp ≪ 0) exhibited a reduced capillary pressure head in the water-wetted glass beads. A spontaneously spreading OIL ( Csp ≫0) manifested an enhanced capillary pressure head. Reduced capillary pressure head was associated with an increase in average conductivity, and enhanced capillary pressure head was associated with a decrease in average conductivity when compared to the average water conductivity during water imbibition. The employed experimental method and mathematical analysis of dynamic flow, subject to interfacial spreading phenomena, are practical for quantifying parameters for use in sharp-front OIL infiltration models, but more research is needed to determine how to incorporate the spreading coefficient in numerical multiphase flow models.
Gürtler, Lutz G; Eberle, Josef
2017-08-01
Transmission of infectious agents might be associated with iatrogenic actions of charitable help in health care. An example is the vaccination against yellow fever in USA that transmitted hepatitis B virus. Another example is injections of praziquantel for treatment and cure of schistosomiasis in Central and Northern Africa, with a focus in Egypt that has spread hepatitis C virus. There is no indication that human T-lymphotropic virus type 1 was spread by injection treatment for African trypanosomiasis, syphilis and treponematosis, but these treatments might have contributed to the early spread of human immunodeficiency virus type 1 (HIV-1) in Central Africa. Slave trade contributed as well to the spread of viruses from Africa to the Americas; it was stopped in 1850. Until that date HIV-1 was not transported to the Americas. By analysis of nucleic acid sequence data it can be concluded that the continental spread of HCV and HIV-1 might have started around 1920 with an exponential phase from 1940 to 1970. Further iatrogenic actions that promoted the spread of HCV and HIV-1 might be vaccinations to prevent deadly diseases. The successful vaccination was followed by diminution of the infectious agent in the population such as small pox, yellow fever and measles. Measurements to reduce the spread of plague and cholera were further benefits increasing survival of diseased subjects in a population. Thus, the reduction of exposure to deadly infectious agents might have given a chance to HIV-1 infected subjects to survive and for HIV-1 to be distributed around the world starting from Central Africa in the 1950s.
Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza
NASA Astrophysics Data System (ADS)
Viboud, Cécile; Bjørnstad, Ottar N.; Smith, David L.; Simonsen, Lone; Miller, Mark A.; Grenfell, Bryan T.
2006-04-01
Quantifying long-range dissemination of infectious diseases is a key issue in their dynamics and control. Here, we use influenza-related mortality data to analyze the between-state progression of interpandemic influenza in the United States over the past 30 years. Outbreaks show hierarchical spatial spread evidenced by higher pairwise synchrony between more populous states. Seasons with higher influenza mortality are associated with higher disease transmission and more rapid spread than are mild ones. The regional spread of infection correlates more closely with rates of movement of people to and from their workplaces (workflows) than with geographical distance. Workflows are described in turn by a gravity model, with a rapid decay of commuting up to around 100 km and a long tail of rare longer range flow. A simple epidemiological model, based on the gravity formulation, captures the observed increase of influenza spatial synchrony with transmissibility; high transmission allows influenza to spread rapidly beyond local spatial constraints.
Interacting epidemics and coinfection on contact networks.
Newman, M E J; Ferrario, Carrie R
2013-01-01
The spread of certain diseases can be promoted, in some cases substantially, by prior infection with another disease. One example is that of HIV, whose immunosuppressant effects significantly increase the chances of infection with other pathogens. Such coinfection processes, when combined with nontrivial structure in the contact networks over which diseases spread, can lead to complex patterns of epidemiological behavior. Here we consider a mathematical model of two diseases spreading through a single population, where infection with one disease is dependent on prior infection with the other. We solve exactly for the sizes of the outbreaks of both diseases in the limit of large population size, along with the complete phase diagram of the system. Among other things, we use our model to demonstrate how diseases can be controlled not only by reducing the rate of their spread, but also by reducing the spread of other infections upon which they depend.
Mantle flow beneath Arabia offset from the opening Red Sea
NASA Astrophysics Data System (ADS)
Chang, Sung-Joon; Merino, Miguel; Van der Lee, Suzan; Stein, Seth; Stein, Carol A.
2011-02-01
Continental rifting involves a poorly understood sequence of lithospheric stretching, volcanism, and mantle flow that evolves to seafloor spreading. We present new insight from inversion of seismic traveltimes and waveforms beneath Arabia and surroundings. Low velocities occur beneath the southern Red Sea and Gulf of Aden, consistent with active spreading. However, hot material extends not below the northern Red Sea, but is offset eastward beneath Arabia, showing mantle flow from the Afar hotspot. The location of this channel beneath volcanic rocks erupted since rifting began 30 million years ago indicates that flow moves with Arabia. We propose that the absence of seafloor spreading in the northern Red Sea reflects the offset flow. This geometry may evolve to spreading in the Northern Red Sea, rifting of Arabia, or both. This situation has aspects of both active and passive rifting, showing that both can occur before coalescing to seafloor spreading.
Visual attention spreads broadly but selects information locally.
Shioiri, Satoshi; Honjyo, Hajime; Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro
2016-10-19
Visual attention spreads over a range around the focus as the spotlight metaphor describes. Spatial spread of attentional enhancement and local selection/inhibition are crucial factors determining the profile of the spatial attention. Enhancement and ignorance/suppression are opposite effects of attention, and appeared to be mutually exclusive. Yet, no unified view of the factors has been provided despite their necessity for understanding the functions of spatial attention. This report provides electroencephalographic and behavioral evidence for the attentional spread at an early stage and selection/inhibition at a later stage of visual processing. Steady state visual evoked potential showed broad spatial tuning whereas the P3 component of the event related potential showed local selection or inhibition of the adjacent areas. Based on these results, we propose a two-stage model of spatial attention with broad spread at an early stage and local selection at a later stage.
Numerical simulations of fire spread in a Pinus pinaster needles fuel bed
NASA Astrophysics Data System (ADS)
Menage, D.; Chetehouna, K.; Mell, W.
2012-11-01
The main aim of this paper is to extend the cases of WFDS model validation by comparing its predictions to literature data on a ground fire spreading in a Pinus pinaster needles fuel bed. This comparison is based on the experimental results of Mendes-Lopes and co-workers. This study is performed using the same domain as in the experiments (3.0m×1.2m×0.9m) with a mesh of 49,280 cells. We investigate the influence of wind (varied between 0 and 2 m/s) and moisture content (10 and 18%) on the rate of spread. The WFDS rate of spread is determined using a cross-correlation function of ground temperature profiles. The simulated rate of spread, as well as temperature, compared favourably to experimental values and show the WFDS model capacity to predict ground fires in Pinus Pinaster fuel beds.
Spread of status value: Rewards and the creation of status characteristics.
Harkness, Sarah K
2017-01-01
Rewards have social significance and are highly esteemed objects, but what does their ownership signify to others? Prior work has demonstrated it may be possible for these rewards to spread their status to those who possess them, such that individuals gain or lose status and influence by virtue of the rewards they display. Yet, is this spread enough to produce entirely new status characteristics by virtue of their association with rewards? I propose a theoretical extension of the spread of status value theory and offer an experimental test considering whether the status value conveyed by rewards spreads to a new, nominal characteristic of those who come to possess these objects. The results indicate that states of a nominal characteristic do gain or lose status value and behavioral influence through their association with differentially valued rewards. Thus, rewards can create new status characteristics with resulting behavioral expectations. Copyright © 2016 Elsevier Inc. All rights reserved.
Epidemic spreading on random surfer networks with infected avoidance strategy
NASA Astrophysics Data System (ADS)
Feng, Yun; Ding, Li; Huang, Yun-Han; Guan, Zhi-Hong
2016-12-01
In this paper, we study epidemic spreading on random surfer networks with infected avoidance (IA) strategy. In particular, we consider that susceptible individuals’ moving direction angles are affected by the current location information received from infected individuals through a directed information network. The model is mainly analyzed by discrete-time numerical simulations. The results indicate that the IA strategy can restrain epidemic spreading effectively. However, when long-distance jumps of individuals exist, the IA strategy’s effectiveness on restraining epidemic spreading is heavily reduced. Finally, it is found that the influence of the noises from information transferring process on epidemic spreading is indistinctive. Project supported in part by the National Natural Science Foundation of China (Grant Nos. 61403284, 61272114, 61673303, and 61672112) and the Marine Renewable Energy Special Fund Project of the State Oceanic Administration of China (Grant No. GHME2013JS01).
Small-scale ionospheric troughs detected over a range of mid-latitude locations
NASA Astrophysics Data System (ADS)
Bowman, G. G.
1991-07-01
Spread-F structures at three spaced midlatitude stations (Canberra, 45 deg CGlat; Bribie Island, 36 deg CGlat; Townsville, 28 deg CGlat) obtained by N(h) analyses reveal modulated ionospheric height rises, electron-density depletions with spread-F recorded during the recovery stage of these ionospheric structure changes. At Bribie Island, fixed-frequency phase-path measurements (at 1.98 MHz) reveal a traveling ionospheric disturbance wavetrain of several cycles (periodicity 25 m) before and during the height rise associated with the spread-F event. When these midlatitude spread-F characteristics (including speeds of movement) are compared with those related to the daytime trough in high-latitude regions, the two phenomena are found to be similar. However, the magnitudes of the high-latitude changes are much greater than for the midlatitude spread-F events. It is suggested that both phenomena may result from the breaking of atmospheric gravity waves.
Nonlinear diffusion and viral spread through the leaf of a plant
NASA Astrophysics Data System (ADS)
Edwards, Maureen P.; Waterhouse, Peter M.; Munoz-Lopez, María Jesús; Anderssen, Robert S.
2016-10-01
The spread of a virus through the leaf of a plant is both spatially and temporally causal in that the present status depends on the past and the spatial spread is compactly supported and progresses outwards. Such spatial spread is known to occur for certain nonlinear diffusion processes. The first compactly supported solution for nonlinear diffusion equations appears to be that of Pattle published in 1959. In that paper, no explanation is given as to how the solution was derived. Here, we show how the solution can be derived using Lie symmetry analysis. This lays a foundation for exploring the behavior of other choices for nonlinear diffusion and exploring the addition of reaction terms which do not eliminate the compactly supported structure. The implications associated with using the reaction-diffusion equation to model the spatial-temporal spread of a virus through the leaf of a plant are discussed.
Virality Prediction and Community Structure in Social Networks
NASA Astrophysics Data System (ADS)
Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol
2013-08-01
How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.
Virality Prediction and Community Structure in Social Networks
Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol
2013-01-01
How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications. PMID:23982106
Virality prediction and community structure in social networks.
Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol
2013-01-01
How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.
Spreading of triboelectrically charged granular matter
NASA Astrophysics Data System (ADS)
Kumar, Deepak; Sane, A.; Gohil, Smita.; Bandaru, P. R.; Bhattacharya, S.; Ghosh, Shankar
2014-06-01
We report on the spreading of triboelectrically charged glass particles on an oppositely charged surface of a plastic cylindrical container in the presence of a constant mechanical agitation. The particles spread via sticking, as a monolayer on the cylinder's surface. Continued agitation initiates a sequence of instabilities of this monolayer, which first forms periodic wavy-stripe-shaped transverse density modulation in the monolayer and then ejects narrow and long particle-jets from the tips of these stripes. These jets finally coalesce laterally to form a homogeneous spreading front that is layered along the spreading direction. These remarkable growth patterns are related to a time evolving frictional drag between the moving charged glass particles and the countercharges on the plastic container. The results provide insight into the multiscale time-dependent tribolelectric processes and motivates further investigation into the microscopic causes of these macroscopic dynamical instabilities and spatial structures.
Locating influential nodes in complex networks
Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis
2016-01-01
Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network. PMID:26776455
Creating buzz: the neural correlates of effective message propagation.
Falk, Emily B; Morelli, Sylvia A; Welborn, B Locke; Dambacher, Karl; Lieberman, Matthew D
2013-07-01
Social interaction promotes the spread of values, attitudes, and behaviors. Here, we report on neural responses to ideas that are destined to spread. We scanned message communicators using functional MRI during their initial exposure to the to-be-communicated ideas. These message communicators then had the opportunity to spread the messages and their corresponding subjective evaluations to message recipients outside the scanner. Successful ideas were associated with neural responses in the communicators' mentalizing systems and reward systems when they first heard the messages, prior to spreading them. Similarly, individuals more able to spread their own views to others produced greater mentalizing-system activity during initial encoding. Unlike prior social-influence studies that focused on the individuals being influenced, this investigation focused on the brains of influencers. Successful social influence is reliably associated with an influencer-to-be's state of mind when first encoding ideas.
Tuning magnetofluidic spreading in microchannels
NASA Astrophysics Data System (ADS)
Wang, Zhaomeng; Varma, V. B.; Wang, Z. P.; Ramanujan, R. V.
2015-12-01
Magnetofluidic spreading (MFS) is a phenomenon in which a uniform magnetic field is used to induce spreading of a ferrofluid core cladded by diamagnetic fluidic streams in a three-stream channel. Applications of MFS include micromixing, cell sorting and novel microfluidic lab-on-a-chip design. However, the relative importance of the parameters which govern MFS is still unclear, leading to non-optimal control of MFS. Hence, in this work, the effect of various key parameters on MFS was experimentally and numerically studied. Our multi-physics model, which combines magnetic and fluidic analysis, showed excellent agreement between theory and experiment. It was found that spreading was mainly due to cross-sectional convection induced by magnetic forces, and can be enhanced by tuning various parameters. Smaller flow rate ratio, higher magnetic field, higher core stream or lower cladding stream dynamic viscosity, and larger magnetic particle size can increase MFS. These results can be used to tune magnetofluidic spreading in microchannels.
A study of flame spread in engineered cardboard fuelbeds: Part I: Correlations and observations
Mark A. Finney; Jason Forthofer; Isaac C. Grenfell; Brittany A. Adam; Nelson K. Akafuah; Kozo Saito
2013-01-01
Wind tunnel laboratory fires spreading through laser-cut cardboard fuel beds were instrumented and analyzed for physical processes associated with spread. Flames in the span-wise direction appeared as a regular series of peaks-and-troughs that scaled directly with flame length. Flame structure in the stream-wise direction fluctuated with the forward advection of...
Estimating spread rates of non-native species: the gypsy moth as a case study
Patrick Tobin; Andrew M. Liebhold; E. Anderson Roberts; Laura M. Blackburn
2015-01-01
Estimating rates of spread and generating projections of future range expansion for invasive alien species is a key process in the development of management guidelines and policy. Critical needs to estimate spread rates include the availability of surveys to characterize the spatial distribution of an invading species and the application of analytical methods to...
Using a network model to assess risk of forest pest spread via recreational travel
Frank H. Koch; Denys Yemshanov; Robert A. Haack; Roger D. Magarey
2014-01-01
Long-distance dispersal pathways, which frequently relate to human activities, facilitate the spread of alien species. One pathway of concern in North America is the possible spread of forest pests in firewood carried by visitors to campgrounds or recreational facilities. We present a network model depicting the movement of campers and, by extension, potentially...
Patrick C. Tobin; Laura M. Blackburn
2008-01-01
Gypsy moth (Lymantria dispar L.) spread is dominated by stratified dispersal, and, although spread rates are variable in space and time, the gypsy moth has invaded Wisconsin at a consistently higher rate than in other regions. Allee effects, which act on low-density populations ahead of the moving population that contribute to gypsy moth spread, have...
A study of flame spread in engineered cardboard fuelbeds: Part II: Scaling law approach
Brittany A. Adam; Nelson K. Akafuah; Mark Finney; Jason Forthofer; Kozo Saito
2013-01-01
In this second part of a two part exploration of dynamic behavior observed in wildland fires, time scales differentiating convective and radiative heat transfer is further explored. Scaling laws for the two different types of heat transfer considered: Radiation-driven fire spread, and convection-driven fire spread, which can both occur during wildland fires. A new...
Toni Antikainen; Anti Rohumaa; Christopher G. Hunt; Mari Levirinne; Mark Hughes
2015-01-01
In plywood production, human operators find it difficult to precisely monitor the spread rate of adhesive in real-time. In this study, macroscopic fluorescence was used to estimate spread rate (SR) of urea formaldehyde adhesive on birch (Betula pendula Roth) veneer. This method could be an option when developing automated real-time SR measurement for...
Slow the Spread: a national program to manage the gypsy moth
Patrick C. Tobin; Laura M. Blackburn
2007-01-01
The gypsy moth is a destructive, nonindigenous pest of forest, shade, and fruit trees that was introduced into the United States in 1869, and is currently established throughout the Northeast and upper Midwest. The Slow the Spread Program is a regional integrated pest management strategy that aims to minimize the rate of gypsy moth spread into uninfested areas. The...
Applying fire spread simulators in New Zealand and Australia: Results from an international seminar
Tonja Opperman; Jim Gould; Mark Finney; Cordy Tymstra
2006-01-01
There is currently no spatial wildfire spread and growth simulation model used commonly across New Zealand or Australia. Fire management decision-making would be enhanced through the use of spatial fire simulators. Various groups from around the world met in January 2006 to evaluate the applicability of different spatial fire spread applications for common use in both...
An examination of flame shape related to convection heat transfer in deep-fuel beds
Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney
2010-01-01
Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....
Epidemic spreading and global stability of an SIS model with an infective vector on complex networks
NASA Astrophysics Data System (ADS)
Kang, Huiyan; Fu, Xinchu
2015-10-01
In this paper, we present a new SIS model with delay on scale-free networks. The model is suitable to describe some epidemics which are not only transmitted by a vector but also spread between individuals by direct contacts. In view of the biological relevance and real spreading process, we introduce a delay to denote average incubation period of disease in a vector. By mathematical analysis, we obtain the epidemic threshold and prove the global stability of equilibria. The simulation shows the delay will effect the epidemic spreading. Finally, we investigate and compare two major immunization strategies, uniform immunization and targeted immunization.
Dynamical consequences of compositional and thermal density stratification beneath spreading centers
NASA Technical Reports Server (NTRS)
Sotin, C.; Parmentier, E. M.
1989-01-01
Dynamical consequences of compositional buoyancy and the combined effects of compositional and thermal buoyancy on mantle flow and crustal production are explored. The results show that for a low enough mantle viscosity, buoyant upwelling can significantly enhance the crustal thickness relative to that which would be produced by plate spreading alone, while for a mantle viscosity of 10 to the 22nd Pa s, upwelling due to plate spreading is dominant and crustal thickness is predicted to be a function of spreading rate. The results indicate that thermal and compositional density variations result in opposing buoyancy forces that can cause time-dependent upwelling.
Epidemic dynamics and endemic states in complex networks
NASA Astrophysics Data System (ADS)
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-06-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks.
Safety Performance of Exterior Wall Insulation Material Based on Large Security Concept
NASA Astrophysics Data System (ADS)
Zuo, Q. L.; Wang, Y. J.; Li, J. S.
2018-05-01
In order to evaluate the fire spread characteristics of building insulation materials under corner fire, an experiment is carried out with small-scale fire spread test system. The change rule of the parameters such as the average height of the flame, the average temperature of the flame and the shape of the flame are analyzed. The variations of the fire spread characteristic parameters of the building insulation materials are investigated. The results show that the average temperature of Expanded Polystyrene (EPS) board, with different thickness, decrease - rise - decrease - increase. During the combustion process, the fire of 4cm thick plate spreads faster.
More efficient swimming by spreading your fingers
NASA Astrophysics Data System (ADS)
van de Water, Willem; van Houwelingen, Josje; Willemsen, Dennis; Breugem, Wim Paul; Westerweel, Jerry; Delfos, Rene; Grift, Ernst Jan
2016-11-01
A tantalizing question in free-style swimming is whether the stroke efficiency during the pull phase depends on spreading the fingers. It is a subtle effect-not more than a few percent-but it could make a big difference in a race. We measure the drag of arm models with increasing finger spreading in a wind tunnel and compare forces and moments to the results of immersed boundary simulations. Virtual arms were used in the simulations and their 3D-printed real versions in the experiment. We find an optimal finger spreading, accompanied by a marked increase of coherent vortex shedding. A simple actuator disk model explains this optimum.
Dimensional Analysis on Forest Fuel Bed Fire Spread.
Yang, Jiann C
2018-01-01
A dimensional analysis was performed to correlate the fuel bed fire rate of spread data previously reported in the literature. Under wind condition, six pertinent dimensionless groups were identified, namely dimensionless fire spread rate, dimensionless fuel particle size, fuel moisture content, dimensionless fuel bed depth or dimensionless fuel loading density, dimensionless wind speed, and angle of inclination of fuel bed. Under no-wind condition, five similar dimensionless groups resulted. Given the uncertainties associated with some of the parameters used to estimate the dimensionless groups, the dimensionless correlations using the resulting dimensionless groups correlate the fire rates of spread reasonably well under wind and no-wind conditions.
Dynamics of cell area and force during spreading.
Brill-Karniely, Yifat; Nisenholz, Noam; Rajendran, Kavitha; Dang, Quynh; Krishnan, Ramaswamy; Zemel, Assaf
2014-12-16
Experiments on human pulmonary artery endothelial cells are presented to show that cell area and the force exerted on a substrate increase simultaneously, but with different rates during spreading; rapid-force increase systematically occurred several minutes past initial spreading. We examine this theoretically and present three complementary mechanisms that may accompany the development of lamellar stress during spreading and underlie the observed behavior. These include: 1), the dynamics of cytoskeleton assembly at the cell basis; 2), the strengthening of acto-myosin forces in response to the generated lamellar stresses; and 3), the passive strain-stiffening of the cytoskeleton. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
An Improved Adaptive model for Information Recommending and Spreading
NASA Astrophysics Data System (ADS)
Chen, Duan-Bing; Gao, Hui
2012-04-01
People in the Internet era have to cope with information overload and expend great effort on finding what they need. Recent experiments indicate that recommendations based on users' past activities are usually less favored than those based on social relationships, and thus many researchers have proposed adaptive algorithms on social recommendation. However, in those methods, quite a number of users have little chance to recommend information, which might prevent valuable information from spreading. We present an improved algorithm that allows more users to have enough followers to spread information. Experimental results demonstrate that both recommendation precision and spreading effectiveness of our method can be improved significantly.
Use of hygiene protocols to control the spread of viruses in a hotel.
Sifuentes, Laura Y; Koenig, David W; Phillips, Ronnie L; Reynolds, Kelly A; Gerba, Charles P
2014-09-01
The goals of this study were to observe the spread of viruses in a hotel setting and to assess the effectiveness of a hygiene intervention in reducing their spread. Selected fomites in one hotel room were inoculated with bacteriophage ϕx-174, and fomites in a conference center within the same hotel were inoculated using bacteriophage MS2. Cleaning of the contaminated room resulted in the spread of viruses to other rooms by the housekeeping staff. Furthermore, viruses were transferred by hotel guests to the conference center and a communal kitchen area. Additionally, conference attendees transferred viruses from the conference center to their hotel rooms and a communal kitchen area. This study demonstrated how viruses can be spread throughout a hotel setting by both housekeepers and guests. A hygiene intervention, which included providing hand hygiene products and facial tissues to the guests and disinfecting solutions with disposable wipes to the housekeeping staff, was successful in reducing the spread of viruses between the hotel guest rooms and conference center. The hygiene intervention resulted in significantly reduced transfer of the ϕx-174 between the contaminated hotel room and other hotel rooms, communal areas, and the conference center (p = 0.02).
Modelling indirect interactions during failure spreading in a project activity network.
Ellinas, Christos
2018-03-12
Spreading broadly refers to the notion of an entity propagating throughout a networked system via its interacting components. Evidence of its ubiquity and severity can be seen in a range of phenomena, from disease epidemics to financial systemic risk. In order to understand the dynamics of these critical phenomena, computational models map the probability of propagation as a function of direct exposure, typically in the form of pairwise interactions between components. By doing so, the important role of indirect interactions remains unexplored. In response, we develop a simple model that accounts for the effect of both direct and subsequent exposure, which we deploy in the novel context of failure propagation within a real-world engineering project. We show that subsequent exposure has a significant effect in key aspects, including the: (a) final spreading event size, (b) propagation rate, and (c) spreading event structure. In addition, we demonstrate the existence of 'hidden influentials' in large-scale spreading events, and evaluate the role of direct and subsequent exposure in their emergence. Given the evidence of the importance of subsequent exposure, our findings offer new insight on particular aspects that need to be included when modelling network dynamics in general, and spreading processes specifically.
Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary.
Lin, Zhigui; Zhu, Huaiping
2017-12-01
In this paper, a reaction-diffusion system is proposed to model the spatial spreading of West Nile virus in vector mosquitoes and host birds in North America. Transmission dynamics are based on a simplified model involving mosquitoes and birds, and the free boundary is introduced to model and explore the expanding front of the infected region. The spatial-temporal risk index [Formula: see text], which involves regional characteristic and time, is defined for the simplified reaction-diffusion model with the free boundary to compare with other related threshold values, including the usual basic reproduction number [Formula: see text]. Sufficient conditions for the virus to vanish or to spread are given. Our results suggest that the virus will be in a scenario of vanishing if [Formula: see text], and will spread to the whole region if [Formula: see text] for some [Formula: see text], while if [Formula: see text], the spreading or vanishing of the virus depends on the initial number of infected individuals, the area of the infected region, the diffusion rate and other factors. Moreover, some remarks on the basic reproduction numbers and the spreading speeds are presented and compared.
Ma, Xueying; Xu, Ren-Huan; Roscoe, Felicia; Whitbeck, J Charles; Eisenberg, Roselyn J; Cohen, Gary H; Sigal, Luis J
2013-06-01
Orthopoxviruses (OPVs), which include the agent of smallpox (variola virus), the zoonotic monkeypox virus, the vaccine and zoonotic species vaccinia virus, and the mouse pathogen ectromelia virus (ECTV), form two types of infectious viral particles: the mature virus (MV), which is cytosolic, and the enveloped virus (EV), which is extracellular. It is believed that MVs are required for viral entry into the host, while EVs are responsible for spread within the host. Following footpad infection of susceptible mice, ECTV spreads lymphohematogenously, entering the liver at 3 to 4 days postinfection (dpi). Afterwards, ECTV spreads intrahepatically, killing the host. We found that antibodies to an MV protein were highly effective at curing mice from ECTV infection when administered after the virus reached the liver. Moreover, a mutant ECTV that does not make EV was able to spread intrahepatically and kill immunodeficient mice. Together, these findings indicate that MVs are sufficient for the spread of ECTV within the liver and could have implications regarding the pathogenesis of other OPVs, the treatment of emerging OPV infections, as well as strategies for preparedness in case of accidental or intentional release of pathogenic OPVs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Kewisch, J.; Huang, H.
At RHIC, the spin polarization is preserved with a pair of Siberian snakes on the oppo- site sides in each ring. The polarized proton beam with finite spin tune spread might cross spin resonances multiple times in two cases, one is when beam going through strong spin intrinsic resonances during acceleration, the other is when sweeping spin flipper’ frequency across the spin tune to flip the direction of spin polarization. The consequence is loss of spin polarization in both cases. Therefore, a scheme of min- imizing the spin tune spread by matching the dispersion primes at the two snakes wasmore » introduced based on the fact that the spin tune spread is proportional to the difference of dispersion primes at the two snakes. The scheme was implemented at fixed energies for the spin flipper study and during beam acceleration for better spin polarization transmission efficiency. The effect of minimizing the spin tune spread by matching the dispersion primes was observed and confirmed experimentally. The principle of minimizing the spin tune spread by matching the dispersion primes, the impact on the beam optics, and the effect of a narrower spin tune spread are presented in this report.« less
Olsson, Aaryn D.; Betancourt, Julio L.; Crimmins, Michael A.; Marsh, Stuart E.
2012-01-01
In North American deserts, grass invasions threaten native vegetation via competition and altered fire regimes. Accurate prediction and successful mitigation of these invasions hinge on estimation of spread rates and their degree of constancy in time and space. We used high-resolution aerial photographs from 11 sites in the Santa Catalina Mountains, southern Arizona to reconstruct the spread of buffelgrass (Pennisetum ciliare), a C4 perennial bunchgrass, since 1980. The total area infested was fit to a logistic model and residuals of the model were compared to climatic factors of the corresponding and lagged time periods. Infestations grew from small colonizing patches in the 1980s to 66 ha in 2008, doubling every 2.26–7.04 years since 1988. Although buffelgrass germination, establishment and distribution are favored by wet summers and warm winters, climate variables did not predict spread rates. Buffelgrass has grown at a constant rate, at least since 1988, when much of its expansion took place. In the study area, minimum requirements are met almost every year for germination and reproduction, establishing a consistent baseline for spread that manifests as a constant spread rate.
Fast and accurate detection of spread source in large complex networks.
Paluch, Robert; Lu, Xiaoyan; Suchecki, Krzysztof; Szymański, Bolesław K; Hołyst, Janusz A
2018-02-06
Spread over complex networks is a ubiquitous process with increasingly wide applications. Locating spread sources is often important, e.g. finding the patient one in epidemics, or source of rumor spreading in social network. Pinto, Thiran and Vetterli introduced an algorithm (PTVA) to solve the important case of this problem in which a limited set of nodes act as observers and report times at which the spread reached them. PTVA uses all observers to find a solution. Here we propose a new approach in which observers with low quality information (i.e. with large spread encounter times) are ignored and potential sources are selected based on the likelihood gradient from high quality observers. The original complexity of PTVA is O(N α ), where α ∈ (3,4) depends on the network topology and number of observers (N denotes the number of nodes in the network). Our Gradient Maximum Likelihood Algorithm (GMLA) reduces this complexity to O (N 2 log (N)). Extensive numerical tests performed on synthetic networks and real Gnutella network with limitation that id's of spreaders are unknown to observers demonstrate that for scale-free networks with such limitation GMLA yields higher quality localization results than PTVA does.
Spread Across Liquids: The World's First Microgravity Combustion Experiment on a Sounding Rocket
NASA Technical Reports Server (NTRS)
1995-01-01
The Spread Across Liquids (SAL) experiment characterizes how flames spread over liquid pools in a low-gravity environment in comparison to test data at Earth's gravity and with numerical models. The modeling and experimental data provide a more complete understanding of flame spread, an area of textbook interest, and add to our knowledge about on-orbit and Earthbound fire behavior and fire hazards. The experiment was performed on a sounding rocket to obtain the necessary microgravity period. Such crewless sounding rockets provide a comparatively inexpensive means to fly very complex, and potentially hazardous, experiments and perform reflights at a very low additional cost. SAL was the first sounding-rocket-based, microgravity combustion experiment in the world. It was expected that gravity would affect ignition susceptibility and flame spread through buoyant convection in both the liquid pool and the gas above the pool. Prior to these sounding rocket tests, however, it was not clear whether the fuel would ignite readily and whether a flame would be sustained in microgravity. It also was not clear whether the flame spread rate would be faster or slower than in Earth's gravity.
Delaying the international spread of pandemic influenza.
Cooper, Ben S; Pitman, Richard J; Edmunds, W John; Gay, Nigel J
2006-06-01
The recent emergence of hypervirulent subtypes of avian influenza has underlined the potentially devastating effects of pandemic influenza. Were such a virus to acquire the ability to spread efficiently between humans, control would almost certainly be hampered by limited vaccine supplies unless global spread could be substantially delayed. Moreover, the large increases that have occurred in international air travel might be expected to lead to more rapid global dissemination than in previous pandemics. To evaluate the potential of local control measures and travel restrictions to impede global dissemination, we developed stochastic models of the international spread of influenza based on extensions of coupled epidemic transmission models. These models have been shown to be capable of accurately forecasting local and global spread of epidemic and pandemic influenza. We show that under most scenarios restrictions on air travel are likely to be of surprisingly little value in delaying epidemics, unless almost all travel ceases very soon after epidemics are detected. Interventions to reduce local transmission of influenza are likely to be more effective at reducing the rate of global spread and less vulnerable to implementation delays than air travel restrictions. Nevertheless, under the most plausible scenarios, achievable delays are small compared with the time needed to accumulate substantial vaccine stocks.
Sensory and analytical characterization of the “cool‐melting” perception of commercial spreads
Valenҁa de Sousa, Joana; Knoop, Marcia
2017-01-01
Abstract Butters, margarines and table spreads are water‐in‐oil emulsions. Melting characteristics of these products are important for flavor release and consumer acceptance. One characteristic that is believed to discriminate butters from margarines is a cooling sensation perceived in‐mouth while consuming these products. Here, we investigated different methods to characterize sensorically and analytically the “cool‐melting” properties of commercial butter and margarines. Our results show that butter indeed can be distinguished from margarines based on their “cool‐melting” properties. Furthermore, changes in enthalpy as measured through DSC and solid fat content are good predictors of the “cool‐melting” effect of spreads. Practical applications By understanding the mechanisms of the “cool‐melting” perception of spreads, and linking them to analytical measurements, we can create an in‐vitro quantification method of “cool‐melting.” This method can eventually help directing product development to achieve the desire product profile and increase consumer acceptance and liking of margarines and low‐fat spread products. In this study we did not assess the impact of “cool‐melting” on consumer perception, which would be the next step in understanding the drivers of liking of spread products. PMID:28766749
A ripple-spreading genetic algorithm for the aircraft sequencing problem.
Hu, Xiao-Bing; Di Paolo, Ezequiel A
2011-01-01
When genetic algorithms (GAs) are applied to combinatorial problems, permutation representations are usually adopted. As a result, such GAs are often confronted with feasibility and memory-efficiency problems. With the aircraft sequencing problem (ASP) as a study case, this paper reports on a novel binary-representation-based GA scheme for combinatorial problems. Unlike existing GAs for the ASP, which typically use permutation representations based on aircraft landing order, the new GA introduces a novel ripple-spreading model which transforms the original landing-order-based ASP solutions into value-based ones. In the new scheme, arriving aircraft are projected as points into an artificial space. A deterministic method inspired by the natural phenomenon of ripple-spreading on liquid surfaces is developed, which uses a few parameters as input to connect points on this space to form a landing sequence. A traditional GA, free of feasibility and memory-efficiency problems, can then be used to evolve the ripple-spreading related parameters in order to find an optimal sequence. Since the ripple-spreading model is the centerpiece of the new algorithm, it is called the ripple-spreading GA (RSGA). The advantages of the proposed RSGA are illustrated by extensive comparative studies for the case of the ASP.
Jet Spreading Increase by Passive Control and Associated Performance Penalty
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1999-01-01
This paper reviews the effects of 'screech', 'asymmetric nozzle shaping', 'tabs' and 'overexpansion' on the spreading of free jets. Corresponding thrust penalty for the tabs and overexpanded condition are also evaluated. The asymmetric shapes include rectangular ones with varying aspect ratio. Tabs investigated are triangular shaped 'delta-tabs' placed at the exit of a convergent circular nozzle. The effect of overexpansion is examined with circular convergent-divergent (C-D) nozzles. Tabs and overexpansion are found to yield the largest increase in jet spreading. Each, however, involves a performance penalty, i.e., a loss in thrust coefficient. Variation of the size of four delta-tabs show that there exists an optimum size for which the gain in jet spreading is the maximum per unit loss in thrust coefficient. With the C-D nozzles, the minimum in thrust coefficient is expected near the beginning of the overexpanded regime based on idealized flow calculations. The maximum increase in jet spreading, however, is found to occur at higher pressure ratios well into the overexpanded regime. The optimum benefit with the overexpanded flow, in terms of gain in spreading for unit penalty, is found to be comparable to the optimum tab case.
Towards Data-Driven Simulations of Wildfire Spread using Ensemble-based Data Assimilation
NASA Astrophysics Data System (ADS)
Rochoux, M. C.; Bart, J.; Ricci, S. M.; Cuenot, B.; Trouvé, A.; Duchaine, F.; Morel, T.
2012-12-01
Real-time predictions of a propagating wildfire remain a challenging task because the problem involves both multi-physics and multi-scales. The propagation speed of wildfires, also called the rate of spread (ROS), is indeed determined by complex interactions between pyrolysis, combustion and flow dynamics, atmospheric dynamics occurring at vegetation, topographical and meteorological scales. Current operational fire spread models are mainly based on a semi-empirical parameterization of the ROS in terms of vegetation, topographical and meteorological properties. For the fire spread simulation to be predictive and compatible with operational applications, the uncertainty on the ROS model should be reduced. As recent progress made in remote sensing technology provides new ways to monitor the fire front position, a promising approach to overcome the difficulties found in wildfire spread simulations is to integrate fire modeling and fire sensing technologies using data assimilation (DA). For this purpose we have developed a prototype data-driven wildfire spread simulator in order to provide optimal estimates of poorly known model parameters [*]. The data-driven simulation capability is adapted for more realistic wildfire spread : it considers a regional-scale fire spread model that is informed by observations of the fire front location. An Ensemble Kalman Filter algorithm (EnKF) based on a parallel computing platform (OpenPALM) was implemented in order to perform a multi-parameter sequential estimation where wind magnitude and direction are in addition to vegetation properties (see attached figure). The EnKF algorithm shows its good ability to track a small-scale grassland fire experiment and ensures a good accounting for the sensitivity of the simulation outcomes to the control parameters. As a conclusion, it was shown that data assimilation is a promising approach to more accurately forecast time-varying wildfire spread conditions as new airborne-like observations of the fire front location get available. [*] Rochoux, M.C., Delmotte, B., Cuenot, B., Ricci, S., and Trouvé, A. (2012) "Regional-scale simulations of wildland fire spread informed by real-time flame front observations", Proc. Combust. Inst., 34, in press http://dx.doi.org/10.1016/j.proci.2012.06.090 EnKF-based tracking of small-scale grassland fire experiment, with estimation of wind and fuel parameters.
NASA Astrophysics Data System (ADS)
Siler, Drew Lorenz
2011-12-01
The sub-surface geologic structure of the crust is controlled by the magmatic and tectonic processes that construct the crust during plate spreading. As a result, geologic structure provides constraints on the processes that occur during plate spreading. The crust of the Skagi region of northern Iceland, where this study was focused, was accreted by magmatic construction to Iceland ˜7-10 Ma and subsequently glacially eroded, exhuming ˜1-3 km of structural relief. Continuous spreading-parallel and spreading-orthogonal mountain ranges expose the crust accreted at discrete spreading segments, the fundamental intervals upon which plate spreading and crustal accretion occur. As a result, Skagi is an ideal location to employ geologic structure analysis to study magmatic rifting processes. Within spreading segments structural patterns vary significantly between segment centers and distal fissure swarms. While segment centers are characterized by focused magmatic construction and km-scale sub-volcanic subsidence, fissure swarms are characterized by limited magmatic construction, minor sub-axial subsidence and lateral dike injection. Such along-strike variation indicates that both magma in the upper crust and gabbroic material in the lower crust must be redistributed along-strike within spreading segments during plate spreading. Material flow is directed from beneath segment centers towards distal fissure swarms. At the regional scale, each spreading segment is a structurally discrete interval of Iceland's Neovolcanic Zone. As a result of west-northwestward movement of Iceland relative to the Iceland hotspot, the rift zone axis has progressively relocated to the east-southeast with time, leaving a series of abandoned rift zones throughout western Iceland. A compilation of published K/Ar and 40Ar/39Ar age data and geologic data from across northern Iceland shows that rift relocation occurs via frequent (2-3 Ma), small-scale (˜20 km) rift propagations rather than rare, 100s of km 'rift jumps' as is conventional models suggest. The structure relationships we define in the Icelandic crust are similar to that of other magmatic rift systems including Mid-Ocean Ridges, continental rifts and ancient volcanic rift margins. As such, we suggest that many of the crustal accretion processes we have inferred from Icelandic data may be important in these analogous environments as well.
Amagmatic Accretionary Segments, Ultraslow Spreading and Non-Volcanic Rifted Margins (Invited)
NASA Astrophysics Data System (ADS)
Dick, H. J.; Snow, J. E.
2009-12-01
The evolution of non-volcanic rifted margins is key to understanding continental breakup and the early evolution of some of the world’s most productive hydrocarbon basins. However, the early stages of such rifting are constrained by limited observations on ancient heavily sedimented margins such as Newfoundland and Iberia. Ultraslow spreading ridges, however, provide a modern analogue for early continental rifting. Ultraslow spreading ridges (<20 mm/yr) comprise ~30% of the global ridge system (e.g. Gakkel, Southwest Indian, Terceira, and Knipovitch Ridges). They have unique tectonics with widely spaced volcanic segments and amagmatic accretionary ridge segments. The volcanic segments, though far from hot spots, include some of the largest axial volcanoes on the global ridge system, and have, unusual magma chemistry, often showing local isotopic and incompatible element enrichment unrelated to mantle hot spots. The transition from slow to ultraslow tectonics and spreading is not uniquely defined by spreading rate, and may also be moderated by magma supply and mantle temperature. Amagmatic accretionary segments are the 4th class of plate boundary structure, and, we believe, the defining tectonic feature of early continental breakup. They form at effective spreading rates <12 mm/yr, assume any orientation to spreading, and replace transform faults and magmatic segments. At amagmatic segments the earth splits apart with the mantle emplaced directly to the seafloor, and great slabs of peridotite are uplifted to form the rift mountains. A thick conductive lid suppresses mantle melting, and magmatic segments form only at widely spaced intervals, with only scattered volcanics in between. Amagmatic segments link with the magmatic segments forming curvilinear plate boundaries, rather than the step-like morphology found at faster spreading ridges. These are all key features of non-volcanic rifted margins; explaining, for example, the presence of mantle peridotites emplaced simultaneously on both the Newfoundland and Iberian Margins in the Jurassic and Cretaceous. Miocene Lena Trough is a new mid-ocean rift plate boundary and the final event in the separation of the North American and Eurasian continents. Mapping and sampling of Lena Trough confirms that it is both oblique and amagmatic, showing that initiation of seafloor spreading at a non-volcanic rifted continental margin follows the same pattern as ultraslow spreading ridges.
NASA Astrophysics Data System (ADS)
Haughton, G.; Murton, B. J.; Le Bas, T.; Henstock, T.
2017-12-01
The interplay between magma supply and spreading rate is believed to play a major role in determining large scale seafloor morphology. Here we use bathymetry to test this relationship in areas with similar spreading rates and differing magma supplies. By using open source bathymetry data we have developed a repeatable, automated method for categorising seafloor cumulative fault heave and then attempt to identify the controlling variables. We measure the total apparent fault heave along axis and off-axis at 29°N and 60°N on the Mid-Atlantic Ridge then compare this to proxies for deformation and magma supply. Two approaches are adopted for identifying faults: one using bathymetry and the other spreading-parallel seismic reflection data. The first re-examines the orthogonally spreading Broken Spur segment (26°N) spreading at 23 mm yr-1 (full rate). The other examines the Reykjanes Ridge (60°N) spreading obliquely at 21 mm yr-1 (full rate), which may be influenced by the Icelandic hotspot. Each have contrasting residual depth and structure, with the former being typical of slow spreading ridges, with marked axial valleys, whereas the latter is more typical of fast spreading ridge morphology, with smooth axial rise. We find that high total heave (indicating high tectonic spreading) on the Broken Spur segment does not correlate with high mantle Bouguer anomalies (indicating thin crust and low melt flux). From this we hypothesise that total heave on the large scale at the Broken Spur segment is not controlled by crustal thickness or melt supply. At the Raykjanes Ridge, V-shaped ridges have thicker crust (measured seismically) which converge south of Iceland. These are thought to reflect transient (every 4-6 Myrs) pulses of hot mantle radiating away from the Iceland plume. We find ridge-symmetrical variation in fault heave but with a lower frequency (6-8 Myrs) and longer wavelength (3-7 Myrs) than the V-shaped ridges. Our analysis shows that plume pulses do not correlate with cumulative fault heave. Our results raise questions about the relationship between melt flux and tectonic stretching. Other factors may be more significant such as spreading geometry, lithospheric temperature, hydrothermal alteration, or mantle heterogeneities that may not be reflected in melt productivity or faulting.
Spreading of Cholera through Surface Water
NASA Astrophysics Data System (ADS)
Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.
2009-12-01
Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i) the spreading timescale, that is the time needed for the disease to spread and involve all the communities in the system; and ii) the epidemic timescale, defined by the duration of the epidemic in a single community. Our results suggest that in many cases of real-life epidemiological interest, timescales of disease dynamics may trigger outbreaks that significantly depart from the predictions of classical space-implicit compartmental models.
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Ruff, Gary A.; Fletcher, J. Miller
2008-01-01
Microgravity tests of flammability and flame spread were performed in a low-speed flow tunnel to simulate spacecraft ventilation flows. Three thin fuels were tested for flammability (Ultem 1000 (General Electric Company), 10 mil film, Nomex (Dupont) HT90-40, and Mylar G (Dupont) and one fuel for flame spread testing (Kimwipes (Kimberly-Clark Worldwide, Inc.). The 1g Upward Limiting Oxygen Index (ULOI) and 1g Maximum Oxygen Concentration (MOC) are found to be greater than those in 0g, by up to 4% oxygen mole fraction, meaning that the fuels burned in 0g at lower oxygen concentrations than they did using the NASA Standard 6001 Test 1 protocol. Flame spread tests with Kimwipes were used to develop correlations that capture the effects of flow velocity, oxygen concentration, and pressure on flame spread rate. These correlations were used to determine that over virtually the entire range of spacecraft atmospheres and flow conditions, the opposed spread is faster, especially for normoxic atmospheres. The correlations were also compared with 1g MOC for various materials as a function of pressure and oxygen. The lines of constant opposed flow agreed best with the 1g MOC trends, which indicates that Test 1 limits are essentially dictated by the critical heat flux for ignition. Further evaluation of these and other materials is continuing to better understand the 0g flammability of materials and its effect on the oxygen margin of safety.
Projected changes in daily fire spread across Canada over the next century
NASA Astrophysics Data System (ADS)
Wang, Xianli; Parisien, Marc-André; Taylor, Steve W.; Candau, Jean-Noël; Stralberg, Diana; Marshall, Ginny A.; Little, John M.; Flannigan, Mike D.
2017-02-01
In the face of climate change, predicting and understanding future fire regimes across Canada is a high priority for wildland fire research and management. Due in large part to the difficulties in obtaining future daily fire weather projections, one of the major challenges in predicting future fire activity is to estimate how much of the change in weather potential could translate into on-the-ground fire spread. As a result, past studies have used monthly, annual, or multi-decadal weather projections to predict future fires, thereby sacrificing information relevant to day-to-day fire spread. Using climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), historical weather observations, MODIS fire detection data, and the national fire database of Canada, this study investigated potential changes in the number of active burning days of wildfires by relating ‘spread days’ to patterns of daily fire-conducive weather. Results suggest that climate change over the next century may have significant impacts on fire spread days in almost all parts of Canada’s forested landmass; the number of fire spread days could experience a 2-to-3-fold increase under a high CO2 forcing scenario in eastern Canada, and a greater than 50% increase in western Canada, where the fire potential is already high. The change in future fire spread is critical in understanding fire regime changes, but is also imminently relevant to fire management operations and in fire risk mitigation.
Kucharz, Krzysztof; Søndergaard Rasmussen, Ida; Bach, Anders; Strømgaard, Kristian; Lauritzen, Martin
2017-05-01
Cortical spreading depression is associated with activation of NMDA receptors, which interact with the postsynaptic density protein 95 (PSD-95) that binds to nitric oxide synthase (nNOS). Here, we tested whether inhibition of the nNOS/PSD-95/NMDA receptor complex formation by anti-ischemic compound, UCCB01-144 (Tat- N-dimer) ameliorates the persistent effects of cortical spreading depression on cortical function. Using in vivo two-photon microscopy in somatosensory cortex in mice, we show that fluorescently labelled Tat- N-dimer readily crosses blood-brain barrier and accumulates in nerve cells during the first hour after i.v. injection. The Tat- N-dimer suppressed stimulation-evoked synaptic activity by 2-20%, while cortical blood flow and cerebral oxygen metabolic (CMRO 2 ) responses were preserved. During cortical spreading depression, the Tat- N-dimer reduced the average amplitude of the negative shift in direct current potential by 33% (4.1 mV). Furthermore, the compound diminished the average depression of spontaneous electrocorticographic activity by 11% during first 40 min of post-cortical spreading depression recovery, but did not mitigate the suppressing effect of cortical spreading depression on cortical blood flow and CMRO 2 . We suggest that uncoupling of PSD-95 from NMDA receptors reduces overall neuronal excitability and the amplitude of the spreading depolarization wave. These findings may be of interest for understanding the neuroprotective effects of the nNOS/PSD-95 uncoupling in stroke.
Substrate Curvature Restricts Spreading and Induces Differentiation of Human Mesenchymal Stem Cells.
Lee, Sang Joo; Yang, Shengyuan
2017-09-01
While cells attach, spread, migrate, proliferate, and differentiate in three-dimensional (3D) micromechanical environments, the mechanical factors of these environments influence the shapes, sizes, and adhesion forces of the cells. Here, the authors culture human mesenchymal stem cells (hMSCs) on a unique class of curvature-defined substrates, micro glass ball embedded polyacrylamide gels, prepared with an improved protocol, and investigate the spreading responses of the hMSCs on the glass balls to study the effects of substrate curvature on the spreading of hMSCs. The authors find that, among the used diameters of glass balls, the minimum diameter of a glass ball on which an hMSC can attach and spread is 500 μm. In contrast to the well-spread morphologies with randomly-multiple lamellipodia for the hMSCs growing on the flat glass plates, the morphologies of the hMSCs growing on the glass balls are almost uniformly spindle-shaped with two lamellipodia. The sensitivities of the attachment and spreading morphology of an hMSC to substrate curvature are very different from those of a fibroblast. The RT-PCR analysis reveals that the substrate curvature alone can induce adipogenesis of the hMSCs. These findings imply that substrate curvature has profound effects on stem cell behaviors, and detailed and in-depth studies on these effects and their underlying biophysical mechanisms are necessary. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Yao; Liu, Xiaojie; Vickstrom, Casey R; Liu, Michelle J; Zhao, Li; Viader, Andreu; Cravatt, Benjamin F; Liu, Qing-Song
2016-01-01
Endocannabinoids are diffusible lipophilic molecules that may spread to neighboring synapses. Monoacylglycerol lipase (MAGL) is the principal enzyme that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Using knock-out mice in which MAGL is deleted globally or selectively in neurons and astrocytes, we investigated the extent to which neuronal and astrocytic MAGL limit the spread of 2-AG-mediated retrograde synaptic depression in cerebellar slices. A brief tetanic stimulation of parallel fibers in the molecular layer induced synaptically evoked suppression of excitation (SSE) in Purkinje cells, and both neuronal and astrocytic MAGL contribute to the termination of this form of endocannabinoid-mediated synaptic depression. The spread of SSE among Purkinje cells occurred only after global knock-out of MAGL or pharmacological blockade of either MAGL or glutamate uptake, but no spread was detected following neuron- or astrocyte-specific deletion of MAGL. The spread of endocannabinoid signaling was also influenced by the spatial pattern of synaptic stimulation, because it did not occur at spatially dispersed parallel fiber synapses induced by stimulating the granular layer. The tetanic stimulation of parallel fibers did not induce endocannabinoid-mediated synaptic suppression in Golgi cells even after disruption of MAGL and glutamate uptake, suggesting that heightened release of 2-AG by Purkinje cells does not spread the retrograde signal to parallel fibers that innervate Golgi cells. These results suggest that both neuronal and astrocytic MAGL limit the spatial diffusion of 2-AG and confer synapse-specificity of endocannabinoid signaling.
Multi-station investigation of spread F over Europe during low to high solar activity
NASA Astrophysics Data System (ADS)
Paul, Krishnendu Sekhar; Haralambous, Haris; Oikonomou, Christina; Paul, Ashik; Belehaki, Anna; Ioanna, Tsagouri; Kouba, Daniel; Buresova, Dalia
2018-04-01
Spread F is an ionospheric phenomenon which has been reported and analyzed extensively over equatorial regions on the basis of the Rayleigh-Taylor (R-T) instability. It has also been investigated over midlatitude regions, mostly over the Southern Hemisphere with its generation attributed to the Perkins instability mechanism. Over midlatitudes it has also been correlated with geomagnetic storms through the excitation of travelling ionospheric disturbances (TIDs) and subsequent F region uplifts. The present study deals with the occurrence rate of nighttime spread F events and their diurnal, seasonal and solar cycle variation observed over three stations in the European longitude sector namely Nicosia (geographic Lat: 35.29 °N, Long: 33.38 °E geographic: geomagnetic Lat: 29.38 °N), Athens (geographic Lat: 37.98 °N, Long: 23.73 °E geographic: geomagnetic Lat: 34.61 °N) and Pruhonice (geographic Lat: 50.05 °N, Long: 14.41 °E geographic: geomagnetic Lat: 47.7 °N) during 2009, 2015 and 2016 encompassing periods of low, medium and high solar activity, respectively. The latitudinal and longitudinal variation of spread F occurrence was examined by considering different instability triggering mechanisms and precursors which past literature identified as critical to the generation of spread F events. The main findings of this investigation is an inverse solar cycle and annual temporal dependence of the spread F occurrence rate and a different dominant spread F type between low and high European midlatitudes.
Douguet, Marine; Picard, Céline; Savary, Géraldine; Merlaud, Fabien; Loubat-Bouleuc, Nathalie; Grisel, Michel
2017-06-01
The study focuses on the impact of structural and physicochemical properties of emollients on their spreadability. Fifty-three emollients, among which esters, silicones, vegetable and mineral oils, have been characterized. Their viscosity, surface tension, density and spreadability have been measured. Vitro-skin ® , an artificial skin substitute, was used as an artificial porous substrate to measure spreadability. Two different methods have been selected to characterize spreadability, namely contact angle and spreading value. Dynamic contact angle measurements showed that emollient spreadability is first governed by spontaneous spreading and that, in a second phase, absorption and migration into the porous substrate becomes the driver of the extension of the spreading area. Statistical analysis of physicochemical and spreading value data revealed that viscosity has a major impact on the spreading behavior of emollients whatever their chemical type. A special emphasis was placed on the ester family in which chemical diversity is very wide. The results highlighted a difference between "high viscosity esters" for which viscosity is the main factor impacting spreadability and "low viscosity esters" for which structural variations (mono/diester, saturated/unsaturated chain, linear/branched chain) have to be considered in addition to viscosity. Linear regressions were used to express spreading value as a function of viscosity for each of the four emollient families tested (esters, silicones, vegetable and mineral oils). These regressions allowed the development of reliable predictive models as a powerful tool for formulators to forecast spreadability of emollients. Copyright © 2017 Elsevier B.V. All rights reserved.
Flame spread across liquid pools
NASA Technical Reports Server (NTRS)
Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.
1993-01-01
For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.