Sample records for spring operated pressure

  1. Adjustable Tuning Spring for Bellows Pump

    NASA Technical Reports Server (NTRS)

    Green, G. L.; Tu Duc, D.; Hooper, S.

    1985-01-01

    Adjustable leaf spring increases maximum operating pressure of pump from 2 to over 60 psi (13 to over 400 kN/m2). Small commercial bellows pump using ac-powered electromagnet to vibrate bellows at mechanical resonance modified to operate over wider pressure range.

  2. Combined pressure regulator and shutoff valve

    NASA Technical Reports Server (NTRS)

    Koch, E. F. (Inventor)

    1974-01-01

    A remotely operable pressure regulator and shutoff valve particularly suited for achieving high resolution and flow control, and positive shutoff is described. The valve is characterized by a spring-loaded ball coaxially aligned with a fluid port to be sealed, a spring-loaded pintle extended through the port into engagement with the ball, for controlling the position, a spring-loaded diaphragm for controlling the position of the pintle, and an axially displaceable spring supported by a movable stop which, in turn, is repositioned by a selectively operable stepper motor. Thus, the pressure-response characteristics for the valve can be varied through a selective repositioning of the stop.

  3. Non-Arcing Clamp for Automotive Battery Jumper Cables.

    DTIC Science & Technology

    cable via an encapsulated pressure switch . The pressure switch is physically positioned between the copper jaw and the jaw end of the gripping member...such that spring pressure provided by the torsion spring is operative for closing the pressure switch when the clamp is mounted on a battery terminal

  4. Statistical Performance Evaluation Of Soft Seat Pressure Relief Valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Stephen P.; Gross, Robert E.

    2013-03-26

    Risk-based inspection methods enable estimation of the probability of failure on demand for spring-operated pressure relief valves at the United States Department of Energy's Savannah River Site in Aiken, South Carolina. This paper presents a statistical performance evaluation of soft seat spring operated pressure relief valves. These pressure relief valves are typically smaller and of lower cost than hard seat (metal to metal) pressure relief valves and can provide substantial cost savings in fluid service applications (air, gas, liquid, and steam) providing that probability of failure on demand (the probability that the pressure relief valve fails to perform its intendedmore » safety function during a potentially dangerous over pressurization) is at least as good as that for hard seat valves. The research in this paper shows that the proportion of soft seat spring operated pressure relief valves failing is the same or less than that of hard seat valves, and that for failed valves, soft seat valves typically have failure ratios of proof test pressure to set pressure less than that of hard seat valves.« less

  5. Scanning tunneling microscope assembly, reactor, and system

    DOEpatents

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  6. Experimental and Analytical Determination of the Motion of Hydraulically Operated Valve Stems in Oil Engine Injection Systems

    NASA Technical Reports Server (NTRS)

    Gelalles, A G; Rothrock, A M

    1930-01-01

    This research on the pressure variations in the injection system of the N.A.C.A. Spray Photography Equipment and on the effects of these variations on the motion of the timing valve stem was undertaken in connection with the study of fuel injection systems for high-speed oil engines. The methods of analysis of the pressure variations and the general equation for the motion of the spring-loaded stem for the timing valve are applicable to a spring-loaded automatic injection valve, and in general to all hydraulically operated valves. A sample calculation for a spring-loaded automatic injection valve is included.

  7. 40 CFR 63.923 - Standards-Container Level 2 controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... will be added to the container within 15 minutes, the person performing the loading operation leaves... minutes or the person performing the unloading operation leaves the immediate vicinity of the container...) Opening of a spring-loaded pressure-vacuum relief valve, conservation vent, or similar type of pressure...

  8. 40 CFR 63.923 - Standards-Container Level 2 controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... will be added to the container within 15 minutes, the person performing the loading operation leaves... minutes or the person performing the unloading operation leaves the immediate vicinity of the container...) Opening of a spring-loaded pressure-vacuum relief valve, conservation vent, or similar type of pressure...

  9. 40 CFR 63.923 - Standards-Container Level 2 controls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... will be added to the container within 15 minutes, the person performing the loading operation leaves... minutes or the person performing the unloading operation leaves the immediate vicinity of the container...) Opening of a spring-loaded pressure-vacuum relief valve, conservation vent, or similar type of pressure...

  10. 40 CFR 63.923 - Standards-Container Level 2 controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... will be added to the container within 15 minutes, the person performing the loading operation leaves... minutes or the person performing the unloading operation leaves the immediate vicinity of the container...) Opening of a spring-loaded pressure-vacuum relief valve, conservation vent, or similar type of pressure...

  11. Flow Induced Spring Coefficients of Labyrinth Seals for Application in Rotor Dynamics

    NASA Technical Reports Server (NTRS)

    Benckert, H.; Wachter, J.

    1980-01-01

    Flow induced aerodynamic spring coefficients of labyrinth seals are discussed and the restoring force in the deflection plane of the rotor and the lateral force acting perpendicularly to it are also considered. The effects of operational conditions on the spring characteristics of these components are examined, such as differential pressure, speed, inlet flow conditions, and the geometry of the labyrinth seals. Estimation formulas for the lateral forces due to shaft rotation and inlet swirl, which are developed through experiments, are presented. The utilization of the investigations is explained and results of stability calculations, especially for high pressure centrifugal compressors, are added. Suggestions are made concerning the avoidance of exciting forces in labyrinths.

  12. Quick application/release nut with engagement indicator

    NASA Technical Reports Server (NTRS)

    Wright, Jay M. (Inventor)

    1992-01-01

    A composite nut is shown which permits a fastener to be inserted or removed from either side with an indicator of fastener engagement. The nut has a plurality of segments, preferably at least three segments, which are internally threaded, spring loaded apart by an internal spring, and has detents on opposite sides which force the nut segments into operative engagements with a threaded member when pushed in and release the segments for quick insertion or removal of the nut when moved out. When the nut is installed, end pressure on one of the detents presses the nut segments into operative engagement with a threaded member where continued rotation locks the structure together with the detents depressed to indicate positive locking engagement of the nut. On removal, counterclockwise rotation of the nut relieves the endwise pressure on the detents, permitting internal springs to force the detents outward and allowing the nut segments to move outward and separate to permit quick removal of the fastener.

  13. Quick application/release nut with engagement indicator (commercial application of an innovative nut design)

    NASA Technical Reports Server (NTRS)

    Wright, Jay M.

    1991-01-01

    This is an assembly which permits a fastener to be inserted or removed from either side with an indicator of fastener engagement. The nut has a plurality of segments, preferably at least three segments, which are internally threaded, spring loaded apart by an internal spring, and has detents on opposite sides which force the nut segments into operative engagement with a threaded member when pushed in and release the segments for quick insertion or removal of the fastener when moved out. When the nut is installed, end pressure on the detents presses the nut segments into operative engagement with a threaded member where continued rotation locks the structure together with the detents depressed to indicate positive locking engagement of the nut. On removal, counterclockwise rotation relieves the endwise pressure on the detents, permitting internal springs to force the detents outward, allowing the nut segments to move outward and separate to permit quick removal of the fastener.

  14. Monitoring environmental and related performance parameters for a Rankine-cycle turbine electric generator utilizing geothermal energy at the Gila Hot Springs, New Mexico

    NASA Astrophysics Data System (ADS)

    Starkey, A. H.; Icerman, L.

    1984-08-01

    The environmental effects associated with the operation of a privately owned Rankine-cycle turbogenerator unit using low temperature geothermal resources in the form of free-flowing hot springs to produce electricity in a remote, rural area were studied. The following conclusions pertain to the operation of the turbogenerator system: (1) the heat exchanger could not provide sufficient freon vapor at the required pressures to provide adequate thermal input to the turbine; (2) conversion or redesign of the condenser and return pump to function adequately represents a problem of unknown difficulty; (3) all pressure and heat transfer tests indicated that a custom designed heat exchanger built on-site would provide adequate vapor at pressures high enough to power a 10-kW (sub e) or perhaps larger generator; and (4) automated control systems are needed for the hot and cold water supplies and the freon return pump.

  15. @NWTC Newsletter: Spring 2013 | Wind | NREL

    Science.gov Websites

    turbine blades. But according to a recent National Renewable Energy Laboratory (NREL) study that was appears unlikely that the pressure changes around operating wind turbine blades are large enough to cause

  16. THE EFFECTS OF MAINTENANCE ACTIONS ON THE PFDavg OF SPRING OPERATED PRESSURE RELIEF VALVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Gross, R.

    2014-04-01

    The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accountedmore » for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.« less

  17. The Effects of Maintenance Actions on the PFDavg of Spring Operated Pressure Relief Valves

    DOE PAGES

    Harris, S.; Gross, R.; Goble, W; ...

    2015-12-01

    The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accountedmore » for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.« less

  18. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  19. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  20. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  1. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  2. 46 CFR 64.59 - Spring loaded pressure relief valve.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...

  3. Shock-operated valve would automatically protect fluid systems

    NASA Technical Reports Server (NTRS)

    Branum, L. W.; Wells, G. H.

    1966-01-01

    Glandless valve shuts down high-pressure fluid systems when severe shock from an explosion or earthquake occurs. The valve uses a pendulum to support the valve closure plug in the open position. When jarred, the valve body is moved relative to the pendulum and the plug support is displaced, allowing the plug to seat and be held by spring pressure.

  4. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  5. 40 CFR 63.961 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... access lid or hatch), or automatically operated (e.g., a spring-loaded pressure relief valve). Hard... includes hard-piping, all drains and junction boxes, together with their associated sewer lines and other... management units include containers, air flotation units, oil-water separators or organic-water separators...

  6. 40 CFR 63.961 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... access lid or hatch), or automatically operated (e.g., a spring-loaded pressure relief valve). Hard... includes hard-piping, all drains and junction boxes, together with their associated sewer lines and other... management units include containers, air flotation units, oil-water separators or organic-water separators...

  7. 40 CFR 63.961 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... access lid or hatch), or automatically operated (e.g., a spring-loaded pressure relief valve). Hard... includes hard-piping, all drains and junction boxes, together with their associated sewer lines and other... management units include containers, air flotation units, oil-water separators or organic-water separators...

  8. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    NASA Astrophysics Data System (ADS)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  9. Pneumatic shutoff and time-delay valve operates at controlled rate

    NASA Technical Reports Server (NTRS)

    Horning, J. L.; Tomlinson, L. E.

    1966-01-01

    Shutoff and time delay valve, which incorporates a metering spool that moves at constant velocity under pneumatic pressure and spring compression, increases fluid-flow area at a uniform rate. Diaphragm areas, control cavity volume, and bleed-orifice size may be varied to give any desired combination of time delay and spool travel time.

  10. Reciprocating down-hole sand pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhle, J.L.

    1987-04-28

    This patent describes the invention of a continuously-operated reciprocating down-hole sand pump comprising: a steel polished plunger pipe that strokes back and forth within a steel honed pump barrel, and is equipped with a self-lubricating fluorocarbon V-ring system that is pressure-actuated during compression strokes; the self-lubricating fluorocarbon V-ring system also is self-actuated by means of coil springs to provide wiping action to the polished plunger pipe during suction strokes; the self-lubricating fluorocarbons V-ring system also self-adjusts by means of coil springs located adjacent the fluorocarbon V-ring so as to automatically compensate for V-ring wear; and the self-lubricating fluorocarbon V-ring systemmore » also is designed in such a manner so as to eliminate voids and discourage the extrusion of V-rings in high temperature and high-pressure applications.« less

  11. Operational Ethics in Coalition Warfare: Whose Ethics Will Prevail? A Philosophical/Theological Conundrum

    DTIC Science & Technology

    2002-05-13

    the identification of reason as the prime human faculty and virtue, i.e., sense of excellence and practical wisdom as the highest good. These are the...Clothes, " National Security Studies Quarterly Spring 2000, Volume VI, Issue 2, pp. 59-71. 43 Glynis Breakwell and Keith Spacie , Pressures Facing...commander to draw upon, then what is the solution to reduce the stressors highlighted by the Breakwell and Spacie study? Can there be operational

  12. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  13. Airbag vent valve and system

    NASA Technical Reports Server (NTRS)

    Peterson, Leslie D. (Inventor); Zimmermann, Richard E. (Inventor)

    2001-01-01

    An energy absorbing airbag system includes one or more vent valve assemblies for controlling the release of airbag inflation gases to maintain inflation gas pressure within an airbag at a substantially constant pressure during a ride-down of an energy absorbing event. Each vent valve assembly includes a cantilever spring that is flat in an unstressed condition and that has a free end portion. The cantilever spring is secured to an exterior surface of the airbag housing and flexed to cause the second free end portion of the cantilever spring to be pressed, with a preset force, against a vent port or a closure covering the vent port to seal the vent port until inflation gas pressure within the airbag reaches a preselected value determined by the preset force whereupon the free end portion of the cantilever spring is lifted from the vent port by the inflation gases within the airbag to vent the inflation gases from within the airbag. The resilience of the cantilever spring maintains a substantially constant pressure within the airbag during a ride-down portion of an energy absorbing event by causing the cantilever spring to vent gases through the vent port whenever the pressure of the inflation gases reaches the preselected value and by causing the cantilever spring to close the vent port whenever the pressure of the inflation gases falls below the preselected value.

  14. Pressurized Testing of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. E. O'Brien; X. Zhang; G. K. Housley

    2012-06-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate cell dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation upmore » to 5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this paper.« less

  15. Utilization of Indonesia's Hot Spring Sources for Electricity using Kalina Cycle and Organic Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Prabumukti, Grano; Purwanto; Widodo, Wahyu

    2018-02-01

    Indonesia posses 40% of the world's geothermal energy sources. The existence of hydrothermal sources is usually characterized by their surface manifestations such as hot springs, geysers and fumarole. Hot spring has a potential to be used as a heat source to generate electricity especially in a rural and isolated area. Hot springs can be converted into electricity by binary thermodynamic cycles such as Kalina cycle and ORC. The aim of this study is to obtain the best performances of cycle configuration and the potential power capacity. Simulation is conducted using UNISIM software with working fluid and its operating condition as the decision variables. The simulation result shows that R1234yf and propene with simple ORC as desired working fluid and cycle configuration. It reaches a maximum thermal efficiency up to 9.6% with a specific turbine inlet pressure. Higher temperature heat source will result a higher thermal efficiency‥ Cycle thermal efficiency varies from 4.7% to 9.6% depends on source of hot spring temperature. Power capacity that can be generated using Indonesia's hot spring is ranged from 2 kWe to 61.2 kWe. The highest capacity located in Kawah Sirung and the least located in Kaendi.

  16. Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation

    USGS Publications Warehouse

    Starke, Verena; Kirshtein, Julie; Fogel, Marilyn L.; Steele, Andrew

    2013-01-01

    Environmental conditions shape community composition. Arctic thermal springs provide an opportunity to study how environmental gradients can impose strong selective pressures on microbial communities and provide a continuum of niche opportunities. We use microscopic and molecular methods to conduct a survey of microbial community composition at Troll Springs on Svalbard, Norway, in the high Arctic. Microorganisms there exist under a wide range of environmental conditions: in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll Springs has two distinct ecosystems, aquatic and terrestrial, together in close proximity, with different underlying environmental factors shaping each microbial community. Periphyton are entrapped during precipitation of calcium carbonate from the spring's waters, providing microbial populations that serve as precursors for the development of endolithic communities. This process differs from most endolith colonization, in which the rock predates the communities that colonize it. Community composition is modulated as environmental conditions change within the springs. At Troll, the aquatic environments show a small number of dominant operational taxonomic units (OTUs) that are specific to each sample. The terrestrial environments show a more even distribution of OTUs common to multiple samples.

  17. How important is hydrotherapy? Effects of dynamic action of hot spring water as a rehabilitative treatment for burn patients in Switzerland.

    PubMed

    Moufarrij, S; Deghayli, L; Raffoul, W; Hirt-Burri, N; Michetti, M; de Buys Roessingh, A; Norberg, M; Applegate, L A

    2014-12-31

    Burn rehabilitation using hydrotherapy can have multiple benefits for the burn patient. The therapy uses specific mineral enriched hot spring water and water jets with varied hydro-pressure to combat hypertrophy, inflammatory reaction signs, abnormal pigmentation, and, more specifically, redness and scarring. Standard operating procedures for burn rehabilitation have been developed and integrated into the Standard of Care at the CHUV hospital using localized hydro-mechanical stimulation of burn sites (20 minutes of alternating anatomical sites) followed by constant pressure large-bore and filiform showers targeting specific scarred areas. These therapeutic regimens are repeated daily for 2 to 3 weeks. Patients showed lasting effects from this regimen (up to 3-6 months), the results becoming permanent with more uniform skin structure, color and visco-elasticity in addition to a decrease in pruritus. The specifications of clinical protocols are described herein along with the virtues of hot spring hydro-pressure therapy for burn rehabilitation. The use of hydrotherapy, which has been a controversial topic among burn units across the world, is also discussed. In North America, hydrotherapy is defined only within the scope of in-patient wound cleansing and is thought to lead to microbial auto-contamination and bacterial resistance. In Switzerland and France the emphasis of hydrotherapy is on rehabilitation after the wound has closed.

  18. How important is hydrotherapy? Effects of dynamic action of hot spring water as a rehabilitative treatment for burn patients in Switzerland

    PubMed Central

    Moufarrij, S.; Deghayli, L.; Raffoul, W.; Hirt-Burri, N.; Michetti, M.; de Buys Roessingh, A.; Norberg, M.; Applegate, L.A.

    2014-01-01

    Summary Burn rehabilitation using hydrotherapy can have multiple benefits for the burn patient. The therapy uses specific mineral enriched hot spring water and water jets with varied hydro-pressure to combat hypertrophy, inflammatory reaction signs, abnormal pigmentation, and, more specifically, redness and scarring. Standard operating procedures for burn rehabilitation have been developed and integrated into the Standard of Care at the CHUV hospital using localized hydro-mechanical stimulation of burn sites (20 minutes of alternating anatomical sites) followed by constant pressure large-bore and filiform showers targeting specific scarred areas. These therapeutic regimens are repeated daily for 2 to 3 weeks. Patients showed lasting effects from this regimen (up to 3-6 months), the results becoming permanent with more uniform skin structure, color and visco-elasticity in addition to a decrease in pruritus. The specifications of clinical protocols are described herein along with the virtues of hot spring hydro-pressure therapy for burn rehabilitation. The use of hydrotherapy, which has been a controversial topic among burn units across the world, is also discussed. In North America, hydrotherapy is defined only within the scope of in-patient wound cleansing and is thought to lead to microbial auto-contamination and bacterial resistance. In Switzerland and France the emphasis of hydrotherapy is on rehabilitation after the wound has closed. PMID:26336365

  19. Oscillating-Linear-Drive Vacuum Compressor for CO2

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Shimko, Martin

    2005-01-01

    A vacuum compressor has been designed to compress CO2 from approximately equal to 1 psia (approximately equal to 6.9 kPa absolute pressure) to approximately equal to 75 psia (approximately equal to 0.52 MPa), to be insensitive to moisture, to have a long operational life, and to be lightweight, compact, and efficient. The compressor consists mainly of (1) a compression head that includes hydraulic diaphragms, a gas-compression diaphragm, and check valves; and (2) oscillating linear drive that includes a linear motor and a drive spring, through which compression force is applied to the hydraulic diaphragms. The motor is driven at the resonance vibrational frequency of the motor/spring/compression-head system, the compression head acting as a damper that takes energy out of the oscillation. The net effect of the oscillation is to cause cyclic expansion and contraction of the gas-compression diaphragm, and, hence, of the volume bounded by this diaphragm. One-way check valves admit gas into this volume from the low-pressure side during expansion and allow the gas to flow out to the high-pressure side during contraction. Fatigue data and the results of diaphragm stress calculations have been interpreted as signifying that the compressor can be expected to have an operational life of greater than 30 years with a confidence level of 99.9 percent.

  20. Continuous chain bit with downhole cycling capability

    DOEpatents

    Ritter, Don F.; St. Clair, Jack A.; Togami, Henry K.

    1983-01-01

    A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

  1. Orthogonal optimization of a water hydraulic pilot-operated pressure-reducing valve

    NASA Astrophysics Data System (ADS)

    Mao, Xuyao; Wu, Chao; Li, Bin; Wu, Di

    2017-12-01

    In order to optimize the comprehensive characteristics of a water hydraulic pilot-operated pressure-reducing valve, numerical orthogonal experimental design was adopted. Six parameters of the valve, containing diameters of damping plugs, volume of spring chamber, half cone angle of main spool, half cone angle of pilot spool, mass of main spool and diameter of main spool, were selected as the orthogonal factors, and each factor has five different levels. An index of flowrate stability, pressure stability and pressure overstrike stability (iFPOS) was used to judge the merit of each orthogonal attempt. Embedded orthogonal process turned up and a final optimal combination of these parameters was obtained after totally 50 numerical orthogonal experiments. iFPOS could be low to a fairly low value which meant that the valve could have much better stabilities. During the optimization, it was also found the diameters of damping plugs and main spool played important roles in stability characteristics of the valve.

  2. REACTOR MODERATOR STRUCTURE

    DOEpatents

    Fraas, A.P.; Tudor, J.J.

    1963-08-01

    An improved moderator structure for nuclear reactors consists of moderator blocks arranged in horizontal layers to form a multiplicity of vertically stacked columns of blocks. The blocks in each vertical column are keyed together, and a ceramic grid is disposed between each horizontal layer of blocks. Pressure plates cover- the lateral surface of the moderator structure in abutting relationship with the peripheral terminal lengths of the ceramic grids. Tubular springs are disposed between the pressure plates and a rigid external support. The tubular springs have their axes vertically disposed to facilitate passage of coolant gas through the springs and are spaced apart a selected distance such that at sonae preselected point of spring deflection, the sides of the springs will contact adjacent springs thereby causing a large increase in resistance to further spring deflection. (AEC)

  3. Safety studies on vacuum insulated liquid helium cryostats

    NASA Astrophysics Data System (ADS)

    Weber, C.; Henriques, A.; Zoller, C.; Grohmann, S.

    2017-12-01

    The loss of insulating vacuum is often considered as a reasonable foreseeable accident for the dimensioning of cryogenic safety relief devices (SRD). The cryogenic safety test facility PICARD was designed at KIT to investigate such events. In the course of first experiments, discharge instabilities of the spring loaded safety relief valve (SRV) occurred, the so-called chattering and pumping effects. These instabilities reduce the relief flow capacity, which leads to impermissible over-pressures in the system. The analysis of the process dynamics showed first indications for a smaller heat flux than the commonly assumed 4W/cm2. This results in an oversized discharge area for the reduced relief flow rate, which corresponds to the lower heat flux. This paper presents further experimental investigations on the venting of the insulating vacuum with atmospheric air under variation of the set pressure (p set) of the SRV. Based on dynamic process analysis, the results are discussed with focus on effective heat fluxes and operating characteristics of the spring-loaded SRV.

  4. VALVES FOR THE HIGH PRESSURE-HIGH TEMPERATURE (HP-HT) FLUORINATION SYSTEM. (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    This package contains two drawings of valves which eliminate errors in the gravimetric oxide dilution procedure of U/sup 235/ measurement. Isotopic contaminatioNonen in the high pressure fluorination reactor was corrected by changing the manner in which the Cu tubing joins the valve and by modification of the bellows. The compact inlet system was modified to improve the precision of the spectrometer analyses. Changes were raade in the basic leak and the air operator, which is a diaphragm-type valve, so that the setting of the flow level is controlled by the closure spring adjustment screw. This capillary-type leak has increased controlmore » range and sraooth control characteristics. It is simple to construct, is remotely operated and is free from corrosion failure. (F.S.)« less

  5. Long-Range Operational Military Forecasts for Afghanistan

    DTIC Science & Technology

    2007-03-01

    the winter and early spring months with eastward–moving extratropical synoptic storms , such as the Cyprus and Genoa low pressure systems out of the...significant impact on the storm track, temperature, and precipitation across the Northern Atlantic and into Europe and the Mediterranean. The positive...advection of moisture out of the Arabian Sea or out of central Asia. The NAO impacts on 850hPa temperatures are associated with variations in storm

  6. High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.E. O'Brien; X. Zhang; G.K. Housley

    2012-09-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells.more » The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this report. Results of initial testing showed the expected increase in open-cell voltage associated with elevated pressure. However, stack performance in terms of area-specific resistance was enhanced at elevated pressure due to better gas diffusion through the porous electrodes of the cells. Some issues such as cracked cells and seals were encountered during testing. Full resolution of these issues will require additional testing to identify the optimum test configurations and protocols.« less

  7. 76 FR 63714 - Big Spring Rail System, Inc.;Operation Exemption;Transport Handling Specialists, Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35553] Big Spring Rail System, Inc.;Operation Exemption;Transport Handling Specialists, Inc. Big Spring Rail System, Inc. (BSRS...., owned by the City of Big Spring, Tex. (City). BSRS will be operating the line for Transport Handling...

  8. Raw Pressure Data from Observation Wells at Brady's Hot Springs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Lim

    This .csv files contain the raw water pressure data from three observation wells during pumping tests performed in the Spring of 2016. Included is a "read me" file explaining the details of where and how the data were collected.

  9. Manufacture of conical springs with elastic medium technology improvement

    NASA Astrophysics Data System (ADS)

    Kurguzov, S. A.; Mikhailova, U. V.; Kalugina, O. B.

    2018-01-01

    This article considers the manufacturing technology improvement by using an elastic medium in the stamping tool forming space to improve the conical springs performance characteristics and reduce the costs of their production. Estimation technique of disk spring operational properties is developed by mathematical modeling of the compression process during the operation of a spring. A technique for optimizing the design parameters of a conical spring is developed, which ensures a minimum voltage value when operated in the edge of the spring opening.

  10. Analysis of effect of internal and operating variables on performance of SVDS constraint model (ABIND)

    NASA Technical Reports Server (NTRS)

    Pendergrass, J. R.; Walsh, R. L.

    1975-01-01

    An examination of the factors which modify the simulation of a constraint in the motion of the aft attach points of the orbiter and external tank during separation has been made. The factors considered were both internal (spring and damper constants) and external (friction coefficient and dynamic pressure). The results show that an acceptable choice of spring/damper constant combinations exist over the expected range of the external factors and that the choice is consistent with a practical integration interval. The constraint model is shown to produce about a 10 percent increase in the relative body pitch angles over the unconstrained case whereas the MDC-STL constraint model is shown to produce about a 38 percent increase.

  11. Pressure-Temperature Simulation at Brady Hot Springs

    DOE Data Explorer

    Feigl, Kurt (ORCID:0000000220596708)

    2017-07-11

    These files contain the output of a model calculation to simulate the pressure and temperature of fluid at Brady Hot Springs, Nevada, USA. The calculation couples the hydrologic flow (Darcy's Law) with simple thermodynamics. The epoch of validity is 24 March 2015. Coordinates are UTM Easting, Northing, and Elevation in meters. Temperature is specified in degrees Celsius. Pressure is specified in Pascal.

  12. Groove refinishing tool

    DOEpatents

    Kellogg, Harvey J.; Holm, Robert O.

    1983-01-01

    A groove refinishing tool which utilizes a finishing wheel which is controlled by an air grinder motor. The air grinder motor is mounted on a main body section which is pivotally attached to a shoe element. The shoe element contains guide pins which guide the shoe element on the groove to be refinished. Application of pressure on the main body element compresses a weight counterbalance spring to extend the finishing wheel through the shoe element to refinish the groove surface. A window is provided for viewing the refinishing operation. Milling operations can also be performed by replacing the finishing wheel with a milling wheel.

  13. Transpiring purging access probe for particulate laden or hazardous environments

    DOEpatents

    VanOsdol, John G

    2013-12-03

    An access probe for remote-sensing access through a viewing port, viewing volume, and access port into a vessel. The physical boundary around the viewing volume is partially formed by a porous sleeve lying between the viewing volume and a fluid conduit. In a first mode of operation, a fluid supplied to the fluid conduit encounters the porous sleeve and flows through the porous material to maintain the viewing volume free of ash or other matter. When additional fluid force is needed to clear the viewing volume, the pressure of the fluid flow is increased sufficiently to slidably translate the porous sleeve, greatly increasing the flow into the viewing volume. The porous sleeve is returned to position by an actuating spring. The access probe thereby provides for alternate modes of operation based on the pressure of an actuating fluid.

  14. Depressurization valve

    DOEpatents

    Skoda, G.I.

    1989-03-28

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring-preferably of the Belleville variety-acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion.

  15. Relative importance of population size, fishing pressure and temperature on the spatial distribution of nine Northwest Atlantic groundfish stocks.

    PubMed

    Adams, Charles F; Alade, Larry A; Legault, Christopher M; O'Brien, Loretta; Palmer, Michael C; Sosebee, Katherine A; Traver, Michele L

    2018-01-01

    The spatial distribution of nine Northwest Atlantic groundfish stocks was documented using spatial indicators based on Northeast Fisheries Science Center spring and fall bottom trawl survey data, 1963-2016. We then evaluated the relative importance of population size, fishing pressure and bottom temperature on spatial distribution with an information theoretic approach. Northward movement in the spring was generally consistent with prior analyses, whereas changes in depth distribution and area occupancy were not. Only two stocks exhibited the same changes in spatiotemporal distribution in the fall as compared with the spring. Fishing pressure was the most important predictor of the center of gravity (i.e., bivariate mean location of the population) for the majority of stocks in the spring, whereas in the fall this was restricted to the east-west component. Fishing pressure was also the most important predictor of the dispersion around the center of gravity in both spring and fall. In contrast, biomass was the most important predictor of area occupancy for the majority of stocks in both seasons. The relative importance of bottom temperature was ranked highest in the fewest number of cases. This study shows that fishing pressure, in addition to the previously established role of climate, influences the spatial distribution of groundfish in the Northwest Atlantic. More broadly, this study is one of a small but growing body of literature to demonstrate that fishing pressure has an effect on the spatial distribution of marine resources. Future work must consider both fishing pressure and climate when examining mechanisms underlying fish distribution shifts.

  16. Relative importance of population size, fishing pressure and temperature on the spatial distribution of nine Northwest Atlantic groundfish stocks

    PubMed Central

    Alade, Larry A.; Legault, Christopher M.; O’Brien, Loretta; Palmer, Michael C.; Sosebee, Katherine A.; Traver, Michele L.

    2018-01-01

    The spatial distribution of nine Northwest Atlantic groundfish stocks was documented using spatial indicators based on Northeast Fisheries Science Center spring and fall bottom trawl survey data, 1963–2016. We then evaluated the relative importance of population size, fishing pressure and bottom temperature on spatial distribution with an information theoretic approach. Northward movement in the spring was generally consistent with prior analyses, whereas changes in depth distribution and area occupancy were not. Only two stocks exhibited the same changes in spatiotemporal distribution in the fall as compared with the spring. Fishing pressure was the most important predictor of the center of gravity (i.e., bivariate mean location of the population) for the majority of stocks in the spring, whereas in the fall this was restricted to the east-west component. Fishing pressure was also the most important predictor of the dispersion around the center of gravity in both spring and fall. In contrast, biomass was the most important predictor of area occupancy for the majority of stocks in both seasons. The relative importance of bottom temperature was ranked highest in the fewest number of cases. This study shows that fishing pressure, in addition to the previously established role of climate, influences the spatial distribution of groundfish in the Northwest Atlantic. More broadly, this study is one of a small but growing body of literature to demonstrate that fishing pressure has an effect on the spatial distribution of marine resources. Future work must consider both fishing pressure and climate when examining mechanisms underlying fish distribution shifts. PMID:29698454

  17. Fast acting check valve

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1979-01-01

    A check valve which closes more rapidly to prevent wearing of the valve seat and of the valve member that seals thereagainst, including a solenoid or other actuator that aids the normal spring to quickly close the valve at approximately the time when downpath fluid flow would stop, the actuator then being deenergized. The control circuit that operates the actuator can include a pair of pressure sensors sensing pressure both upstream and downstream from the valve seat. Where the valve is utilized to control flow to or from a piston pump, energization of the actuator can be controlled by sensing when the pump piston reaches its extreme of travel.

  18. Novel In-Shoe Exoskeleton for Offloading of Forefoot Pressure for Individuals With Diabetic Foot Pathology.

    PubMed

    Roser, Mark C; Canavan, Paul K; Najafi, Bijan; Cooper Watchman, Marcy; Vaishnav, Kairavi; Armstrong, David G

    2017-09-01

    Infected diabetic foot ulcers are the leading cause of lower limb amputation. This study evaluated the ability of in-shoe exoskeletons to redirect forces outside of body and through an exoskeleton as an effective means of offloading plantar pressure, the major contributing factor of ulceration. We compared pressure in the forefoot and hind-foot of participants (n = 5) shod with novel exoskeleton footwear. Plantar pressure readings were taken during a 6-m walk at participant's self-selected speed, and five strides were averaged. Results were taken with Achilles exotendon springs disengaged as a baseline, followed by measurements taken with the springs engaged. When springs were engaged, all participants demonstrated a decrease in forefoot pressure, averaging a 22% reduction ( P < .050). Patient feedback was universally positive, preferring the exotendon springs to be engaged and active. Offloading is standard of care for reducing harmful plantar pressure, which may lead to foot ulcers. However, current offloading modalities are limited and have issues. This proof-of-concept study proposed a novel offloading approach based on an exoskeleton solution. Results suggest that when the novel exoskeletons were deployed in footwear and exotendon springs engaged, force was successfully transferred from the lower leg through the exoskeleton-enabled shoe to ground, reducing load on the forefoot. The results need to be confirmed in a larger sample. Another study is warranted to examine the effectiveness of this offloading to prevent diabetic foot ulcer, while minimizing gait alteration in daily physical activities.

  19. Seasonal variation in xylem pressure of walnut trees: root and stem pressures.

    PubMed

    Ewers, F W; Améglio, T; Cochard, H; Beaujard, F; Martignac, M; Vandame, M; Bodet, C; Cruiziat, P

    2001-09-01

    Measurements of air and soil temperatures and xylem pressure were made on 17-year-old orchard trees and on 5-year-old potted trees of walnut (Juglans regia L.). Cooling chambers were used to determine the relationships between temperature and sugar concentration ([glucose] + [fructose] + [sucrose], GFS) and seasonal changes in xylem pressure development. Pressure transducers were attached to twigs of intact plants, root stumps and excised shoots while the potted trees were subjected to various temperature regimes in autumn, winter and spring. Osmolarity and GFS of the xylem sap (apoplast) were measured before and after cooling or warming treatments. In autumn and spring, xylem pressures of up to 160 kPa were closely correlated with soil temperature but were not correlated with GFS in xylem sap. High root pressures were associated with uptake of mineral nutrients from soil, especially nitrate. In autumn and spring, xylem pressures were detected in root stumps as well as in intact plants, but not in excised stems. In contrast, in winter, 83% of the xylem sap osmolarity in both excised stems and intact plants could be accounted for by GFS, and both GFS and osmolarity were inversely proportional to temperature. Plants kept at 1.5 degrees C developed positive xylem pressures up to 35 kPa, xylem sap osmolarities up to 260 mosmol l(-1) and GFS concentrations up to 70 g l(-1). Autumn and spring xylem pressures, which appeared to be of root origin, were about 55% of the theoretical pressures predicted by osmolarity of the xylem sap. In contrast, winter pressures appeared to be of stem origin and were only 7% of the theoretical pressures, perhaps because of a lower stem water content during winter.

  20. Towards thermal noise free optomechanics

    NASA Astrophysics Data System (ADS)

    Page, Michael A.; Zhao, Chunnong; Blair, David G.; Ju, Li; Ma, Yiqiu; Pan, Huang-Wei; Chao, Shiuh; Mitrofanov, Valery P.; Sadeghian, Hamed

    2016-11-01

    Thermal noise generally greatly exceeds quantum noise in optomechanical devices unless the mechanical frequency is very high or the thermodynamic temperature is very low. This paper addresses the design concept for a novel optomechanical device capable of ultrahigh quality factors in the audio frequency band with negligible thermal noise. The proposed system consists of a minimally supported millimeter scale pendulum mounted in a double end-mirror sloshing cavity that is topologically equivalent to a membrane-in-the-middle cavity. The radiation pressure inside the high-finesse cavity allows for high optical stiffness, cancellation of terms which lead to unwanted negative damping and suppression of quantum radiation pressure noise. We solve the optical spring dynamics of the system using the Hamiltonian, find the noise spectral density and show that stable optical trapping is possible. We also assess various loss mechanisms, one of the most important being the acceleration loss due to the optical spring. We show that practical devices, starting from a centre-of-mass pendulum frequency of 0.1 Hz, could achieve a maximum quality factor of (1014) with optical spring stiffened frequency 1-10 kHz. Small resonators of mass 1 ≤ft(μ \\right) g or less could achieve a Q-factor of (1011) at a frequency of 100 kHz. Applications for such devices include white light cavities for improvement of gravitational wave detectors, or sensors able to operate near the quantum limit.

  1. 46 CFR 162.018-4 - Construction and workmanship.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... external spring-loaded type, suitable for the intended service. (b) Safety relief valve body, base, bonnet... with side or top outlet discharge connections. (f)(1) Springs shall not show a permanent set exceeding... the spring solid. (2) Springs may not be re-set for any pressure more than 10 percent above or 10...

  2. 46 CFR 162.018-4 - Construction and workmanship.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... external spring-loaded type, suitable for the intended service. (b) Safety relief valve body, base, bonnet... with side or top outlet discharge connections. (f)(1) Springs shall not show a permanent set exceeding... the spring solid. (2) Springs may not be re-set for any pressure more than 10 percent above or 10...

  3. 46 CFR 162.018-4 - Construction and workmanship.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... external spring-loaded type, suitable for the intended service. (b) Safety relief valve body, base, bonnet... with side or top outlet discharge connections. (f)(1) Springs shall not show a permanent set exceeding... the spring solid. (2) Springs may not be re-set for any pressure more than 10 percent above or 10...

  4. 46 CFR 162.018-4 - Construction and workmanship.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... external spring-loaded type, suitable for the intended service. (b) Safety relief valve body, base, bonnet... with side or top outlet discharge connections. (f)(1) Springs shall not show a permanent set exceeding... the spring solid. (2) Springs may not be re-set for any pressure more than 10 percent above or 10...

  5. 46 CFR 162.018-4 - Construction and workmanship.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... external spring-loaded type, suitable for the intended service. (b) Safety relief valve body, base, bonnet... with side or top outlet discharge connections. (f)(1) Springs shall not show a permanent set exceeding... the spring solid. (2) Springs may not be re-set for any pressure more than 10 percent above or 10...

  6. An Experimental Study of Pressure Oscillation in a Capillary Pumped Loop with Multiple Evaporators and Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jen-Tung; Hoang, Triem T.

    1998-01-01

    The heat transport capability of a capillary pumped loop (CPL) is limited by the pressure drop that its evaporator wick can sustain. The pressure drop in a CPL is not constant even under seemingly steady operation, but rather exhibits an oscillatory behavior. A hydrodynamic theory based on a mass-spring-dashpot model was previously developed to predict the pressure oscillation in a CPL with a single evaporator and a single condenser. The theory states that the pressure oscillation is a function of physical dimensions of the CPL components and operating conditions. Experimental data agreed very well with theoretical predictions. The hydrodynamic stability theory has recently been extended to predict the pressure oscillations in CPLs with multiple evaporators and multiple condensers. Concurrently, an experimental study was conducted to verify the theory and to investigate the effects of various parameters on the pressure oscillation. Four evaporators with different wick properties were tested using a test loop containing two condenser plates. The test loop allowed the four evaporators to be tested in a single-pump, two-pump or four-pump configuration, and the two condenser plates to be plumbed either in parallel or in series. Test conditions included varying the power input, the reservoir set point temperature, the condenser sink temperature, and the flow resistance between the reservoir and the loop. Experimental results agreed well with theoretical predictions.

  7. Depressurization valve

    DOEpatents

    Skoda, George I.

    1989-01-01

    A depressurization valve for use in relieving completely the pressure in a simplified boiling water reactor is disclosed. The normally closed and sealed valve is provided with a valve body defining a conduit from an outlet of a manifold from the reactor through a valve seat. A closing valve disk is configured for fitting to the valve seat to normally close the valve. The seat below the disk is provided with a radially extending annulus extending a short distance into the aperture defined by the seat. The disk is correspondingly provided with a longitudinally extending annulus that extends downwardly through the aperture defined by the seat towards the high pressure side of the valve body. A ring shaped membrane is endlessly welded to the seat annulus and to the disk annulus. The membrane is conformed over the confronted surface of the seat and disk in a C-sectioned configuration to seal the depressurization valve against the possibility of weeping. The disk is held to the closed position by an elongate stem extending away from the high pressure side of the valve body. The stem has a flange configured integrally to the stem for bias by two springs. The first spring acts from a portion of the housing overlying the disk on the stem flange adjacent the disk. This spring urges the stem and attached disk away from the seat and thus will cause the valve to open at any pressure. A second spring--preferably of the Belleville variety--acts on a latch plate surrounding and freely moving relative to the end of the stem. This second spring overcomes the bias of the first spring and any pressure acting upon the disk. This Belleville spring maintains through its spring force the valve in the closed position. At the same time, the latch plate with its freedom of movement relative to the stem allows the stem to thermally expand during valve temperature excursion. The latch plate in surrounding the stem is limited in its outward movement by a boss attached to the stem at the end of the stem remote from the disk. The latch plate is held normally closed by three radial latches spaced at 120.degree. around the periphery of the plate.

  8. Constant-Differential-Pressure Two-Fluid Accumulator

    NASA Technical Reports Server (NTRS)

    Piecuch, Benjamin; Dalton, Luke T.

    2010-01-01

    A two-fluid accumulator has been designed, built, and demonstrated to provide an acceptably close approximation to constant differential static pressure between two fluids over the full ranges of (1) accumulator stroke, (2) rates of flow of the fluids, and (3) common static pressure applied to the fluids. Prior differential- pressure two-fluid accumulators are generally not capable of maintaining acceptably close approximations to constant differential pressures. The inadequacies of a typical prior differential-pressure two-fluid accumulator can be summarized as follows: The static differential pressure is governed by the intrinsic spring rate (essentially, the stiffness) of an accumulator tank. The spring rate can be tailored through selection of the tank-wall thickness, selection of the number and/or shape of accumulator convolutions, and/or selection of accumulator material(s). Reliance on the intrinsic spring rate of the tank results in three severe limitations: (1) The spring rate and the expulsion efficiency tend to be inversely proportional to each other: that is to say, as the stiffness (and thus the differential pressure) is increased, the range of motion of the accumulator is reduced. (2) As the applied common static pressure increases, the differential pressure tends to decrease. An additional disadvantage, which may or may not be considered limiting, depending on the specific application, is that an increase in stiffness entails an increase in weight. (3) The additional weight required by a low expulsion efficiency accumulator eliminates the advantage given to such gas storage systems. The high expulsion efficiency provided by this two-fluid accumulator allows for a lightweight, tightly packaged system, which can be used in conjunction with a fuel cell-based system.

  9. 2010 weather and aeolian sand-transport data from the Colorado River corridor, Grand Canyon, Arizona

    USGS Publications Warehouse

    Dealy, Timothy P.; East, Amy E.; Fairley, Helen C.

    2014-01-01

    Measurements of weather parameters and aeolian sand transport were made in 2010 near selected archeological sites in the Colorado River corridor through Grand Canyon, Arizona. Data collected in 2010 indicate event- and seasonal-scale variations in rainfall, wind, temperature, humidity, and barometric pressure. Differences in weather patterns between 2009 and 2010 included a slightly later spring windy season, greater spring precipitation and annual rainfall totals, and a later onset and length of the reduced diurnal barometric-pressure fluctuations commonly associated with summer monsoon conditions. The increase in spring precipitation was consistent with the 2010 spring El Niño conditions compared to the 2009 spring La Niña conditions, whereas the subsequent transition to an El Niño-Southern Oscillation neutral phase appeared to delay the reduction in diurnal barometric fluctuations.

  10. MX Siting Investigation. Preliminary Geotechnical Investigation. Proposed Operational Base Site, Coyote Spring Valley, Nevada. Volume I. Synthesis.

    DTIC Science & Technology

    1980-12-23

    slopes, location of potential aggregate sources, types of I foundations for the various structures and their aliowahle bearing pressures , and...limestone and dolomite are generally gray and dark gray, thick-bedded to massive, and are commonly I jointed. Bedding is defined by differential erosion...limestone and dolomite occurs about 1 1/2 miles (2.4 km) north of State Route 7 on the western side of Pahranagat Wash (Drawing 5-1). It has the same general

  11. NMC stratospheric analyses during the 1987 Antarctic expedition

    NASA Technical Reports Server (NTRS)

    Gelman, Melvyn E.; Newman, Paul A.

    1988-01-01

    Stratospheric constant pressure analyses of geopotential height and temperature, produced as part of regular operations at the National Meteorological Center (NMC), were used by several participants of the Antarctic Ozone Expedition. A brief decription is given of the NMC stratospheric analyses and the data that are used to derive them. In addition, comparisons of the analysis values at the locations of radiosonde and aircraft data are presented to provide indications for assessing the representativeness of the NMC stratospheric analyses during the 1987 Antarctic winter-spring period.

  12. Wear compensating seal means for rotary piston coal feeder

    DOEpatents

    Gencsoy, Hasan T.; Gardner, John F.

    1979-01-01

    The present invention is directed to a wear compensating seal arrangement for use in a rotary piston feeder utilized for feeding pulverized coal into a gasifier operating at relatively high pressures and elevated temperatures. The rotary piston feeder has a circular casing with a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable disoidal rotor having a cylinder in which a reciprocatable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam whereby pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder and then discharged therefrom into the high pressure gasifier while maintaining minimal losses of producer gas and the expenditure of minimal energy which would detract from the efficiency of the gasification. The seal arrangement of the present invention is disposed between the rotor and the casing about the coal discharge and prevents the high pressure gases from within the gasifier from escaping between these relatively movable parts during operation of the coal feeder. The seal utilizes a primary seal in contact with the rotor and a secondary seal supporting the primary seal. The primary seal is continuously urged towards the rotor by springs and the high pressure producer gas.

  13. Analysis of flowpath dynamics in a steep unchannelled hollow in the Tanakami Mountains of Japan

    NASA Astrophysics Data System (ADS)

    Uchida, Taro; Asano, Yuko; Ohte, Nobuhito; Mizuyama, Takahisa

    2003-02-01

    Simultaneous measurements of runoff, soil pore water pressure, soil temperature, and water chemistry were taken to evaluate the spatial and temporal nature of flowpaths in a steep 0·1 ha unchannelled hollow in the Tanakami Mountains of central Japan. Tensiometers showed that a saturated area formed and a downward hydraulic gradient existed continuously in the area near a spring. The amplitude of the soil-bedrock interface temperature difference near the spring was smaller than that in the upper hollow, although soil depth near the spring was smaller than in the upper hollow. This suggests that, in the small perennially saturated area near the spring, water percolates through the vadose zone mixed with water emerging from the bedrock. During summer rainstorms, the soil-bedrock interface temperature increased as the ground became saturated. Silica and sodium concentrations in the transient saturated groundwater during these episodes were significantly lower than those in the perennial groundwater, suggesting that both rainwater and shallow soil water had important effects on the formation of transient saturated groundwater on the upper slope. In this case, the streamflow varied with the soil pore water pressure on the upper slope; the soil pore water pressure in the area near the spring remained nearly constant. Moreover, the spring water temperature was almost the same as the transient groundwater temperature on the upper slope. This indicates that the transient groundwater in the upper slope flowed to the spring via lateral preferential paths. The relative inflow of bedrock groundwater to the spring decreased as rainfall increased.

  14. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, Stanley H.; Warren, Mial Evans; Snipes, Jr., Morris Burton; Armendariz, Marcelino Guadalupe; Word, V., James Cole

    1997-01-01

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring.

  15. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, S.H.; Warren, M.E.; Snipes, M.B. Jr.; Armendariz, M.G.; Word, J.C. V

    1997-08-19

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring. 8 figs.

  16. Foot pedal operated fluid type exercising device

    NASA Technical Reports Server (NTRS)

    Crum, G. W.; Sauter, R. J. (Inventor)

    1973-01-01

    A foot pedal operated exercising device is reported that contains a dynamometer formed of a pair of cylinders each containing a piston. The pistons are linked to each other. The upper portions of the two cylinders are joined together by a common opening to provide a common fluid reservoir and each piston is provided with a one way check valve to maintain an adequate supply of working fluid. Fluid from the driven cylinder is transmitted to the other cylinder through separate constant force spring biased valves each valve takes the predominant portion of the pressure drop thereby providing a constant force hydraulic dynamometer. A device is provided to determine the amount of movement of piston travel.

  17. Mitigation of radiation-pressure-induced angular instability of a Fabry-Perot cavity consisting of suspended mirrors

    NASA Astrophysics Data System (ADS)

    Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji

    2016-12-01

    To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system.

  18. The reproductive success of lake herring in habitats near shipping channels and ice-breaking operations in the St. Marys River, Michigan, USA

    USGS Publications Warehouse

    Blouin, Marc A.; Kostich, M.M.; Todd, T.N.; Savino, J.F.

    1998-01-01

    A study of the reproductive success of lake herring (Coregonus artedi) in the St. Marys River was conducted in the winters and springs of 1994, 1995, and 1996. The St. Marys River connects Lake Superior to the lower Great Lakes making it an important route for ship traffic. Recent pressure by commercial carriers to extend the shipping season by breaking ice earlier in spring, has raised concerns over the possible adverse effects on lake herring reproduction in the river caused by increased turbidity associated with vessel passage. Lake herring spawn in fall and their eggs overwinter under ice cover on the bottom of the St. Marys River. Hatching occurs in the spring after ice-out when water temperatures rise. Specialized incubators were used to hold fertilized lake herring eggs at four experimental sites, chosen to represent the range of various bottom substrate types of the St. Marys River from boulder rock reefs to soft sediments. In winter, incubators were placed under the ice on the bottom of the river at three sites each year. After ice-out, sites were relocated, and the incubators were retrieved and opened to determine the number of live and dead lake herring eggs and larvae. Survival was consistent from year to year at each site with the lowest survival percentage found at the site with the softest sediments, directly adjacent to the St. Marys River channel and downstream of the mouth of the Charlotte River. River bottom type and geographic location were the most important factors in determining egg survival. Sampling for indigenous larval lake herring was done throughout the spring hatching season in the areas adjacent to the incubator sites using nets and a diver-operated suction sampler. Result indicate that a small population (3) of larval lake herring was present throughout the sampling areas during the springs of 1994, 1995, and 1996 in the St. Marys River.

  19. A synthesis of recent research regarding the spring flood in Wisconsin: Knowns and unknowns

    USDA-ARS?s Scientific Manuscript database

    Approximately half of Wisconsin’s cranberry growers replace a spring insecticide application with a 1- to 2-day spring flood. Despite the potential for this flood to be a highly cost-effective alternative to chemical insect controls, growers need to know whether the flood can reduce pest pressure wi...

  20. Apparatus measures swelling of membranes in electrochemical cells

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1965-01-01

    Apparatus consisting of a pressure plate unit, four springs of known spring constant and a micrometer measures the swelling and force exerted by the polymer membranes of alkaline electrochemical cells.

  1. Introduction to Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  2. Further Testing of an Amine-based Pressure-Swing System for Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Smith, Frederick; Sweterlitsch, Jeffrey; Nalette, Tim A.; Papale, William

    2008-01-01

    In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Those test results were reported in a 2007 ICES paper. A second test article was incorporated for a third phase of testing, and that test article was modified to allow pressurized gas purge regeneration on the launch pad in addition to the standard vacuum regeneration in space. Metabolic rates and chamber volumes were also adjusted to reflect current programmatic standards. The third phase of tests was performed during the spring and summer of 2007. Tests were run with a range of operating conditions, varying: cycle time, vacuum pressure (or purge gas flow rate), air flow rate, and crew activity levels. Results of this testing are presented and potential flight operational strategies discussed.

  3. Valve malfunction detection apparatus

    NASA Astrophysics Data System (ADS)

    Burley, Richard K.

    1993-07-01

    A detection system is provided for sensing a malfunction of a valve having an outlet connected to an end of a first pipe through which pressurized fluid may be flowed in a downstream direction away from the valve. The system includes a bypass pipe connected at its opposite ends to the first pipe and operative to bypass a portion of the fluid flow therethrough around a predetermined section thereof. A housing is interiorly divided by a flexible diaphragm into first and second opposite chambers which are respectively communicated with the first pipe section and the bypass pipe, the diaphragm being spring-biased toward the second chamber. The diaphragm housing cooperates with check valves and orifices connected in the two pipes to create and maintain a negative pressure in the first pipe section in response to closure of the valve during pressurized flow through the first pipe. A pressure switch senses the negative pressure and transmits a signal indicative thereof to a computer. Upon cessation of the signal while the valve is still closed, the computer responsively generates a signal indicating that the valve, or another portion of the detection system, is leaking.

  4. A Robotic Fish to Emulate the Fast-Start

    NASA Astrophysics Data System (ADS)

    Currier, Todd; Ma, Ganzhong; Modarres-Sadeghi, Yahya

    2017-11-01

    An experimental study is conducted on a robotic fish designed to emulate the fast-start response. The fish body is constructed of 3D printed ribs and a light spring steel spine. The body is actuated using a series of pressured pistons. A total of four pistons are supplied with pressure through lightweight high pressure service lines. The source of pressure is carbon dioxide with a 700 psi peak operating pressure resulting in a body response that can cycle a c-start maneuver in milliseconds. The motion of the fish is precisely controlled through the use of solenoids with a control signal produced by a programmable microprocessor. The fish is constrained in all translational degrees of freedom but allowed to rotate about a vertical axis. The influence of the point of rotation is studied with different mounting points along the length of the head of the fish. The forces are measured in two perpendicular in-plane directions. A high speed camera is used to capture the response of the fish and the corresponding flow around it. Comparison is made with the kinematics observed in live fish.

  5. Valve malfunction detection apparatus

    NASA Technical Reports Server (NTRS)

    Burley, Richard K. (Inventor)

    1993-01-01

    A detection system is provided for sensing a malfunction of a valve having an outlet connected to an end of a first pipe through which pressurized fluid may be flowed in a downstream direction away from the valve. The system includes a bypass pipe connected at its opposite ends to the first pipe and operative to bypass a portion of the fluid flow therethrough around a predetermined section thereof. A housing is interiorly divided by a flexible diaphragm into first and second opposite chambers which are respectively communicated with the first pipe section and the bypass pipe, the diaphragm being spring-biased toward the second chamber. The diaphragm housing cooperates with check valves and orifices connected in the two pipes to create and maintain a negative pressure in the first pipe section in response to closure of the valve during pressurized flow through the first pipe. A pressure switch senses the negative pressure and transmits a signal indicative thereof to a computer. Upon cessation of the signal while the valve is still closed, the computer responsively generates a signal indicating that the valve, or another portion of the detection system, is leaking.

  6. Supporting evaluation for the proposed plan for final remedial action for the groundwater operable unit at the chemical plant area of the Weldon Spring Site, Weldon Spring, Missouri.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2003-08-06

    This report presents the technical information developed since the interim record of decision (IROD) was issued in September 2000 (U.S. Department of Energy [DOE] 2000). The information was incorporated into the evaluation that was performed in selecting the preferred alternative for the Chemical Plant groundwater operable unit (GWOU) of the Weldon Spring site. The contaminants of concern (COCs) in groundwater and springs are trichloroethylene (TCE), nitrate, uranium, and nitroaromatic compounds. The preferred alternative of monitored natural attenuation (MNA) coupled with institutional controls (ICs) and contingency activities is described in the ''Proposed Plan (PP) for Final Remedial Action for the Groundwatermore » Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri'' (DOE 2003b).« less

  7. Compartmentalized storage tank for electrochemical cell system

    NASA Technical Reports Server (NTRS)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  8. Valve-spring Surge

    NASA Technical Reports Server (NTRS)

    Marti, Willy

    1937-01-01

    Test equipment is described that includes a system of three quartz indicators whereby three different pressures could be synchronized and simultaneously recorded on a single oscillogram. This equipment was used to test the reliction of waves at ends of valve spring, the dynamical stress of the valve spring for a single lift of the valve, and measurement of the curve of the cam tested. Other tests included simultaneous recording of the stress at both ends of the spring, spring oscillation during a single lift as a function of speed, computation of amplitude of oscillation for a single lift by harmonic analysis, effect of cam profile, the setting up of resonance, and forced spring oscillation with damping.

  9. Effects of mucosal loading on vocal fold vibration.

    PubMed

    Tao, Chao; Jiang, Jack J

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant R(r), the mass constant R(m), and the coupling constant R(mu) of mucosal loading but decreases with the stiffness constant R(k). Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant R(mu) but decreases with the stiffness constant R(k) of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  10. Effects of mucosal loading on vocal fold vibration

    NASA Astrophysics Data System (ADS)

    Tao, Chao; Jiang, Jack J.

    2009-06-01

    A chain model was proposed in this study to examine the effects of mucosal loading on vocal fold vibration. Mucosal loading was defined as the loading caused by the interaction between the vocal folds and the surrounding tissue. In the proposed model, the vocal folds and the surrounding tissue were represented by a series of oscillators connected by a coupling spring. The lumped masses, springs, and dampers of the oscillators modeled the tissue properties of mass, stiffness, and viscosity, respectively. The coupling spring exemplified the tissue interactions. By numerically solving this chain model, the effects of mucosal loading on the phonation threshold pressure, phonation instability pressure, and energy distribution in a voice production system were studied. It was found that when mucosal loading is small, phonation threshold pressure increases with the damping constant Rr, the mass constant Rm, and the coupling constant Rμ of mucosal loading but decreases with the stiffness constant Rk. Phonation instability pressure is also related to mucosal loading. It was found that phonation instability pressure increases with the coupling constant Rμ but decreases with the stiffness constant Rk of mucosal loading. Therefore, it was concluded that mucosal loading directly affects voice production.

  11. Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1985

    USGS Publications Warehouse

    Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.A.; Janik, C.J.; Winnett, T.L.; Clark, M.D.

    1987-01-01

    Hydrologic and geochemical monitoring, to detect changes caused by magmatic and tectonic processes in the Long Valley caldera has continued through 1985. The monitoring included the collection of the following types of data: chemical and isotopic composition of water and gases from springs, wells, and steam vents; temperatures in wells, springs, and steam vents; flow rates of springs and streams; water levels in wells; and barometric pressure and precipitation at several sites. In addition, reservoir temperatures for the geothermal system were estimated from computations based on chemical geothermometers applied to fluid samples from wells and springs. Estimates of thermal water discharged from springs were made on the basis of boron and chloride fluxes in surface waters for selected sites in the Casa Diablo area and along the Mammoth-Hot Creek drainage. These data are presented in tables and graphs. The Long Valley area was relatively quiescent throughout 1985 in terms of geodetic changes and seismic activity. As a consequence , the hydrologic system varied mainly in response to seasonal influences of temperature, atmospheric pressure, and precipitation. However, spring flows near Casa Diablo were influenced by pumping at the geothermal production well field nearby. (Author 's abstract)

  12. A New Test Method of Circuit Breaker Spring Telescopic Characteristics Based Image Processing

    NASA Astrophysics Data System (ADS)

    Huang, Huimin; Wang, Feifeng; Lu, Yufeng; Xia, Xiaofei; Su, Yi

    2018-06-01

    This paper applied computer vision technology to the fatigue condition monitoring of springs, and a new telescopic characteristics test method is proposed for circuit breaker operating mechanism spring based on image processing technology. High-speed camera is utilized to capture spring movement image sequences when high voltage circuit breaker operated. Then the image-matching method is used to obtain the deformation-time curve and speed-time curve, and the spring expansion and deformation parameters are extracted from it, which will lay a foundation for subsequent spring force analysis and matching state evaluation. After performing simulation tests at the experimental site, this image analyzing method could solve the complex problems of traditional mechanical sensor installation and monitoring online, status assessment of the circuit breaker spring.

  13. Prospects of Applying Vibration-Resistant Pressure Gauges in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Cherentsov, D. A.; Gulyaev, B. A.

    2016-10-01

    The article presents justification for improving vibration protection of pressure gauges used in the oil and gas industry. A mathematical model of manometric tubular spring oscillations in a viscous medium is viewed. By the developed model, the authors have determined the impact of manometric spring geometric characteristics and damping fluid viscosity on oscillation attenuation parameters, as well as provided evaluation of the impact of the cross-sectional shape on the oscillation attenuation rate.

  14. Opto-acoustic recanilization delivery system

    DOEpatents

    Visuri, Steven R.; Da Silva, Luiz B.; Celliers, Peter M.; London, Richard A.; Benett, William; Broughton, Kathryn; Esch, Victor

    2002-01-01

    Fiber delivered laser pulses emulsify thrombus by mechanical stresses that include a combination of pressure, tension and shear stress. Laser radiation is delivered to the locality of a thrombus and the radiation is absorbed by blood, blood dot, or other present materials. The combination of a leading pressure wave and subsequent vapor bubble cause efficient, emulsification of thrombus. Operating the laser in a low average power mode alleviates potential thermal complications. The laser is operated in a high repetition rate mode to take advantage of ultrasound frequency effects of thrombus dissolution as well as to decrease the total procedure time. Specific parameter ranges for operation are described. The device includes optical fibers surrounding a lumen intended for flow of a cooling agent. The fibers may be arranged concentrically around the lumen to deliver radiation and heat over as large an area as possible. An alternative design approach incorporates the optical fibers into the wall of the guiding catheter and utilizes the catheter lumen as the cooling channel. An eccentric tip enables rotation of the device to address all parts of the vasculature. The eccentricity can be provided via a variety of means: spring dip, balloon, protrusion, etc.

  15. Development and experimental characterization of a pneumatic valve actuated by a dielectric elastomer membrane

    NASA Astrophysics Data System (ADS)

    Hill, Marc; Rizzello, Gianluca; Seelecke, Stefan

    2017-08-01

    Due to their many features including lightweight and low energy consumption, dielectric elastomer (DE) membrane actuators are of interest for a number of industrial applications, such as pumping systems or valve control units. In particular, the use of DEs in valve control units offers advantages over traditional solenoid valves, including lower power requirements and relative simplicity in achieving proportional control. Additionally, DEs generate low thermal dissipation and are capable of virtually silent operation. The contribution of this work is the development of a new valve system based on a circular DE membrane pre-loaded with a linear spring. The valve is designed for pressurized air and operates by actuating a lever mechanism that opens and closes an outlet port. After presenting the operating principle and system design, several experiments are presented to compare actuator force, stroke, and dissipated energy for several pressure differentials and associated volume flows. It is observed that the DE-driven valve achieves a performance similar to a solenoid-based valve, while requiring a significantly lower amount of input energy. In addition, it is shown that DE-membrane valves can be controlled proportionally by simply adjusting the actuator voltage.

  16. Whispering-gallery-mode-based seismometer

    DOEpatents

    Fourguette, Dominique Claire; Otugen, M Volkan; Larocque, Liane Marie; Ritter, Greg Aan; Meeusen, Jason Jeffrey; Ioppolo, Tindaro

    2014-06-03

    A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.

  17. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    NASA Astrophysics Data System (ADS)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  18. NPDES Permit for Wesco Operating, Inc. – Maverick Springs in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-0000469, Wesco Operating, Inc. - Maverick Springs is authorized to discharge from its wastewater treatment facility located in Fremont County, Wyoming to a tributary to Five Mile Creek.

  19. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Ogburn, Parker N.

    2003-03-01

    This is the second annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2001: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring chinook Supplementation Program (GRESCP). (2) Plan detailed GRESCP Monitoring and Evaluation for future years. (3)more » Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (4) Plan for data collection needs for bull trout. (5) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (6) Collect summer steelhead. (7) Monitor adult endemic spring chinook salmon populations and collect broodstock. (8) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (9) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations. (10) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (11) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program. (12) Monitor water quality at facilities. (13) Document accomplishments and needs to permitters, comanagers, and funding agencies. (14) Communicate Project results to the scientific community.« less

  20. Water Treatment Technology - Springs.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on springs provides instructional materials for two competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on spring basin construction and spring protection. For each competency, student…

  1. 77 FR 41045 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... deck. This AD requires replacing the low-pressure oxygen hoses with non-conductive low-pressure oxygen... through the low-pressure oxygen hose internal anti-collapse spring, which can cause the low-pressure oxygen hose to melt or burn, and a consequent oxygen-fed fire in the flight compartment. DATES: This AD...

  2. Experimental study of the oscillation of spheres in an acoustic levitator.

    PubMed

    Andrade, Marco A B; Pérez, Nicolás; Adamowski, Julio C

    2014-10-01

    The spontaneous oscillation of solid spheres in a single-axis acoustic levitator is experimentally investigated by using a high speed camera to record the position of the levitated sphere as a function of time. The oscillations in the axial and radial directions are systematically studied by changing the sphere density and the acoustic pressure amplitude. In order to interpret the experimental results, a simple model based on a spring-mass system is applied in the analysis of the sphere oscillatory behavior. This model requires the knowledge of the acoustic pressure distribution, which was obtained numerically by using a linear finite element method (FEM). Additionally, the linear acoustic pressure distribution obtained by FEM was compared with that measured with a laser Doppler vibrometer. The comparison between numerical and experimental pressure distributions shows good agreement for low values of pressure amplitude. When the pressure amplitude is increased, the acoustic pressure distribution becomes nonlinear, producing harmonics of the fundamental frequency. The experimental results of the spheres oscillations for low pressure amplitudes are consistent with the results predicted by the simple model based on a spring-mass system.

  3. Hydraulic actuator mechanism to control aircraft spoiler movements through dual input commands

    NASA Technical Reports Server (NTRS)

    Irick, S. C. (Inventor)

    1981-01-01

    An aircraft flight spoiler control mechanism is described. The invention enables the conventional, primary spoiler control system to retain its operational characteristics while accommodating a secondary input controlled by a conventional computer system to supplement the settings made by the primary input. This is achieved by interposing springs between the primary input and the spoiler control unit. The springs are selected to have a stiffness intermediate to the greater force applied by the primary control linkage and the lesser resistance offered by the spoiler control unit. Thus, operation of the primary input causes the control unit to yield before the springs, yet, operation of the secondary input, acting directly on the control unit, causes the springs to yield and absorb adjustments before they are transmitted into the primary control system.

  4. Statistical shape modelling to aid surgical planning: associations between surgical parameters and head shapes following spring-assisted cranioplasty.

    PubMed

    Rodriguez-Florez, Naiara; Bruse, Jan L; Borghi, Alessandro; Vercruysse, Herman; Ong, Juling; James, Greg; Pennec, Xavier; Dunaway, David J; Jeelani, N U Owase; Schievano, Silvia

    2017-10-01

    Spring-assisted cranioplasty is performed to correct the long and narrow head shape of children with sagittal synostosis. Such corrective surgery involves osteotomies and the placement of spring-like distractors, which gradually expand to widen the skull until removal about 4 months later. Due to its dynamic nature, associations between surgical parameters and post-operative 3D head shape features are difficult to comprehend. The current study aimed at applying population-based statistical shape modelling to gain insight into how the choice of surgical parameters such as craniotomy size and spring positioning affects post-surgical head shape. Twenty consecutive patients with sagittal synostosis who underwent spring-assisted cranioplasty at Great Ormond Street Hospital for Children (London, UK) were prospectively recruited. Using a nonparametric statistical modelling technique based on mathematical currents, a 3D head shape template was computed from surface head scans of sagittal patients after spring removal. Partial least squares (PLS) regression was employed to quantify and visualise trends of localised head shape changes associated with the surgical parameters recorded during spring insertion: anterior-posterior and lateral craniotomy dimensions, anterior spring position and distance between anterior and posterior springs. Bivariate correlations between surgical parameters and corresponding PLS shape vectors demonstrated that anterior-posterior (Pearson's [Formula: see text]) and lateral craniotomy dimensions (Spearman's [Formula: see text]), as well as the position of the anterior spring ([Formula: see text]) and the distance between both springs ([Formula: see text]) on average had significant effects on head shapes at the time of spring removal. Such effects were visualised on 3D models. Population-based analysis of 3D post-operative medical images via computational statistical modelling tools allowed for detection of novel associations between surgical parameters and head shape features achieved following spring-assisted cranioplasty. The techniques described here could be extended to other cranio-maxillofacial procedures in order to assess post-operative outcomes and ultimately facilitate surgical decision making.

  5. Transient nature of Arctic spring systems driven by subglacial meltwater

    NASA Astrophysics Data System (ADS)

    Scheidegger, J. M.; Bense, V. F.; Grasby, S. E.

    2012-06-01

    In the High Arctic, supra- and proglacial springs occur at Borup Fiord Pass, Ellesmere Island. Spring waters are sulfur bearing and isotope analysis suggests springs are fed by deeply circulating glacial meltwater. However, the mechanism maintaining spring flow is unclear in these areas of thick permafrost which would hamper the discharge of deep groundwater to the surface. It has been hypothesized that fracture zones along faults focus groundwater which discharges initially underneath wet-based parts of the ice. With thinning ice, the spring head is exposed to surface temperatures, tens of degrees lower than temperatures of pressure melting, and permafrost starts to develop. Numerical modeling of coupled heat and fluid flow suggest that focused groundwater discharge should eventually be cut off by permafrost encroaching into the feeding channel of the spring. Nevertheless, our model simulations show that these springs can remain flowing for millennia depending on the initial flow rate and ambient surface temperature. These systems might provide a terrestrial analog for the possible occurrence of Martian springs recharged by polar ice caps.

  6. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.

    PubMed

    Abid, Haider J; Chen, Jie; Nassar, Ameen A

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.

  7. The origin of Korotkoff sounds and the accuracy of auscultatory blood pressure measurements.

    PubMed

    Babbs, Charles F

    2015-12-01

    This study explores the hypothesis that the sharper, high frequency Korotkoff sounds come from resonant motion of the arterial wall, which begins after the artery transitions from a buckled state to an expanding state. The motions of one mass, two nonlinear springs, and one damper, driven by transmural pressure under the cuff, are used to model and compute the Korotkoff sounds according to principles of classical Newtonian physics. The natural resonance of this spring-mass-damper system provides a concise, yet rigorous, explanation for the origin of Korotkoff sounds. Fundamentally, wall stretching in expansion requires more force than wall bending in buckling. At cuff pressures between systolic and diastolic arterial pressure, audible vibrations (> 40 Hz) occur during early expansion of the artery wall beyond its zero pressure radius after the outward moving mass of tissue experiences sudden deceleration, caused by the discontinuity in stiffness between bucked and expanded states. The idealized spring-mass-damper model faithfully reproduces the time-domain waveforms of actual Korotkoff sounds in humans. Appearance of arterial sounds occurs at or just above the level of systolic pressure. Disappearance of arterial sounds occurs at or just above the level of diastolic pressure. Muffling of the sounds is explained by increased resistance of the artery to collapse, caused by downstream venous engorgement. A simple analytical model can define the physical origin of Korotkoff sounds, suggesting improved mechanical or electronic filters for their selective detection and confirming the disappearance of the Korotkoff sounds as the optimal diastolic end point. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  8. Modified hydraulic braking system limits angular deceleration to safe values

    NASA Technical Reports Server (NTRS)

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  9. 46 CFR 162.017-3 - Materials, construction, and workmanship.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... serviceability. (b) Bodies of pressure-vacuum relief valves must be made of bronze or such corrosion-resistant..., and seats shall be made of bronze or such corrosion-resistant material as may be approved by the... springs shall be made of corrosion-resistant material. Springs plated with corrosion-resistant material...

  10. Groundwater flow cycling between a submarine spring and an inland fresh water spring

    USGS Publications Warehouse

    Davis, J. Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half.

  11. 78 FR 63130 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... the low-pressure oxygen hoses with non-conductive low-pressure oxygen hoses in the stowage box and... internal, anti-collapse spring of the low-pressure oxygen hose, which can cause the low- pressure oxygen hose to melt or burn and lead to an oxygen-fed fire on the flight deck. DATES: We must receive comments...

  12. Models of Formation and Activity of Spring Mounds in the Mechertate-Chrita-Sidi El Hani System, Eastern Tunisia: Implications for the Habitability of Mars

    PubMed Central

    Essefi, Elhoucine; Komatsu, Goro; Fairén, Alberto G.; Chan, Marjorie A.; Yaich, Chokri

    2014-01-01

    Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet (“island”) stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and erosional remnants are common features on Mars. The spring mounds further bear diagnostic mineralogic and magnetic properties, in comparison with their immediate surroundings. Consequently, remote sensing techniques can be very useful to identify similar spring mounds on Mars. The mechanisms (tectonic and/or hydraulic) of formation and evolution of spring mounds at the MCSH system are suitable for the proliferation and protection of life respectively. Similarly, life or its resulting biomarkers on Mars may have been protected or preserved under the spring mounds. PMID:25370379

  13. Models of formation and activity of spring mounds in the mechertate-chrita-sidi el hani system, eastern Tunisia: implications for the habitability of Mars.

    PubMed

    Essefi, Elhoucine; Komatsu, Goro; Fairén, Alberto G; Chan, Marjorie A; Yaich, Chokri

    2014-08-28

    Spring mounds on Earth and on Mars could represent optimal niches of life development. If life ever occurred on Mars, ancient spring deposits would be excellent localities to search for morphological or chemical remnants of an ancient biosphere. In this work, we investigate models of formation and activity of well-exposed spring mounds in the Mechertate-Chrita-Sidi El Hani (MCSH) system, eastern Tunisia. We then use these models to explore possible spring mound formation on Mars. In the MCSH system, the genesis of the spring mounds is a direct consequence of groundwater upwelling, triggered by tectonics and/or hydraulics. As they are oriented preferentially along faults, they can be considered as fault spring mounds, implying a tectonic influence in their formation process. However, the hydraulic pressure generated by the convergence of aquifers towards the surface of the system also allows consideration of an origin as artesian spring mounds. In the case of the MCSH system, our geologic data presented here show that both models are valid, and we propose a combined hydro-tectonic model as the likely formation mechanism of artesian-fault spring mounds. During their evolution from the embryonic (early) to the islet ("island") stages, spring mounds are also shaped by eolian accumulations and induration processes. Similarly, spring mounds have been suggested to be relatively common in certain provinces on the Martian surface, but their mode of formation is still a matter of debate. We propose that the tectonic, hydraulic, and combined hydro-tectonic models describing the spring mounds at MCSH could be relevant as Martian analogs because: (i) the Martian subsurface may be over pressured, potentially expelling mineral-enriched waters as spring mounds on the surface; (ii) the Martian subsurface may be fractured, causing alignment of the spring mounds in preferential orientations; and (iii) indurated eolian sedimentation and erosional remnants are common features on Mars. The spring mounds further bear diagnostic mineralogic and magnetic properties, in comparison with their immediate surroundings. Consequently, remote sensing techniques can be very useful to identify similar spring mounds on Mars. The mechanisms (tectonic and/or hydraulic) of formation and evolution of spring mounds at the MCSH system are suitable for the proliferation and protection of life respectively. Similarly, life or its resulting biomarkers on Mars may have been protected or preserved under the spring mounds.

  14. Main Oxidizer Valve Design

    NASA Technical Reports Server (NTRS)

    Addona, Brad; Eddleman, David

    2015-01-01

    A developmental Main Oxidizer Valve (MOV) was designed by NASA-MSFC using additive manufacturing processes. The MOV is a pneumatically actuated poppet valve to control the flow of liquid oxygen to an engine's injector. A compression spring is used to return the valve to the closed state when pneumatic pressure is removed from the valve. The valve internal parts are cylindrical in shape, which lends itself to traditional lathe and milling operations. However, the valve body represents a complicated shape and contains the majority of the mass of the valve. Additive manufacturing techniques were used to produce a part that optimized mass and allowed for design features not practical with traditional machining processes.

  15. M-X Environmental Technical Report. Alternative Potential Operating Base Locations, Coyote Spring Valley.

    DTIC Science & Technology

    1980-12-22

    necessary and identify by block number) MX Coyote Spring, Nevada Siting Analysis Nevada Environnental Report 20. ABSTRACT (Continue on reverse side If...necessary and Identify by block number) The area of analysis (AO) for the Coyote Spring Valley operating base option includes both Clark and Lincoln...counties, and is located in the southern portion of the designated region of influence. Las Vegas and the surrounding suburbs are the major settlements and

  16. 77 FR 6518 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... deck. This proposed AD would require replacing the low-pressure oxygen hoses with non-conductive low-pressure oxygen hoses in the flight compartment. We are proposing this AD to prevent electrical current from passing through the low- pressure oxygen hose internal anti-collapse spring, which can cause the...

  17. Winter atmospheric circulation signature for the timing of the spring bloom of diatoms in the North Sea

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerrit; Wiltshire, Karen

    2015-04-01

    Analysing long-term diatom data from the German Bight and observational climate data for the period 1962-2005, we found a close connection of the inter-annual variation of the timing of the spring bloom with the boreal winter atmospheric circulation. We examined the fact that high diatom counts of the spring bloom tended to occur later when the atmospheric circulation was characterized by winter blocking over Scandinavia. The associated pattern in the sea level pressure showed a pressure dipole with two centres located over the Azores and Norway and was tilted compared to the North Atlantic Oscillation. The bloom was earlier when the cyclonic circulation over Scandinavia allowed an increased inflow of Atlantic water into the North Sea which is associated with clearer, more marine water, and warmer conditions. The bloom was later when a more continental atmospheric flow from the east was detected. At Helgoland Roads, it seems that under turbid water conditions (= low light) zooplankton grazing can affect the timing of the phytoplankton bloom negatively. Warmer water temperatures will facilitate this. Under clear water conditions, light will be the main governing factor with regard to the timing of the spring bloom. These different water conditions are shown here to be mainly related to large-scale weather patterns. We found that the mean diatom bloom could be predicted from the sea level pressure one to three months in advance. Using historical pressure data, we derived a proxy for the timing of the spring bloom over the last centuries, showing an increased number of late (proxy-) blooms during the eighteenth century when the climate was considerably colder than today. We argue that these variations are important for the interpretation of inter-annual to centennial variations of biological processes. This is of particular interest when considering future scenarios, as well to considerations on past and future effects on the primary production and food webs.

  18. Increasing the resource of high load compression springs

    NASA Astrophysics Data System (ADS)

    Zemlyanushnova, N. Y.; Zemlyanushnov, N. A.

    2017-10-01

    Valve springs of VAZ automobiles’ engines are manufactured by using a new method. The decrease of dispersion of operating load in experimental springs compared to serial ones has been proved. The springs have passed a stress cycling test. With the new method having been used, it has been proved that the resource of high load springs working at high loading speed with coils collision has increased up to 60%.

  19. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Lofy, Peter T.

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherinemore » Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.« less

  20. 76 FR 39072 - Notice of Availability of a Final Environmental Impact Statement and Final Habitat Conservation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... listed and six unlisted species of fish covered by Kent's Clark Springs Water Supply HCP. This notice... applications are for the operation and maintenance of Kent's Clark Springs Water Supply System adjacent to Rock Creek, King County, Washington. The Clark Springs Water Supply System consists of a spring-fed...

  1. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    PubMed Central

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020

  2. Groundwater temperature transients on the Armutlu peninsula, eastern Marmara region

    NASA Astrophysics Data System (ADS)

    Woith, Heiko; Caka, Deniz; Seyis, Cemil; Italiano, Francesco; Celik, Cengiz; Wang, Rongjiang; Baris, Serif

    2016-04-01

    Since many years MAM and GFZ in co-operation with Kocaeli University (KU) operate fluid monitoring stations around the Sea of Marmara. In the frame of MARsite (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417) these networks were jointly evaluated for the first time. The on-land fluid monitoring networks continuously monitor the following parameters: soil radon (21 sites), temperature and conductivity of thermal springs (9 sites) operated by MAM covering the whole Marmara region; fluid pressure and water level/temperature (8 sites) within ARNET operated by GFZ/KU. ARNET is a combined seismological/hydrogeological monitoring network covering the Armutlu peninsula located SE of Istanbul. Additional to the geothermal wells and springs - our main target to detect transients of potentially seismo-tectonic origin - three shallow groundwater wells (tenth of meters deep) are being operated to identify and quantify seasonal variations, and meteorological influences like rainfall and snowmelt. But it turned out that these shallow aquifer systems showed very stable conditions with very small annual temperature amplitudes (0.2 - 0.3°C). One of these shallow monitoring wells is located just south of Lake Iznik (in the village of Sölöz) very close to the southern branch of the North Anatolian Fault Zone. Water level showed a steady decreasing trend since June 2012. This trend resulted in a data gap starting in January 2014, when the water level dropped below the sensor position. After adjusting the sensor position, positive spikes in the borehole temperature were recorded in June and August 2014, and again in 2015. The spikes are characterised by a sharp temperature increase followed by a decay lasting several days until the pre-event temperature was reached again. Since the spikes occurred on two independent logger systems, and since they lasted several days, a technical origin is not likely. During the station visit in 2015 a physical explanation for these positive temperature spikes emerged. We noticed the release of pressured gas while opening the wellhead. Thus, tentatively we propose that the rise of a giant gas bubble was responsible for the temperature spikes. We present a preliminary model to explain the observations.

  3. The Meteoroid Fluence at Mars Due to Comet C/2013 A1 (Siding Spring)

    NASA Technical Reports Server (NTRS)

    Moorhead, A.; Wiegert, P.; Blaauw, R.; McCarty, C.; Kingery, A.; Cooke, W.

    2014-01-01

    Long-period comet C/2013 A1 (Siding Spring) will experience a close encounter with Mars on 2014 Oct 19. A collision between the comet and the planet has been ruled out, but the comet's coma may envelop Mars and its man-made satellites. By the time of the close encounter, five operational spacecraft will be present near Mars. Characterizing the coma is crucial for assessing the risk posed to these satellites by meteoroid impacts. We present an analytic model of cometary comae that describes the spatial and size distributions of cometary dust and meteoroids. This model correctly reproduces, to within an order of magnitude, the number of impacts recorded by Giotto near 1P/Halley [1] and by Stardust near comet 81P/Wild 2 [2]. Applied to Siding Spring, our model predicts a total particle fluence near Mars of 0.02 particles per square meter. In order to determine the degree to which Siding Spring's coma deviates from a sphere, we perform numerical simulations which take into account both gravitational effects and radiative forces. We take the entire dust component of the coma and tail continuum into account by simulating the ejection and evolution of dust particles from comet Siding Spring. The total number of particles simulated is essentially a free parameter and does not provide a check on the total fluence. Instead, these simulations illustrate the degree to which the coma of Siding Spring deviates from the perfect sphere described by our analytic model (see Figure). We conclude that our analytic model sacrifices less than an order of magnitude in accuracy by neglecting particle dynamics and radiation pressure and is thus adequate for order-of-magnitude fluence estimates. Comet properties may change unpredictably and therefore an analytic coma model that enables quick recalculation of the meteoroid fluence is highly desirable. NASA's Meteoroid Environment Office is monitoring comet Siding Spring and taking measurements of cometary brightness and dust production. We will discuss our coma model and nominal fluence taking the latest observations into account.

  4. Walla Walla River Fish Passage Operations Program, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.

    2004-12-01

    In the late 1990s, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate fish migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow requirements, and providing trap and haul efforts when needed. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survivalmore » of migrating adult and juvenile salmonids in the Walla Walla River basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2003-2004 project year, there were 379 adult summer steelhead (Oncorhynchus mykiss), 36 adult bull trout (Salvelinus confluentus); 108 adult and 3 jack spring chinook (O. tshawytscha) enumerated at the Nursery Bridge Dam fishway video counting window between December 21, 2003, and June 30, 2004. Summer steelhead and spring chinook were observed moving upstream while bull trout were observed moving both upstream and downstream of the facility. In addition, the old ladder trap was operated by the WWBNPME project in order to radio tag spring chinook adults. A total of 2 adult summer steelhead, 4 bull trout, and 23 adult spring chinook were enumerated at the west ladder at Nursery Bridge Dam during the trapping operations between May 6 and May 23, 2004. Operation of the Little Walla Walla River juvenile trap for trap and haul purposes was not necessary this year. The project transported adult spring chinook from Threemile Dam to the South Fork Walla Walla Brood Holding Facility. A total of 239 spring chinook were outplanted in August for natural spawning in the basin.« less

  5. Dynamic pressure measurement of cartridge operated vole captive bolt devices.

    PubMed

    Frank, M; Philipp, K P; Franke, E; Frank, N; Bockholdt, B; Grossjohann, R; Ekkernkamp, A

    2009-01-10

    Vole captive bolt devices are powder actuated spring guns that are used as a pest control mean. After having triggered the explosion of the blank cartridge by touching a metal ring around the muzzle, the vole is killed by the massive propulsion of the gas jet. Improper use and recklessness while handling these devices may cause severe injuries with the hand of the operator at particular risk. Currently, there are no experimental investigations on the ballistic background of these devices. An experimental test set-up was designed for measurement of the firing pressure and the dynamic force of the gas jet of a vole captive bolt device. Therefore, a vole captive bolt device was prepared with a pressure take-off channel and a piezoelectric transducer for measurement of the firing pressure. For measurement of the dynamic impact force of the gas jet an annular quartz force sensor was installed on a test bench. Each three simultaneous measurements of the cartridges' firing pressure and the dynamic force of the blast wave were taken at various distances between muzzle and load washer. The maximum gas pressure in the explosion chamber was up to 1100 bar. The shot development over time showed a typical gas pressure curve. Flow velocity of the gas jet was up to 2000 m/s. The maximum impact force of the gas jet at the target showed a strong inverse ratio to the muzzle's distance and was up to 11,500 N for the contact shot distance. Energy density of the gas jet for the close contact shot was far beyond the energy density required for skin penetration. The unique design features (short tube between cartridge mouth and muzzle and narrow diameter of the muzzle) of these gadgets are responsible for the high firing pressure, velocity and force of the gas jet. These findings explain the trauma mechanics of the extensive tissue damage observed in accidental shots of these devices.

  6. Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams

    NASA Astrophysics Data System (ADS)

    Bailly-Comte, Vincent; Martin, Jonathan B.; Jourde, Hervé; Screaton, Elizabeth J.; Pistre, Séverin; Langston, Abigail

    2010-05-01

    SummaryKarst aquifers are heterogeneous media where conduits usually drain water from lower permeability volumes (matrix and fractures). For more than a century, various approaches have used flood recession curves, which integrate all hydrodynamic processes in a karst aquifer, to infer physical properties of the movement and storage of groundwater. These investigations typically only consider flow to the conduits and thus have lacked quantitative observations of how pressure transfer and water exchange between matrix and conduit during flooding could influence recession curves. We present analyses of simultaneous discharge and water level time series of two distinctly different karst systems, one with low porosity and permeability matrix rocks in southern France, and one with high porosity and permeability matrix rocks in north-central Florida (USA). We apply simple mathematical models of flood recession using time series representations of recharge, storage, and discharge processes in the karst aquifer. We show that karst spring hydrographs can be interpreted according to pressure transfer between two distinct components of the aquifer, conduit and matrix porosity, which induce two distinct responses at the spring. Water exchange between conduits and matrix porosity successively control the flow regime at the spring. This exchange is governed by hydraulic head differences between conduits and matrix, head gradients within conduits, and the contrast of permeability between conduits and matrix. These observations have consequences for physical interpretations of recession curves and modeling of karst spring flows, particularly for the relative magnitudes of base flow and quick flow from karst springs. Finally, these results suggest that similar analyses of recession curves can be applied to karst aquifers with distinct physical characteristics utilizing well and spring hydrograph data, but information must be known about the hydrodynamics and physical properties of the aquifer before the results can be correctly interpreted.

  7. Miniature Internal Combustion Engine-Generator for High Energy Density Portable Power

    DTIC Science & Technology

    2008-12-01

    Operation on JP-8 from cold startup to steady operation has been demonstrated at the 300 W scale. Miniature engine/generators can be acoustically silenced...design that uses a spring for energy storage . MICE is a high Q system, operating at the resonant frequency of the spring-mass system with very low...development • Demonstrated 94% efficiency of 300 W linear alternator • Demonstrated full operation of MICE generator from cold startup to net power output

  8. Aqua/Aura Inclination Adjust Maneuver Series Spring 2018 Planning

    NASA Technical Reports Server (NTRS)

    Trenholme, Elena; Boone, Spencer

    2017-01-01

    This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting on December 6-8, 2017 to discuss the Aqua/Aura Spring 2018 Inclination Adjust Maneuver series planning. Presentation has been reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  9. Yarn carrier with clutch

    NASA Technical Reports Server (NTRS)

    Doyne, Richard A. (Inventor); Benson, Rio H. (Inventor); El-Shiekh, Aly (Inventor)

    1994-01-01

    A yarn carrier apparatus particularly suited for use in braiding machinery or the like due to its capability of continuous yarn feeding and retraction of long lengths of yarn. The yarn carrier apparatus comprises a yarn supply spool which is rotatably mounted within the housing, a spring motor also mounted within the housing and operatively connected to the yarn supply spool through a mechanical transmission assembly which is adapted to multiply rotational movement between the first element of the gear assembly operatively connected to the spring motor and the final element of the gear assembly operatively connected to the yarn supply spool. The spring motor is adapted to tension the yarn during both feeding and retraction thereof, and it is further adapted to periodically rotatably slip within the housing and partially unwind so as to allow for continuous withdrawal of a long length of yarn without the spring motor becoming fully wound and preventing further yarn retraction.

  10. Yarn carrier apparatus for braiding machines and the like

    NASA Technical Reports Server (NTRS)

    El-Shiekh, Aly (Inventor); Li, Wei (Inventor); Hammad, Mohamed (Inventor)

    1992-01-01

    A yarn carrier apparatus particularly suited for use in braiding machinery or the like due to its capability of continuous yarn feeding and retraction of long lengths of yarn. The yarn carrier apparatus comprises a yarn supply spool which is rotatably mounted within the housing, a spring motor also mounted within the housing and operatively connected to the yarn supply spool through a mechanical transmission assembly which is adapted to multiply rotational movement between the first element of the gear assembly operatively connected to the spring motor and the final element of the gear assembly operatively connected to the yarn supply spool. The spring motor is adapted to tension the yarn during both feeding and retraction thereof, and it is further adapted to periodically rotatably slip within the housing and partially unwind so as to allow for continuous withdrawal of a long length of yarn without the spring motor becoming fully wound and preventing further yarn retraction.

  11. Overview of NASA tire experimental programs

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.

    1983-01-01

    Ongoing aircraft tire experimental programs are reported. These programs are designed to measure profile growth due to inflation pressure and vertical loading, contact pressures in the tire footprint, and a number of tire mechanical properties including spring, damping, and relaxation characteristics.

  12. Secure RFID tag or sensor with self-destruction mechanism upon tampering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekoogar, Faranak; Dowla, Farid; Twogood, Richard

    A circuit board anti-tamper mechanism comprises a circuit board having a frangible portion, a trigger having a trigger spring, a trigger arming mechanism actuated by the trigger wherein the trigger arming mechanism is initially non-actuated, a force producing mechanism, a latch providing mechanical communication between the trigger arming mechanism and the force producing mechanism, wherein the latch initially retains the force producing mechanism in a refracted position. Arming pressure applied to the trigger sufficient to overcome the trigger spring force will actuate the trigger arming mechanism, causing the anti-tamper mechanism to be armed. Subsequent tampering with the anti-tamper mechanism resultsmore » in a decrease of pressure on the trigger below the trigger spring force, thereby causing the trigger arming mechanism to actuate the latch, thereby releasing the force producing mechanism to apply force to the frangible portion of the circuit board, thereby breaking the circuit board.« less

  13. Groundwater flow cycling between a submarine spring and an inland fresh water spring.

    PubMed

    Davis, J Hal; Verdi, Richard

    2014-01-01

    Spring Creek Springs and Wakulla Springs are large first magnitude springs that derive water from the Upper Floridan Aquifer. The submarine Spring Creek Springs are located in a marine estuary and Wakulla Springs are located 18 km inland. Wakulla Springs has had a consistent increase in flow from the 1930s to the present. This increase is probably due to the rising sea level, which puts additional pressure head on the submarine Spring Creek Springs, reducing its fresh water flow and increasing flows in Wakulla Springs. To improve understanding of the complex relations between these springs, flow and salinity data were collected from June 25, 2007 to June 30, 2010. The flow in Spring Creek Springs was most sensitive to rainfall and salt water intrusion, and the flow in Wakulla Springs was most sensitive to rainfall and the flow in Spring Creek Springs. Flows from the springs were found to be connected, and composed of three repeating phases in a karst spring flow cycle: Phase 1 occurred during low rainfall periods and was characterized by salt water backflow into the Spring Creek Springs caves. The higher density salt water blocked fresh water flow and resulted in a higher equivalent fresh water head in Spring Creek Springs than in Wakulla Springs. The blocked fresh water was diverted to Wakulla Springs, approximately doubling its flow. Phase 2 occurred when heavy rainfall resulted in temporarily high creek flows to nearby sinkholes that purged the salt water from the Spring Creek Springs caves. Phase 3 occurred after streams returned to base flow. The Spring Creek Springs caves retained a lower equivalent fresh water head than Wakulla Springs, causing them to flow large amounts of fresh water while Wakulla Springs flow was reduced by about half. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  14. The Pneumatic Actuators As Vertical Dynamic Load Simulators On Medium Weighted Wheel Suspension Mechanism

    NASA Astrophysics Data System (ADS)

    Ka'ka, Simon; Himran, Syukri; Renreng, Ilyas; Sutresman, Onny

    2018-02-01

    Almost all of road damage can be caused by dynamic loads of vehicles that fluctuate according to the type of vehicle that passes through. This study aims to calculate the vertical dynamic load of the vehicle actually occurs on road construction by the mechanism of vehicle wheel suspension. Pneumatic cylinders driven by pressurized air directly load the spring and shock absorber installed on the wheels of the vehicle. The load fluctuations of the medium weight categorized vehicles are determined by the regulation of the amount of pressurized air that enters into the pneumatic cylinder chamber, pushing the piston and connecting rods. The displacement that occurs during compression on the spring and shock absorber, is substituted into the equation of vehicle dynamic load while taking into account the spring stiffness constant, and the fluid or damper gas coefficient. The results show that the magnitude of the displacement when the compression force works has significant influences to the amount of vertical dynamic load of the vehicle that overlies the road construction. The presence of dynamic load of vehicles that fluctuates and repeats, also affects on the reduction of road ability to receive the load. Experimental results using pneumatic actuators instead of real dynamic vehicle loads illustrate the characteristics of the relationship between work pressure and dynamic load. If the working pressure of P2 (bar) is greater, the vertical dynamic load Ft (N) that overloads the road structure is also greater. The associate graphs show that the shock absorber has a greater ability to reduce dynamic load vertically that burden the road structure when compared with the ability of screw spring.

  15. Adapting a rapid assessment protocol to environmentally assess palm swamp (Veredas) springs in the Cerrado biome, Brazil.

    PubMed

    Guimarães, Ariane; de Lima Rodrigues, Aline Sueli; Malafaia, Guilherme

    2017-10-30

    The exploitation and degradation of natural environments exert intense pressure on important ecosystems worldwide. Thus, it is necessary developing or adapting assessment methods to monitor environmental changes and to generate results to be applied to environmental management programs. The Brazilian Veredas (phytophysiognomies typical to the Cerrado biome) are threatened by several human activities; thus, the aim of the present study is to adapt a rapid assessment protocol (RAP) to be applied to Veredas springs, by using the upper course of the Vai-e-Vem stream watershed (Ipameri County, Goiás State, Brazil). Therefore, several springs in the study site were visited and 11 of them were considered Veredas springs. After the RAP was adapted, the instrument was validated and used to environmentally assess the springs in order to demonstrate its applicability. The present study has provided an instrument of option to monitor Veredas springs.

  16. Spring operated accelerator and constant force spring mechanism therefor

    NASA Technical Reports Server (NTRS)

    Shillinger, G. L., Jr. (Inventor)

    1977-01-01

    A spring assembly consisting of an elongate piece of flat spring material formed into a spiral configuration and a free running spool in circumscribing relation to which this spring is disposed was developed. The spring has a distal end that is externally accessible so that when the distal end is drawn along a path, the spring unwinds against a restoring force present in the portion of the spring that resides in a transition region between a relatively straight condition on the path and a fully wound condition on the spool. When the distal end is released, the distal end is accelerated toward the spool by the force existing at the transition region which force is proportional to the cross-sectional area of the spring.

  17. Analysis of the cephalometric changes in the first 3 months after spring-assisted cranioplasty for scaphocephaly.

    PubMed

    Ou Yang, O; Marucci, D D; Gates, R J; Rahman, M; Hunt, J; Gianoutsos, M P; Walsh, W R

    2017-05-01

    Spring-assisted cranioplasty (SAC) has become an accepted treatment for patients with sagittal craniosynostosis; however, the early effects of springs on skull dimensions have never been assessed with objective measurements in the literature. The present study evaluated the changes in skull dimensions and intracranial volume (ICV) during the first 3 months after SAC for sagittal synostosis. Sixteen patients with sagittal synostosis underwent SAC. The cephalic index (CI) and the distance between the spring foot plates were chronologically measured until spring removal at 3 months. Pre- and post-treatment CT scans available for 6 patients were used to assess changes in head shape. Thirteen patients underwent objective aesthetic assessment using pre- and post-operative photographs. Statistical analysis was performed using the linear mixed model for chronological data, t-test statistics for normative data comparisons and Wilcoxon's signed rank test for non-parametric data. For scaphocephalic patients, pre-operative and post-operative CIs were 0.70 and 0.74 (p = 0.001), respectively. Cranial widening towards normative values was observed (p = 0.0005). A continuous expansion in the distance between the spring foot plates was observed over the treatment period. Frontal and occipital angles were not affected by SAC despite apparent clinical improvements in frontal bossing and occipital prominence. CT analysis demonstrated relative reduction in the anterior cranial volume (p = 0.01) and relative expansion of the superior occipital volume (p = 0.03). Spring expansion was most marked in the hours following spring insertion. The expansion rate reduced to the minimum by day 1 post-operatively. Clinical benefits of SAC resulted from an increase in the bi-temporal width that camouflaged the frontal bossing. Improvement in occipital prominence was due to superior occipital volume expansion, allowing the occiput to remodel to a more rounded shape. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Community microrespirometry and molecular analyses reveal a diverse energy economy in Great Boiling Spring and Sandy's Spring West in the U.S. Great Basin.

    PubMed

    Murphy, Caitlin N; Dodsworth, Jeremy A; Babbitt, Aaron B; Hedlund, Brian P

    2013-05-01

    Microrespirometry showed that several organic and inorganic electron donors stimulated oxygen consumption in two ∼80°C springs. Sediment and planktonic communities were structurally and functionally distinct, and quantitative PCR revealed catabolically distinct subpopulations of Thermocrinis. This study suggests that a variety of chemolithotrophic metabolisms operate simultaneously in these springs.

  19. 33 CFR 117.202 - Cold Spring Brook.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Cold Spring Brook. 117.202 Section 117.202 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.202 Cold Spring Brook. The draw of...

  20. 33 CFR 117.202 - Cold Spring Brook.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cold Spring Brook. 117.202 Section 117.202 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.202 Cold Spring Brook. The draw of...

  1. 33 CFR 117.202 - Cold Spring Brook.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cold Spring Brook. 117.202 Section 117.202 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.202 Cold Spring Brook. The draw of...

  2. 33 CFR 117.202 - Cold Spring Brook.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Cold Spring Brook. 117.202 Section 117.202 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.202 Cold Spring Brook. The draw of...

  3. 33 CFR 117.202 - Cold Spring Brook.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Cold Spring Brook. 117.202 Section 117.202 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Connecticut § 117.202 Cold Spring Brook. The draw of...

  4. Changes in leg spring behaviour, plantar loading and foot mobility magnitude induced by an exhaustive treadmill run in adolescent middle-distance runners.

    PubMed

    Fourchet, François; Girard, Olivier; Kelly, Luke; Horobeanu, Cosmin; Millet, Grégoire P

    2015-03-01

    This study aimed to determine adjustments in spring-mass model characteristics, plantar loading and foot mobility induced by an exhaustive run. Within-participants repeated measures. Eleven highly-trained adolescent middle-distance runners ran to exhaustion on a treadmill at a constant velocity corresponding to 95% of velocity associated with VO₂max (17.8 ± 1.4 kmh(-1), time to exhaustion=8.8 ± 3.4 min). Contact time obtained from plantar pressure sensors was used to estimate spring-mass model characteristics, which were recorded (during 30 s) 1 min after the start and prior to exhaustion using pressure insoles. Foot mobility magnitude (a composite measure of vertical and medial-lateral mobility of the midfoot) was measured before and after the run. Mean contact area (foot to ground), contact time, peak vertical ground reaction force, centre of mass vertical displacement and leg compression increased significantly with fatigue, while flight time, leg stiffness and mean pressure decreased. Leg stiffness decreased because leg compression increased to a larger extent than peak vertical ground reaction forces. Step length, step frequency and foot mobility magnitude did not change at exhaustion. The stride pattern of adolescents when running on a treadmill at high constant velocity deteriorates near exhaustion, as evidenced by impaired leg-spring behaviour (leg stiffness) and altered plantar loading. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Stirling engines for low-temperature solar-thermal-electric power generation

    NASA Astrophysics Data System (ADS)

    der Minassians, Artin

    This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves their self-starting potential. The start-up temperature, i.e., the heater temperature at which the system starts its operation, is derived based on the same modal analysis. Following the mathematical modeling, the design, fabrication, and test of a symmetric three-phase free-piston Stirling engine system are discussed. The system is designed to operate with moderate-temperature heat input that is consistent with solar-thermal collectors. Diaphragm pistons and nylon flexures are considered for this prototype to eliminate surface friction and provide appropriate seals. The experimental results are presented and compared with design calculations. Experimental assessments confirm the models for flow friction and gas spring hysteresis dissipation. It is revealed that gas spring hysteresis loss is an important dissipation phenomenon in low-power low-pressure Stirling engines, and should be carefully addressed during the design as it may hinder the engine operation. Further analysis shows that the gas hysteresis dissipation can be reduced drastically by increasing the number of phases in a system with a little compromise on the operating frequency and, hence, the output power. It is further shown that for an even number of phases, half of the pistons could be eliminated by utilizing a reverser. By introducing a reverser to the fabricated system, the system proves its self-starting capability in engine mode and validates the derived expressions for computing the start-up temperature.

  6. Energy analysis of a DEAP based cylindrical actuator coupled with a radial negative stiffness spring

    NASA Astrophysics Data System (ADS)

    Chavanne, Jonathan; Civet, Yoan; Perriard, Yves

    2017-04-01

    The main problem to obtain considerable deformation with dielectric electro-active polymer based technology is the electrical breakdown. A simple solution consists in pre-stretching the elastomer before activating it which cancels the snap-through effect and thus avoid reaching the electrical limit. Due to the stress characteristic of the DEAP, it could be demonstrated that a spring with a negative stiffness provides the best strain. In this paper, a new design of a monostable spring with a negative stiffness is suggested for a DEAP tubular shape actuator. The particularity of the proposed solution is the radial direction of the displacement with a special load characteristic. In order to determine the performance of the system, the mechanical and electrical behaviour are investigated through analytical models with the assumption that the axial stretch stays constant. A finite element method is used to validate these latter and maximal error lower than 2% is reported. The energy chain conversion is developed in detail which allows studying all the energies transferred from both the electrical input and any pre-stretch solution to the membrane during a cycle of activation. From these models, the negative stiffness spring is compared to the common solution, i.e a constant pressure or a linear positive spring, to pre-stretch a cylindrical EAP. The results show that the linear spring always removes the snap-through behaviour contrary to the constant pressure. Depending on the geometry, the monostable solution cancels also this latter and owns a better energy transfer from the power supply to the elastomer (around 50% against 40% for the linear spring) or a better stroke compared to the linear spring. Furthermore, due to the hollow in its stress characteristic, the cylindrical shaped actuator associated to a linear spring or the proposed spring allows increasing the strain. Through the different analytical models, the definition of the electrical breakdown and the analysis of the limits of the stresses, a qualitative study of the performance is given for the different pre-stretches.

  7. Evaluation of the impact of atmospheric pressure in different seasons on blood pressure in patients with arterial hypertension.

    PubMed

    Kamiński, Marek; Cieślik-Guerra, Urszula I; Kotas, Rafał; Mazur, Piotr; Marańda, Witold; Piotrowicz, Maciej; Sakowicz, Bartosz; Napieralski, Andrzej; Trzos, Ewa; Uznańska-Loch, Barbara; Rechciński, Tomasz; Kurpesa, Małgorzata

    2016-01-01

    Atmospheric pressure is the most objective weather factor because regardless of if outdoors or indoors it affects all objects in the same way. The majority of previous studies have used the average daily values of atmospheric pressure in a bioclimatic analysis and have found no correlation with blood pressure changes. The main objective of our research was to assess the relationship between atmospheric pressure recorded with a frequency of 1 measurement per minute and the results of 24-h blood pressure monitoring in patients with treated hypertension in different seasons in the moderate climate of the City of Łódź (Poland). The study group consisted of 1662 patients, divided into 2 equal groups (due to a lower and higher average value of atmospheric pressure). Comparisons between blood pressure values in the 2 groups were performed using the Mann-Whitney U test. We observed a significant difference in blood pressure recorded during the lower and higher range of atmospheric pressure: on the days of the spring months systolic (p = 0.043) and diastolic (p = 0.005) blood pressure, and at nights of the winter months systolic blood pressure (p = 0.013). A significant inverse relationship between atmospheric pressure and blood pressure during the spring days and, only for systolic blood pressure, during winter nights was observed. Int J Occup Med Environ Health 2016;29(5):783-792. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  8. Integrating GLL-Weibull Distribution Within a Bayesian Framework for Life Prediction of Shape Memory Alloy Spring Undergoing Thermo-mechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Kundu, Pradeep; Nath, Tameshwer; Palani, I. A.; Lad, Bhupesh K.

    2018-06-01

    The present paper tackles an important but unmapped problem of the reliability estimations of smart materials. First, an experimental setup is developed for accelerated life testing of the shape memory alloy (SMA) springs. Generalized log-linear Weibull (GLL-Weibull) distribution-based novel approach is then developed for SMA spring life estimation. Applied stimulus (voltage), elongation and cycles of operation are used as inputs for the life prediction model. The values of the parameter coefficients of the model provide better interpretability compared to artificial intelligence based life prediction approaches. In addition, the model also considers the effect of operating conditions, making it generic for a range of the operating conditions. Moreover, a Bayesian framework is used to continuously update the prediction with the actual degradation value of the springs, thereby reducing the uncertainty in the data and improving the prediction accuracy. In addition, the deterioration of material with number of cycles is also investigated using thermogravimetric analysis and scanning electron microscopy.

  9. Aspirator increases relief valve poppet stroke

    NASA Technical Reports Server (NTRS)

    Biddle, M. E.

    1967-01-01

    Addition of an aspirator to a relief valve increases the valve poppet stroke under dynamic flow conditions. The aspirator allows poppet inlet dynamic forces to overcome relief valve spring force. It reduces the fluid pressure in the skirt cavity by providing a low pressure sense probe.

  10. Micro-focusing System of the Taiwan Contract Beamline BL12XU at SPring-8 for IXS Experiments under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.-Y.; Cai, Y.-Q.; Chung, S.-C.

    The Taiwan Contract Beamline BL12XU at SPring-8 is designed for inelastic X-ray scattering (IXS) experiments. DCS is a powerful technique capable of probing the dynamic behavior and electronic structure of materials under high pressure. The state-of-the-arts technology to generate static high pressure up to mega-bar range uses diamond anvil cells (DAC). The allowed volume of the sample in DAC scales inversely with the pressure and is limited to the order of 1 x 10-3 mm3. In order to utilize such a device to explore the interesting phenomena under high pressure, we have designed a micro-focusing system using a set ofmore » KB mirrors, which is compatible with the existing optical system of BL12XU. Realistic ray-tracing results indicate that the system can achieve a focus of 10 {mu}m x 5.3 {mu}m(H x V) with a total efficiency of about 86%. The improved focus is expected to substantially enhance the experimental capability of BL12XU for high-pressure research.« less

  11. Radioactive mineral spring precipitates, their analytical and statistical data and the uranium connection

    USGS Publications Warehouse

    Cadigan, R.A.; Felmlee, J.K.

    1982-01-01

    Major radioactive mineral springs are probably related to deep zones of active metamorphism in areas of orogenic tectonism. The most common precipitate is travertine, a chemically precipitated rock composed chiefly of calcium carbonate, but also containing other minerals. The mineral springs are surface manifestations of hydrothermal conduit systems which extend downward many kilometers to hot source rocks. Conduits are kept open by fluid pressure exerted by carbon dioxide-charged waters rising to the surface propelled by heat and gas (CO2 and steam) pressure. On reaching the surface, the dissolved carbon dioxide is released from solution, and calcium carbonate is precipitated. Springs also contain sulfur species (for example, H2S and HS-), and radon, helium and methane as entrained or dissolved gases. The HS- ion can react to form hydrogen sulfide gas, sulfate salts, and native sulfur. Chemical salts and native sulfur precipitate at the surface. The sulfur may partly oxidize to produce detectable sulfur dioxide gas. Radioactivity is due to the presence of radium-226, radon-222, radium-228, and radon-220, and other daughter products of uranium-238 and thorium-232. Uranium and thorium are not present in economically significant amounts in most radioactive spring precipitates. Most radium is coprecipitated at the surface with barite. Barite (barium sulfate) forms in the barium-containing spring water as a product of the oxidation of sulfur species to sulfate ions. The relatively insoluble barium sulfate precipitates and removes much of the radium from solution. Radium coprecipitates to a lesser extent with manganese-barium- and iron-oxy hydroxides. R-mode factor analysis of abundances of elements suggests that 65 percent of the variance of the different elements is affected by seven factors interpreted as follows: (1) Silica and silicate contamination and precipitation; (2) Carbonate travertine precipitation; (3) Radium coprecipitation; (4) Evaporite precipitation; (5) Hydrous limonite precipitation and coprecipitated elements including uranium; (6) Rare earth elements deposited with detrital contamination (?); (7) Metal carbonate adsorption and precipitation. Economically recoverable minerals occurring at some localities in spring precipitates are ores of iron, manganese, sulfur, tungsten and barium and ornamental travertine. Continental radioactive mineral springs occur in areas of crustal thickening caused by overthrusting of crustal plates, and intrusion and metamorphism. Sedimentary rocks on the lower plate are trapped between the plates and form a zone of metamorphism. Connate waters, carbonate rocks and organic-carbon-bearing rocks react to extreme pressure and temperature to produce carbon dioxide, and steam. Fractures are forced open by gas and fluid pressures. Deep-circulating meteoric waters then come in contact with the reactive products, and a hydrothermal cell forms. When hot mineral-charged waters reach the surface they form the familiar hot mineral springs. Hot springs also occur in relation to igneous intrusive action or volcanism both of which may be products of the crustal plate overthrusting. Uranium and thorium in the sedimentary rocks undergoing metamorphism are sometimes mobilized, but mobilization is generally restricted to an acid hydrothermal environment; much is redeposited in favorable environments in the metamorphosed sediments. Radium and radon, which are highly mobile in both acid and alkaline aqueous media move upward into the hydrothermal cell and to the surface.

  12. CFD analysis of thermally induced thermodynamic losses in the reciprocating compression and expansion of real gases

    NASA Astrophysics Data System (ADS)

    Taleb, Aly I.; Sapin, Paul; Barfuß, Christoph; Fabris, Drazen; Markides, Christos N.

    2017-03-01

    The efficiency of expanders is of prime importance in determining the overall performance of a variety of thermodynamic power systems, with reciprocating-piston expanders favoured at intermediate-scales of application (typically 10-100 kW). Once the mechanical losses in reciprocating machines are minimized (e.g. through careful valve design and operation), losses due to the unsteady thermal-energy exchange between the working fluid and the solid walls of the containing device can become the dominant loss mechanism. In this work, gas-spring devices are investigated numerically in order to focus explicitly on the thermodynamic losses that arise due to this unsteady heat transfer. The specific aim of the study is to investigate the behaviour of real gases in gas springs and to compare this to that of ideal gases in order to attain a better understanding of the impact of real-gas effects on the thermally induced losses in reciprocating expanders and compressors. A CFD-model of a gas spring is developed in OpenFOAM. Three different fluid models are compared: (1) an ideal-gas model with constant thermodynamic and transport properties; (2) an ideal-gas model with temperature-dependent properties; and (3) a real-gas model using the Peng-Robinson equation-of-state with temperature and pressure-dependent properties. Results indicate that, for simple, mono- and diatomic gases, like helium or nitrogen, there is a negligible difference in the pressure and temperature oscillations over a cycle between the ideal and real-gas models. However, when considering heavier (organic) molecules, such as propane, the ideal-gas model tends to overestimate the pressure compared to the real-gas model, especially if the temperature and pressure dependency of the thermodynamic properties is not taken into account. In fact, the ideal-gas model predicts higher pressures by as much as 25% (compared to the real-gas model). Additionally, both ideal-gas models underestimate the thermally induced loss compared to the real-gas model for heavier gases. This discrepancy is most pronounced at rotational speeds where the losses are highest. The real-gas model predicts a peak loss of 8.9% of the compression work, while the ideal-gas model predicts a peak loss of 5.7%. These differences in the work loss are due to the fact that the gas behaves less ideally during expansion than during compression, with the compressibility factor being lower during compression. This behaviour cannot be captured with the ideal-gas law. It is concluded that real-gas effects must be taken into account in order to predict accurately the thermally induced loss mechanism when using heavy fluid molecules in such devices.

  13. Strategic Communication in Pursuit of National Interests

    DTIC Science & Technology

    2012-03-22

    the tsunami-induced loss of electricity triggered a hydrogen explosion at Fukushima Daiichi Nuclear Power Plant, further compounding the disaster .38...assistance and disaster relief. Operation Tomodachi conducted in Japan after the devastating earthquake and tsunami in spring of 2011 provided an...humanitarian assistance and disaster relief. Operation Tomodachi conducted in Japan after the devastating earthquake and tsunami in spring of 2011 provided

  14. An air bearing system for small high speed gas turbines

    NASA Astrophysics Data System (ADS)

    Turner, A. B.; Davies, S. J.; Nimir, Y. L.

    1994-03-01

    This paper describes the second phase of an experimental program concerning the application of air bearings to small turbomachinery test rigs and small gas turbines. The first phase examined externally pressurized (EP) journal bearings, with a novel EP thrust bearing, for application to 'warm air' test rigs, and was entirely successful at rotational speeds in excess of 100,000 rpm. This second phase examined several designs of tilting pad-spiring journal bearings, one with a novel form of externally pressurized pad, but all using the original EP thrust bearing. The designs tested are described, including some oscillogram traces, for tests up to a maximum of 70,000 rpm; the most successful using a carbon pad-titanium beam spring arrangement. The thrust bearing which gave trouble-free operation throughout, is also described. The results of an original experiment to measure the 'runway speed' of a radial inflow turbine are also presented, which show that overspeeds of 58 percent above the design speed can result from free-power turbine coupling failure.

  15. Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9

    NASA Technical Reports Server (NTRS)

    Conrath, B.; Curran, R. J.; Hanel, R.; Kunde, V. G.; Marguire, W.; Pearl, J.; Pirraglia, J. A.; Welker, J.; Burke, T.

    1972-01-01

    During the eleven month operational lifetime of Mariner 9, the infrared spectroscopy experiment obtained data over a large portion of Mars. Recently obtained spectra indicate that strong seasonal variations in the water vapor distribution over both polar regions occurred. The wettest atmospheric conditions observed so far contain 20 to 30 precipitable microns of water over the north polar cap during northern spring. A low resolution pressure map is presented which covers that portion of the planet between latitudes -60 deg and +25 deg. A more detailed study of the Coprates canyon indicates that at its lowest point the canyon floor must be at least 5 km below the rim. Applications of tidal theory to temperature fields derived from the spectra indicate diurnal surface pressure fluctuations of as much as 12 percent during the great dust storm of 1971-72. Qualitative arguments based on radiative transfer calculations for model dust clouds composed of spherical quartz particles suggest that particle radii during the storm were of the order of a few microns.

  16. Appearance of the two-way shape-memory effect in a nitinol spring subjected to temperature and deformation cycling

    NASA Astrophysics Data System (ADS)

    Manjavidze, A. G.; Barnov, V. A.; Jorjishvili, L. I.; Sobolevskaya, S. V.

    2008-03-01

    The properties of a cylindrical spiral spring of nitinol (shape-memory alloy) are studied. When this spring is used as a working element in a rotary martensitic engine, the appearance of the two-way shape-memory effect in it is shown to decrease the engine operation efficiency.

  17. Device induces lungs to maintain known constant pressure

    NASA Technical Reports Server (NTRS)

    Lippitt, M. W.; Reed, J. H.

    1964-01-01

    This device requires the use of thoracic muscles to maintain prescribed air pressure in the lungs for brief periods. It consists of a clear plastic hollow cylinder fitted with a mouthpiece, a spring-loaded piston, and a small vent for escaping air when exhalation into the mouthpiece displaces the piston.

  18. A novel compact compliant actuator design for rehabilitation robots.

    PubMed

    Yu, Haoyong; Huang, Sunan; Thakor, Nitish V; Chen, Gong; Toh, Siew-Lok; Sta Cruz, Manolo; Ghorbel, Yassine; Zhu, Chi

    2013-06-01

    Rehabilitation robots have direct physical interaction with human body. Ideally, actuators for rehabilitation robots should be compliant, force controllable, and back drivable due to safety and control considerations. Various designs of Series Elastic Actuators (SEA) have been developed for these applications. However, current SEA designs face a common performance limitation due to the compromise on the spring stiffness selection. This paper presents a novel compact compliant force control actuator design for portable rehabilitation robots to overcome the performance limitations in current SEAs. Our design consists of a servomotor, a ball screw, a torsional spring between the motor and the ball screw, and a set of translational springs between the ball screw nut and the external load. The soft translational springs are used to handle the low force operation and reduce output impedance, stiction, and external shock load. The torsional spring, being in the high speed range, has high effective stiffness and improves the system bandwidth in large force operation when the translational springs are fully compressed. This design is also more compact due to the smaller size of the springs. We explain the construction and the working principle of our new design, followed by the dynamic modeling and analysis of the actuator. We also show the preliminary testing results of a prototype actuator designed for a lower limb exoskeleton for gait rehabilitation.

  19. Effects of bedrock geology on source and flowpath of runoff water in steep unchanneled hollows

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Asano, Y.; Kosugi, K.; Ohte, N.; Mizuyama, T.

    2001-05-01

    Simultaneous measurements of runoff, soil pore water pressure and soil temperature were taken to evaluate the spatial and temporal nature of flowpaths and flow sources in steep unchanneled hollows in central Japan. Two small hollows were monitored; one is underlain by granite and one is underlain by Paleozoic shale. In both catchments, tensiometers showed that a saturated area formed in the areas near a spring. The soil temperature suggests that in the small perennially saturated area near the spring, water percolating through the vadose zone mixed with water emerging from the bedrock. During rainstorms, the streamflow varied with the soil pore water pressure on the upper slope; the soil pore water pressure in the area near the spring remained nearly constant._@ Moreover, the spring water temperature was almost the same as the transient groundwater temperature on the upper slope. This indicates that the transient groundwater in the upper slope flowed to the spring via lateral preferential paths in both catchments. During summer rainstorms, the soil-bedrock interface temperature increased as the ground became saturated in the granite hollow, suggesting that both rainwater and shallow soil water had important effects on the formation of transient saturated groundwater on the upper slope. That is, it can be concluded that the contribution of the bedrock groundwater to the streamflow was relatively small in the granite hollow during storm runoff. The area where the bedrock groundwater seeped into the soil mantle did not grow in size as the contributing area for the streamflow extended to the upper hollow in the granite catchment. In contrast, the soil temperature indicated that after heavy rainfall (77.5 mm), bedrock groundwater played an important role in the formation of the transient groundwater in the Paleozoic shale hollow. Consequently, the contribution of the bedrock groundwater to the streamflow was relatively large in the shale hollow after heavy rainfall.

  20. Spring assisted cranioplasty: A patient specific computational model.

    PubMed

    Borghi, Alessandro; Rodriguez-Florez, Naiara; Rodgers, Will; James, Gregory; Hayward, Richard; Dunaway, David; Jeelani, Owase; Schievano, Silvia

    2018-03-01

    Implantation of spring-like distractors in the treatment of sagittal craniosynostosis is a novel technique that has proven functionally and aesthetically effective in correcting skull deformities; however, final shape outcomes remain moderately unpredictable due to an incomplete understanding of the skull-distractor interaction. The aim of this study was to create a patient specific computational model of spring assisted cranioplasty (SAC) that can help predict the individual overall final head shape. Pre-operative computed tomography images of a SAC patient were processed to extract a 3D model of the infant skull anatomy and simulate spring implantation. The distractors were modeled based on mechanical experimental data. Viscoelastic bone properties from the literature were tuned using the specific patient procedural information recorded during surgery and from x-ray measurements at follow-up. The model accurately captured spring expansion on-table (within 9% of the measured values), as well as at first and second follow-ups (within 8% of the measured values). Comparison between immediate post-operative 3D head scanning and numerical results for this patient proved that the model could successfully predict the final overall head shape. This preliminary work showed the potential application of computational modeling to study SAC, to support pre-operative planning and guide novel distractor design. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Culinary and pressure irrigation water system hydroelectric generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christiansen, Cory

    Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system. The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reducemore » pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community. A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in $40,000 of annual revenue.« less

  2. Effect of Adding a Regenerator to Kornhauser's MIT "Two-Space" (Gas-Spring+Heat Exchanger) Test Rig

    NASA Technical Reports Server (NTRS)

    Ebiana, Asuquo B.; Gidugu, Praveen

    2008-01-01

    This study employed entropy-based second law post-processing analysis to characterize the various thermodynamic losses inside a 3-space solution domain (gas spring+heat exchanger+regenerator) operating under conditions of oscillating pressure and oscillating flow. The 3- space solution domain is adapted from the 2-space solution domain (gas spring+heat exchanger) in Kornhauser's MIT test rig by modifying the heat exchanger space to include a porous regenerator system. A thermal nonequilibrium model which assumes that the regenerator porous matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle is employed. An important and primary objective of this study is the development and application of a thermodynamic loss post-processor to characterize the major thermodynamic losses inside the 3-space model. It is anticipated that the experience gained from thermodynamic loss analysis of the simple 3-space model can be extrapolated to more complex systems like the Stirling engine. It is hoped that successful development of loss post-processors will facilitate the improvement of the optimization capability of Stirling engine analysis codes through better understanding of the heat transfer and power losses. It is also anticipated that the incorporation of a successful thermal nonequilibrium model of the regenerator in Stirling engine CFD analysis codes, will improve our ability to accurately model Stirling regenerators relative to current multidimensional thermal-equilibrium porous media models.

  3. Appalachian spring: variations on ancient gastro-entero-pancreatic themes in New World mammals.

    PubMed

    Seino, S; Blackstone, C D; Chan, S J; Whittaker, J; Bell, G I; Steiner, D F

    1988-07-01

    Studies of guinea pig genomic and/or cDNA clones encoding the gastro-entero-pancreatic (GEP) hormones--insulin, glucagon and pancreatic polypeptide--as well as portions of the insulin receptor, are described. Multiple clustered substitutions (localized rapid mutation acceptance) altering the biological properties of both insulin and glucagon have been revealed, but this does not appear to be the case with either pancreatic polypeptide or those regions of guinea pig insulin receptor cDNAs that have been examined thus far. These findings suggest that novel selective pressures operative in the New World environment, in which these animals evolved in isolation from Old World mammalian species, have led to altered solutions to problems related to the regulation of growth and carbohydrate metabolism.

  4. Micro-engineered remote palpation device for assessing tissue compliance.

    PubMed

    Hien, M; Yang, T H J; Leung, S K W; Reuben, R L; Habib, F K; McNeill, S A; Schneider, A; McBride, G; Stevens, R; Else, R W

    2008-01-01

    This paper concerns the operation of the actuator for a prototype micro-engineered mechanical palpation device for deployment via a cystoscope to measure the dynamic mechanical properties of the prostate gland in vivo. The subassembly consists of a 400x200 microm silicon (Si) piston manufactured using deep reactive ion etching (DRIE) housed within an anodically bonded glass-Si-glass sandwiched housing. The micro-channel on the Si layer was formed by powder blasting and contains the micro-piston with one end pointing to the side of the housing and the other facing a via hole leading to a capillary tube. The opening on the side of the housing was sealed by a 5 microm thick silicone membrane which acts to retain the micro-piston and act as a return spring. A 320 microm diameter capillary forms the connection between the micro-channel and a micro-syringe which is operated by a programmable syringe pump to produce a reciprocating action. A pressure sensor is connected along the capillary tube to measure the dynamic pressure within the system. The micro-piston has already been used, separately actuated to measure the dynamic mechanical properties of known viscoelastic materials and prostate tissue. The purpose of the present work is to assess the functionality of the actuator assembly.

  5. Rapid Quantification of Energy Absorption and Dissipation Metrics for PPE Padding Materials

    DTIC Science & Technology

    2010-01-22

    dampers ,   i.e.,  Hooke’s  Law  springs  and   viscous ...absorbing/dissipating materials. Input forces caused by blast pressures, determined from computational fluid dynamics (CFD) analysis and simulation...simple  lumped-­‐ parameter  elements   –  spring,  k  (energy  storage)   –  damper ,  b  (energy  dissipa/on   Rapid

  6. The influence of weather on Golden Eagle migration in northwestern Montana

    USGS Publications Warehouse

    Yates, R.E.; McClelland, B.R.; Mcclelland, P.T.; Key, C.H.; Bennetts, R.E.

    2001-01-01

    We analyzed the influence of 17 weather factors on migrating Golden Eagles (Aquila chrysaetos) near the Continental Divide in Glacier National Park, Montana, U.S.A. Local weather measurements were recorded at automated stations on the flanks of two peaks within the migration path. During a total of 506 hr of observation, the yearly number of Golden Eagles in autumn counts (1994-96) averaged 1973; spring counts (1995 and 1996) averaged 605 eagles. Mean passage rates (eagles/hr) were 16.5 in autumn and 8.2 in spring. Maximum rates were 137 in autumn and 67 in spring. Using generalized linear modeling, we tested for the effects of weather factors on the number of eagles counted. In the autumn model, the number of eagles increased with increasing air temperature, rising barometric pressure, decreasing relative humidity, and interactions among those factors. In the spring model, the number of eagles increased with increasing wind speed, barometric pressure, and the interaction between these factors. Our data suggest that a complex interaction among weather factors influenced the number of eagles passing on a given day. We hypothesize that in complex landscapes with high topographic relief, such as Glacier National Park, numerous weather factors produce different daily combinations to which migrating eagles respond opportunistically. ?? 2001 The Raptor Research Foundation, Inc.

  7. Heat Acclimatization Protects the Left Ventricle from Increased Diastolic Chamber Stiffness Immediately after Coronary Artery Bypass Surgery: A Lesson from 30 Years of Studies on Heat Acclimation Mediated Cross Tolerance

    PubMed Central

    Pollak, Arthur; Merin, Gideon; Horowitz, Michal; Shochina, Mara; Gilon, Dan; Hasin, Yonathan

    2017-01-01

    During the period of 1986–1997 the first 4 publications on the mechanical and metabolic properties of heat acclimated rat's heart were published. The outcome of these studies implied that heat acclimation, sedentary as well as combined with exercise training, confers long lasting protection against ischemic/reperfusion insult. These results promoted a clinical study on patients with coronary artery disease scheduled for elective coronary artery bypass operations aiming to elucidate whether exploitation of environmental stress can be translated into human benefits by improving physiological recovery. During the 1998 study, immediate-post operative chamber stiffness was assessed in patients acclimatized to heat and low intensity training in the desert (spring in the Dead Sea, 17–33°C) vs. patients in colder weather (spring in non-desert areas, 6–19°C) via echocardiogram acquisition simultaneous with left atrial pressure measurement during fast intravascular fluid bolus administration. We showed that patients undergoing “heat acclimatization combined with exercise training” were less susceptible to ischemic injury, therefore expressing less diastolic dysfunction after cardiopulmonary bypass compared to non-acclimatized patients. This was the first clinical translational study on cardiac patients, while exploiting environmental harsh conditions for human benefits. The original experimental data are described and discussed in view of the past as well as the present knowledge of the protective mechanisms induced by Heat Acclimation Mediated Cross-tolerance. PMID:29311958

  8. Joystick With Cable Springs Offers Better Feel

    NASA Technical Reports Server (NTRS)

    Kerley, James; Ecklund, Wayne

    1992-01-01

    Improved joystick allows motion in 6 degrees of freedom, biased toward central position and orientation by 16 segments of cable serving as springs. Improvement in feel and control results from nonlinear compliance of cable-spring assembly. Nonlinear variations accommodate natural reactions of hand and brain. Operator functions as part of feedback control loop. More comfortable, increases ability to exert control and reduces fatigue.

  9. Variable resistance constant tension and lubrication device. [using oil-saturated leather wiper

    NASA Technical Reports Server (NTRS)

    Smith, H. J. (Inventor)

    1974-01-01

    A variable resistance device is described which includes a cylindrical housing having elongated resistance wires. A movable arm having a supporting block carried on the outer end is rotatably carried by the cylindrical housing. An arcuate steel spring member is pivotally supported by the movable arm. A leather wiper member is carried adjacent to one end of the spring steel member, and an electrically conductive surface is carried adjacent to the other end. The supporting block maintains the spring steel member in compression so that a constant pressure is applied to the conductive end of the spring steel member and the leather wiper. The leather wiper is saturated with a lubricating oil for maintaining the resistance wire clean as the movable arm is manipulated.

  10. Spring Tire

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake M.; Benzing, Jim; Kish, Jim C.

    2011-01-01

    The spring tire is made from helical springs, requires no air or rubber, and consumes nearly zero energy. The tire design provides greater traction in sandy and/or rocky soil, can operate in microgravity and under harsh conditions (vastly varying temperatures), and is non-pneumatic. Like any tire, the spring tire is approximately a toroidal-shaped object intended to be mounted on a transportation wheel. Its basic function is also similar to a traditional tire, in that the spring tire contours to the surface on which it is driven to facilitate traction, and to reduce the transmission of vibration to the vehicle. The essential difference between other tires and the spring tire is the use of helical springs to support and/or distribute load. They are coiled wires that deform elastically under load with little energy loss.

  11. A Journey with MOM

    NASA Technical Reports Server (NTRS)

    Helfrich, Cliff; Berry, David S.; Bhat, Ramachandra; Border, James; Graat, Eric; Halsell, Allen; Kruizinga, Gerhard; Lau, Eunice; Mottinger, Neil; Rush, Brian; hide

    2015-01-01

    In late 2013, the Indian Space Research Organization (ISRO) launched its "Mars Orbiter Mission" (MOM). ISRO engaged NASA's Jet Propulsion Laboratory (JPL) for navigation services to support ISRO's objectives of MOM achieving and maintaining Mars orbit. The navigation support included planning, documentation, testing, orbit determination, maneuver design /analysis, and tracking data analysis. Several of MOM's attributes had an impact on navigation processes, e.g., S -band telecommunications, Earth Orbit Phase maneuvers, and frequent angular momentum desaturation s (AMDs). The primary source of tracking data was NASA/ JPL's Deep Space Network (DSN); JPL also conducted a performance assessment of Indian Deep Space Network (IDSN) tracking data. Planning for the Mars Orbit Insertion (MOI) was complicated by a pressure regulator failure that created uncertainty regarding MOM's main engine and raised potential planetary protection issues. A successful main engine test late on approach resolved these issues; it was quickly followed by a successful MOI on 24-September - 2014 at 02:00 UTC. Less than a month later, Comet Siding Spring's Mars flyby necessitated plans to minimize potential spacecraft damage. At the time of this writing, MOM's orbital operations continue, and plans to extend JPL 's support are in progress. This paper covers the JPL 's support of MOM through the Comet Siding Spring event.

  12. Correction of Altitude-Induced Changes in Performance of the Volumetric Diffusive Respirator

    DTIC Science & Technology

    2017-04-05

    to a plateau pressure. The positive pressure delivery of each percussive pulse is followed by a passive fall in pressure as the spring moves the ...AFRL-SA-WP-SR-2017-0007 Correction of Altitude- Induced Changes in Performance of the Volumetric Diffusive Respirator Thomas...Blakeman, MSc RRT April 2017 Air Force Research Laboratory 711th Human Performance Wing U.S. Air Force School of Aerospace

  13. Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey)

    NASA Astrophysics Data System (ADS)

    Ozdemir, Adnan

    2011-07-01

    SummaryThe purpose of this study is to produce a groundwater spring potential map of the Sultan Mountains in central Turkey, based on a logistic regression method within a Geographic Information System (GIS) environment. Using field surveys, the locations of the springs (440 springs) were determined in the study area. In this study, 17 spring-related factors were used in the analysis: geology, relative permeability, land use/land cover, precipitation, elevation, slope, aspect, total curvature, plan curvature, profile curvature, wetness index, stream power index, sediment transport capacity index, distance to drainage, distance to fault, drainage density, and fault density map. The coefficients of the predictor variables were estimated using binary logistic regression analysis and were used to calculate the groundwater spring potential for the entire study area. The accuracy of the final spring potential map was evaluated based on the observed springs. The accuracy of the model was evaluated by calculating the relative operating characteristics. The area value of the relative operating characteristic curve model was found to be 0.82. These results indicate that the model is a good estimator of the spring potential in the study area. The spring potential map shows that the areas of very low, low, moderate and high groundwater spring potential classes are 105.586 km 2 (28.99%), 74.271 km 2 (19.906%), 101.203 km 2 (27.14%), and 90.05 km 2 (24.671%), respectively. The interpretations of the potential map showed that stream power index, relative permeability of lithologies, geology, elevation, aspect, wetness index, plan curvature, and drainage density play major roles in spring occurrence and distribution in the Sultan Mountains. The logistic regression approach has not yet been used to delineate groundwater potential zones. In this study, the logistic regression method was used to locate potential zones for groundwater springs in the Sultan Mountains. The evolved model was found to be in strong agreement with the available groundwater spring test data. Hence, this method can be used routinely in groundwater exploration under favourable conditions.

  14. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  15. Remote access and automation of SPring-8 MX beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, Go, E-mail: ueno@spring8.or.jp; Hikima, Takaaki; Yamashita, Keitaro

    At SPring-8 MX beamlines, a remote access system has been developed and started user operation in 2010. The system has been developed based on an automated data collection and data management architecture utilized for the confirmed scheme of SPring-8 mail-in data collection. Currently, further improvement to the remote access and automation which covers data processing and analysis are being developed.

  16. Spring/dimple instrument tube restraint

    DOEpatents

    DeMario, Edmund E.; Lawson, Charles N.

    1993-01-01

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs.

  17. Spring/dimple instrument tube restraint

    DOEpatents

    DeMario, E.E.; Lawson, C.N.

    1993-11-23

    A nuclear fuel assembly for a pressurized water nuclear reactor has a spring and dimple structure formed in a non-radioactive insert tube placed in the top of a sensor receiving instrumentation tube thimble disposed in the fuel assembly and attached at a top nozzle, a bottom nozzle, and intermediate grids. The instrumentation tube thimble is open at the top, where the sensor or its connection extends through the cooling water for coupling to a sensor signal processor. The spring and dimple insert tube is mounted within the instrumentation tube thimble and extends downwardly adjacent the top. The springs and dimples restrain the sensor and its connections against lateral displacement causing impact with the instrumentation tube thimble due to the strong axial flow of cooling water. The instrumentation tube has a stainless steel outer sleeve and a zirconium alloy inner sleeve below the insert tube adjacent the top. The insert tube is relatively non-radioactivated inconel alloy. The opposed springs and dimples are formed on diametrically opposite inner walls of the insert tube, the springs being formed as spaced axial cuts in the insert tube, with a web of the insert tube between the cuts bowed radially inwardly for forming the spring, and the dimples being formed as radially inward protrusions opposed to the springs. 7 figures.

  18. Hydrogeology of northern Sierra de Chiapas, Mexico: a conceptual model based on a geochemical characterization of sulfide-rich karst brackish springs

    NASA Astrophysics Data System (ADS)

    Rosales Lagarde, Laura; Boston, Penelope J.; Campbell, Andrew R.; Hose, Louise D.; Axen, Gary; Stafford, Kevin W.

    2014-09-01

    Conspicuous sulfide-rich karst springs flow from Cretaceous carbonates in northern Sierra de Chiapas, Mexico. This is a geologically complex, tropical karst area. The physical, geologic, hydrologic and chemical attributes of these springs were determined and integrated into a conceptual hydrogeologic model. A meteoric source and a recharge elevation below 1,500 m are estimated from the spring-water isotopic signature regardless of their chemical composition. Brackish spring water flows at a maximum depth of 2,000 m, as inferred from similar chemical attributes to the produced water from a nearby oil well. Oil reservoirs may be found at depths below 2,000 m. Three subsurface environments or aquifers are identified based on the B, Li+, K+ and SiO2 concentrations, spring water temperatures, and CO2 pressures. There is mixing between these aquifers. The aquifer designated Local is shallow and contains potable water vulnerable to pollution. The aquifer named Northern receives some brackish produced water. The composition of the Southern aquifer is influenced by halite dissolution enhanced at fault detachment surfaces. Epigenic speleogenesis is associated with the Local springs. In contrast, hypogenic speleogenesis is associated with the brackish sulfidic springs from the Northern and the Southern environments.

  19. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Lofy, Peter T.

    2002-11-01

    This is the second annual report of a multi-year, multi-agency project to restore spring chinook salmon populations in the Grande Ronde River Basin (Grande Ronde Endemic Chinook Salmon Program--GRESCP). The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operates adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to increase natural production and restore fisheries in these two streams. Statement of Work Objectives formore » 1999: (1) Participate in development and continued implementation of the comprehensive multi year operations plan for the Grande Ronde Endemic Supplementation Program. (2) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (3) Monitor adult endemic spring chinook salmon populations and collect broodstock. (4) Plan detailed Monitoring and Evaluation for future years. (5) Monitor population abundance and characteristics and local environmental factors that may influence abundance and run timing of Grande Ronde River spring chinook populations. (6) Participate in Monitoring and Evaluation of the captive brood component of the Program to assure this component is contributing to the Program. (7) Participate in data collection for incidentally-caught bull trout and summer steelhead and planning for recovery of summer steelhead populations. (8) Document accomplishments and needs to permitters, comanagers, and funding agencies. (9) Communicate project results to the scientific community.« less

  20. Screw-Thread Inserts As Temporary Flow Restrictors

    NASA Technical Reports Server (NTRS)

    Trimarchi, Paul

    1992-01-01

    Coil-spring screw-thread inserts found useful as temporary flow restrictors. Inserts placed in holes through which flow restricted, effectively reducing cross sections available for flow. Friction alone holds inserts against moderate upstream pressures. Use of coil-spring thread inserts as flow restrictors conceived as inexpensive solution to problem of adjusting flow of oxygen through orifices in faceplate into hydrogen/oxygen combustion chamber. Installation and removal of threaded inserts gentle enough not to deform orifice tubes.

  1. Performance of an aircraft tire under cyclic braking and of a currently operational antiskid braking system

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.

    1972-01-01

    An experimental investigation was conducted to study the performance of an aircraft tire under cyclic braking conditions and to study the performance of a currently operational aircraft antiskid braking system. Dry, damp, and flooded runway surface conditions were used in the investigation. The results indicated that under cyclic braking conditions the braking and cornering-force friction coefficients may be influenced by fluctuations in the vertical load, flexibility in the wheel support, and the spring coupling between the wheel and the tire-pavement interface. The cornering capability was shown to be negligible at wheel slip ratios well below a locked-wheel skid under all test surface conditions. The maximum available brake-force friction coefficient was shown to be dependent upon the runway surface condition, upon velocity, and, for wet runways, upon tire differences. Moderate reductions in vertical load and brake system pressure did not significantly affect the overall wet-runway performance of the tire.

  2. Development of a prototype flexible radiator system

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1979-01-01

    The radiator is a roll-up flexible panel with the transport fluid manifolds located at the ends of the 27 foot length. A total of fifty Teflon flow tubes are sandwiched between the layers of silver wire mesh and sealed in the Teflon film. The transport fluid flows from an inlet manifold through 25 panel flow tubes to the end of the radiator panel into a manifold which directs the fluid into the other 25 flow tubes on its return to the base of the radiator. Deployment/retraction of the flexible radiator panel is by low pressure inflation tubes (one along each side of the panel) which incorporate a flat spring. The spring supplies the retraction force to wind the radiator panel on a drum when the pressure in the inflation tubes is relieved. Room ambient deployment tests of the radiator panel were conducted to verify the inflation tube spring deployment, and retraction capability. The panel underwent a thermal vacuum, solar spectrum exposure test. After approximately 100 hours of solar exposure, post-test inspection revealed no structural or optical properties degraded.

  3. The Coast Guard Proceedings of the Marine Safety and Security Council: Spring 2016

    DTIC Science & Technology

    2016-04-01

    PROCEEDINGS Spring 2016 Vol. 73, Number 1 Safety Management System Objectives 6 Safety Management Facilitates Safe Vessel Operation Vessel systems...crew, and operations. by LCDR Aaron W. Demo 9 Safety Management Systems to Prevent Pollution from Ships Standard procedures protect the environment...by LCDR Michael Lendvay 11 Dead Reckoning by Safety Management ? Check your course. by LCDR Corydon F. Heard IV Safety Management Systems and the Outer

  4. Preliminary Assessment for CAU 485: Cactus Spring Ranch Pu and DU Site CAS No. TA-39-001-TAGR: Soil Contamination, Tonopah Test Range, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    Corrective Action Unit 485, Corrective Action Site TA-39-001-TAGR, the Cactus Spring Ranch Soil Contamination Area, is located approximately six miles southwest of the Area 3 Compound at the eastern mouth of Sleeping Column Canyon in the Cactus Range on the Tonopah Test Range. This site was used in conjunction with animal studies involving the biological effects of radionuclides (specifically plutonium) associated with Operation Roofer Coaster. The location had been used as a ranch by private citizens prior to government control of the area. According to historical records, Operation Roofer Coaster activities involved assessing the inhalation uptake of plutonium in animalsmore » from the nonnuclear detonation of nuclear weapons. Operation Roofer Coaster consisted of four nonnuclear destruction tests of a nuclear device. The four tests all took place during May and June 1963 and consisted of Double Tracks and Clean Slate 1, 11, and 111. Eighty-four dogs, 84 burros, and 136 sheep were used for the Double Tracks test, and ten sheep and ten dogs were used for Clean Slate 11. These animals were housed at Cactus Spring Ranch. Before detonation, all animals were placed in cages and transported to the field. After the shot, they were taken to the decontamination area where some may have been sacrificed immediately. All animals, including those sacrificed, were returned to Cactus Spring Ranch at this point to have autopsies performed or to await being sacrificed at a later date. A description of the Cactus Spring Ranch activities found in project files indicates the ranch was used solely for the purpose of the Roofer Coaster tests and bioaccumulation studies and was never used for any other project. No decontamination or cleanup had been conducted at Cactus Spring Ranch prior to the start of the project. When the project was complete, the pits at Cactus Spring Ranch were filled with soil, and trailers where dogs were housed and animal autopsies had been performed were removed. Additional pens and sheds were built to house and manage livestock involved with the Operation Roofer Coaster activities in 1963.« less

  5. Intra-ocular pressure normalization technique and equipment

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1979-01-01

    A method and apparatus is described for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval. This allows maintenance of normal intraocular pressure during glaucoma surgery. A pressure regulator of the spring-biassed diaphragm type is provided with additional bias by a column of liquid. The hypodermic needle can be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle.

  6. Atmospheric conditions during the spring and fall transitions in the coastal ocean off western United States

    NASA Technical Reports Server (NTRS)

    Strub, P. Ted; James, Corinne

    1988-01-01

    Atmospheric events which force the spring and fall oceanic transitions in the coastal ocean off the west coast of North America were examined by analyzing the records of adjusted sea level (ASL), coastal wind stress, sea level atmospheric pressure (SLP), and 500-mbar heights for the years 1971-1975 and 1980-1983. The records cover periods of 91 days, centered on the dates of the spring and fall transitions as determined from coastal ASL data. It was found that the dominant mode of the ASL and coastal wind stress are similar around the times of both the spring and fall transitions, and that the time series for these modes are highly correlated with one another. Principal estimator patterns show the spatial patterns of SLP which force the ASL and coastal wind stress during the transitions.

  7. Monitoring the hydrothermal system in Long Valley caldera, California

    USGS Publications Warehouse

    Farrar, C.D.; Sorey, M.L.

    1985-01-01

    An ongoing program to monitor the hydrothermal system in Long Valley for changes caused by volcanic or tectonic processes has produced considerable data on the water chemistry and discharge of springs and fluid temperatures and pressures in wells. Chemical and isotopic data collected under this program have greatly expanded the knowledge of chemical variability both in space and time. Although no chemical or isotopic changes in hot spring waters can be attributed directly to volcanic or tectonic processes, changes in hot spring chemistry that have been recorded probably relate to interactions between and variations in the quantity of liquid and gas discharged. Stable carbon isotope data are consistent with a carbon source either perform the mantle or from metamorphosed carbonate rocks. Continuous and periodic measurements of hot spring discharge at several sites show significant co seismic and a seismic changes since 1980.

  8. Evaluation of bearing mounting design and excessive wear phenomena

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.

    1982-01-01

    The effect of bearing thermal growth on the effectiveness of the bearing preload springs on the space shuttle main engine high pressure oxygen turbopump (SSME HPTOP) were examined. The SSME HPTOP turbine end bearings, preload spring, and bearing mounting design were evaluated relative to spalling, excessive ball wear, possible thermal problems, and cage delamination. The magnitude of the thermal stresses required to cause high levels of ball wear were calculated. Plots of maximum sheer stress and maximum reversing shear versus the axial load for the 57 mm SSME HPTOP bearing were created. A plot of the bearing thermal growth versus preload spring deflection was generated. It was determined that metallic wear, rather than thermal growth, caused enlargement of the contact zone between ball and races, that high fatigue-inducing shear stresses are generated under increased loads, and that at temperatures between 100 and 150 deg C, the springs bottom out and very high loads are developed in the bearing. Allowance for adequate spring movement after assembly is recommended.

  9. An Evaluation of High Temperature Airframe Seals for Advanced Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H.; Steinetz, Bruce M.; Drlik, Gary J.

    2007-01-01

    High temperature seals are required for advanced hypersonic airframe applications. In this study, both spring tube thermal barriers and innovative wafer seal systems were evaluated under relevant hypersonic test conditions (temperatures, pressures, etc.) via high temperature compression testing and room temperature flow assessments. Thermal barriers composed of a Rene 41 spring tube filled with Saffil insulation and overbraided with a Nextel 312 sheath showed acceptable performance at 1500 F in both short term and longer term compression testing. Nextel 440 thermal barriers with Rene 41 spring tubes and Saffil insulation demonstrated good compression performance up to 1750 F. A silicon nitride wafer seal/compression spring system displayed excellent load performance at temperatures as high as 2200 F and exhibited room temperature leakage values that were only 1/3 those for the spring tube rope seals. For all seal candidates evaluated, no significant degradation in leakage resistance was noted after high temperature compression testing. In addition to these tests, a superalloy seal suitable for dynamic seal applications was optimized through finite element techniques.

  10. Geophysical Investigation at Gathright Dam.

    DTIC Science & Technology

    1982-03-01

    a limestone, is actually a calcareous and dolomitic siltstone. The siltstone is thin-bedded and in areas al- most fissile. The jointing of the...voltage across the Helmholtz double layer (laminar flow con- dition in a capillary tube) n = viscosity of the pore fluid AP = pressure drop along...spring RB-2 only. c. In RS-3, the fractured and clayey zone at el 1370 pro- duced muddy flow in the river spring. d. Core boring RS-4 caused muddy flow in

  11. Executive Summary Geotechnical Siting Investigations FY 81.

    DTIC Science & Technology

    1981-11-30

    and dolomites of Cambrian to Ordovician age, and 3) the Ely Springs, Laketown, Sevy and Simonson dolomites , and the Guilmette Formation of Ordovician to...deposits. o A test well in southern Coyote Spring Valley that penetrated fractured carbonate rock was pumped by Ertec for 30 days at a rate of 3400 gpm...tire type, tire pressure , and wheel load for the prototype MX missile transporter. 6.4.2.2 CBR Versus CPT Correlation Studies Field and laboratory

  12. Improving the sensitivity of a torsion pendulum by using an optical spring method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qinglan; Yeh Hsienchi; Zhou Zebing

    We present a scheme aiming at improving the sensitivity of a torsion pendulum by means of radiation-pressure-induced optical spring. Two partial-reflective mirrors are installed on the opposite sides of a torsion pendulum, and one high-reflective mirror is mounted at the end of the torsion beam so that two identical Fabry-Perot cavities can be formed and aligned in series. Due to the antisymmetric radiation pressures acting on the opposite sides of the torsion beam, a negative restoring coefficient can be generated within a certain dynamic range, such that both the resultant torsional rigidity and the resonant frequency of the torsion pendulummore » are reduced, and the minimum detectable response torque in high-frequency region can be reduced accordingly.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Gross, R.; Goble, W

    The safety integrity level (SIL) of equipment used in safety instrumented functions is determined by the average probability of failure on demand (PFDavg) computed at the time of periodic inspection and maintenance, i.e., the time of proof testing. The computation of PFDavg is generally based solely on predictions or estimates of the assumed constant failure rate of the equipment. However, PFDavg is also affected by maintenance actions (or lack thereof) taken by the end user. This paper shows how maintenance actions can affect the PFDavg of spring operated pressure relief valves (SOPRV) and how these maintenance actions may be accountedmore » for in the computation of the PFDavg metric. The method provides a means for quantifying the effects of changes in maintenance practices and shows how these changes impact plant safety.« less

  14. A new pneumatic suspension system with independent stiffness and ride height tuning capabilities

    NASA Astrophysics Data System (ADS)

    Yin, Zhihong; Khajepour, Amir; Cao, Dongpu; Ebrahimi, Babak; Guo, Konghui

    2012-12-01

    This paper introduces a new pneumatic spring for vehicle suspension systems, allowing independent tuning of stiffness and ride height according to different vehicle operating conditions and driver preferences. The proposed pneumatic spring comprises a double-acting pneumatic cylinder, two accumulators and a tuning subsystem. This paper presents a detailed description of the pneumatic spring and its working principle. The mathematical model is established based on principles of thermo and fluid dynamics. An experimental setup has been designed and fabricated for testing and evaluating the proposed pneumatic spring. The analytical and experimental results confirm the capability of the new pneumatic spring system for independent tuning of stiffness and ride height. The mathematical model is verified and the capabilities of the pneumatic spring are further proved. It is concluded that this new pneumatic spring provides a more flexible suspension design alternative for meeting various conflicting suspension requirements for ride comfort and performance.

  15. Liquid-metal dip seal with pneumatic spring

    DOEpatents

    Poindexter, Allan M.

    1977-01-01

    An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal.

  16. Impact of Marine Submergence and Season on Faunal Colonization and Decomposition of Pig Carcasses in the Salish Sea

    PubMed Central

    Anderson, Gail S.; Bell, Lynne S.

    2016-01-01

    Pig carcasses, as human proxies, were placed on the seabed at a depth of 300 m, in the Strait of Georgia and observed continuously by a remotely operated camera and instruments. Two carcasses were deployed in spring and two in fall utilizing Ocean Network Canada’s Victoria Experimental Network under the Sea (formerly VENUS) observatory. A trial experiment showed that bluntnose sixgill sharks could rapidly devour a carcass so a platform was designed which held two matched carcasses, one fully exposed, the other covered in a barred cage to protect it from sharks, while still allowing invertebrates and smaller vertebrates access. The carcasses were deployed under a frame which supported a video camera, and instruments which recorded oxygen, temperature, salinity, density, pressure, conductivity, sound speed and turbidity at per minute intervals. The spring exposed carcass was briefly fed upon by sharks, but they were inefficient feeders and lost interest after a few bites. Immediately after deployment, all carcasses, in both spring and fall, were very rapidly covered in vast numbers of lyssianassid amphipods. These skeletonized the carcasses by Day 3 in fall and Day 4 in spring. A dramatic, very localized drop in dissolved oxygen levels occurred in fall, exactly coinciding with the presence of the amphipods. Oxygen levels returned to normal once the amphipods dispersed. Either the physical presence of the amphipods or the sudden draw down of oxygen during their tenure, excluded other fauna. The amphipods fed from the inside out, removing the skin last. After the amphipods had receded, other fauna colonized such as spot shrimp and a few Dungeness crabs but by this time, all soft tissue had been removed. The amphipod activity caused major bioturbation in the local area and possible oxygen depletion. The spring deployment carcasses became covered in silt and a black film formed on them and on the silt above them whereas the fall bones remained uncovered and hence continued to be attractive to large numbers of spot shrimp. The carcass remains were recovered after 166 and 134 days respectively for further study. PMID:26930206

  17. Impact of Marine Submergence and Season on Faunal Colonization and Decomposition of Pig Carcasses in the Salish Sea.

    PubMed

    Anderson, Gail S; Bell, Lynne S

    2016-01-01

    Pig carcasses, as human proxies, were placed on the seabed at a depth of 300 m, in the Strait of Georgia and observed continuously by a remotely operated camera and instruments. Two carcasses were deployed in spring and two in fall utilizing Ocean Network Canada's Victoria Experimental Network under the Sea (formerly VENUS) observatory. A trial experiment showed that bluntnose sixgill sharks could rapidly devour a carcass so a platform was designed which held two matched carcasses, one fully exposed, the other covered in a barred cage to protect it from sharks, while still allowing invertebrates and smaller vertebrates access. The carcasses were deployed under a frame which supported a video camera, and instruments which recorded oxygen, temperature, salinity, density, pressure, conductivity, sound speed and turbidity at per minute intervals. The spring exposed carcass was briefly fed upon by sharks, but they were inefficient feeders and lost interest after a few bites. Immediately after deployment, all carcasses, in both spring and fall, were very rapidly covered in vast numbers of lyssianassid amphipods. These skeletonized the carcasses by Day 3 in fall and Day 4 in spring. A dramatic, very localized drop in dissolved oxygen levels occurred in fall, exactly coinciding with the presence of the amphipods. Oxygen levels returned to normal once the amphipods dispersed. Either the physical presence of the amphipods or the sudden draw down of oxygen during their tenure, excluded other fauna. The amphipods fed from the inside out, removing the skin last. After the amphipods had receded, other fauna colonized such as spot shrimp and a few Dungeness crabs but by this time, all soft tissue had been removed. The amphipod activity caused major bioturbation in the local area and possible oxygen depletion. The spring deployment carcasses became covered in silt and a black film formed on them and on the silt above them whereas the fall bones remained uncovered and hence continued to be attractive to large numbers of spot shrimp. The carcass remains were recovered after 166 and 134 days respectively for further study.

  18. Lubrication pressure and fractional viscous damping effects on the spring-block model of earthquakes

    NASA Astrophysics Data System (ADS)

    Tanekou, G. B.; Fogang, C. F.; Kengne, R.; Pelap, F. B.

    2018-04-01

    We examine the dynamical behaviours of the "single mass-spring" model for earthquakes considering lubrication pressure effects on pre-existing faults and viscous fractional damping. The lubrication pressure supports a part of the load, thereby reducing the normal stress and the associated friction across the gap. During the co-seismic phase, all of the strain accumulated during the inter-seismic duration does not recover; a fraction of this strain remains as a result of viscous relaxation. Viscous damping friction makes it possible to study rocks at depth possessing visco-elastic behaviours. At increasing depths, rock deformation gradually transitions from brittle to ductile. The fractional derivative is based on the properties of rocks, including information about previous deformation events ( i.e., the so-called memory effect). Increasing the fractional derivative can extend or delay the transition from stick-slip oscillation to a stable equilibrium state and even suppress it. For the single block model, the interactions of the introduced lubrication pressure and viscous damping are found to give rise to oscillation death, which corresponds to aseismic fault behaviour. Our result shows that the earthquake occurrence increases with increases in both the damping coefficient and the lubrication pressure. We have also revealed that the accumulation of large stresses can be controlled via artificial lubrication.

  19. Rotary kiln seal

    DOEpatents

    Drexler, Robert L.

    1992-01-01

    A rotary seal used to prevent the escape of contaminates from a rotating kiln incinerator. The rotating seal combines a rotating disc plate which is attached to the rotating kiln shell and four sets of non-rotating carbon seal bars housed in a primary and secondary housing and which rub on the sides of the disc. A seal air system is used to create a positive pressure in a chamber between the primary and secondary seals to create a positive air flow into the contaminated gas chamber. The seal air system also employs an air inlet located between the secondary and tertiary seals to further insure that no contaminates pass the seal and enter the external environment and to provide makeup air for the air which flows into the contaminated gas chamber. The pressure exerted by the seal bars on the rotating disc is controlled by means of a preload spring. The seal is capable of operating in a thermally changing environment where the both radial expansion and axial movement of the rotating kiln do not result in the failure of the seal.

  20. Standing wave acoustic levitation on an annular plate

    NASA Astrophysics Data System (ADS)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  1. Polymer thick-film conductors and dielectrics for membrane switches and flexible circuitry

    NASA Technical Reports Server (NTRS)

    Nazarenko, N.

    1983-01-01

    The fabrication and operation of membrane switches are discussed. The membrane switch functions as a normally open, momentary contact, low-voltage pressure-sensitive device. Its design is a three-layer sandwich usually constructed of polyester film. Conductive patterns are deposited onto the inner side of top and bottom sheets by silk screening. The center spacer is then placed between the two circuit layers to form a sandwich, generally held together by an adhesive. When pressure is applied to the top layer, it flexes through the punched openings of the spacer to establish electrical contact between conductive pads of the upper and lower sheets, momentarily closing the circuit. Upon release of force the top sheet springs back to its normal open position. The membrane touch switch is being used in a rapidly expanding range of applications, including instrumentation, appliances, electronic games and keyboards. Its board acceptance results from its low cost, durability, ease of manufacture, cosmetic appeal and design flexibility. The principal electronic components in the membrane switch are the conductor and dielectric.

  2. TIMING APPARATUS

    DOEpatents

    Bennett, A.E.; Geisow, J.C.H.

    1956-04-17

    The timing device comprises an escapement wheel and pallet, a spring drive to rotate the escapement wheel to a zero position, means to wind the pretensioned spring proportional to the desired signal time, and a cam mechanism to control an electrical signal switch by energizing the switch when the spring has been wound to the desired position, and deenergizing it when it reaches the zero position. This device produces an accurately timed signal variably witain the control of the operator.

  3. ME8373 Spring 2015 ICME Proposal ICME Analysis of Fatigue Crack Growth Through a Weld in SA-516 Grade 70 Plate

    NASA Technical Reports Server (NTRS)

    Woods, Jody L.

    2015-01-01

    This paper describes work accomplished to predict the service life of a flexure joint design which is a component of a diffuser duct in the A3 Test Stand, an altitude simulation rocket engine test facility at NASA's Stennis Space Center. The duct has two pressure shells separated by cooling water passages and connected by stiffening ribs and flexure joints. Rocket exhaust flows within the duct and heats the inner pressure shell while the outer pressure shell remains at ambient temperature. The flexure joints allow for differential thermal expansion of the inner and outer pressure shells and are subject to in-service loading by this thermal expansion along with water pressure in the cooling water passage, atmospheric pressure outside the duct, near vacuum conditions within the duct, and vibrational loads from operation of the facility and rocket engine. Figure 1 shows a schematic axisymmetric cross section of the diffuser pressure shells and flexure joints with a zoomed in view of the flexure joint. The flexure joints are expected to eventually fail by fatigue cracking leading to leaks from the cooling water passages to the outside. The zoomed in view in Figure 1 indicates where cracking is expected to occur, namely through a weld bead between two plates of SA-516 Grade 70 steel. This weld bead acts as the fulcrum of the flexure joint and it is clear from inspection of the geometry and loading represented in the zoomed in portion of Figure 1 that inherent in the design there is a severe notch formed between the flexure plate, weld bead, and stiffening ring that will be the site of crack initiation and location from which the crack grows to the outer surface of the weld bead.

  4. Offsetting Water Requirements and Stress with Enhanced Water Recovery from CO 2 Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Kelsey Anne

    2016-08-04

    Carbon dioxide (CO 2) capture, utilization, and storage (CCUS) operations ultimately require injecting and storing CO 2 into deep saline aquifers. Reservoir pressure typically rises as CO 2 is injected increasing the cost and risk of CCUS and decreasing viable storage within the formation. Active management of the reservoir pressure through the extraction of brine can reduce the pressurization while providing a number of benefits including increased storage capacity for CO 2, reduced risks linked to reservoir overpressure, and CO 2 plume management. Through enhanced water recovery (EWR), brine within the saline aquifer can be extracted and treated through desalinationmore » technologies which could be used to offset the water requirements for thermoelectric power plants or local water needs such as agriculture, or produce a marketable such as lithium through mineral extraction. This paper discusses modeled scenarios of CO 2 injection into the Rock Springs Uplift (RSU) formation in Wyoming with EWR. The Finite Element Heat and Mass Transfer Code (FEHM), developed by Los Alamos National Laboratory (LANL), was used to model CO 2 injection with brine extraction and the corresponding pressure tradeoffs. Scenarios were compared in order to analyze how pressure management through the quantity and location of brine extraction wells can increase CO 2 storage capacity and brine extraction while reducing risks associated with over pressurization. Future research will couple a cost-benefit analysis to these simulations in order to determine if the benefit of subsurface pressure management and increase CO 2 storage capacity can outweigh multiple extraction wells with increased cost of installation and maintenance as well as treatment and/or disposal of the extracted brine.« less

  5. How to Build a Vacuum Spring-transport Package for Spinning Rotor Gauges

    PubMed Central

    Fedchak, James A.; Scherschligt, Julia; Sefa, Makfir

    2016-01-01

    The spinning rotor gauge (SRG) is a high-vacuum gauge often used as a secondary or transfer standard for vacuum pressures in the range of 1.0 x 10-4 Pa to 1.0 Pa. In this application, the SRGs are frequently transported to laboratories for calibration. Events can occur during transportation that change the rotor surface conditions, thus changing the calibration factor. To assure calibration stability, a spring-transport mechanism is often used to immobilize the rotor and keep it under vacuum during transport. It is also important to transport the spring-transport mechanism using packaging designed to minimize the risk of damage during shipping. In this manuscript, a detailed description is given on how to build a robust spring-transport mechanism and shipping container. Together these form a spring-transport package. The spring-transport package design was tested using drop-tests and the performance was found to be excellent. The present spring-transport mechanism design keeps the rotor immobilized when experiencing shocks of several hundred g (g = 9.8 m/sec2 and is the acceleration due to gravity), while the shipping container assures that the mechanism will not experience shocks greater than about 100 g during common shipping mishaps (as defined by industry standards). PMID:27078575

  6. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are 13 physics experiments/demonstrations applicable to introductory physics courses. Activities include: improved current balance, division circuits, liquid pressure, convection, siphons, oscillators and modulation, electrical resistance, soap films, Helmholtz coils, radioactive decay, and springs. (SL)

  7. Device Stores and Discharges Metered Fluid

    NASA Technical Reports Server (NTRS)

    Hooper, S. L.; Setzer, D.

    1983-01-01

    Hand-held container accepts measured amount of liquid from pressurized supply. Supply pressure drives spring-loaded piston that stores enough mechanical energy to discharge measured liquid into another container. Original application of container was to rehydrate sterilized pre-packaged food in zerogravity environment of space vehicles. Possible terrestrial applicatios include dispensing of toxic fluids or metering of fluids for household, commercial or laboratory uses.

  8. Students' Investigations in Temperature and Pressure

    ERIC Educational Resources Information Center

    Brown, Patrick L.; Concannon, James; Hansert, Bernhard; Frederick, Ron; Frerichs, Glen

    2015-01-01

    Why does a balloon deflate when it is left in a cold car; or why does one have to pump up his or her bike tires in the spring after leaving them in the garage all winter? To answer these questions, students must understand the relationships among temperature, pressure, and volume of a gas. The purpose of the Predict, Share, Observe, and Explain…

  9. Review: The distribution, flow, and quality of Grand Canyon Springs, Arizona (USA)

    NASA Astrophysics Data System (ADS)

    Tobin, Benjamin W.; Springer, Abraham E.; Kreamer, David K.; Schenk, Edward

    2018-05-01

    An understanding of the hydrogeology of Grand Canyon National Park (GRCA) in northern Arizona, USA, is critical for future resource protection. The 750 springs in GRCA provide both perennial and seasonal flow to numerous desert streams, drinking water to wildlife and visitors in an otherwise arid environment, and habitat for rare, endemic and threatened species. Spring behavior and flow patterns represent local and regional patterns in aquifer recharge, reflect the geologic structure and stratigraphy, and are indicators of the overall biotic health of the canyon. These springs, however, are subject to pressures from water supply development, changes in recharge from forest fires and other land management activities, and potential contamination. Roaring Springs is the sole water supply for residents and visitors (>6 million/year), and all springs support valuable riparian habitats with very high species diversity. Most springs flow from the karstic Redwall-Muav aquifer and show seasonal patterns in flow and water chemistry indicative of variable aquifer porosities, including conduit flow. They have Ca/Mg-HCO3 dominated chemistry and trace elements consistent with nearby deep wells drilled into the Redwall-Muav aquifer. Tracer techniques and water-age dating indicate a wide range of residence times for many springs, supporting the concept of multiple porosities. A perched aquifer produces small springs which issue from the contacts between sandstone and shale units, with variable groundwater residence times. Stable isotope data suggest both an elevational and seasonal difference in recharge between North and South Rim springs. This review highlights the complex nature of the groundwater system.

  10. Ceramic combustor mounting

    DOEpatents

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  11. Miniaturised electrically actuated high pressure injection valve for portable capillary liquid chromatography.

    PubMed

    Li, Yan; Pace, Kirsten; Nesterenko, Pavel N; Paull, Brett; Stanley, Roger; Macka, Mirek

    2018-04-01

    A miniaturised high pressure 6-port injection valve has been designed and evaluated for its performance in order to facilitate the development of portable capillary high performance liquid chromatography (HPLC). The electrically actuated valve features a very small size (65 × 19 × 19mm) and light weight (33g), and therefore can be easily integrated in a miniaturised modular capillary LC system suited for portable field analysis. The internal volume of the injection valve was determined as 98 nL. The novel conical shape of the stator and rotor and the spring-loaded rotor performed well up to 32MPa (4641psi), the maximum operating pressure investigated. Suitability for application was demonstrated using a miniaturised capillary LC system applied to the chromatographic separation of a mixture of biogenic amines and common cations. The RSD (relative standard deviation) values of retention times and peak areas of 6 successive runs were 0.5-0.7% and 1.8-2.8% for the separation of biogenic amines, respectively, and 0.1-0.2% and 2.1-3.0% for the separation of cations, respectively. This performance was comparable with bench-top HPLC systems thus demonstrating the applicability of the valve for use in portable and miniaturised capillary HPLC systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Direct measurement of CO2 solubility and pH in NaCl hydrothermal solutions by combining in-situ potentiometry and Raman spectroscopy up to 280 °C and 150 bar

    NASA Astrophysics Data System (ADS)

    Truche, Laurent; Bazarkina, Elena F.; Berger, Gilles; Caumon, Marie-Camille; Bessaque, Gilles; Dubessy, Jean

    2016-03-01

    The in-situ monitoring of aqueous solution chemistry at elevated temperatures and pressures is a major challenge in geochemistry. Here, we combined for the first time in-situ Raman spectroscopy for concentration measurements and potentiometry for pH measurement in a single hydrothermal cell equipped with sampling systems and operating under controlled conditions of temperature and pressure. Dissolved CO2 concentration and pH were measured at temperatures up to 280 °C and pressures up to 150 bar in the H2O-CO2 and H2O-CO2-NaCl systems. A Pitzer specific-ion-interaction aqueous model was developed and confirmed the accuracy and consistency of the measurements, at least up to 250 °C. The revised Pitzer parameters for the H2O-CO2-NaCl system were formatted for the Phreeqc geochemical software. Significant changes with respect to the Pitzer.dat database currently associated with Phreeqc were observed. The new model parameters are now available for further applications. The Raman and pH probes tested here may also be applied to field monitoring of hydrothermal springs, geothermal wells, and oil and gas boreholes.

  13. Modified ACES Portable Life Support Integration, Design, and Testing for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kelly, Cody

    2014-01-01

    NASA's next generation of exploration missions provide a unique challenge to designers of EVA life support equipment, especially in a fiscally-constrained environment. In order to take the next steps of manned space exploration, NASA is currently evaluating the use of the Modified ACES (MACES) suit in conjunction with the Advanced Portable Life Support System (PLSS) currently under development. This paper will detail the analysis and integration of the PLSS thermal and ventilation subsystems into the MACES pressure garment, design of prototype hardware, and hardware-in-the-loop testing during the spring 2014 timeframe. Prototype hardware was designed with a minimal impact philosophy in order to mitigate design constraints becoming levied on either the advanced PLSS or MACES subsystems. Among challenges faced by engineers were incorporation of life support thermal water systems into the pressure garment cavity, operational concept definition between vehicle/portable life support system hardware, and structural attachment mechanisms while still enabling maximum EVA efficiency from a crew member's perspective. Analysis was completed in late summer 2013 to 'bound' hardware development, with iterative analysis cycles throughout the hardware development process. The design effort will cumulate in the first ever manned integration of NASA's advanced PLSS system with a pressure garment originally intended primarily for use in a contingency survival scenario.

  14. Self-charging metering and dispensing device for fluids

    NASA Technical Reports Server (NTRS)

    Hooper, S. L.; Setzer, D. (Inventor)

    1984-01-01

    A self-metering and dispensing device for fluids obtained from a pressurized fluid supply is discussed. Tubing and valving means permit the introduction of fluid into and discharge from a closed cylindrical reservoir. The reservoir contains a slideably disposed piston co-acting with a coil compression spring, with piston travel determining the amount of fluid in the reservoir. Once the determined amount of fluid is introduced into the reservoir, the fluid is discharged by the force of the coil compression spring acting upon the piston.

  15. ARRA FEMP Technical Assistance -- Federal Aviation Administration Project 209 -- Control Tower and Support Building, Palm Springs, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arends, J.; Sandusky, William F.

    2010-03-31

    This report represents findings of a design review team that evaluated construction documents (at the 100% level) and operating specifications for a new control tower and support building that will be built in Palm Springs, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  16. Apparatus producing constant cable tension for intermittent demand

    DOEpatents

    Lauritzen, Ted

    1985-01-01

    The disclosed apparatus produces constant tension in superconducting electrical cable, or some other strand, under conditions of intermittent demand, as the cable is unreeled from a reel or reeled thereon. The apparatus comprises a pivotally supported swing frame on which the reel is rotatably supported, a rotary motor, a drive train connected between the motor and the reel and including an electrically controllable variable torque slip clutch, a servo transducer connected to the swing frame for producing servo input signals corresponding to the position thereof, a servo control system connected between the transducer and the clutch for regulating the torque transmitted by the clutch to maintain the swing frame in a predetermined position, at least one air cylinder connected to the swing frame for counteracting the tension in the cable, and pressure regulating means for supplying a constant air pressure to the cylinder to establish the constant tension in the cable, the servo system and the clutch being effective to produce torque on the reel in an amount sufficient to provide tension in the cable corresponding to the constant force exerted by the air cylinder. The drive train also preferably includes a fail-safe brake operable to its released position by electrical power in common with the servo system, for preventing rotation of the reel if there is a power failure. A shock absorber and biasing springs may also be connected to the swing frame, such springs biasing the frame toward its predetermined position. The tension in the cable may be measured by force measuring devices engageable with the bearings for the reel shaft, such bearings being supported for slight lateral movement. The reel shaft is driven by a Shmidt coupler which accommodates such movement.

  17. Development of novel force-limiting grasping forceps with a simple mechanism.

    PubMed

    Sakaguchi, Yasuto; Sato, Toshihiko; Yutaka, Yojiro; Muranishi, Yusuke; Komatsu, Teruya; Yoshizawa, Akihiko; Nakajima, Naoki; Nakamura, Tatsuo; Date, Hiroshi

    2018-06-06

    In endoscopic surgery, fragile tissues may be damaged by the application of excessive force. Thus, we developed novel endoscopic forceps with a simple force-limiting mechanism. The novel forceps were constructed with a leaf spring, and the spring thickness determines grasping pressure. We established an evaluation system (maximum score is 11 points) for lung tissue damage leading to complications. We tested the conventional forceps (186.8 kPa) and 3 novel spring forceps with the following thicknesses: 1.3 mm (53.0 kPa), 2.2 mm (187.7 kPa) and 2.8 mm (369.2 kPa). After grasping, peripheral canine lung tissues were microscopically examined for acute- and late-phase damages. In the acute phase (20 sites), the novel forceps caused capillary congestion and haemorrhage in the subpleural tissue, whereas the conventional forceps caused deep tissue and pleural damages. In the late phase (30 sites), both forceps caused fibroblast formation and interstitial thickening, which progressed to the deeper tissues as grasping pressure increased. In the acute phase, the median scores were 2.0 and 6.0 for the novel and conventional forceps, respectively (P = 0.003). In the late phase, the median scores were 2.0, 2.5 and 5.0 for 1.3-, 2.2- and 2.8-mm thick forceps, respectively, and 5.0 for the conventional forceps (P < 0.001). In both phases, the novel forceps with grasping pressure set below 187.7 kPa (2.2 mm) caused significantly less lung tissue damage than the conventional forceps. The novel endoscopic forceps are able to regulate the tissue-grasping pressure and induce less damage in lung tissues than conventional forceps.

  18. Simulated Solar Heat Tests of M.U.S.T. Air-Inflatable, Double-Wall Hospital Ward Shelters

    DTIC Science & Technology

    1974-05-01

    fro« Controlling Off! CO.) R3AD INSTRUCTIONS BEFORE COMPLETING FORM S. RECIPIENT’S CATALOO NUMBER TYRE OF REPORT ft PERIOD COVERED S. PERFORMING...tape to coated side of web. 3. All pressure relief valves have the 1.75 ± .25 psi springs installed, 4. Pressure relief valve collars are rubber discs...pressure relief valve collars are of the fabric patch design in lieu of specified rubber disc. Each patch was installed using 52544 advesive. 5. All

  19. Breadboard development of a fluid infusion system

    NASA Technical Reports Server (NTRS)

    Thompson, R. W.

    1974-01-01

    A functional breadboard of a zero gravity Intravenous Infusion System (IVI) is presented. Major components described are: (1) infusate pack pressurizers; (2) pump module; (3) infusion set; and (4) electronic control package. The IVI breadboard was designed to demonstrate the feasibility of using the parallel solenoid pump and spring powered infusate source pressurizers for the emergency infusion of various liquids in a zero gravity environment. The IVI was tested for flow rate and sensitivity to back pressure at the needle. Results are presented.

  20. Verification of the Chesapeake Bay Model.

    DTIC Science & Technology

    1981-12-01

    points on the model. Each inflow control unit consists of a pressure regulator , a digital flow control valve, and a flowmeter (Fig- ure 8). A mechanical...spring-type pressure regulator ensures constant pressure to the digital flow control valve. Each digital valve contains eight solenoid valve actuators...FT) =0.798 EEOC 1DGS 2.78 EPOCH (DEGS) - 11. 84 3 DATA TAKEN: AC(0) = 0. 11 38 F T A (0)= 0. 1653 FT 28 MAR 1978 RANGE (FT) - 1.638 RANGE (FT

  1. NEUTRONIC REACTOR CONTROL ROD DRIVE APPARATUS

    DOEpatents

    Oakes, L.C.; Walker, C.S.

    1959-12-15

    ABS>A suspension mechanism between a vertically movable nuclear reactor control rod and a rod extension, which also provides information for the operator or an automatic control signal, is described. A spring connects the rod extension to a drive shift. The extension of the spring indicates whether (1) the rod is at rest on the reactor, (2) the rod and extension are suspended, or (3) the extension alone is suspended, the spring controlling a 3-position electrical switch.

  2. Overview of Mount Washington Icing Sensors Project

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.; Politovich, Marcia K.; Rancourt, Kenneth L.; Koenig, George G.; Reinking, Roger F.; Miller, Dean R.

    2003-01-01

    NASA, the FAA, the Department of Defense, the National Center for Atmospheric Research and NOAA are developing techniques for retrieving cloud microphysical properties from a variety of remote sensing technologies. The intent is to predict aircraft icing conditions ahead of aircraft. The Mount Washington Icing Sensors Project MWISP), conducted in April, 1999 at Mt. Washington, NH, was organized to evaluate technologies for the prediction of icing conditions ahead of aircraft in a natural environment, and to characterize icing cloud and drizzle environments. April was selected for operations because the Summit is typically in cloud, generally has frequent freezing precipitation in spring, and the clouds have high liquid water contents. Remote sensing equipment, consisting of radars, radiometers and a lidar, was placed at the base of the mountain, and probes measuring cloud particles, and a radiometer, were operated from the Summit. NASA s Twin Otter research aircraft also conducted six missions over the site. Operations spanned the entire month of April, which was dominated by wrap-around moisture from a low pressure center stalled off the coast of Labrador providing persistent upslope clouds with relatively high liquid water contents and mixed phase conditions. Preliminary assessments indicate excellent results from the lidar, radar polarimetry, radiosondes and summit and aircraft measurements.

  3. Atlantic multi-decadal oscillation influence on weather regimes over Europe and the Mediterranean in spring and summer

    NASA Astrophysics Data System (ADS)

    Zampieri, M.; Toreti, A.; Schindler, A.; Scoccimarro, E.; Gualdi, S.

    2017-04-01

    We analyze the influence of the Atlantic sea surface temperature multi-decadal variability on the day-by-day sequence of large-scale atmospheric circulation patterns (i.e. the ;weather regimes;) over the Euro-Atlantic region. In particular, we examine of occurrence of weather regimes from 1871 to present. This analysis is conducted by applying a clustering technique on the daily mean sea level pressure field provided by the 20th Century Reanalysis project, which was successfully applied in other studies focused on the Atlantic Multi-decadal Oscillation (AMO). In spring and summer, results show significant changes in the frequencies of certain weather regimes associated with the phase shifts of the AMO. These changes are consistent with the seasonal surface pressure, precipitation, and temperature anomalies associated with the AMO shifts in Europe.

  4. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill (Inventor); Trinh, Huu P. (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  5. Growth and development of spring towers at Shiqiang, Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Jones, Brian; Peng, Xiaotong

    2017-01-01

    Throughout the world, high artesian pressures in hydrothermal areas have led to the growth of tall spring towers that have their vents at their summits. The factors that control their development and formative precipitates are poorly understood because these springs, irrespective of location, are mostly inactive. Spring towers found at Shiqiang (Yunnan Province, China), which are up to 4 m high and 3 m in diameter, are formed largely of calcite and aragonite crystal bushes, euhedral calcite crystals and coated grains with alternating Fe-poor and Fe-rich zones, calcite rafts, and cements formed of various combinations of calcite, aragonite, strontianite, Mg-Si reticulate, needle fiber calcite, calcified and non-calcified microbes, diatoms, and insects. Collectively, the limestones that form the towers can be divided into (1) Group A that are friable, porous and form the cores of the towers and have δ18OSMOW values of + 15.7 to + 19.7‰ (average 17.8‰) and δ13CPDB values of + 5.1 to + 6.9‰ (average 5.9‰), and (2) Group B that are hard and well lithified and found largely around the vents and the tower sides, and have δ18OSMOW values of + 13.0 to + 22.0‰ (average 17.6‰) and δ13CPDB values of + 1.4 to + 3.6‰ (average 2.6‰). The precipitates and the isotopic values indicate that these were thermogene springs. Growth of the Shiqiang spring towers involved (1) Phase IA when precipitation of calcite and aragonite bushes formed the core of the tower and Phase IB when calcite, commonly Fe-rich, was precipitated locally, (2) Phase II that involved the precipitation of white cements, formed of calcite, aragonite, strontianite, and Mg-Si reticulate coatings in cavities amid the Phase I precipitates, and (3) Phase III, which formed probably after spring activity ceased, when needle-fiber calcite was precipitated and the mounds were invaded by microbes (some now calcified), diatoms, and insects. At various times during this complex history, pore waters mediated dissolution of the calcite and aragonite and sometimes partial alteration of the aragonite. The diverse array of precipitates, depositional fabrics and diagenetic changes clearly indicate that the composition of the spring water changed frequently. Growth of the spring towers at Shiqiang continued until there was insufficient artesian pressure to lift the water above the top of the tower vent.

  6. Superfund Record of Decision (EPA Region 7): Cherokee County (Baxter Springs and Treece Subsites), Operable Unit 3/4, Cherokee County, KS, August 20, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-11-01

    This decision document presents the selected remedial action for the mining and milling wastes at the Baxter Springs and Treece subsites, which are part of the Cherokee County Superfund Site in Cherokee County, Kansas.

  7. Remote sensing of drivers of spring snowmelt flooding in the North Central US

    USDA-ARS?s Scientific Manuscript database

    Spring snowmelt poses an annual flood risk in non-mountainous regions, such as the northern Great Plains of North America. However, ground observations are often not sufficient to characterize the spatiotemporal variation of drivers of snowmelt floods for operational flood forecasting purposes. Re...

  8. 75 FR 21344 - Habitat Conservation Plan for City of Kent, Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ... Supply System adjacent to Rock Creek, King County, Washington. The Clark Springs Water Supply System... Springs Water Supply facilities; Maintenance of 320 acres of Kent-owned property as it relates to the protection of its water supply; and Operation and maintenance of a water augmentation system for the...

  9. STARS[R] Spring 2012 Quarterly Review: Framing Campus Sustainability

    ERIC Educational Resources Information Center

    Urbanski, Monika

    2012-01-01

    The Spring 2012 SQR: "Framing Campus Sustainability," features stories that frame the evolving concept of sustainability in higher education. Included in this issue are a snapshot of ratings-to-date, a focus on credits within the Operations (OP) category, and insights into how institutions are defining and interpreting the evolving…

  10. SPring-8 BL44XU, beamline designed for structure analysis of large biological macromolecular assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashiura, Akifumi, E-mail: hgsur-a@protein.osaka-u.ac.jp; Yamashita, Eiki; Yoshimura, Masato

    2016-07-27

    Beamline BL44XU at SPring-8 is operated by the Institute for Protein Research of Osaka University. The beamline is designed for X-ray crystallography of large biological macromolecular assemblies. Here we show its detailed performances, results, and the ongoing upgrade plans.

  11. Hydroacoustic Evaluation of Overwintering Summer Steelhead Fallback and Kelt Passage at The Dalles Dam Turbines, Early Spring 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Royer, Ida M.

    2012-02-01

    This report presents the results of an evaluation of overwintering summer steelhead (Oncorhynchus mykiss) fallback and early out-migrating steelhead kelts downstream passage at The Dalles Dam turbines during early spring 2011. The study was conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers, Portland District (USACE) to investigate whether adult steelhead are passing through turbines during early spring before annual sluiceway operations typically begin. The sluiceway surface flow outlet is the optimal non-turbine route for adult steelhead, although operating the sluiceway reduces hydropower production. This is a follow-up study to similar studies of adult steelheadmore » passage at the sluiceway and turbines we conducted in the fall/winter 2008, early spring 2009, fall/winter 2009, and early spring 2010. The goal of the 2011 study was to characterize adult steelhead passage rates at the turbines while the sluiceway was closed so fisheries managers would have additional information to use in decision-making relative to sluiceway operations. Sluiceway operations were not scheduled to begin until April 10, 2011. However, based on a management decision in late February, sluiceway operations commenced on March 1, 2011. Therefore, this study provided estimates of fish passage rates through the turbines, and not the sluiceway, while the sluiceway was open. The study period was March 1 through April 10, 2011 (41 days total). The study objective was to estimate the number and distribution of adult steelhead and kelt-sized targets passing into turbine units. We obtained fish passage data using fixed-location hydroacoustics with transducers deployed at all 22 main turbine units at The Dalles Dam. Adult steelhead passage through the turbines occurred on 9 days during the study (March 9, 12, 30, and 31 and April 2, 3, 5, 7, and 9). We estimated a total of 215 {+-} 98 (95% confidence interval) adult steelhead targets passed through the turbines between March 1 and April 10, 2011. Horizontal distribution data indicated Main Unit 18 passed the majority of fish. Fish passage occurred throughout the day. We conclude that adult steelhead passed through turbines during early spring 2011 at The Dalles Dam.« less

  12. Spring-action Apparatus for Fixation of Eyeball (SAFE): a novel, cost-effective yet simple device for ophthalmic wet-lab training.

    PubMed

    Ramakrishnan, Seema; Baskaran, Prabu; Fazal, Romana; Sulaiman, Syed Mohammad; Krishnan, Tiruvengada; Venkatesh, Rengaraj

    2016-10-01

    Achieving a formed and firm eyeball which is stably fixed in a holding device is a major challenge of surgical wet-lab training. Our innovation, the 'Spring-action Apparatus for Fixation of Eyeball (SAFE)' is a robust, simple and economical device to solve this problem. It consists of a hollow iron cylinder to which a spring-action syringe is attached. The spring-action syringe generates vacuum and enables reliable fixation of a human or animal cadaveric eye on the iron cylinder. The rise in intraocular pressure due to vacuum fixation can be varied as per need or nature of surgery being practised. A mask-fixed version of this device is also designed to train surgeons for appropriate hand positioning. An experienced surgeon performed various surgeries including manual small incision cataract surgery (MSICS), phacoemulsification, laser in situ keratomileusis (LASIK), femtosecond LASIK docking, Descemet's stripping endothelial keratoplasty, deep anterior lamellar keratoplasty, penetrating keratoplasty and trabeculectomy on this device, while a trainee surgeon practised MSICS and wound suturing. Skill-appropriate comfort level was much higher with SAFE than with conventional globe holders for both surgeons. Due to its stability, pressure adjustability, portability, cost-efficiency and simplicity, we recommend SAFE as the basic equipment for every wet lab. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Braking System for Wind Turbines

    NASA Technical Reports Server (NTRS)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  14. Abrupt physical and chemical changes during 1992-1999, Anderson Springs, SE Geyser Geothermal Field, California

    USGS Publications Warehouse

    Janik, Cathy J.; Goff, Fraser; Walter, Stephen R.; Sorey, Michael L.; Counce, Dale; Colvard, Elizabeth M.

    2000-01-01

    The Anderson Springs area is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. Patrons drank a variety of cool to hot mineral waters from improved springs, swam in various baths and pools, and hiked in the rugged hills flanking Anderson Creek and its tributaries. In the bluffs to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. By the early 1970s, the higher ridges south and west of Anderson Springs became part of the southeast sector of the greater Geysers geothermal field. Today, several electric power plants are built on these ridges, producing energy from a vapor-dominated 240 °C reservoir. Only the main hot spring at Anderson Springs has maintained a recognizable identity since the 1930s. The hot spring is actually a cluster of seeps and springs that issue from a small fault in a ravine southwest of Anderson Creek. Published and unpublished records show that the maximum temperature (Tm) of this cluster fell gradually from 63°C in 1889 to 48°C in 1992. However, Tm of the cluster climbed to 77°C in 1995 and neared boiling (98°C) in 1998. A new cluster of boiling vents and small fumaroles (Tm = 99.3°C) formed in 1998 about 30 m north of the old spring cluster. Several evergreen trees on steep slopes immediately above these vents apparently were killed by the new activity. Thermal waters at Anderson Hot Springs are mostly composed of near-surface ground waters with some added gases and condensed steam from The Geysers geothermal system. Compared to gas samples from Southeast Geysers wells, the hot spring gases are higher in CO2 and lower in H2S and NH3. As the springs increased in temperature, however, the gas composition became more like the mean composition of steam discharges from the Southeast Geysers. The hot spring waters are low in ions of Cl, B, and Li, but relatively high in HCO3, SO4 and NH4. The stable-isotope compositions (deuterium and oxygen-18) of these waters plot near the global meteoric water line. Geochemical data through time reveal apparent maxima in the concentrations of SO4, Fe, and Mn in 1991 to 1992, before the cluster became hotter. The black-to-gray deposits from the new spring cluster are rich in pyrite and contain anomalous metals. About one-half mile to the east of the hot springs, mineralized water discharges intermittently from an old adit of the Schwartz (Anderson) mine, and enters a tributary of Anderson Creek. This drainage increased substantially in July 1998, and a slurry of mine water and precipitates were transported down the tributary and into Anderson Creek. In December 1998, the adit water was 22°C, and had a chemical composition that was similar to spring waters that once discharged in the ravines surrounding the old Anderson Springs resort. The cause for the abrupt changes that have occurred in thermal features at Anderson Springs is still not resolved. One possibility is that these changes are a response to withdrawal of steam from The Geysers geothermal field over more than 20 years of production. Pressure declines in the geothermal reservoir may have caused a "drying out" of the overlying condensation zone. Induced boiling in this zone and upflow of deep steam to shallower depths would cause heating and vaporization of shallow ground waters. In addition, earthquakes occurring in the vicinity of Anderson Springs have increased significantly after nearby geothermal power plants began operation. These earthquakes may have enhanced surface discharge of thermal fluids along fractures and faults.

  15. Weight compensation characteristics of Armeo®Spring exoskeleton: implications for clinical practice and research.

    PubMed

    Perry, Bonnie E; Evans, Emily K; Stokic, Dobrivoje S

    2017-02-17

    Armeo®Spring exoskeleton is widely used for upper extremity rehabilitation; however, weight compensation provided by the device appears insufficiently characterized to fully utilize it in clinical and research settings. Weight compensation was quantified by measuring static force in the sagittal plane with a load cell attached to the elbow joint of Armeo®Spring. All upper spring settings were examined in 5° increments at the minimum, maximum, and two intermediate upper and lower module length settings, while keeping the lower spring at minimum. The same measurements were made for minimum upper spring setting and maximum lower spring setting at minimum and maximum module lengths. Weight compensation was plotted against upper module angles, and slope was analyzed for each condition. The Armeo®Spring design prompted defining the slack angle and exoskeleton balance angle, which, depending on spring and length settings, divide the operating range into different unloading and loading regions. Higher spring tensions and shorter module lengths provided greater unloading (≤6.32 kg of support). Weight compensation slope decreased faster with shorter length settings (minimum length = -0.082 ± 0.002 kg/°; maximum length = -0.046 ± 0.001 kg/°) independent of spring settings. Understanding the impact of different settings on the Armeo®Spring weight compensation should help define best clinical practice and improve fidelity of research.

  16. Taming the Tar Heel Department: D.H. Hill and the Challenges of Operational-Level Command during the American Civil War

    DTIC Science & Technology

    2011-05-19

    Throughout that spring , he Goldsboro, on the Wilmington and Weldon Railroad, the main north-south transportation artery between Virginia and points south... spring of 1862, but Davis did not replace Lee after he took command of the Army of Northern Virginia. Braxton Bragg served as military advisor to...and publications. When called upon in the spring of 1861, Hill brought his cadets to Raleigh to start training recruits for the First North Carolina

  17. Evening daylight may cause adolescents to sleep less in spring than in winter

    PubMed Central

    Figueiro, Mariana G.; Rea, Mark S.

    2012-01-01

    Sleep restriction commonly experienced by adolescents can stem from greater sleep pressure by the homeostatic processes and from phase delays of the circadian system. With regard to the latter potential cause, we hypothesized that because there is more natural evening light during the spring than winter, a sample of adolescent students would be more phase delayed in spring than in winter, would have later sleep onset times and, because of fixed school schedules, would have shorter sleep durations. Sixteen eighth-grade subjects were recruited for the study. We collected sleep logs and saliva samples to determine their dim light melatonin onset (DLMO), a well-established circadian marker. Actual circadian light exposures experienced by a subset of twelve subjects over the course of seven days in winter and in spring using a personal, head-worn, circadian light measurement device are also reported here. Results showed that this sample of adolescents was exposed to significantly more circadian light in spring than in winter, especially in the evening hours when light exposure would likely delay circadian phase. Consistent with the light data, DLMO and sleep onset times were significantly more delayed, and sleep durations were significantly shorter in spring than in winter. The present ecological study of light, circadian phase, and self-reported sleep suggests that greater access to evening daylight in the spring may lead to sleep restriction in adolescents while attending school. Therefore, lighting schemes that reduce evening light in the spring may encourage longer sleep times in adolescents. PMID:20653452

  18. Apparatus for sectioning demountable semiconductor samples

    DOEpatents

    Sopori, B.L.; Wolf, A.

    1984-01-01

    Apparatus for use during polishing and sectioning operations of a ribbon sample is described. The sample holder includes a cylinder having an axially extending sample cavity terminated in a first funnel-shaped opening and a second slot-like opening. A spring-loaded pressure plunger is located adjacent the second opening of the sample cavity for frictional engagement of the sample cavity. A heat softenable molding medium is inserted in the funnel-shaped opening, to surround the sample. After polishing, the heater is energized to allow draining of the molding medium from the sample cavity. During manual polishing, the second end of the sample holder is inserted in a support ring which provides mechanical support as well as alignment of the sample holder during polishing. A gauge block for measuring the protrusion of a sample beyond the second wall of the holder is also disclosed.

  19. Harmonic uniflow engine

    DOEpatents

    Bennett, Charles L.

    2016-03-22

    A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.

  20. Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps

    NASA Astrophysics Data System (ADS)

    Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.

  1. The potential for facilitating spring discharge from continental climate waste stabilisation ponds by carry-over of treated wastewater: concepts and experimental findings.

    PubMed

    Whalley, C; Pak, L N; Heaven, S

    2007-01-01

    The research investigated some factors influencing the rate of stabilisation of wastewater in the spring period in continental climate waste stabilisation ponds, and in particular the potential for bringing forward the discharge date by optimising storage capacity and dilution. Experiments using pilot and modelscale ponds were set up in Almaty, Kazakhstan. These simulated operating regimes for a facultative and storage/maturation pond system subject to ice cover from late November until late March. Two pilot-scale facultative ponds were operated at hydraulic retention times (HRT) of 20 and 30 days, with surface loading rates of 100 and 67 kg BOD ha(-1) day(-1). Effluent from the 20-day HRT facultative pond was then fed to two pilot-scale storage/maturation ponds which had been partially emptied and allowed to refill over the winter period with no removal of effluent. The paper discusses the results of the experiments with respect to selection of an operating regime to make treated wastewater available early in the spring. Preliminary results indicate that there may be potential for alternative operating protocols designed to maximise their performance and economic potential.

  2. The DZERO Level 3 Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Angstadt, R.; Brooijmans, G.; Chapin, D.; Clements, M.; Cutts, D.; Haas, A.; Hauser, R.; Johnson, M.; Kulyavtsev, A.; Mattingly, S. E. K.; Mulders, M.; Padley, P.; Petravick, D.; Rechenmacher, R.; Snyder, S.; Watts, G.

    2004-06-01

    The DZERO experiment began RunII datataking operation at Fermilab in spring 2001. The physics program of the experiment requires the Level 3 data acquisition (DAQ) system system to handle average event sizes of 250 kilobytes at a rate of 1 kHz. The system routes and transfers event fragments of approximately 1-20 kilobytes from 63 VME crate sources to any of approximately 100 processing nodes. It is built upon a Cisco 6509 Ethernet switch, standard PCs, and commodity VME single board computers (SBCs). The system has been in full operation since spring 2002.

  3. QUICK RELEASABLE DRIVE

    DOEpatents

    Dickson, J.J.

    1958-07-01

    A quick releasable mechanical drive system suitable for use in a nuclear reactor is described. A small reversible motor positions a control rod by means of a worm and gear speed reducer, a magnetic torque clutch, and a bell crank. As the control rod is raised to the operating position, a heavy coil spring is compressed. In the event of an emergency indicated by either a''scram'' signal or a power failure, the current to the magnetic clutch is cut off, thereby freeing the coil spring and the bell crank positioner from the motor and speed reduction gearing. The coil spring will immediately act upon the bell crank to cause the insertion of the control rod. This arrangement will allow the slow, accurate positioning of the control rod during reactor operation, while providing an independent force to rapidly insert the rod in the event of an emergency.

  4. Upgrading the Control Systems of Turbines of K-160-12.8 Type Produced by PAO Turboatom

    NASA Astrophysics Data System (ADS)

    Babayev, I. N.

    2018-05-01

    Steam turbines of a K-160-12.8 (PVK-150) type produced by PAO Turboatom are operated at thermal power plants from the 1960s and many of them still have the complete set that was installed at that time by the factory, but they have become out of date. For this reason, the problem of upgrading the turbines to bring their characteristics into compliance with modern requirements is relevant. This article describes the main technical decisions adopted by PAO Turboatom when upgrading the automatic control system (ACS) of a K-160-12.8 (PVK-150) turbine: replacing the control valves (CV); replacing the distributing mechanism; replacing the front support components, including the main servomotor and oil control pipes; and replacing the assembly of cutoff spools by separate spools of servomotors of high-pressure control valves and reheat control valves. The schematic diagram of the ACS and description of the structure of newly installed mechanisms are presented: the cutoff spools, the high-pressure CVs, the distribution mechanism, and the main servomotor. The particularity of the ACS is the presence of electromechanical converters, which are used in each cutoff spool. For improving operating reliability of the ACS by providing the actuation of servomotors of control valves for closing regardless of ACS commands, the connection of rods of the electromechanical converter and cutoff spools are made using spring-type uncoupling devices. For actuation of the protection system by the commands of the automatic electronic safety device, the separate actuator driven by an electromagnet is installed in the ACS. During further improvement of the protection system, it is recommended to replace the controller assembly by two-spool protection devices, remove the protection spool assembly, and increase the pressure in the protection lines up to power pressure. The upgrading during this project was carried out by the Dobrotvor TPP (Ukraine).

  5. EarthSat spring wheat yield system test 1975

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of an operational test of the EarthSat System during the period 1 June - 30 August 1975 over the spring wheat regions of North Dakota, South Dakota, and Minnesota are presented. The errors associated with each sub-element of the system during the operational test and the sensitivity of the complete system and each major functional sub-element of the system to the observed errors were evaluated. Evaluations and recommendations for future operational users of the system include: (1) changes in various system sub-elements, (2) changes in the yield model to affect improved accuracy, (3) changes in the number of geobased cells needed to develop an accurate aggregated yield estimate, (4) changes associated with the implementation of future operational satellites and data processing systems, and (5) detailed system documentation.

  6. Power assist EVA glove development

    NASA Technical Reports Server (NTRS)

    Main, John A.; Peterson, Steven W.; Strauss, Alvin M.

    1992-01-01

    Structural modeling of the EVA glove indicates that flexibility in the metacarpophalangeal (MCP) joint can be improved by selectively lowering the elasticity of the glove fabric. Two strategies are used to accomplish this. One method uses coil springs on the back of the glove to carry the tension in the glove skin due to pressurization. These springs carry the loads normally borne by the glove fabric, but are more easily deformed. An active system was also designed for the same purpose and uses gas filled bladders attached to the back of the EVA glove that change the dimensions of the back of the glove and allow the glove to bend at the MCP joint, thus providing greater flexibility at this joint. A threshold control scheme was devised to control the action of the joint actuators. Input to the controller was provided by thin resistive pressure sensors placed between the hand and the pressurized glove. The pressure sensors consist of a layer of polyester film that has a thin layer of ink screened on the surface. The resistivity of the ink is pressure dependent, so an extremely thin pressure sensor can be fabricated by covering the ink patch with another layer of polyester film and measuring the changing resistance of the ink with a bridge circuit. In order to sense the force between the hand and the glove at the MCP joint, a sensor was placed on the palmar face of the middle finger. The resultant signal was used by the controller to decide whether to fill or exhaust the bladder actuators on the back of the glove. The information from the sensor can also be used to evaluate the effectiveness of a given control scheme or glove design since the magnitude of the measured pressures gives some idea of the torque required to bend a glove finger at the MCP joint. Tests of this actuator, sensor, and control system were conducted in an 57.2 kPa glove box by performing a series of 90 degree finger bends with a glove without an MCP joint assembly, a glove with the coil spring assembly, and with the four fingered actuated glove. The tests of these three glove designs confirm the validity of the model.

  7. The processes in spring-loaded injection valves of solid injection oil engines

    NASA Technical Reports Server (NTRS)

    Lutz, O

    1934-01-01

    On the premise of a rectangular velocity wave arriving at the valve, the equation of motion of a spring-loaded valve stem is developed and analyzed. It is found that the stem oscillates, the oscillation frequency being consistently above the natural frequency of the nozzle stem alone, and whose amplitudes would increase in the absence of damping. The results are evaluated and verified on an example. The pressure in the valve and the spray volume are analyzed and several pertinent questions are discussed on the basis of the results.

  8. Geothermal agriculture applications: hobo wells hydroponics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbruch, J.C.; Bottge, R.G.

    1976-10-01

    A successful hydroponic operation located at Wendell Hot Springs is described. Hobo Wells Hydroponics, Inc., pumps water from the adjacent hot springs to their group of four greenhouses at an average rate of 23 gpm for each greenhouse. The company's goal is to produce 40,000 pounds of vine-ripened tomatoes per house per year. (MHR)

  9. Ray D. Nixon plant built below budget. [Colorado Springs, CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGlasson, W.J.

    1980-12-01

    The Ray D. Nixon plant was built in Colorado Springs at about $250,000 below the $100 million budgeted. Permit and operating deadlines provided important incentives to maintain the construction schedule, requiring intensive management efforts to keep cooperation and productivity high. The plant is also a model for environmental and wildlife protection. (DCK)

  10. Stochastic stability assessment of a semi-free piston engine generator concept

    NASA Astrophysics Data System (ADS)

    Kigezi, T. N.; Gonzalez Anaya, J. A.; Dunne, J. F.

    2016-09-01

    Small engines, as power generators with low-noise and vibration characteristics, are needed in two niche application areas: as electric vehicle range extenders and as domestic micro Combined Heat and Power systems. A recent semi-free piston design known as the AMOCATIC generator fully meets this requirement. The engine potentially allows for high energy conversion efficiencies at resonance derived from having a mass and spring assembly. As with free-piston engines in general, stability and control of piston motion has been cited as the prime challenge limiting the technology's widespread application. Using physical principles, we derive in this paper two important results: an energy balance criterion and a related general stability criterion for a semi-free piston engine. Control is achieved by systematically designing a Proportional Integral (PI) controller using a control-oriented engine model for which a specific stability condition is stated. All results are presented in closed form throughout the paper. Simulation results under stochastic pressure conditions show that the proposed energy balance, stability criterion, and PI controller, operate as predicted to yield stable engine operation at fixed compression ratio.

  11. SLM Produced Hermetically Sealed Isolation Valve

    NASA Technical Reports Server (NTRS)

    Richard, James

    2014-01-01

    Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic-driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic-based valve.

  12. SLM Produced Hermetically Sealed Isolation Valve

    NASA Technical Reports Server (NTRS)

    Richard, James A.

    2014-01-01

    Marshall Space Flight Center (MSFC) has developed a valve concept to replace traditional pyrotechnic driven isolation valves. This paper will describe the valve design and development process. The valve design uses a stem/wedge to support a disk inside the valve. That disk hermetically seals the pressurized fluids. A release mechanism holds the stem/wedge and a large spring in place. When required to open, a solenoid is energized and pulls the release mechanism allowing the spring to pull the stem/wedge away from the disk. Now the disk is unsupported and the pressure ruptures the disk allowing flow to the outlet of the valve. This paper will provide details of this design, describe the development testing, and show the results from the valve level tests performed. Also, a trade study is presented to show the advantages of this design to a conventional pyrotechnic based valve.

  13. Results of weekly chemical and isotopic monitoring of selected springs in Norris Geyser Basin, Yellowstone National Park during June-September, 1995

    USGS Publications Warehouse

    Fournier, R.O.; Weltman, U.; Counce, D.; White, L.D.; Janik, C.J.

    2002-01-01

    Each year at Norris Geyser Basin, generally in August or September, a widespread hydrothermal 'disturbance' occurs that is characterized by simultaneous changes in the discharge characteristics of many springs, particularly in the Back Basin. During the summer season of 1995, water samples from eight widely distributed hot springs and geysers at Norris were collected each week and analyzed to determine whether chemical and isotopic changes also occurred in the thermal waters at the time of the disturbance. In addition, Beryl Spring in Gibbon Canyon, 5.8 km southwest of Norris Geyser Basin, was included in the monitoring program. Waters discharged by four of the monitored hot springs and geysers appear to issue from relatively deep reservoirs where temperatures are at least 270 C and possibly higher than 300 C. At the time of, and for several days after, the onset of the 1995 disturbance, the normally neutral-chloride waters discharged by these four features all picked up an acid-sulfate component and became isotopically heavier. The acid-sulfate component appears to be similar in composition to some waters discharged in 100 Spring Plain that issue from subsurface regions where temperatures are in the range 170-210 C. However, the two monitored springs that discharge acid-chloride-sulfate waters in the 100 Spring Plain region did not show any significant chemical or isotopic response to the annual disturbance. Beryl Spring, and two neutral-chloride hot springs at Norris that appear to draw their water from reservoirs where temperatures are 250 C or less, also did not show any significant chemical or isotopic response to the annual disturbance. After the start of the annual disturbance, chloride concentrations in water sampled from Double Bulger Geyser in the Back Basin increased from about 800 ppm to about 1500 ppm, nearly twice as high as any previously reported chloride concentration in a thermal water at Yellowstone. The isotopic composition of that water precludes an origin of the high chloride by evaporation at atmospheric pressure. One way to account for the unique chemical and isotopic composition of this highly concentrated wateris by recirculation of water that had gone through one cycle of adiabatic cooling during upflow (decompressional boiling) back down into the hydrothermal system, where it is reheated to greater than 220 C. This previously boiled water then undergoes additional cycles of decompressional boiling during subsequent upflow. Another way the unique chemical and isotopic composition of Double Bulger water might evolve is by excess boiling in the formation that results from a decrease in fluid pressure within the channels of upflow. The annual disturbance at Norris Geyser Basin generally appears to be triggered by a cyclic up and down movement of the boilingpoint curve within the hydrothermal system in response to changes in the potentiometric surface of the cold water that is adjacent to, and interconnected with, that hydrothermal system. Annual disturbance phenomena that are easily recognized at Norris Geyser Basin may not be easily recognized elsewhere in Yellowstone National Park because (1) the neutral-chloride waters at Norris ascend directly from higher-temperature and higherpressure reservoirs (270 to >300 C at Norris compared to 180-215C at Upper and Lower Geyser Basins) that are capable of producing massive amounts of high-pressure steam, and (2) the clay that makes hot spring and geyser waters become turbid at Norris, heralding the start of the disturbance, comes from acid altered rocks that are widely distributed at intermediate depths at Norris, and that are rare in other geyser basins.

  14. Muscle-spring dynamics in time-limited, elastic movements.

    PubMed

    Rosario, M V; Sutton, G P; Patek, S N; Sawicki, G S

    2016-09-14

    Muscle contractions that load in-series springs with slow speed over a long duration do maximal work and store the most elastic energy. However, time constraints, such as those experienced during escape and predation behaviours, may prevent animals from achieving maximal force capacity from their muscles during spring-loading. Here, we ask whether animals that have limited time for elastic energy storage operate with springs that are tuned to submaximal force production. To answer this question, we used a dynamic model of a muscle-spring system undergoing a fixed-end contraction, with parameters from a time-limited spring-loader (bullfrog: Lithobates catesbeiana) and a non-time-limited spring-loader (grasshopper: Schistocerca gregaria). We found that when muscles have less time to contract, stored elastic energy is maximized with lower spring stiffness (quantified as spring constant). The spring stiffness measured in bullfrog tendons permitted less elastic energy storage than was predicted by a modelled, maximal muscle contraction. However, when muscle contractions were modelled using biologically relevant loading times for bullfrog jumps (50 ms), tendon stiffness actually maximized elastic energy storage. In contrast, grasshoppers, which are not time limited, exhibited spring stiffness that maximized elastic energy storage when modelled with a maximal muscle contraction. These findings demonstrate the significance of evolutionary variation in tendon and apodeme properties to realistic jumping contexts as well as the importance of considering the effect of muscle dynamics and behavioural constraints on energy storage in muscle-spring systems. © 2016 The Author(s).

  15. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Monitoring and Evaluation, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Weldert, Rey F.; Crump, Carrie A.

    2003-03-01

    This is the fifth annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Conventional and captive broodstock supplementation techniques are being used to restore spring chinook salmon fisheries in these streams. Statement of Work Objectives for 2002: (1) Plan for, administer, coordinate and assist comanagers in GRESCP M&E activities. (2) Evaluate performance of supplemented juvenile spring chinook salmon. (3) Evaluate life history differences between wild andmore » hatchery-origin (F{sub 1}) adult spring chinook salmon. (4) Describe life history characteristics and genetics of adult summer steelhead collected at weirs.« less

  16. Application of snow models to snow removal operations on the Going-to-the-Sun Road, Glacier National Park

    USGS Publications Warehouse

    Fagre, Daniel B.; Klasner, Frederick L.

    2000-01-01

    Snow removal, and the attendant avalanche risk for road crews, is a major issue on mountain highways worldwide. The Going-to-the-Sun Road is the only road that crosses Glacier National Park, Montana. This 80-km highway ascends over 1200m along the wall of a glaciated basin and crosses the continental divide. The annual opening of the road is critical to the regional economy and there is public pressure to open the road as early as possible. Despite the 67-year history of snow removal activities, few stat on snow conditions at upper elevations were available to guide annual planning for the raod opening. We examined statistical relationships between the opening date and nearby SNOTEL data on snow water equivalence (WE) for 30 years. Early spring SWE (first Monday in April) accounted for only 33% of the variance in road opening dates. Because avalanche spotters, used to warn heavy equipment operators of danger, are ineffective during spring storms or low-visibility conditions, we incorporated the percentage of days with precipitation during plowing as a proxy for visibility. This improved the model's predictive power to 69%/ A mountain snow simulator (MTSNOW) was used to calculate the depth and density of snow at various points along the road and field data were collected for comparison. MTSNOW underestimated the observed snow conditions, in part because it does not yet account for wind redistribution of snow. The severe topography of the upper reaches of the road are subjected to extensive wind redistribution of snow as evidence by the formation of "The Big Drift" on the lee side of Logan Pass.

  17. Historical patterns of acidification and increasing CO2 flux associated with Florida springs

    USGS Publications Warehouse

    Barrera, Kira E.; Robbins, Lisa L.

    2017-01-01

    Florida has one of the highest concentrations of springs in the world, with many discharging into rivers and predominantly into eastern Gulf of Mexico coast, and they likely influence the hydrochemistry of these adjacent waters; however, temporal and spatial trends have not been well studied. We present over 20 yr of hydrochemical, seasonally sampled data to identify temporal and spatial trends of pH, alkalinity, partial pressure of carbon dioxide (pCO2), and CO2flux from five first-order-magnitude (springs that discharge greater than 2.83 m3 s−1) coastal spring groups fed by the Floridan Aquifer System that ultimately discharge into the Gulf of Mexico. All spring groups had pCO2 levels (averages 3174.3–6773.2 μatm) that were much higher than atmospheric levels of CO2 and demonstrated statistically significant temporal decreases in pH and increases in CO2 flux, pCO2, and alkalinity. Total carbon flux emissions increased from each of the spring groups by between 3.48 × 107 and 2.856 × 108 kg C yr−1 over the time period. By 2013 the Springs Groups in total emitted more than 1.1739 × 109 kg C yr−1. Increases in alkalinity and pCO2 varied from 90.9 to 347.6 μmol kg−1 and 1262.3 to 2666.7 μatm, respectively. Coastal data show higher CO2 evasion than the open Gulf of Mexico, which suggests spring water influences nearshore waters. The results of this study have important implications for spring water quality, dissolution of the Florida carbonate platform, and identification of the effect and partitioning of carbon fluxes to and within coastal and marine ecosystems.

  18. Mystery of Foil Air Bearings for Oil-free Turbomachinery Unlocked: Load Capacity Rule-of-thumb Allows Simple Estimation of Performance

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2002-01-01

    The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and select bearing technology for a new application and determine the level of complexity required in the bearings. This new understanding enables industry to assess the feasibility of new engine designs and provides critical guidance toward the future development of Oil-Free turbomachinery propulsion systems.

  19. Extended-range tiltable micromirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, James J; Wiens, Gloria J; Bronson, Jessica R

    A tiltable micromirror device is disclosed in which a micromirror is suspended by a progressive linkage with an electrostatic actuator (e.g. a vertical comb actuator or a capacitive plate electrostatic actuator) being located beneath the micromirror. The progressive linkage includes a pair of torsion springs which are connected together to operate similar to a four-bar linkage with spring joints. The progressive linkage provides a non-linear spring constant which can allow the micromirror to be tilted at any angle within its range substantially free from any electrostatic instability or hysteretic behavior.

  20. 32. INTERIOR VIEW TO THE WEST OF A HONEYWELL WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. INTERIOR VIEW TO THE WEST OF A HONEYWELL WALL PRESSURE GAUGE IN ROOM 105, THE CONTROL ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV

  1. Groundwater quality at Alabama Plating and Vincent Spring, Vincent, Alabama, 2007–2008

    USGS Publications Warehouse

    Bradley, Michael W.; Gill, Amy C.

    2014-01-01

    The former Alabama Plating site in Vincent, Alabama, includes the location where the Alabama Plating Company operated an electroplating facility from 1956 until 1986. The operation of the facility generated waste containing cyanide, arsenic, cadmium, chromium, copper, lead, zinc, and other heavy metals. Contamination resulting from the site operations was identified in groundwater, soil, and sediment. Vincent Spring, used as a public water supply by the city of Vincent, Alabama, is located about ½ mile southwest of the site. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, conducted an investigation at Vincent Spring and the Alabama Plating site, Vincent, Alabama, during 2007–2008 to evaluate the groundwater quality and evaluate the potential effect of contaminated groundwater on the water quality of Vincent Spring. The results of the investigation will provide scientific data and information on the occurrence, fate, and transport of contaminants in the water resources of the area and aid in the evaluation of the vulnerability of the public water supply to contamination. Samples were analyzed to evaluate the water quality at the former plating site, investigate the presence of possible contaminant indicators at Vincent Spring, and determine the usefulness of stable isotopes and geochemical properties in understanding groundwater flow and contaminant transport in the area. Samples collected from 16 monitor wells near the plating site and Vincent Spring were analyzed for major constituents, trace metals, nutrients, and the stable isotopes for hydrogen (2H/H) and oxygen (18O/16O). Groundwater collected from Vincent Spring was characterized as a calcium-magnesium-bicarbonate water type with total dissolved solids concentrations ranging from 110 to 120 milligrams per liter and pH ranging from about 7.5 to 7.9 units. Groundwater chemistry at the monitor wells at the Alabama Plating site was highly variable by location and depth. Dissolved solids concentrations ranged from 28 to 2,880 milligrams per liter, and the water types varied from calcium-magnesium-bicarbonate-chloride, to calcium-sulfate or calcium-magnesium-sulfate, to sodium-chloride water types. The stable isotope ratios for hydrogen (2H/H) and oxygen (18O/16O) for water from the monitor wells and from Vincent Spring, based on a single sampling event, can be separated into three groups: (1) Vincent Spring, (2) monitor wells MW03 and MW28, and (3) the remaining Alabama Plating monitor wells. The geochemical and stable isotope analyses indicate that water from Vincent Spring is distinct from water from the Alabama Plating monitor wells; however, this evaluation is based on a single sampling event. Although the water from Vincent Spring, for this sampling event, is different and does not seem to be affected by contaminated groundwater from the Alabama Plating site, additional hydrologic and water-quality data are needed to fully identify flow paths, the potential for contaminant transport, and water-quality changes through time.

  2. Heat transfer measurements for Stirling machine cylinders

    NASA Technical Reports Server (NTRS)

    Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.

    1994-01-01

    The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially generated noise, but it failed with the actual experimental data. This is evidence that the models used in the parameter optimization procedure (and to generate the simulated data) were not correct. Data from the surface heat flux sensors indicated that the primary shortcoming of these models was that they assumed turbulence levels to be constant over the cycle. Sensor data in the varying volume space showed a large increase in heat flux, probably due to turbulence, during the expansion stroke.

  3. Evening daylight may cause adolescents to sleep less in spring than in winter.

    PubMed

    Figueiro, Mariana G; Rea, Mark S

    2010-07-01

    Sleep restriction commonly experienced by adolescents can stem from a slower increase in sleep pressure by the homeostatic processes and from phase delays of the circadian system. With regard to the latter potential cause, the authors hypothesized that because there is more natural evening light during the spring than winter, a sample of adolescent students would be more phase delayed in spring than in winter, would have later sleep onset times, and because of fixed school schedules would have shorter sleep durations. Sixteen eighth-grade subjects were recruited for the study. The authors collected sleep logs and saliva samples to determine their dim light melatonin onset (DLMO), a well-established circadian marker. Actual circadian light exposures experienced by a subset of 12 subjects over the course of 7 days in winter and in spring using a personal, head-worn, circadian light measurement device are also reported here. Results showed that this sample of adolescents was exposed to significantly more circadian light in spring than in winter, especially during the evening hours when light exposure would likely delay circadian phase. Consistent with the light data, DLMO and sleep onset times were significantly more delayed, and sleep durations were significantly shorter in spring than in winter. The present ecological study of light, circadian phase, and self-reported sleep suggests that greater access to evening daylight in the spring may lead to sleep restriction in adolescents while attending school. Therefore, lighting schemes that reduce evening light in the spring may encourage longer sleep times in adolescents.

  4. Transportation Observations, Considerations, and Recommendations for Spring Mountains National Recreation Area Provided by the Interagency Transportation Assistance Group (TAG) /Alternative Transportation in Parks and Public Lands (ATPPL) Program Las Vega

    DOT National Transportation Integrated Search

    2006-12-04

    A field investigation of the current transportation infrastructure and operations at Humboldt-Toiyabe National Forest (H-TNF): Spring Mountains National Recreation Area (SMNRA or NRA) by the inter-agency Transportation Assistance Group (TAG) was cond...

  5. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactantmore » fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.« less

  6. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    DOEpatents

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-08-11

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  7. Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.

    2017-02-01

    Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure - Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure - Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.

  8. A low power, microvalve regulated architecture for drug delivery systems.

    PubMed

    Evans, Allan Thomas; Park, Jong M; Chiravuri, Srinivas; Gianchandani, Yogesh B

    2010-02-01

    This paper describes an actively-controlled architecture for drug delivery systems that offers high performance and volume efficiency through the use of micromachined components. The system uses a controlled valve to regulate dosing by throttling flow from a mechanically pressurized reservoir, thereby eliminating the need for a pump. To this end, the valve is fabricated from a glass wafer and silicon-on-insulator wafer for sensor integration. The valve draws a maximum power of 1.68 μW| (averaged over time); with the existing packaging scheme, it has a volume of 2.475 cm3. The reservoirs are assembled by compressing polyethylene terephthalate polymer balloons with metal springs. The metal springs are fabricated from Elgiloy® using photochemical etching. The springs pressurize the contents of 37 mLchambers up to 15 kPa. The system is integrated with batteries and a control circuit board within a 113 cm3 metal casing. This system has been evaluated in different control modes to mimic clinical applications. Bolus deliveries of1.5 mL have been regulated as well as continuous flows of 0.15 mL/day with accuracies of 3.22%. The results suggest that this device can be used in an implant to regulate intrathecal drug delivery

  9. Running springs: speed and animal size.

    PubMed

    Farley, C T; Glasheen, J; McMahon, T A

    1993-12-01

    Trotting and hopping animals use muscles, tendons and ligaments to store and return elastic energy as they bounce along the ground. We examine how the musculoskeletal spring system operates at different speeds and in animals of different sizes. We model trotting and hopping as a simple spring-mass system which consists of a leg spring and a mass. We find that the stiffness of the leg spring (k(leg)) is nearly independent of speed in dogs, goats, horses and red kangaroos. As these animals trot or hop faster, the leg spring sweeps a greater angle during the stance phase, and the vertical excursion of the center of mass during the ground contact phase decreases. The combination of these changes to the spring system causes animals to bounce off the ground more quickly at higher speeds. Analysis of a wide size range of animals (0.1-140 kg) at equivalent speeds reveals that larger animals have stiffer leg springs (k(leg) [symbol: see text] M0.67, where M is body mass), but that the angle swept by the leg spring is nearly independent of body mass. As a result, the resonant period of vertical vibration of the spring-mass system is longer in larger animals. The length of time that the feet are in contact with the ground increases with body mass in nearly the same way as the resonant period of vertical vibration.

  10. First Human Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Sweterlitsch, Jeffrey

    2009-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to replace the simulated humans with real humans; this testing was conducted in the spring of 2008. This first instance of human testing of a new Orion ARS technology included several cases in a sealed Orion-equivalent free volume and three cases using emergency breathing masks connected directly to the ARS loop. Significant test results presented in this paper include comparisons between the standard metabolic rates for CO2 and water vapor production published in Orion requirements documents and real-world rate ranges observed with human test subjects. Also included are qualitative assessments of process flow rate and closed-loop pressure-cycling tolerability while using the emergency masks. Recommendations for modifications to the Orion ARS design and operation, based on the test results, conclude the paper.

  11. First Human Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Sweterlitsch, Jeffrey

    2008-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to replace the simulated humans with real humans; this testing was conducted in the spring of 2008. This first instance of human testing of a new Orion ARS technology included several cases in a sealed Orione-quivalent free volume and three cases using emergency breathing masks connected directly to the ARS loop. Significant test results presented in this paper include comparisons between the standard metabolic rates for CO2 and water vapor production published in Orion requirements documents and real-world rate ranges observed with human test subjects. Also included are qualitative assessments of process flow rate and closed-loop pressure-cycling tolerability while using the emergency masks. Recommendations for modifications to the Orion ARS design and operation, based on the test results, conclude the paper.

  12. High Pressure Hydrogen Pressure Relief Devices: Accelerated Life Testing and Application Best Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Robert M.; Post, Matthew B.; Buttner, William J.

    Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particularmore » interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.« less

  13. Robert Boyle's landmark book of 1660 with the first experiments on rarified air.

    PubMed

    West, John B

    2005-01-01

    In 1660, Robert Boyle (1627-1691) published his landmark book New Experiments Physico-Mechanicall, Touching the Spring of the Air, and its Effects... in which he described the first controlled experiments of the effects of reducing the pressure of the air. Critical to this work was the development of an air pump by Boyle with Robert Hooke (1635-1703). For the first time, it was possible to observe physical and physiological processes at both normal and reduced barometric pressures. The air pump was described in detail, although the exact design of the critical piston is unclear. Boyle reported 43 separate experiments, which can conveniently be divided into 7 groups. The first experiments were on the "spring of the air," that is the pressure developed by the air when its volume was changed. Several experiments described the behavior of the barometer invented by Torricelli just 16 years before when it was introduced into the low-pressure chamber. The behavior of burning candles was discussed, although this emphasized early misunderstandings of the nature of combustion. There were some physiological observations, although these were later extended by Boyle and Hooke. The effects of the low pressure on such diverse physical phenomena as magnetism, sound propagation, behavior of a pendulum, evolution of gases from liquids, and the behavior of smoke were described. This classic book is brimming with enthusiasm and fresh ideas even for today and deserves to be better known.

  14. Watch Out for Glaucoma | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Glaucoma Watch Out for Glaucoma Past Issues / Spring 2015 Table of Contents A ... used to check eye pressure for signs of glaucoma. Photo courtesy of NEI Glaucoma is a group ...

  15. 29 CFR 1919.28 - Unit proof tests-cranes and gear accessory thereto.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... case of hydraulic cranes, when due to the limitation of pressure it is impossible to lift a load 25... associated with replacements or renewals, may be made with spring or hydraulic balances where dead loads are...

  16. 29 CFR 1919.28 - Unit proof tests-cranes and gear accessory thereto.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... case of hydraulic cranes, when due to the limitation of pressure it is impossible to lift a load 25... associated with replacements or renewals, may be made with spring or hydraulic balances where dead loads are...

  17. 29 CFR 1919.28 - Unit proof tests-cranes and gear accessory thereto.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... case of hydraulic cranes, when due to the limitation of pressure it is impossible to lift a load 25... associated with replacements or renewals, may be made with spring or hydraulic balances where dead loads are...

  18. Sluiceway Operations for Adult Steelhead Downstream Passage at The Dalles Dam, Columbia River, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.

    2013-10-01

    This study evaluated adult steelhead (Oncorhynchus mykiss; fallbacks and kelts) downstream passage at The Dalles Dam in the Columbia River, USA, during the late fall, winter, and early spring months between 2008 and 2011. The purpose of the study was to determine the efficacy of operating the dam’s ice-and-trash sluiceway during non-spill months to provide a relatively safe, non-turbine, surface outlet for overwintering steelhead fallbacks and downstream migrating steelhead kelts. We applied the fixed-location hydroacoustic technique to estimate fish passage rates at the sluiceway and turbines of the dam. The spillway was closed during our sampling periods, which generally occurredmore » in late fall, winter, and early spring. The sluiceway was highly used by adult steelhead (91–99% of total fish sampled passing the dam) during all sampling periods. Turbine passage was low when the sluiceway was not operated. This implies that lack of a sluiceway route did not result in increased turbine passage. However, when the sluiceway was open, adult steelhead used it to pass through the dam. The sluiceway may be operated during late fall, winter, and early spring to provide an optimal, non-turbine route for adult steelhead (fallbacks and kelts) downstream passage at The Dalles Dam.« less

  19. Two-speed transaxle

    DOEpatents

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  20. Apparatus for sectioning demountable semiconductor samples

    DOEpatents

    Sopori, Bhushan L.; Wolf, Abraham

    1984-01-01

    Apparatus for use during polishing and sectioning operations of a ribbon sample is described. The sample holder includes a cylinder having an axially extending sample cavity terminated in a first funnel-shaped opening and a second slot-like opening. A spring-loaded pressure plunger is located adjacent the second opening of the sample cavity for frictional engagement of the sample prior to introduction of a molding medium in the sample cavity. A heat softenable molding medium is inserted in the funnel-shaped opening, to surround the sample. After polishing, the heater is energized to allow draining of the molding medium from the sample cavity. During manual polishing, the second end of the sample holder is inserted in a support ring which provides mechanical support as well as alignment of the sample holder during polishing. A gauge block for measuring the protrusion of a sample beyond the second wall of the holder is also disclosed.

  1. A study of waste and delivery valve design modification to the pump performance

    NASA Astrophysics Data System (ADS)

    Harith, M. N.; Bakar, R. A.; Ramasamy, D.; Kardigama, K.; Quanjin, Ma

    2018-04-01

    This paper objective is to share design revolution of waste and delivery valve that contribute to the overall pump performance. In this paper, 3 new designs of waste and delivery valve pump are presented with comprehensive internal flow analysis using computational fluid dynamics (CFD) simulation over 4 cases that have been deeply study for one of the design chosen. 4 cases involving opening and closing both valve or either one. 0.265m height size of customized waste valve with an opening limiter and spring was used to demonstrate cyclic closing and opening valve operation extended up to 0.164m gap. Based on result, this characteristics contribute to 10-20% waste water reduction and enhancement of flow rate height up to 80m. Apart from that this paper also share some of pressure (dynamic, total, static), velocity (x, y, z axis) simulation including the vector flow were under different flow cases.

  2. Demonstration of a switchable damping system to allow low-noise operation of high-Q low-mass suspension systems

    NASA Astrophysics Data System (ADS)

    Hennig, Jan-Simon; Barr, Bryan W.; Bell, Angus S.; Cunningham, William; Danilishin, Stefan L.; Dupej, Peter; Gräf, Christian; Hough, James; Huttner, Sabina H.; Jones, Russell; Leavey, Sean S.; Pascucci, Daniela; Sinclair, Martin; Sorazu, Borja; Spencer, Andrew; Steinlechner, Sebastian; Strain, Kenneth A.; Wright, Jennifer; Zhang, Teng; Hild, Stefan

    2017-12-01

    Low-mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilizing multiple pendulum stages with vertical blade springs and materials with high-quality factors provides attenuation of seismic and thermal noise; however, damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed, but it introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low-mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimization for this system.

  3. Seismometer using a vertical long natural-period rotational pendulum with magnetic levitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otake, Yuji; Araya, Akito; Hidano, Kazuo

    We have demonstrated a highly sensitive/wideband vertical-component seismometer using an astatic rotational pendulum to obtain a long natural period. This seismometer employs magnetic levitation for removing any parasitic resonances of a spring to support a weight due to gravity and the thermal dependence of the spring constant. The pendulum has a cylindrical plunger-type permanent magnet that has a weight at one side of its end edge. The plunger magnet is inserted into a uniform magnetic field generated by a window-frame-type permanent magnet, and attached to two crossed-leaf spring hinges as a rotational axis outside of the bore of the magnet.more » Magnetic forces applied to the plunger magnet counterbalance the gravitational force at the weight. To realize stable operation of the rotational pendulum without any unnecessary movements of the plunger magnet, a tilt of lines of the magnetic force in the bore of the window-frame magnet was compensated by a tilted magnetic-pole surface near to its opening. The field uniformity reached 10{sup -4} owing to this compensation. The thermal dependence of a magnetic field strength of about 10{sup -3}/K was also compensated by as much as 9x10{sup -5}/K by Ni-Fe metal having a negative permeability coefficient. The metal was attached along the sidewalls of the window-frame magnet. To determine the feedback control parameters for a feedback control seismometer, the natural period of a prototype rotational pendulum was measured. It was more than 8 s, and was able to be changed from 5 to 8 s by using an additional magnetic spring, similar to the voice coil actuator of a speaker. This change was in accordance with theoretical calculations, and showed that the pendulum movement did not include a big nonlinearity caused by the tilt of the lines of the magnetic force. No parasitic resonances were found during experiments. A velocity feedback-control circuit and a capacitance position detector to measure the weight position were applied to the rotational pendulum for building a feedback control seismometer. Observations showed that the noise level of the seismometer was less than about 10{sup -8} m/s at 1 Hz. This fruitful value is close to the specifications of the most sensitive seismometer, such as STS-I. However, low-frequency noise of about 10{sup -7} m/s, caused by a buoyancy change at the pendulum weight arising from atmospheric pressure variation, could be recognized. To decrease the noise, a vacuum chamber to isolate the atmospheric pressure variation should be employed in the next step of the study.« less

  4. Observational evidence for the relationship between spring soil moisture and June rainfall over the Indian region

    NASA Astrophysics Data System (ADS)

    KanthaRao, B.; Rakesh, V.

    2018-05-01

    Understanding the relationship between gradually varying soil moisture (SM) conditions and monsoon rainfall anomalies is crucial for seasonal prediction. Though it is an important issue, very few studies in the past attempted to diagnose the linkages between the antecedent SM and Indian summer monsoon rainfall. This study examined the relationship between spring (April-May) SM and June rainfall using observed data during the period 1979-2010. The Empirical Orthogonal Function (EOF) analyses showed that the spring SM plays a significant role in June rainfall over the Central India (CI), South India (SI), and North East India (NEI) regions. The composite anomaly of the spring SM and June rainfall showed that excess (deficit) June rainfall over the CI was preceded by wet (dry) spring SM. The anomalies in surface-specific humidity, air temperature, and surface radiation fluxes also supported the existence of a positive SM-precipitation feedback over the CI. On the contrary, excess (deficit) June rainfall over the SI and NEI region were preceded by dry (wet) spring SM. The abnormal wet (dry) SM over the SI and NEI decreased (increased) the 2-m air temperature and increased (decreased) the surface pressure compared to the surrounding oceans which resulted in less (more) moisture transport from oceans to land (negative SM-precipitation feedback over the Indian monsoon region).

  5. "You Have Betrayed Us for a Little Dirty Money!" The Prague Spring as Seen by Primary School Teachers

    ERIC Educational Resources Information Center

    Zounek, Jirí; Šimáne, Michal; Knotová, Dana

    2018-01-01

    This study focuses on the everyday operation of primary schools in Czechoslovakia during the so-called Prague Spring and the subsequent communist political clampdown after the invasion by the Warsaw Pact forces. The authors focus primarily on the experiences of teachers, how events in this complex period affected their professional lives, and how…

  6. Appendix to a Measure of Scientific Reasoning: The Springs Task (Details for Construction, Administration, and Scoring).

    ERIC Educational Resources Information Center

    Linn, Marcia C.; Rice, Marian R.

    The Springs Task measures the ability to conduct controlled experiments, name variables, and criticize variables which are demonstrated to the subject. It provides an operational definition of formal thought. Subjects aged ten to adult can be tested with this instrument, an apparatus-based task administered individually in a 15-minute interview.…

  7. A novel stiffness control method for series elastic actuator

    NASA Astrophysics Data System (ADS)

    Lin, Guangmo; Zhao, Xingang; Han, Jianda

    2017-01-01

    Compliance plays an important role in human-robot cooperation. However, fixed compliance, or fixed stiffness, is difficult to meet the growing needs of human machine collaboration. As a result, the robot actuator is demanded to be able to adjust its stiffness. This paper presents a stiffness control scheme for a single DOF series elastic actuator (SEA) with a linear spring mounted in series in the mechanism. In this proposed method, the output angle of the spring is measured and used to calculate the input angle of the spring, thus the equivalent stiffness of the robot actuator revealed to the human operator can be rendered in accordance to the desired stiffness. Since the techniques used in this method only involve the position information of the system, there is no need to install an expensive force/torque sensor on the actuator. Further, the force/torque produced by the actuator can be estimated by simply multiplying the deformation angle of the spring and its constant stiffness coefficient. The analysis of the stiffness controller is provided. Then a simulation that emulates a human operates the SEA while the stiffness controller is running is carried out and the results also validate the proposed method.

  8. Comparison of landslide forecasting services in Piedmont (Italy) and Norway, illustrated by events in late spring 2013

    NASA Astrophysics Data System (ADS)

    Devoli, Graziella; Tiranti, Davide; Cremonini, Roberto; Sund, Monica; Boje, Søren

    2018-05-01

    Only few countries operate systematically national and regional forecasting services for rainfall-induced landslides (i.e., debris flows, debris avalanches and shallow slides), among them Norway and Italy. In Norway, the Norwegian Water Resources and Energy Directorate (NVE) operates a landslide forecasting service at national level. In Italy, the Regional Agency for Environmental Protection, ARPA Piemonte, is responsible for issuing landslide warnings for the Piedmont region, located in northwestern Italy. A daily hazard assessment is performed, describing both expected awareness level and type of landslide hazard for a selected warning region. Both services provide regular landslide hazard assessments based on a combination of quantitative thresholds and daily rainfall forecasts together with qualitative expert analysis. Daily warning reports are published at http://www.arpa.piemonte.gov.it/rischinaturali and http://www.varsom.no, last access: 7 May 2018. In spring 2013, ARPA Piemonte and the NVE issued warnings for hydro-meteorological hazards due to the arrival of a deep and large low-pressure system, called herein Vb cyclone. This kind of weather system is known to produce the largest floods in Europe. Less known is that this weather pattern can trigger landslides as well. In this study, we present the experiences of NVE and ARPA Piemonte in the late spring of 2013. The Vb cyclone influenced weather throughout Europe over a long period, from the end of April until the beginning of June 2013. However, major affects were observed in the first half part of this period in Piedmont, while in Norway, major damage was reported from 15 May to 2 June 2013. Floods and landslides significantly damaged roads, railways, buildings and other infrastructure in both countries. This case study shows that large synoptic pattern can produce different natural hazards in different parts of Europe, from sandstorms at low latitudes, to flood and landslides when the system moves across the mountain regions. These secondary effects were effectively forecasted by the two landslide warning services, operating in different parts of Europe. The landslide risks were also properly communicated to the public some days in advance. This analysis has allowed the establishment of fruitful international collaboration between ARPA Piemonte and NVE and the future exchange of experiences, procedures and methods relating to similar events.

  9. Bidirectional piston valve

    DOEpatents

    Fischer, Harry C.

    1977-01-01

    This invention is a reversing valve having an inlet, an outlet, and an inlet-outlet port. The valve is designed to respond to the introduction of relatively high-pressure fluid at its inlet or, alternatively, of lower-pressure fluid at its inlet-outlet port. The valve includes an axially slidable assembly which is spring-biased to a position where it isolates the inlet and connects the inlet-outlet port to the outlet. The admission of high-pressure fluid to the inlet displaces the slidable assembly to a position where the outlet is isolated and the inlet is connected to the inlet-outlet port. The valve is designed to minimize pressure drops and leakage. It is of a reliable and comparatively simple design.

  10. The patient inflating valve in anaesthesia and resuscitation breathing systems.

    PubMed

    Fenton, P M; Bell, G

    2013-03-01

    Patient inflating valves combined with self-inflating bags are known to all anaesthetists as resuscitation devices and are familiar as components of draw-over anaesthesia systems. Their variants are also commonplace in transfer and home ventilators. However, the many variations in structure and function have led to difficulties in their optimal use, definition and classification. After reviewing the relevant literature, we defined a patient inflating valve as a one-way valve that closes an exit port to enable lung inflation, also permitting exhalation and spontaneous breathing, the actions being automatic. We present a new classification based on the mechanism of valve opening/closure; namely elastic recoil of a flexible flap/diaphragm, sliding spindle opened by a spring/magnet or a hollow balloon collapsed by external pressure. The evolution of these valves has been driven by the difficulties documented in critical incidents, which we have used along with information from modern International Organization for Standardization standards to identify 13 ideal properties, the top six of which are non-jamming, automatic, no bypass effect, no rebreathing or air entry at patient end, low resistance, robust and easy to service. The Ambu and the Laerdal valves have remained popular due to their simplicity and reliability. Two new alternatives, the Fenton and Diamedica valves, offer the benefits of location away from the patient while retaining a small functional dead space. They also offer the potential for greater use of hybrid continuous flow/draw-over systems that can operate close to atmospheric pressure. The reliable application of positive end-expiratory pressure/continuous positive airway pressure remains a challenge.

  11. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, M.E.

    1985-01-01

    Major Paleozoic artesian aquifers in the southeastern Bighorn Basin of Wyoming area, in descending order, the Tensleep Sandstone; the Madison Limestone and Bighorn Dolomite, which together form the Madison-Bighorn aquifer; and the Flathead Sandstone. Operating yields commonly are more than 1,000 gallons per minute from flowing wells completed in the Madison-Bighorn aquifer. The initial test of one well indicated a flow of 14,000 gallons per minute. Wellhead pressures range from less than 50 to more than 400 pounds per square inch. Transmissivities are 500-1,900 feet squared per day for the Madison-Bighorn aquifer and 90-325 feet squared per day for the Tensleep and Flathead Sandstones. Despite extensive development for irrigation there have been few decreases in pressure. Some decreases in pressure have occurred in wells completed in the Flathead Sandstone. Fractures along linear structural features result in significant secondary permeability and allow upward interformational movement of water that affects the altitude of the potentiometric surfaces in the Tensleep Sandstone and Madison-Bighorn aquifer. Upward-moving water from the Tensleep and other formations discharges at the land surface as springs along or near these lineations. Water from the aquifers generally contains minimal concentrations of dissolved solids and individual constituents but has excessive hardness. The water is satisfactory for irrigation and other purposes when hardness is not a detrimental factor. Wellhead temperatures range from 11 degrees to 27.5 degrees C, giving a geothermal gradient of about 0.44 degrees C per 100 feet. (USGS)

  12. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  13. Experimental investigation of lateral forces induced by flow through model labyrinth glands

    NASA Technical Reports Server (NTRS)

    Leong, Y. M. M. S.; Brown, R. D.

    1984-01-01

    The lateral forces induced by flow through model labyrinth glands were investigated. Circumferential pressure distributions, lateral forces and stiffness coefficients data obtained are discussed. The force system is represented as a negative spring and a tangential force orthogonal to eccentricity. The magnitude of these forces are dependent on eccentricity, entry swirl, rotor peripheral velocity and seal size. A pressure equalization chamber at midgland tests should in significantly reduced forces and stiffness coefficients.

  14. Skyhook gravitational-wave detector

    NASA Astrophysics Data System (ADS)

    Braginskii, V. B.; Thorne, K. S.

    1985-08-01

    A new and more sensitive type of earth-orbiting gravitational wave detector, called a 'skyhook', which would operate in the 10-100 mHz band, is proposed. The skyhook would consist of two masses, one on each end of a long thin cable with a spring at its center. As it orbits the earth, the cable wold be stretched radially by the earth's tidal gravitational field. Gravitational waves would pull the masses apart and push them together in an oscillatory fashion. Their motion would be transmitted to the spring by the cable, and a sensor would monitor the spring's resulting motion.

  15. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.

    PubMed

    Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico

    2017-12-08

    In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Driver comprehension and operations evaluation of flashing yellow arrows.

    DOT National Transportation Integrated Search

    2013-06-01

    In spring 2010, the Illinois Department of Transportation initiated an areawide implementation of the flashing yellow : arrow (FYA) as the display for the left-turn permissive interval at more than 100 intersections operating with : protected/permiss...

  17. Field observations and management strategy for hot spring wastewater in Wulai area, Taiwan.

    PubMed

    Lin, J Y; Chen, C F; Lei, F R; Hsieh, C D

    2010-01-01

    Hot springs are important centers for recreation and tourism. However, the pollution that may potentially be caused by hot spring wastewater has rarely been discussed. More than half of Taiwan's hot springs are located in areas where the water quality of water bodies is to be protected, and untreated wastewater could pollute the receiving water bodies. In this study, we investigate hot spring wastewater in the Wulai area, one of Taiwan's famous hot spring resorts. Used water from five hot spring hotels was sampled and ten sampling events were carried out to evaluate the changes in the quality of used water in different seasons, at different periods of the week, and from different types of hotels. The concentrations of different pollutants in hot spring wastewater were found to exhibit wide variations, as follows: COD, 10-250 mg/L; SS, N.D.-93 mg/L; NH(3)-N, 0.01-1.93 mg/L; TP, 0.01-0.45 mg/L; and E. coli, 10-27,500 CFU/100 mL. The quality of hot spring wastewater depends on the operation of public pools, because this affects the frequency of supplementary fresh water and the outflow volume. Two management strategies, namely, onsite treatment systems and individually packaged treatment equipment, are considered, and a multi-objective optimization model is used to determine the optimal strategy.

  18. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  19. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  20. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  1. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  2. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  3. Trace metal contamination of mineral spring water in an historical mining area in regional Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Martin, Rachael; Dowling, Kim

    2013-11-01

    Significant global consumption of spring and mineral water is fuelled by perceived therapeutic and medicinal qualities, cultural habits and taste. The Central Victorian Mineral Springs Region, Australia comprises approximately 100 naturally effervescent, cold, high CO2 content springs with distinctive tastes linked to a specific spring or pump. The area has a rich settlement history. It was first settled by miners in the 1840s closely followed by the first commercial operations of a health resort 1895. The landscape is clearly affected by gold mining with geographically proximal mine waste, mullock heaps or tailings. Repeated mineral springs sampling since 1985 has revealed elevated arsenic concentrations. In 1985 an arsenic concentration five times the current Australian Drinking Water Guideline was recorded at a popular tourist spring site. Recent sampling and analyses have confirmed elevated levels of heavy metals/metalloids, with higher concentrations occurring during periods of low rainfall. Despite the elevated levels, mineral water source points remain accessible to the public with some springs actively promoting the therapeutic benefits of the waters. In light of our analysis, the risk to consumers (some of whom are likely to be negatively health-affected or health-compromised) needs to be considered with a view to appropriate and verified analyses made available to the public.

  4. A systematic search of sudden pressure drops on Gale crater during two Martian years derived from MSL/REMS data

    NASA Astrophysics Data System (ADS)

    Ordonez-Etxeberria, Iñaki; Hueso, Ricardo; Sánchez-Lavega, Agustín

    2018-01-01

    The Mars Science Laboratory (MSL) rover carries a suite of meteorological detectors that constitute the Rover Environmental Monitoring Station (REMS) instrument. REMS investigates the meteorological conditions at Gale crater by obtaining high-frequency data of pressure, air and ground temperature, relative humidity, UV flux at the surface and wind intensity and direction with some limitations in the wind data. We have run a search of atmospheric pressure drops of short duration (< 25 s) and we present a statistical study of the frequency of these events in the REMS pressure data during its first 1417 sols (more than two Martian years). The identified daytime pressure drops could be caused by the close passages of warm vortices and dust devils. Previous systematic searches of warm vortices from REMS pressure data (Kahanpää et al., 2016; Steakley and Murphy, 2016) cover about one Martian year. We show that sudden pressure drops are twice more abundant in the second Martian year [sols 671-1339] than in the first one analyzed in previous works. The higher number of detections could be linked to a combination of different topography, higher altitudes (120 m above the landing site) and true inter-annual meteorological variability. We found 1129 events with a pressure drop larger than 0.5 Pa. Of these, 635 occurred during the local daytime (∼56%) and 494 were nocturnal. The most intense pressure drop (4.2 Pa) occurred at daytime on sol 1417 (areocentric solar longitude Ls = 195°) and was accompanied by a simultaneous decrease in the UV signal of 7.1%, pointing to a true dust devil. We also discuss similar but less intense simultaneous pressure and UV radiation drops that constitute 0.7% of all daytime events. Most of the intense daytime pressure drops with variations larger than 1.0 Pa occur when the difference between air and ground temperature is larger than 15 K. Statistically, the frequency of daytime pressure drops peaks close to noon (12:00-13:00 Local True Solar Time or LTST) with more events in spring and summer (Ls from 180° to 360°). The nocturnal sudden pressure drops concentrate in the 20:00-23:00 LTST time interval and they only occur in spring and summer. We interpret these nocturnal events as a consequence of local mechanically forced turbulence. This interpretation is consistent with published results from simulations with the MRAMS model (Rafkin et al., 2016) that predict a competition between local orographic circulation and global Hadley cell circulation at Gale crater at summer night-time that can enhance forced turbulence at the surface. Bursts of pressure drops appear on particular sols, especially at night-time. Most of the vortex bursts occurred when MSL was in the region called Pahrump Hills characterized by a complex terrain. A comparison of the daytime pressure drops from REMS data with published results from the Pathfinder and Phoenix missions shows that the frequency of daytime events at Gale crater in spring and summer is similar to the one previously found at other locations. Finally, we present possible correlations between MSL activity and some daytime pressure drops. If such an instrumental effect is present in the REMS data its impact in this analysis is small and would only affect about 7% of our detections.

  5. Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, U.S.A.

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1970-01-01

    Under favorable conditions the chemistry of hot springs may give reliable indications of subsurface temperatures and circulation patterns. These chemical indicators can be classified by the type of process involved: {A table is presented}. All these indicators have certain limitations. The silica geothermometer gives results independent of the local mineral suite and gas partial pressures, but may be affected by dilution. Alkali ratios are strongly affected by the local mineral suite and the formation of complex ions. Carbonate-chloride ratios are strongly affected by subsurface PCO2. The relative concentration of volatiles can be very misleading in high-pressure liquid systems. In Yellowstone National Park most thermal waters issue from hot, shallow aquifers with pressures in excess of hydrostatic by 2 to 6 bars and with large flows (the flow of hot spring water from the Park is greater than 4000 liters per second). These conditions should be ideal for the use of chemical indicators to estimate aquifer temperatures. In five drill holes aquifer temperatures were within 2??C of that predicted from the silica content of nearby hot springs; the temperature level off at a lower value than predicted in only one hole, and in four other holes drilling was terminated before the predicted aquifer temperature was reached. The temperature-Na/K ratio relationship does not follow any published experimental or empirical curve for water-feldspar or water-clay reactions. We suspect that ion exchange reactions involving zeolites in the Yellowstone rocks result in higher Na/K ratios at given temperatures than result from feldspar or clay reactions. Comparison of SiO2 and Cl/(HCO3 + CO3) suggest that because of higher subsurface PCO2 in Upper Geyser Basin a given Cl/(HCO3 + CO3) ratio there means a higher temperature than in Lower Geyser Basin. No correlation was found in Yellowstone Park between the subsurface regions of highest temperature and the relative concentration of volatile components such as boron and ammonia. ?? 1971.

  6. Hydrological evolution and chemical structure of a hyper-acidic spring-lake system on Whakaari/White Island, NZ

    NASA Astrophysics Data System (ADS)

    Christenson, B. W.; White, S.; Britten, K.; Scott, B. J.

    2017-10-01

    White Island has a long and varied history of acid spring discharge and shallow ephemeral lake formation on its main crater floor. In the 12 months prior to the onset of the 1976-2000 eruptive episode, mass discharge from the spring system increased ca. 10-fold, pointing to a strong coupling of the hydrothermal environment to the evolving magmatic system. Between 1976 and 1978, the formation of numerous eruption vents to 200 m depth in the Western Sub-crater abruptly changed the hydraulic gradients in the volcano, resulting in the reversal of groundwater flow in the massif towards the newly-formed crater(s). This affected not only the style of volcanic activity (leading to phreatic-phreatomagmatic-magmatic eruption cycles), but also led to the demise of the spring system, with discharge from the main crater declining by a factor > 100 by 1979. Eruptive activity ended shortly after a moderate Strombolian eruption in mid-2000, after which ephemeral lakes started to form in the eruption crater complex. Between 2003 and 2015 there were three complete lake filling and evaporative cycles, reflecting varying heat flow through the conduit system beneath the lake. Over these cycles, lake water concentrations of Cl and SO4 varied between ca. 35-150 and 5-45 g/L respectively, with pH values temporally ranging from + 1.5 to - 1. Springs appeared on the Main Crater floor in 2004, and their discharges varied with lake level, pointing to the lake level being a primary control over the piezometric surface in the crater area. Springs closest to the crater complex show direct evidence of crater lake water infiltration into the crater floor aquifer, whereas distal spring discharges show compositional variations reflecting vertical displacement of the interface between shallow, dilute condensate and underlying acidic brine fluids. Source components for the spring fluids include magmatic vapour, dissolved andesitic host rocks, seawater and meteoric water. Lake waters, on the other hand, consist predominantly of magmatic vapour, meteoric water and solutes derived from host andesites and their altered derivatives. δ2H and δ18O signatures of the enclosing acid brine fluids, indicate they are predominantly seawater which have been affected by both vapour loss, but also mixing with arc-type vapour. An interesting finding of this study is that crater floor deformation correlates directly to both lake level and volatile emissions, in an apparent poroelastic response to the establishment of a hydrostatic water column in the eruption crater complex, and a net decrease in permeability owing to hydrothermal mineralization in the conduit (predominantly elemental sulfur and sulfate minerals). The hydrostatic pressurization of the vent environment also leads to increased gas pressures and flows through fumarolic channels, and consequent expansion of fumarolic areas on the main crater floor. A period of unrest, which commenced in August 2012 and lasted until October 2013, included the extrusion of a small dome into the eruption crater complex. This activity, and related high heat flow, led once again to evaporation of the lake, and ongoing phreatic eruption activity which has provided interesting insights into the role which elemental sulfur, associated hydrothermal alteration minerals and of course water play in regulating pressures in the magmatic-hydrothermal environment.

  7. Draft Environmental Impact Statement. MX Deployment Area Selection and Land Withdrawal/Acquisition DEIS. Volume IV. Part II. Environmental Consequences to the Study Regions and Operating Base Vicinities.

    DTIC Science & Technology

    1980-12-01

    desert tortoise distribution at Coyote Spring OB and vicinity. 4-179 4.3.1.9-3 Utah Prairie Dog distribution and Proposed Action conceptual project...layout. 4-185 4.3.1.9-4 Distribution of Utah prairie dog in the vicinity of the Milford OB. 4-187 4.3.1.9-5 Distribution of Utah prairie dog in the...Coyote Spring. 4-180 4.3.1.9-2 Potential impact to the Utah prairie dog around operating bases (OBs) for the Proposed Action and Alternatives 1-8. 4-188

  8. Observations of atmospheric pollutants at Lhasa during 2014-2015: Pollution status and the influence of meteorological factors.

    PubMed

    Duo, Bu; Cui, Lulu; Wang, Zhenzhen; Li, Rui; Zhang, Liwu; Fu, Hongbo; Chen, Jianmin; Zhang, Huifang; Qiong, A

    2018-01-01

    Atmospheric pollutants including SO 2 , NO 2 , CO, O 3 and inhalable particulate matter (PM 2.5 and PM 10 ) were monitored continuously from March 2014 to February 2015 to investigate characteristics of air pollution at Lhasa, Tibetan Plateau. Species exhibited similar seasonal variations except O 3 , with the peaks in winter but low valleys in summer. The maximum O 3 concentration was observed in spring, followed by summer, autumn, and winter. The positive correlation between O 3 and PM 10 in spring indicated similar sources of them, and was assumed to be turbulent transport. Temperature was the dominant meteorological factor for most species in spring. High temperature accelerates O 3 photochemistry, and favors air disturbance which is conductive to dust resuspension in spring. Relative humidity (RH) and atmospheric pressure were the main meteorological factors in summer. RH showed negative correlations with species, while atmospheric pressure posed opposite situation. Wind speed (WS) was the dominant meteorological factor in autumn, the negative correlations between WS and species indicated diffusion by wind. Most species showed non-significant correlations with meteorological factors in winter, indicating the dependence of pollution on source emission rather than restriction by meteorology. Pollution weather character indicated that emissions were from biomass burning and dust suspension, and meteorological factors also played an important role. Air stream injection from the stratosphere was observed during O 3 pollution period. Air parcels from Southwest Asia were observed during air pollution period in winter. An enhancement in air pollutants such as O 3 would be expected in the future, more attention should be given to countermeasures for prevention of air pollution in the future. Copyright © 2017. Published by Elsevier B.V.

  9. 49 CFR 195.406 - Maximum operating pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum operating pressure. 195.406 Section 195...

  10. 49 CFR 195.406 - Maximum operating pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum operating pressure. 195.406 Section 195...

  11. 49 CFR 195.406 - Maximum operating pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum operating pressure. 195.406 Section 195...

  12. 49 CFR 195.406 - Maximum operating pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum operating pressure. 195.406 Section 195...

  13. 49 CFR 195.406 - Maximum operating pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum operating pressure. 195.406 Section 195...

  14. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum and minimum allowable operating pressure...

  15. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum and minimum allowable operating pressure...

  16. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum and minimum allowable operating pressure...

  17. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum and minimum allowable operating pressure...

  18. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum and minimum allowable operating pressure...

  19. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    USGS Publications Warehouse

    Metz, Patricia A.

    2016-09-27

    Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer in inland areas, and upward flow toward the surface in coastal areas, such as at Warm Mineral Springs. Warm Mineral Springs is located in a discharge area. Changes in water use in the region have affected the potentiometric surface of the Upper Floridan aquifer. Historical increase in groundwater withdrawals resulted in a 10- to 20-foot regional decline in the potentiometric surface of the Upper Floridan aquifer by May 1975 relative to predevelopment levels and remained at approximately that level in May 2007 in the area of Warm Mineral Springs. Discharge measurements at Warm Mineral Springs (1942–2014) decreased from about 11–12 cubic feet per second in the 1940s to about 6–9 cubic feet per second in the 1970s and remained at about that level for the remainder of the period of record. Similarity of changes in regional water use and discharge at Warm Mineral Springs indicates that basin-scale changes to the groundwater system have affected discharge at Warm Mineral Springs. Water temperature had no significant trend in temperature over the period of record, 1943–2015, and outliers were identified in the data that might indicate inconsistencies in measurement methods or locations.Within the regional groundwater basin, Warm Mineral Springs is influenced by deep Upper Floridan aquifer flow paths that discharge toward the coast. Associated with these flow paths, the groundwater temperatures increase with depth and toward the coast. Multiple lines of evidence indicate that a source of warm groundwater to Warm Mineral Springs is likely the permeable zone of the Avon Park Formation within the Upper Floridan aquifer at a depth of about 1,400 to 1,600 feet, or deeper sources. The permeable zone contains saline groundwater with water temperatures of at least 95 degrees Fahrenheit.The water quality of Warm Mineral Springs, when compared with other springs in Florida had the highest temperature and the greatest mineralized content. Warm Mineral Springs water is characterized by a slight-green color, with varying water clarity, low dissolved oxygen (indicative of deep groundwater), and a hydrogen sulfide odor. Water-quality samples detected ammonium-nitrogen and nitrates, but at low concentrations. The drinking water standard for nitrate adopted by the U.S. Environmental Protection Agency is 10 milligrams per liter, measured as nitrogen. Water samples collected at spring vents by divers on April 29, 2015, had concentrations of 0.9 milligram per liter nitrate-nitrogen at vent A and 0.04–0.05 milligram per liter at vents B, C, and D. Typically, the water clarity is highest in the morning (about 30 feet Secchi depth) and often decreases throughout the day.Analysis of existing data provided some insight into the hydrologic processes affecting Warm Mineral Springs; however, data have been sparsely and discontinuously collected since the 1940s. Continuous monitoring of hydrologic characteristics such as discharge, water temperature, specific conductance, and water-quality indicators, such as nitrate and turbidity (water clarity), would be valuable for monitoring and development of models of spring discharge and water quality. In addition, water samples could be analyzed for isotopic tracers, such as strontium, and the results used to identify and quantify the sources of groundwater that discharge at Warm Mineral Springs. Groundwater flow/transport models could be used to evaluate the sensitivity of the quality and quantity of water flowing from Warm Mineral Springs to changes in climate, aquifer levels, and water use.

  20. 46 CFR 162.018-3 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... best quality spring steel consistent with the design of the valve and the service requirement. [CGFR 52... materials melting above 1700 °F. for liquefied flammable gas service. Consideration of lower melting materials for internal pressure-containing parts will be given if their use provides significant improvement...

  1. Stopover ecology of landbirds migrating along the middle Rio Grande in spring and fall

    Treesearch

    Wang Yong; Deborah M. Finch

    2002-01-01

    This research represents the first comprehensive summary of our study of stopover ecology of migratory landbirds in riparian habitats along the middle Rio Grande of central New Mexico. We report results from mist-netting operations conducted during spring and fall migration in 1994, 1995, and 1996. A total of 23,800 individuals of 146 species were captured during the...

  2. Growth, gas exchange, and root respiration of Quercus rubra seedlings exposed to low root zone temperatures in solution culture

    Treesearch

    Kent G. Apostol; Douglass F. Jacobs; Barrett C. Wilson; K. Francis Salifu; R. Kasten Dumroese

    2007-01-01

    Spring planting is standard operational practice in the Central Hardwood Region, though little is known about potential impacts of low root temperature (RT) common during spring on establishment success of temperate deciduous forest tree species. The effects of low RTon growth, gas exchange, and root respiration following winter dormancy were studied in 1-year-old...

  3. Development of high precision and cryogenic lens holders

    NASA Astrophysics Data System (ADS)

    Reutlinger, A.; Boesz, Anton; Mottaghibonab, A.; Eckert, P.; Dubowy, M.; Gebler, H.; Grupp, F.; Geis, N.; Bode, A.; Katterloher, R.; Bender, R.

    2017-11-01

    The optical system of the Near Infrared Spectrometer and Photometer (NISP) of the EUCLID mission consists mainly of a filter and grism wheel and 4 aspherical lenses with large diameters up to 170 mm. The single lenses require a high precision positioning at the operational temperature of 150 K. An additional design driver represents the CaF2 material of a lens, which is very sensitive wrt brittleness. The technical maturity of the combination of single features such as CaF2, large diameter (and mass), high precision and cryogenic conditions is considered as low. Therefore, a dedicated pre-development program has been launched to design and develop a first prototype of lens holder and to demonstrate the functional performance at representative operational conditions. The 4 lenses are divided into 3x lenses for the Camera Lens Assembly (CaLA) and 1x lens for the Corrector Lens Assembly (CoLA). Each lens is glue mounted onto solid state springs, part of an adaption ring. The adaption ring shall provide protection against vibration loads, high accuracy positioning, as well as quasi load free mounting of the lens under operational conditions. To reduce thermomechanical loads on the lens, the CTE of the adaption ring is adapted to that of the lens. The glue between lens and solid state spring has to withstand high tension loads during vibration. At the operational temperature the deviating CTE between glue and lens/adaption ring introduces shear loads into the glue interface, which are critical, in particular for the fragile CaF2 lens material. For the case of NISP the shear loads are controlled with the glue pad diameter and the glue thickness. In the context of the development activity many technology aspects such as various solid state spring designs, glue selection and glue handling have been investigated. A parametric structural model was developed to derive the specific design feature of each ring, such as spring force, number of springs, eigenfrequency, etc. This paper presents the design of the adaption ring in conjunction with test results from functional verification. These results are presented on behalf of the EUCLID consortium.

  4. NREL Begins On-Site Validation of Drivetrain Gearbox and Bearings | News |

    Science.gov Websites

    drivetrain failure often leads to higher-than-expected operations and maintenance costs. NREL researchers operations and maintenance costs for the wind industry. The validation is expected to last through the spring

  5. Walla Walla River Fish Passage Operations Program, 2000-2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, Brian C.; Duke, Bill B.

    2004-02-01

    In the late 1990's, the Confederated Tribes of the Umatilla Indian Reservation, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife, along with many other agencies, began implementing fisheries restoration activities in the Walla Walla Basin. An integral part of these efforts is to alleviate the inadequate migration conditions in the basin. The migration concerns are being addressed by removing diversion structures, constructing fish passage facilities, implementing minimum instream flow measures, and initiating trap and haul efforts. The objective of the Walla Walla River Fish Passage Operations Project is to increase the survival of migrating adultmore » and juvenile salmonids in the basin. The project is responsible for coordinating operation and maintenance of ladders, screen sites, bypasses, trap facilities, and transportation equipment. In addition, the project provides technical input on passage criteria and passage and trapping facility design and operation. Operation of the various passage facilities and passage criteria guidelines are outlined in an annual operations plan that the project develops. During the 2000-2001 project year, there were 624 summer steelhead (Oncorhynchus mykiss), 24 bull trout (Salvelinus confluentus), and 47 spring chinook (O. tshawytscha) counted at the Nursery Bridge Dam adult trap between December 27, 2000 and June 7, 2001. The Little Walla Walla River juvenile trap was not operated this year. The project transported 1600 adult spring chinook from Ringold Springs Hatchery to the South Fork Walla Walla Brood Holding Facility and outplanted 1156 for natural spawning in the basin. The project also provided equipment for transportation of juveniles captured during the construction fish salvage at Nursery Bridge Dam.« less

  6. Diaphragm Pump With Resonant Piezoelectric Drive

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Kline-Schoder, Robert J.; Shimko, Martin A.

    2007-01-01

    A diaphragm pump driven by a piezoelectric actuator is undergoing development. This pump is intended to be a prototype of lightweight, highly reliable pumps for circulating cooling liquids in protective garments and high-power electronic circuits, and perhaps for some medical applications. The pump would be highly reliable because it would contain no sliding seals or bearings that could wear, the only parts subject to wear would be two check valves, and the diaphragm and other flexing parts could be designed, by use of proven methods, for extremely long life. Because the pump would be capable of a large volumetric flow rate and would have only a small dead volume, its operation would not be disrupted by ingestion of gas, and it could be started reliably under all conditions. The prior art includes a number piezoelectrically actuated diaphragm pumps. Because of the smallness of the motions of piezoelectric actuators (typical maximum strains only about 0.001), the volumetric flow rates of those pumps are much too small for typical cooling applications. In the pump now undergoing development, mechanical resonance would be utilized to amplify the motion generated by the piezoelectric actuator and thereby multiply the volumetric flow rate. The prime mover in this pump would be a stack of piezoelectric ceramic actuators, one end of which would be connected to a spring that would be part of a spring-and-mass resonator structure. The mass part of the resonator structure would include the pump diaphragm (see Figure 1). Contraction of the spring would draw the diaphragm to the left, causing the volume of the fluid chamber to increase and thereby causing fluid to flow into the chamber. Subsequent expansion of the spring would push the diaphragm to the right, causing the volume of the fluid chamber to decrease, and thereby expelling fluid from the chamber. The fluid would enter and leave the chamber through check valves. The piezoelectric stack would be driven electrically to make it oscillate at the resonance frequency of the spring and- mass structure. This frequency could be made high enough (of the order of 400 Hz) that the masses of all components could be made conveniently small. The resonance would amplify the relatively small motion of the piezoelectric stack (a stroke of the order of 10 m) to a diaphragm stroke of the order of 0.5 mm. The exact amplification factor would depend on the rate of damping of oscillations; this, in turn, would depend on details of design and operation, including (but not limited to) the desired pressure rise and volumetric flow rate. In order to obtain resonance with large displacement, the damping rate must be low enough that the energy imparted to the pumped fluid on each stroke is much less than the kinetic and potential energy exchanged between the mass and spring during each cycle of oscillation. To minimize the power demand of the pump, a highly efficient drive circuit would be used to excite the piezoelectric stack. This circuit (see Figure 2) would amount to a special-purpose regenerative, switching power supply that would operate in a power-source mode during the part of an oscillation cycle when the excitation waveform was positive and in a power-recovery mode during the part of the cycle when the excitation waveform was negative. The circuit would include a voltage-boosting dc-to-dc converter that would convert between a supply potential of 24 Vdc and the high voltage needed to drive the piezoelectric stack. Because of the power-recovery feature, the circuit would consume little power. It should be possible to build the circuit as a compact unit, using readily available components.

  7. Homogenized rigid body and spring-mass (HRBSM) model for the pushover analysis of out-of-plane loaded unreinforced and FRP reinforced walls

    NASA Astrophysics Data System (ADS)

    Bertolesi, Elisa; Milani, Gabriele

    2017-07-01

    The present paper is devoted to the discussion of a series of unreinforced and FRP retrofitted panels analyzed adopting the Rigid Body and Spring-Mass (HRBSM) model developed by the authors. To this scope, a total of four out of plane loaded masonry walls tested up to failure are considered. At a structural level, the non-linear analyses are conducted replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage by means of which out of plane mechanisms are allowed. FRP retrofitting is modeled adopting two noded truss elements whose mechanical properties are selected in order to describe possible debonding phenomenon or tensile rupture of the strengthening. The outcome provided numerically are compared to the experimental results showing a satisfactory agreement in terms of global pressure-deflection curves and failure mechanisms.

  8. Precision Adjustable Liquid Regulator (ALR)

    NASA Astrophysics Data System (ADS)

    Meinhold, R.; Parker, M.

    2004-10-01

    A passive mechanical regulator has been developed for the control of fuel or oxidizer flow to a 450N class bipropellant engine for use on commercial and interplanetary spacecraft. There are several potential benefits to the propulsion system, depending on mission requirements and spacecraft design. This system design enables more precise control of main engine mixture ratio and inlet pressure, and simplifies the pressurization system by transferring the function of main engine flow rate control from the pressurization/propellant tank assemblies, to a single component, the ALR. This design can also reduce the thermal control requirements on the propellant tanks, avoid costly Qualification testing of biprop engines for missions with more stringent requirements, and reduce the overall propulsion system mass and power usage. In order to realize these benefits, the ALR must meet stringent design requirements. The main advantage of this regulator over other units available in the market is that it can regulate about its nominal set point to within +/-0.85%, and change its regulation set point in flight +/-4% about that nominal point. The set point change is handled actively via a stepper motor driven actuator, which converts rotary into linear motion to affect the spring preload acting on the regulator. Once adjusted to a particular set point, the actuator remains in its final position unpowered, and the regulator passively maintains outlet pressure. The very precise outlet regulation pressure is possible due to new technology developed by Moog, Inc. which reduces typical regulator mechanical hysteresis to near zero. The ALR requirements specified an outlet pressure set point range from 225 to 255 psi, and equivalent water flow rates required were in the 0.17 lb/sec range. The regulation output pressure is maintained at +/-2 psi about the set point from a P (delta or differential pressure) of 20 to over 100 psid. Maximum upstream system pressure was specified at 320 psi. The regulator is fault tolerant in that it was purposely designed with no shutoff capability, such that the minimum flow position of the poppet still allows the subsystem to provide adequate flow to the main engine for basic operation.

  9. Spring-Mediated Cranioplasty in Sagittal Synostosis: Does Age at Placement Affect Expansion?

    PubMed

    Sun, James; Ter Maaten, Netanja S; Mazzaferro, Daniel M; Wes, Ari M; Naran, Sanjay; Bartlett, Scott P; Taylor, Jesse A

    2018-05-01

    The aim of this study is to evaluate the effect of timing of surgery and spring characteristics on correction of scaphocephalic deformity in patients undergoing spring-mediated cranioplasty (SMC) for sagittal craniosynostosis. The authors conducted a review of patients with sagittal craniosynostosis who underwent SMC at a tertiary referral center between July 2011 and March 2017, with a primary outcome measure of head shape, both preoperatively and postoperatively, determined by cephalic index (CI). Patient demographics and operative details including timing of surgery and spring characteristics were collected. Differences in CI preoperation and postoperation were compared using Wilcoxon signed-rank test. Ordinary least-squares linear regression was used to assess the impact of timing, number of springs, maximum single spring force, and total spring force on postoperative change in CI. Thirty-six subjects (12 males and 24 females) were included in the study. Mean age at spring placement was 3.9 months (range: 1.9-9.2) with a mean follow-up of 1.4 years (range: 0.3-5.2). The mean number of springs used was 3 (range: 2-4). The mean maximum single spring force was 9.9 Newtons (N) (range: 6.9-13.0) and the mean total spring force was 24.6 N (range: 12.7-37.0). Mean CI increased from 70 ± 0.9 preoperatively to 77 ± 1.0 postoperatively (P < 0.001). Age at spring placement was significantly associated with change in CI: for every month increase in age, the change in CI decreased by 1.3 (P = 0.03). The number of springs used, greatest single spring force, and total spring force did not correlate with changes in CI (P = 0.85, P = 0.42, and P = 0.84, respectively). In SMC, earlier age at time of surgery appears to correlate with greater improvement in CI, at least in the short-term. While spring characteristics did not appear to affect head shape, it is possible that the authors were underpowered to detect a difference, and spring-related variables likely deserve additional study.

  10. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 2: High pressure oxidizer turbo-pump turbine end bearing analysis

    NASA Technical Reports Server (NTRS)

    Sisk, Gregory A.

    1989-01-01

    The high-pressure oxidizer turbopump (HPOTP) consists of two centrifugal pumps, on a common shaft, that are directly driven by a hot-gas turbine. Pump shaft axial thrust is balanced in that the double-entry main inducer/impeller is inherently balanced and the thrusts of the preburner pump and turbine are nearly equal but opposite. Residual shaft thrust is controlled by a self-compensating, non-rubbing, balance piston. Shaft hang-up must be avoided if the balance piston is to perform properly. One potential cause of shaft hang-up is contact between the Phase 2 bearing support and axial spring cartridge of the HPOTP main pump housing. The status of the bearing support/axial spring cartridge interface is investigated under current loading conditions. An ANSYS version 4.3, three-dimensional, finite element model was generated on Lockheed's VAX 11/785 computer. A nonlinear thermal analysis was then executed on the Marshall Space Flight Center Engineering Analysis Data System (EADS). These thermal results were then applied along with the interference fit and bolt preloads to the model as load conditions for a static analysis to determine the gap status of the bearing support/axial spring cartridge interface. For possible further analysis of the local regions of HPOTP main pump housing assembly, detailed ANSYS submodels were generated using I-DEAS Geomod and Supertab (Appendix A).

  11. Spring in Inca City I

    NASA Image and Video Library

    2014-11-13

    Every winter a layer of carbon dioxide ice-or, dry ice-condenses in the Southern polar region, forming a seasonal polar cap less than 1 meter deep. Early in the spring the ice layer begins to sublimate (going directly from a solid to gas) from the top and bottom of the ice layer. Under the ice gas pressure builds up until a weak spot in the ice layer ruptures. The gas rushes out and as it escapes it erodes a bit of the surface. Fine particles are carried by the gas to the top of the ice and then fall out in fan-shaped deposits. The direction of the fan shows the direction either of the wind or down the slope. If the wind is not blowing a dark blotch settles around the spot the gas escaped. This region is known informally as Inca City, and it has a series of distinctive ridges. On the floor between the ridges are radially organized channels, known colloquially as spiders, more formally called "araneiforms." The channels have been carved in the surface over many years by the escaping pressurized gas. Every spring they widen just a bit. This was the first image to be acquired by NASA Mars Reconnaissance Orbiter after the sun rose on Inca City, marking the end to polar night. A few fans are visible emerging from the araneiforms. http://photojournal.jpl.nasa.gov/catalog/PIA18892

  12. Analysis of Apex Seal Friction Power Loss in Rotary Engines

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Owen, A. Karl

    2010-01-01

    An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.

  13. Global Environmental Micro Sensors Test Operations in the Natural Environment

    NASA Technical Reports Server (NTRS)

    Adams, Mark L.; Buza, Matthew; Manobianco, John; Merceret, Francis J.

    2007-01-01

    ENSCO, Inc. is developing an innovative atmospheric observing system known as Global Environmental Micro Sensors (GEMS). The GEMS concept features an integrated system of miniaturized in situ, airborne probes measuring temperature, relative humidity, pressure, and vector wind velocity. In order for the probes to remain airborne for long periods of time, their design is based on a helium-filled super-pressure balloon. The GEMS probes are neutrally buoyant and carried passively by the wind at predetermined levels. Each probe contains onboard satellite communication, power generation, processing, and geolocation capabilities. ENSCO has partnered with the National Aeronautics and Space Administration's Kennedy Space Center (KSC) for a project called GEMS Test Operations in the Natural Environment (GEMSTONE) that will culminate with limited prototype flights of the system in spring 2007. By leveraging current advances in micro and nanotechnology, the probe mass, size, cost, and complexity can be reduced substantially so that large numbers of probes could be deployed routinely to support ground, launch, and landing operations at KSC and other locations. A full-scale system will improve the data density for the local initialization of high-resolution numerical weather prediction systems by at least an order of magnitude and provide a significantly expanded in situ data base to evaluate launch commit criteria and flight rules. When applied to launch or landing sites, this capability will reduce both weather hazards and weather-related scrubs, thus enhancing both safety and cost-avoidance for vehicles processed by the Shuttle, Launch Services Program, and Constellation Directorates. The GEMSTONE project will conclude with a field experiment in which 10 to 15 probes are released over KSC in east central Florida. The probes will be neutrally buoyant at different altitudes from 500 to 3000 meters and will report their position, speed, heading, temperature, humidity, and pressure via satellite. The GEMS data will be validated against reference observations provided by current weather instrumentation located at KSC. This paper will report on the results of the GEMSTONE project and discuss the challenges encountered in developing an airborne sensor system.

  14. Development and Test of an Infrastructure Free Real-Time Water Level Measurement System

    NASA Astrophysics Data System (ADS)

    Breuer, E. R.; Heitsenrether, R.; Hensley, W., III; Krug, W.; Wolcott, D.

    2016-02-01

    NOAA's Center for Operational Oceanographic Products and Services (CO-OPS) is responsible for developing and maintaining the National Water Level Observation Network (NWLON). NWLON consists of over 200 long term observatories that provide near real-time, 6 minute average, water level observations from locations throughout all U.S. coasts. CO-OPS continually analyzes state-of-the-art and emerging technologies to identify potential improvements in data quality and operating efficiency. NOAA, recognizing the changing conditions, anticipates a critical need for real time oceanographic and meteorological observations where traditional approaches are less feasible. CO-OPS is working on the design, development and testing of a real-time tidal measurement system, "The Hermit," for use in coastal regions. The latest prototype has recently completed a successful 3 month field test deployment in the St Andrews Sound region of Georgia, a location where relatively few long term water level records have been collected to date. The test location provided unique challenges such as having a very limited coastal infrastructure and experiencing a 7-8 foot tidal range. The Hermit consists of a bottom mounted pressure/conductivity/temperature sensor (Seabird SBE 26+) and a surface communications buoy which are linked via acoustic modems (Link Quest). The surface buoy relays data back to the CO-OPS database in near-real time using an Iridium satellite based communication system. Additionally, the buoy includes an AirMar all-in-one meteorological sensor. In addition to The Hermit deployment, three test GPS bench marks and a tide staff were installed on a nearby coastline to vertically reference water level measurements. During this deployment, The Hermit successfully provided near real-time measurements of bottom pressure, water conductivity and temperature, wind speed and direction, air temperature, and barometric pressure over the 3 month deployment. During the test period, several high wind storm surge events were captured, along with a perigean spring tide. Details of these data along with the system design will be presented along with CO-OPS plans for future operational applications.

  15. Experimental pressure enhancement of the rate of homogenous methanogenesis: implications for abiotic methane yields in terrestrial and planetary environments

    NASA Astrophysics Data System (ADS)

    Lazar, C.; Cody, G. D.

    2011-12-01

    Abiotic methane may play a role in the development of a biosphere on an otherwise lifeless planet. Methane concentrations in fluids emanating from serpentinite-hosted submarine springs such as Rainbow and Logatchev are below that required for equilibrium with coexisting CO2 and H2, indicating that the compositions of such fluids may be kinetically-controlled. The presence of transition metal-bearing accessory minerals in serpentinites has led to the hypothesis that heterogeneous catalysis may influence the rate of methanogenesis. We present new experiments that show pressure can also significantly accelerate homogenous methanogenesis, i.e., methane production in the absence of mineral catalysts. A series of cold-seal experiments were performed from 1-3.5 kbar at 300C for two weeks, using dilute isotopically labeled formic acid as a carbon and hydrogen source (70mmol solution). The experiments showed a significant increase in 13CH4 yield with pressure: e.g., the yield at 3.5 kbar was ~20X the yield at 1 kbar. This pressure enhancement is consistent with our previous results on homogeneous and heterogeneous methanogenesis and suggests that mineral catalysts are not necessary for CH4 equilibration in high pressure environments such as Precambrian crystalline basements or regional blueschist-grade metamorphic systems. Furthermore, in hydrothermal systems wherein fluid residence times are too short to permit equilibration, the reaction progress of methanogenesis is expected to increase with pressure. Recently discovered methane plumes above the mid-Cayman trough have been attributed to methanogenesis in deep serpentinites-hosted springs. The current experimental results lead to the prediction that the mid-Cayman springs (>1 kbar) contain higher methane concentrations than their lower pressure analogues at Rainbow and Logatchev (<0.5kbar). Fluids escaping forearc serpentinization in cold, steeply-dipping subduction zones may yield more methane than in warm shallow-dipping subduction zones, consistent with the detection of abiotic CH4 in serpentine mud along the Marianas forearc. The methane production rate from water-rock interaction on a deep planetary seafloor may be higher than from analogous terrestrial settings: e.g, on Europa (2.5 kbar seafloor) and Titan (8 kbar seafloor). Since many of the mineral catalysts commonly found in serpentinites (awaruite, heazlewoodite, e.g.) are not present during basaltic metamorphism, the potential for pressure-enhanced homogenous methanogenesis presents the possibility that deep hydrothermal alteration of the basaltic Martian crust could be the source for atmospheric methane on Mars. If methanogenic microbes are sustained by an energy imbalance made possible by kinetic barriers to the reduction of CO2 to CH4, then the habitability of hydrothermal systems with respect to methanogens may decrease with depth as the reaction progress of methanogenesis increases.

  16. Development of a High-speed Electromagnetic Repulsion Mechanism for High-voltage Vacuum Circuit Breakers

    NASA Astrophysics Data System (ADS)

    Tsukima, Mitsuru; Takeuchi, Toshie; Koyama, Kenichi; Yoshiyasu, Hajimu

    This paper presents a design and testing of a new high-speed electromagnetic driving mechanism for a high-voltage vacuum circuit breaker (VCB). This mechanism is based on a high-speed electromagnetic repulsion and a permanent magnet spring (PMS). This PMS is introduced instead of the conventional disk spring due to its low spring energy and more suitable force characteristics for VCB application. The PMS has been optimally designed by the 3d non-linear finite-elements magnetic field analysis and investigated its internal friction and eddy-current effect. Furthermore, we calculated the dynamic of this mechanism coupling with the electromagnetic field and circuit analysis, in order to satisfy the operating characteristics—contact velocity, response time and so on, required for the high-speed VCB. A prototype VCB, which was built based on the above analysis shows sufficient operating performance. Finally, the short circuit interruption tests were carried out with this prototype breaker, and we have been able to verify its satisfying performance.

  17. Geospatial Information Best Practices

    DTIC Science & Technology

    2012-01-01

    26 Spring - 2012 By MAJ Christopher Blais, CW2 Joshua Stratton and MSG Moise Danjoint The fact that Geospatial information can be codified and...Operation Iraqi Freedom V (2007-2008, and Operation New Dawn (2011). MSG Moise Danjoint is the noncommissioned officer in charge, Geospatial

  18. Brady Well Coordinates and Observation Sensor Depths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Lim

    Contains metadata associated with the wells used in the 2016 Spring Campaign led partially by UW - Madison, LBNL, and LLNL scientists. Included with the well coordinates are the depths to the pressure sensors used in observation and pumping wells. Read me files are included for each .csv file.

  19. 46 CFR 160.062-2 - Types.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-2 Types. (a) The hydraulic releases referred to under § 160.062-1(a)(1) are of the diaphram-spring plunger type, which releases a buoyant load under hydrostatic pressure. (b) All hydraulic releases given an approval...

  20. 46 CFR 160.062-2 - Types.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-2 Types. (a) The hydraulic releases referred to under § 160.062-1(a)(1) are of the diaphram-spring plunger type, which releases a buoyant load under hydrostatic pressure. (b) All hydraulic releases given an approval...

  1. 46 CFR 160.062-2 - Types.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-2 Types. (a) The hydraulic releases referred to under § 160.062-1(a)(1) are of the diaphram-spring plunger type, which releases a buoyant load under hydrostatic pressure. (b) All hydraulic releases given an approval...

  2. 46 CFR 160.062-2 - Types.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-2 Types. (a) The hydraulic releases referred to under § 160.062-1(a)(1) are of the diaphram-spring plunger type, which releases a buoyant load under hydrostatic pressure. (b) All hydraulic releases given an approval...

  3. 46 CFR 160.062-2 - Types.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-2 Types. (a) The hydraulic releases referred to under § 160.062-1(a)(1) are of the diaphram-spring plunger type, which releases a buoyant load under hydrostatic pressure. (b) All hydraulic releases given an approval...

  4. On the origin of regional spring time ozone episodes in the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalabokas, Pavlos; Hjorth, Jens; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Siour, Guillaume; Cuesta, Juan; Beekmann, Matthias

    2017-04-01

    For the identification of regional spring time ozone episodes, rural EMEP ozone measurements from countries surrounding the Western Mediterranean (Spain, France, Switzerland, Italy, Malta) have been examined with emphasis on periods of high ozone, according to the daily variation of the afternoon (12:00 - 18:00) ozone. For two selected high ozone episodes in April-May 2008, composite NCEP/NCAR reanalysis maps of various meteorological parameters and/or their anomalies (geopotential height, specific humidity, vertical velocity omega, vector wind speed and temperature) at various tropospheric pressure levels have been examined together with the corresponding satellite IASI ozone measurements (at 3 and 10 km), CHIMERE simulations, vertical ozone soundings and HYSPLIT back trajectories (Kalabokas et al., 2016). The results show that high surface ozone is measured at several countries simultaneously over several days. Also, the examined spring ozone episodes in Western Mediterranean and Central Europe are linked to synoptic meteorological conditions very similar to those recently observed in summertime ozone episodes over the Eastern Mediterranean (Doche et al., 2014; Kalabokas et al., 2015 and references therein), where the transport of tropospheric ozone-rich air masses through atmospheric subsidence influences significantly the boundary layer and surface ozone concentrations. In particular, the geographic areas with observed tropospheric subsidence seem to be the transition regions between high pressure and low pressure systems. IASI satellite measurements show extended areas of high tropospheric ozone over the low pressure systems adjacent to the anticyclones, which influence significantly the boundary layer and surface ozone concentrations within the anticyclones by subsidence and advection, in addition to the photochemically produced ozone there, resulting to exceedances of the 60 ppb standard for human health protection over extended geographical areas. References Doche, C., Dufour, G., Foret, G., Eremenko, M., Cuesta, J., Beekmann, M., and Kalabokas, P., 2014. Summertime tropospheric-ozone variability over the Mediterranean basin observed with IASI, Atmos. Chem. Phys., 14, 10589-10600. Kalabokas P. D., Thouret V., Cammas J.-P., Volz-Τhomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853. Kalabokas P., J. Hjorth, G. Foret, G. Dufour, M. Eremenko, G. Siour, J. Cuesta, M. Beekmann, 2016. An investigation on the origin of regional spring time ozone episodes in the Western Mediterranean and Central Europe. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-615.

  5. Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.

    2014-01-01

    The Acoustical Testing Laboratory (ATL) consists of a 27- by 23- by 20-ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3-D traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4 in.-microphones spaced 3 in. apart (36 in. span). An updated data acquisition system was also incorporated into the facility.

  6. Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.

    2014-01-01

    The Acoustical Testing Laboratory (ATL) consists of a 27 by 23 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3 dimensional traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4"-microphones spaced 3" apart (36" span). An updated data acquisition system was also incorporated into the facility.

  7. Analysis of Fluctuating Friction Version in Sheet Metallic Designing

    NASA Astrophysics Data System (ADS)

    Ambarayil Joy, Jithin; Jung, Dong Won

    2018-02-01

    Conservative Coulomb method indicates steady constant of rub in thin metal panel making that appears or feels close to the real thing. It contributes to describing attainable future event too high shear pressure in making ahead in the position of high R-value steel (AHRS). The study is conducted by pretend the making and spring back of a specific panel to understand the characteristic of the stamping procedure. Corresponding of the describe probable future results with (i) physical force-dependent changeable rub method, (ii) perpetual rub method, and the conclusion of exploratory facts point out a significant upgrading of spring back forecast with the prospective method.

  8. Intra-ocular pressure normalization technique and equipment

    NASA Technical Reports Server (NTRS)

    Mcgannon, W. J. (Inventor)

    1980-01-01

    A method and apparatus for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval is presented. This allows maintenance of normal intraocular pressure during glaucoma surgery. According to the invention, a pressure regulator of the spring biased diaphragm type is provided with additional bias by a column of liquid. The height of the column of liquid is selected such that the pressure at a hypodermic needle connected to the output of the pressure regulator is equal to the measured pressure of the eye. The hypodermic needle can then be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle. Alternately, a second hypodermic needle may be inserted into the eye to provide a controlled leak off path for excessive pressure and clouded fluid from the anterior chamber.

  9. Geochemistry and hydrology of perched groundwater springs: assessing elevated uranium concentrations at Pigeon Spring relative to nearby Pigeon Mine, Arizona (USA)

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas; Tillman, Fred; Naftz, David L.; Bills, Donald; Walton-Day, Katie; Gallegos, Tanya J.

    2017-01-01

    The processes that affect water chemistry as the water flows from recharge areas through breccia-pipe uranium deposits in the Grand Canyon region of the southwestern United States are not well understood. Pigeon Spring had elevated uranium in 1982 (44 μg/L), compared to other perched springs (2.7–18 μg/L), prior to mining operations at the nearby Pigeon Mine. Perched groundwater springs in an area around the Pigeon Mine were sampled between 2009 and 2015 and compared with material from the Pigeon Mine to better understand the geochemistry and hydrology of the area. Two general groups of perched groundwater springs were identified from this study; one group is characterized by calcium sulfate type water, low uranium activity ratio 234U/238U (UAR) values, and a mixture of water with some component of modern water, and the other group by calcium-magnesium sulfate type water, higher UAR values, and radiocarbon ages indicating recharge on the order of several thousand years ago. Multivariate statistical principal components analysis of Pigeon Mine and spring samples indicate Cu, Pb, As, Mn, and Cd concentrations distinguished mining-related leachates from perched groundwater springs. The groundwater potentiometric surface indicates that perched groundwater at Pigeon Mine would likely flow toward the northwest away from Pigeon Spring. The geochemical analysis of the water, sediment and rock samples collected from the Snake Gulch area indicate that the elevated uranium at Pigeon Spring is likely related to a natural source of uranium upgradient from the spring and not likely related to the Pigeon Mine.

  10. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  11. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  12. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  13. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  14. A comparison of low-pressure and supercharged operation of polymer electrolyte membrane fuel cell systems for aircraft applications

    NASA Astrophysics Data System (ADS)

    Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.

    2016-08-01

    Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.

  15. New Approaches for Responsible Management of Offshore Springs in Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Shaban, Amin; de Jong, Carmen; Al-Sulaimani, Zaher

    2017-04-01

    In arid and semi-arid regions, such as the Mediterranean and Gulf Region where water is scarce water demand has been exacerbated and become a major environmental challenge. Presently there is massive pressure to develop new water sources to alleviate existing water stress. In the quest for more freshwater even groundwater discharge into the sea in the form of "off-shore freshwater springs" (or submarine groundwater discharge) has been contemplated as a potential source of unconventional water in coastal zones. Offshore-springs are derived from aquifers with complex geological controls mainly in the form of faults and karst conduits. Representing a border-line discipline, they have been poorly studied with only few submarine groundwater monitoring sites existing worldwide. Recently, innovative techniques have been developed enabling springs to be detected via remote sensing such as airborne surveys or satellite images. "Thermal Anomalies" can be clearly identified as evidence for groundwater discharge into the marine environment. A diversity of groundwater routes along which off-shore springs are fed from land sources can be recognized and near-shore and offshore springs differentiated and classified according to their geometry. This is well pronounced along the coast of Lebanon and offshore of Oman. Offshore springs play an important role in the marine ecosystem as natural sources of mercury, metals, nutrients, dissolved carbon species and in cooling or warming ocean water. However, they are extremely sensitive to variations in qualitative and quantitative water inputs triggered by climate change and anthropogenic impacts especially in their recharge zones. Pollutants such as sewage, detergents, heavy metals or herbicides that negatively affect water quality of offshore springs can transit the groundwater rapidly. Recently these springs have also been severely affected by uncontrolled water abstraction from land aquifers. In Bahrain, overpumping combined with burial under land reclamation rubble has caused the disappearance of offshore springs inducing a drastic decline in the pearl oyster population. Climate change related precipitation decrease and temperature increase is likely to further decrease groundwater and surface water recharge, increase irrigation and domestic water demand, increase water extraction from aquifers and in turn decrease water availability for offshore springs.. Thus in future, continuous monitoring of water quantity and quality as well as new remote sensing approach in addition to observations by citizens such as fishermen and tourist guides are becoming essential to ensure responsible management of offshore freshwater springs.

  16. The measured contribution of whipping and springing on the fatigue and extreme loading of container vessels

    NASA Astrophysics Data System (ADS)

    Storhaug, Gaute

    2014-12-01

    Whipping/springing research started in the 50'ies. In the 60'ies inland water vessels design rules became stricter due to whipping/springing. The research during the 70-90'ies may be regarded as academic. In 2000 a large ore carrier was strengthened due to severe cracking from North Atlantic operation, and whipping/springing contributed to half of the fatigue damage. Measurement campaigns on blunt and slender vessels were initiated. A few blunt ships were designed to account for whipping/springing. Based on the measurements, the focus shifted from fatigue to extreme loading. In 2005 model tests of a 4,400 TEU container vessel included extreme whipping scenarios. In 2007 the 4400 TEU vessel MSC Napoli broke in two under similar conditions. In 2009 model tests of an 8,600 TEU container vessel container vessel included extreme whipping scenarios. In 2013 the 8,100 TEU vessel MOL COMFORT broke in two under similar conditions. Several classification societies have published voluntary guidelines, which have been used to include whipping/springing in the design of several container vessels. This paper covers results from model tests and full scale measurements used as background for the DNV Legacy guideline. Uncertainties are discussed and recommendations are given in order to obtain useful data. Whipping/springing is no longer academic.

  17. [Urodynamics foundations: contractile potency and urethral doppler].

    PubMed

    Benítez Navío, Julio; Caballero Gómez, Pilar; Delgado Elipe, Ildefonso

    2002-12-01

    To calculate the bladder softening factor, elastic constant and contractile potency. For the analysis we considered bladder behavior like that of a spring. See articles 1 and 2 published in this issue. Using flowmetry, Doppler ultrasound and abdominal pressure (Transrectal pressure register catheter) an analytical solution that permits calculation of factors defining bladder behavior was looked for. Doppler ultrasound allows us to know urine velocity through the prostatic urethra and, therefore, to calculate bladder contractile potency. Equations are solved reaching an analytical solution that allows calculating those factors that define bladder behavior: Bladder contractile potency, detrusor elastic constant, considering it behaves like a spring, and calculation of muscle resistance to movement. All thanks to Doppler ultrasound that allows to know urine speed. The bladder voiding phase is defined with the aforementioned factors; storage phase behavior can be indirectly inferred. Only uroflowmetry curves, Doppler ultrasound and abdominal pressure value are used. We comply with the so called non invasive urodynamics although for us it is just another phase in the biomechanical study of the detrusor muscle. Main conclusion is the addition of Doppler ultrasound to the urodynamist armamentarium as an essential instrument for the comprehension of bladder dynamics and calculation of bladder behavior defining factors. It is not a change in the focus but in the methods, gaining knowledge and diminishing invasion.

  18. Brady Geothermal Field Well Pumping Data During Deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    Contains pumping data associated with the wells used in the 2016 Spring Campaign led partially by UW - Madison, LBNL, and LLNL scientists. The well coordinates and the depths to the pressure sensors used in the pumping wells can be found at the link "Coordinates and Sensor Depths" below.

  19. One-shot valve may be remotely actuated

    NASA Technical Reports Server (NTRS)

    Kami, S.

    1965-01-01

    One-shot valve, with spring-loaded plunger and sealing diaphragm, incorporates an emergency release actuated by a remote sensor. The plunger is released by the electrical melting of a fuse link and pierces the valve seal. The valve lowers fluid pressure in a container without losing the contained fluid.

  20. Geochemistry of tectonically expelled fluids from the northern Coast ranges, Rumsey Hills, California, USA

    USGS Publications Warehouse

    Davisson, M.L.; Presser, T.S.; Criss, R.E.

    1994-01-01

    Tectonic compression has created abnormally high pressure on deep basinal fluids causing their expulsion from areally exposed Upper Cretaceous rock along the eastern margin of the California Coast ranges. The fluids emerge as near-neutral, perennial sodium chloride springs at high elevations with flow rates as high as 10 L per min. Higher spring discharges are more common around the exposure of a west-vergent fault propagation fold axis. Spring waters range from ~1000 to 27,000 mg/L TDS. The least saline water (??18O = -7.5???) closely represents local meteoric water that mixes with saline fluid (??18O = +5.3???) and forms a slope of ~3.5 on a ??D vs. ??18O plot. A Na (125 to 8000 mg/L) vs. Cl (150 to 17,000 mg/L) plot shows a linear dilution trend that extends close to, but below, the values for modern seawater. Calcium (75-3000 mg/L) is considerably enriched relative to seawater and forms a nonlinear trend with chloride. In detail, the "Na deficit," defined by the difference between the measured Na content and the Na concentration on a hypothetical seawater dilution line, is approximately balanced by the Ca excess, similarly defined by the seawater dilution line. This relationship strongly suggests that the fluid is diluted seawater that is being modified by active albitization of plagioclase at different depths. Simultaneous B and 18O enrichment of the fluids, accompanied by deuterium depletion, further suggest that the seawater modification is influenced by clay diagenesis. Bicarbonate and SiO2 concentrations show an inverse correlation with Cl, with most waters being saturated or slightly oversaturated with calcite and quartz at the discharge temperatures. Some freshwater springs with near-meteoric stable isotope values may represent mixing of young groundwater from perched aquifers, but in many cases, the freshwater springs emerge along the same structures and have the same perennial nature as the saline fluids, and expulsion of an older fresh groundwater component that is under abnormal fluid pressures cannot be ruled out. Basinal fluids elsewhere commonly show dilution trends with local meteoric water, and in the case of the Rumsey Hills, some of the dilute saline waters may indicate deep penetration of meteoric water (> 1 km) in the Pleistocene before the latest tectonic uplift. Geothermometry of the spring waters (maximum ~90??C) suggest an origin from as deep as 4.0 km. This depth is consistent with the depth of the core of a fault propagation anticline below the surface of the Rumsey Hills developed by active internal deformation of an east-tapering wedge beneath the southwestern Sacramento Valley. Active tectonic compression causes near-lithostatic fluid pressures in the shallow subsurface below the Rumsey Hills and volume strain within the core of the anticline that results in upward expulsion of the saline fluids from the indicated depths. ?? 1994.

  1. Apparatus and method for batch-wire continuous pumping

    DOEpatents

    Fassbender, Alexander G.

    1996-01-01

    The apparatus of the present invention contains at least one pressure vessel having a separator defining two chambers within each pressure vessel. The separator slideably seals the two chambers. Feedstock is placed within a second chamber adjoining the first chamber via a feedstock pump operating in a high volume low head mode. A pressurizer operates in a low volume high pressure mode to pressurize the working fluid and the feedstock in the pressure vessels to a process operating pressure. A circulating pump operates in a high volume, low head mode to circulate feedstock through the process. A fourth pump is used for moving feedstock and product at a pressure below the process operating pressure.

  2. Sand/dust storm processes in Northeast Asia and associated large-scale circulations

    NASA Astrophysics Data System (ADS)

    Yang, Y. Q.; Hou, Q.; Zhou, C. H.; Liu, H. L.; Wang, Y. Q.; Niu, T.

    2008-01-01

    This paper introduces a definition of sand/dust storm process as a new standard and idea of sand/dust storm (SDS) groups a number of SDS-events in Northeast Asia. Based on the meteorological data from WMO/GOS network, 2456 Chinese surface stations and NCEP-NCAR reanalysis, the sand/dust storm processes in Northeast Asia in spring 2000-2006 are investigated. And the evolutions of anomalies of general circulation in the troposphere are analyzed by comparing the spring having most and least occurrences of SDS in year 2006 and 2003. Associated with the noticeably increased occurrence of SDS processes in spring 2006, the anomalies in 3-D structure of general circulation especially in the mid-and high latitudes of the Northen Hemisphere (NH) are revealed. The transition period from the winter of 2005 to spring 2006 has witnessed a fast-developed high center over the circumpolar vortex area in the upper troposphere, which pushes the polar vortex more southwards to mid-latitudes with a more extensive area over the east NH. In spring 2006, there are the significant circulation anomalies in the middle troposphere from the Baikal Lake to northern China with a stronger southward wind anomaly over Northeast Asia. Compared with a normal year, stronger meridional wind with a southward wind anomaly also in the lower troposphere prevail over the arid and semiarid regions in Mongolia and northern China during spring 2006. The positive anomalies of surface high pressure registered an abnormal high of 4-10 hPa in the Tamil Peninsular make a stronger cold air source for the repeated cold air outbreak across the desert areas in spring 2006 resulting in the most frequent SDS seasons in the last 10 years in Northeast Asia.

  3. Energy harvesting via thermo-piezoelectric transduction within a heated capillary

    NASA Astrophysics Data System (ADS)

    Monroe, J. G.; Bhandari, M.; Fairley, J.; Myers, O. J.; Shamsaei, N.; Thompson, S. M.

    2017-07-01

    Thermal-to-kinetic-to-electrical energy conversion is demonstrated through the use of a piezoelectric transducer (PZT) integrated within a section of an oscillating heat pipe (OHP) partially filled with water. The sealed PZT transducer was configured as a bow spring parallel to the dominant flow direction within the OHP. The bottom portion of the OHP was heated in increments of 50 W, while its top portion was actively cooled via water blocks. At ˜50 W, the internal fluid started to oscillate at ˜2-4 Hz due to the non-uniform vapor pressure generated in the OHP evaporator. Low-frequency fluid "pulses" were observed to occur across the flexed, in-line piezoelectric transducer, resulting in its deflection and measureable voltage spikes ranging between 24 and 63 mV. The OHP, while having its internal fluid enthalpy harvested, was found to still have an ultra-high thermal conductivity on-the-order of 10 kW/m K; however, its maximum operating heat load decreased due to the pressure drop introduced by the PZT material. The thermo-piezoelectric harvesting concept made possible via the thermally driven fluid oscillations within an OHP provides a passive method for combined energy harvesting and thermal management that is both scalable and portable.

  4. Seasonal Variations in the CO Line Profile and the Retrieved Thermal/Pressure Structures in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Villanueva, G. L.; Mumma, M. J.; Riesen, T. E.; Tokunaga, A. T.

    2013-10-01

    We report retrievals of temperature vertical profiles up to 100 km over Tharsis and Syrtis regions on Mars obtained by inverting the strong rotational (3-2) line of carbon monoxide (CO) at 346 GHz. Observations of CO were made from mid Northern Spring to early Northern Summer on Mars (Ls= 36°-108°, 23 Nov, 2011 - 13 May, 2012) using the Caltech Submillimeter Observatory's (CSO) high-resolution heterodyne receiver (Barney) on top of Mauna Kea, Hawai'i. The temperature profiles were derived using our radiative transfer model that considers the latest spectroscopic constants for CO collisionally broadened by CO2. We observe notable changes of the line profile for different dates, which are directly related to seasonal variations in the thermal/pressure structure of the atmosphere. The seasonal variability of the martian CO line profile, the extracted temperature profiles, and comparisons with modeled profiles from the Mars Climate Database (Lewis et al, 1999) will be presented. We gratefully acknowledge support from the NASA Planetary Astronomy Program , NASA Astrobiology Institute, Planetary Atmospheres programs. This material is based upon work at the Caltech Submillimeter Observatory, which is operated by the California Institute of Technology under cooperative agreement with the National Science Foundation, grant number AST-0838261.

  5. Hall Thruster Thermal Modeling and Test Data Correlation

    NASA Technical Reports Server (NTRS)

    Myers, James

    2016-01-01

    HERMeS - Hall Effect Rocket with Magnetic Shielding. Developed through a joint effort by NASA/GRC and the Jet Propulsion Laboratory (JPL). Design goals: High power (12.5 kW) high Isp (3000 sec), high efficiency (> 60%), high throughput (10,000 kg), reduced plasma erosion and increased life (5 yrs) to support Asteroid Redirect Robotic Mission (ARRM). Further details see "Performance, Facility Pressure Effects and Stability Characterization Tests of NASAs HERMeS Thruster" by H. Kamhawi and team. Hall Thrusters (HT) inherently operate at elevated temperatures approx. 600 C (or more). Due to electric magnetic (E x B) fields used to ionize and accelerate propellant gas particles (i.e., plasma). Cooling is largely limited to radiation in vacuum environment.Thus the hardware components must withstand large start-up delta-T's. HT's are constructed of multiple materials; assorted metals, non-metals and ceramics for their required electrical and magnetic properties. To mitigate thermal stresses HT design must accommodate the differential thermal growth from a wide range of material Coef. of Thermal Expansion (CTEs). Prohibiting the use of some bolted/torqued interfaces.Commonly use spring loaded interfaces, particularly at the metal-to-ceramic interfaces to allow for slippage.However most component interfaces must also effectively conduct heat to the external surfaces for dissipation by radiation.Thus contact pressure and area are important.

  6. Computer Programs for Library Operations; Results of a Survey Conducted Between Fall 1971 and Spring 1972.

    ERIC Educational Resources Information Center

    Liberman, Eva; And Others

    Many library operations involving large data banks lend themselves readily to computer operation. In setting up library computer programs, in changing or expanding programs, cost in programming and time delays could be substantially reduced if the programmers had access to library computer programs being used by other libraries, providing similar…

  7. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure

    DOE PAGES

    Leonard, Keith J.; Gussev, Maxim N.; Stevens, Jacqueline N.; ...

    2015-08-24

    Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In this paper, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lackmore » of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. Also, the cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material.« less

  8. Development and recovery from winter embolism in silver birch: seasonal patterns and relationships with the phenological cycle in oceanic Scotland.

    PubMed

    Strati, Sara; Patiño, Sandra; Slidders, Caley; Cundall, Edward P; Mencuccini, Maurizio

    2003-07-01

    Silver birch (Betula pendula Roth) is increasingly used in the United Kingdom for reforestation. However, recent evidence indicates that, under some circumstances, planted birch can suffer serious and repeated mortality of the apical leaders and branches, with consequent loss of apical dominance and the formation of a contorted stem. Plants from 37 seed sources of silver birch from Scotland and northern England planted at two sites were compared for several characteristics related to hydraulic architecture, vulnerability to freeze-thaw cycle induced embolism and spring recovery from winter embolism during the period 2000-2002. Phenological rhythms were also monitored in late winter-early spring to document relationships between phenology and water relations parameters. Significant differences were found across seed sources in stage of bud flushing for four dates in spring. Early flushing seed sources differed by about 1 to 2 weeks from late-flushing seed sources across the two sites. Wintertime xylem embolism in stems reached a peak of about 50 to 70% loss of xylem hydraulic conductivity, depending on the size and position of the sample shoots in the canopy. Small apical shoots were significantly more embolized than large basal shoots. Development of winter embolism was coupled to the occurrence of frost events. As percent loss of hydraulic conductivity increased during the winter, wood relative water content declined. Embolism reversal occurred rapidly in spring at the time of development of positive root pressure. No significant differences in the degree of winter embolism in 2001 were found among the three seed sources examined. The investigation was expanded in the winter-spring of 2002 to include 10 seed sources across both sites. Significant differences were found in degree of winter embolism across sites, dates and seed sources. For each date, there was a significant relationship between flushing scores and wood relative water contents across the two sites and all seed sources, suggesting that differences in time of flushing across sites and seed sources were likely caused by differences in the time of occurrence of root pressure, a necessary precondition to flushing.

  9. Home

    Science.gov Websites

    Secretary of Defense's Spring 2018 Foreign Attachés Operations Orientation Program (OOP ). Thirty-five foreign attachés received an orientation brief and an introduction to JIATF South operations. OOP fosters closer cooperation between the U.S. Department of Defense and foreign militaries

  10. Fuel pumping system and method

    DOEpatents

    Shafer, Scott F [Morton, IL; Wang, Lifeng ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  11. Fuel Pumping System And Method

    DOEpatents

    Shafer, Scott F.; Wang, Lifeng

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  12. Terrorism Prevention: How Does Special Operations Fit In?

    DTIC Science & Technology

    2005-06-17

    controlled” (Risko 2004, 1). Of particular note in an Amazon review, a summary of this book: “Mr. Pillar explains the methods for answering the terrorist... Aurora . 2004. Meet Your Professor. Spring. Internet course on-line. Available from http://www.ccaurora.edu/crj259/ crjprofintro1.htm. Internet...Counterterrorism: Military and Economic Options. Article 4 of an internet course on Terrorism in Spring 2004 from The Community College of Aurora , offered by

  13. Operations Odyssey Dawn and Unified Protector: A Coercive Failure?

    DTIC Science & Technology

    2012-12-06

    Coercive Air Power: A Primer for Military Strategists,” Air Power Journal 2, no. 1 (Spring 2007 ): 160. Mueller also argues that compellence and...faced defeat. Coalition Narrative/Strategic Goals As the resistance against the Libyan government stammered , the United States sought to increase...Mueller, Karl. “The Essence of Coercive Air Power: A Primer for Military Strategists,” Air Power Journal 2, no. 1 (Spring 2007 ): 159-174. NATO. Fact

  14. Implications of Operational Pressure on CSSE PGS Design

    NASA Technical Reports Server (NTRS)

    Lee, Ryan

    2008-01-01

    The Constellation Spacesuit Element (CSSE) was required to support crew survival (CS); launch, entry, and abort (LEA) scenarios; zero gravity (0-g) extravehicular activity (EVA) (both unscheduled and contingency); and planetary EVA. Operation of the CSSE in all of these capacities required a pressure garment subsystem (PGS) that would operate efficiently through various pressure profiles. The PGS team initiated a study to determine the appropriate operational pressure profile of the CSSE and how this selection would affect the design of the CSSE PGS. This study included an extensive review of historical PGS operational pressure selection and the operational effects of those pressures, the presentation of four possible pressure paradigm options for use by the CSSE, the risks and design impacts of these options, and the down-selected pressure option.

  15. Potential Influence of Arctic Sea Ice to the Inter-annual Variations of East Asian Spring Precipitation

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Wu, Zhiwei; Li, Yanjie

    2016-04-01

    Arctic sea ice (ASI) and its potential climatic impacts have received increasing attention during the past decades, yet the relevant mechanisms are far from being understood, particularly on how anomalous ASI affects climate in midlatitudes. The spring precipitation takes up as much as 30% of the annual total and has significant influences to agriculture in East Asia. Here, observed evidence and numerical experiment results manifest that the ASI variability in the Norwegian Sea and the Barents Sea in preceding winter is intimately connected with interannual variations of the East Asian spring precipitation (EAP). The former can explain about 14% of the total variances of the latter. The ASI anomalies persist from winter through the ensuing spring and excite downstream tele-connections of a distinct Rossby wave train prevailing over the Eurasian continent. For the reduced ASI, such a wave train pattern is usually associated with an anomalous low pressure center over Mongolian Plateau, which accelerates the East Asian subtropical westerly jet. The intensified subtropical westerly jet, concurrent with lower-level convergence and upper-level divergence, enhances the local convection and consequently favors rich spring precipitation over East Asia. For the excessive ASI, the situation tends to be opposite. Given that seasonal prediction of the EAP remains a challenging issue, the winter ASI variability may provide another potential predictability source besides El Niño-Southern Oscillation.

  16. The role of sandstone in the development of an Ozark karst system, south-central Missouri

    USGS Publications Warehouse

    Orndorff, R.C.; Weary, D.J.; Harrison, R.W.

    2006-01-01

    Cave, spring, and sinkhole development in the Ozarks of south-central Missouri is placed in a geologic framework through detailed geologic mapping. Geologic mapping shows that initial dissolution and inception of cave development is concentrated just beneath sandstone beds within Upper Cambrian and Lower Ordovician dolostone. Although rocks of the Ozarks have systematic and pervasive vertical joints, the development of karst conduits is controlled by bedding planes and stratigraphic variability. In the Salem Plateau of south-central Missouri, sinkholes occur in the lower part of the Ordovician Roubidoux Formation, where sinkholes are rimmed with and contain sandstone that has collapsed into voids in the underlying Ordovician Gasconade Dolomite. Cave diving by the Ozark Cave Diving Alliance into Alley Spring, a large (average flow 3.7 m3/s) spring along the Jacks Fork in the Ozark National Scenic Riverways, shows that although the spring discharges from the middle part of the Gasconade, the source of water is a cave passage just beneath the Gunter Sandstone Member of the Gasconade Dolomite. Artesian conditions cause the upward movement of groundwater from cavernous dolostone beneath the sandstone aquitards to the large springs. We hypothesize that sandstone, which is largely impermeable due to silica cementation, acts as a confining unit where hydraulic pressure, combined with mixing of water of differing chemistry, increases dissolution in the underlying dolostone beds. ?? 2006 Geological Society of America.

  17. Habitat use by fishes in groundwater-dependent streams of southern Oklahoma

    USGS Publications Warehouse

    Seilheimer, Titus S.; Fisher, William L.

    2010-01-01

    Habitat use by fishes in groundwater-dependent ecosystems with springs and spring-fed creeks is not widely studied or well understood. We evaluated habitat use by three disjunct populations of fish species (Phoxinus erythrogaster, Nocomis asper and Etheostoma microperca) and, a widespread species, E. spectabile in spring-fed streams draining the Arbuckle-Simpson aquifer of southern Oklahoma. Habitat preference for each species was classified based on depth, velocity, substrate and cover. Phoxinus erthyrogaster and N. asper were associated with pools with little cover, while E. microperca was found in heavily vegetated areas. Etheostoma spectabile used habitat in riffles with rapid velocity and large substrate types. We classified habitat selection and avoidance with Chesson's α and observed significant differences in habitat use among species in the study sites. Overall differences in habitat use for P. erythrogaster among the three study sites were primarily related to differences in available habitat between springs. Our study provides vital ecological information about disjunct populations of groundwater-dependent fishes in an aquifer that is experiencing development pressure for water abstraction.

  18. Development of a real-time monitoring system for intra-fractional motion in intracranial treatment using pressure sensors.

    PubMed

    Inata, Hiroki; Araki, Fujio; Kuribayashi, Yuta; Hamamoto, Yasushi; Nakayama, Shigeki; Sodeoka, Noritaka; Kiriyama, Tetsukazu; Nishizaki, Osamu

    2015-09-21

    This study developed a dedicated real-time monitoring system to detect intra-fractional head motion in intracranial radiotherapy using pressure sensors. The dedicated real-time monitoring system consists of pressure sensors with a thickness of 0.6 mm and a radius of 9.1 mm, a thermoplastic mask, a vacuum pillow, and a baseplate. The four sensors were positioned at superior-inferior and right-left sides under the occipital area. The sampling rate of pressure sensors was set to 5 Hz. First, we confirmed that the relationship between the force and the displacement of the vacuum pillow follows Hook's law. Next, the spring constant for the vacuum pillow was determined from the relationship between the force given to the vacuum pillow and the displacement of the head, detected by Cyberknife target locating system (TLS) acquisitions in clinical application. Finally, the accuracy of our system was evaluated by using the 2  ×  2 confusion matrix. The regression lines between the force, y, and the displacement, x, of the vacuum pillow were given by y = 3.8x, y = 4.4x, and y = 5.0x when the degree of inner pressure was  -12 kPa,-20 kPa, and  -27 kPa, respectively. The spring constant of the vacuum pillow was 1.6 N mm(-1) from the 6D positioning data of a total of 2999 TLS acquisitions in 19 patients. Head motions of 1 mm, 1.5 mm, and 2 mm were detected in real-time with the accuracies of 67%, 84%, and 89%, respectively. Our system can detect displacement of the head continuously during every interval of TLS with a resolution of 1-2 mm without any radiation exposure.

  19. Laparoscopic sterilization with the spring clip: instrumentation development and current clinical experience.

    PubMed

    Hulka, J F; Omran, K; Lieberman, B A; Gordon, A G

    1979-12-15

    Since the original spring clip sterilization studies were reported, a number of clinically important modifications to the spring clip and applicator have been developed. The spring-loaded clip, manufactured by Richard Wolf Medical Instruments Corporation of Chicago, Illinois, and Rocket of London, Inc., London, England, and New York, New York can be applied with either a one- or two-incision applicator and the clips and applicators currently available incorporate improvements to the original prototypes in design, manufacture, and quality control. The two-incision applicator is associated with significantly fewer misapplications and the high pregnancy rates reported with the original clip and applicator have not occurred with the current designs. Comparative studies between the clip and band have revealed less operative bleeding and pain associated with the clip. The method is appropriate to all women requesting sterilization but especially to those in the younger age group who may subsequently request reversal because of divorce and remarriage.

  20. Operational Experience with Autonomous Star Trackers on ESA Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Lauer, Mathias; Jauregui, Libe; Kielbassa, Sabine

    2007-01-01

    Mars Express (MEX), Rosetta and Venus Express (VEX) are ESA interplanetary spacecrafts (S/C) launched in June 2003, March 2004 and November 2005, respectively. Mars Express was injected into Mars orbit end of 2003 with routine operations starting in spring 2004. Rosetta is since launch on its way to rendezvous comet Churyumov-Gerasimenko in 2014. It has completed several test and commissioning activities and is performing several planetary swingbys (Earth in spring 2005, Mars in spring 2007, Earth in autumn 2007 and again two years later). Venus Express has also started routine operations since the completion of the Venus orbit insertion maneuver sequence beginning of May 2006. All three S/C are three axes stabilized with a similar attitude and orbit control system (AOCS). The attitude is estimated on board using star and rate sensors and controlled using four reaction wheels. A bipropellant reaction control system with 10N thrusters serves for wheel off loadings and attitude control in safe mode. Mars Express and Venus Express have an additional 400N engine for the planetary orbit insertion. Nominal Earth communication is accomplished through a high gain antenna. All three S/C are equipped with a redundant set of autonomous star trackers (STR) which are based on almost the same hardware. The STR software is especially adapted for the respective mission. This paper addresses several topics related to the experience gained with the STR operations on board the three S/C so far.

  1. Preliminary report on the CTS transient event counter performance through the 1976 spring eclipse season

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Levell, R. R.; Klinect, V. W.

    1976-01-01

    The transient event counter (TEC), senses and counts transients having a voltage rise of greater than five volts in three separate wire harnesses: the attitude control harness, the solar array instrumentation harness and the solar array power harness. The operational characteristics of TEC are defined and the preliminary results obtained through the first 90 days of operation including the spring 1976 eclipse season are presented. The results show that the Communications Technology Satellite was charged to the point where discharges occurred. The discharge induced transients did not cause any anomalous events in spacecraft operation. The data indicate that discharges can occur at any time during the day without preference to any local time quadrant. The number of discharges occurring in the one second sample interval are greater than anticipated. The compilation and review of the data is continuing.

  2. Development, Implementation, and Skill Assessment of the NOAA/NOS Great Lakes Operational Forecast System

    DTIC Science & Technology

    2011-01-01

    USA) 2011 Abstract The NOAA Great Lakes Operational Forecast System ( GLOFS ) uses near-real-time atmospheric observa- tions and numerical weather...Operational Oceanographic Products and Services (CO-OPS) in Silver Spring, MD. GLOFS has been making operational nowcasts and forecasts at CO-OPS... GLOFS ) uses near-real-time atmospheric observations and numerical weather prediction forecast guidance to produce three-dimensional forecasts of water

  3. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    NASA Technical Reports Server (NTRS)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  4. Effects of Physiochemical Factors on Prokaryotic Biodiversity in Malaysian Circumneutral Hot Springs.

    PubMed

    Chan, Chia S; Chan, Kok-Gan; Ee, Robson; Hong, Kar-Wai; Urbieta, María S; Donati, Edgardo R; Shamsir, Mohd S; Goh, Kian M

    2017-01-01

    Malaysia has a great number of hot springs, especially along the flank of the Banjaran Titiwangsa mountain range. Biological studies of the Malaysian hot springs are rare because of the lack of comprehensive information on their microbial communities. In this study, we report a cultivation-independent census to describe microbial communities in six hot springs. The Ulu Slim (US), Sungai Klah (SK), Dusun Tua (DT), Sungai Serai (SS), Semenyih (SE), and Ayer Hangat (AH) hot springs exhibit circumneutral pH with temperatures ranging from 43°C to 90°C. Genomic DNA was extracted from environmental samples and the V3-V4 hypervariable regions of 16S rRNA genes were amplified, sequenced, and analyzed. High-throughput sequencing analysis showed that microbial richness was high in all samples as indicated by the detection of 6,334-26,244 operational taxonomy units. In total, 59, 61, 72, 73, 65, and 52 bacterial phyla were identified in the US, SK, DT, SS, SE, and AH hot springs, respectively. Generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs. Archaeal communities mainly consisted of Crenarchaeota, Euryarchaeota, and Parvarchaeota. In beta diversity analysis, the hot spring microbial memberships were clustered primarily on the basis of temperature and salinity. Canonical correlation analysis to assess the relationship between the microbial communities and physicochemical variables revealed that diversity patterns were best explained by a combination of physicochemical variables, rather than by individual abiotic variables such as temperature and salinity.

  5. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran.

    PubMed

    Naghibi, Seyed Amir; Pourghasemi, Hamid Reza; Dixon, Barnali

    2016-01-01

    Groundwater is considered one of the most valuable fresh water resources. The main objective of this study was to produce groundwater spring potential maps in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran, using three machine learning models: boosted regression tree (BRT), classification and regression tree (CART), and random forest (RF). Thirteen hydrological-geological-physiographical (HGP) factors that influence locations of springs were considered in this research. These factors include slope degree, slope aspect, altitude, topographic wetness index (TWI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Subsequently, groundwater spring potential was modeled and mapped using CART, RF, and BRT algorithms. The predicted results from the three models were validated using the receiver operating characteristics curve (ROC). From 864 springs identified, 605 (≈70 %) locations were used for the spring potential mapping, while the remaining 259 (≈30 %) springs were used for the model validation. The area under the curve (AUC) for the BRT model was calculated as 0.8103 and for CART and RF the AUC were 0.7870 and 0.7119, respectively. Therefore, it was concluded that the BRT model produced the best prediction results while predicting locations of springs followed by CART and RF models, respectively. Geospatially integrated BRT, CART, and RF methods proved to be useful in generating the spring potential map (SPM) with reasonable accuracy.

  6. Effects of Physiochemical Factors on Prokaryotic Biodiversity in Malaysian Circumneutral Hot Springs

    PubMed Central

    Chan, Chia S.; Chan, Kok-Gan; Ee, Robson; Hong, Kar-Wai; Urbieta, María S.; Donati, Edgardo R.; Shamsir, Mohd S.; Goh, Kian M.

    2017-01-01

    Malaysia has a great number of hot springs, especially along the flank of the Banjaran Titiwangsa mountain range. Biological studies of the Malaysian hot springs are rare because of the lack of comprehensive information on their microbial communities. In this study, we report a cultivation-independent census to describe microbial communities in six hot springs. The Ulu Slim (US), Sungai Klah (SK), Dusun Tua (DT), Sungai Serai (SS), Semenyih (SE), and Ayer Hangat (AH) hot springs exhibit circumneutral pH with temperatures ranging from 43°C to 90°C. Genomic DNA was extracted from environmental samples and the V3–V4 hypervariable regions of 16S rRNA genes were amplified, sequenced, and analyzed. High-throughput sequencing analysis showed that microbial richness was high in all samples as indicated by the detection of 6,334–26,244 operational taxonomy units. In total, 59, 61, 72, 73, 65, and 52 bacterial phyla were identified in the US, SK, DT, SS, SE, and AH hot springs, respectively. Generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs. Archaeal communities mainly consisted of Crenarchaeota, Euryarchaeota, and Parvarchaeota. In beta diversity analysis, the hot spring microbial memberships were clustered primarily on the basis of temperature and salinity. Canonical correlation analysis to assess the relationship between the microbial communities and physicochemical variables revealed that diversity patterns were best explained by a combination of physicochemical variables, rather than by individual abiotic variables such as temperature and salinity. PMID:28729863

  7. 49 CFR 195.402 - Procedural manual for operations, maintenance, and emergencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., monitoring from an attended location pipeline pressure during startup until steady state pressure and flow... operating conditions by monitoring pressure, temperature, flow or other appropriate operational data and...) Increase or decrease in pressure or flow rate outside normal operating limits; (iii) Loss of communications...

  8. 49 CFR 195.402 - Procedural manual for operations, maintenance, and emergencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., monitoring from an attended location pipeline pressure during startup until steady state pressure and flow... operating conditions by monitoring pressure, temperature, flow or other appropriate operational data and...) Increase or decrease in pressure or flow rate outside normal operating limits; (iii) Loss of communications...

  9. [Simulation of rainfall and snowmelt runoff reduction in a northern city based on combination of green ecological strategies.

    PubMed

    Han, Jin Feng; Liu, Shuo; Dai, Jun; Qiu, Hao

    2018-02-01

    With the aim to control and reduce rainfall and snowmelt runoff in northern cities in China, the summer runoff and spring snowmelt runoff in the studied area were simulated with the establishment of storm water management model (SWMM). According to the climate characteristics and the situation of the studied area, the low impact development (LID) green ecological strategies suitable for the studied area were established. There were three kinds of management strategies being used, including extended green roof, snow and rainwater harvesting devices, and grass-swales or trenches. We examined the impacts of those integrated green ecological measures on the summer rainfall and spring snowmelt runoff and their mitigation effects on the drainage network pressure. The results showed that the maximum flow rates of the measured rainfall in May 24th, June 10th and July 18th 2016 were 2.7, 6.2 and 7.4 m 3 ·s -1 respectively. The peak flow rates at different return periods of 1, 2, 5, 10 years were 2.39, 3.91, 6.24 and 7.85 m 3 ·s -1 , respectively. In the snowmelt period, the peak flow appeared at the beginning of March. The LID measures had positive effect on peak flow reduction, and thus delayed peak time and relieved drainage pressure. The flow reduction rate was as high as 70%. Moreover, the snow harvesting devices played a positive role in controlling snowmelt runoff in spring.

  10. Influence of biotic variables on invertebrate size structure and diversity in coastal wetlands of Southeastern Spain

    NASA Astrophysics Data System (ADS)

    Antón-Pardo, María; Armengol, Xavier

    2016-10-01

    Biomass and size-based estimations provide relevant information regarding ecosystem functioning and biotic interactions. Our aims were to study the effect of fish and macrophytes on the size structure of invertebrate assemblages (from rotifers to insects) in a set of coastal water bodies, estimating the biomass (total and main invertebrate groups), the biomass-size spectra (model of Pareto) and size diversity. In fishless ponds, cladoceran and ostracod biomass were higher, and they presented greater size diversity. In fish ponds, rotifer biomass presented greater proportion; while in fishless ponds, cladocerans were usually the most abundant taxa and the largest organisms. The biomass size spectra showed more irregularities in fishless ponds, due to the low densities of small taxa (rotifers and copepod juveniles) and big taxa (malacostraceans or insects). Differences is size structure and diversity were also observed between spring and summer, suggesting a higher recruitment of juveniles in spring, and thus, a higher predation pressure upon zooplankton at that moment. Macrophyte cover did not apparently influence those parameters, except for the biomass of ostracods, copepods, and insects. Therefore, predation by fish strongly affected invertebrate biomass, reflecting their selective feeding, and allowing high densities of small taxa. Predation pressure decreased size diversity, by limiting the abundance of vulnerable taxa of specific size. Seasonal changes were likely related to the spring recruitment of fish juveniles. The presence of small fish and invertebrate predator taxa among the macrophytes, restrict their role as refuges for prey invertebrates.

  11. Invasive vascular plant species of limnocrenic karst springs in Poland

    NASA Astrophysics Data System (ADS)

    Spałek, Krzysztof

    2015-04-01

    Natural water reservoirs are very valuable floristic sites in Poland. Among them, the most important for preservation of biodiversity of flora are limnocrenic karst springs. The long-term process of human pressure on habitats of this type caused disturbance of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of last two hundred years, led to systematic disappearance of localities of many plant species connected with rare habitats and also to appear numerous invasive plant species. They are: Acorus calamus, Echinocystis lobata, Elodea canadensis, Erechtites hieraciifolia, Impatiens glandulifera, Solidago canadensis, S. gigantea and S. graminifolia. Fielworks were conducted in 2010-2014.

  12. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  13. Dynamics of aircraft antiskid braking systems. [conducted at the Langley aircraft landing loads and traction facility

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.

    1982-01-01

    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zunsheng

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  15. 77 FR 39209 - Foreign-Trade Zone 74-Baltimore, MD, Notification of Proposed Production Activity, J.D. Neuhaus...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... from abroad include: air and hydraulic powered hoist and trolley subassemblies and parts, cranes/ winches and related parts, hoist chain, lubricating oils, plastic air hoses, rubber gaskets and o-rings, fasteners, springs, air filters, air pressure regulators, valves and related parts, and bearings and bearing...

  16. Nanonewton thrust measurement of photon pressure propulsion using semiconductor laser

    NASA Astrophysics Data System (ADS)

    Iwami, K.; Akazawa, Taku; Ohtsuka, Tomohiro; Nishida, Hiroyuki; Umeda, Norihiro

    2011-09-01

    To evaluate the thrust produced by photon pressure emitted from a 100 W class continuous-wave semiconductor laser, a torsion-balance precise thrust stand is designed and tested. Photon emission propulsion using semiconductor light sources attract interests as a possible candidate for deep-space propellant-less propulsion and attitude control system. However, the thrust produced by photon emission as large as several ten nanonewtons requires precise thrust stand. A resonant method is adopted to enhance the sensitivity of the biflier torsional-spring thrust stand. The torsional spring constant and the resonant of the stand is 1.245 × 10-3 Nm/rad and 0.118 Hz, respectively. The experimental results showed good agreement with the theoretical estimation. The thrust efficiency for photon propulsion was also defined. A maximum thrust of 499 nN was produced by the laser with 208 W input power (75 W of optical output) corresponding to a thrust efficiency of 36.7%. The minimum detectable thrust of the stand was estimated to be 2.62 nN under oscillation at a frequency close to resonance.

  17. Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism

    NASA Technical Reports Server (NTRS)

    Dervan, Jared; Robertson, Brandon; Staab, Lucas; Culberson, Michael

    2014-01-01

    Commodities are transferred between the Multi-Purpose Crew Vehicle (MPCV) crew module (CM) and service module (SM) via an external umbilical that is driven apart with spring-loaded struts after the structural connection is severed. The spring struts must operate correctly for the modules to separate safely. There was no vibration testing of strut development units scoped in the MPCV Program Plan; therefore, any design problems discovered as a result of vibration testing would not have been found until the component qualification. The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations including identified lessons learned and best practices to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.

  18. Stressed photoconductive detector for far-infrared space applications

    NASA Technical Reports Server (NTRS)

    Wang, J.-Q.; Richards, P. L.; Beeman, J. W.; Haller, E. E.

    1987-01-01

    An optimized leaf-spring apparatus for applying uniaxial stress to a Ge:Ga far-IR photoconductor has been designed and tested. This design has significant advantages for space applications which require high quantum efficiency and stable operation over long periods of time. The important features include adequate spring deflection with relatively small overall size, torque-free stress, easy measurement of applied stress, and a detector configuration with high responsivity. One-dimensional arrays of stressed photoconductors can be constructed using this design. A peak responsivity of 38 A/W is achieved in a detector with a cutoff wavelength of 200 microns, which was operated at a temperature of 2.0 K and a bias voltage equal to one-half of the breakdown voltage.

  19. Advances in Systems and Technologies Toward Interopoerating Operational Military C2 and Simulation Systems

    DTIC Science & Technology

    2014-06-01

    Hieb, and R. Brown, “Standardizing Battle Management Language – A Vital Move Towards the Army Transformation,” paper 01S- SIW -067, IEEE Fall Simulation...Hieb, M., W. Sudnikovich, A. Tolk and J. Pullen, “Developing Battle Management Language into a Web Service,” paper 04S- SIW -113, IEEE Spring Simulation...Mediation and Data Storage,” paper 05S- SIW -019, IEEE Spring Simulation Interoperability Workshop, Orlando, FL, 2005 [6] Multilateral

  20. Three-bead steering microswimmers

    NASA Astrophysics Data System (ADS)

    Rizvi, Mohd Suhail; Farutin, Alexander; Misbah, Chaouqi

    2018-02-01

    The self-propelled microswimmers have recently attracted considerable attention as model systems for biological cell migration as well as artificial micromachines. A simple and well-studied microswimmer model consists of three identical spherical beads joined by two springs in a linear fashion with active oscillatory forces being applied on the beads to generate self-propulsion. We have extended this linear microswimmer configuration to a triangular geometry where the three beads are connected by three identical springs in an equilateral triangular manner. The active forces acting on each spring can lead to autonomous steering motion; i.e., allowing the swimmer to move along arbitrary paths. We explore the microswimmer dynamics analytically and pinpoint its rich character depending on the nature of the active forces. The microswimmers can translate along a straight trajectory, rotate at a fixed location, as well as perform a simultaneous translation and rotation resulting in complex curved trajectories. The sinusoidal active forces on the three springs of the microswimmer contain naturally four operating parameters which are more than required for the steering motion. We identify the minimal operating parameters which are essential for the motion of the microswimmer along any given arbitrary trajectory. Therefore, along with providing insights into the mechanics of the complex motion of the natural and artificial microswimmers, the triangular three-bead microswimmer can be utilized as a model for targeted drug delivery systems and autonomous underwater vehicles where intricate trajectories are involved.

  1. Hydraulic system for a ratio change transmission

    DOEpatents

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  2. A pneumatic device for rapid loading of DNA sequencing gels.

    PubMed

    Panussis, D A; Cook, M W; Rifkin, L L; Snider, J E; Strong, J T; McGrane, R M; Wilson, R K; Mardis, E R

    1998-05-01

    This work describes the design and construction of a device that facilitates the loading of DNA samples onto polyacrylamide gels for detection in the Perkin Elmer/Applied Biosystems (PE/ABI) 373 and 377 DNA sequencing instruments. The device is mounted onto the existing gel cassettes and makes the process of loading high-density gels less cumbersome while the associated time and errors are reduced. The principle of operation includes the simultaneous transfer of the entire batch of samples, in which a spring-loaded air cylinder generates positive pressure and flexible silica capillaries transfer the samples. A retractable capillary array carrier allows the delivery ends of the capillaries to be held up clear of the gel during loader attachment on the gel plates, while enabling their insertion in the gel wells once the device is securely mounted. Gel-loading devices capable of simultaneously transferring 72 samples onto the PE/ABI 373 and 377 are currently being used in our production sequencing groups while a 96-sample transfer prototype undergoes testing.

  3. Housing assembly for electric vehicle transaxle

    DOEpatents

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  4. High sensitivity capacitive MEMS microphone with spring supported diaphragm

    NASA Astrophysics Data System (ADS)

    Mohamad, Norizan; Iovenitti, Pio; Vinay, Thurai

    2007-12-01

    Capacitive microphones (condenser microphones) work on a principle of variable capacitance and voltage by the movement of its electrically charged diaphragm and back plate in response to sound pressure. There has been considerable research carried out to increase the sensing performance of microphones while reducing their size to cater for various modern applications such as mobile communication and hearing aid devices. This paper reviews the development and current performance of several condenser MEMS microphone designs, and introduces a microphone with spring supported diaphragm to further improve condenser microphone performance. The numerical analysis using Coventor FEM software shows that this new microphone design has a higher mechanical sensitivity compared to the existing edge clamped flat diaphragm condenser MEMS microphone. The spring supported diaphragm is shown to have a flat frequency response up to 7 kHz and more stable under the variations of the diaphragm residual stress. The microphone is designed to be easily fabricated using the existing silicon fabrication technology and the stability against the residual stress increases its reproducibility.

  5. RELATIONSHIP BETWEEN HVAC SYSTEM OPERATION, AIR EXCHANGE RATE, AND INDOOR-OUTDOOR PARTICULATE MATTER RATIOS

    EPA Science Inventory

    Measurements of duty cycle , the fraction of time the heating and cooling (HVAC) system was operating, were made in each participant's home during the spring season of the RTP Particulate Matter Panel Study. A miniature temperature sensor/data logger combination placed on the ...

  6. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: Chemical and microbiological indicators

    USGS Publications Warehouse

    Katz, B.G.; Griffin, Dale W.; Davis, J.H.

    2009-01-01

    Geochemical and microbiological techniques were used to assess water-quality impacts from the land application of treated municipal wastewater in the karstic Wakulla Springs basin in northern Florida. Nitrate-N concentrations have increased from about 0.2 to as high as 1.1??mg/L (milligrams per liter) during the past 30??years in Wakulla Springs, a regional discharge point for groundwater (mean flow about 11.3??m3/s) from the Upper Floridan aquifer (UFA). A major source of nitrate to the UFA is the approximately 64??million L/d (liters per day) of treated municipal wastewater applied at a 774??ha (hectare) sprayfield farming operation. About 260 chemical and microbiological indicators were analyzed in water samples from the sprayfield effluent reservoir, wells upgradient from the sprayfield, and from 21 downgradient wells and springs to assess the movement of contaminants into the UFA. Concentrations of nitrate-N, boron, chloride, were elevated in water samples from the sprayfield effluent reservoir and in monitoring wells at the sprayfield boundary. Mixing of sprayfield effluent water was indicated by a systematic decrease in concentrations of these constituents with distance downgradient from the sprayfield, with about a 10-fold dilution at Wakulla Springs, about 15??km (kilometers) downgradient from the sprayfield. Groundwater with elevated chloride and boron concentrations in wells downgradient from the sprayfield and in Wakulla Springs had similar nitrate isotopic signatures, whereas the nitrate isotopic composition of water from other sites was consistent with inorganic fertilizers or denitrification. The sprayfield operation was highly effective in removing most studied organic wastewater and pharmaceutical compounds and microbial indicators. Carbamazepine (an anti-convulsant drug) was the only pharmaceutical compound detected in groundwater from two sprayfield monitoring wells (1-2??ppt). One other detection of carbamazepine was found in a distant well water sample where enteroviruses also were detected, indicating a likely influence from a nearby septic tank.

  7. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: chemical and microbiological indicators.

    PubMed

    Katz, Brian G; Griffin, Dale W; Davis, J Hal

    2009-04-01

    Geochemical and microbiological techniques were used to assess water-quality impacts from the land application of treated municipal wastewater in the karstic Wakulla Springs basin in northern Florida. Nitrate-N concentrations have increased from about 0.2 to as high as 1.1 mg/L (milligrams per liter) during the past 30 years in Wakulla Springs, a regional discharge point for groundwater (mean flow about 11.3 m(3)/s) from the Upper Floridan aquifer (UFA). A major source of nitrate to the UFA is the approximately 64 million L/d (liters per day) of treated municipal wastewater applied at a 774 ha (hectare) sprayfield farming operation. About 260 chemical and microbiological indicators were analyzed in water samples from the sprayfield effluent reservoir, wells upgradient from the sprayfield, and from 21 downgradient wells and springs to assess the movement of contaminants into the UFA. Concentrations of nitrate-N, boron, chloride, were elevated in water samples from the sprayfield effluent reservoir and in monitoring wells at the sprayfield boundary. Mixing of sprayfield effluent water was indicated by a systematic decrease in concentrations of these constituents with distance downgradient from the sprayfield, with about a 10-fold dilution at Wakulla Springs, about 15 km (kilometers) downgradient from the sprayfield. Groundwater with elevated chloride and boron concentrations in wells downgradient from the sprayfield and in Wakulla Springs had similar nitrate isotopic signatures, whereas the nitrate isotopic composition of water from other sites was consistent with inorganic fertilizers or denitrification. The sprayfield operation was highly effective in removing most studied organic wastewater and pharmaceutical compounds and microbial indicators. Carbamazepine (an anti-convulsant drug) was the only pharmaceutical compound detected in groundwater from two sprayfield monitoring wells (1-2 ppt). One other detection of carbamazepine was found in a distant well water sample where enteroviruses also were detected, indicating a likely influence from a nearby septic tank.

  8. Researches on the Piston Ring

    NASA Technical Reports Server (NTRS)

    Ehihara, Keikiti

    1944-01-01

    In internal combustion engines, steam engines, air compressors, and so forth, the piston ring plays an important role. Especially, the recent development of Diesel engines which require a high compression pressure for their working, makes, nowadays, the packing action of the piston ring far more important than ever. Though a number of papers have been published in regard to researches on the problem of the piston ring, none has yet dealt with an exact measurement of pressure exerted on the cylinder wall at any given point of the ring. The only paper that can be traced on this subject so far is Mr. Nakagawa's report on the determination of the relative distribution of pressure on the cylinder wall, but the measuring method adopted therein appears to need further consideration. No exact idea has yet been obtained as to how the obturation of gas between the piston and cylinder, the frictional resistance of the piston, and the wear of the cylinder wall are affected by the intensity and the distribution of the radial pressure of the piston ring. Consequently, the author has endeavored, by employing an apparatus of his own invention, to get an exact determination of the pressure distribution of the piston ring. By means of a newly devised ring tester, to which piezoelectricity of quartz was applied, the distribution of the radial pressure of many sample rings on the market was accurately determined. Since many famous piston rings show very irregular pressure distribution, the author investigated and achieved a manufacturing process of the piston ring which will exert uniform pressure on the cylinder wall. Temperature effects on the configuration and on the mean spring power have also been studied. Further, the tests were performed to ascertain how the gas tightness of the piston ring may be affected by the number or spring power. The researches as to the frictional resistance between the piston ring and the cylinder wall were carried out, too. The procedure of study, and experiments conducted by the author, on this subject will be fully described in the following paragraphs.

  9. Current spring warming as a driver of selection on reproductive timing in a wild passerine.

    PubMed

    Marrot, Pascal; Charmantier, Anne; Blondel, Jacques; Garant, Dany

    2018-05-01

    Evolutionary adaptation as a response to climate change is expected for fitness-related traits affected by climate and exhibiting genetic variance. Although the relationship between warmer spring temperature and earlier timing of reproduction is well documented, quantifications and predictions of the impact of global warming on natural selection acting on phenology in wild populations remain rare. If global warming affects fitness in a similar way across individuals within a population, or if fitness consequences are independent of phenotypic variation in key-adaptive traits, then no evolutionary response is expected for these traits. Here, we quantified the selection pressures acting on laying date during a 24-year monitoring of blue tits in southern Mediterranean France, a hot spot of climate warming. We explored the temporal fluctuation in annual selection gradients and we determined its temperature-related drivers. We first investigated the month-specific warming since 1970 in our study site and tested its influence on selection pressures, using a model averaging approach. Then, we quantified the selection strength associated with temperature anomalies experienced by the blue tit population. We found that natural selection acting on laying date significantly fluctuated both in magnitude and in sign across years. After identifying a significant warming in spring and summer, we showed that warmer daily maximum temperatures in April were significantly associated with stronger selection pressures for reproductive timing. Our results indicated an increase in the strength of selection by 46% for every +1°C anomaly. Our results confirm the general assumption that recent climate change translates into strong selection favouring earlier breeders in passerine birds. Our findings also suggest that differences in fitness among individuals varying in their breeding phenology increase with climate warming. Such climate-driven influence on the strength of directional selection acting on laying date could favour an adaptive response in this trait, since it is heritable. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  10. Research in karst aquifers developed in high-mountain areas combining KARSYS models with springs discharge records. Picos de Europa, Spain

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Meléndez, Mónica; Malard, Arnauld; Jiménez-Sánchez, Montserrat; Heredia, Nemesio; Jeannin, Pierre-Yves; García-Sansegundo, Joaquín

    2014-05-01

    The study of karst aquifers developed in high-mountain areas is quite complex since the application of many techniques of hydrogeology in these areas is difficult, expensive, and requires many hours of field work. In addition, the access to the study area is usually conditioned by the orography and the meteorological conditions. A pragmatic approach to study these aquifers can be the combination of geometric models of the aquifer with the monitoring of the discharge rate of springs and the meteorological records. KARSYS approach (Jeannin et al. 2013) allows us to elaborate a geometric model of karst aquifers establishing the boundaries of the groundwater bodies, the main drainage axes and providing evidences of the catchment delineation of the springs. The aim of this work is to analyse the functioning of the karst aquifer from the western and central part of the Picos de Europa Mountains (Spain) combining the KARSYS approach, the discharge record from two springs and the meteorological records (rain, snow and temperature). The Picos de Europa (North Spain) is a high-mountains area up to 2.6 km altitude with 2,500 mm/year of precipitations. The highest part of these mountains is covered by snow four to seven months a year. The karst aquifer is developed in Carboniferous limestone which is strongly compartmentalized in, at least, 17 groundwater bodies. The method of work includes: 1) the elaboration of a hydrogeological 3D model of the geometry of the karst aquifers by KARSYS approach, 2) the definition of the springs catchment areas based on the hydrogeological 3D model, 3) the selection of two representative springs emerging from the aquifers to study it, 4) the continuous monitoring of water levels in two karst springs since October 2013, 5) the transformation of the water level values to flow values using height-stream relation curves constructed by measures of the spring discharge, and 5) the comparison of the spring discharge rate records and meteorological measurements with the geometry, extension and elevation of the springs catchment areas. This comparison allows us to characterize the functioning of the karst aquifer, validating the dimensioning of the catchment, identify other overflow springs, etc. Pressure sensors have been placed into caves of springs with the purpose of establishing quantitative relations between hydraulic heads and discharge rates in these aquifers. Jeannin et al. 2013. Environmental Earth Sciences, 69, 999-1013.

  11. Invasibility of a nutrient-poor pasture through resident and non-resident herbs is controlled by litter, gap size and propagule pressure.

    PubMed

    Eckstein, R Lutz; Ruch, Diana; Otte, Annette; Donath, Tobias W

    2012-01-01

    Since inference concerning the relative effects of propagule pressure, biotic interactions, site conditions and species traits on the invasibility of plant communities is limited, we carried out a field experiment to study the role of these factors for absolute and relative seedling emergence in three resident and three non-resident confamilial herb species on a nutrient-poor temperate pasture. We set up a factorial field experiment with two levels each of the factors litter cover (0 and 400 g m(-2)), gap size (0.01 and 0.1 m(2)) and propagule pressure (5 and 50 seeds) and documented soil temperature, soil water content and relative light availability. Recruitment was recorded in spring and autumn 2010 and in spring 2011 to cover initial seedling emergence, establishment after summer drought and final establishment after the first winter. Litter alleviated temperature and moisture conditions and had positive effects on proportional and absolute seedling emergence during all phases of recruitment. Large gaps presented competition-free space with high light availability but showed higher temperature amplitudes and lower soil moisture. Proportional and absolute seedling recruitment was significantly higher in large than in small gaps. In contrast, propagule pressure facilitated absolute seedling emergence but had no effects on proportional emergence or the chance for successful colonisation. Despite significantly higher initial seedling emergence of resident than non-resident species, seed mass and other species-specific traits may be better predictors for idiosyncratic variation in seedling establishment than status. Our data support the fluctuating resource hypothesis and demonstrate that the reserve effect of seeds may facilitate seedling emergence. The direct comparison of propagule pressure with other environmental factors showed that propagule pressure affects absolute seedling abundance, which may be crucial for species that depend on other individuals for sexual reproduction. However, propagule batch size did not significantly affect the chance for successful colonisation of disturbed plots.

  12. High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance

    PubMed Central

    Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969

  13. High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.

    PubMed

    Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan

    2013-01-01

    At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.

  14. Electrochemical cell having improved pressure vent

    DOEpatents

    Dean, Kevin; Holland, Arthur; Fillmore, Donn

    1993-01-01

    The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.

  15. Secular spring rainfall variability at local scale over Ethiopia: trend and associated dynamics

    NASA Astrophysics Data System (ADS)

    Tsidu, Gizaw Mengistu

    2017-10-01

    Spring rainfall secular variability is studied using observations, reanalysis, and model simulations. The joint coherent spatio-temporal secular variability of gridded monthly gauge rainfall over Ethiopia, ERA-Interim atmospheric variables and sea surface temperature (SST) from Hadley Centre Sea Ice and SST (HadISST) data set is extracted using multi-taper method singular value decomposition (MTM-SVD). The contemporaneous associations are further examined using partial Granger causality to determine presence of causal linkage between any of the climate variables. This analysis reveals that only the northwestern Indian Ocean secular SST anomaly has direct causal links with spring rainfall over Ethiopia and mean sea level pressure (MSLP) over Africa inspite of the strong secular covariance of spring rainfall, SST in parts of subtropical Pacific, Atlantic, Indian Ocean and MSLP. High secular rainfall variance and statistically significant linear trend show consistently that there is a massive decline in spring rain over southern Ethiopia. This happened concurrently with significant buildup of MSLP over East Africa, northeastern Africa including parts of the Arabian Peninsula, some parts of central Africa and SST warming over all ocean basins with the exception of the ENSO regions. The east-west pressure gradient in response to the Indian Ocean warming led to secular southeasterly winds over the Arabian Sea, easterly over central Africa and equatorial Atlantic. These flows weakened climatological northeasterly flow over the Arabian Sea and southwesterly flow over equatorial Atlantic and Congo basins which supply moisture into the eastern Africa regions in spring. The secular divergent flow at low level is concurrent with upper level convergence due to the easterly secular anomalous flow. The mechanisms through which the northwestern Indian Ocean secular SST anomaly modulates rainfall are further explored in the context of East Africa using a simplified atmospheric general circulation model (AGCM) coupled to mixed-layer oceanic model. The rainfall anomaly (with respect to control simulation), forced by the northwestern Indian Ocean secular SST anomaly and averaged over the 30-year period, exhibits prevalence of dry conditions over East and equatorial Africa in agreement with observation. The atmospheric response to secular SST warming anomaly led to divergent flow at low levels and subsidence at the upper troposphere over regions north of 5° S on the continent and vice versa over the Indian Ocean. This surface difluence over East Africa, in addition to its role in suppressing convective activity, deprives the region of moisture supply from the Indian Ocean as well as the Atlantic and Congo basins.

  16. Mesozooplankton biomass, composition, and potential grazing pressure on phytoplankton during austral winter and spring 1993 in the Subtropical Convergence region near New Zealand

    NASA Astrophysics Data System (ADS)

    Bradford-Grieve, Janet; Murdoch, Rob; James, Mark; Oliver, Megan; McLeod, Jeff

    1998-10-01

    The biomass, composition, and grazing rates of three size fractions of mesozooplankton (200-500, 500-1000, and some >1000 μm) were estimated in shelf waters and the water masses associated with Subtropical Convergence east of New Zealand, in the austral winter and spring of 1993, as part of a larger New Zealand study of ocean carbon flux that contributes to the Joint Global Ocean Flux Study (JGOFS). The total biomass was largest in spring in all water types. It was similar to the biomass measurements made previously in subantarctic and subtropical water masses in the Southwest Pacific and those from the North Atlantic, except for the spring biomass in subtropical water which was unusually large (86.5 and 101.3 mg m -3 dry weight). Biomass was concentrated in the upper 100 m, especially within the 0-25 or 25-50 m layers, both day and night. Night/day biomass ratios in the surface 100 m were often >2, and are presumed to be the result of sampling patchy populations as well as vertical migration. Biomass was greatest for the >1000 μm fraction of the mesozooplankton population, followed by the 500-1000, and 200-500 μm fractions, respectively. The unusually small fraction of biomass residing in the 200-500 μm fraction is assumed to be the result of predation by larger mesozooplankton. The mesozooplankton community had maximum gut fluorescence at night only at stations where chlorophyll a was >2 mg m -3 and at many of the stations gut fluorescence was persistently low. This was probably the result of the poor feeding environment, since a large proportion of the primary production resided in the <2 μm fraction. The total meaningestion of phytoplankton was calculated to be 1-40 mgC m -2 d -1, based mainly on ingestion by the 200-500 and 500-1000 μm fractions, which were dominated by herbivores or herbivores and omnivores. The heaviest grazing pressure was in subtropical and Subtropical Convergence waters, in spring. Total grazing represented <1-4% of daily total integrated primary production. Phytoplankton carbon ingested usually met only a small fraction of the basic metabolic requirements of the mesozooplankton. These data, and the fact that spring populations were apparently actively growing, since they contained a large proportion of developmental stages, imply that mesozooplankton diets were mainly microzooplankton.

  17. Analyzing spring pendulum phenomena with a smart-phone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik

    2012-11-01

    This paper describes two further pendulum experiments using the acceleration sensor of a smartphone in this column (for earlier contributions concerning this topic, including the description of the operation and use of the acceleration sensor, see Refs. 1 and 2). In this paper we focus on analyzing spring pendulum phenomena. Therefore two spring pendulum experiments will be described in which a smartphone is used as a pendulum body and SPARKvue3 software is used in conjunction with an iPhone or an iPod touch, or the Accelogger4 app for an Android device.1,2 As described in Ref. 1, the values measured by the smartphone are subsequently exported to a spreadsheet application (e.g., MS Excel) for analysis.

  18. Injector Element which Maintains a Constant Mean Spray Angle and Optimum Pressure Drop During Throttling by Varying the Geometry of Tangential Inlets

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)

    2014-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.

  19. Flow compensating pressure regulator

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1978-01-01

    An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.

  20. Spring Defrosting of Mass-Movement Material at South High Latitudes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Southern hemisphere spring on Mars will begin this year around May 6, 2003. During the spring, the MOC operations team will be documenting changes as the seasonal carbon dioxide frost cap retreats southward. In preparation for this year's southern spring, the team has been examining images obtained during the last southern spring, which occurred in 2001.

    This pair of images shows gullies and associated scars formed by mass-movement down a slope in the south polar region. The first view, in mid-spring, was acquired in August 2001; it shows a terrain that is largely devoid of the frost that covered everything during winter. However, the aprons of debris from the mass-movements (landslides) are still frosted. By late spring, in the second picture (right), the frost on the aprons had finally sublimed away, and the debris was seen to be not much brighter than their surroundings. The second picture was taken in November 2001, about a week before the first day of summer.

    The fact that the aprons of debris retained frost in mid-spring, whereas the surrounding terrain did not, probably indicates that the debris underlying the frost has different thermal properties than the surroundings. The debris might be more coarse-grained (sand or gravel, perhaps), and remained cooler in the daytime than the surrounding, dust-mantled surfaces.

    The images are both illuminated from the bottom/lower right. North is toward the bottom, and the area imaged is located near 70.9oS, 339.3oW.

  1. Geology and Thermal History of Mammoth Hot Springs, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.

    1978-01-01

    Mammoth Hot Springs, located about 8 km inside the north entrance to Yellowstone National Park, consists of nearly 100 hot springs scattered over a score of steplike travertine terraces. The travertine deposits range in age from late Pleistocene to the present. Sporadic records of hot-spring activity suggest that most of the current major springs have been intermittently active since at least 1871. Water moving along the Norris-Mammoth fault zone is heated by partly molten magma and enriched in calcium and bicarbonate. Upon reaching Mammoth this thermal water (temperature about 73?C) moves up through the old terrace deposits along preexisting vertical linear planes of weakness. As the water reaches the surface, pressure is released, carbon dioxide escapes as a gas, and bicarbonate in the water is partitioned into more carbon dioxide and carbonate; the carbonate then combines with calcium to precipitate calcium carbonate, forming travertine. The travertine usually precipitates rapidly from solution and is lightweight and porous; however, dense travertine, such as is found in core from the 113-m research drill hole Y-10 located on one of the upper terraces, forms beneath the surface by deposition in the pore spaces of older deposits. The terraces abound with unusual hot-spring deposits such as terracettes, cones, and fissure ridges. Semicircular ledges (ranging in width from about 0.3 m to as much as 2.5 m), called terracettes, formed by deposition of travertine around slowly rising pools. Complex steplike arrangements of terracettes have developed along runoff channels of some hot springs. A few hot springs have deposited cone-shaped mounds, most of which reach heights of 1-2 m before becoming dormant. However, one long-inactive cone named Liberty Cap attained a height of about 14 m. Fissure ridges are linear mounds of travertine deposited from numerous hot-spring vents along a medial fracture zone. The ridges range in height from about 1 to 6 m and in length from a few meters to nearly 300 m; width at the base of a ridge is equal to or greater than its height. In some places, such as along the northern border of Main Terrace, water from new hot-spring activity becomes ponded behind fissure-ridge barriers or dams and deposits travertine that eventually forms large flat terraces.

  2. Environmental implications of element emissions from phosphate-processing operations in southeastern Idaho

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.

    1979-01-01

    In order to assess the contribution to plants and soils of certain elements emitted by phosphate processing, we sampled sagebrush, grasses, and A- and C-horizon soils along upwind and downwind transects at Pocatello and Soda Springs, Idaho. Analyses for 70 elements in plants showed that, statistically, the concentration of 7 environmentally important elements, cadmium, chromium, fluorine, selenium, uranium, vanadium, and zinc, were related to emissions from phosphate-processing operations. Two additional elements, lithium and nickel, show probable relationships. The literature on the effects of these elements on plant and animal health is briefly surveyed. Relations between element content in plants and distance from the phosphate-processing operations were stronger at Soda Springs than at Pocatello and, in general, stronger in sagebrush than in the grasses. Analyses for 58 elements in soils showed that, statistically, beryllium, fluorine, iron, lead, lithium, potassium, rubidium, thorium, and zinc were related to emissions only at Pocatello and only in the A horizon. Moreover, six additional elements, copper, mercury, nickel, titanium, uranium, and vanadium, probably are similarly related along the same transect. The approximate amounts of elements added to the soils by the emissions are estimated. In C-horizon soils, no statistically significant relations were observed between element concentrations and distance from the processing sites. At Soda Springs, the nonuniformity of soils at the sampling locations may have obscured the relationship between soil-element content and emissions from phosphate processing.

  3. Nanomechanical properties of the sea-water bacterium Paracoccus seriniphilus--a scanning force microscopy approach.

    PubMed

    Davoudi, Neda; Müller-Renno, Christine; Ziegler, Christiane; Raid, Indek; Seewig, Jörg; Schlegel, Christin; Muffler, Kai; Ulber, Roland

    2015-03-02

    The measurement of force-distance curves on a single bacterium provides a unique opportunity to detect properties such as the turgor pressure under various environmental conditions. Marine bacteria are very interesting candidates for the production of pharmaceuticals, but are only little studied so far. Therefore, the elastic behavior of Paracoccus seriniphilus, an enzyme producing marine organism, is presented in this study. After a careful evaluation of the optimal measurement conditions, the spring constant and the turgor pressure are determined as a function of ionic strength and pH. Whereas the ionic strength changes the turgor pressure passively, the results give a hint that the change to acidic pH increases the turgor pressure by an active mechanism. Furthermore, it could be shown, that P. seriniphilus has adhesive protrusions outside its cell wall.

  4. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... plastic pipelines. 192.619 Section 192.619 Transportation Other Regulations Relating to Transportation... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  5. Relating large-scale climate variability to local species abundance: ENSO forcing and shrimp in Breton Sound, Louisiana, USA

    USGS Publications Warehouse

    Piazza, Bryan P.; LaPeyre, Megan K.; Keim, B.D.

    2010-01-01

    Climate creates environmental constraints (filters) that affect the abundance and distribution of species. In estuaries, these constraints often result from variability in water flow properties and environmental conditions (i.e. water flow, salinity, water temperature) and can have significant effects on the abundance and distribution of commercially important nekton species. We investigated links between large-scale climate variability and juvenile brown shrimp Farfantepenaeus aztecus abundance in Breton Sound estuary, Louisiana (USA). Our goals were to (1) determine if a teleconnection exists between local juvenile brown shrimp abundance and the El Niño Southern Oscillation (ENSO) and (2) relate that linkage to environmental constraints that may affect juvenile brown shrimp recruitment to, and survival in, the estuary. Our results identified a teleconnection between winter ENSO conditions and juvenile brown shrimp abundance in Breton Sound estuary the following spring. The physical connection results from the impact of ENSO on winter weather conditions in Breton Sound (air pressure, temperature, and precipitation). Juvenile brown shrimp abundance effects lagged ENSO by 3 mo: lower than average abundances of juvenile brown shrimp were caught in springs following winter El Niño events, and higher than average abundances of brown shrimp were caught in springs following La Niña winters. Salinity was the dominant ENSO-forced environmental filter for juvenile brown shrimp. Spring salinity was cumulatively forced by winter river discharge, winter wind forcing, and spring precipitation. Thus, predicting brown shrimp abundance requires incorporating climate variability into models.

  6. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy densitymore » of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.« less

  7. A portable CW/FM-CW Doppler radar for local investigation of severe storms

    NASA Astrophysics Data System (ADS)

    Unruh, Wesley P.; Wolf, Michael A.; Bluestein, Howard B.

    During the 1987 spring storm season we used a portable 1-W X-band CW Doppler radar to probe a tornado, a funnel cloud, and a wall cloud in Oklahoma and Texas. This same device was used during the spring storm season in 1988 to probe a wall cloud in Texas. The radar was battery powered and highly portable, and thus convenient to deploy from our chase vehicle. The device separated the receding and approaching Doppler velocities in real time and, while the radar was being used, it allowed convenient stereo data recording for later spectral analysis and operator monitoring of the Doppler signals in stereo headphones. This aural monitoring, coupled with the ease with which an operator can be trained to recognize the nature of the signals heard, made the radar very easy to operate reliably and significantly enhanced the quality of the data being recorded. At the end of the 1988 spring season, the radar was modified to include FM-CW ranging and processing. These modifications were based on a unique combination of video recording and FM chirp generation, which incorporated a video camera and recorder as an integral part of the radar. After modification, the radar retains its convenient portability and the operational advantage of being able to listen to the Doppler signals directly. The original mechanical design was unaffected by these additions. During the summer of 1988, this modified device was used at the Langmuir Laboratory at Socorro, New Mexico in an attempt to measure vertical convective flow in a thunderstorm.

  8. Catholic Colleges Face Unusual Financial Pressures

    ERIC Educational Resources Information Center

    Supiano, Beckie

    2008-01-01

    When the main building of Our Lady of the Lake University was damaged in a fire this spring, its president, Tessa Martinez Pollack, worried the blaze would exacerbate its money woes. She told "The New York Times" that it's a known fact and that they are like a lot of other Catholic universities that are struggling to stay afloat financially. Not…

  9. Gobbling of Merriam's turkeys in relation to nesting and occurrence of hunting in the Black Hills, South Dakota

    Treesearch

    Chad P. Lehman; Lester D. Flake; Mark A. Rumble; Dan J. Thompson

    2007-01-01

    Timing of wild turkey (Meleagris gallopavo) nesting and peaks in gobbling activity are often used in setting spring hunting season dates. The relationship between gobbling activity, hunting pressure, and nesting chronology has not been studied using hunted and nonhunted turkey populations. We tabulated gobbling activity of Merriam's turkeys (...

  10. Machine finishes balls to high degree of roundness

    NASA Technical Reports Server (NTRS)

    Angele, W.; Hill, J. P., Jr.

    1972-01-01

    Machine was developed to finish ball to roundness within 12.5 nm (half a microinch) from any types of hard material. Grinding and polishing to this tolerance is accomplished by lapping elements on four to six motor-driven spindles. Spindles are adjustably spring-loaded to ensure constant contact pressure on ball and are driven by variable speed electric motors.

  11. Research Methods in Environmental Studies: A County Planning Application in Colorado.

    ERIC Educational Resources Information Center

    Gruntfest, Eve C.

    To obtain practical experience, a research methods class at the University of Colorado (Colorado Springs) undertook a special project to help a nearby county (Park County), assess its planning needs. The county was chosen for its characteristics as a rapidly growing rural area faced with the problems created by mounting population pressure on…

  12. Civic Education under Pressure? A Case Study from an Austrian School

    ERIC Educational Resources Information Center

    Schild, Isabella; Breitfuss, Judith

    2018-01-01

    When the politician Roman Haider of the party Freiheitliche Partei Österreichs (FPÖ--Freedom Party of Austria) caused the interruption of a lecture about political extremism in an Austrian school in spring 2017, a heated debate erupted over the place of politics in school education. While Haider accused the lecturer of political propaganda,…

  13. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  14. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  15. No Longer the Outlier: Updating the Air Component Structure

    DTIC Science & Technology

    2016-06-23

    operations assigned or attached to the unified component commander ( UCC ) Spring 2016 | 9 Senior Leader Perspective for day-to-day operations with the...ability to accept additional AOC forces for any increase in UCC mission tasking or direction. A C-NAF will normally look as shown” in figure 3.5 As

  16. Numerical experiments on the impact of spring north pacific SSTA on NPO and unusually cool summers in Northeast China

    NASA Astrophysics Data System (ADS)

    Lian, Yi; Zhao, Bin; Shen, Baizhu; Li, Shangfeng; Liu, Gang

    2014-11-01

    A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Niño (La Niña) phases in the Niño4 region and sea surface temperature anomalies (SSTA) in the westerly drifts region would result in abnormally enhanced NorthEast Cold Vortex (NECV) activities in early summer. In spring, the central equatorial Pacific El Niño phase and westerly drift SSTA forcing would lead to the retreat of non-adiabatic waves, inducing elliptic low-frequency anomalies of tropical air flows. This would enhance the anomalous cyclone-anticyclone-cyclone-anticyclone low-frequency wave train that propagates from the tropics to the extratropics and further to the mid-high latitudes, constituting a major physical mechanism that contributes to the early summer circulation anomalies in the subtropics and in the North Pacific mid-high latitudes. The central equatorial Pacific La Niña forcing in the spring would, on the one hand, induce teleconnection anomalies of high pressure from the Sea of Okhotsk to the Sea of Japan in early summer, and on the other hand indirectly trigger a positive low-frequency East Asia-Pacific teleconnection (EAP) wave train in the lower troposphere.

  17. Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ.

    PubMed

    Christensen-Dalsgaard, Karen K; Tyree, Melvin T

    2014-05-01

    Frost has been shown to cause frost fatigue (reduced cavitation resistance) in branch segments in the lab. Here, we studied the change in cavitation resistance and percent loss of conductivity (PLC) from fall to spring over 2 consecutive years in three diffuse-porous species in situ. We used the cavitron technique to measure P25 , P50 and P90 (the xylem pressure causing a 25, 50 and 90% conductivity loss) and PLC and stained functioning vessels. Cavitation resistance was reduced by 64-87% (in terms of P50 ), depending on the species and year. P25 was impacted the most and P90 the least, changing the vulnerability curves from s- to r-shaped over the winter in all three species. The branches suffered an almost complete loss of conductivity, but frost fatigue did not necessarily occur concurrently with increases in PLC. In two species, there was a trade-off between conduit size and vulnerability. Spring recovery occurred by growth of new vessels, and in two species by partial refilling of embolized conduits. Although newly grown and functioning conduits appeared more vulnerable to cavitation than year-old vessels, cavitation resistance generally improved in spring, suggesting other mechanisms for partial frost fatigue repair. © 2013 John Wiley & Sons Ltd.

  18. Spring-assisted posterior skull expansion without osteotomies.

    PubMed

    Arnaud, Eric; Marchac, Alexandre; Jeblaoui, Yassine; Renier, Dominique; Di Rocco, Federico

    2012-09-01

    A posterior flatness of the skull vault can be observed in infants with brachycephaly. Such posterior deformation favours the development of turricephaly which is difficult to correct. To reduce the risk of such deformation, an early posterior skull remodelling has been suggested. Translambdoid springs can be used to allow for a distraction through the patent lambdoid sutures and obtain a progressive increase of the posterior skull volume. The procedure consists in a posterior scalp elevation, the patient being on a prone position. Springs made of stainless steel wire (1.5 mm in diameter) are bent in a U-type fashion, and strategically positioned across both lambdoid sutures. No drilling is usually necessary, as the lambdoid suture can be gently forced with a subperiosteal elevator in its middle and an indentation can be created with a bony rongeur on each side of the open suture to allow for a self-retention of bayonet-shaped extremity of the spring. Careful attention is addressed to the favoured prone position during the post-operative period. After a delay of 3-6 months, the springs can be removed during a second uneventful procedure, with limited incisions, usually as a preliminary step of the subsequent frontal remodelling. The concept of spring-assisted expansion across patent sutures under 6 months of age was confirmed in our experience (19 cases). Insertion of the springs allowed for immediate distraction across the suture. A posterior remodelling of the skull could be achieved with minimal morbidity allowing to delay safely a radical anterior surgery.

  19. A new approach to monitoring spatial distribution and dynamics of wetlands and associated flows of Australian Great Artesian Basin springs using QuickBird satellite imagery

    NASA Astrophysics Data System (ADS)

    White, Davina C.; Lewis, Megan M.

    2011-09-01

    SummaryThis study develops an expedient digital mapping technique using Very High Resolution satellite imagery to monitor the temporal response of permanent wetland vegetation to changes in spring flow rates from the Australian Great Artesian Basin at Dalhousie Springs Complex, South Australia. Three epochs of QuickBird satellite multispectral imagery acquired between 2006 and 2010 were analysed using the Normalised Difference Vegetation Index (NDVI). A regression of 2009 NDVI values against vegetation cover from field botanical survey plots provided a relationship of increasing NDVI with increased vegetation cover ( R2 = 0.86; p < 0.001). On the basis of this relationship a vegetation threshold was determined (NDVI ⩾ 0.35), which discriminated perennial and ephemeral wetland vegetation from surrounding dryland vegetation in the imagery. The extent of wetlands for the entire Dalhousie Springs Complex mapped from the imagery increased from 607 ha in December 2006 to 913 ha in May 2009 and 1285 ha in May 2010. Comparison of the three NDVI images showed considerable localised change in wetland vegetation greenness, distribution and extent in response to fires, alien vegetation removal, rainfall and fluctuations in spring flow. A strong direct relationship ( R2 = 0.99; p < 0.001) was exhibited between spring flow rate and the area of associated wetland vegetation for eight individual springs. This relationship strongly infers that wetland area is an indicator of spring flow and can be used for monitoring purposes. This method has the potential to determine the sensitivity of spring wetland vegetation extent and distribution to associated changes in spring flow rates due to land management and aquifer extractions. Furthermore, this approach is timely and provides reliable and repeatable monitoring, particularly needed given the projected increased demand for groundwater extractions from the GAB for mining operations.

  20. Control of intrauterine fluid pressure during operative hysteroscopy.

    PubMed

    Shirk, G J; Gimpelson, R J

    1994-05-01

    To evaluate the safety of a commonly used piston pump that controls the infusion pressure of low-viscosity fluids in a continuous-flow hysteroscopic system during operative hysteroscopy. Consecutive patients requiring operative hysteroscopy. Three hospital facilities in the Midwest. Sequential sample of 250 women who underwent operative hysteroscopy. Endometrial ablations, resection of submucosal or pedunculated uterine leiomyomata with or without endometrial ablation, polyp resections, metroplasty, and lysis of synechiae. The most serious complication of operative hysteroscopy is fluid overload due to intravasation into the patient's vascular system. Low-viscosity fluids were infused by the Zimmer Controlled Distention Irrigation System. The instrument uses a closed-feedback loop to monitor cavity pressure and automatically regulates the flow to maintain the set point pressure. It is designed to operate in a pressure range of 0 to 80 mm Hg and at flows in excess of 450 ml/minute. In 250 operative hysteroscopies no fluid complications occurred when intrauterine pressure was maintained below 80 mm Hg. No clinically significant differences in intravasation were seen in any type of operative hysteroscopy. This controlled mechanical pump system with exact intrauterine pressure measurement reduced many technical difficulties associated with low-viscosity media, and created a safe environment for the media's use in operative hysteroscopy.

  1. Dewetting and Segregation of Zn-Doped InSb in Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Ostrogorsky, A. G.; Marin, C.; Duffar, T.; Volz, M.

    2009-01-01

    In directional solidification, dewetting is characterized by the lack of contact between the crystal and the crucible walls, due to the existence of a liquid meniscus at the level of the solid-liquid interface. This creates a gap of a few tens of micrometers between the crystal and the crucible. One of the immediate consequences of this phenomenon is the dramatic improvement of the quality of the crystal. This improvement is partly due to the modification of the solid-liquid interface curvature and partly to the absence of sticking and spurious nucleation at the crystal-crucible interface. Dewetting has been, commonly observed during the growth of semiconductors in crucibles under microgravity conditions where it appears to be very stable: the gap between the crystal and the crucible remains constant along several centimetres of growth. The physical models of the phenomenon are well established and they predict that dewetting should not occur in microgravity, if sufficient static pressure is imposed on the melt, pushing it towards the crucible. We present the results of InSb(Zn) solidification experiments conducted at the International Space Station (ISS) where, in spite of a spring exerting a pressure on the liquid, partial dewetting did occur. This surprising result is discussed in terms of force exerted .by the spring on the liquid and of possibility that the spring did not work properly. Furthermore, it appears that the segregation of the Zn was not affected by the occurrence of the dewetting. The data suggest that there was no significant interference of convection with segregation of Zn in InSb.

  2. Relationship between temperature change and the requirement for a permanent pacemaker implantation in bradyarrhythmias.

    PubMed

    Liu, I-Fan; Chang, Shih-Lin; Lo, Li-Wei; Hu, Yu-Feng; Tuan, Ta-Chuan; Kong, Chi-Woon; Wu, Tsu-Juey; Chiang, Chern-En; Chen, Shih-Ann; Lin, Yenn-Jiang

    2011-09-01

    Some cardiovascular diseases are associated with seasonal or meteorological factors. We tried to identify the relationship between meteorological parameters and the requirement for a permanent pacemaker (PPM) implantation for advanced sinus node dysfunction (SND) and atrioventricular block (AVB). This study enrolled 656 patients (67% male, age = 76 ± 11 years) who underwent a PPM implantation due to SND or AVB from January 2004 to December 2008. Using daily temperature, barometric pressure, humidity, and daylight hour records from Taipei, we evaluated the effect of these meteorological parameters within different time periods on the occurrence of SND and AVB. There were 355 patients in the SND group and 301 in the AVB group. In the AVB group, more patients presented in the spring than in other seasons (P = 0.003). In the SND group, there was no relationship with the seasons (P = 0.137). The proportion of patients with AVB did not depend on the average temperature, barometric pressure, humidity, or daylight hours within 3, 7, and 14 days prior to admission (P = NS). A temperature change of greater than 11°C within 30 days prior to admission was associated with a significantly higher proportion of patients with advanced AVB compared to those with advanced SND (P = 0.009). Extreme change in temperature was the most independent predictor of the development of advanced AVB. The peak occurrence of advanced AVB was in the spring. The occurrence of advanced AVB was associated with extreme temperature changes within 30 days, especially in the spring.

  3. OPERATION CASTLE. Radiological Safety. Volume 1

    DTIC Science & Technology

    1985-09-01

    OPERATION CASTLE Radiological Safety Final Report Volume I Headquarters Joint Task Force Seven Technical Branch, J-3 Division Washington, DC...Spring 1954 EXTRACTED VERSION DTIC -uECTE MAR031986 NOTICE: This is an extract of Operation CASTLE, Radiological Safety, Final Report, Volume I ...SYMBOL (If jpQiictbl») ■ i PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 8c AOORESS (G(y, SU(t tncl ZIRCod») 10 SOURCE OF FUNDING NUMBERS PROGRAM

  4. The Soviet Military Views Operation Desert Storm: A Preliminary Assessment

    DTIC Science & Technology

    1991-09-23

    NO. IACCESSION NO. 11. TITLE (Include Security Classification) The Soviet Military Views Operation Desert Storm: .A Preliminary Assessment UNCLASSIFIED...VIEWS OPERATION DESERT STORM: A PRELIMINARY ASSESSMENT Stephen J. Blank Av~qoxa 10 a r I~ )~ I.RA&I .1 . a .. _ . . .. J l tia.o.. .. ._ ’Vflstribitleu...preliminary assessments , largely through the spring of 1991, suggest lines of argument that will surely appear later in greater depth, detail, and

  5. Improved solenoid valve design

    NASA Technical Reports Server (NTRS)

    Evans, J.

    1969-01-01

    Modified solenoid valve reduces valve seat loading by eliminating off-center operation of the armature, reducing the poppet size and spring-cushioning its impact, and reducing armature impact with a poppet guide stop.

  6. 30 CFR 250.601 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.601 Definitions. When... expected surface pressure, you must consider reservoir pressure as well as applied surface pressure. Routine operations mean any of the following operations conducted on a well with the tree installed: (a...

  7. 30 CFR 250.803 - Additional production system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ranges of pressure vessels at any time when there is a change in operating pressures that requires new... significant change in operating pressures. The most recent pressure-recorder charts used to determine... prominent place on the facility or structure. (v) For operations in subfreezing climates, the lessee shall...

  8. A mathematical model for simulating spring discharge and estimating sinkhole porosity in a karst watershed

    NASA Astrophysics Data System (ADS)

    Li, Guangquan; Field, Malcolm S.

    2014-03-01

    Documenting and understanding water balances in a karst watershed in which groundwater and surface water resources are strongly interconnected are important aspects for managing regional water resources. Assessing water balances in karst watersheds can be difficult, however, because karst watersheds are so very strongly affected by groundwater flows through solution conduits that are often connected to one or more sinkholes. In this paper we develop a mathematical model to approximate sinkhole porosity from discharge at a downstream spring. The model represents a combination of a traditional linear reservoir model with turbulent hydrodynamics in the solution conduit connecting the downstream spring with the upstream sinkhole, which allows for the simulation of spring discharges and estimation of sinkhole porosity. Noting that spring discharge is an integral of all aspects of water storage and flow, it is mainly dependent on the behavior of the karst aquifer as a whole and can be adequately simulated using the analytical model described in this paper. The model is advantageous in that it obviates the need for a sophisticated numerical model that is much more costly to calibrate and operate. The model is demonstrated using the St. Marks River Watershed in northwestern Florida.

  9. Accurate calibration and uncertainty estimation of the normal spring constant of various AFM cantilevers.

    PubMed

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-03-10

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke's law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.

  10. Seasonal pattern of Echinococcus re-infection in owned dogs in Tibetan communities of Sichuan, China and its implications for control.

    PubMed

    Wang, Qian; Yu, Wen-Jie; Zhong, Bo; Shang, Jing-Ye; Huang, Liang; Mastin, Alexander; Renqingpengcuo; Huang, Yan; Zhang, Guang-Jia; He, Wei; Giraudoux, Patrick; Wu, Wei-Ping; Craig, Philip S

    2016-07-05

    Human cystic echinococcosis (CE) and alveolar echinococcosis (AE) are highly endemic in Tibetan communities of Sichuan Province. Previous research in the region indicated that domestic dog was the major source of human infection, and observations indicated that domestic dog could have more access to intermediate hosts of Echinococcus spp.: both domestic livestock (CE) viscera and small mammals (AE), in early winter and again in spring. We hypothesized that there would therefore be a significant increase in the risk of canine infection with Echinococcus spp. in these two seasons and conducted a reinfection study to investigate this further. Faecal samples were collected from owned dogs in seven townships in Ganze Tibetan Autonomous Prefecture (Sichuan Province, China), and Echinococcus spp. infection status was determined using copro-antigen ELISA. Dogs were sampled in April (spring), July (early summer), September/October (autumn/early winter) and December (winter) in 2009; and in April (spring) 2010. Dogs were treated with praziquantel following each of the five sample collections to eliminate any tapeworms. Information on dog sex, age and body weight was also collected. The t-test, Fisher's exact test, Poisson regression and logistic regression were used to compare means and prevalences, and to identify factors associated with infection status. The proportion of female dogs was significantly lower than that of male dogs; female dogs had significantly higher (22.78 %) baseline copro-ELISA prevalence than males (11.88 %). Dog body weight, sex, age, county and previous infection status at any sampling point had no influence on the re-infection prevalence in general. Poisson regression did not found a significant influence on the re-infection prevalence due to different deworming/sampling time spans. Dogs exhibited significantly higher re-infection prevalences in spring and early summer of 2009 and in early winter between September/October and December of 2009, suggesting a higher infection pressure in these seasons comparing with other seasons. Following praziquantel treatment, dog body weight, sex, age, county, deworming time span and previous infection status at any sampling point had no influence on the re-infection prevalence in the region in general. The differences between re-infection prevalences were probably due to the seasonality in Echinoccocus spp. infection pressure in the region. Early winter, spring and early summer should be important seasons for optimal dog deworming intervention in these Tibetan communities.

  11. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2005-01-01

    Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.

  12. 77 FR 33199 - Marine Mammals; File No. 14534

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Technology, Silver Spring, MD, (Brandon Southall, Ph.D.--Principal Investigator) for research on marine...) will not operate to the disadvantage of such endangered species; and (3) is consistent with the...

  13. Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becthel Jacobs Company LLC

    2002-11-01

    The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone & Webster Buildingmore » 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to Bldg. 9201-2. The EEMTS treats mercury-contaminated groundwater that collects in sumps in the basement of Bldg. 9201-2. A pre-design study was performed to investigate the applicability of various treatment technologies for reducing mercury discharges at Outfall 51 in support of the design of the Big Spring Water Treatment System. This document evaluates the results of the pre-design study for selection of the mercury removal technology for the treatment system.« less

  14. Big Spring wind project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, G.L.

    1999-11-01

    Harnessing the wind is not a new concept to Texans. But it is a concept that has evolved over the years from one of pumping water to fill stock tanks for watering livestock to one of providing electricity for the people of Texas. This evolution has occurred due to improved micro-siting techniques that help identify robust wind resource sites and wind turbine technology that improves wind capture and energy conversion efficiencies. Over the last seven to ten years this siting technology and wind turbine technology have significantly reduced the bus-bar cost associated with wind generation. On December 2, 1998, atmore » a public dedication of the Big Spring Wind Project, the first of 42 Vestas V47 wind turbines was released for commercial operation. Since that date an additional fifteen V47 Turbines have been placed into service. It is expected that the Big Spring Wind Project will be complete and released of full operation prior to the summer peak-load season of 1999. As of the writing of this paper (January 1999) the Vestas V47 turbines have performed as expected with excellent availability and, based on foregoing resource analysis, better than expected output.« less

  15. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also identified for the onset of spring. Late spring frequencies are similar but with more variability in all moist variety air mass frequencies. These findings indicate that, from a synoptic perspective, springs in the Northeast can be defined by dry air mass conditions through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the Northeast spring season may also be represented by more variable day-to-day air mass conditions in modern times than detected in past decades. 1950 - 1975 (black) and 1976 - 2010 (gray) Philadelphia, PA Spring air mass frequency (%).

  16. Hood River Production Program Monitoring and Evaluation (M&E) - Confederated Tribes of Warm Springs : Annual Report For Fiscal Year, October 2007 – September 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerstenberger, Ryan

    2009-07-27

    This progress report describes work performed by the Confederated Tribes of Warm Springs (CTWSRO) portion of the Hood River Production Program Monitoring and Evaluation Project (HRPP) during the 2008 fiscal year. A total of 64,736 hatchery winter steelhead, 12,108 hatchery summer steelhead, and 68,426 hatchery spring Chinook salmon smolts were acclimated and released in the Hood River basin during the spring. The HRPP exceeded program goals for a release of and 50,000 winter steelhead but fell short of the steelhead release goals of 30,000 summer steelhead and 75,000 spring Chinook in 2008. Passive Integrated Transponders (PIT) tags were implanted inmore » 6,652 hatchery winter steelhead, and 1,196 hatchery summer steelhead, to compare migratory attributes and survival rates of hatchery fish released into the Hood River. Water temperatures were recorded at six locations within the Hood River subbasin to monitor for compliance with Oregon Department of Environmental Quality water quality standards. A preseason spring Chinook salmon adult run forecast was generated, which predicted an abundant return adequate to meet escapement goal and brood stock needs. As a result the tribal and sport fisheries were opened. A tribal creel was conducted from May 22 to July 18 during which an estimated 172 spring Chinook were harvested. One hundred sixteen Spring Chinook salmon redds were observed and 72 carcasses were inspected on 19.4 miles of spawning grounds throughout the Hood River Basin during 2008. Annual salvage operations were completed in two irrigation canals resulting in the liberation of 1,641 fish back to the Hood River.« less

  17. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...) You must test each drilling liner (and liner-lap) to a pressure at least equal to the anticipated... drilling or other down-hole operations until you obtain a satisfactory pressure test. If the pressure...

  18. Remotely operated high pressure valve protects test personnel

    NASA Technical Reports Server (NTRS)

    Howland, B. T.

    1967-01-01

    High pressure valve used in testing certain spacecraft systems is safely opened and closed by a remotely stationed operator. The valve is self-regulating in that if the incoming pressure drops below a desired value the valve will automatically close, warning the operator that the testing pressure has dropped to an undesired level.

  19. 76 FR 6836 - Entergy Operations, Inc.; Notice of Withdrawal of Application for Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    .... NPF-38 for the Waterford Steam Electric Station, Unit 3, located in St. Charles Parish, Louisiana. In view of the originally planned steam generator (SG) replacement during the spring 2011 refueling outage... to TS 6.5.9, ``Steam Generator (SG) Program,'' and TS 6.9.1.5, ``Steam Generator Tube Inspection...

  20. Vapor-dominated zones within hydrothermal systems: evolution and natural state

    USGS Publications Warehouse

    Ingebritsen, S.E.; Sorey, M.L.

    1988-01-01

    Three conceptual models illustrate the range of hydrothermal systems in which vapor-dominated conditions are found. The first model (model I) represents a system with an extensive near-vaporstatic vapor-dominated zone and limited liquid throughflow and is analogous to systems such as The Geysers, California. Models II and III represent systems with significant liquid throughflow and include steam-heated discharge features at higher elevations and high-chloride springs at lower elevations connected to and fed by a single circulation system at depth. In model II, as in model I, the vapor-dominated zone has a near-vaporstatic vertical pressure gradient and is generally underpressured with respect to local hydrostatic pressure. The vapor-dominated zone in model III is quite different, in that phase separation takes place at pressures close to local hydrostatic and the overall pressure gradient is near hydrostatic. -from Authors

  1. Interdisciplinary class on the asymmetric seasonal march from autumn to the next spring around Japan at Okayama University (Joint activity with art and music expressions on the seasonal feeling)

    NASA Astrophysics Data System (ADS)

    Kato, Kuranoshin; Kato, Haruko; Akagi, Rikako; Haga, Yuichi

    2015-04-01

    There are many stages with rapid seasonal transitions in East Asia, greatly influenced by the considerable phase differences of seasonal cycle among the Asian monsoon subsystems, resulting in the variety of "seasonal feeling" around there. For example, the "wintertime pressure pattern" begins to prevail already from November due to the seasonal development of the Siberian Air mass and the Siberian High. The intermittent rainfall due to the shallow cumulus clouds in such situation is called "Shi-gu-re" in Japanese (consisting of the two Chinese characters which mean for "sometimes" (or intermittent) and "rain", respectively) and is often used for expression of the "seasonal feeling" in the Japanese classic literature (especially we can see in the Japanese classic poems called "Wa-Ka"). However, as presented by Kato et al. (EGU2014-3708), while the appearance frequency of the "wintertime pressure pattern" around November (early winter) and in early March (early spring) is nearly the same as each other, air temperature is rather lower in early spring. The solar radiation, however, is rather stronger in early spring. Such asymmetric seasonal cycle there would result in rather different "seasonal feeling" between early winter and early spring. Inversely, such difference of the "seasonal feelings" might be utilized for deeper understanding of the seasonal cycle of the climate system around Japan. As such, the present study reports the joint activity of the meteorology with music and art on these topics mainly in the class at the Faculty of Education, Okayama University. In that class, the students tried firstly the expression of the both selected stages in early winter and early spring, respectively, by combination of the 6 colors students selected from the 96 colored papers, based on the Johannes Itten's (1888-1967) exercise of the representation of the four seasons. Next, the students' activity on the music expression of what they firstly presented by the colors was performed with use of the various small percussion instruments. Finally, activity of the art was made again, with adding the degree of freedom for the color expression. From the students' works, we could find out what they intended to present about the asymmetry between early winter and the early spring. In addition, the students' expressions of the seasonal feeling seem to be based not only on the mean seasonal state but also on a specified phase in the day-to-day variations embedded in the seasonal march. This would suggest the possibility to use the art expression activity in the class for the study on the seasonal cycle of the climate systems with the various multi-scale aspects. Furthermore, the present joint activity might also contribute to providing the study materials for the ESD (Education for Sustainable Development).

  2. Pressure-Letdown Machine for a Coal Reactor

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.; Mabe, W. B.

    1986-01-01

    Pumps operating in reverse generate power. Conceptual pressure-letdown machine for coal-liquefaction system extracts energy from expansion of product fluid. Mud pumps, originally intended for use in oil drilling, operated in reverse so their motors act as generators. Several pumps operated in alternating phase to obtain multiple stages of letdown from inlet pressure to outlet pressure. About 75 percent of work generates inlet pressure recoverable as electrical energy.

  3. Australian DefenceScience. Volume 15, Number 3, Spring

    DTIC Science & Technology

    2007-01-01

    ignition, high pressure sealing, ignitor and propellent design, and ballistics instrumentation . Validation of simulation models of internal ballistics...supplementing visual information obtained by sources such as radiography and scanning electron microscopy, revealing details about features that are not...otherwise visible. Hence, it can assist with the inspection of vital component parts that are subject to high stresses, like aircraft engine turbine

  4. Pressure drop for inertial flows in elastic porous media

    NASA Astrophysics Data System (ADS)

    Pauthenet, Martin; Bottaro, Alessandro; Davit, Yohan; Quintard, Michel; porous media Team

    2017-11-01

    The effect of the porosity and of the elastic properties of anisotropic solid skeletons saturated by a fluid is studied for flows displaying unsteady inertial effects. Insight is achieved by direct numerical simulations of the Navier-Stokes equations for model porous media, with inclusions which can oscillate with respect to their reference positions because of the presence of a restoring elastic force modeled by a spring. The numerical technique is based on the immersed boundary method, to easily allow for the displacement of pores of arbitrary shapes and dimensions. Solid contacts are anelastic. The parameters examined include the local Reynolds number, Red , based on the mean velocity through the reference unit cell and the characteristic size of the inclusions, the direction of the macroscopic forcing pressure gradient, the reduced frequency, f*, ratio of the flow frequency to the natural frequency of the spring-mass system, and the reduced mass, m*, ratio of the solid to the fluid density. Results demonstrate the effect of these parameters, and permit to determine the filtration laws useful for the subsequent macroscopic modeling of these flows through the volume averaged Navier-Stokes equations. IDEX Foundation of the University of Toulouse and HPC resources of the CALMIP supercomputing center.

  5. HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: III. Models of processes involving translucent ice

    USGS Publications Warehouse

    Portyankina, G.; Markiewicz, W.J.; Thomas, N.; Hansen, C.J.; Milazzo, M.

    2010-01-01

    Enigmatic surface features, known as 'spiders', found at high southern martian latitudes, are probably caused by sublimation-driven erosion under the seasonal carbon dioxide ice cap. The Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) has imaged this terrain in unprecedented details throughout southern spring. It has been postulated [Kieffer, H.H., Titus, T.N., Mullins, K.F., Christensen, P.R., 2000. J. Geophys. Res. 105, 9653-9700] that translucent CO2 slab ice traps gas sublimating at the ice surface boundary. Wherever the pressure is released the escaping gas jet entrains loose surface material and carries it to the top of the ice where it is carried downslope and/or downwind and deposited in a fan shape. Here we model two stages of this scenario: first, the cleaning of CO2 slab ice from dust, and then, the breaking of the slab ice plate under the pressure built below it by subliming ice. Our modeling results and analysis of HiRISE images support the gas jet hypothesis and show that outbursts happen very early in spring. ?? 2009 Elsevier Inc. All rights reserved.

  6. INCREASED MYOCARDIAL STIFFNESS DUE TO CARDIAC TITIN ISOFORM SWITCHING IN A MOUSE MODEL OF VOLUME OVERLOAD LIMITS ECCENTRIC REMODELING

    PubMed Central

    Hutchinson, Kirk R; Saripalli, Chandra; Chung, Charles S.; Granzier, Henk

    2014-01-01

    We investigated the cellular and molecular mechanisms of diastolic dysfunction in pure volume overload induced by aortocaval fistula (ACF) surgery in the mouse. Four weeks of volume overload resulted in significant biventricular hypertrophy; protein expression analysis in left ventricular (LV) tissue showed a marked decrease in titin's N2BA/N2B ratio with no change in phosphorylation of titin's spring region. Titin-based passive tensions were significantly increased; a result of the decreased N2BA/N2B ratio. Conscious echocardiography in ACF mice revealed eccentric remodeling and pressure volume analysis revealed systolic dysfunction: reductions in ejection fraction (EF), +dP/dt, and the slope of the endsystolic pressure volume relationships (ESPVR). ACF mice also had diastolic dysfunction: increased LV end-diastolic pressure and reduced relaxation rates. Additionally, a decrease in the slope of the end diastolic pressure volume relationship (EDPVR) was found. However, correcting for altered geometry of the LV normalized the change in EDPVR and revealed, in line with our skinned muscle data, increased myocardial stiffness in vivo. ACF mice also had increased expression of the signaling proteins FHL-1, FHL-2, and CARP that bind to titin's spring region suggesting that titin stiffening is important to the volume overload phenotype. To test this we investigated the effect of volume overload in the RBM20 heterozygous (HET) mouse model, which exhibits reduced titin stiffness. It was found that LV hypertrophy was attenuated and that LV eccentricity was exacerbated. We propose that pure volume overload induces an increase in titin stiffness that is beneficial and limits eccentric remodeling. PMID:25450617

  7. Analysis and modeling of daily air pollutants in the city of Ruse, Bulgaria

    NASA Astrophysics Data System (ADS)

    Zheleva, I.; Veleva, E.; Filipova, M.

    2017-10-01

    The city of Ruse is situated in the north-eastern part of Bulgaria. The northern boundary of Ruse region goes along the Danube river valley and coincides with the state boundary of the Republic of Bulgaria and the Republic of Romania. The climate of the region of Ruse is temperate continental, characterized by cold winters and dry, warm summers. Spring and autumn are short. In our previous work we studied information from 40 years period measurements [6] of temperature, air humidity and atmospheric pressure in Ruse region, Bulgaria. It was shown that mean values of the temperature in Ruse region are slightly goes up for the last 10 years and they are bigger than the mean temperature for Bulgaria. This could be a proof for climate change in Ruse region of Bulgaria. The most variable atmospheric parameter is air humidity during the spring seasons. The hardest change of temperature and atmospheric pressure is during January. Temperature has biggest change in January and smallest - in July. Humidity has biggest change in April and smallest - in October. Atmospheric pressure has biggest change in January and smallest - in July [5]. Air pollution maybe affects temperature, atmospheric pressure and humidity. All this in our opinion may be a reason for the increase in average temperatures for the period examined. This paper is devoted to examine air pollution in the Ruse region. It presents a statistical analysis of the level of air pollution in Ruse on data from the monitoring stations in the city. The measurements cover the period from 2015 including up to now. For the most dangerous pollutant PM10 we create an ARIMA model which is in a good agreement with the PM10 measurements.

  8. Taking the pressure off the spring: the case of rebounding smoking rates when antitobacco campaigns ceased.

    PubMed

    Dono, Joanne; Bowden, Jacqueline; Kim, Susan; Miller, Caroline

    2018-04-07

    Smoking rates have been compared with a spring, requiring continuous downward pressure against protobacco forces, rather than a screw, which once driven down stays down. Quality antitobacco mass media campaigns put downward pressure on smoking rates. The suspension of a major Australian state campaign provided a natural experiment to assess effects on smoking. Furthermore, we document the positive influence of robust monitoring and mature advocacy on the political decision to reinstate funding. We also document the misuse by industry of South Australian smoking data from the period between Australia's implementation and subsequent evaluation of plain packaging. A time series analysis was used to examine monthly smoking prevalence trends at each of four intervention points: (A) commencement of high-intensity mass media campaign (August 2010); (B) introduction of plain packaging (December 2012), (C) defunding of campaign (July 2013); and (D) reinstatement of moderate-intensity campaign (July 2014). The suspension of the antitobacco campaign was disruptive to achieving smoking prevalence targets. There was an absence of a downward monthly smoking prevalence trajectory during the non-campaign period. Moreover, there was a significant decline in smoking prevalence during the period of high-intensity advertising, which continued after the introduction of plain packaging laws, and at the recommencement of campaign activity. While the observed declines in smoking prevalence are likely due to a combination of interventions and cannot be attributed exclusively to antitobacco advertising, the results reinforce the political decision to reinstate the campaign and demonstrate the need for maintained investment to keep downward pressure on smoking rates. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. An investigation into beef calf mortality on five high-altitude ranches that selected sires with low pulmonary arterial pressures for over 20 years.

    PubMed

    Neary, Joseph M; Gould, Daniel H; Garry, Franklyn B; Knight, Anthony P; Dargatz, David A; Holt, Timothy N

    2013-03-01

    Producer reports from ranches over 2,438 meters in southwest Colorado suggest that the mortality of preweaned beef calves may be substantially higher than the national average despite the selection of low pulmonary pressure herd sires for over 20 years. Diagnostic investigations of this death loss problem have been limited due to the extensive mountainous terrain over which these calves are grazed with their dams. The objective of the current study was to determine the causes of calf mortality on 5 high-altitude ranches in Colorado that have been selectively breeding sires with low pulmonary pressure (<45 mmHg) for over 20 years. Calves were followed from branding (6 weeks of age) in the spring to weaning in the fall (7 months of age). Clinical signs were recorded, and blood samples were taken from sick calves. Postmortem examinations were performed, and select tissue samples were submitted for aerobic culture and/or histopathology. On the principal study ranch, 9.6% (59/612) of the calves that were branded in the spring either died or were presumed dead by weaning in the fall. In total, 28 necropsies were performed: 14 calves (50%) had lesions consistent with pulmonary hypertension and right-sided heart failure, and 14 calves (50%) died from bronchopneumonia. Remodeling of the pulmonary arterial system, indicative of pulmonary hypertension, was evident in the former and to varying degrees in the latter. There is a need to better characterize the additional risk factors that complicate pulmonary arterial pressure testing of herd sires as a strategy to control pulmonary hypertension.

  10. 30 CFR 250.423 - What are the requirements for pressure testing casing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... drilling or other down-hole operations until you obtain a satisfactory pressure test. If the pressure...

  11. Using multiple geochemical tracers to characterize the hydrogeology of the submarine spring off Crescent Beach, Florida

    USGS Publications Warehouse

    Swarzenski, P.W.; Reich, C.D.; Spechler, R.M.; Kindinger, J.L.; Moore, W.S.

    2001-01-01

    A spectacular submarine spring is located about 4 km east of Crescent Beach, FL, in the Atlantic Ocean. The single vent feature of Crescent Beach Spring provides a unique opportunity to examine onshore-offshore hydrogeologic processes, as well as point source submarine ground water discharge. The Floridan aquifer system in northeastern Florida consists of Tertiary interspersed limestone and dolomite strata. Impermeable beds confine the water-bearing zones under artesian pressure. Miocene and younger confining strata have been eroded away at the vent feature, enabling direct hydrologic communication of Eocene ground water with coastal bottom waters. The spring water had a salinity of 6.02, which was immediately diluted by ambient seawater during advection/mixing. The concentration of major solutes in spring water and onshore well waters confirm a generalized easterly flow direction of artesian ground water. Nutrient concentrations were generally low in the reducing vent samples, and the majority of the total nitrogen species existed as NH3. The submarine ground water tracers, Rn-222 (1174 dpm I-1, dpm), methane (232 nM) and barium (294.5 nM) were all highly enriched in the spring water relative to ambient seawater. The concentrations of the reverse redox elements U, V and Mo were expectedly low in the submarine waters. The strontium isotope ratio of the vent water (87Sr/86Sr = 0.70798) suggests that the spring water contain an integrated signature indicative of Floridan aquifer system ground water. Additional Sr isotopic ratios from a series of surficial and Lower Floridan well samples suggest dynamic ground water mixing, and do not provide clear evidence for a single hydrogeologic water source at the spring vent. In this karst-dominated aquifer, such energetic mixing at the vent feature is expected, and would be facilitated by conduit and fractured flow. Radium isotope activities were utilized to estimate flow-path trajectories and to provide information on potential travel times between an onshore well and the spring. Using either 223Ra and 224Ra or 228Ra, and qualifying this approach with several key assumptions, estimates of water mass travel times from an upper Floridan well in Crescent Beach to the submarine vent feature (distance =4050 m) are in the order of ??? 0.01-0.1 m min-1. ?? 2001 Elsevier Science B.V. All rights reserved.

  12. Application of the Systems Impact Assessment Model (SIAM) to Fishery Resource Issues in the Klamath River, California

    USGS Publications Warehouse

    Campbell, Sharon G.; Bartholow, John M.; Heasley, John

    2010-01-01

    At the request of two offices of the U.S. Fish and Wildlife Service (FWS) located in Yreka and Arcata, Calif., we applied the Systems Impact Assessment Model (SIAM) to analyze a variety of water management concerns associated with the Federal Energy Regulatory Commission (FERC) relicensing of the Klamath hydropower projects or with ongoing management of anadromous fish stocks in the mainstem Klamath River, Oregon and California. Requested SIAM analyses include predicted effects of reservoir withdrawal elevations, use of full active storage in Copco and Iron Gate Reservoirs to augment spring flows, and predicted spawning and juvenile outmigration timing of fall Chinook salmon. In an effort to further refine the analysis of spring flow effects on predicted fall Chinook production, additional SIAM analyses were performed for predicted response to spring flow release variability from Iron Gate Dam, high and low pulse flow releases, the predicted effects of operational constraints for both Upper Klamath Lake water surface elevations, and projected flow releases specified in the Klamath Project 2006 Operations Plan (April 10, 2006). Results of SIAM simulations to determine flow and water temperature relationships indicate that up to 4 degrees C of thermal variability can be attributed to flow variations, but the effect is seasonal. Much more of thermal variability can be attributed to air temperature variations, up to 6 degrees C. Reservoirs affect the annual thermal signature by delaying spring warming by about 3 weeks and fall cooling by about 2 weeks. Multi-level release outlets on Iron Gate Dam would have limited utility; however, if releases are small (700 cfs) and a near-surface and bottom-level outlet could be blended, then water temperature may be reduced by 2-4 degrees C for a 4-week period during September. Using the full active storage in Copco and Iron Gate Reservoir, although feasible, had undesirable ramifications such as earlier spring warming, loss of hydropower production, and inability to re-fill the reservoirs without causing shortages elsewhere in the system. Altering spawning and outmigration timing may be important management objectives for the salmon fishery, but difficult to implement. SIAM predicted benefits that might occur if water temperature was cooler in fall and spring emergence was advanced; however, model simulations were based on purely arbitrary thermal reductions. Spring flow variability did indicate that juvenile fall Chinook rearing habitat was the major biological 'bottleneck' for year class success. Rearing habitat is maximal in a range between 4,500 and 5,500 cfs below Iron Gate Dam. These flow levels are not typically provided by Klamath River system operations, except in very wet years. The incremental spring flow analysis provided insight into when and how long a pulse flow should occur to provide predicted fall Chinook salmon production increases. In general, March 15th - April 30th of any year was the period for pulse flows and 4000 cfs was the target flow release that provided near-optimal juvenile rearing habitat. Again, competition for water resources in the Klamath River Basin may make implementation of pulsed flows difficult.

  13. Droplet Impact on a Heated Surface under a Depressurized Environment

    NASA Astrophysics Data System (ADS)

    Hatakenaka, Ryuta; Tagawa, Yoshiyuki

    2016-11-01

    Behavior of a water droplet of the diameter 1-3mm impacting on a heated surface under depressurized environment (100kPa -1kPa) has been studied. A syringe pump for droplet generation and a heated plate are set into a transparent acrylic vacuum chamber. The internal pressure of the chamber is automatically controlled at a target pressure with a rotary pump, a pressure transducer, and an electrical valve. A silicon wafer of the thickness 0.28 mm is mounted on the heater plate, whose temperature is directly measured by attaching a thermocouple on the backside. The droplet behavior is captured using a high-speed camera in a direction perpendicular to droplet velocity. Some unique behaviors of droplet are observed by decreasing the environmental pressure, which are considered to be due to two basic elements: Enhancement of evaporation due to the lowered saturation temperature, and shortage of pneumatic spring effect between the droplet and heated wall due to the lowered pressure of the air.

  14. Locking mechanism for orthopedic braces

    NASA Technical Reports Server (NTRS)

    I-Lechao, J.; Epps, C. H., Jr. (Inventor)

    1976-01-01

    A locking mechanism for orthopedic braces is described which automatically prevents or permits the relative pivotable movement between a lower brace member and an upper brace member. The upper and lower brace members are provided with drilled bores within which a slidable pin is disposed, and depending upon the inclination of the brace members with respect to a vertical plane, the slidable pin will be interposed between both brace members. The secondary or auxiliary latching device includes a spring biased, manually operable lever bar arrangement which is manually unlatched and automatically latched under the influence of the spring.

  15. International Earth Science Constellation Mission Operations Working Group September 27-29, 2016 Aqua Spring 2017 IAM Series

    NASA Technical Reports Server (NTRS)

    Good, Susan M.

    2016-01-01

    This Aqua Spring 2017 IAM Series powerpoint presentation will be presented at the MOWG meeting in Albuquerque, NM. Topics to be discussed are: recap Aqua 2016 IAM campaign maneuver results and post 2016 IAM MLT evolution; current DMU strategy; 2017 IAM campaign dates and planning; Aqua latest lifetime MLT team predictions. Susan Good is a contractor who supports David Tracewell in code 595 therefore this is being routed through 595. Eric Moyer, ESMO Deputy Project Manager-Technical has reviewed and approved this presentation.

  16. Penetrating ocular trauma from trampoline spring.

    PubMed

    Spokes, David; Siddiqui, Salina; Vize, Colin

    2010-02-01

    The case is presented of a 12-year old boy who sustained severe penetrating ocular trauma while playing on a domestic trampoline. A main spring broke under tension and the hook had struck the eye at high velocity and penetrated the sclera. Primary repair was undertaken but on review it became apparent the eye could not be salvaged. Evisceration was carried out and an orbital implant was placed. Post-operative cosmesis is acceptable. This type of injury has not been reported before. Adult supervision of children on trampolines is recommended to minimise the chance of serious injury.

  17. Pressure Safety: Advanced Live 11459

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, George

    Many Los Alamos National Laboratory (LANL) operations use pressure equipment and systems. Failure to follow proper procedures when designing or operating pressure systems can result in injuries to personnel and damage to equipment and/or the environment. This manual presents an overview of the requirements and recommendations that address the safe design and operation of pressure systems at LANL.

  18. Sun shield

    NASA Technical Reports Server (NTRS)

    Frank, Arthur M. (Inventor); Derespinis, Silvio F. (Inventor); Mockovciak, John, Jr. (Inventor)

    1987-01-01

    A shading device which is capable of compactly storing a flexible shade on a biased, window shade type spring roller is disclosed. It is controlled to deliver the shade selectively to either its operative shading or compact storage orientation.

  19. 75 FR 39665 - Marine Mammals; File No. 14534

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Office of Science and Technology, Silver Spring, MD (Responsible Party: Ned Cyr, Director) has been... permit: (1) was applied for in good faith; (2) will not operate to the disadvantage of such endangered...

  20. Space suit bioenergetics: framework and analysis of unsuited and suited activity.

    PubMed

    Carr, Christopher E; Newman, Dava J

    2007-11-01

    Metabolic costs limit the duration and intensity of extravehicular activity (EVA), an essential component of future human missions to the Moon and Mars. Energetics Framework: We present a framework for comparison of energetics data across and between studies. This framework, applied to locomotion, differentiates between muscle efficiency and energy recovery, two concepts often confused in the literature. The human run-walk transition in Earth gravity occurs at the point for which energy recovery is approximately the same for walking and running, suggesting a possible role for recovery in gait transitions. Muscular Energetics: Muscle physiology limits the overall efficiency by which chemical energy is converted through metabolism to useful work. Unsuited Locomotion: Walking and running use different methods of energy storage and release. These differences contribute to the relative changes in the metabolic cost of walking and running as gravity is varied, with the metabolic cost of locomoting at a given velocity changing in proportion to gravity for running and less than in proportion for walking. Space Suits: Major factors affecting the energetic cost of suited movement include suit pressurization, gravity, velocity, surface slope, and space suit configuration. Apollo lunar surface EVA traverse metabolic rates, while unexpectedly low, were higher than other activity categories. The Lunar Roving Vehicle facilitated even lower metabolic rates, thus longer duration EVAs. Muscles and tendons act like springs during running; similarly, longitudinal pressure forces in gas pressure space suits allow spring-like storage and release of energy when suits are self-supporting.

  1. Direct and Indirect Effects of Tides on Ecosystem-Scale CO2 Exchange in a Brackish Tidal Marsh in Northern California

    NASA Astrophysics Data System (ADS)

    Knox, S. H.; Windham-Myers, L.; Anderson, F.; Sturtevant, C.; Bergamaschi, B.

    2018-03-01

    We investigated the direct and indirect influence of tides on net ecosystem exchange (NEE) of carbon dioxide (CO2) in a temperate brackish tidal marsh. NEE displayed a tidally driven pattern with obvious characteristics at the multiday scale, with greater net CO2 uptake during spring tides than neap tides. Based on the relative mutual information between NEE and biophysical variables, this was driven by a combination of higher water table depth (WTD), cooler air temperature, and lower vapor pressure deficit (VPD) during spring tides relative to neap tides, as the fortnightly tidal cycle not only influenced water levels but also strongly modulated water and air temperature and VPD. Tides also influenced NEE at shorter timescales, with a reduction in nighttime fluxes during growing season spring tides when the higher of the two semidiurnal tides caused inundation at the site. WTD significantly influenced ecosystem respiration (Reco), with lower Reco during spring tides than neap tides. While WTD did not appear to affect ecosystem photosynthesis (gross ecosystem production, GPP) directly, the impact of tides on temperature and VPD influenced GPP, with higher daily light-use efficiency and photosynthetic activity during spring tides than neap tides when temperature and VPD were lower. The strong direct and indirect influence of tides on NEE across the diel and multiday timescales has important implications for modeling NEE in tidal wetlands and can help inform the timing and frequency of chamber measurements as annual or seasonal net CO2 uptake may be underestimated if measurements are only taken during nonflooded periods.

  2. Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park.

    PubMed

    Pepe-Ranney, Charles; Berelson, William M; Corsetti, Frank A; Treants, Merika; Spear, John R

    2012-05-01

    Living stromatolites growing in a hot spring in Yellowstone National Park are composed of silica-encrusted cyanobacterial mats. Two cyanobacterial mat types grow on the stromatolite surfaces and are preserved as two distinct lithofacies. One mat is present when the stromatolites are submerged or at the water-atmosphere interface and the other when stromatolites protrude from the hot spring. The lithofacies created by the encrustation of submerged mats constitutes the bulk of the stromatolites, is comprised of silica-encrusted filaments, and is distinctly laminated. To better understand the cyanobacterial membership and community structure differences between the mats, we collected mat samples from each type. Molecular methods revealed that submerged mat cyanobacteria were predominantly one novel phylotype while the exposed mats were predominantly heterocystous phylotypes (Chlorogloeopsis HTF and Fischerella). The cyanobacterium dominating the submerged mat type does not belong in any of the subphylum groups of cyanobacteria recognized by the Ribosomal Database Project and has also been found in association with travertine stromatolites in a Southwest Japan hot spring. Cyanobacterial membership profiles indicate that the heterocystous phylotypes are 'rare biosphere' members of the submerged mats. The heterocystous phylotypes likely emerge when the water level of the hot spring drops. Environmental pressures tied to water level such as sulfide exposure and possibly oxygen tension may inhibit the heterocystous types in submerged mats. These living stromatolites are finely laminated and therefore, in texture, may better represent similarly laminated ancient forms compared with more coarsely laminated living marine examples. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Gas-enabled resonance and rectified motion of a piston in a vibrated housing filled with a viscous liquid

    DOE PAGES

    Romero, Louis A.; Torczynski, John R.; Clausen, Jonathan R.; ...

    2015-11-16

    Herein, we show how introducing a small amount of gas can completely change the motion of a solid object in a viscous liquid during vibration. We analyze an idealized system exhibiting this behavior: a piston moving in a liquid-filled housing, where the gaps between the piston and the housing are narrow and depend on the piston position. Recent experiments have shown that vibration causes some gas to move below the piston and the piston to subsequently move downward and compress its supporting spring. Herein, we analyze the analogous but simpler situation in which the gas regions are replaced by bellowsmore » with similar pressure-volume relationships. We show that these bellows form a spring (analogous to the pneumatic spring formed by the gas regions) which enables the piston and the liquid to oscillate in a mode that does not exist without this spring. This mode is referred to here as the Couette mode because the liquid in the gaps moves essentially in Couette flow (i.e., with almost no component of Poiseuille flow). Since Couette flow by itself produces extremely low damping, the Couette mode has a strong resonance. We show that, near this resonance, the dependence of the gap geometry on the piston position produces a large rectified (net) force on the piston during vibration. As a result, this force can be much larger than the piston weight and the strength of its supporting spring and is in the direction that decreases the flow resistance of the gap geometry.« less

  4. Seasonal change of phytoplankton (spring vs. summer) in the southern Patagonian shelf

    NASA Astrophysics Data System (ADS)

    Gonçalves-Araujo, Rafael; de Souza, Márcio Silva; Mendes, Carlos Rafael Borges; Tavano, Virginia Maria; Garcia, Carlos A. E.

    2016-08-01

    As part of the Patagonian Experiment (PATEX) project two sequential seasons (spring/summer 2007-2008) were sampled in the southern Patagonian shelf, when physical-chemical-biological (phytoplankton) data were collected. Phytoplankton biomass and community composition were assessed through both microscopic and high-performance liquid chromatography/chemical taxonomy (HPLC/CHEMTAX) techniques and related to both in situ and satellite data at spatial and seasonal scales. Phytoplankton seasonal variation was clearly modulated by water column thermohaline structure and nutrient dynamics [mainly dissolved inorganic nitrogen (DIN) and silicate]. The spring phytoplankton community showed elevated biomass and was dominated by diatoms [mainly Corethron pennatum and small (<20 μm) cells of Thalassiosira spp.], associated with a deeper and more weakly stratified upper mixed layer depth (UMLD) and relatively low nutrient concentrations, which were probably a result of consumption by the diatom bloom. In contrast, the phytoplankton community in summer presented lower biomass and was mainly dominated by haptophytes (primarily Emiliania huxleyi and Phaeocystis antarctica) and dinoflagellates, associated with shallower and well-stratified upper mixed layers with higher nutrient concentrations, likely due to lateral advection of nutrient-rich waters from the Malvinas Current. The gradual establishment of a strongly stratified and shallow UMLD as season progressed, was an important factor leading to the replacement of the spring diatom community by a dominance of calcifying organisms, as shown in remote sensing imagery and confirmed by microscopic examination. Furthermore, in spring, phaeopigments a (degradation products of chlorophyll a) relative to chlorophyll a, were twice that of summer, indicating the diatom bloom was under higher grazing pressure.

  5. Winter metabolic depression does not change arterial baroreflex control of heart rate in the tegu lizard Salvator merianae.

    PubMed

    Zena, Lucas A; Dantonio, Valter; Gargaglioni, Luciane H; Andrade, Denis V; Abe, Augusto S; Bícego, Kênia C

    2016-03-01

    Baroreflex regulation of blood pressure is important for maintaining appropriate tissue perfusion. Although temperature affects heart rate (fH) reflex regulation in some reptiles and toads, no data are available on the influence of temperature-independent metabolic states on baroreflex. The South American tegu lizard Salvator merianae exhibits a clear seasonal cycle of activity decreasing fH along with winter metabolic downregulation, independent of body temperature. Through pharmacological interventions (phenylephrine and sodium nitroprusside), the baroreflex control of fH was studied at ∼ 25 °C in spring-summer- and winter-acclimated tegus. In winter lizards, resting and minimum fH were lower than in spring-summer animals (respectively, 13.3 ± 0.82 versus 10.3 ± 0.81 and 11.2 ± 0.65 versus 7.97 ± 0.88 beats min(-1)), while no acclimation differences occurred in resting blood pressure (5.14 ± 0.38 versus 5.06 ± 0.56 kPa), baroreflex gain (94.3 ± 10.7 versus 138.7 ± 30.3% kPa(-1)) or rate-pressure product (an index of myocardial activity). Vagal tone exceeded the sympathetic tone of fH, especially in the winter group. Therefore, despite the lower fH, winter acclimation does not diminish the fH baroreflex responses or rate-pressure product, possibly because of increased stroke volume that may arise because of heart hypertrophy. Independent of acclimation, fH responded more to hypotension than to hypertension. This should imply that tegus, which have no pressure separation within the single heart ventricle, must have other protection mechanisms against pulmonary hypertension or oedema, presumably through lymphatic drainage and/or vagal vasoconstriction of pulmonary artery. Such a predominant fH reflex response to hypotension, previously observed in anurans, crocodilians and mammals, may be a common feature of tetrapods. © 2016. Published by The Company of Biologists Ltd.

  6. Sound velocity measurements of dhcp-FeHx up to 70 GPa using inelastic X-ray scattering: Implications for the abundance of hydrogen in the Earth's core

    NASA Astrophysics Data System (ADS)

    Shibazaki, Y.; Ohtani, E.; Fukui, H.; Sakai, T.; Kamada, S.; Baron, A. Q.; Nishitani, N.; Hirao, N.; Takemura, K.

    2011-12-01

    The Earth's interior has been directly investigated by seismic wave propagation and normal mode oscillation. In particular, the distributions of density and sound velocity are available to study the Earth's core (e.g. PREM). The inner core, which is solid state, is approximately 3 % less dense than pure iron (a core density deficit), and it is considered that the core consists of iron and light elements, such as hydrogen, carbon, oxygen, silicon, and sulfur. In this work, in order to constrain the abundance of hydrogen in the Earth's core by matching the density and sound velocity of FeHx to those of PREM, we determined the compressional sound velocity of iron hydride at high pressure using inelastic X-ray scattering (IXS). The IXS experiments and in situ X-ray diffraction (XRD) experiments were conducted up to 70 GPa and room temperature. High-pressure conditions were generated using a symmetric diamond anvil cell (DAC) with tungsten gaskets. Hydrogen initially pressurized to 0.18 GPa was loaded to the sample chamber. The IXS experiments were performed at BL35XU of the SPring-8 facility in Japan. The XRD experiments at high pressure were carried out by the angle dispersive method at BL10XU of the SPring-8 facility in Japan. The each XRD pattern of FeHx was collected after each IXS measurement in order to obtain directly the density of FeHx. Over the range of pressure studied, the diffraction lines of double-hexagonal close-packed (dhcp)-FeHx were observed and there were no diffraction lines of iron. We show that FeHx follows Birch's law for Vp above 37 GPa, namely a linear dependence between velocity and density. The estimated Vp, extrapolated to core conditions, is compared with PREM. Our results provide that the Earth's inner core could contain about 0.2 wt% hydrogen.

  7. Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)

    USGS Publications Warehouse

    Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín

    2013-01-01

    This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.

  8. Seasonal circulation over the Catalan inner-shelf (northwest Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Aretxabaleta, Alfredo L.; Pelegrí, Josep L.; Espino, Manuel; Warner, John C.; Sánchez-Arcilla, Agustín.

    2013-10-01

    This study characterizes the seasonal cycle of the Catalan inner-shelf circulation using observations and complementary numerical results. The relation between seasonal circulation and forcing mechanisms is explored through the depth-averaged momentum balance, for the period between May 2010 and April 2011, when velocity observations were partially available. The monthly-mean along-shelf flow is mainly controlled by the along-shelf pressure gradient and by surface and bottom stresses. During summer, fall, and winter, the along-shelf momentum balance is dominated by the barotropic pressure gradient and local winds. During spring, both wind stress and pressure gradient act in the same direction and are compensated by bottom stress. In the cross-shelf direction the dominant forces are in geostrophic balance, consistent with dynamic altimetry data.

  9. An analysis of geothermal and carbonic springs in the western United States sustained by deep fluid inputs.

    PubMed

    Colman, D R; Garcia, J R; Crossey, L J; Karlstrom, K; Jackson-Weaver, O; Takacs-Vesbach, C

    2014-01-01

    Hydrothermal springs harbor unique microbial communities that have provided insight into the early evolution of life, expanded known microbial diversity, and documented a deep Earth biosphere. Mesothermal (cool but above ambient temperature) continental springs, however, have largely been ignored although they may also harbor unique populations of micro-organisms influenced by deep subsurface fluid mixing with near surface fluids. We investigated the microbial communities of 28 mesothermal springs in diverse geologic provinces of the western United States that demonstrate differential mixing of deeply and shallowly circulated water. Culture-independent analysis of the communities yielded 1966 bacterial and 283 archaeal 16S rRNA gene sequences. The springs harbored diverse taxa and shared few operational taxonomic units (OTUs) across sites. The Proteobacteria phylum accounted for most of the dataset (81.2% of all 16S rRNA genes), with 31 other phyla/candidate divisions comprising the remainder. A small percentage (~6%) of bacterial 16S rRNA genes could not be classified at the phylum level, but were mostly distributed in those springs with greatest inputs of deeply sourced fluids. Archaeal diversity was limited to only four springs and was primarily composed of well-characterized Thaumarchaeota. Geochemistry across the dataset was varied, but statistical analyses suggested that greater input of deeply sourced fluids was correlated with community structure. Those with lesser input contained genera typical of surficial waters, while some of the springs with greater input may contain putatively chemolithotrophic communities. The results reported here expand our understanding of microbial diversity of continental geothermal systems and suggest that these communities are influenced by the geochemical and hydrologic characteristics arising from deeply sourced (mantle-derived) fluid mixing. The springs and communities we report here provide evidence for opportunities to understand new dimensions of continental geobiological processes where warm, highly reduced fluids are mixing with more oxidized surficial waters. © 2013 John Wiley & Sons Ltd.

  10. Diversity and Ecological Functions of Crenarchaeota in Terrestrial Hot Springs of Tengchong, China

    NASA Astrophysics Data System (ADS)

    Li, W.; Song, Z.; Chen, J.; Jiang, H.; Zhou, E.; Wang, F.; Xiao, X.; Zhang, C.

    2010-12-01

    The diversity and potential ecological functions of Crenarchaeota were investigated in eight terrestrial hot springs (pH: 2.8-7.7; temperature: 43.6-96 C) located in Tengchong, China, using 16S rRNA gene phylogenetic analysis. A total of 826 crenarchaeotal clones were analyzed and a total of 47 Operational taxonomic units (OTUs) were identified. Most (93%) of the identified OTUs were closely related (89-99%) to those retrieved from hot springs and other thermal environments. Our data showed that temperature may predominate over pH in affecting crenarchaeotal diversity in Tengchong hot springs. Crenarchaeotal diversity in moderate-temperature (59 to 77 C) hot springs was the highest, indicating that the moderate-temperature hot springs are more inclusive for Crenarchaeota. To understand what ecological functions these Crenarchaeota may play in Tengchong hot springs, we isolated the environmental RNA and constructed four cDNA clone libraries of the archaeal accA gene that encodes Acetyl CoA carboxylase. The accA gene represents one of the key enzymes responsible for the CO2 fixation in the 3-hydroxypropionate/4-hydroxybutyrate pathway. The results of phylogenetic analysis showed all the transcribed accA gene sequences can be classified into three large clusters, with the first one being affiliated with marine crenarchaeota, the second one with cultured crenarchaeota, and the third one with Chlorobi (Green sulfur bacteria), which have been proved to employ the 3-hydroxypropionate/4-hydroxybutyrate pathway. The long-branch distances of the phylogenetic tree suggest that these sequences represent novel accA-like gene. Our results also showed that sequences of the accA-like gene from the same hot spring belonged to one cluster, which suggests that a single crenarchaeotal group may fix CO2 via 3-hydroxypropionate/4-hydroxybutyrate pathway in the investigated hot springs.

  11. A power autonomous monopedal robot

    NASA Astrophysics Data System (ADS)

    Krupp, Benjamin T.; Pratt, Jerry E.

    2006-05-01

    We present the design and initial results of a power-autonomous planar monopedal robot. The robot is a gasoline powered, two degree of freedom robot that runs in a circle, constrained by a boom. The robot uses hydraulic Series Elastic Actuators, force-controllable actuators which provide high force fidelity, moderate bandwidth, and low impedance. The actuators are mounted in the body of the robot, with cable drives transmitting power to the hip and knee joints of the leg. A two-stroke, gasoline engine drives a constant displacement pump which pressurizes an accumulator. Absolute position and spring deflection of each of the Series Elastic Actuators are measured using linear encoders. The spring deflection is translated into force output and compared to desired force in a closed loop force-control algorithm implemented in software. The output signal of each force controller drives high performance servo valves which control flow to each of the pistons of the actuators. In designing the robot, we used a simulation-based iterative design approach. Preliminary estimates of the robot's physical parameters were based on past experience and used to create a physically realistic simulation model of the robot. Next, a control algorithm was implemented in simulation to produce planar hopping. Using the joint power requirements and range of motions from simulation, we worked backward specifying pulley diameter, piston diameter and stroke, hydraulic pressure and flow, servo valve flow and bandwidth, gear pump flow, and engine power requirements. Components that meet or exceed these specifications were chosen and integrated into the robot design. Using CAD software, we calculated the physical parameters of the robot design, replaced the original estimates with the CAD estimates, and produced new joint power requirements. We iterated on this process, resulting in a design which was prototyped and tested. The Monopod currently runs at approximately 1.2 m/s with the weight of all the power generating components, but powered from an off-board pump. On a test stand, the eventual on-board power system generates enough pressure and flow to meet the requirements of these runs and we are currently integrating the power system into the real robot. When operated from an off-board system without carrying the weight of the power generating components, the robot currently runs at approximately 2.25 m/s. Ongoing work is focused on integrating the power system into the robot, improving the control algorithm, and investigating methods for improving efficiency.

  12. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells

    NASA Astrophysics Data System (ADS)

    Mussa, Abdilbari Shifa; Klett, Matilda; Lindbergh, Göran; Lindström, Rakel Wreland

    2018-05-01

    The effects of external compression on the performance and ageing of NMC(1/3)/Graphite single-layer Li-ion pouch cells are investigated using a spring-loaded fixture. The influence of pressure (0.66, 0.99, 1.32, and 1.98 MPa) on impedance is characterized in fresh cells that are subsequently cycled at the given pressure levels. The aged cells are analyzed for capacity fade and impedance rise at the cell and electrode level. The effect of pressure distribution that may occur in large-format cells or in a battery pack is simulated using parallel connected cells. The results show that the kinetic and mass transport resistance increases with pressure in a fresh cell. An optimum pressure around 1.3 MPa is shown to be beneficial to reduce cyclable-lithium loss during cycling. The minor active mass losses observed in the electrodes are independent of the ageing pressure, whereas ageing pressure affects the charge transfer resistance of both NMC and graphite electrodes and the ohmic resistance of the cell. Pressure distribution induces current distribution but the enhanced current throughput at lower pressures cell does not accelerate its ageing. Conclusions from this work can explain some of the discrepancies in non-uniform ageing reported in the literature and indicate coupling between electrochemistry and mechanics.

  13. GOES-13 Satellite Sees a "Giant Apostrophe" from Strong Eastern U.S. Low Pressure

    NASA Image and Video Library

    2017-12-08

    NASA image captured April 12, 2011 at 1731 UTC (1:31 p.m. EDT) A giant swirl of clouds that form an apostrophe-like shape over the eastern U.S. was spotted in visible imagery from the Geostationary Operational Environmental Satellite, GOES-13 on April 12, 2011 at 1731 UTC (1:31 p.m. EDT). The GOES-13 satellite monitors weather over the eastern continental U.S. and Atlantic Ocean, while GOES-11 monitors the western U.S. and the Eastern Pacific Ocean. GOES-13 captured this image of the clouds associated with a strong upper level low pressure area that is moving though the Tennessee River Valley and bringing moderate to heavy rainfall as it moves eastward. The low is forecast by the National Weather Service to bring unsettled conditions to the Mid-Atlantic and then to New England late Tuesday and Wednesday as it tracks northeast. Severe thunderstorms are possible today in extreme eastern Virginia and North Carolina as the cold front associated with the low pushes through that region. Meanwhile, rainfall from the low stretches from Massachusetts south to Florida today. It seems that New Englanders are having a tough time getting warm spring weather and this low won't help as it moves north. The low pressure area may even bring some light to moderate snowfall on the northern fringe of the storm. The GOES series of satellites keep an eye on the weather happening over the continental U.S. and eastern Pacific and Atlantic Oceans. NASA's GOES Project, located at NASA's Goddard Space Flight Center in Greenbelt, Md., procures and manages the development and launch of the GOES series of satellites for NOAA and creates images and animations. The GOES satellites are operated by NOAA. Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  14. SNS Resonance Control Cooling Systems and Quadrupole Magnet Cooling Systems DIW Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magda, Karoly

    This report focuses on control of the water chemistry for the Spallation Neutron Source (SNS) Resonance Control Cooling System (RCCS)/Quadrupole Magnet Cooling System (QMCS) deionized water (DIW) cooling loops. Data collected from spring 2013 through spring 2016 are discussed, and an operations regime is recommended.It was found that the RCCS operates with an average pH of 7.24 for all lines (from 7.0 to 7.5, slightly alkaline), the average low dissolved oxygen is in the area of < 36 ppb, and the main loop average resistivity of is > 14 MΩ-cm. The QMCS was found to be operating in a similarmore » regime, with a slightly alkaline pH of 7.5 , low dissolved oxygen in the area of < 45 ppb, and main loop resistivity of 10 to 15 MΩ-cm. During data reading, operational corrections were done on the polishing loops to improve the water chemistry regime. Therefore some trends changed over time.It is recommended that the cooling loops operate in a regime in which the water has a resistivity that is as high as achievable, a dissolved oxygen concentration that is as low as achievable, and a neutral or slightly alkaline pH.« less

  15. 76 FR 23904 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Reef Fish Fishery of the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... restaurants will be hurt by this closure. People will start limiting their trips to the Gulf coast because of... shops, hotels, and restaurants. The Council considered several closure options, including spring and... owned and operated, is not dominant in its field of operation (including its affiliates), and has...

  16. Atmospheric LiDAR coupled with point measurement air quality samplers to measure fineparticulate matter (PM) emissions from agricultural operations. Part 2 of the California 2007 - 2008 Tillage Campaigns: Spring 2008 Data Analysis

    EPA Science Inventory

    Concern with health effects resulting from PM10 exposure is drawing increased regulatory scrutiny and research toward local agricultural tillage operations. To investigate the control effectiveness of one of the current Conservation Management Practices (CMPs) written for agricul...

  17. Connecting the Force from Space: The IRIS Joint Capability Technology Demonstration

    DTIC Science & Technology

    2010-01-01

    the Joint in Joint Capability Technology Demonstration, we have two sponsors, both U.S. Strategic Command and the Defense Information Systems...Capability Technology Demonstration will provide an excellent source of data on space-based Internet Protocol net- working. Operational... Internet Routing in Space Joint Capability Technology Demonstration Operational Manager, Space and Missile Defense Battle Lab, Colorado Springs

  18. 76 FR 31678 - Saratoga and North Creek Railway, LLC-Acquisition and Operation Exemption-Delaware and Hudson...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Canadian Pacific (CP) a permanent and exclusive freight rail easement over, and to operate, approximately... purpose of interchange with CP between Adirondack Branch milepost 39.44 and CP's yard at Saratoga Springs... owned by Iowa Pacific Holdings, LLC. \\2\\ CP sold the underlying track and right-of-way to the Town of...

  19. Umatilla Hatchery Satellite Facilities Operation and Maintenance; 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowan, Gerald D.

    1997-06-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam is used for holding and spawning adult fall chinookmore » and coho salmon. Bonifer, Minthorn, Imeques and Thornhollow facilities are operated for acclimation and release of juvenile salmon and summer steelhead. The main goal of acclimation is to reduce stress from trucking prior to release and improve imprinting of juvenile salmonids in the Umatilla River Basin. Juveniles are transported to the acclimation facilities primarily from Umatilla and Bonneville Hatcheries. This report details activities associated with operation and maintenance of the Bonifer, Minthorn, Imeques, Thornhollow and Three Mile Dam facilities in 1996.« less

  20. A major event of Antarctic ozone hole influence in southern Brazil in October 2016: an analysis of tropospheric and stratospheric dynamics

    NASA Astrophysics Data System (ADS)

    Dornelles Bittencourt, Gabriela; Bresciani, Caroline; Kirsch Pinheiro, Damaris; Valentin Bageston, José; Schuch, Nelson Jorge; Bencherif, Hassan; Paes Leme, Neusa; Vaz Peres, Lucas

    2018-03-01

    The Antarctic ozone hole is a cyclical phenomenon that occurs during the austral spring where there is a large decrease in ozone content in the Antarctic region. Ozone-poor air mass can be released and leave through the Antarctic ozone hole, thus reaching midlatitude regions. This phenomenon is known as the secondary effect of the Antarctic ozone hole. The objective of this study is to show how tropospheric and stratospheric dynamics behaved during the occurrence of this event. The ozone-poor air mass began to operate in the region on 20 October 2016. A reduction of ozone content of approximately 23 % was observed in relation to the climatology average recorded between 1992 and 2016. The same air mass persisted over the region and a drop of 19.8 % ozone content was observed on 21 October. Evidence of the 2016 event occurred through daily mean measurements of the total ozone column made with a surface instrument (Brewer MkIII no. 167 Spectrophotometer) located at the Southern Space Observatory (29.42° S, 53.87° W) in São Martinho da Serra, Rio Grande do Sul. Tropospheric dynamic analysis showed a post-frontal high pressure system on 20 and 21 October 2016, with pressure levels at sea level and thickness between 1000 and 500 hPa. Horizontal wind cuts at 250 hPa and omega values at 500 hPa revealed the presence of subtropical jet streams. When these streams were allied with positive omega values at 500 hPa and a high pressure system in southern Brazil and Uruguay, the advance of the ozone-poor air mass that caused intense reductions in total ozone content could be explained.

Top