Sample records for spring preventing gravity

  1. 75 FR 55461 - Airworthiness Directives; Bombardier, Inc. Model DHC-8-200 and DHC-8-300 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ..., preventing gravity feed. In the event of scavenge system failure, the collector tank fuel level can no longer... closed by the valve spring, preventing gravity feed. In the event of scavenge system failure, the... spring, preventing gravity feed. In the event of scavenge system failure, the collector tank fuel level...

  2. Altitude valve for railway suspension control system

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Zhang, Lihao; Li, Qingxuan; Chen, WanSong

    2017-09-01

    With the variation of people and material during vehicle service, the gravity of vehicle could be unbalanced. As a result it might cause accident. In order to solve this problem, altitude valve is assembled on board. It can adjust the gravity of vehicle by the intake and outlet progress of the spring in the altitude valve to prevent the tilt of vehicles.

  3. Delineating the Rattlesnake Springs, New Mexico Watershed Using Precision Gravity Techniques

    NASA Astrophysics Data System (ADS)

    Doser, D. I.; Boykov, N. D.; Baker, M. R.; Kaip, G. M.; Langford, R. P.

    2009-12-01

    Rattlesnake Springs serves as the sole domestic water source for Carlsbad Caverns National Park. The recent development of oil and gas leases and agricultural lands surrounding the springs has led to concern about contamination of the fracture controlled aquifer system. We have conducted a series of precision gravity surveys (station spacing 200 to 300 m in a 4 x 4 km area), combined with other geophysical studies and geologic mapping, to delineate possible fracture systems in the gypsum and carbonate bedrock that feed the spring system. Our combined results suggest several pathways for water to enter the springs. A series of WNW-ESE striking features are apparent in our gravity data that appear to align with relict spring valleys we have mapped to the west of the springs. A self potential survey indicates that water is entering the springs at a shallow level from the northwest direction. However, gravity data also indicate a north-south trending fracture system could be providing a pathway for water to enter from the south. This is consistent with drawdown tests conducted in the 1950’s and 1960’s on irrigation wells located to the south of the springs. The north-south fracture system appears related to a basin bounding fault system observed in the regional gravity data.

  4. Principal facts for a gravity survey of the Double Hot Springs Known Geothermal Resource Area, Humboldt County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, D.L.; Kaufmann, H.E.

    1978-01-01

    During July 1977, forty-nine gravity stations were obtained in the Double Hot Springs Known Geothermal Resource Area and vicinity, northwestern Nevada. The gravity observations were made with a Worden gravimeter having a scale factor of about 0.5 milligal per division. No terrain corrections have been applied to these data. The earth tide correction was not used in drift reduction. The Geodetic Reference System 1967 formula (International Association of Geodesy, 1967) was used to compute theoretical gravity.

  5. Principal facts for gravity stations in the Elko, Steptoe Valley, Coyote Spring Valley, and Sheep Range areas, eastern and southern Nevada

    USGS Publications Warehouse

    Berger, D.L.; Schaefer, D.H.; Frick, E.A.

    1990-01-01

    Principal facts for 537 gravity stations in the carbonate-rock province of eastern and southern Nevada are tabulated and presented. The gravity data were collected in support of groundwater studies in several valleys. The study areas include the Elko area, northern Steptoe Valley, Coyote Spring Valley, and the western Sheep Range area. The data for each site include values for latitude, longitude, altitude, observed gravity, free- air anomaly, terrain correction, and Bouguer anomaly (calculated at a bedrock density of 2.67 g/cu cm. (USGS)

  6. Preliminary Gravity and Magnetic Data of the Lake Pillsbury Region, Northern Coast Ranges, California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, Robert C.; Morin, Robert L.; McCabe, Craig A.

    2007-01-01

    The Lake Pillsbury region is transected by the Bartlett Springs Fault zone, one of the main strike-slip faults of the San Andreas system north of San Francisco Bay, California. Gravity and magnetic data were collected to help characterize the geometry and offset of the fault zone as well as determine the geometry of the Gravelly Valley pull-apart basin and Potter Valley, an alluvial intermontane basin southwest of Lake Pillsbury. The Bartlett Springs fault zone lies at the base of a significant gravity gradient. Superposed on the gradient is a small gravity low centered over Lake Pillsbury and Gravelly Valley. Another small gravity low coincides with Potter Valley. Inversion of gravity data for basin thickness indicates a maximum thickness of 400 and 440 m for the Gravelly and Potter Valley depressions, respectively. Ground magnetic data indicate that the regional aeromagnetic data likely suffer from positional errors, but that large, long-wavelength anomalies, sourced from serpentinite, may be offset 8 km along the Bartlett Springs Fault zone. Additional gravity data collected either on the lake surface or bottom and in Potter Valley would better determine the shape of the basins. A modern, high-resolution aeromagnetic survey would greatly augment the ability to map and model the fault geometry quantitatively.

  7. Microgravity methods for characterization of groundwater-storage changes and aquifer properties in the karstic Madison aquifer in the Black Hills of South Dakota, 2009-12

    USGS Publications Warehouse

    Koth, Karl R.; Long, Andrew J.

    2012-01-01

    A study of groundwater storage in the karstic Madison aquifer in the Black Hills of South Dakota using microgravity methods was conducted by the U.S. Geological Survey in cooperation with West Dakota Water Development District, South Dakota Department of Environment and Natural Resources, and Lawrence County. Microgravity measurements from 2009 to 2012 were used to investigate groundwater-storage changes and effective porosity in unconfined areas of the Madison aquifer. Time-lapse microgravity surveys that use portable high-sensitivity absolute and relative gravimeters indicated temporal-gravity changes as a result of changing groundwater mass. These extremely precise measurements of gravity required characterization and removal of internal instrumental and external environmental effects on gravity from the raw data. The corrected data allowed groundwater-storage volume to be quantified with an accuracy of about plus or minus 0.5 foot of water per unit area of aquifer. Quantification of groundwater-storage change, coupled with water-level data from observation wells located near the focus areas, also was used to calculate the effective porosity at specific altitudes directly beneath gravity stations. Gravity stations were established on bedrock outcrops in three separate focus areas for this study. The first area, the Spring Canyon focus area, is located to the south of Rapid City with one gravity station on the rim of Spring Canyon near the area where Spring Creek sinks into the Madison aquifer. The second area, the Doty focus area, is located on outcrops of the Madison Limestone and Minnelusa Formation to the northwest of Rapid City, and consists of nine gravity stations. The third area, the Limestone Plateau focus area, consists of a single gravity station in the northwestern Black Hills located on an outcrop of the Madison Limestone. An absolute-gravity station, used to tie relative-gravity survey data together, was established on a relatively impermeable bedrock outcrop to minimize groundwater-storage change at the reference location. Data from the three focus areas allow for interpretation of groundwater-storage characteristics using microgravity measurements. Gravity measurements, together with water-level data from an observation well located 2 miles from the Spring Canyon focus area and measured streamflow in Spring Creek, provided evidence that rapid groundwater-storage change, responding to changes in sinking streamflow over the recharge area of the aquifer, occurred in the Madison aquifer directly beneath the gravity station at Spring Canyon. This phenomenon likely was a result of groundwater movement through caverns, conduits, and fractures, which are common in karst aquifers. Spatially and temporally separated microgravity data for the Doty focus area indicated horizontal and vertical heterogeneity of effective porosity for the Madison aquifer. One such example of this was indicated by water-level measurements at an observation well and gravity measurements at four gravity stations in the southeastern part of the Doty area, which were used to estimate effective porosity values ranging from greater than 0 to 0.18. A decrease in groundwater storage determined by microgravity measurements during the spring recharge period for five upgradient stations in the Doty focus area indicated the possibility of rapid release and downgradient cascading of perched groundwater. Evidence for similar phenomena was documented for Wind Cave and Brooks Cave in the Black Hills. Absolute-gravity measurements at the Limestone Plateau focus area confirmed the relation between water levels in an observation well and changes in groundwater storage. Comparison of these gravity measurements with water levels in a nearby observation well resulted in an effective porosity estimate of 0.02 for the Madison aquifer beneath the gravity station.

  8. Corrigendum to ``Time stability of spring and superconducting gravimeters through the analysis of very long gravity record'' [J. Geodyn. 80, (2014) 20-33

    NASA Astrophysics Data System (ADS)

    Calvo, M.; Hinderer, J.; Rosat, S.; Legros, H.; Boy, J.-P.; Ducarme, B.; Zürn, W.

    2017-05-01

    In the paper ;Time stability of spring and superconducting gravimeters through the analysis of very long gravity record; by M. Calvo et al. (J. Geodyn. Vol. 80, pp. 20-33, doi:10.1016/j.jog.2014.04.009), Figs. 13 and 16 are incorrect.

  9. Implications of Preliminary Gravity and Magnetic Surveys to the Understanding of the Bartlett Springs Fault Zone, Northern California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Langenheim, V. E.; Jachens, R. C.; Morin, R. L.; McCabe, C. M.; Page, W. D.

    2007-12-01

    We use new gravity and magnetic data in the Lake Pillsbury region to help understand the geometry and character of the Bartlett Springs fault zone, one of the three main strands of the San Andreas system north of the San Francisco Bay area. We collected 153 new gravity stations in the Lake Pillsbury region that complement the sparse regional dataset and are used to estimate the thickness of Quaternary deposits in the inferred Gravelly Valley (Lake Pillsbury) pull-apart basin. We also collected 38 line-km of ground magnetic data on roads and 65 line-km by boat on the lake to supplement regional aeromagnetic surveys and to map concealed fault strands beneath the lake. The new gravity data show a significant northwest-striking gravity gradient at the base of which lies the Bartlett Springs fault zone. Superposed on this major east-facing gravity gradient is a 5 mGal low centered on Lake Pillsbury and Gravelly Valley. Inversion of the gravity field for basin thickness assuming a density contrast of 400 kg/m3 indicates the deepest part of the basin is about 400 m and located in the northern part of the valley, although the inversion lacks gravity stations within the lake. The basin is about 3 km wide and 5 km long and basin edges coincide with strands of the Bartlett Springs fault zone. Our gravity data suggest that Potter Valley, which lies between the Maacama and Bartlett Springs faults, is also as much as 400 m deep in the southern part of the valley, although additional data west of the valley would better isolate the gravity low. Geomorphologic characteristics of the valley suggest that this structure has been quiescent during the late Quaternary. Ground magnetic data are very noisy but the data in conjunction with 9.6 km-spaced NURE aeromagnetic lines suggest that regional analog aeromagnetic data flown in 1962 may suffer from location errors. The regional and NURE data show a northwest-striking magnetic high that extends across Lake Pillsbury. The northeast edge of this anomaly, caused by ultramafic rocks, coincides with the Bartlett Springs fault zone for nearly 15 km. Lake magnetic data indicate as many as three right-stepping strands of the Bartlett Springs fault zone within the gravity- defined pull-apart basin. Two pairs of magnetic anomalies appear to be dextrally offset along the fault, arguing for about 8-9 km of cumulative offset on the fault since the passage of the triple junction at about 3.5 Ma. This estimate is similar to proposed offsets of the Eel River (8.6-10.9 km) at Lake Pillsbury. The minimum long-term slip rate is thus 2.3-3.1 mm/yr, considerably slower than geodetic rates of 5-8 mm/yr. Seismicity forms a 5-km-wide diffuse zone along the Bartlett Springs fault zone in the Lake Pillsbury area, with fewer earthquakes about 5 km northwest of the lake and its associated magnetic anomaly. The McCreary Glade seismicity lineament, located between Potter Valley and Lake Pillsbury, has been attributed to a dike intrusion at depth or reactivation of an older structure. These earthquakes coincide with the northeast edge of a 100-km-long belt of aeromagnetic anomalies and thus appear to have reactivated an older basement feature. The coincidence of the Bartlett Springs fault zone and significant gravity gradients also argues that the much younger fault zone has reactivated older basement features. Our analysis shows that a modern, high-resolution aeromagnetic survey is needed to confirm these preliminary interpretations.

  10. The Study of Fault Lineament Pattern of the Lamongan Volcanic Field Using Gravity Data

    NASA Astrophysics Data System (ADS)

    Aziz, K. N.; Hartantyo, E.; Niasari, S. W.

    2018-04-01

    Lamongan Volcano located in Tiris, East Java, possesses geothermal potential energy. The geothermal potential was indicated by the presence of geothermal manifestations such as hot springs. We usedsecondary gravity data from GGMplus. The result of gravity anomaly map shows that there is the lowest gravity anomaly in the center of the study area coinciding with the hot spring location. Gravity data were analyzed using SVD method to identify fault structures. It controls the geothermal fluid pathways. The result of this research shows thatthe type of fault in hot springsisanormal fault with direction NW-SE. The fault lineament pattern along maaris NW-SE.Maar indicates anormal fault. As the result we know that gravity data from GGMplus which analyzed with SVD can be used to determine the type and trend of fault.

  11. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    NASA Astrophysics Data System (ADS)

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  12. Present status of marine gravity

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1978-01-01

    The technique of measuring gravity at sea was greatly improved by the development of spring-type surface-ship gravimeters which can be operated in a wide variety of sea conditions. A brief review of the most recent developments in marine gravity is presented. The extent of marine gravity data coverage is illustrated in a compilation map of the world's free-air gravity anomaly maps of the world's oceans. A brief discussion of some of the main results in the interpretation of marine gravity is given. Some comments made on recent determinations of the gravity field in oceanic regions using satellite radar altimeters are also presented.

  13. Thermal structure of the crust in Inner East Anatolia from aeromagnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Bektaş, Özcan

    2013-08-01

    Inner East Anatolia has many hot spring outcomes. In this study, the relationship between the thermal structure and hot spring outcomes is investigated. The residual aeromagnetic and gravity anomalies of the Inner East Anatolia, surveyed by the Mineral Research and Exploration (MTA) of Turkey, show complexities. The magnetic data were analyzed to produce Curie point depth estimates. The depth of magnetic dipole was calculated by azimuthally averaged power spectrum method for the whole area. The Curie point depth (CPD) map covering the Inner East Anatolia has been produced. The Curie point depths of the region between Sivas and Malatya vary from 16.5 to 18.7 km. Values of heat flow were calculated according to continental geotherm from the model. The heat flow values vary between 89 and 99 mW m-2. Heat flow values are incorporated with surface heat flow values. Gravity anomalies were modeled by means of a three-dimensional method. The deepest part of the basin (12-14 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Two-dimensional cross sections produced from the basin depths, Curie values and MOHO depths. Based on the analysis of magnetic, gravity anomalies, thermal structures and geology, it seems likely that the hot springs are not related to rising asthenosphere, in the regions of shallow CPDs (∼16.5 km), and mostly hot springs are related to faulting systems in Inner East Anatolia.

  14. String theory, gauge theory and quantum gravity. Proceedings. Trieste Spring School and Workshop on String Theory, Gauge Theory and Quantum Gravity, Trieste (Italy), 11 - 22 Apr 1994.

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The following topics were dealt with: string theory, gauge theory, quantum gravity, quantum geometry, black hole physics and information loss, second quantisation of the Wilson loop, 2D Yang-Mills theory, topological field theories, equivariant cohomology, superstring theory and fermion masses, supergravity, topological gravity, waves in string cosmology, superstring theories, 4D space-time.

  15. Dark Energy and Gravity: Yin and Yang of the Universe Artist Concept

    NASA Image and Video Library

    2011-05-19

    New results from NASA Galaxy Evolution Explorer and the Anglo-Australian Telescope atop Siding Spring Mountain in Australia confirm that dark energy is a smooth, uniform force that now dominates over the effects of gravity.

  16. Use of videos for students to see the effect of changing gravity on harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Benge, Raymond; Young, Charlotte; Worley, Alan; Davis, Shirley; Smith, Linda; Gell, Amber

    2010-03-01

    In introductory physics classes, students are introduced to harmonic oscillators such as masses on springs and the simple pendulum. In derivation of the equations describing these systems, the term ``g'' for the acceleration due to gravity cancels in the equation for the period of a mass oscillating on a spring, but it remains in the equation for the period of a pendulum. Frequently there is a homework problem asking how the system described would behave on the Moon, Mars, etc. Students have to have faith in the equations. In January, 2009, a team of community college faculty flew an experiment aboard an aircraft in conjunction with NASA's Microgravity University program. The experiment flown was a study in harmonic oscillator and pendulum behavior under various gravity situations. The aircraft simulated zero gravity, Martian, Lunar, and hypergravity conditions. The experiments were video recorded for students to study the behavior of the systems in varying gravity conditions. These videos are now available on the internet for anyone to use in introductory physics classes.

  17. Geo Techno Park potential at Arjuno-Welirang Volcano hosted geothermal area, Batu, East Java, Indonesia (Multi geophysical approach)

    NASA Astrophysics Data System (ADS)

    Maryanto, Sukir

    2017-11-01

    Arjuno Welirang Volcano Geothermal (AWVG) is located around Arjuno-Welirang Volcano in Malang, East Java, about 100 km southwest of Surabaya, the capital city of East Java province, and is still an undeveloped area of the geothermal field. The occurrence of solfatara and fumaroles with magmatic gasses indicated the existence of a volcanic geothermal system in the subsurface. A few hot springs are found in the Arjuno-Welirang volcanic complex, such as Padusan hot spring, Songgoriti hot spring, Kasinan hot spring, and Cangar hot spring. Multi geophysical observations in AWVG complex was carried out in order to explore the subsurface structure in supporting the plan of Geo Techno Park at the location. Gravity, Magnetic, Microearthquake, and Electrical Resistivity Tomography (ERT) methods were used to investigate the major and minor active faulting zones whether hot springs circulation occurs in these zones. The gravity methods allowed us to locate the subsurface structure and to evaluate their geometrical relationship base on density anomaly. Magnetic methods allow us to discriminate conductive areas which could correspond to an increase in thermal fluid circulation in the investigated sites. Micro-earthquakes using particle motion analysis to locate the focal depth related with hydrothermal activity and electrical resistivity tomography survey offers methods to locate more detail subsurface structure and geothermal fluids near the surface by identifying areas affected by the geothermal fluid. The magnetic and gravity anomaly indicates the subsurface structure of AWVG is composed of basalt rock, sulfide minerals, sandstone, and volcanic rock with high minor active fault structure as a medium for fluid circulation. While using micro-earthquake data in AWVG shown shallow focal depth range approximate 60 meters which indicates shallow hydrothermal circulation in AWVG. The geothermal fluid circulation zones along the fault structure resulted in some hot springs in a central and north-western part of AWVG detected by the Electrical Resistivity Tomography, appear to be well correlated with corresponding features derived from the gravity, magnetic, and micro-earthquake survey. We just ongoing process to develop Arjuno Welirang Volcano & Geothermal Research Center (AWVGRC) located at Universitas Brawijaya Agro Techno Park, Cangar in the flank of Arjuno Welirang volcano complex. Due to our initial observations, AWVG has a great potential for a pilot project of an educational geo technopark development area.

  18. Spaceborne Gravity Gradiometers. Part 3: Instrument status and prospects

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Various technologies incorporated in the development of gravity gradiometers are demonstrated through descriptions of specific instruments. Concepts covered include: rotating, spherical, cryogenic, and superconducting gravity gradiometers with and without accelerometers. The application of superconducting cavity oscillators to mass-spring gradiometers, and cooperation of Italy's Piano Spaziale Nazionale with the Smithsonian Astrophysics Observatory in the design and development of a high sensitivity gradiometer are described. Schematics are provided for each instrument.

  19. A Numerical Study on Toppling Failure of a Jointed Rock Slope by Using the Distinct Lattice Spring Model

    NASA Astrophysics Data System (ADS)

    Lian, Ji-Jian; Li, Qin; Deng, Xi-Fei; Zhao, Gao-Feng; Chen, Zu-Yu

    2018-02-01

    In this work, toppling failure of a jointed rock slope is studied by using the distinct lattice spring model (DLSM). The gravity increase method (GIM) with a sub-step loading scheme is implemented in the DLSM to mimic the loading conditions of a centrifuge test. A classical centrifuge test for a jointed rock slope, previously simulated by the finite element method and the discrete element model, is simulated by using the GIM-DLSM. Reasonable boundary conditions are obtained through detailed comparisons among existing numerical solutions with experimental records. With calibrated boundary conditions, the influences of the tensional strength of the rock block, cohesion and friction angles of the joints, as well as the spacing and inclination angles of the joints, on the flexural toppling failure of the jointed rock slope are investigated by using the GIM-DLSM, leading to some insight into evaluating the state of flexural toppling failure for a jointed slope and effectively preventing the flexural toppling failure of jointed rock slopes.

  20. The Center of Mass of a Soft Spring

    ERIC Educational Resources Information Center

    Serna, Juan D.; Joshi, Amitabh

    2011-01-01

    This article uses calculus to find the center of mass of a soft, vertically suspended, cylindrical helical spring, which necessarily is stretched non-uniformly by the action of gravity. A general expression for the vertical position of the center of mass is obtained and compared with other results in the literature.

  1. Superconducting gravimeters reveal unprecedented details of changes related to volcanic processes

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Greco, Filippo; Cannavò, Flavio

    2017-04-01

    Continuous gravity measurements have been successfully carried out at a number of volcanoes around the world using spring gravimeters. Nevertheless, these instruments do not provide reliable measurements when used in continuous mode for weeks or more, because they are influenced by environmental factors and are subject to instrumental drift. Accordingly, most studies of continuous gravity at active volcanoes have focused on the analysis of changes over time-scales of minutes to a few days. An alternative to spring gravimeters for continuous measurements is given by superconducting gravimeters (SGs) that feature a much higher precision and stability than spring gravimeters. However, even the most portable SGs (e.g., the iGrav® by GWR) are not ideal for installation in the vicinity of active volcanic structures. Indeed, they require AC power at the installation site and some kind of hut or vault to house the instrumentation. At Mt. Etna, the installation of a mini-array of three SGs (distances of 3.5 to 15.5 km from the active craters) was begun in September 2014. To our knowledge, these are the first SGs ever installed on an active volcano. Signals from these instruments show hydrologically-induced components superimposed on small (a few microGal) gravity changes that are related to volcanic processes. Such changes, occurring over periods of minutes to weeks, would not be observable by spring gravimeters due to their intrinsic limitations regarding precision and long-term stability.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halliday, M.E.; Cook, K.L.

    Regional gravity data were collected in portions of the Pavant Range, Tushar Mountains, northern Sevier Plateau, the Antelope Range, and throughout Sevier Valley approximately between the towns of Richfield and Junction, Utah. Additionally, detailed gravity and ground magnetic data were collected in the vicinity of hot springs in both the Monroe and Joseph Known Geothermal Resource Areas (KGRA's) and subsurface geologic models were constructed. The regional gravity data were terrain corrected out to a distance of 167 km from the station and 948 gravity station values were compiled into a complete Bouguer gravity anomaly map of the survey area. Thismore » map shows a strong correlation with most structural features mapped in the survey area. Four regional gravity profiles were modeled using two-dimensional formerd and inverse algorithms.« less

  3. Improved Airborne Gravity Results Using New Relative Gravity Sensor Technology

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2013-12-01

    Airborne gravity data has contributed greatly to our knowledge of subsurface geophysics particularly in rugged and otherwise inaccessible areas such as Antarctica. Reliable high quality GPS data has renewed interest in improving the accuracy of airborne gravity systems and recent improvements in the electronic control of the sensor have increased the accuracy and ability of the classic Lacoste and Romberg zero length spring gravity meters to operate in turbulent air conditions. Lacoste and Romberg type gravity meters provide increased sensitivity over other relative gravity meters by utilizing a mass attached to a horizontal beam which is balanced by a ';zero length spring'. This type of dynamic gravity sensor is capable of measuring gravity changes on the order of 0.05 milliGals in laboratory conditions but more commonly 0.7 to 1 milliGal in survey use. The sensor may have errors induced by the electronics used to read the beam position as well as noise induced by unwanted accelerations, commonly turbulence, which moves the beam away from its ideal balance position otherwise known as the reading line. The sensor relies on a measuring screw controlled by a computer which attempts to bring the beam back to the reading line position. The beam is also heavily damped so that it does not react to most unwanted high frequency accelerations. However this heavily damped system is slow to react, particularly in turns where there are very high Eotvos effects. New sensor technology utilizes magnetic damping of the beam coupled with an active feedback system which acts to effectively keep the beam locked at the reading line position. The feedback system operates over the entire range of the system so there is now no requirement for a measuring screw. The feedback system operates at very high speed so that even large turbulent events have minimal impact on data quality and very little, if any, survey line data is lost because of large beam displacement errors. Airborne testing along with results from ground based van testing and laboratory results have shown that the new sensor provides more consistent gravity data, as measured by repeated line surveys, as well as preserving the inherent sensitivity of the Lacoste and Romberg zero length spring design. The sensor also provides reliability during survey operation as there is no mechanical counter screw. Results will be presented which show the advantages of the new sensor system over the current technology in both data quality and survey productivity. Applications include high resolution geoid mapping, crustal structure investigations and resource mapping of minerals, oil and gas.

  4. Implementation of the glacial rebound prestress advection correction in general-purpose finite element analysis software: Springs versus foundations

    NASA Astrophysics Data System (ADS)

    Schmidt, Peter; Lund, Björn; Hieronymus, Christoph

    2012-03-01

    When general-purpose finite element analysis software is used to model glacial isostatic adjustment (GIA), the first-order effect of prestress advection has to be accounted for by the user. We show here that the common use of elastic foundations at boundaries between materials of different densities will produce incorrect displacements, unless the boundary is perpendicular to the direction of gravity. This is due to the foundations always acting perpendicular to the surface to which they are attached, while the body force they represent always acts in the direction of gravity. If prestress advection is instead accounted for by the use of elastic spring elements in the direction of gravity, the representation will be correct. The use of springs adds a computation of the spring constants to the analysis. The spring constant for a particular node is defined by the product of the density contrast at the boundary, the gravitational acceleration, and the area supported by the node. To be consistent with the finite element formulation, the area is evaluated by integration of the nodal shape functions. We outline an algorithm for the calculation and include a Python script that integrates the shape functions over a bilinear quadrilateral element. For linear rectangular and triangular elements, the area supported by each node is equal to the element area divided the number of defining nodes, thereby simplifying the computation. This is, however, not true in the general nonrectangular case, and we demonstrate this with a simple 1-element model. The spring constant calculation is simple and performed in the preprocessing stage of the analysis. The time spent on the calculation is more than compensated for by a shorter analysis time, compared to that for a model with foundations. We illustrate the effects of using springs versus foundations with a simple two-dimensional GIA model of glacial loading, where the Earth model has an inclined boundary between the overlying elastic layer and the lower viscoelastic layer. Our example shows that the error introduced by the use of foundations is large enough to affect an analysis based on high-accuracy geodetic data.

  5. Analytical and Data Processing Techniques for Interpretation of Geophysical Survey Data with Special Application to Cavity Detection.

    DTIC Science & Technology

    1982-09-01

    MANATEE SPRINGS SAND RON AREA OF GRAVITY SURVEY CATFISH HOTEL 5 0 160 320 feet O 5 06 metors SUE’S SPRING Figure 3. Plan map of the Manatee Springs site...LOCOOHDINATL) 1100C lIv2O SHOTPOINT LOCAL XwDkVJATI0% (NONTM CIRECTIuN POSITIVE) K2 - -Ŕ 0 6 -6 • U Smm ~- i -m Smmm 0 i CROS5 COhT 1012’d:4 0O5/28ldd FILE

  6. Recharge area of the Umbulan spring on the basis of the geology, hydrochemistry and isotopic approach, a high discharge spring of the Bromo-Tengger volcano, East Java

    NASA Astrophysics Data System (ADS)

    Jourde, H.; Toulier, A.; Baud, B.; De Montety, V.; Leonardi, V.; Pistre, S.; Hendrayana, H.

    2017-12-01

    Hydrogeochemical analysis and geological mapping, together with water Isotopes analysis, were performed to identify the recharge area of Umbulan spring, a high discharge spring located in the Bromo-Tengger volcano. The volcanic edifice, situated in a tropical climatic context, is the origin of exceptionally high discharge springs in such a volcanic context. This is the case of Umbulan spring whose discharge is about 3500 l/s that supply drinking water to the city of Surabaya, the second biggest city of Indonesia. Groundwater flows through fractured/weathered andesitic lava flow and pyroclastic deposits. The main groundwater outlet corresponds to gravity springs on the flanks of the volcano and to artesian springs in the plain. To improve the hydrogeological knowledge of the study area, the geological mapping of the North volcano flank has been performed to identify the aquiferous formations and refine the geological limits defined in the literature. Based on this geological survey, a new geological map was proposed. Water samples of gravity springs, artesian springs and deep wells were collected with elevations ranging from 40 to 2700 m above sea level, for water major ions elements and stable isotope (δ18O, δD). The meteoric local gradient of δ18O is assessed from the water isotope contents of springs, which are considered as "local pluviometer" representative of the precipitation isotope content at a given elevation corresponding to the mean elevation of their recharge catchment. Based on the analysis of the meteoric local gradient of δ18O, the mean elevation of Umbulan spring recharge catchment ranges between 700 to 1300 m a.s.l, which in agreement with geological observations. Many interrogations subsist but these first hydrogeological data collected in the field allowed to propose a first conceptual model of the Bromo-Tengger volcano, which will help improving the hydrogeological knowledge of the study area and thus preserve and manage the groundwater resource of Bromo-Tengger volcano.

  7. Geologic map of the Mound Spring quadrangle, Nye and Clark Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Lundstrom, Scott C.; Mahan, Shannon; Blakely, Richard J.; Paces, James B.; Young, Owen D.; Workman, Jeremiah B.; Dixon, Gary L.

    2003-01-01

    The Mound Spring quadrangle, the southwestern-most 7.5' quadrangle of the area of the Las Vegas 1:100,000-scale quadrangle, is entirely within the Pahrump Valley, spanning the Nevada/California State line. New geologic mapping of the predominantly Quaternary materials is combined with new studies of gravity and geochronology in this quadrangle. Eleven predominantly fine-grained units are delineated, including playa sediment, dune sand, and deposits associated with several cycles of past groundwater discharge and distal fan sedimentation. These units are intercalated with 5 predominantly coarse-grained alluvial-fan and wash gravel units mainly derived from the Spring Mountains. The gravel units are distinguished on the basis of soil development and associated surficial characteristics. Thermoluminescence and U-series geochronology constrain most of the units to the Holocene and late and middle Pleistocene. Deposits of late Pleistocene groundwater discharge in the northeast part of the quadrangle are associated with a down-to-the-southwest fault zone that is expressed by surface fault scarps and a steep gravity gradient. The gravity field also defines a northwest-trending uplift along the State line, in which the oldest sediments are poorly exposed. About 2 km to the northeast a prominent southwest-facing erosional escarpment is formed by resistant beds in middle Pleistocene fine-grained sediments that dip northeast away from the uplift. These sediments include cycles of groundwater discharge that were probably caused by upwelling of southwesterly groundwater flow that encountered the horst.

  8. Spatial heterogeneities and variability of karst hydro-system : insights from geophysics

    NASA Astrophysics Data System (ADS)

    Champollion, C.; Fores, B.; Lesparre, N.; Frederic, N.

    2017-12-01

    Heterogeneous systems such as karsts or fractured hydro-systems are challenging for both scientist and groundwater resources management. Karsts heterogeneities prevent the comparison and moreover the combination of data representative of different scales: borehole water level can generally not be used directly to interpret spring flow dynamic for example. The spatial heterogeneity has also an impact on the temporal variability of groundwater transfer and storage. Karst hydro-systems have characteristic non linear relation between precipitation amount and discharge at the outlets with threshold effects and a large variability of groundwater transit times In the presentation, geophysical field experiments conducted in karst hydro-system in the south of France are used to investigate groundwater transfer and storage variability at a scale of a few hundred meters. We focus on the added value of both geophysical time-lapse gravity experiments and 2D ERT imaging of the subsurface heterogeneities. Both gravity and ERT results can only be interpreted with large ambiguity or some strong a priori: the relation between resistivity and water content is not unique; almost no information about the processes can be inferred from the groundwater stock variations. The present study demonstrate how the ERT and gravity field experiments can be interpreted together in a coherent scheme with less ambiguity. First the geological and hydro-meteorological context is presented. Then the ERT field experiment including the processing and the results are detailed in the section about geophysical imaging of the heterogeneities. The gravity double difference (S2D) time-lapse experiment is described in the section about geophysical monitoring of the temporal variability. The following discussion demonstrate the impact of both experiments on the interpretation in terms of processes and heterogeneities.

  9. Middeck zero-gravity dynamics experiment - Comparison of ground and flight test data

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett; Bicos, Andrew S.

    1992-01-01

    An analytic and experimental study of the changes in the modal parameters of space structural test articles from one- to zero-gravity is presented. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, made on a spring/wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, and ambient gravity level.

  10. Trajectory analysis of Polar Patrol Balloon (PPB) flights in the stratosphere over Antarctica in summer and spring: A preliminary result

    NASA Technical Reports Server (NTRS)

    Kanzawa, Hiroshi; Fujii, Ryoichi; Yamazaki, Koji; Yamanaka, Manabu D.

    1994-01-01

    Actual trajectories of two PPB's which flew in the Antarctic stratosphere in austral summer and spring are compared with those calculated based on objective analysis data of Japan Meteorological Agency (JMA). The differences between the actual and calculated trajectories are discussed to check reliability of the JMA objective analysis data for the stratosphere, and to detect subsynoptic scale variability due to gravity waves and others.

  11. Geophysical investigations of the geologic and hydrothermal framework of the Pilgrim Springs Geothermal Area, Alaska

    USGS Publications Warehouse

    Glen, Jonathan; McPhee, Darcy K.; Bedrosian, Paul A.

    2014-01-01

    Pilgrim Hot Springs, located on the Seward Peninsula in west-central Alaska, is characterized by hot springs, surrounding thawed regions, and elevated lake temperatures. The area is of interest because of its potential for providing renewable energy for Nome and nearby rural communities. We performed ground and airborne geophysical investigations of the Pilgrim Springs geothermal area to identify areas indicative of high heat flow and saline geothermal fluids, and to map key structures controlling hydrothermal fluid flow. Studies included ground gravity and magnetic measurements, as well as an airborne magnetic and frequency-domain electromagnetic (EM) survey. The structural and conceptual framework developed from this study provides critical information for future development of this resource and is relevant more generally to our understanding of geothermal systems in active extensional basins. Potential field data reveal the Pilgrim area displays a complex geophysical fabric reflecting a network of intersecting fault and fracture sets ranging from inherited basement structures to Tertiary faults. Resistivity models derived from the airborne EM data reveal resistivity anomalies in the upper 100 m of the subsurface that suggest elevated temperatures and the presence of saline fluids. A northwest trending fabric across the northeastern portion of the survey area parallels structures to the east that may be related to accommodation between the two major mountain ranges south (Kigluaik) and east (Bendeleben) of Pilgrim Springs. The area from the springs southward to the range front, however, is characterized by east-west trending, range-front-parallel anomalies likely caused by late Cenozoic structures associated with north-south extension that formed the basin. The area around the springs (~10 km2 ) is coincident with a circular magnetic high punctuated by several east-west trending magnetic lows, the most prominent occurring directly over the springs. These features possibly result from hydrothermal alteration imposed by fluids migrating along intra-basin faults related to recent north-south extension. The Pilgrim River valley is characterized by a NE-elongate gravity low that reveals a basin extending to depths of ~300 m beneath Pilgrim Springs and deepening to ~800 m to the southwest. The margins of the gravity low are sharply defined by northeasttrending gradients that probably reflect the edges of fault-bounded structural blocks. The southeastern edge of the low, which lies very close to the springs, also corresponds with prominent NE-striking anomalies seen in magnetic and resistivity models. Together, these features define a structure we refer to as the Northeast Fault. The location of the hot springs appears to be related to the intersection of the Northeast Fault with a N-oriented structure marked by the abrupt western edge of a resistivity low surrounding the hot springs. While the hot springs represent the primary outflow of geothermal fluids, additional outflow extends from the springs northeast along the Northeast fault to another thaw zone that we interpret to be a secondary region of concentrated upflow of geothermal fluids. The Northeast Fault apparently controls shallow geothermal fluid flow, and may also provide an important pathway conveying deep fluids to the shallow subsurface. We suggest that geothermal fluids may derive from a reservoir residing beneath the sediment basin southwest of the springs. If so, the shape of the basin, which narrows and shallows towards the springs, may funnel fluids beneath the springs where they intersect the Northeast Fault allowing them to reach the surface. An alternative pathway for reservoir fluids to reach intermediate to shallow depths may be afforded by the main Kigluaik range front fault that coincides with a resistivity anomaly possibly resulting from fluid flow and associated hydrothermal mineralization occurring within the fault zone.

  12. Relative importance of population size, fishing pressure and temperature on the spatial distribution of nine Northwest Atlantic groundfish stocks.

    PubMed

    Adams, Charles F; Alade, Larry A; Legault, Christopher M; O'Brien, Loretta; Palmer, Michael C; Sosebee, Katherine A; Traver, Michele L

    2018-01-01

    The spatial distribution of nine Northwest Atlantic groundfish stocks was documented using spatial indicators based on Northeast Fisheries Science Center spring and fall bottom trawl survey data, 1963-2016. We then evaluated the relative importance of population size, fishing pressure and bottom temperature on spatial distribution with an information theoretic approach. Northward movement in the spring was generally consistent with prior analyses, whereas changes in depth distribution and area occupancy were not. Only two stocks exhibited the same changes in spatiotemporal distribution in the fall as compared with the spring. Fishing pressure was the most important predictor of the center of gravity (i.e., bivariate mean location of the population) for the majority of stocks in the spring, whereas in the fall this was restricted to the east-west component. Fishing pressure was also the most important predictor of the dispersion around the center of gravity in both spring and fall. In contrast, biomass was the most important predictor of area occupancy for the majority of stocks in both seasons. The relative importance of bottom temperature was ranked highest in the fewest number of cases. This study shows that fishing pressure, in addition to the previously established role of climate, influences the spatial distribution of groundfish in the Northwest Atlantic. More broadly, this study is one of a small but growing body of literature to demonstrate that fishing pressure has an effect on the spatial distribution of marine resources. Future work must consider both fishing pressure and climate when examining mechanisms underlying fish distribution shifts.

  13. Relative importance of population size, fishing pressure and temperature on the spatial distribution of nine Northwest Atlantic groundfish stocks

    PubMed Central

    Alade, Larry A.; Legault, Christopher M.; O’Brien, Loretta; Palmer, Michael C.; Sosebee, Katherine A.; Traver, Michele L.

    2018-01-01

    The spatial distribution of nine Northwest Atlantic groundfish stocks was documented using spatial indicators based on Northeast Fisheries Science Center spring and fall bottom trawl survey data, 1963–2016. We then evaluated the relative importance of population size, fishing pressure and bottom temperature on spatial distribution with an information theoretic approach. Northward movement in the spring was generally consistent with prior analyses, whereas changes in depth distribution and area occupancy were not. Only two stocks exhibited the same changes in spatiotemporal distribution in the fall as compared with the spring. Fishing pressure was the most important predictor of the center of gravity (i.e., bivariate mean location of the population) for the majority of stocks in the spring, whereas in the fall this was restricted to the east-west component. Fishing pressure was also the most important predictor of the dispersion around the center of gravity in both spring and fall. In contrast, biomass was the most important predictor of area occupancy for the majority of stocks in both seasons. The relative importance of bottom temperature was ranked highest in the fewest number of cases. This study shows that fishing pressure, in addition to the previously established role of climate, influences the spatial distribution of groundfish in the Northwest Atlantic. More broadly, this study is one of a small but growing body of literature to demonstrate that fishing pressure has an effect on the spatial distribution of marine resources. Future work must consider both fishing pressure and climate when examining mechanisms underlying fish distribution shifts. PMID:29698454

  14. Geophysical model of Mt. Labo geothermal field, Southeastern Luzon, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Los Banos, C.F. Jr.; Layugan, D.B.; Maneja, F.C.

    1996-12-31

    The geophysical model of Mt. Labo geothermal field, based on the results of the regional gravity and magnetotelluric (MT) surveys, indicates a geothermal reservoir centered beneath the Mabahong Labo thermal ground. The heat source of the present hydrothermal system is provided by a cooling intrusive body, mapped as a gravity high, associated with the Mt. Labo volcanic activity. The geothermal fluids circulate along fractures within the low-density reservoir rocks of the Susung Dalaga Formation. This reservoir rock shows relatively high resistivity values of 30 to 40 ohm-m. Directly overlying the resistive reservoir, occurring between -1000 m to -1500 m, ismore » a thick alteration halo formed within the basal unit of the Labo Volcanics (Lbu). The predominantly hydrous, low-temperature clay minerals which compose the alteration halo give low resistivity values of 1 to 4 ohm-m. Outflow of hot fluids to the south-southwest, which possibly feeds the thermal springs at Kilbay and Alawihaw, may be channeled along the thinning low resistivity Lbu. The geophysical model also shows a possible separate hydrothermal system in the west associated with a relatively shallower intrusive body, also defined by positive gravity values. This intrusion, which could be related to the cluster of volcanic domes located south of Bakilid Fault, may provide the heat that drives the hot springs at Kilbay and Alawihaw. It could also be possible that the Kilbay and Alawihaw springs originate from both systems. Based on the interpretation of the gravity and MT data, wells LB-1D and LB-5D lie closest to the intrusive, LB-313 and LB-4D are located in the center of the resource, while LB-2D and LB-6D lie along the margin or outside of the resource. The size of this resource, as defined by the 5 ohm-m MT low resistivity anomaly, is about 10 sq. km.« less

  15. Breadboard development of a fluid infusion system

    NASA Technical Reports Server (NTRS)

    Thompson, R. W.

    1974-01-01

    A functional breadboard of a zero gravity Intravenous Infusion System (IVI) is presented. Major components described are: (1) infusate pack pressurizers; (2) pump module; (3) infusion set; and (4) electronic control package. The IVI breadboard was designed to demonstrate the feasibility of using the parallel solenoid pump and spring powered infusate source pressurizers for the emergency infusion of various liquids in a zero gravity environment. The IVI was tested for flow rate and sensitivity to back pressure at the needle. Results are presented.

  16. TEM and Gravity Data for Roosevelt Hot Springs, Utah FORGE Site

    DOE Data Explorer

    Hardwick, Christian; Nash, Greg

    2018-02-05

    This submission includes a gravity data in text format and as a GIS point shapefile and transient electromagnetic (TEM) raw data. Each text file additionally contains location data (UTM Zone 12, NAD83) and elevation (meters) data for that station. The gravity data shapefile was in part downloaded from PACES, University of Texas at El Paso, http://gis.utep.edu/subpages/GMData.html, and in part collected by the Utah Geological Survey (UGS) as part of the DOE GTO supported Utah FORGE geothermal energy project near Milford, Utah. The PACES data were examined and scrubbed to eliminate any questionable data. A 2.67 g/cm^3 reduction density was used for the Bouguer correction. The attribute table column headers for the gravity data shapefile are explained below. There is also metadata attached to the GIS shapefile. name: the individual gravity station name. HAE: height above ellipsoid [meter] NGVD29: vertical datum for geoid [meter] obs: observed gravity ERRG: gravity measurement error [mGal] IZTC: inner zone terrain correction [mGal] OZTC: outer zone terrain correction [mGal] Gfa: free air gravity gSBGA: Bouguer horizontal slab sCBGA: Complete Bouguer anomaly

  17. Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques

    DOE Data Explorer

    Khalid Hussein

    2012-02-01

    This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Colorado Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics.

  18. Are black holes springlike?

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  19. Superconducting gravity gradiometer and a test of inverse square law

    NASA Technical Reports Server (NTRS)

    Moody, M. V.; Paik, Ho Jung

    1989-01-01

    The equivalence principle prohibits the distinction of gravity from acceleration by a local measurement. However, by making a differential measurement of acceleration over a baseline, platform accelerations can be cancelled and gravity gradients detected. In an in-line superconducting gravity gradiometer, this differencing is accomplished with two spring-mass accelerometers in which the proof masses are confined to motion in a single degree of freedom and are coupled together by superconducting circuits. Platform motions appear as common mode accelerations and are cancelled by adjusting the ratio of two persistent currents in the sensing circuit. The sensing circuit is connected to a commercial SQUID amplifier to sense changes in the persistent currents generated by differential accelerations, i.e., gravity gradients. A three-axis gravity gradiometer is formed by mounting six accelerometers on the faces of a precision cube, with the accelerometers on opposite faces of the cube forming one of three in-line gradiometers. A dedicated satellite mission for mapping the earth's gravity field is an important one. Additional scientific goals are a test of the inverse square law to a part in 10(exp 10) at 100 km, and a test of the Lense-Thirring effect by detecting the relativistic gravity magnetic terms in the gravity gradient tensor for the earth.

  20. Space suit bioenergetics: framework and analysis of unsuited and suited activity.

    PubMed

    Carr, Christopher E; Newman, Dava J

    2007-11-01

    Metabolic costs limit the duration and intensity of extravehicular activity (EVA), an essential component of future human missions to the Moon and Mars. Energetics Framework: We present a framework for comparison of energetics data across and between studies. This framework, applied to locomotion, differentiates between muscle efficiency and energy recovery, two concepts often confused in the literature. The human run-walk transition in Earth gravity occurs at the point for which energy recovery is approximately the same for walking and running, suggesting a possible role for recovery in gait transitions. Muscular Energetics: Muscle physiology limits the overall efficiency by which chemical energy is converted through metabolism to useful work. Unsuited Locomotion: Walking and running use different methods of energy storage and release. These differences contribute to the relative changes in the metabolic cost of walking and running as gravity is varied, with the metabolic cost of locomoting at a given velocity changing in proportion to gravity for running and less than in proportion for walking. Space Suits: Major factors affecting the energetic cost of suited movement include suit pressurization, gravity, velocity, surface slope, and space suit configuration. Apollo lunar surface EVA traverse metabolic rates, while unexpectedly low, were higher than other activity categories. The Lunar Roving Vehicle facilitated even lower metabolic rates, thus longer duration EVAs. Muscles and tendons act like springs during running; similarly, longitudinal pressure forces in gas pressure space suits allow spring-like storage and release of energy when suits are self-supporting.

  1. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification

    NASA Astrophysics Data System (ADS)

    Fores, B.; Champollion, C.; Le Moigne, N.; Bayer, R.; Chéry, J.

    2017-01-01

    In this paper we present the potential of a new compact superconducting gravimeter (GWR iGrav) designed for groundwater monitoring. At first, 3 yr of continuous gravity data are evaluated and the performance of the instrument is investigated. With repeated absolute gravity measurements using a Micro-g Lacoste FG5, the calibration factor (-894.8 nm s-2 V-1) and the long-term drift of this instrument (45 nm s-2 yr-1) are estimated for the first time with a high precision and found to be respectively constant and linear for this particular iGrav. The low noise level performance is found similar to those of previous superconducting gravimeters and leads to gravity residuals coherent with local hydrology. The iGrav is located in a fully instrumented hydrogeophysical observatory on the Durzon karstic basin (Larzac plateau, south of France). Rain gauges and a flux tower (evapo-transpiration measurements) are used to evaluate the groundwater mass balance at the local scale. Water mass balance demonstrates that the karst is only capacitive: all the rainwater is temporarily stored in the matrix and fast transfers to the spring through fractures are insignificant in this area. Moreover, the upper part of the karst around the observatory appears to be representative of slow transfer of the whole catchment. Indeed, slow transfer estimated on the site fully supports the low-flow discharge at the only spring which represents all groundwater outflows from the catchment. In the last part of the paper, reservoir models are used to characterize the water transfer and storage processes. Particular highlights are done on the advantages of continuous gravity data (compared to repeated campaigns) and on the importance of local accurate meteorological data to limit misinterpretation of the gravity observations. The results are complementary with previous studies at the basin scale and show a clear potential for continuous gravity time-series assimilation in hydrological simulations, even on heterogeneous karstic systems.

  2. Gravity investigations of the Chickasaw National Recreation Area, south-central Oklahoma

    USGS Publications Warehouse

    Scheirer, Daniel S.; Scheirer, Allegra Hosford

    2006-01-01

    The geological configuration of the Arbuckle Uplift in the vicinity of Chickasaw National Recreation Area in south-central Oklahoma plays a governing role in the distribution of fresh and mineral springs within the park and in the existence of artesian wells in and around the park. A confining layer of well-cemented conglomerate lies immediately below the surface of the recreation area, and groundwater migrates from an area of meteoric recharge where rocks of the Arbuckle-Simpson Aquifer crop out as close as two kilometers to the east of the park. Prominent, Pennsylvanian-aged faults are exposed in the aquifer outcrop, and two of the fault traces project beneath the conglomerate cover toward two groups of springs within the northern section of the park. We conducted gravity fieldwork and analysis to investigate the subsurface extensions of these major faults beneath Chickasaw National Recreation Area. By defining gravity signatures of the faults where they are exposed, we infer that the Sulphur and Mill Creek Faults bend to the south-west where they are buried. The South Sulphur Fault may project westward linearly if it juxtaposes rocks that have a density contrast opposite that of that fault's density configuration in the Sulphur Syncline area. The Sulphur Syncline, whose eastern extent is exposed in the outcrop area of the Arbuckle-Simpson Aquifer, does not appear to extend beneath Chickasaw National Recreation Area nor the adjacent City of Sulphur. The South Sulphur Fault dips steeply northward, and its normal sense of offset suggests that the Sulphur Syncline is part of a graben. The Mill Creek Fault dips vertically, and the Reagan Fault dips southward, consistent with its being mapped as a thrust fault. The Sulphur and Mill Creek Synclines may have formed as pull-apart basins in a left-lateral, left-stepping strike-slip environment. The character of the gravity field of Chickasaw National Recreation Area is different from the lineated gravity field in the area of Arbuckle-Simpson Aquifer outcrop. This change in character is not due to the presence of the overlying conglomerate layer, which is quite thin (<100 m) in the area of the park with the springs. The presence of relatively high-density Precambrian basement rocks in a broader region suggests that significant gravity anomalies may arise from variations in basement topography. Understanding of the geological configuration of Chickasaw National Recreation Area can be improved by expanding the study area and by investigating complementary geophysical and borehole constraints of the subsurface.

  3. Geophysical Data from Spring Valley to Delamar Valley, East-Central Nevada

    USGS Publications Warehouse

    Mankinen, Edward A.; Roberts, Carter W.; McKee, Edwin H.; Chuchel, Bruce A.; Morin, Robert L.

    2007-01-01

    Cenozoic basins in eastern Nevada and western Utah constitute major ground-water recharge areas in the eastern part of the Great Basin and these were investigated to characterize the geologic framework of the region. Prior to these investigations, regional gravity coverage was variable over the region, adequate in some areas and very sparse in others. Cooperative studies described herein have established 1,447 new gravity stations in the region, providing a detailed description of density variations in the middle to upper crust. All previously available gravity data for the study area were evaluated to determine their reliability, prior to combining with our recent results and calculating an up-to-date isostatic residual gravity map of the area. A gravity inversion method was used to calculate depths to pre-Cenozoic basement rock and estimates of maximum alluvial/volcanic fill in the major valleys of the study area. The enhanced gravity coverage and the incorporation of lithologic information from several deep oil and gas wells yields a much improved view of subsurface shapes of these basins and provides insights useful for the development of hydrogeologic models for the region.

  4. Volcanic signatures in time gravity variations during the volcanic unrest on El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Sainz-Maza Aparicio, S.; Arnoso Sampedro, J.; Gonzalez Montesinos, F.; Martí Molist, J.

    2014-06-01

    Gravity changes occurring during the initial stage of the 2011-2012 El Hierro submarine eruption are interpreted in terms of the preeruptive signatures during the episode of unrest. Continuous gravity measurements were made at two sites on the island using the relative spring gravimeter LaCoste and Romberg gPhone-054. On 15 September 2011, an observed gravity decrease of 45 μGal, associated with the southward migration of seismic epicenters, is consistent with a lateral magma migration that occurred beneath the volcanic edifice, an apparently clear precursor of the eruption that took place 25 days later on 10 October 2011. High-frequency gravity signals also appeared on 6-11 October 2011, pointing to an occurring interaction between a magmatic intrusion and the ocean floor. These important gravity changes, with amplitudes varying from 10 to -90 μGal, during the first 3 days following the onset of the eruption are consistent with the northward migration of the eruptive focus along an active eruptive fissure. An apparent correlation of gravity variations with body tide vertical strain was also noted, which could indicate that concurrent tidal triggering occurred during the initial stage of the eruption.

  5. Modal parameters of space structures in 1 G and 0 G

    NASA Technical Reports Server (NTRS)

    Bicos, Andrew S.; Crawley, Edward F.; Barlow, Mark S.; Van Schoor, Marthinus C.; Masters, Brett

    1993-01-01

    Analytic and experimental results are presented from a study of the changes in the modal parameters of space structural test articles from one- to zero-gravity. Deployable, erectable, and rotary modules was assembled to form three one- and two-dimensional structures, in which variations in bracing wire and rotary joint preload could be introduced. The structures were modeled as if hanging from a suspension system in one gravity, and unconstrained, as if free floating in zero-gravity. The analysis is compared with ground experimental measurements, which were made on a spring-wire suspension system with a nominal plunge frequency of one Hertz, and with measurements made on the Shuttle middeck. The degree of change in linear modal parameters as well as the change in nonlinear nature of the response is examined. Trends in modal parameters are presented as a function of force amplitude, joint preload, reassembly, shipset, suspension, and ambient gravity level.

  6. Gravity, depth to consolidated rock, and soil temperature in the Elko area, northeastern Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.

    1988-01-01

    Soil Temperature measurements, made at a depth of 6.6 feet (2 meeters) at 35 locations in the study area, indicate a major thermal anomaly (66 degrees Celsius) southwest of Elko, an area of known hot-spring activity. 

  7. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Spring rigging. 229.65 Section 229.65....65 Spring rigging. (a) Protective construction or safety hangers shall be provided to prevent spring planks, spring seats or bolsters from dropping to track structure in event of a hanger or spring failure...

  8. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Spring rigging. 229.65 Section 229.65....65 Spring rigging. (a) Protective construction or safety hangers shall be provided to prevent spring planks, spring seats or bolsters from dropping to track structure in event of a hanger or spring failure...

  9. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Spring rigging. 229.65 Section 229.65....65 Spring rigging. (a) Protective construction or safety hangers shall be provided to prevent spring planks, spring seats or bolsters from dropping to track structure in event of a hanger or spring failure...

  10. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Spring rigging. 229.65 Section 229.65....65 Spring rigging. (a) Protective construction or safety hangers shall be provided to prevent spring planks, spring seats or bolsters from dropping to track structure in event of a hanger or spring failure...

  11. 49 CFR 229.65 - Spring rigging.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Spring rigging. 229.65 Section 229.65....65 Spring rigging. (a) Protective construction or safety hangers shall be provided to prevent spring planks, spring seats or bolsters from dropping to track structure in event of a hanger or spring failure...

  12. A historical review of gravimetric observations in Norway

    NASA Astrophysics Data System (ADS)

    Ragnvald Pettersen, Bjørn

    2016-10-01

    The first gravity determinations in Norway were made by Edward Sabine in 1823 with a pendulum instrument by Henry Kater. Seventy years later a Sterneck pendulum was acquired by the Norwegian Commission for the International Arc Measurements. It improved the precision and eventually reduced the bias of the absolute calibration from 85 to 15 mGal. The last pendulum observations in Norway were made in 1955 with an instrument from Cambridge University. At a precision of ±1 mGal, the purpose was to calibrate a section of the gravity line from Rome, Italy, to Hammerfest, Norway. Relative spring gravimeters were introduced in Norway in 1946 and were used to densify and expand the national gravity network. These data were used to produce regional geoids for Norway and adjacent ocean areas. Improved instrument precision allowed them to connect Norwegian and foreign fundamental stations as well. Extensive geophysical prospecting was made, as in other countries. The introduction of absolute gravimeters based on free-fall methods, especially after 2004, improved the calibration by 3 orders of magnitude and immediately revealed the secular changes of the gravity field in Norway. This was later confirmed by satellite gravimetry, which provides homogeneous data sets for global and regional gravity models. The first-ever determinations of gravity at sea were made by pendulum observations onboard the Norwegian polar vessel Fram during frozen-in conditions in the Arctic Ocean in 1893-1896. Simultaneously, an indirect method was developed at the University of Oslo for deducing gravity at sea with a hypsometer. The precision of both methods was greatly superseded by relative spring gravimeters 50 years later. They were employed extensively both at sea and on land. When GPS allowed precise positioning, relative gravimeters were mounted in airplanes to cover large areas of ocean faster than before. Gravimetry is currently being applied to study geodynamical phenomena relevant to climate change. The viscoelastic postglacial land uplift of Fennoscandia has been detected by terrestrial gravity time series as well as by satellite gravimetry. Corrections for local effects of snow load, hydrology, and ocean loading at coastal stations have been improved. The elastic adjustment of present-day melting of glaciers at Svalbard and in mainland Norway has been detected. Gravimetry is extensively employed at offshore oil facilities to monitor the subsidence of the ocean floor during oil and gas extraction.

  13. A simple microgravity table for the Orbiter or Space Station

    NASA Technical Reports Server (NTRS)

    Garriott, O. K.; Debra, D. B.

    1985-01-01

    Methods of limiting perturbations in microgravity experiments are proposed. An acceleration level below 10 to the -4th m/s-squared is necessary to maintain an undisturbed microgravity environment. Machinery vibrations, crew motion, and the firing of vernier thrusters produce acceleration levels greate than 10 to the -4th m/s-squared. The use of a weak spring system or simple electromagnets to isolate an experimental table from these factors is described. The manners in which crew motion and vernier firing are countered by the springs are examined. The steady acceleration caused by atmospheric drag, gravity gradient force, and steady rotation can be maintained below 10 to the -th m/s-squared; however, the springs can protect the table from these accelerations if required.

  14. 29 CFR 1918.63 - Chutes, gravity conveyors and rollers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Chutes, gravity conveyors and rollers. 1918.63 Section 1918... Equipment Other Than Ship's Gear § 1918.63 Chutes, gravity conveyors and rollers. (a) Chutes shall be of... and gravity conveyor roller sections shall be firmly placed and secured to prevent displacement...

  15. 29 CFR 1918.63 - Chutes, gravity conveyors and rollers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Chutes, gravity conveyors and rollers. 1918.63 Section 1918... Equipment Other Than Ship's Gear § 1918.63 Chutes, gravity conveyors and rollers. (a) Chutes shall be of... and gravity conveyor roller sections shall be firmly placed and secured to prevent displacement...

  16. 29 CFR 1918.63 - Chutes, gravity conveyors and rollers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Chutes, gravity conveyors and rollers. 1918.63 Section 1918... Equipment Other Than Ship's Gear § 1918.63 Chutes, gravity conveyors and rollers. (a) Chutes shall be of... and gravity conveyor roller sections shall be firmly placed and secured to prevent displacement...

  17. 29 CFR 1918.63 - Chutes, gravity conveyors and rollers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Chutes, gravity conveyors and rollers. 1918.63 Section 1918... Equipment Other Than Ship's Gear § 1918.63 Chutes, gravity conveyors and rollers. (a) Chutes shall be of... and gravity conveyor roller sections shall be firmly placed and secured to prevent displacement...

  18. 29 CFR 1918.63 - Chutes, gravity conveyors and rollers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Chutes, gravity conveyors and rollers. 1918.63 Section 1918... Equipment Other Than Ship's Gear § 1918.63 Chutes, gravity conveyors and rollers. (a) Chutes shall be of... and gravity conveyor roller sections shall be firmly placed and secured to prevent displacement...

  19. Gravity-assist engine for space propulsion

    NASA Astrophysics Data System (ADS)

    Bergstrom, Arne

    2014-06-01

    As a possible alternative to rockets, the present article describes a new type of engine for space travel, based on the gravity-assist concept for space propulsion. The new engine is to a great extent inspired by the conversion of rotational angular momentum to orbital angular momentum occurring in tidal locking between astronomical bodies. It is also greatly influenced by Minovitch's gravity-assist concept, which has revolutionized modern space technology, and without which the deep-space probes to the outer planets and beyond would not have been possible. Two of the three gravitating bodies in Minovitch's concept are in the gravity-assist engine discussed in this article replaced by an extremely massive ‘springbell' (in principle a spinning dumbbell with a powerful spring) incorporated into the spacecraft itself, and creating a three-body interaction when orbiting around a gravitating body. This makes gravity-assist propulsion possible without having to find suitably aligned astronomical bodies. Detailed numerical simulations are presented, showing how an actual spacecraft can use a ca 10-m diameter springbell engine in order to leave the earth's gravitational field and enter an escape trajectory towards interplanetary destinations.

  20. Design of an Extended Mission for GRAIL

    NASA Technical Reports Server (NTRS)

    Sweetser, Theodore H.; Wallace, Mark S.; Hatch, Sara J.; Roncoli, Ralph B.

    2012-01-01

    The GRAIL extended mission will extend the measurement of the lunar gravity field beyond what was achieved by the primary GRAIL mission this past spring (2012). By lowering the orbits of the two GRAIL spacecraft to less than half the altitude of the primary mission orbits on average, the resolution of the gravity field measurements will be improved by a factor of two, yielding a signicant improvement in our knowledge of the structure of the upper crust of the Moon. The challenges of flying so low and the design which will meet those challenges is presented here.

  1. The Common Forces: Conservative or Nonconservative?

    ERIC Educational Resources Information Center

    Keeports, David

    2006-01-01

    Of the forces commonly encountered when solving problems in Newtonian mechanics, introductory texts usually limit illustrations of the definitions of conservative and nonconservative forces to gravity, spring forces, kinetic friction and fluid resistance. However, at the expense of very little class time, the question of whether each of the common…

  2. A Smartphone Inertial Balance

    ERIC Educational Resources Information Center

    Barrera-Garrido, Azael

    2017-01-01

    In order to measure the mass of an object in the absence of gravity, one useful tool for many decades has been the inertial balance. One of the simplest forms of inertial balance is made by two mass holders or pans joined together with two stiff metal plates, which act as springs.

  3. Gravity and magnetic data across the Ghost Dance Fault in WT-2 Wash, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, H.W.; Sikora, R.F.

    1994-12-31

    Detailed gravity and ground magnetic data were obtained in September 1993 along a 4,650 ft-long profile across the Ghost Dance Fault system in WT-2 Wash. Gravity stations were established every 150 feet along the profile. Total-field magnetic measurements made initially every 50 ft along the profile, then remade every 20 ft through the fault zone. These new data are part of a geologic and geophysical study of the Ghost Dance Fault (GDF) which includes detailed geologic mapping, seismic reflection, and some drilling including geologic and geophysical logging. The Ghost Dance Fault is the only through-going fault that has been identifiedmore » within the potential repository for high-level radioactive waste at Yucca Mountain, Nevada. Preliminary gravity results show a distinct decrease of 0.1 to 0.2 mGal over a 600-ft-wide zone to the east of and including the mapped fault. The gravity decrease probably marks a zone of brecciation. Another fault-offset located about 2,000 ft to the east of the GDF was detected by seismic reflection data and is also marked by a distinct gravity low. The ground magnetic data show a 200-ft-wide magnetic low of about 400 nT centered about 100 ft east of the Ghost Dance Fault. The magnetic low probably marks a zone of brecciation within the normally polarized Topopah Spring Tuff, the top of which is about 170 ft below the surface, and which is known from drilling to extend to a depth of about 1,700 ft. Three-component magnetometer logging in drill hole WT-2 located about 2,700 ft east of the Ghost Dance Fault shows that the Topopah Spring Tuff is strongly polarized magnetically in this area, so that fault brecciation of a vertical zone within the Tuff could provide an average negative magnetic contrast of the 4 Am{sup {minus}1} needed to produce the 400 nT low observed at the surface.« less

  4. Methods of and apparatus for levitating an eddy current probe

    DOEpatents

    Stone, William J.

    1988-05-03

    An eddy current probe is supported against the force of gravity with an air earing while being urged horizontally toward the specimen being examined by a spring and displaced horizontally against the force of the spring pneumatically. The pneumatic displacement is accomplished by flowing air between a plenum chamber fixed with respect to the probe and the surface of the specimen. In this way, the surface of the specimen can be examined without making mechanical contact therewith while precisely controlling the distance at which the probe stands-off from the surface of the specimen.

  5. How to Build a Vacuum Spring-transport Package for Spinning Rotor Gauges

    PubMed Central

    Fedchak, James A.; Scherschligt, Julia; Sefa, Makfir

    2016-01-01

    The spinning rotor gauge (SRG) is a high-vacuum gauge often used as a secondary or transfer standard for vacuum pressures in the range of 1.0 x 10-4 Pa to 1.0 Pa. In this application, the SRGs are frequently transported to laboratories for calibration. Events can occur during transportation that change the rotor surface conditions, thus changing the calibration factor. To assure calibration stability, a spring-transport mechanism is often used to immobilize the rotor and keep it under vacuum during transport. It is also important to transport the spring-transport mechanism using packaging designed to minimize the risk of damage during shipping. In this manuscript, a detailed description is given on how to build a robust spring-transport mechanism and shipping container. Together these form a spring-transport package. The spring-transport package design was tested using drop-tests and the performance was found to be excellent. The present spring-transport mechanism design keeps the rotor immobilized when experiencing shocks of several hundred g (g = 9.8 m/sec2 and is the acceleration due to gravity), while the shipping container assures that the mechanism will not experience shocks greater than about 100 g during common shipping mishaps (as defined by industry standards). PMID:27078575

  6. Cavity detection and delineation research. Part 4: Microgravimetric survey: Manatee Springs Site, Florida

    NASA Astrophysics Data System (ADS)

    Butler, D. K.; Whitten, C. B.; Smith, F. L.

    1983-03-01

    Results of a microgravimetric survey at Manatee Springs, Levy County, Fla., are presented. The survey area was 100 by 400 ft, with 20-ft gravity station spacing, and with the long dimension of the area approximately perpendicular to the known trend of the main cavity. The main cavity is about 80 to 100 ft below the surface and has a cross section about 16 to 20 ft in height and 30 to 40 ft in width beneath the survey area. Using a density contrast of -1.3 g/cucm, the gravity anomaly is calculated to be -35 micro Gal with a width at half maximum of 205 ft. The microgravimetric survey results clearly indicate a broad negative anomaly coincident with the location and trend of the cavity system across the survey area. The anomaly magnitude and width are consistent with those calculated from the known depth and dimensions of the main cavity. In addition, a small, closed negative anomaly feature, superimposed on the broad negative feature due to the main cavity, satisfactorily delineated a small secondary cavity feature which was discovered and mapped by cave divers.

  7. Geothermal Exploration of the Winston Graben, Central New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Sophy, M. J.; Kelley, S. A.

    2011-12-01

    We are assessing the geothermal potential of the Winston Graben of central New Mexico using borehole temperature logs and geophysical data. The Winston Graben is a late Cenozoic rift basin, part of the larger Rio Grande rift, which is 5 to 10 km wide and 56 km long with northern and southern termini occurring at accommodation zones that coincide with late Cenozoic volcanic lineaments. The graben is interpreted to be symmetric based on geologic mapping, with 2 km of stratigraphic offset on both the western and eastern margins. The graben is bordered by the Black Range to the west and is separated from the Rio Grande valley by the Sierra Cuchillo, a horst block made of Paleozoic rocks intruded by a laccolith. Geothermal and geophysical data, including water table measurements, well temperature logs, thermal conductivity samples, bottom hole temperatures, water chemistry, and gravity data have been extracted from the New Mexico Geothermal Database, part of the National Geothermal Database, and the Geonet Gravity and Magnetic Dataset Repository. Combined with existing geologic maps of the Winston Graben and surroundings, these data help to identify spatial relationships between geologic structures and groundwater parameters and distribution. Geothermal gradients from industry temperature-depth well profiles range from 20°C/km to 60°C/km with a spatial distribution of higher gradients located on the eastern side of the Sierra Cuchillo horst, which is where a mapped warm spring is located. Lower thermal gradients were observed to the west in the groundwater recharge area of the basin. Analysis of Bouguer gravity data indicate a gravity low coinciding with the center of the Winston Graben, which is attributed to be the deepest part of the basin, symetrically surrounded by gravity highs. Gravity highs coincide with the middle Cenozoic Morenci and Chise volcanic lineaments along the northern and southern ends of the graben. The mapped warm spring occurs at the intersection of basin bounding faults and the Chise lineament. Water table gradient information from phreatic aquifers less than 75 meters deep suggests both along axis and cross axis flow direction within the basin. Because the temperature anomalies trend east-west and water table gradients trend north-south, a two component hydrogeologic system may exist. The east-west trend may be the result of deep groundwater, heated along its flowpath beneath the basin and the Sierra Cuchillo, being forced to the surface at structural zones. Major rift bounding faults along the Sierra Cuchillo horst block serve as fluid pathways for the existing warm springs, and a low temperature geothermal resource may have formed as deep warm, and shallow cool waters interact. Planned work on this project includes collecting hydrogen and oxygen isotopic data of precipitation and groundwater which may show distinct water chemistries of a two component system, continued temperature logging of deeper wells in order to understand temperature distributions at depth, and an increased number of gravity measurements of the southern end of the Winston Graben to improve mapping of the southern accommodation zone relative to the hydrogeologic system.

  8. Southern Argentina Agile Meteor Radar: Initial assessment of gravity wave momentum fluxes

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Hocking, W. K.

    2010-10-01

    The Southern Argentina Agile Meteor Radar (SAAMER) was installed on Tierra del Fuego (53.8°S) in May 2008 and has been operational since that time. This paper describes tests of the SAAMER ability to measure gravity wave momentum fluxes and applications of this capability during different seasons. Test results for specified mean, tidal, and gravity wavefields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the distribution of meteors throughout the diurnal cycle and averaged over a month allows characterization of both monthly mean profiles and diurnal variations of the gravity wave momentum fluxes. Applications of the same methods for real data suggest confidence in the monthly mean profiles and the composite day diurnal variations of gravity wave momentum fluxes at altitudes where meteor counts are sufficient to yield good statistical fits to the data. Monthly mean zonal winds and gravity wave momentum fluxes exhibit anticorrelations consistent with those seen at other midlatitude and high-latitude radars during austral spring and summer, when no strong local gravity wave sources are apparent. When stratospheric variances are significantly enhanced over the Drake Passage “hot spot” during austral winter, however, MLT winds and momentum fluxes over SAAMER exhibit very different correlations that suggest that MLT dynamics are strongly influenced by strong local gravity wave sources within this “hot spot.” SAAMER measurements of mean zonal and meridional winds at these times and their differences from measurements at a conjugate site provide further support for the unusual momentum flux measurements.

  9. Volcano-tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy

    USGS Publications Warehouse

    Di, Filippo M.; Lombardi, S.; Nappi, G.; Reimer, G.M.; Renzulli, A.; Toro, B.

    1999-01-01

    Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.

  10. Design of Ceramic Springs for Use in Semiconductor Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Kaforey, M. F.; Deeb, C. W.; Matthiesen, D. H.

    1999-01-01

    Segregation studies can be done in microgravity to reduce buoyancy driven convection and investigate diffusion-controlled growth during the growth of semiconductor crystals. During these experiments, it is necessary to prevent free surface formation in order to avoid surface tension driven convection (Marangoni convection). Semiconductor materials such as gallium arsenide and germanium shrink upon melting, so a spring is necessary to reduce the volume of the growth chamber and prevent the formation of a free surface when the sample melts. A spring used in this application must be able to withstand both the high temperature and the processing atmosphere. During the growth of gallium arsenide crystals during the GTE Labs/USAF/NASA GaAs GAS Program and during the CWRU GaAs programs aboard the First and Second United States microgravity Laboratories, springs made of pyrolytic boron nitride (PBN) leaves were used. The mechanical properties of these PBN springs have been investigated and springs having spring constants ranging from 0.25 N/mm to 25 N/mm were measured. With this improved understanding comes the ability to design springs for more general applications, and guidelines are given for optimizing the design of PBN springs for crystal growth applications.

  11. Focus on Varicose Veins

    MedlinePlus

    ... veins no longer work. Under the pressure of gravity these veins can continue to expand and, in ... flow from the legs toward the heart against gravity, while preventing reverse flow back down the legs. ...

  12. Combustion and fires in low gravity

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1994-01-01

    Fire safety always receives priority attention in NASA mission designs and operations, with emphasis on fire prevention and material acceptance standards. Recently, interest in spacecraft fire-safety research and development has increased because improved understanding of the significant differences between low-gravity and normal-gravity combustion suggests that present fire-safety techniques may be inadequate or, at best, non-optimal; and the complex and permanent orbital operations in Space Station Freedom demand a higher level of safety standards and practices. This presentation outlines current practices and problems in fire prevention and detection for spacecraft, specifically the Space Station Freedom's fire protection. Also addressed are current practices and problems in fire extinguishment for spacecraft.

  13. Postural hypotension and the anti-gravity suit.

    PubMed

    Brook, W H

    1994-10-01

    An air force anti-gravity suit, as used by fighter pilots to prevent loss of consciousness, has been successfully employed to treat severe postural hypotension in a patient with Shy-Drager syndrome. The definition of postural hypotension is reviewed, and reference is made to the previous use of the anti-gravity suit in the treatment of this condition.

  14. Spring control of wire harness loops

    NASA Technical Reports Server (NTRS)

    Curcio, P. J.

    1979-01-01

    Negator spring control guides wire harness between movable and fixed structure. It prevents electrical wire harness loop from jamming or being severed as wire moves in response to changes in position of aircraft rudder. Spring-loaded coiled cable controls wire loop regardless of rudder movement.

  15. Hydrologic Interpretations of Long-Term Gravity Records at Tucson, Arizona

    NASA Astrophysics Data System (ADS)

    Pool, D. R.; Kennedy, J.; MacQueen, P.; Niebauer, T. M.

    2016-12-01

    The USGS Arizona Water Science Center monitors groundwater storage using gravity methods at sites across the western United States. A site at the USGS office in Tucson serves as a test station that has been monitored since 1997 using several types of gravity meters. Prior to 2007, the site was observed twice each year by the National Geodetic Survey using an FG5 absolute gravity meter for the purpose of establishing control for local relative gravity surveys of aquifer storage change. Beginning in 2003 the site has also served as a reference to verify the accuracy of an A10 absolute gravity meter that is used for field surveys. The site is in an alluvial basin where gravity can vary with aquifer storage change caused by variable groundwater withdrawals, elevation change caused by aquifer compaction or expansion, and occasional recharge. In addition, continuous gravity records were collected for periods of several months using a super-conducting meter during 2010-2011 and using a spring-based gPhone meter during 2015-2016. The purpose of the continuous records was to provide more precise information about monthly and shorter period variations that could be related to variations in nearby groundwater withdrawals. The record of absolute gravity observations displays variations of as much as 35 microGal that correspond with local hydrologic variations documented from precipitation, streamflow, elevation, depths to water, and well pumping records. Depth to water in nearby wells display variations related to occasional local heavy precipitation events, runoff, recharge, and groundwater withdrawals. Increases in gravity that occur over periods of several months or longer correspond with occasional heavy precipitation and recharge. Periods of gravity decline occur during extended periods between recharge events and periods of increased local groundwater withdrawals. Analysis of the continuous records from both instruments indicate that groundwater drains slowly from storage in response to pumping variations, requiring several days or longer for the aquifer to drain, which is consistent with other hydrologic records.

  16. Nutrition Frontiers - Spring 2016 | Division of Cancer Prevention

    Cancer.gov

    Volume 7, Issue 2 The spring issue of Nutrition Frontiers showcases green tea's effect on human metabolism, fish oil — as a chemopreventive agent in myeloid leukemia and, with pectin, how they affect microRNA expression in the colon. Learn about our spotlight investigator, Dr. Richard Eckert, and his research on skin cancer prevention, upcoming announcements and more. |

  17. Experimental determination of airplane mass and inertial characteristics

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1974-01-01

    Current practices are evaluated for experimentally determining airplane center of gravity, moments of inertia, and products of inertia. The techniques discussed are applicable to bodies other than airplanes. In pitching- and rolling-moment-of-inertia investigations with the airplane mounted on and pivoted about knife edges, the nonlinear spring moments that occur at large amplitudes of oscillation can be eliminated by using the proper spring configuration. The single-point suspension double-pendulum technique for obtaining yawing moments of inertia, products of inertia, and the inclination of the principal axis provides accurate results from yaw-mode oscillation data, provided that the sway-mode effects are minimized by proper suspension rig design. Rocking-mode effects in the data can be isolated.

  18. Preliminary Correlations of Gravity and Topography from Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Tyler, G. L.; Smith, D. E.; Balmino, G. S.; Johnson, G. L.; Lemoine, F. G.; Neumann, G. A.; Phillips, R. J.; Sjogren, W. L.; Solomon, S. C.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft is currently in a 400-km altitude polar mapping orbit and scheduled to begin global mapping of Mars in March of 1999. Doppler tracking data collected in this Gravity Calibration Orbit prior to the nominal mapping mission combined with observations from the MGS Science Phasing Orbit in Spring - Summer 1999 and the Viking and mariner 9 orbiters has led to preliminary high resolution gravity fields. Spherical harmonic expansions have been performed to degree and order 70 and are characterized by the first high spatial resolution coverage of high latitudes. Topographic mapping by the Mars Orbiter Laser Altimeter on MGS is providing measurements of the height of the martian surface with sub-meter vertical resolution and 5-30 m absolute accuracy. Data obtained during the circular mapping phase are expected to provide the first high resolution measurements of surface heights in the southern hemisphere. The combination of gravity and topography measurements provides information on the structure of the planetary interior, i.e. the rigidity and distribution of internal density. The observations can also be used to address the mechanisms of support of surface topography. Preliminary results of correlations of gravity and topography at long planetary wavelengths will be presented and the implications for internal structure will be addressed.

  19. 29 CFR Appendix B to Subpart Cc of... - Assembly/Disassembly: Sample Procedures for Minimizing the Risk of Unintended Dangerous Boom...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... center of gravity of the load must be identified if that is necessary for the method used for maintaining... identify the center of gravity, measures designed to prevent unintended dangerous movement resulting from an inaccurate identification of the center of gravity must be used. An example of the application of...

  20. 29 CFR Appendix B to Subpart Cc of... - Assembly/Disassembly: Sample Procedures for Minimizing the Risk of Unintended Dangerous Boom...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... center of gravity of the load must be identified if that is necessary for the method used for maintaining... identify the center of gravity, measures designed to prevent unintended dangerous movement resulting from an inaccurate identification of the center of gravity must be used. An example of the application of...

  1. 29 CFR Appendix B to Subpart Cc of... - Assembly/Disassembly: Sample Procedures for Minimizing the Risk of Unintended Dangerous Boom...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... center of gravity of the load must be identified if that is necessary for the method used for maintaining... identify the center of gravity, measures designed to prevent unintended dangerous movement resulting from an inaccurate identification of the center of gravity must be used. An example of the application of...

  2. Locomotion in simulated microgravity: gravity replacement loads

    NASA Technical Reports Server (NTRS)

    McCrory, Jean L.; Baron, Heidi A.; Balkin, Sandy; Cavanagh, Peter R.

    2002-01-01

    BACKGROUND: When an astronaut walks or runs on a treadmill in microgravity, a subject load device (SLD) is used to return him or her back to the treadmill belt. The gravity replacement load (GRL) in the SLD is transferred, via a harness, to the pelvis and/or the shoulders. This research compared comfort and ground reaction forces during treadmill running in a microgravity locomotion simulator at GRLs of 60%, 80%, and 100% of body weight (BW). Two harness designs (shoulder springs only (SSO) and waist and shoulder springs (WSS)) were used. HYPOTHESES: 1) The 100% BW gravity replacement load conditions would be comfortably tolerated and would result in larger ground reaction forces and loading rates than the lower load conditions, and 2) the WSS harness would be more comfortable than the SSO harness. METHODS: Using the Penn State Zero Gravity Locomotion Simulator (ZLS), 8 subjects ran at 2.0 m x s(-1) (4.5 mph) for 3 min at each GRL setting in each harness. Subjective ratings of harness comfort, ground reaction forces, and GRL data were collected during the final minute of exercise. RESULTS: The 100% BW loading conditions were comfortably tolerated (2.3 on a scale of 0-10), although discomfort increased as the GRL increased. There were no overall differences in perceived comfort between the two harnesses. The loading rates (27.1, 33.8, 39.1 BW x s(-1)) and the magnitudes of the first (1.0, 1.4, 1.6 BW) and second (1.3, 1.7, 1.9 BW) peaks of the ground reaction force increased with increasing levels (60, 80, 100% BW respectively) of GRL. CONCLUSIONS: Subjects were able to tolerate a GRL of 100% BW well. The magnitude of the ground reaction force peaks and the loading rate is directly related to the magnitude of the GRL.

  3. Automated cycled sprinkler irrigation for spring frost protection of cranberries

    USDA-ARS?s Scientific Manuscript database

    Sprinkler irrigation is essential for preventing spring frost bud damage in cranberry (Vaccinium macrocarpon Ait). Risk-averse growers have been reluctant to adopt the intermittent cycling of irrigation pumps as a standard management practice. In the spring of 2013 and 2014, an experiment was conduc...

  4. Too Fast to Measure: Network Adjustment of Rapidly Changing Gravity Fields

    NASA Astrophysics Data System (ADS)

    Kennedy, J.; Ferre, T. P. A.

    2014-12-01

    Measurements of spatially-variable gravity at the field scale are difficult; measurements of the time-varying field even more so. Every previous gravity survey using relative gravimeters—still the workhorse of gravity studies, despite their nearly 80 year history—has assumed a static gravity field during the course of a survey, which may last days to weeks. With recently-improved instrumentation, however, measurements of fields changing on the order of tens of nm/sec2 per day are now possible. In particular, the A-10 portable absolute gravimeter provides not only absolute control, but also the change in that control during the course of a survey. Using digitally-recording spring-based relative gravimeters (namely, the ZLS Burris meter and the Scintrex CG-5), with their more efficient data collection and lower drift than previous generations, many more data are collected in a day. We demonstrate a method for incorporating in the least-squares network adjustment of relative gravity data a relation between the rate of change of gravity, dg, and distance from an infiltration source, x. This relation accounts for the fact that gravity at stations adjacent to the infiltration source changes more rapidly than stations further away; if all measurements collected over several days are to be included in a single network-adjustment, consideration of this change is required. Two methods are used to simulate the dg(x) relation: a simple model where dg is a linear function of x, and a coupled-hydrogeophysical method where a groundwater flow model predicts the nonlinear spatial variation of dg. Then, the change in gravity between different, independently adjusted surveys is used to parameterize the groundwater model. Data from two recent field examples, an artificial recharge facility near Tucson, Arizona, USA, and from the 2014 Lower Colorado River pulse flow experiment, clearly show the need to account for gravity change during a survey; maximum rates of change for the two studies were up to 30 and 50 nm/sec2 per day, respectively.

  5. Geophysical Characterization of Groundwater-Fault Dynamics at San Andreas Oasis

    NASA Astrophysics Data System (ADS)

    Faherty, D.; Polet, J.; Osborn, S. G.

    2017-12-01

    The San Andreas Oasis has historically provided a reliable source of fresh water near the northeast margin of the Salton Sea, although since the recent completion of the Coachella Canal Lining Project and persistent drought in California, surface water at the site has begun to disappear. This may be an effect of the canal lining, however, the controls on groundwater are complicated by the presence of the Hidden Springs Fault (HSF), a northeast dipping normal fault that trends near the San Andreas Oasis. Its surface expression is apparent as a lineation against which all plant growth terminates, suggesting that it may form a partial barrier to subsurface groundwater flow. Numerous environmental studies have detailed the chemical evolution of waters resources at San Andreas Spring, although there remains a knowledge gap on the HSF and its relation to groundwater at the site. To better constrain flow paths and characterize groundwater-fault interactions, we have employed resistivity surveys near the surface trace of the HSF to generate profiles of lateral and depth-dependent variations in resistivity. The survey design is comprised of lines installed in Wenner Arrays, using an IRIS Syscal Kid, with 24 electrodes, at a maximum electrode spacing of 5 meters. In addition, we have gathered constraints on the geometry of the HSF using a combination of ground-based magnetic and gravity profiles, conducted with a GEM walking Proton Precession magnetometer and a Lacoste & Romberg gravimeter. Seventeen gravity measurements were acquired across the surface trace of the fault. Preliminary resistivity results depict a shallow conductor localized at the oasis and discontinuous across the HSF. Magnetic data reveal a large contrast in subsurface magnetic susceptibility that appears coincident with the surface trace and trend of the HSF, while gravity data suggests a shallow, relatively high density anomaly centered near the oasis. These data also hint at a second, previously undocumented fault bounding the opposite margin of the oasis and trending subparallel to the HSF. We thus speculate that the Hidden Springs Fault and this possible secondary fault act as partial barriers to lateral subsurface flow and form a structural wedge, localizing groundwater beneath the oasis.

  6. Containing Hair During Cutting In Zero Gravity

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1992-01-01

    Proposed device collects loose hair during barbering and shaving in zero gravity to prevent hair clippings from contaminating cabin of spacecraft. Folds for storage, opens into clear, bubblelike plastic dome surrounding user's head, tray fits around user's throat, and fanlike ring surrounds back of neck. Device fits snugly but comfortably around neck, preventing hair from escaping to outside. Flow of air into hose connected to suction pump removes hair from bubble as cut. Filter at end of hose collects hair.

  7. On the shape and orientation control of an orbiting shallow spherical shell structure

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Reddy, A. S. S. R.

    1982-01-01

    The dynamics of orbiting shallow flexible spherical shell structures under the influence of control actuators was studied. Control laws are developed to provide both attitude and shape control of the structure. The elastic modal frequencies for the fundamental and lower modes are closely grouped due to the effect of the shell curvature. The shell is gravity stabilized by a spring loaded dumbbell type damper attached at its apex. Control laws are developed based on the pole clustering techniques. Savings in fuel consumption can be realized by using the hybrid shell dumbbell system together with point actuators. It is indicated that instability may result by not including the orbital and first order gravity gradient effects in the plant prior to control law design.

  8. Wire insulation degradation and flammability in low gravity

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1994-01-01

    This view-graph presentation covers the following topics: an introduction to spacecraft fire safety, concerns in fire prevention in low gravity, shuttle wire insulation flammability experiment, drop tower risk-based fire safety experiment, and experimental results, conclusions, and proposed studies.

  9. Some physiological effects of alternation between zero gravity and one gravity

    NASA Technical Reports Server (NTRS)

    Graybiel, A.

    1977-01-01

    The anatomy and physiology of the healthy vestibular system and the history of its study, maintenance of muskuloskeletal fitness under low-gravity conditions, tests of motion sickness, and data and techniques on testing subjects in a slow rotation room, are covered. Components of the inner ear labyrinth and their behavior in relation to equilibrium, gravity and inertial forces, motion sickness, and dizziness are discussed. Preventive medicine, the biologically effective force environment, weightlessness per se, activity in a weightless spacecraft, exercizing required to maintain musculoskeletal function, and ataxia problems are dealt with.

  10. Baseflow index assessment and master recession curve analysis for karst water management in Kakap Spring, Gunung Sewu

    NASA Astrophysics Data System (ADS)

    Fatchurohman, H.; Adji, T. N.; Haryono, E.; Wijayanti, P.

    2018-04-01

    Karst terrain occurs in combination of high solubility rock and well developed secondary porosity. Over the time, groundwater resources have not been well managed including karst aquifers. Karst aquifers formed in a very complex hydrological system. Developed in fracture media and soluble rocks have led karst aquifers into various porosity types and aquifer properties. Karst spring hydrograph is an essential element for water resource management. The form of karst spring hydrograph reflects the aquifer characteristics. The shapes of flood discharge hydrographs represent aquifer responses to recharge and contain information about the interior condition of karst drainage basin. Every year, Gunung Sewu karst area is suffering to severe water scarcity. The development of sub-terrain drainage networks lead into the minimum surface water resources. Kakap Spring is perennial gravity spring that located adjacently to the border of Gunung Sewu and the alluvial formation of Baturetno. Kakap spring play vital role regarding water supply in Giriwoyo sub-district as the spring fulfill most of the water needs in Giriwoyo sub-district. Kakap Spring utilized by the local authorities as the main source for pipeline water and distributed to the households. Water level data series obtained using automatic water level data logger and then correlated with manual discharge measurement to generate stage-discharge rating curve. The stage-discharge rating curve formula for Kakap Spring calculated as y = 14,504e8,9763x with r2 value = 0.8582. From the MRC result, flow regimes formula determined as + 400 (1-0,005t) + 700 (1-0,01t)., indicated that the aquifer dominated by turbulent flow regime. From the MRC formula, the degree of karstification in Kakap Spring classified at eighth scale. The average baseflow index in Kakap Spring calculated using recession curve analysis with the BFI index = 0,7485.

  11. Skylab

    NASA Image and Video Library

    1972-08-21

    Rockford, Illinois high school student, Vincent Converse, discussed his proposed Skylab experiment with Dr. Robert Head (right) and Gene Greshman of Marshall Space Flight Center (MSFC). His experiment, “Zero Gravity Mass Measurement” used a simple leaf spring with the mass to be weighed attached to the end. The electronic package oscillated the spring at a specific rate and the results were recorded electronically. Converse was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of equipment, such as that of Converse’s experiment.

  12. NV PFA Regional Data

    DOE Data Explorer

    James Faulds

    2015-10-28

    This project focused on defining geothermal play fairways and development of a detailed geothermal potential map of a large transect across the Great Basin region (96,000 km2), with the primary objective of facilitating discovery of commercial-grade, blind geothermal fields (i.e. systems with no surface hot springs or fumaroles) and thereby accelerating geothermal development in this promising region. Data included in this submission consists of: structural settings (target areas, recency of faulting, slip and dilation potential, slip rates, quality), regional-scale strain rates, earthquake density and magnitude, gravity data, temperature at 3 km depth, permeability models, favorability models, degree of exploration and exploration opportunities, data from springs and wells, transmission lines and wilderness areas, and published maps and theses for the Nevada Play Fairway area.

  13. Gravity controlled anti-reverse rotation device

    DOEpatents

    Dickinson, Robert J.; Wetherill, Todd M.

    1983-01-01

    A gravity assisted anti-reverse rotation device for preventing reverse rotation of pumps and the like. A horizontally mounted pawl is disposed to mesh with a fixed ratchet preventing reverse rotation when the pawl is advanced into intercourse with the ratchet by a vertically mounted lever having a lumped mass. Gravitation action on the lumped mass urges the pawl into mesh with the ratchet, while centrifugal force on the lumped mass during forward, allowed rotation retracts the pawl away from the ratchet.

  14. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant increase in accuracy. Our presentation will also explore the impact of such an instrument on our theory of how to constrain the gravity datum and on how to ensure stability, repeatability, and reproducibility across different absolute gravimeter systems.

  15. Geologic structure of the Yucaipa area inferred from gravity data, San Bernardino and Riverside Counties, California

    USGS Publications Warehouse

    Mendez, Gregory O.; Langenheim, V.E.; Morita, Andrew; Danskin, Wesley R.

    2016-09-30

    In the spring of 2009, the U.S. Geological Survey, in cooperation with the San Bernardino Valley Municipal Water District, began working on a gravity survey in the Yucaipa area to explore the three-dimensional shape of the sedimentary fill (alluvial deposits) and the surface of the underlying crystalline basement rocks. As water use has increased in pace with rapid urbanization, water managers have need for better information about the subsurface geometry and the boundaries of groundwater subbasins in the Yucaipa area. The large density contrast between alluvial deposits and the crystalline basement complex permits using modeling of gravity data to estimate the thickness of alluvial deposits. The bottom of the alluvial deposits is considered to be the top of crystalline basement rocks. The gravity data, integrated with geologic information from surface outcrops and 51 subsurface borings (15 of which penetrated basement rock), indicated a complex basin configuration where steep slopes coincide with mapped faults―such as the Crafton Hills Fault and the eastern section of the Banning Fault―and concealed ridges separate hydrologically defined subbasins.Gravity measurements and well logs were the primary data sets used to define the thickness and structure of the groundwater basin. Gravity measurements were collected at 256 new locations along profiles that totaled approximately 104.6 km (65 mi) in length; these data supplemented previously collected gravity measurements. Gravity data were reduced to isostatic anomalies and separated into an anomaly field representing the valley fill. The ‘valley-fill-deposits gravity anomaly’ was converted to thickness by using an assumed, depth-varying density contrast between the alluvial deposits and the underlying bedrock.To help visualize the basin geometry, an animation of the elevation of the top of the basement-rocks was prepared. The animation “flies over” the Yucaipa groundwater basin, viewing the land surface, geology, faults, and ridges and valleys of the shaded-relief elevation of the top of the basement complex.

  16. Trans World Tidal Gravity Profile.

    DTIC Science & Technology

    1976-12-01

    LABORATORY AIR FORCE SYSTEMS COMMAN D __ UNITEI) STATES AIR FO RC E HANSCOIVI AFB , MASSACHUSETTS 0173 1 ‘ S ~~~~~ V — (~~~) REPORT DOCUMENTATION PAGE...the fundamental station established at Canberra. Uniformity is maintained with the Brussels fundamental station. It is assessed that the...as well as Canberra and Alice Springs still operatin ~; in 1976. Four new stations are described here Kuala Lumpur (~ a1a’~sja) The gravimeter

  17. Motor control of landing from a countermovement jump in simulated microgravity.

    PubMed

    Gambelli, C N; Theisen, D; Willems, P A; Schepens, B

    2016-05-15

    Landing from a jump implies proper positioning of the lower limb segments and the generation of an adequate muscular force to cope with the imminent collision with the ground. This study assesses how a hypogravitational environment affects the control of landing after a countermovement jump (CMJ). Eight participants performed submaximal CMJs on Earth (1-g condition) and in a weightlessness environment with simulated gravity conditions generated by a pull-down force (1-, 0.6-, 0.4-, and 0.2-g0 conditions). External forces applied to the body, movements of the lower limb segments, and muscular activity of six lower limb muscles were recorded. 1) All subjects were able to jump and stabilize their landing in all experimental conditions, except one subject in 0.2-g0 condition. 2) The mechanical behavior of lower limb muscles switches during landing from a stiff spring to a compliant spring associated with a damper. This is true whatever the environment, on Earth as well as in environments where sensory inputs are altered. 3) The motor control of landing in simulated 1 g0 reveals an increased "safety margin" strategy, illustrated by increased stiffness and damping coefficient compared with landing on Earth. 4) The motor command is adjusted to the task constraints: muscular activity of lower limb extensors and flexors, stiffness and damping coefficient decrease according to the decreased gravity level. Our results show that even if in daily living gravity can be perceived as a constant factor, subjects can cope with altered sensory signals, taking advantage of the remaining information (visual and/or decreased proprioceptive inputs). Copyright © 2016 the American Physiological Society.

  18. [The problem of artificial gravity: the present status and possible approaches].

    PubMed

    Kotovskaia, A R

    2008-01-01

    The author reviews the Russian and international literature on the potentialities of artificial gravity in extended piloted space flights, especially in view of the declared initiatives to set forth on exploration missions in the first part of this century. Physical deconditioning and loss of tolerance to the gravitational loads consistently have their effects on cosmonauts despite the large assortment of in-flight preventive procedures. Effectiveness of artificial gravity generated by the short-arm centrifuge (SAC) has been assessed in experiments simulating the physiological consequences of microgravity by immersion or HDT, and flown aboard the dedicated satellites. It is emphasized that all the data indiscriminately indicate effectiveness of SAC as a preventive and therapeutic instrument alleviating the negative effects of modeled microgravity. Open issues and research objectives are presented.

  19. A Study of Blood Flow and of Aggregation of Blood Cells Under Conditions of Zero Gravity: Its Relevance to the Occlusive Diseases and Cancer

    NASA Technical Reports Server (NTRS)

    Dintenfass, L.

    1985-01-01

    The objectives of this program are: (1) to determine whether the size of red cell aggregates, kinetics and morphology of these aggregates are influenced by near-zero gravity; (2) whether viscosity, especially at low shear rate, is afflicted by near-zero gravity (the latter preventing sedimentation of red cells); (3) whether the actual shape of red cells changes; and (4) whether blood samples obtained from different donors (normal and patients suffering from different disorders) react in the same manner to near-zero gravity.

  20. Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.

    PubMed

    Agrawal, Sunil K; Banala, Sai K; Fattah, Abbas; Sangwan, Vivek; Krishnamoorthy, Vijaya; Scholz, John P; Hsu, Wei-Li

    2007-09-01

    The gravity balancing exoskeleton, designed at University of Delaware, Newark, consists of rigid links, joints and springs, which are adjustable to the geometry and inertia of the leg of a human subject wearing it. This passive exoskeleton does not use any motors but is designed to unload the human leg joints from the gravity load over its range-of-motion. The underlying principle of gravity balancing is to make the potential energy of the combined leg-machine system invariant with configuration of the leg. Additionally, parameters of the exoskeleton can be changed to achieve a prescribed level of gravity assistance, from 0% to 100%. The goal of the results reported in this paper is to provide preliminary quantitative assessment of the changes in kinematics and kinetics of the walking gait when a human subject wears such an exoskeleton. The data on kinematics and kinetics were collected on four healthy and three stroke patients who wore this exoskeleton. These data were computed from the joint encoders and interface torque sensors mounted on the exoskeleton. This exoskeleton was also recently used for a six-week training of a chronic stroke patient, where the gravity assistance was progressively reduced from 100% to 0%. The results show a significant improvement in gait of the stroke patient in terms of range-of-motion of the hip and knee, weight bearing on the hemiparetic leg, and speed of walking. Currently, training studies are underway to assess the long-term effects of such a device on gait rehabilitation of hemiparetic stroke patients.

  1. A Preliminary Investigation of Caffeinated Alcohol Use During Spring Break.

    PubMed

    Linden-Carmichael, Ashley N; Lau-Barraco, Cathy

    2016-06-06

    Caffeinated alcoholic beverages (e.g., Red Bull and vodka) are popular but associated with negative consequences. CABs may be particularly popular during Spring Break, a potentially risky social event. We aimed to identify the prevalence of Spring Break caffeinated alcohol use, determine how caffeinated alcohol use Spring Break drinking habits differ from usual, and examine the association between Spring Break caffeinated alcohol use and alcohol-related problems. Data were collected from 95 college students during March of 2013 and 2014. Students completed questionnaires of their alcohol and caffeinated alcohol use before and during Spring Break and Spring Break alcohol-related problems. Approximately 54% of students used caffeinated alcohol during Spring Break. Spring Break caffeinated alcohol use was associated with more alcohol-related problems, even after controlling for other alcohol consumed and Spring Break vacation status. Caffeinated alcoholic beverages are commonly consumed during Spring Break and their use uniquely predicted harms. Prevention efforts placed on caffeinated alcoholic beverage users may be helpful in reducing Spring Break-related harms.

  2. Methods of Measuring Stress Relaxation in Composite Tape Springs

    DTIC Science & Technology

    2015-03-26

    plate in order to spread the load evenly and prevent excess torque . The plate also allows for force on the tape spring to be applied to the entire...aluminum squares that can be tightened to the base. The test fixture is secured to the marble base. The tape springs are folded in three locations with...top plate is pressed down by tightening the bolt on each nut. The tightening is complete when the tape spring just begins to create an M shape and

  3. Hydrological and geochemical processes constraining groundwater salinity in wetland areas related to evaporitic (karst) systems. A case study from Southern Spain

    NASA Astrophysics Data System (ADS)

    Gil-Márquez, J. M.; Barberá, J. A.; Andreo, B.; Mudarra, M.

    2017-01-01

    Chemical and isotopic evolution of groundwater in an evaporite karst plateau (including wetland areas and saline to hyper-saline springs) located at S Spain was studied. Physicochemical parameters, major ions and stable isotopes were analyzed in rain, brine spring, wetland and leakage water samples, from which the most common mineral saturation indexes were computed and geochemical and isotopic modelling were performed. Results show an apparent relationship between the elevation of brine springs and their water mineralization, indicating that drainage at higher altitude may be associated to gravity-driven flows, since brackish groundwater is isotopically fractionated due to evaporation. On the other hand, the lower altitude springs could drain deeper flows with longer residence time, resulting in highly mineralized and warmer (briny) groundwater. The dissolution of halite and gypsum has proved to be the main geochemical processes, which are favored by the great ionic strength of groundwater. Calcite precipitation occurs in brackish waters draining wetlands, being boosted by common ion effect (when CaSO4 waters are present) and solute concentration caused by evaporation. Modelling results strongly support the hypothesis that most of the selected springs geochemically evolve in a common (S-N) flowpath. The methods used in this research contribute to a better understanding of the hydrogeological processes occurring in the studied evaporitic system, but also in equivalent hydrological environments worldwide.

  4. Interpretation of Local Gravity Anomalies in Northern New York

    NASA Astrophysics Data System (ADS)

    Revetta, F. A.

    2004-05-01

    About 10,000 new gravity measurements at a station spacing of 1 to 2 Km were made in the Adirondack Mountains, Lake Champlain Valley, St. Lawrence River Valley and Tug Hill Plateau. These closely spaced gravity measurements were compiled to construct computer contoured gravity maps of the survey areas. The gravity measurements reveal local anomalies related to seismicity, faults, mineral resources and gas fields that are not seen in the regional gravity mapping. In northern New York gravity and seismicity maps indicate epicenters are concentrated in areas of the most pronounced gravity anomalies along steep gravity gradients. Zones of weakness along the contacts of these lithologies of different density could possibly account for the earthquakes in this high stress area. Also, a computer contoured gravity map of the 5.3 magnitude Au Sable Forks earthquake of April 20, 2002 indicates the epicenter lies along a north-south trending gravity gradient produced by a high angle fault structure separating a gravity low in the west from high gravity in the east. In the St. Lawrence Valley, the Carthage-Colton Mylonite Zone, a major northeast trending structural boundary between the Adirondack Highlands and Northwest Lowlands, is represented as a steep gravity gradient extending into the eastern shore of Lake Ontario. At Russell, New York near the CCMZ, a small circular shaped gravity high coincides with a cluster of earthquakes. The coincidence of the epicenters over the high may indicate stress amplification at the boundary of a gabbro pluton. The Morristown fault located in the Morristown Quadrangle in St. Lawrence County produces both gravity and magnetic anomalies due to Precambrian Basement faulting. This faulting indicates control of the Morristown fault in the overlying Paleozoics by the Precambrian faults. Gravity and magnetic anomalies also occur over proposed extensions of the Gloucester and Winchester Springs faults into northern New York. Gravity and magnetic surveys were conducted at the closed Benson Mines magnetite mine and the Zinc Mines at Balmat, New York. The gravity and magnetic anomalies at Benson Mines indicate that significant amounts of magnetite remain in the subsurface and the steep gradients indicate a shallow depth. A gravity high of 35 gravity units in the Sylvia Lake Zinc District at Balmat, New York occurs over the upper marble and a 100 gu anomaly occurs just northeast of the zinc district. Abandoned natural gas fields exist along the southern and southwestern boundary of the Tug Hill Plateau. Gravity surveys were conducted in the vicinity of three of these gas fields in the Tug Hill Plateau (Camden, Sandy Creek and Pulaski). The Tug Hill Plateau is thought to be an uplifted-fault-bounded block which, if correct, might account for the existence of those gas fields. The trends of the gravity contours on the gravity maps lends credence to the fault interpretation. Also gravity and magnetic traverses were conducted across faults in the Trenton-Black River. These traverses show gravity anomalies across the faults which indicate control by faulting in the Precambrian.

  5. A plant-inspired robot with soft differential bending capabilities.

    PubMed

    Sadeghi, A; Mondini, A; Del Dottore, E; Mattoli, V; Beccai, L; Taccola, S; Lucarotti, C; Totaro, M; Mazzolai, B

    2016-12-20

    We present the design and development of a plant-inspired robot, named Plantoid, with sensorized robotic roots. Natural roots have a multi-sensing capability and show a soft bending behaviour to follow or escape from various environmental parameters (i.e., tropisms). Analogously, we implement soft bending capabilities in our robotic roots by designing and integrating soft spring-based actuation (SSBA) systems using helical springs to transmit the motor power in a compliant manner. Each robotic tip integrates four different sensors, including customised flexible touch and innovative humidity sensors together with commercial gravity and temperature sensors. We show how the embedded sensing capabilities together with a root-inspired control algorithm lead to the implementation of tropic behaviours. Future applications for such plant-inspired technologies include soil monitoring and exploration, useful for agriculture and environmental fields.

  6. The network adjustment aimed for the campaigned gravity survey using a Bayesian approach: methodology and model test

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Liao, Xu; Ma, Hongsheng; Zhou, Longquan; Wang, Xingzhou; Zhuang, Jiancang

    2017-04-01

    The relative gravimeter, which generally uses zero-length springs as the gravity senor, is still as the first choice in the field of terrestrial gravity measurement because of its efficiency and low-cost. Because the drift rate of instrument can be changed with the time and meter, it is necessary for estimating the drift rate to back to the base or known gravity value stations for repeated measurement at regular hour's interval during the practical survey. However, the campaigned gravity survey for the large-scale region, which the distance of stations is far away from serval or tens kilometers, the frequent back to close measurement will highly reduce the gravity survey efficiency and extremely time-consuming. In this paper, we proposed a new gravity data adjustment method for estimating the meter drift by means of Bayesian statistical interference. In our approach, we assumed the change of drift rate is a smooth function depend on the time-lapse. The trade-off parameters were be used to control the fitting residuals. We employed the Akaike's Bayesian Information Criterion (ABIC) for the estimated these trade-off parameters. The comparison and analysis of simulated data between the classical and Bayesian adjustment show that our method is robust and has self-adaptive ability for facing to the unregularly non-linear meter drift. At last, we used this novel approach to process the realistic campaigned gravity data at the North China. Our adjustment method is suitable to recover the time-varied drift rate function of each meter, and also to detect the meter abnormal drift during the gravity survey. We also defined an alternative error estimation for the inversed gravity value at the each station on the basis of the marginal distribution theory. Acknowledgment: This research is supported by Science Foundation Institute of Geophysics, CEA from the Ministry of Science and Technology of China (Nos. DQJB16A05; DQJB16B07), China National Special Fund for Earthquake Scientific Research in Public Interest (Nos. 201508006; 201508009).

  7. New aerogravity and aeromagnetic anomaly data over Lomonosov Ridge and adjacent areas for bathymetric and tectonic mapping

    NASA Astrophysics Data System (ADS)

    Dossing, A.; Olesen, A. V.; Forsberg, R.

    2010-12-01

    Results of an 800 x 800 km aero-gravity and aeromagnetic survey (LOMGRAV) of the southern Lomonosov Ridge and surrounding area are presented. The survey was acquired by the Danish National Space Center, DTU in cooperation with National Resources Canada in spring 2009 as a net of ~NE-SW flight lines spaced 8-10 km apart. Nominal flight level was 2000 ft. We have compiled a detailed 2.5x2.5 km gravity anomaly grid based on the LOMGRAV data and existing data from the southern Arctic Ocean (NRL98/99) and the North Greenland continental margin (KMS98/99). The gravity grid reveals detailed, elongated high-low anomaly patterns over the Lomonosov Ridge which is interpreted as the presence of narrow ridges and subbasins. Distinct local topography is also interpreted over the southernmost part of the Lomonosov Ridge where existing bathymetry compilations suggest a smooth topography due to the lack of data. A new bathymetry model is presented for the region predicted by formalized inversion of the available gravity data. Finally, a detailed magnetic anomaly grid has been compiled from the LOMGRAV data and existing NRL98/99 and PMAP data. New tectonic features are revealed, particularly in the Amerasia Basin, compared with existing magnetic anomaly data from the region.

  8. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments.

    PubMed

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang; Tu, Liangcheng

    2017-11-18

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng / Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz . The accelerometer's designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng / Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer.

  9. A Subnano-g Electrostatic Force-Rebalanced Flexure Accelerometer for Gravity Gradient Instruments

    PubMed Central

    Yan, Shitao; Xie, Yafei; Zhang, Mengqi; Deng, Zhongguang

    2017-01-01

    A subnano-g electrostatic force-rebalanced flexure accelerometer is designed for the rotating accelerometer gravity gradient instrument. This accelerometer has a large proof mass, which is supported inversely by two pairs of parallel leaf springs and is centered between two fixed capacitor plates. This novel design enables the proof mass to move exactly along the sensitive direction and exhibits a high rejection ratio at its cross-axis directions. Benefiting from large proof mass, high vacuum packaging, and air-tight sealing, the thermal Brownian noise of the accelerometer is lowered down to less than 0.2 ng/Hz with a quality factor of 15 and a natural resonant frequency of about 7.4 Hz. The accelerometer’s designed measurement range is about ±1 mg. Based on the correlation analysis between a commercial triaxial seismometer and our accelerometer, the demonstrated self-noise of our accelerometers is reduced to lower than 0.3 ng/Hz over the frequency ranging from 0.2 to 2 Hz, which meets the requirement of the rotating accelerometer gravity gradiometer. PMID:29156587

  10. Artificial gravity for long duration spaceflight

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M.

    1989-01-01

    This paper reviews the fundamental physical properties of gravitational and centrifugal forces, describes the physiological changes that result from long-term exposure to the nearly gravity-free environment of space, and explores the nature of these changes. The paper then cites currently employed and advanced techniques that can be used to prevent some of these changes. Following this review, the paper examines the potential use of artificial gravity as the ultimate technique to maintain terrestrial levels of physiological functioning in space, and indicates some of the critical studies that must be conducted and some of the trade-offs that must be made before artificial gravity can intelligently be used for long duration spaceflight.

  11. The Biomechanics of Exercise Countermeasures

    NASA Technical Reports Server (NTRS)

    Cavanagh, Peter R.; Arnold, Steven; Derr, Janice; Sharkey, Neil; Wu, Ge

    1999-01-01

    The Penn State Zero-gravity Simulator (PSZS) is a device developed by the Center for Locomotion Studies (CELOS) to enable ground studies of exercise countermeasures for the bone loss that has been shown to occur during long-term exposure to zero gravity (0G). The PSZS simulates 0G exercise by providing a suspension system that holds an individual in a horizontal (supine) position above the floor in order to enable exercise on a wall-mounted treadmill. Due to this orientation, exercise performed in the PSZS is free of the force of -ravity in the direction that would normally contribute to ground reaction forces. In order for movements to be more similar to those in 0G, a constant force suspension of each segment (equal to the segment weight) is provided regardless of limb position. During the preliminary development of the PSZS, CELOS researchers also designed an optional gravity-replacement simulation feature for the PSZS. This feature was a prototype tethering system that consisted of a spring tension system to pull an exercising individual toward the treadmill. The immediate application of the tethering system was to be the provision of gravity-replacement loading so that exercise in 0G- and 1G-loading conditions could be compared, and the PSZS could then be used to evaluate exercise countermeasures for bone loss during space flight. This tethering system would also be a model for the further refinement of gravity-replacement systems provided for astronaut usage while performing prescribed exercise countermeasures for bone loss during long-term space flights.

  12. The JILA (Joint Institute for Laboratory Astrophysics) portable absolute gravity apparatus

    NASA Astrophysics Data System (ADS)

    Faller, J. E.; Guo, Y. G.; Gschwind, J.; Niebauer, T. M.; Rinker, R. L.; Xue, J.

    1983-08-01

    We have developed a new and highly portable absolute gravity apparatus based on the principles of free-fall laser interferometry. A primary concern over the past several years has been the detection, understanding, and elimination of systematic errors. In the Spring of 1982, we used this instrument to carry out a survey at twelve sites in the United States. Over a period of eight weeks, the instrument was driven a distance of nearly 20,000 km to sites in California, New Mexico, Colorado, Wyoming, Maryland, and Massachusetts. The time required to carry out a measurement at each location was typically one day. Over the next several years, our intention is to see absolute gravity measurements become both usable and used in the field. To this end, and in the context of cooperative research programs with a number of scientific institutes throughout the world, we are building additional instruments (incorporating further refinements) which are to be used for geodetic, geophysical, geological, and tectonic studies. With these new instruments we expect to improve (perhaps by a factor of two) on the 6-10 microgal accuracy of our present instrument. Today, one can make absolutely gravity measurements as accurately as - possibly even more accurately than - one can make relative measurements. Given reasonable success with the new instruments in the field, the last years of this century should see absolute gravity measurement mature both as a new geodetic data type and as a useful geophysical tool.

  13. The small but clear gravity signal above the natural cave 'Grotta Gigante' (Trieste, Italy)

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla; Sampietro, Daniele; Zuliani, David; Barbagallo, Alfio; Fabris, Paolo; Fabbri, Julius; Rossi, Lorenzo; Handi Mansi, Ahmed

    2014-05-01

    Gravity observations are a powerful means for detecting underground mass changes. The Italian and Slovenian Karst has a number of explored caves, several are also touristic due to their size (e.g. Grotta Gigante in Italy; Skocjianske Jame and Postojnska Jama in Slovenia). Just a few years ago another big cave was discovered by chance close to Trieste when drilling a tunnel for a motor-highway, which shows that more caves are expected to be discovered in coming years. We have acquired the gravity field above the Grotta Gigante cave, a cave roughly 100 m high and 200 m long with a traditional spring-gravity meter (Lacoste&Romberg) and height measurements made with GPS and total station. The GPS was made with two different teams and processing algorithms, to cross-check accuracy and error estimate. Some stations had to be surveyed with a classical instrument due to the vegetation which concealed the satellite positioning signal. Here we present the results of the positioning acquisitions and the gravity field. The cave produces a signal of 1.5 mGal, with a clear elongated concentric symmetry. The survey shows that a systematic coverage of the Karst would have the benefit to recover the position of all of the greater existing caves. This will have a large impact on civil and environmental purposes, since it will for example allow to plan the urban development at a safety distance from subsurface caves.

  14. Gravity-independent constant force resistive exercise unit

    NASA Technical Reports Server (NTRS)

    Colosky, Jr., Paul E. (Inventor); Ruttley, Tara M. (Inventor)

    2004-01-01

    This invention describes a novel gravity-independent exercise unit designed for use in microgravity, or on the ground, as a means by which to counter muscle atrophy and bone degradation due to disuse or underuse. Modular resistive packs comprising constant torque springs provide constant force opposing the withdrawal of an exercise cable from the device. In addition to uses within the space program, the compact resistive packs of the CFREU allow the unit to be small enough for easy use as a home gym for personal use, or as a supplement for rehabilitation programs. Resistive packs may be changed conveniently out of the CFREU according to the desired exercise regimen. Thus, the resistive packs replace the need for expensive, heavy, and bulky traditional weight plates. The CFREU may be employed by hospitals, rehabilitation and physical therapy clinics, and other related professional businesses.

  15. Conformal invariance and the metrication of the fundamental forces

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2016-07-01

    We revisit Weyl’s metrication (geometrization) of electromagnetism. We show that by making Weyl’s proposed geometric connection be pure imaginary, not only are we able to metricate electromagnetism, an underlying local conformal invariance makes the geometry be strictly Riemannian and prevents observational gravity from being complex. Via torsion, we achieve an analogous metrication for axial-vector fields. We generalize our procedure to Yang-Mills theories, and achieve a metrication of all the fundamental forces. Only in the gravity sector does our approach differ from the standard picture of fundamental forces, with our approach requiring that standard Einstein gravity be replaced by conformal gravity. We show that quantum conformal gravity is a consistent and unitary quantum gravitational theory, one that, unlike string theory, only requires four spacetime dimensions.

  16. Gravity brake

    DOEpatents

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  17. A new dimensionless number highlighted from mechanical energy exchange during running.

    PubMed

    Delattre, Nicolas; Moretto, Pierre

    2008-09-18

    This study aimed to highlight a new dimensionless number from mechanical energy transfer occurring at the centre of gravity (Cg) during running. We built two different-sized spring-mass models (SMM #1 and SMM #2). SMM #1 was built from the previously published data, and SMM #2 was built to be dynamically similar to SMM #1. The potential gravitational energy (E(P)), kinetic energy (E(K)), and potential elastic energy (E(E)) were taken into account to test our hypothesis. For both SMM #1 and SMM #2, N(Mo-Dela)=(E(P)+E(K))/E(E) reached the same mean value and was constant (4.1+/-0.7) between 30% and 70% of contact time. Values of N(Mo-Dela) obtained out of this time interval were due to the absence of E(E) at initial and final times of the simulation. This phenomenon does not occur during in vivo running because a leg muscle's pre-activation enables potential elastic energy storage prior to ground contact. Our findings also revealed that two different-sized spring-mass models bouncing with equal N(Mo-Dela) values moved in a dynamically similar fashion. N(Mo-Dela), which can be expressed by the combination of Strouhal and Froude numbers, could be of great interest in order to study animal and human locomotion under Earth's gravity or to induce dynamic similarity between different-sized individuals during bouncing gaits.

  18. Application of spring tabs to elevator controls

    NASA Technical Reports Server (NTRS)

    Phillips, William H

    1944-01-01

    Equations are presented for calculating the stick-force characteristics obtained with a spring-tab type of elevator control. The main problems encountered in the design of a satisfactory elevator spring tab are to provide stick forces in the desired range, to maintain the force per g sufficiently constant throughout the speed range, to avoid undesirable "feel" of the control in ground handling or in flight at low airspeeds, and to prevent flutter. Examples are presented to show the design features of spring tabs required to solve these problems for airplanes of various sizes.

  19. Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage.

    PubMed

    Li, G; Hu, H; Wu, K; Wang, G; Wang, L J

    2014-10-01

    For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.

  20. Ultra-low frequency vertical vibration isolator based on LaCoste spring linkage

    NASA Astrophysics Data System (ADS)

    Li, G.; Hu, H.; Wu, K.; Wang, G.; Wang, L. J.

    2014-10-01

    For the applications in precision measurement such as absolute gravimeter, we have designed and built an ultra-low frequency vertical vibration isolator based on LaCoste spring linkage. In the system, an arm with test mass is suspended by a mechanical extension spring, and one end of the arm is connected to the frame with flexible pivots. The displacement of the arm is detected by an optical reflection method. With the displacement signal, a feedback control force is exerted on the arm to keep it at the balance position. This method can also correct the systematic drift caused by temperature change. In order to study the vibration isolation performance of the system, we analyze the dynamic characteristics of the spring linkage in the general case, and present key methods to adjust the natural oscillating period of the system. With careful adjustment, the system can achieve a steady oscillation with a natural period up to 32 s. This isolator has been tested based on the T-1 absolute gravimeter. A statistical uncertainty of 2 μGal has been achieved within a typical 12 h measurement. The experimental results verify that the isolator has significant vibration isolation performance, and it is very suitable for applications in high precision absolute gravity measurement.

  1. [Metabolic processes in rat skeletal muscle after a flight on the Kosmos-936 biosatellite].

    PubMed

    Nosova, E A; Veresotskaia, N A; Kolchina, E V; Kurkina, L M; Belitskaia, R A

    1981-01-01

    The study of skeletal muscles of rats flown on Cosmos-936 demonstrated different metabolic reactions in muscle fibers of different function and type to weightlessness and Earth gravity. The data obtained gave evidence that artificial gravity may considerably prevent metabolic changes in muscles developing in response to specific effects of weightlessness.

  2. Preliminary examination of spring break alcohol use and related consequences.

    PubMed

    Lee, Christine M; Lewis, Melissa A; Neighbors, Clayton

    2009-12-01

    The authors examined the extent to which college student drinkers are at risk for experiencing negative alcohol-related consequences during Spring Break. A sample of first-year college student drinkers (N = 726) participated by completing an online survey assessing typical drinking, as well as Spring Break drinking and related consequences. Findings suggest Spring Break drinking was positively associated with alcohol-related consequences during Spring Break, even after controlling for sex and typical drinking. Furthermore, results indicated that typical drinking moderated the relationship between Spring Break drinking and expected zero-values (i.e., not reporting any Spring Break consequences), such that the association between Spring Break drinking and the likelihood of being a zero-score was less evident for those who are typically lighter drinkers. Identifying and examining temporal and contextually relevant events and associated drinking is critical for understanding and ultimately preventing extreme drinking and associated consequences associated with specific events like Spring Break, which place many students at high risk for experiencing acute harm. Copyright 2009 APA

  3. Survey of airborne pollen in Hubei province of China.

    PubMed

    Liu, Guang-hui; Zhu, Rong-fei; Zhang, Wei; Li, Wen-jing; Wang, Zhong-xi; Chen, Huan

    2008-12-01

    To study the genera and seasonal distribution of airborne pollen in Hubei province of China, and its relationship with pollinosis. From November 2003 to October 2004, an airborne pollen investigation was performed in 16 chosen areas in 12 cities of Hubei province using gravity sedimentation technique. Meanwhile, univalent skin prick tests of pollens were performed and the invasion season was studied on 2,300 patients with pollinosis. Among them, 352 cases underwent the airway responsiveness measurements, and the correlation between airway responsiveness and results of pollen count was analyzed. A total of 61 pollen genera were observed and 257,520 pollens were collected. The peak of airborne pollen distribution occurred in two seasons each year: spring (March and April) and autumn (from August to October). The attack of pollinosis corresponded to the peak of pollen distribution. There was a significantly negative relationship between the provocation dose causing a 20% decrease of forced expiratory volume in one second (FEV1) from baseline and airborne pollen concentration (r= -0.6829, P < 0.05). This study provides useful information for airborne pollen epidemiology of Hubei province, and it provides important insights to clinical prevention, diagnosis, and treatment of pollen-related allergic diseases.

  4. A novel variable-gravity simulation method: potential for astronaut training.

    PubMed

    Sussingham, J C; Cocks, F H

    1995-11-01

    Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.

  5. Conceptual Design Study on Bolts for Self-Loosing Preventable Threaded Fasteners

    NASA Astrophysics Data System (ADS)

    Noma, Atsushi; He, Jianmei

    2017-11-01

    Threaded fasteners using bolts is widely applied in industrial field as well as various fields. However, threaded fasteners using bolts have loosing problems and cause many accidents. In this study, the purpose is to obtain self-loosing preventable threaded fasteners by applying spring characteristic effects on bolt structures. Helical-cutting applied bolt structures is introduced through three dimensional (3D) CAD modeling tools. Analytical approaches for evaluations on the spring characteristic effects helical-cutting applied bolt structures and self-loosing preventable performance of threaded fasteners were performed using finite element method and results are reported. Comparing slackness test results with analytical results and more details on evaluating mechanical properties will be executed in future study.

  6. Hands-on experiences with buoyant-less water

    NASA Astrophysics Data System (ADS)

    Sliško, Josip; Planinšič, Gorazd

    2010-05-01

    The phenomenon of weightlessness is known to students thanks to videos of amazing things astronauts do in spaceships orbiting the Earth. In this article we propose two hands-on activities which give students opportunities to infer by themselves the absence of buoyant force in a gravity accelerated system. The system is a free-falling or vertically tossed bottle filled with water with a small, inflated balloon attached to the bottom by a spring. Practical hints on how to make efficient demonstration experiments are added.

  7. The Effect of Bin Laden’s Death and Arab Spring on Al Qaeda’s Operational Center of Gravity

    DTIC Science & Technology

    2012-05-04

    strongest links with its geographic allies in Pakistan’s FATA, to include the Pakistani Taliban and Haqqani Network; these relationships enable Core AQ to...this relationship with al-Awalaki, AQAP’s English-langauge jihadist. 15 These groups also provide a venue for training camps and facilitate the...point of consanguinity , the affinity between AQ’s ideology and the local insurgents and population, with the goal disconnecting the population from

  8. Finger-Circumference-Measuring Device

    NASA Technical Reports Server (NTRS)

    Le, Suy

    1995-01-01

    Easy-to-use device quickly measures circumference of finger (including thumb) on human hand. Includes polytetrafluoroethylene band 1/8 in. wide, bent into loop and attached to tab that slides on scale graduated in millimeters. Sliding tab preloaded with constant-force tension spring, which pulls tab toward closure of loop. Designed to facilitate measurements at various points along fingers to obtain data for studies of volumetric changes of fingers in microgravity. Also used in normal Earth gravity studies of growth and in assessment of diseases like arthritis.

  9. Spring break trips as a risk factor for heavy alcohol use among first-year college students.

    PubMed

    Lee, Christine M; Maggs, Jennifer L; Rankin, Lela A

    2006-11-01

    Many high school and college students are believed to use spring break vacation to travel to destinations with the intent of engaging in extreme party behaviors, including excessive alcohol use. However, the extent to which spring break travelers' behaviors are more risky than their typical behaviors remains unclear. To assess the impact of spring break as a situational risk factor, we analyzed data collected from 176 first-year college students across 10 weeks using weekly telephone interviews. Using multilevel modeling, we found the following: (1) men, participants in fraternity/sorority organizations, students traveling on spring break trips, and those with higher fun-social alcohol expectancies drank more during the regular semester; (2) alcohol use did not increase during spring break week in general; however, (3) spring break travelers increased their alcohol use during spring break. Spring break trips are a risk factor for escalated alcohol use both during the academic semester and during spring break trips, suggesting that some students may seek out opportunities for excessive alcohol use. Results are discussed in terms of niche selection and prevention implications.

  10. Absolute marine gravimetry with matter-wave interferometry.

    PubMed

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  11. Inertio Gravity Waves in the Upper Mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours (Hernandez et al., 1992). Such waves are generated in our Numerical Spectral Model (NSM) and appear to be inertio gravity waves (IGW). Like the planetary waves (PW) in the model, the IGWs are generated by instabilities that arise in the mean zonal circulation. In addition to stationary waves for m = 0, eastward and westward propagating waves for m = 1 to 4 appear above 70 km that grow in magnitude up to about 110 km, having periods between 9 and 11 hours. The m = 1 westward propagating IGWs have the largest amplitudes, which can reach at the poles 30 m/s. Like PWs, the IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in winter and spring. The IGWs propagate upward with a vertical wavelength of about 20 km.

  12. A Geothermal GIS for Nevada: Defining Regional Controls and Favorable Exploration Terrains for Extensional Geothermal Systems

    USGS Publications Warehouse

    Coolbaugh, M.F.; Taranik, J.V.; Raines, G.L.; Shevenell, L.A.; Sawatzky, D.L.; Bedell, R.; Minor, T.B.

    2002-01-01

    Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.

  13. Liquid drop stability for protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Broom, Beth H.; Snyder, Robert S.; Daniel, Ron

    1987-01-01

    It is possible to grow protein crystals for biomedical research in microgravity by deploying a protein-rich solution from a syringe, forming a drop in which crystallization can occur with the proper degree of supersaturation. Drop stability is critical to the success of this research, due to the large drop sizes which can be achieved in space. In order to determine the type of syringe tips most suitable to support these large drops, tests were performed during brief periods of weightlessness onboard the NASA KC-135 low-gravity simulation aircraft. The drops were analyzed using three simple models in which the samples were approximated by modified pendulum and spring systems. It was concluded that the higher frequency systems were the most stable, indicating that of the syringes utilized, a disk-shaped configuration provided the most stable environment of low-gravity protein crystal growth.

  14. Time stability of spring and superconducting gravimeters through the analysis of very long gravity records

    NASA Astrophysics Data System (ADS)

    Calvo, Marta; Hinderer, Jacques; Rosat, Severine; Legros, Hilaire; Boy, Jean-Paul; Ducarme, Bernard; Zürn, Walter

    2014-10-01

    Long gravity records are of great interest when performing tidal analyses. Indeed, long series enable to separate contributions of near-frequency waves and also to detect low frequency signals (e.g. long period tides and polar motion). In addition to the length of the series, the quality of the data and the temporal stability of the noise are also very important. We study in detail some of the longest gravity records available in Europe: 3 data sets recorded with spring gravimeters in Black Forest Observatory (Germany, 1980-2012), Walferdange (Luxemburg, 1980-1995) and Potsdam (Germany, 1974-1998) and several superconducting gravimeters (SGs) data sets, with at least 9 years of continuous records, at different European GGP (Global Geodynamics Project) sites (Bad Homburg, Brussels, Medicina, Membach, Moxa, Vienna, Wettzell and Strasbourg). The stability of each instrument is investigated using the temporal variations of tidal parameters (amplitude factor and phase difference) for the main tidal waves (O1, K1, M2 and S2) as well as the M2/O1 factor ratio, the later being insensitive to the instrumental calibration. The long term stability of the tidal observations is also dependent on the stability of the scale factor of the relative gravimeters. Therefore we also check the time stability of the scale factor for the superconducting gravimeter C026 installed at the J9 Gravimetric Observatory of Strasbourg (France), using numerous calibration experiments carried out by co-located absolute gravimeter (AG) measurements during the last 15 years. The reproducibility of the scale factor and the achievable precision are investigated by comparing the results of different calibration campaigns. Finally we present a spectrum of the 25 years of SG records at J9 Observatory, with special attention to small amplitude tides in the semi-diurnal and diurnal bands, as well as to the low frequency part.

  15. Diagnostic Approach to Acute Diarrheal Illness in a Military Population on Training Exercises in Thailand, a Region of Campylobacter Hyperendemicity

    DTIC Science & Technology

    2008-04-01

    Center (Silver Spring, MD) and the Armed Forces Research Institute FIG. 1. Posttest probability of Campylobacter-associated illness based on the...Sanders5 Enteric Diseases Department, Naval Medical Research Center, Silver Spring, Maryland1; Armed Forces Research Institute of Medical Sciences, Bangkok...Thailand2; Walter Reed Army Institute of Research , Silver Spring, Maryland3; Naval Environmental Preventive Medicine Unit 6, Pearl Harbor, Hawaii4

  16. Intermittent gravity: How much, how often, how long?

    NASA Technical Reports Server (NTRS)

    Vernikos, Joan; Ludwig, David A.

    1994-01-01

    Continuous exposure to gravity may not be necessary to prevent the deconditioning effects of microgravity. It is not known, however, what the minimum gravity (G) exposure reguirements are, whether they vary for different physiological systems, or whether passive Gz (gravity in the head-to-toe vector) or activity in a G field is more effective in preventing deconditioning. It is also not known what the optimal characteristics of the G stimulus should be in terms of amplitude, duration, and frequency. To begin to address these questions, a 4-day -6 deg head-down bed rest (HDBR) study was conducted. Nine males (aged 30-50 yr) were subjected, over a period of seven months, to four different +1 Gz exposure protocols (periodic standing or controlled walking each for a total of 2 or 4 hr/day in individual 15-min doses), plus a control (0 Gz) of continuous HDBR. The study consisted of one ambulatory control day, 4 full days of -6 deg HDBR, and a recovery day when subjects were released at the end of HDBR after completion of tests. A battery of tests was selected and standardized in order to evaluate the known early responses to HDBR. Dependent variables of interest included orthostatic tolerance (30 min at 60 deg head-up tilt) and hemodynamics during head-up tilt, peak oxygen consumption (VO2(sub peak)) plasma volume (PV), and urinary calcium (Ca). The results were as follows: 4 hr standing completely prevented and 2 hr walking partially prevented post-HDBR orthostatic intolerance. Walking at 3 mi/hr for 4 hr/day provided no additional benefit. Intermittent walking attenuated, but did not prevent, the decrease in VO2(sub peak). Both 4 hr conditions showed less PV loss by the end of HDBR; both 2 hr conditions were without effect. Both 2 and 4 hr walking essentially prevented urinary Ca excretion and were more effective than standing. It is concluded that different physiological systems benefit differentially from passive +1 Gz or activity in +1 Gz, and the intensity of the stimulus may be an important contributing factor.

  17. Bed Bug Prevention, Detection and Control

    EPA Pesticide Factsheets

    Tips in this brochure include inspecting and cleaning second-hand furniture, inspection and prevention in hotel rooms, recognizing bites, integrated pest management, safe pesticide use, signs of infestation, and using mattress and box spring encasements.

  18. Leaf spring made of fiber-reinforced resin

    NASA Technical Reports Server (NTRS)

    Hori, J.

    1986-01-01

    A leaf spring made of a matrix reinforced by at least two types of reinforcing fibers with different Young's modulus is described in this Japanese patent. At least two layers of reinforcing fibers are formed by partially arranging the reinforcing fibers toward the direction of the thickness of the leaf spring. A mixture of different types of reinforced fibers is used at the area of boundary between the two layers of reinforced fibers. The ratio of blending of each type of reinforced fiber is frequently changed to eliminate the parts where discontinuous stress may be applied to the leaf spring. The objective of this invention is to prevent the rapid change in Young's modulus at the boundary area between each layer of reinforced fibers in the leaf spring.

  19. Jumping robots: a biomimetic solution to locomotion across rough terrain.

    PubMed

    Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard

    2007-09-01

    This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection.

  20. Structural controls on geothermal circulation in Surprise Valley, California: A re-evaluation of the Lake City fault zone

    USGS Publications Warehouse

    Anne E. Egger,; Glen, Jonathan; McPhee, Darcy K.

    2014-01-01

    Faults and fractures play an important role in the circulation of geothermal fluids in the crust, and the nature of that role varies according to structural setting and state of stress. As a result, detailed geologic and geophysical mapping that relates thermal springs to known structural features is essential to modeling geothermal systems. Published maps of Surprise Valley in northeastern California suggest that the “Lake City fault” or “Lake City fault zone” is a significant structural feature, cutting obliquely across the basin and connecting thermal springs across the valley. Newly acquired geophysical data (audio-magnetotelluric, gravity, and magnetic), combined with existing geochemical and geological data, suggest otherwise. We examine potential field profiles and resistivity models that cross the mapped Lake City fault zone. While there are numerous geophysical anomalies that suggest subsurface structures, they mostly do not coincide with the mapped traces of the Lake City fault zone, nor do they show a consistent signature in gravity, magnetics, or resistivities that would suggest a through-going fault that would promote connectivity through lateral fluid flow. Instead of a single, continuous fault, we propose the presence of a deformation zone associated with the growth of the range-front Surprise Valley fault. The implication for geothermal circulation is that this is a zone of enhanced porosity but lacks length-wise connectivity that could conduct fluids across the valley. Thermal fluid circulation is most likely controlled primarily by interactions between N-S–trending normal faults.

  1. Spacelab

    NASA Image and Video Library

    1994-07-01

    Astronaut Donald Thomas conducts the Fertilization and Embryonic Development of Japanese Newt in Space (AstroNewt) experiment at the Aquatic Animal Experiment Unit (AAEU) inside the International Microgravity Laboratory-2 (IML-2) science module. The AstroNewt experiment aims to know the effects of gravity on the early developmental process of fertilized eggs using a unique aquatic animal, the Japanese red-bellied newt. The newt egg is a large single cell at the begirning of development. The Japanese newt mates in spring and autumn. In late autumn, female newts enter hibernation with sperm in their body cavity and in spring lay eggs and fertilize them with the stored sperm. The experiment takes advantage of this feature of the newt. Groups of newts were sent to the Kennedy Space Center and kept in hibernation until the mission. The AAEU cassettes carried four newts aboard the Space Shuttle. Two newts in one cassette are treated by hormone injection on the ground to simulate egg laying. The other two newts are treated on orbit by the crew. The former group started maturization of eggs before launch. The effects of gravity on that early process were differentiated by comparison of the two groups. The IML-2 was the second in a series of Spacelab flights designed to conduct research by the international science community in a microgravity environment. Managed by the Marshall Space Flight Center, the IML-2 was launched on July 8, 1994 aboard the STS-65 Space Shuttle mission, Orbiter Columbia.

  2. Spacelab

    NASA Image and Video Library

    1994-07-01

    Astronaut Donald Thomas conducts the Fertilization and Embryonic Development of Japanese Newt in Space (AstroNewt) experiment at the Aquatic Animal Experiment Unit (AAEU) inside the International Microgravity Laboratory-2 (IML-2) science module. The AstroNewt experiment aims to know the effects of gravity on the early developmental process of fertilized eggs using a unique aquatic animal, the Japanese red-bellied newt. The newt egg is a large single cell at the begirning of development. The Japanese newt mates in spring and autumn. In late autumn, female newts enter hibernation with sperm in their body cavity and in spring lay eggs and fertilized them with the stored sperm. The experiment takes advantage of this feature of the newt. Groups of newts were sent to the Kennedy Space Center and kept in hibernation until the mission. The AAEU cassettes carried four newts aboard the Space Shuttle. Two newts in one cassette are treated by hormone injection on the ground to simulate egg laying. The other two newts are treated on orbit by the crew. The former group started maturization of eggs before launch. The effects of gravity on that early process were differentiated by comparison of the two groups. The IML-2 was the second in a series of Spacelab flights designed to conduct research by the international science community in a microgravity environment. Managed by the Marshall Space Flight Center, the IML-2 was launch on July 8, 1994 aboard the STS-65 Space Shuttle Orbiter Columbia mission.

  3. Feature Hepatitis: Hepatitis Symptoms, Diagnosis, Treatment & Prevention

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Feature Hepatitis Hepatitis: Symptoms, Diagnosis, Treatment & Prevention Past Issues / Spring 2009 ... No appetite Fever Headaches Diagnosis To check for hepatitis viruses, your doctor will test your blood. You ...

  4. Nutrition Frontiers - Spring 2018 | Division of Cancer Prevention

    Cancer.gov

    Dear Colleague, The spring issue of Nutrition Frontiers showcases the association of gut microbial communities in premenopausal women, how high-fat, high-calorie-diet-induced obesity may increase pancreatic cancer, and the effects of calorie restriction protocols on pro-inflammatory cytokines. Meet our spotlight investigator, Dr. Purnima Kumar, and her research on black

  5. Stratospheric gravity waves at southern hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Grimsdell, Alison W.; Alexander, M. Joan

    2017-04-01

    Stratospheric gravity waves from small-scale orographic sources are currently not well-represented in general circulation models. This may be a reason why many simulations have difficulty reproducing the dynamical behaviour of the southern hemisphere polar vortex in a realistic manner. Here we discuss a 12-year record (2003 - 2014) of stratospheric gravity wave activity at southern hemisphere orographic hotspots as observed by the Atmospheric InfraRed Sounder (AIRS) aboard the National Aeronautics and Space Administration's (NASA's) Aqua satellite. We introduce a simple and effective approach, referred to as the 'two-box method', to detect gravity wave activity from infrared nadir sounder measurements and to discriminate between gravity waves from orographic and other sources. From austral mid fall to mid spring (April - October) the contributions of orographic sources to the observed gravity wave occurrence frequencies were found to be largest for the Andes (90%), followed by the Antarctic Peninsula (76%), Kerguelen Islands (73%), Tasmania (70%), New Zealand (67%), Heard Island (60%), and other hotspots (24 - 54%). Mountain wave activity was found to be closely correlated with peak terrain altitudes, and with zonal winds in the lower troposphere and mid stratosphere. We propose a simple model to predict the occurrence of mountain wave events in the AIRS observations using zonal wind thresholds at 3 hPa and 750 hPa. The model has significant predictive skill for hotspots where gravity wave activity is primarily due to orographic sources. It typically reproduces seasonal variations of the mountain wave occurrence frequencies at the Antarctic Peninsula and Kerguelen Islands from near zero to over 60% with mean absolute errors of 4 - 5 percentage points. The prediction model can be used to disentangle upper level wind effects on observed occurrence frequencies from low level source and other influences. The data and methods presented here can help to identify interesting case studies in the vast amount of AIRS data, which could then be further explored to study the specific characteristics of stratospheric gravity waves from orographic sources and to support model validation. Reference: Hoffmann, L., Grimsdell, A. W., and Alexander, M. J.: Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003-2014 AIRS/Aqua observations, Atmos. Chem. Phys., 16, 9381-9397, doi:10.5194/acp-16-9381-2016, 2016.

  6. Artificial Gravity: Will it Preserve Bone Health on Long-Duration Missions?

    NASA Technical Reports Server (NTRS)

    Davis-Street, Janis; Paloski, William H.

    2005-01-01

    Prolonged microgravity exposure disrupts bone, muscle, and cardiovascular homeostasis, sensory-motor coordination, immune function, and behavioral performance. Bone loss, in particular, remains a serious impediment to the success of exploration-class missions by increasing the risks of bone fracture and renal stone formation for crew members. Current countermeasures, consisting primarily of resistive and aerobic exercise, have not yet proven fully successful for preventing bone loss during long-duration spaceflight. While other bone-specific countermeasures, such as pharmacological therapy and dietary modifications, are under consideration, countermeasure approaches that simultaneously address multiple physiologic systems may be more desirable for exploration-class missions, particularly if they can provide effective protection at reduced mission resource requirements (up-mass, power, crew time, etc). The most robust of the multi-system approaches under consideration, artificial gravity (AG), could prevent all of the microgravity-related physiological changes from occurring. The potential methods for realizing an artificial gravity countermeasure are reviewed, as well as selected animal and human studies evaluating the effects of artificial gravity on bone function. Future plans for the study of the multi-system effects of artificial gravity include a joint, cooperative international effort that will systematically seek an optimal prescription for intermittent AG to preserve bone, muscle, and cardiovascular function in human subjects deconditioned by 6 degree head-down-tilt-bed rest. It is concluded that AG has great promise as a multi-system countermeasure, but that further research is required to determine the appropriate parameters for implementation of such a countermeasure for exploration-class missions.

  7. Symptoms, Devices, Prevention, Research | NIH MedlinePlus the Magazine

    MedlinePlus

    ... JavaScript on. Feature: Hearing Loss Symptoms, Devices, Prevention & Research Past Issues / Spring 2015 Table of Contents Anatomy ... hearing loss from dangerously high noise levels. NIH Research to Results Teams of scientists, supported by the ...

  8. Analyses of a 426-Day Record of Seafloor Gravity and Pressure Time Series in the North Sea

    NASA Astrophysics Data System (ADS)

    Rosat, S.; Escot, B.; Hinderer, J.; Boy, J.-P.

    2017-04-01

    Continuous gravity observations of ocean and solid tides are usually done with land-based gravimeters. In this study, we analyze a 426-day record of time-varying gravity acquired by an ocean-bottom Scintrex spring gravimeter between August 2005 and November 2006 at the Troll A site located in the North Sea at a depth of 303 m. Sea-bottom pressure changes were also recorded in parallel with a Paroscientific quartz pressure sensor. From these data, we show a comparison of the noise level of the seafloor gravimeter with respect to two standard land-based relative gravimeters: a Scintrex CG5 and a GWR Superconducting Gravimeter that were recording at the J9 gravimetric observatory of Strasbourg (France). We also compare the analyzed gravity records with the predicted solid and oceanic tides. The oceanic tides recorded by the seafloor barometer are also analyzed and compared to the predicted ones using FES2014b ocean model. Observed diurnal and semi-diurnal components are in good agreement with FES2014b predictions. Smallest constituents reflect some differences that may be attributed to non-linearity occurring at the Troll A site. Using the barotropic TUGO-m dynamic model of sea-level response to ECMWF atmospheric pressure and winds forcing, we show a good agreement with the detided ocean-bottom pressure residuals. About 4 hPa of standard deviation of remaining sea-bottom pressure are, however, not explained by the TUGO-m dynamic model.

  9. The Implications of Reduced Ground Reaction Forces During Space Flight for Bone Strains

    NASA Technical Reports Server (NTRS)

    Peterman, Marc M.; Hamel, Andrew J.; Sharkey, Neil A.; Piazza, Stephen J.; Cavanagh, Peter R.

    1998-01-01

    The specific mechanisms regulating bone mass are not known, but most investigators agree that bone maintenance is largely dependent upon mechanical demand and the resultant local bone strains. During space flight, bone loss such as that reported by LeBlanc et al. may result from failure to effectively load the skeleton and generate sufficient localized bone strains. In microgravity, a gravity replacement system can be used to tether an exercising subject to a treadmill. It follows that the ability to prevent bone loss is critically dependent upon the external ground reaction forces (GRFs) and skeletal loads imparted by the tethering system. To our knowledge, the loads during orbital flight have been measured only once (on STS 81). Based on these data and data from ground based experiments, it appears likely that interventions designed to prevent bone loss in micro-gravity generate GRFs substantially less than body weight. It is unknown to what degree reductions in external GRFs will affect internal bone strain and thus the bone maintenance response. To better predict the efficacy of treadmill exercise in micro-gravity we used a unique cadaver model to measure localized bone strains under conditions representative of those that might be produced by a gravity replacement system in space.

  10. Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans.

    PubMed

    Iwase, Satoshi

    2005-01-01

    To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7 +/- 1.9 yr) were exposed to simulated microgravity for 14 days of -6 degrees head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1, 2, 3, 5, 7, 9, 11, 12, 13, 14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load x running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed (-5.0 +/- 2.4 vs. -16.4 +/- 1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies. c2005 Elsevier Ltd. All rights reserved.

  11. Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans

    NASA Astrophysics Data System (ADS)

    Iwase, Satoshi

    2005-07-01

    To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7±1.9yr) were exposed to simulated microgravity for 14 days of -6∘ head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1,2,3,5,7,9,11,12,13,14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load×running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed ( -5.0±2.4 vs. -16.4±1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies.

  12. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    NASA Astrophysics Data System (ADS)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  13. Gravity and Biology

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily R.

    1996-01-01

    Gravity has been the most constant environmental factor throughout the evolution of biological species on Earth. Organisms are rarely exposed to other gravity levels, either increased or decreased, for prolonged periods. Thus, evolution in a constant 1G field has historically prevented us from appreciating the potential biological consequences of a multi-G universe. To answer the question 'Can terrestrial life be sustained and thrive beyond our planet?' we need to understand the importance of gravity on living systems, and we need to develop a multi-G, rather than a 1G, mentality. The science of gravitational biology took a giant step with the advent of the space program, which provided the first opportunity to examine living organisms in gravity environments lower than could be sustained on Earth. Previously, virtually nothing was known about the effects of extremely low gravity on living organisms, and most of the initial expectations were proven wrong. All species that have flown in space survive in microgravity, although no higher organism has ever completed a life cycle in space. It has been found, however, that many systems change, transiently or permanently, as a result of prolonged exposure to microgravity.

  14. Nutrition Frontiers - Spring 2017 | Division of Cancer Prevention

    Cancer.gov

    Volume 8, Issue 2 Dear Colleague, The spring issue of Nutrition Frontiers showcases the calcium/magnesium intake ratio in colorectal adenoma, the role of PPARγ in metabolism and reproduction, and the effects of time-restricted feeding on metabolic parameters. Meet our spotlight investigator, Dr. Maria Cruz-Correa, and her research on gut bacterial genes, diet, and colorectal

  15. Blood Clots That Kill: Preventing DVT | NIH MedlinePlus the Magazine

    MedlinePlus

    ... please turn Javascript on. Feature: Deep Vein Thrombosis Blood Clots That Kill: Preventing DVT Past Issues / Spring 2011 ... Contents Deep vein thrombosis, or DVT, is a blood clot that forms in a vein deep in the ...

  16. Educational Policies. National Dropout Prevention Center/Network Newsletter. Volume 19, Number 2, Spring 2007

    ERIC Educational Resources Information Center

    Duckenfield, Marty, Ed.

    2007-01-01

    The "National Dropout Prevention Newsletter" is published quarterly by the National Dropout Prevention Center/Network. This issue contains the following articles: (1) Policy Matters; (2) A Conversation With A State Policymaker (Stephen Canessa); (3) Policy Matters at the School Level (Steven W. Edwards); (4) EEDA: Promise or Peril? (Sam…

  17. SPRING: an RCT study of probiotics in the prevention of gestational diabetes mellitus in overweight and obese women

    PubMed Central

    2013-01-01

    Background Obesity is increasing in the child-bearing population as are the rates of gestational diabetes. Gestational diabetes is associated with higher rates of Cesarean Section for the mother and increased risks of macrosomia, higher body fat mass, respiratory distress and hypoglycemia for the infant. Prevention of gestational diabetes through life style intervention has proven to be difficult. A Finnish study showed that ingestion of specific probiotics altered the composition of the gut microbiome and thereby metabolism from early gestation and decreased rates of gestational diabetes in normal weight women. In SPRING (the Study of Probiotics IN the prevention of Gestational diabetes), the effectiveness of probiotics ingestion for the prevention of gestational diabetes will be assessed in overweight and obese women. Methods/design SPRING is a multi-center, prospective, double-blind randomized controlled trial run at two tertiary maternity hospitals in Brisbane, Australia. Five hundred and forty (540) women with a BMI > 25.0 kg/m2 will be recruited over 2 years and receive either probiotics or placebo capsules from 16 weeks gestation until delivery. The probiotics capsules contain > 1x109 cfu each of Lactobacillus rhamnosus GG and Bifidobacterium lactis BB-12 per capsule. The primary outcome is diagnosis of gestational diabetes at 28 weeks gestation. Secondary outcomes include rates of other pregnancy complications, gestational weight gain, mode of delivery, change in gut microbiome, preterm birth, macrosomia, and infant body composition. The trial has 80% power at a 5% 2-sided significance level to detect a >50% change in the rates of gestational diabetes in this high-risk group of pregnant women. Discussion SPRING will show if probiotics can be used as an easily implementable method of preventing gestational diabetes in the high-risk group of overweight and obese pregnant women. PMID:23442391

  18. A data sequence acquired at Mt. Etna during the 2002 2003 eruption highlights the potential of continuous gravity observations as a tool to monitor and study active volcanoes

    NASA Astrophysics Data System (ADS)

    Carbone, D.; Budetta, G.; Greco, F.; Zuccarello, L.

    2007-03-01

    A 2.5-month long gravity sequence, encompassing the starting period of the 2002-2003 Etna eruption and coming from a summit station only 1 km away from the new fractures, is presented and discussed. The sequence comprises four hours-long anomalies that have a great chance to reflect mass redistributions linked to the ensuing activity. In particular, the start of the eruptive activity on the northeastern flank was marked by a gravity decrease as strong as about 400 μGal, which reverted soon afterwards. This strong decrease/increase anomaly is interpreted as the opening, by tectonic forces, of a fracture system along the Northeastern Rift of Mt. Etna, followed by an intrusion of magma from the central conduit to the new fractures. They were used by the intruding magma as a path to the eruptive vents at lower elevations. Afterwards, on three occasions, in November and December 2002, 6-12 h-lasting gravity decreases, with amplitude ranging between 10 and 30 μGal, were observed simultaneously with increases in the amplitude of the volcanic tremor from four seismic stations. A correlation analysis, between the gravity signal and the overall spectral amplitude of each tremor sequence is performed over the 7 November-9 December period. A marked anti-correlation is found over each contemporaneous gravity decrease/tremor increase, while, over the rest of the investigated period, the correlation is negligible. Accordingly, a joint source is inferred to have acted during the occurrence of the three common anomalies. On the grounds of some volcanological observations spanning the period covered by our analysis, we propose the temporary accumulation of a gas cloud at some level within the plumbing system of the volcano to have acted as a joint source. The present work is a further evidence of the potential of continuous gravity observations as a tool to monitor and study active volcanoes and encourages their employment in spite of the difficulty of running spring gravimeters in a continuous fashion under the adverse conditions normally encountered on the summit zone of an active volcano.

  19. Comparison of Gait During Treadmill Exercise While Supine in Lower Body Negative Pressure (LBNP), Supine with Bungee Resistance and Upright in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James

    1994-01-01

    The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity.

  20. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - USDA BELTSVILLE AGRICULTURAL RESEARCH CENTER

    EPA Science Inventory

    A pollution prevention opportunity assessment (PPOA) was performed during the spring of 1991 which identified areas for waste reduction at the U.S. Department of Agriculture's Beltsville Agricultural Research Center (BARC), Beltsville, Maryland. he areas selected for this joint E...

  1. Making on-orbit structural repairs to Space Station

    NASA Technical Reports Server (NTRS)

    Haber, Harry S.; Quinn, Alberta

    1989-01-01

    One of the key factors dictating the safety and durability of the proposed U.S. Space Station is the ability to repair structural damage while remaining in orbit. Consequently, studies are conducted to identify the engineering problems associated with accomplishing structural repairs on orbit, due to zero gravity environment and exposure to extreme temperature variations. There are predominant forms of structural failure, depending on the metallic or composite material involved. Aluminum is the primary metallic material used in space vehicle applications. Welding processes on aluminum alloy structures were tested, resulting in final selection of electron beam welding as the primary technique for metallic material repair in Space. Several composite structure repair processes were bench-tested to define their applicability to on-orbit EVA requirements: induction heating prevailed. One of the unique problems identified as inherent in the on-orbit repair process is that of debris containment. The Maintenance Work Station concept provides means to prevent module contamination from repair debris and ensure the creation of a facility for crew members to work easily in a microgravity environment. Different technologies were also examined for application to EVA repair activities, and the concept selected was a spring-loaded, collapsible, box-like Debris Containement and Collection Device with incorporated fold-down tool boards and handholes in the front panel.

  2. Subsurface Structure Interpretation Beneath of Mt. Pandan Based on Gravity Data

    NASA Astrophysics Data System (ADS)

    Santoso, D.; Wahyudi, E. J.; Alawiyah, S.; Nugraha, A. D.; Widiyantoro, S.; Kadir, W. G. A.; Supendi, P.; Wiyono, S.; Zulkafriza

    2017-04-01

    Mt. Pandan is one of the volcano that state as dormant volcano. On the other hand, Smyth et al. (2008) defined that Mt. Pandan is an active volcano. This volcano is apart a volcanic chain in Java island which is trending east-west along the island. This volcanic chain known as present day volcanic arc. Mt. Wilis is located in the south and it relatively much bigger compare to Mt. Pandan. There were earthquakes activity experienced in the surrounding Mt. Pandan area in the past several years. This event is interesting, because Mt. Pandan is not classify as the active volcano according to the list of volcanoes in Indonesia. On the otherhand Smyth et. al. (2008) mentioned that G. Pandan as modern volcanic which is located in Kendeng Zone of East Java. Gravity measurement around Mt. Pandan area was done in order to understand subsurface structure of Mt. Pandan. Gravity interpretation results shows that there is a low density structure beneath Mt. Pandan. It could be interpreted as existing of magma body below the surface. Some indication of submagmatic activities were found as hot spring and warm ground. Therefore it could be concluded that there is a possibility of magmatic activity below the Mt. Pandan.

  3. 49 CFR 393.45 - Brake tubing and hoses; hose assemblies and end fittings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... may be used for connections between towed and towing motor vehicles or between the frame of a towed... in a spring guard or similar device which prevents the tubing from kinking at the fitting at which it is attached to the vehicle; and (2) The spring guard or similar device has at least 51 mm (2 inches...

  4. Scaling of chew cycle duration in primates.

    PubMed

    Ross, Callum F; Reed, David A; Washington, Rhyan L; Eckhardt, Alison; Anapol, Fred; Shahnoor, Nazima

    2009-01-01

    The biomechanical determinants of the scaling of chew cycle duration are important components of models of primate feeding systems at all levels, from the neuromechanical to the ecological. Chew cycle durations were estimated in 35 species of primates and analyzed in conjunction with data on morphological variables of the feeding system estimating moment of inertia of the mandible and force production capacity of the chewing muscles. Data on scaling of primate chew cycle duration were compared with the predictions of simple pendulum and forced mass-spring system models of the feeding system. The gravity-driven pendulum model best predicts the observed cycle duration scaling but is rejected as biomechanically unrealistic. The forced mass-spring model predicts larger increases in chew cycle duration with size than observed, but provides reasonable predictions of cycle duration scaling. We hypothesize that intrinsic properties of the muscles predict spring-like behavior of the jaw elevator muscles during opening and fast close phases of the jaw cycle and that modulation of stiffness by the central nervous system leads to spring-like properties during the slow close/power stroke phase. Strepsirrhines show no predictable relationship between chew cycle duration and jaw length. Anthropoids have longer chew cycle durations than nonprimate mammals with similar mandible lengths, possibly due to their enlarged symphyses, which increase the moment of inertia of the mandible. Deviations from general scaling trends suggest that both scaling of the jaw muscles and the inertial properties of the mandible are important in determining the scaling of chew cycle duration in primates.

  5. Lessons from Preventing Reading Difficulties in Young Children for Adult Learning and Literacy

    ERIC Educational Resources Information Center

    Snow, Catherine E.; Strucker, John

    1999-01-01

    In the spring of 1998 the National Research Council released a report, Preventing Reading Difficulties in Young Children for Adult Learning and Literacy (PRD). PRD was written with the goal of contributing to the prevention of reading difficulties by documenting the contributions of research to an understanding of reading development and the…

  6. Geohydrology and potential for artificial recharge in the western part of the U.S. Marine Corps Base, Twentynine Palms, California, 1982-83

    USGS Publications Warehouse

    Akers, J.P.

    1986-01-01

    A recent gravity survey indicates that sedimentary deposits in the Deadman Lake area of the Twentynine Palms Marine Corps Base, California, are as much as 10,500 feet thick. These deposits fill an ancient valley in the bedrock complex. This valley is alined east-west in the Surprise Spring area and north-south in the Deadman Lake area.Water levels in the Ames Dry Lake area of the Surprise Spring subbasin have changed little between earliest measurements in 1952-53 and in 1982. Water levels in three Marine Corps Base supply wells in the same subbasin near Surprise Spring declined an average of 78 feet during the past 30 years. Water levels in the same timespan in Deadman subbasin and water quality in the base supply wells, drilled in 1952-53 and 1978, have remained virtually unchanged.Ground water in storage, suitable for domestic use, in the top 200 feet of saturated sediments in Surprise Spring subbasin was estimated to be 810,000 acre-feet in the early 1950's. About 60,000 acre-feet of this has been removed, mostly for use at the Marine Corps Base, which leaves about 750,000 acre-feet of recoverable water of good quality still stored in the 200-foot interval considered. For planning purposes, it would be safe to use a conservative figure of 300,000 acre-feet for storage in the Deadman subbasin, which contains water having fluoride concentrations greater than the U.S. Environmental Protection Agency's standards for drinking water.Three sites in the general area of the present well fields seem favorable for recharging the ground-water system in the Surprise Spring subbasin. Further exploration of these sites is suggested.

  7. Shape memory alloy resetable spring lift for pedestrian protection

    NASA Astrophysics Data System (ADS)

    Barnes, Brian M.; Brei, Diann E.; Luntz, Jonathan E.; Strom, Kenneth; Browne, Alan L.; Johnson, Nancy

    2008-03-01

    Pedestrian protection has become an increasingly important aspect of automotive safety with new regulations taking effect around the world. Because it is increasingly difficult to meet these new regulations with traditional passive approaches, active lifts are being explored that increase the "crush zone" between the hood and rigid under-hood components as a means of mitigating the consequences of an impact with a non-occupant. Active lifts, however, are technically challenging because of the simultaneously high forces, stroke and quick timing resulting in most of the current devices being single use. This paper introduces the SMArt (Shape Memory Alloy ReseTable) Spring Lift, an automatically resetable and fully reusable device, which couples conventional standard compression springs to store the energy required for a hood lift, with Shape Memory Alloys actuators to achieve both an ultra high speed release of the spring and automatic reset of the system for multiple uses. Each of the four SMArt Device subsystems, lift, release, lower and reset/dissipate, are individually described. Two identical complete prototypes were fabricated and mounted at the rear corners of the hood, incorporated within a full-scale vehicle testbed at the SMARTT (Smart Material Advanced Research and Technology Transfer) lab at University of Michigan. Full operational cycle testing of a stationary vehicle in a laboratory setting confirms the ultrafast latch release, controlled lift profile, gravity lower to reposition the hood, and spring recompression via the ratchet engine successfully rearming the device for repeat cycles. While this is only a laboratory demonstration and extensive testing and development would be required for transition to a fielded product, this study does indicate that the SMArt Lift has promise as an alternative approach to pedestrian protection.

  8. Revisiting Southern Hemisphere polar stratospheric temperature trends in WACCM: The role of dynamical forcing

    NASA Astrophysics Data System (ADS)

    Calvo, N.; Garcia, R. R.; Kinnison, D. E.

    2017-04-01

    The latest version of the Whole Atmosphere Community Climate Model (WACCM), which includes a new chemistry scheme and an updated parameterization of orographic gravity waves, produces temperature trends in the Antarctic lower stratosphere in excellent agreement with radiosonde observations for 1969-1998 as regards magnitude, location, timing, and persistence. The maximum trend, reached in November at 100 hPa, is -4.4 ± 2.8 K decade-1, which is a third smaller than the largest trend in the previous version of WACCM. Comparison with a simulation without the updated orographic gravity wave parameterization, together with analysis of the model's thermodynamic budget, reveals that the reduced trend is due to the effects of a stronger Brewer-Dobson circulation in the new simulations, which warms the polar cap. The effects are both direct (a trend in adiabatic warming in late spring) and indirect (a smaller trend in ozone, hence a smaller reduction in shortwave heating, due to the warmer environment).

  9. Development status of regenerable solid amine CO2 control systems

    NASA Technical Reports Server (NTRS)

    Colling, A. K., Jr.; Nalette, T. A.; Cusick, R. J.; Reysa, R. P.

    1985-01-01

    The development history of solid amine/water desorbed (SAWD) CO2 control systems is reviewed. The design of the preprototype SAWD I CO2 system on the basis of a three-man metabolic load at the 3.8 mm Hg ambient CO2 level, and the functions of the CO2 removal, CO2 storage/delivery, controller, and life test laboratory support packages are described. The development of a full-scale multiple canister SAWD II preprototype system, which is capable of conducting the CO2 removal/concentration function in a closed-loop atmosphere revitalization system during zero-gravity operation, is examined. The operation of the SAWD II system, including the absorption and desorption cycles, is analyzed. A reduction in the thermal mass of the canister and the system's energy transfer technique result in efficient energy use. The polyether foam, nylon felt, nickel foam, spring retained, and metal bellows bed tests performed to determine the design of the zero-gravity canister are studied; metal bellows are selected for the canister's configuration.

  10. Testing and Selection of Fire-Resistant Materials for Spacecraft Use

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Jackson, Brian; Olson, Sandra

    2000-01-01

    Spacecraft fire-safety strategy emphasizes prevention, mostly through the selection of onboard items classified accord- ing to their fire resistance. The principal NASA acceptance tests described in this paper assess the flammability of materials and components under "worst-case" normal-gravity conditions of upward flame spread in controlled-oxygen atmospheres. Tests conducted on the ground, however, cannot duplicate the unique fire characteristics in the nonbuoyant low-gravity environment of orbiting spacecraft. Research shows that flammability an fire-spread rates in low gravity are sensitive to forced convection (ventilation flows) and atmospheric-oxygen concentration. These research results are helping to define new material-screening test methods that will better evaluate material performance in spacecraft.

  11. Rapid changes in protein phosphorylation associated with light-induced gravity perception in corn roots

    NASA Technical Reports Server (NTRS)

    McFadden, J. J.; Poovaiah, B. W.

    1988-01-01

    The effect of light and calcium depletion on in vivo protein phosphorylation was tested using dark-grown roots of Merit corn. Light caused rapid and specific promotion of phosphorylation of three polypeptides. Pretreatment of roots with ethylene glycol bis N,N,N',N' tetraacetic acid and A23187 prevented light-induced changes in protein phosphorylation. We postulate that these changes in protein phosphorylation are involved in the light-induced gravity response.

  12. Muscle-spring dynamics in time-limited, elastic movements.

    PubMed

    Rosario, M V; Sutton, G P; Patek, S N; Sawicki, G S

    2016-09-14

    Muscle contractions that load in-series springs with slow speed over a long duration do maximal work and store the most elastic energy. However, time constraints, such as those experienced during escape and predation behaviours, may prevent animals from achieving maximal force capacity from their muscles during spring-loading. Here, we ask whether animals that have limited time for elastic energy storage operate with springs that are tuned to submaximal force production. To answer this question, we used a dynamic model of a muscle-spring system undergoing a fixed-end contraction, with parameters from a time-limited spring-loader (bullfrog: Lithobates catesbeiana) and a non-time-limited spring-loader (grasshopper: Schistocerca gregaria). We found that when muscles have less time to contract, stored elastic energy is maximized with lower spring stiffness (quantified as spring constant). The spring stiffness measured in bullfrog tendons permitted less elastic energy storage than was predicted by a modelled, maximal muscle contraction. However, when muscle contractions were modelled using biologically relevant loading times for bullfrog jumps (50 ms), tendon stiffness actually maximized elastic energy storage. In contrast, grasshoppers, which are not time limited, exhibited spring stiffness that maximized elastic energy storage when modelled with a maximal muscle contraction. These findings demonstrate the significance of evolutionary variation in tendon and apodeme properties to realistic jumping contexts as well as the importance of considering the effect of muscle dynamics and behavioural constraints on energy storage in muscle-spring systems. © 2016 The Author(s).

  13. Unscreening Modified Gravity in the Matter Power Spectrum.

    PubMed

    Lombriser, Lucas; Simpson, Fergus; Mead, Alexander

    2015-06-26

    Viable modifications of gravity that may produce cosmic acceleration need to be screened in high-density regions such as the Solar System, where general relativity is well tested. Screening mechanisms also prevent strong anomalies in the large-scale structure and limit the constraints that can be inferred on these gravity models from cosmology. We find that by suppressing the contribution of the screened high-density regions in the matter power spectrum, allowing a greater contribution of unscreened low densities, modified gravity models can be more readily discriminated from the concordance cosmology. Moreover, by variation of density thresholds, degeneracies with other effects may be dealt with more adequately. Specializing to chameleon gravity as a worked example for screening in modified gravity, employing N-body simulations of f(R) models and the halo model of chameleon theories, we demonstrate the effectiveness of this method. We find that a percent-level measurement of the clipped power at k<0.3h/Mpc can yield constraints on chameleon models that are more stringent than what is inferred from Solar System tests or distance indicators in unscreened dwarf galaxies. Finally, we verify that our method is also applicable to the Vainshtein mechanism.

  14. Catalyst. Volume 8, Number 3, Spring 2007

    ERIC Educational Resources Information Center

    Ryan, Barbara E., Ed.

    2007-01-01

    The U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes "Catalyst," a newsletter covering current Alcohol and Other Drug Abuse and Violence (AODV) prevention issues at institutions of higher education. "Catalyst" discusses emerging issues and highlights…

  15. Catalyst, Volume 7, Number 3, Spring 2006

    ERIC Educational Resources Information Center

    Ryan, Barbara E., Ed.

    2006-01-01

    The U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes "Catalyst," a newsletter covering current Alcohol and Other Drug Abuse and Violence (AODV) prevention issues at institutions of higher education. "Catalyst" discusses emerging issues and highlights…

  16. Catalyst. Volume 11, Number 2, Spring 2010

    ERIC Educational Resources Information Center

    Ryan, Barbara E., Ed.

    2010-01-01

    "Catalyst" is a publication of the U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention. This issue contains the following articles: (1) Redefining Resources For Prevention; (2) Message From Kevin Jennings, OSDFS Assistant Deputy Secretary; (3) Environmental Management…

  17. Effects of running with backpack loads during simulated gravitational transitions: Improvements in postural control

    NASA Astrophysics Data System (ADS)

    Brewer, Jeffrey David

    The National Aeronautics and Space Administration is planning for long-duration manned missions to the Moon and Mars. For feasible long-duration space travel, improvements in exercise countermeasures are necessary to maintain cardiovascular fitness, bone mass throughout the body and the ability to perform coordinated movements in a constant gravitational environment that is six orders of magnitude higher than the "near weightlessness" condition experienced during transit to and/or orbit of the Moon, Mars, and Earth. In such gravitational transitions feedback and feedforward postural control strategies must be recalibrated to ensure optimal locomotion performance. In order to investigate methods of improving postural control adaptation during these gravitational transitions, a treadmill based precision stepping task was developed to reveal changes in neuromuscular control of locomotion following both simulated partial gravity exposure and post-simulation exercise countermeasures designed to speed lower extremity impedance adjustment mechanisms. The exercise countermeasures included a short period of running with or without backpack loads immediately after partial gravity running. A novel suspension type partial gravity simulator incorporating spring balancers and a motor-driven treadmill was developed to facilitate body weight off loading and various gait patterns in both simulated partial and full gravitational environments. Studies have provided evidence that suggests: the environmental simulator constructed for this thesis effort does induce locomotor adaptations following partial gravity running; the precision stepping task may be a helpful test for illuminating these adaptations; and musculoskeletal loading in the form of running with or without backpack loads may improve the locomotor adaptation process.

  18. An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Hong, Sinpyo; Lee, Inwon; Park, Seong Hyeon; Lee, Cheolmin; Chun, Ho-Hwan; Lim, Hee Chang

    2015-09-01

    An experimental study of the effect of mooring systems on the dynamics of a SPAR buoy-type floating offshore wind turbine is presented. The effects of the Center of Gravity (COG), mooring line spring constant, and fair-lead location on the turbine's motion in response to regular waves are investigated. Experimental results show that for a typical mooring system of a SPAR buoy-type Floating Offshore Wind Turbine (FOWT), the effect of mooring systems on the dynamics of the turbine can be considered negligible. However, the pitch decreases notably as the COG increases. The COG and spring constant of the mooring line have a negligible effect on the fairlead displacement. Numerical simulation and sensitivity analysis show that the wind turbine motion and its sensitivity to changes in the mooring system and COG are very large near resonant frequencies. The test results can be used to validate numerical simulation tools for FOWTs.

  19. Skylab

    NASA Image and Video Library

    1972-06-02

    Rockford, Illinois high school student, Vincent Converse (right), is greeted by astronauts Russell L. Schweickart and Owen K. Garriott during a tour of the Marshall Space Flight Center (MSFC). Converse was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. His experiment, “Zero Gravity Mass Measurement” used a simple leaf spring with the mass to be weighed attached to the end. An electronic package oscillated the spring at a specific rate and the results were recorded electronically. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipme

  20. Metal spring stub and ceramic body electrode assembly

    DOEpatents

    Rolf, Richard L.; Sharp, Maurice L.

    1984-01-01

    An electrode assembly comprising an electrically conductive ceramic electrode body having an opening therein and a metal stub retained in the opening with at least a surface of the stub in intimate contact with a surface of the body and the stub adapted with a spring to flex and prevent damage to the body from expansion of the stub when subjected to a temperature differential.

  1. A comparison of the performance of two types of inertial systems for strapdown airborne gravimetry

    NASA Astrophysics Data System (ADS)

    Deurloo, R. A.; Martin, J.; Bastos, M. L.; Becker, M. H.

    2012-12-01

    Over the past two decades so-called strapdown airborne gravimetry systems have proven to have the potential to compete with more traditional measurement systems such as modified spring gravimeters (e.g. LaCoste & Romberg Air-Sea gravimeters). Strapdown gravimetry systems rely on the integration of high-accuracy data from a GNSS (Global Navigation Satellite System) receiver and from a strapdown IMU (Inertial Measurement Unit). These GNSS/IMU integrated systems have the advantage of being less expensive and more compact, while being easier to use and install than spring gravimeters, which tend to be bulky and require specialized human resources for its operation. In the scope of a research project developed through the collaboration of the University of Porto and the Portuguese Air Force (PAF), an airborne survey was recently performed over the middle and southern area of Continental Portugal using a CASA C212 aircraft. The goal of this survey was to acquire data to assess the performance of different GNSS/IMU systems and associated processing approaches to determine the gravity field and evaluate their potential and effectiveness for airborne gravimetry using different types of airborne platforms, including UAVs (Unmanned Airborne Vehicles). Among the systems on board were a medium-quality (tactical grade) IMU with fiber-optic gyros (FOG), a Litton LN-200, and a high-quality (navigation grade) IMU with ring-laser gyros (RLG), an iMAR RHQ-1003, which are the focus of the present comparison. The advantage of using a strapdown airborne gravimetry system with high-quality inertial sensor is that it allows the complete gravity vector to be determined from the triads of accelerometers and gyros in the IMU (vector gravimetry). On the other hand a medium-quality inertial system is limited to determining only the magnitude of the gravity vector (scalar gravimetry). The limited quality of the gyros of the medium-quality inertial systems does not allow the horizontal components of the gravity vector to be determined. In spite of that, this type of system has been shown to still deliver very useful results in the range of a few mGal for resolutions below 10km. In this work we describe the setup used for our airborne test and we present a comparison and analysis of the performance of the medium- and high-quality inertial systems. This includes an analysis of the results of overlapping flight lines obtained with both systems. Considerations about the suitability of each of the systems for different types of applications are also discussed.

  2. Preventing Unplanned Pregnancy and Completing College: An Evaluation of Online Lessons. 2nd Edition

    ERIC Educational Resources Information Center

    Antonishak, Jill; Connolly, Chelsey

    2014-01-01

    The National Campaign to Prevent Teen and Unplanned Pregnancy published free online lessons that help students take action to prevent unplanned pregnancy and complete their education. From the fall of 2012 to the spring of 2014, approximately 2,800 students took the online lessons and participated in pre- and post-lesson evaluation surveys at four…

  3. Magnetic and gravity gradiometry framework for Mesoproterozoic iron oxide-apatite and iron oxide-copper-gold deposits, southeast Missouri, USA

    USGS Publications Warehouse

    McCafferty, Anne E.; Phillips, Jeffrey; Driscoll, Rhonda L.

    2016-01-01

    High-resolution airborne magnetic and gravity gradiometry data provide the geophysical framework for evaluating the exploration potential of hidden iron oxide deposits in Mesoproterozoic basement rocks of southeast Missouri. The data are used to calculate mineral prospectivity for iron oxide-apatite (IOA) ± rare earth element (REE) and iron oxide-copper-gold (IOCG) deposits. Results delineate the geophysical footprints of all known iron oxide deposits and reveal several previously unrecognized prospective areas. The airborne data are also inverted to three-dimensional density and magnetic susceptibility models over four concealed deposits at Pea Ridge (IOA ± REE), Boss (IOCG), Kratz Spring (IOA), and Bourbon (IOCG). The Pea Ridge susceptibility model shows a magnetic source that is vertically extensive and traceable to a depth of greater than 2 km. A smaller density source, located within the shallow Precambrian basement, is partly coincident with the magnetic source at Pea Ridge. In contrast, the Boss models show a large (625-m-wide), vertically extensive, and coincident dense and magnetic stock with shallower adjacent lobes that extend more than 2,600 m across the shallow Precambrian paleosurface. The Kratz Spring deposit appears to be a smaller volume of iron oxides and is characterized by lower density and less magnetic rock compared to the other iron deposits. A prospective area identified south of the Kratz Spring deposit shows the largest volume of coincident dense and nonmagnetic rock in the subsurface, and is interpreted as prospective for a hematite-dominant lithology that extends from the top of the Precambrian to depths exceeding 2 km. The Bourbon deposit displays a large bowl-shaped volume of coincident high density and high-magnetic susceptibility rock, and a geometry that suggests the iron mineralization is vertically restricted to the upper parts of the Precambrian basement. In order to underpin the evaluation of the prospectivity and three-dimensional models, an extensive statistical summary of density and apparent magnetic susceptibility measurements is presented that includes data on several hundred samples taken from the deposits, altered wall rocks, and unaltered country rocks.

  4. Orbiter escape pole

    NASA Technical Reports Server (NTRS)

    Goodrich, Winston D. (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Becker, Bruce H. (Inventor); Kahn, Jon B. (Inventor); Grimaldi, Margaret E. (Inventor); McManamen, John P. (Inventor); Castro, Edgar O. (Inventor)

    1989-01-01

    A Shuttle type of aircraft (10) with an escape hatch (12) has an arcuately shaped pole housing (16) attachable to an interior wall and ceiling with its open end adjacent to the escape hatch. The pole housing 16 contains a telescopically arranged and arcuately shaped primary pole member (22) and extension pole member (23) which are guided by roller assemblies (30,35). The extension pole member (23) is slidable and extendable relative to the primary pole member (22). For actuation, a spring actuated system includes a spring (52) in the pole housing. A locking member (90) engages both pole members (22,23) through notch portions (85,86) in the pole members. The locking member selectively releases the extension pole member (23) and the primary pole member (22). An internal one-way clutch or anti-return mechanism prevents retraction of the extension pole member from an extended position. Shock absorbers (54)(150,152) are for absoring the energy of the springs. A manual backup deployment system is provided which includes a canted ring (104) biased by a spring member (108). A lever member (100) with a slot and pin connection (102) permits the mechanical manipulation of the canted ring to move the primary pole member. The ring (104) also prevents retraction of the main pole. The crew escape mechanism includes a magazine (60) and a number of lanyards (62), each lanyard being mounted by a roller loop (68) over the primary pole member (22). The strap on the roller loop has stitching for controlled release, a protection sheath (74) to prevent tangling and a hook member (69) for attachment to a crew harness.

  5. Air-sea interaction with SSM/I and altimeter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A number of important developments in satellite remote sensing techniques have occurred recently which offer the possibility of studying over vast areas of the ocean the temporally evolving energy exchange between the ocean and the atmosphere. Commencing in spring of 1985, passive and active microwave sensors that can provide valuable data for scientific utilization will start to become operational on Department of Defense (DOD) missions. The passive microwave radiometer can be used to estimate surface wind speed, total air column humidity, and rain rate. The active radar, or altimeter, senses surface gravity wave height and surface wind speed.

  6. The design and evaluation of superconducting connectors

    NASA Technical Reports Server (NTRS)

    Payne, J. E.

    1982-01-01

    The development of a superconducting connector for superconducting circuits on space flights is described. It is proposed that such connectors be used between the superconducting readout loop and the SQUID magnetometer in the Gravity Probe B experiment. Two types of connectors were developed. One type employs gold plated niobium wires making pressure connections to gold plated niobium pads. Lead-plated beryllium-copper spring contacts can replace the niobium wires. The other type is a rigid solder or weld connection between the niobium wires and the niobium pads. A description of the methods used to produce these connectors is given and their performance analyzed.

  7. Ocean Thermal and Color Evolution During the 1997/1998 ENSO Event

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele

    1998-01-01

    A reduced gravity primitive equation modeling and assimilation system is used to study the evolution of the tropical Pacific during the 1997/1998 ENSO cycle. The modeling/assimilation scheme ingests satellite altimeter data and TAO temperature profiles and uses SSM/I satellite derived winds as surface boundary forcing. The four-dimensional structure of the upper ocean circulation structure will be compared against available in situ observations across the Pacific basin. In particular, variability near the Galapagos Islands will be highlighted during the spring of 1998 when phytoplankton concentrations were observed to increase a hundred-fold over a two week period.

  8. Artificial gravity considerations for a mars exploration mission

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1999-01-01

    Artificial gravity (AG), as a means of preventing physiological deconditioning of astronauts during long-duration space flights, presents certain special challenges to the otolith organs and the adaptive capabilities of the CNS. The key issues regarding the choice of AG acceleration, radius, and rotation rate are reviewed from the viewpoints of physiological requirements and human factors disturbances. Head movements and resultant Coriolis forces on the rotating platform may limit the usefulness of economical short centrifuges for other than brief periods of intermittent stimulation.

  9. Stealth configurations in vector-tensor theories of gravity

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Tasinato, Gianmassimo

    2018-01-01

    Studying the physics of compact objects in modified theories of gravity is important for understanding how future observations can test alternatives to General Relativity. We consider a subset of vector-tensor Galileon theories of gravity characterized by new symmetries, which can prevent the propagation of the vector longitudinal polarization, even in absence of Abelian gauge invariance. We investigate new spherically symmetric and slowly rotating solutions for these systems, including an arbitrary matter Lagrangian. We show that, under certain conditions, there always exist stealth configurations whose geometry coincides with solutions of Einstein gravity coupled with the additional matter. Such solutions have a non-trivial profile for the vector field, characterized by independent integration constants, which extends to asymptotic infinity. We interpret our findings in terms of the symmetries and features of the original vector-tensor action, and on the number of degrees of freedom that it propagates. These results are important to eventually describe gravitationally bound configurations in modified theories of gravity, such as black holes and neutron stars, including realistic matter fields forming or surrounding the object.

  10. Metal spring stub and ceramic body electrode assembly

    DOEpatents

    Rolf, R.L.; Sharp, M.L.

    1984-06-26

    An electrode assembly is disclosed comprising an electrically conductive ceramic electrode body having an opening therein and a metal stub retained in the opening with at least a surface of the stub in intimate contact with a surface of the body and the stub adapted with a spring to flex and prevent damage to the body from expansion of the stub when subjected to a temperature differential. 1 fig.

  11. Catalyst, Volume 7, Number 1, Spring 2005

    ERIC Educational Resources Information Center

    Ryan, Barbara E., Ed.

    2005-01-01

    The Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention publishes Catalyst, a newsletter covering current AODV prevention issues at institutions of higher education. Catalyst discusses emerging issues and highlights innovative efforts on campuses that may be helpful at other institutions of higher education. The topics…

  12. The Challenge. Volume 13, Number 3, Spring 2005

    ERIC Educational Resources Information Center

    US Department of Education, 2005

    2005-01-01

    "The Challenge", a publication of the US Department of Education's office of Safe and Drug-Free Schools, provides critical information and resources to assist schools in creating safe and healthy environments for young people. This issue addresses the following topics: (1) Prevention Programs with Staying Power: What Makes Good Prevention Programs…

  13. 75 FR 22163 - Meeting of the Federal Advisory Committee on Juvenile Justice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... Federal Advisory Committee on Juvenile Justice AGENCY: Office of Juvenile Justice and Delinquency... Justice and Delinquency Prevention (OJJDP) announces the Spring meeting of the Federal Advisory Committee...)(2)(C-E) of the Juvenile Justice and Delinquency Prevention Act of 2002. The FACJJ is composed of one...

  14. Reliable Wiring Harness

    NASA Technical Reports Server (NTRS)

    Gaspar, Kenneth C.

    1987-01-01

    New harness for electrical wiring includes plugs that do not loosen from vibration. Ground braids prevented from detaching from connectors and constrained so braids do not open into swollen "birdcage" sections. Spring of stainless steel encircles ground braid. Self-locking connector contains ratchet not only preventing connector from opening, but tightens when vibrated.

  15. Moving-mass gravimeter calibration in the Mátyáshegy Gravity and Geodynamical Observatory (Budapest)

    NASA Astrophysics Data System (ADS)

    Kis, Márta; Koppán, Andras; Kovács, Péter; Merényi, László

    2014-05-01

    A gravimeter calibration facility exists in the Mátyáshegy Gravity and Geodynamical Observatory of Geological and Geophysical Institute in Hungary. During the calibration a cylindrical ring of 3200 kg mass is vertically moving around the equipment, generating gravity variations. The effect of the moving mass can be precisely calculated from the known mass and geometrical parameters. The main target of the calibration device was to reach a relative accuracy of 0.1-0.2% for the calibration of Earth-tide registering gravimeters. The maximum theoretical gravity variation produced by the vertical movement of the mass is ab. 110 microGal, so it provides excellent possibility for the fine calibration of gravimeters in the tidal range. The instrument was out of order for many years and in 2012 and 2013 it was renovated and automatized. The calibration process is aided by intelligent controller electronics. A new PLC-based system has been developed to allow easy control of the movement of the calibrating mass and to measure the mass position. It enables also programmed steps of movements (waiting positions and waiting times) for refined gravity changes. All parameters (position of the mass, CPI data, X/Y leveling positions) are recorded with 1/sec. sampling rate. The system can be controlled remotely through the internet. As it is well known that variations of the magnetic field can influence the measurements of metal-spring gravimeters, authors carried out magnetic experiments on the pillar of the calibration device as well, in order to analyze the magnetic effect of the moving stainless steel-mass. During the movements of the mass, the observed magnetic field has been changed significantly. According to the magnetic measurements, a correction for the magnetic effect was applied on the measured gravimetric data series. In this presentation authors show the facility in details and the numerical results of tests carried out by applying LCR G gravimeters.

  16. Motor Control of Landing from a Jump in Simulated Hypergravity.

    PubMed

    Gambelli, Clément N; Theisen, Daniel; Willems, Patrick A; Schepens, Bénédicte

    2015-01-01

    On Earth, when landing from a counter-movement jump, muscles contract before touchdown to anticipate imminent collision with the ground and place the limbs in a proper position. This study assesses how the control of landing is modified when gravity is increased above 1 g. Hypergravity was simulated in two different ways: (1) by generating centrifugal forces during turns of an aircraft (A300) and (2) by pulling the subject downwards in the laboratory with a Subject Loading System (SLS). Eight subjects were asked to perform counter-movement jumps at 1 g on Earth and at 3 hypergravity levels (1.2, 1.4 and 1.6 g) both in A300 and with SLS. External forces applied to the body, movements of the lower limb segments and muscular activity of 6 lower limb muscles were recorded. Our results show that both in A300 and with SLS, as in 1 g: (1) the anticipation phase is present; (2) during the loading phase (from touchdown until the peak of vertical ground reaction force), lower limb muscles act like a stiff spring, whereas during the second part (from the peak of vertical ground reaction force until the return to the standing position), they act like a compliant spring associated with a damper. (3) With increasing gravity, the preparatory adjustments and the loading phase are modified whereas the second part does not change drastically. (4) The modifications are similar in A300 and with SLS, however the effect of hypergravity is accentuated in A300, probably due to altered sensory inputs. This observation suggests that otolithic information plays an important role in the control of the landing from a jump.

  17. Effect of intermittent standing and walking on physiological changes induced by head-down bed rest

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Ludwig, D. A.; Ertl, A. C.; Wade, C. E.; Keil, L.; OHara, D.

    1994-01-01

    Continuous exposure to gravity may not be necessary to prevent compromised physiological function resulting from exposure to microgravity. However, minimum gravity (G) exposure requirements, effectiveness of passive Gz versus activity in a G field, and optimal G stimulus amplitude, duration, and frequency are unknown. To partially address these questions, a 4-day, 6 degree head-down bed rest (HDBR) study (one ambulatory control day, 4 full HDBR days, one recovery day) was conducted. Nine males, 30-50 yr, were subjected to four different +1 Gz (head-foot) exposure protocols (periodic standing or controlled walking for 2 or 4 h/day in 15 min doses), plus a continuous HDBR (0 Gz) control. Standing 4 h completely prevented and standing 2 h partially prevented post-HDBR orthostatic intolerance. Both walking conditions (2 h and 4 h) attenuated the decrease in peak VO2 and prevented the increased urinary Ca2+ excretion associated with HDBR. Both 4 h conditions (standing and walking) attenuated plasma volume loss during HDBR. It was concluded that various physiological systems benefit differentially from passive +1 Gz or activity in +1 Gz and the duration (2 h vs. 4 h) of the stimulus may be an important moderating factor.

  18. Geophysical Investigation of the Lake City Fault Zone, Surprise Valley, California, and Implications for Geothermal Circulation

    NASA Astrophysics Data System (ADS)

    McPhee, D. K.; Glen, J. M.; Egger, A. E.; Chuchel, B. A.

    2009-12-01

    New audiomagnetotelluric (AMT), gravity, and magnetic data were collected in Surprise Valley, northwestern Basin and Range, in order to investigate the role that the Lake City Fault Zone (LCFZ) may play in controlling geothermal circulation in the area. Surprise Valley hosts an extensional geothermal system currently undergoing exploration for development on several scales. The focus of much of that exploration has been the LCFZ, a set of NW-SE-trending structures that has been suggested on the basis of (1) low-relief scarps in the NW portion of the zone, (2) dissolved mineral-rich groundwater chemistry along its length, and (3) parallelism with a strong regional fabric that includes the Brothers Fault Zone. The LCFZ extends across the valley at a topographic high, intersecting the N-S-trending basin-bounding faults where major hot springs occur. This relationship suggests that the LCFZ may be a zone of permeability for flow of hydrothermal fluids. Previous potential field data indicate that there is no vertical offset along this fault zone, and little signature at all in either the gravity or magnetic data; along with the lack of surface expression along most of its length, the subsurface geometry of the LCFZ and its influence on geothermal fluid circulation remains enigmatic. The LCFZ therefore provides an ideal opportunity to utilize AMT data, which measures subsurface resistivity and therefore - unlike potential field data - is highly sensitive to the presence of saline fluids. AMT data and additional gravity and magnetic data were collected in 2009 along 3 profiles perpendicular to the LCFZ in order to define the subsurface geometry and conductivity of the fault zone down to depths of ~ 500 m. AMT soundings were collected using the Geometrics Stratagem EH4 system, a four channel, natural and controlled-source tensor system recording in the range of 10 to 92,000 Hz. To augment the low signal in the natural field a transmitter of two horizontal-magnetic dipoles was used from 800 to 56,000 Hz. One profile extends within 200 m of hot springs and fault scarps near the northwestern end of the LCFZ. There, preliminary data show low resistivities (< 5 ohm-m) at stations closest to the hot springs suggesting that the data are sensitive to high concentrations of salts characteristic of geothermal fluids in the area. Two additional profiles extend across the LCFZ further to the southeast where it is at its widest and most diffuse. Profiles were ~ 3 km-long with station spacing of ~ 200 - 400 m, and data were recorded in a coordinate system parallel to and perpendicular to the regional geologic-strike of the LCFZ. Two-dimensional (2D) inverse models were computed using the conjugate gradient, finite-difference method of Rodi and Mackie (2001). In addition to AMT data, ground magnetic and gravity data were collected along the AMT profiles. These data, combined with the 2D resistivity models, will be used to image the LCFZ at depth and determine whether it is a single through-going fracture zone that potentially hosts hydrothermal fluids within the shallow (< 1km) subsurface or whether it is simply a set of unrelated features with little or no geophysical expression.

  19. Terrorism Prevention: How Does Special Operations Fit In?

    DTIC Science & Technology

    2005-06-17

    controlled” (Risko 2004, 1). Of particular note in an Amazon review, a summary of this book: “Mr. Pillar explains the methods for answering the terrorist... Aurora . 2004. Meet Your Professor. Spring. Internet course on-line. Available from http://www.ccaurora.edu/crj259/ crjprofintro1.htm. Internet...Counterterrorism: Military and Economic Options. Article 4 of an internet course on Terrorism in Spring 2004 from The Community College of Aurora , offered by

  20. The Coast Guard Proceedings of the Marine Safety and Security Council: Spring 2016

    DTIC Science & Technology

    2016-04-01

    PROCEEDINGS Spring 2016 Vol. 73, Number 1 Safety Management System Objectives 6 Safety Management Facilitates Safe Vessel Operation Vessel systems...crew, and operations. by LCDR Aaron W. Demo 9 Safety Management Systems to Prevent Pollution from Ships Standard procedures protect the environment...by LCDR Michael Lendvay 11 Dead Reckoning by Safety Management ? Check your course. by LCDR Corydon F. Heard IV Safety Management Systems and the Outer

  1. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.

    PubMed

    Caplan, Z; Melilli, C; Barbano, D M

    2013-04-01

    The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Preliminary report on geophysics of the Verde River headwaters region, Arizona

    USGS Publications Warehouse

    Langenheim, V.E.; Duval, J.S.; Wirt, Laurie; DeWitt, Ed

    2000-01-01

    This report summarizes the acquisition, data processing, and preliminary interpretation of a high-resolution aeromagnetic and radiometric survey near the confluence of the Big and Little Chino basins in the headwaters of the Verde River, Arizona. The goal of the aeromagnetic study is to improve understanding of the geologic framework as it affects groundwater flow, particularly in relation to the occurrence of springs in the upper Verde River headwaters region. Radiometric data were also collected to map surficial rocks and soils, thus aiding geologic mapping of the basin fill. Additional gravity data were collected to enhance existing coverage. Both aeromagnetic and gravity data indicate a large gradient along the Big Chino fault, a fault with Quaternary movement. Filtered aeromagnetic data show other possible faults within the basin fill and areas where volcanic rocks are shallowly buried. Gravity lows associated with Big Chino and Williamson Valleys indicate potentially significant accumulations of low-density basin fill. The absence of a gravity low associated with Little Chino Valley indicates that high-density rocks are shallow. The radiometric maps show higher radioactivity associated with the Tertiary latites and with the sediments derived from them. The surficial materials on the eastern side of the Big Chino Valley are significantly lower in radioactivity and reflect the materials derived from the limestone and basalt east of the valley. The dividing line between the low radioactivity materials to the east and the higher radioactiviy materials to the west coincides approximately with the major drainage system of the valley, locally known as Big Chino Wash. This feature is remarkably straight and is approximately parallel to the Big Chino Fault. The uranium map shows large areas with concentrations greater than 5 ppm eU, and we expect that these areas will have a significantly higher risk potential for indoor radon.

  3. Kinematic and EMG Comparison of Gait in Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Edwards, W. Brent; Perusek, Gail P.; Lewandowski, Beth E.; Samorezov, Sergey

    2009-01-01

    Astronauts regularly perform treadmill locomotion as a part of their exercise prescription while onboard the International Space Station. Although locomotive exercise has been shown to be beneficial for bone, muscle, and cardiovascular health, astronauts return to Earth after long duration missions with net losses in all three areas [1]. These losses might be partially explained by fundamental differences in locomotive performance between normal gravity (NG) and microgravity (MG) environments. During locomotive exercise in MG, the subject must wear a waist and shoulder harness that is attached to elastomer bungees. The bungees are attached to the treadmill, and provide forces that are intended to replace gravity. However, unlike gravity, which provides a constant force upon all body parts, the bungees provide a spring force only to the harness. Therefore, subjects are subjected to two fundamental differences in MG: 1) forces returning the subject to the treadmill are not constant, and 2) forces are only applied to the axial skeleton at the waist and shoulders. The effectiveness of the exercise may also be affected by the magnitude of the gravity replacement load. Historically, astronauts have difficulty performing treadmill exercise with loads that approach body weight (BW) due to comfort and inherent stiffness in the bungee system. Although locomotion can be executed in MG, the unique requirements could result in performance differences as compared to NG. These differences may help to explain why long term training effects of treadmill exercise may differ from those found in NG. The purpose of this investigation was to compare locomotion in NG and MG to determine if kinematic or muscular activation pattern differences occur between gravitational environments.

  4. Spatial gravity wave characteristics obtained from multiple OH(3-1) airglow temperature time series

    NASA Astrophysics Data System (ADS)

    Wachter, Paul; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2015-12-01

    We present a new approach for the detection of gravity waves in OH-airglow observations at the measurement site Oberpfaffenhofen (11.27°E, 48.08°N), Germany. The measurements were performed at the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) during the period from February 4th, 2011 to July 6th, 2011. In this case study the observations were carried out by three identical Ground-based Infrared P-branch Spectrometers (GRIPS). These instruments provide OH(3-1) rotational temperature time series, which enable spatio-temporal investigations of gravity wave characteristics in the mesopause region. The instruments were aligned in such a way that their fields of view (FOV) formed an equilateral triangle in the OH-emission layer at a height of 87 km. The Harmonic Analysis is applied in order to identify joint temperature oscillations in the three individual datasets. Dependent on the specific gravity wave activity in a single night, it is possible to detect up to four different wave patterns with this method. The values obtained for the waves' periods and phases are then used to derive further parameters, such as horizontal wavelength, phase velocity and the direction of propagation. We identify systematic relationships between periods and amplitudes as well as between periods and horizontal wavelengths. A predominant propagation direction towards the East and North-North-East characterizes the waves during the observation period. There are also indications of seasonal effects in the temporal development of the horizontal wavelength and the phase velocity. During late winter and early spring the derived horizontal wavelengths and the phase velocities are smaller than in the subsequent period from early April to July 2011.

  5. Geophysical constraints on the Virgin River Depression, Nevada, Utah, and Arizona

    USGS Publications Warehouse

    Langenheim, V.E.; Glen, J.M.; Jachens, R.C.; Dixon, G.L.; Katzer, T.C.; Morin, R.L.

    2000-01-01

    Gravity and aeromagnetic data provide insights into the subsurface lithology and structure of the Virgin River Depression (VRD) of Nevada, Utah, and Arizona. The gravity data indicate that the Quaternary and Tertiary sedimentary deposits hide a complex pre-Cenozoic surface. A north-northwest-trending basement ridge separates the Mesquite and Mormon basins, as evidenced by seismic-reflection, gravity, and aeromagnetic data. The Mesquite basin is very deep, reaching depths of 8?10 km. The Mormon basin reaches thicknesses of 5 km. Its northern margin is very steep and may be characterized by right steps, although this interpretation could change with additional gravity stations. Most of the young (Quaternary), small-displacement faults trend within 10? of due north and occur within the deeper parts of the Mesquite basin north of the Virgin River. South of the Virgin River, only a few, young, small-displacement faults are mapped; the trend of these faults is more northeasterly and parallels the basement topography and is distinct from that of the faults to the north. The Virgin River appears to follow the margin of the basin as it emerges from the plateau. The high-resolution aeromagnetic data outline the extent of shallow volcanic rocks in the Mesquite basin. The north-northwest alignment of volcanic rocks east of Toquop Wash appear to be structurally controlled because of faults imaged on seismic-reflection profiles and because the alignment is nearly perpendicular to the direction of Cenozoic extension. More buried volcanics likely exist to the north and east of the high-resolution aeromagnetic survey. Broader aeromagnetic anomalies beneath pre-Cenozoic basement in the Mormon Mountains and Tule Springs Hills reflect either Precambrian basement or Tertiary intrusions. These rocks are probably barriers to groundwater flow, except where fractured.

  6. Naval War College. Volume 60, Number 2, Spring 2007

    DTIC Science & Technology

    2007-01-01

    attacks of grave conse- quences. The aspiration of this small-wars force element is to prevent even one nuclear, biological , or chemical weapon attack...153 Preventive Attack and Weapons of Mass...Default screen Bioethics and Armed Conflict: Moral Dilemmas of Medicine and War, by Michael L. Gross reviewed by Arthur M. Smith, MD

  7. Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ding, Z.; Anghaie, S.

    1996-01-01

    A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change problems in an encapsulated container, was employed. The equations, governing the conservation of mass, momentum and energy for both phases involved in phase change, were solved. The thermal performance of a multiphase uranium tetra-fluoride fuel element under zero gravity, micro-gravity and normal gravity conditions has been investigated. The modeling yielded results including the evolution of the bulk liquid-vapor phase change process, the evolution of the liquid-vapor interface, the formation and development of the liquid film covering the side wall surface, the temperature distribution and the convection flow field in the fuel element. The strong dependence of the thermal performance of such multiphase nuclear fuel cell on the gravity condition has been revealed. Under all three gravity conditions, 0-g, 10(exp -3)-g, and 1-g, the liquid film is formed and covers the entire side wall. The liquid film covering the side wall is more isothermalized at the wall surface, which can prevent the side wall from being over-heated. As the gravity increases, the liquid film is thinner, the temperature gradient is larger across the liquid film and smaller across the vapor phase. This investigation provides valuable information about the thermal performance of multi-phase nuclear fuel element for the potential space and ground applications.

  8. Commercial Production of Heavy Metal Fluoride Glass Fiber in Space

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1998-01-01

    International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.

  9. Bioprocessing: Prospects for space electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.

  10. Human Research Program Human Health Countermeasures Element: Evidence Report - Artificial Gravity

    NASA Technical Reports Server (NTRS)

    Clement, Gilles

    2015-01-01

    The most serious risks of long-duration flight involve radiation, behavioral stresses, and physiological deconditioning. Artificial gravity (AG), by substituting for the missing gravitational cues and loading in space, has the potential to mitigate the last of these risks by preventing the adaptive responses from occurring. The rotation of a Mars-bound spacecraft or an embarked human centrifuge offers significant promise as an effective, efficient multi-system countermeasure against the physiological deconditioning associated with prolonged weightlessness. Virtually all of the identified risks associated with bone loss, muscle weakening, cardiovascular deconditioning, and sensorimotor disturbances might be alleviated by the appropriate application of AG. However, experience with AG in space has been limited and a human-rated centrifuge is currently not available on board the ISS. A complete R&D program aimed at determining the requirements for gravity level, gravity gradient, rotation rate, frequency, and duration of AG exposure is warranted before making a decision for implementing AG in a human spacecraft.

  11. Resolving bathymetry from airborne gravity along Greenland fjords

    USGS Publications Warehouse

    Boghosian, Alexandra; Tinto, Kirsty; Cochran, James R.; Porter, David; Elieff, Stefan; Burton, Bethany L.; Bell, Robin E.

    2015-01-01

    Recent glacier mass loss in Greenland has been attributed to encroaching warming waters, but knowledge of fjord bathymetry is required to investigate this mechanism. The bathymetry in many Greenland fjords is unmapped and difficult to measure. From 2010 to 2012, National Aeronautics and Space Administration's Operation IceBridge collected a unique set of airborne gravity, magnetic, radar, and lidar data along the major outlet glaciers and fjords in Greenland. We applied a consistent technique using the IceBridge gravity data to create 90 bathymetric profiles along 54 Greenland fjords. We also used this technique to recover subice topography where warm or crevassed ice prevents the radar system from imaging the bed. Here we discuss our methodology, basic assumptions and error analysis. We present the new bathymetry data and discuss observations in six major regions of Greenland covered by IceBridge. The gravity models provide a total of 1950 line kilometers of bathymetry, 875 line kilometers of subice topography, and 12 new grounding line depths.

  12. Contoured tank outlets for draining of cylindrical tanks in low-gravity environment. [Lewis Research Center Zero Gravity Facility

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1979-01-01

    An analysis is presented for defining the outlet contour of a hemispherical-bottomed cylindrical tank that will prevent vapor ingestion when the tank is drained. The analysis was used to design two small-scale tanks that were fabricated and then tested in a low gravity environment. The draining performance of the tanks was compared with that for a tank with a conventional outlet having a constant circular cross-sectional area, under identical conditions. Even when drained at off-design conditions, the contoured tank had less liquid residuals at vapor ingestion than the conventional outlet tank. Effects of outflow rate, gravitational environment, and fluid properties on the outlet contour are discussed. Two potential applications of outlet contouring are also presented and discussed.

  13. Massive gravity and the suppression of anisotropies and gravitational waves in a matter-dominated contracting universe

    NASA Astrophysics Data System (ADS)

    Lin, Chunshan; Quintin, Jerome; Brandenberger, Robert H.

    2018-01-01

    We consider a modified gravity model with a massive graviton, but which nevertheless only propagates two gravitational degrees of freedom and which is free of ghosts. We show that non-singular bouncing cosmological background solutions can be generated. In addition, the mass term for the graviton prevents anisotropies from blowing up in the contracting phase and also suppresses the spectrum of gravitational waves compared to that of the scalar cosmological perturbations. This addresses two of the main problems of the matter bounce scenario.

  14. Artificial gravity: Phyiological perspectives for long-term space exploration

    NASA Astrophysics Data System (ADS)

    di Prampero, P.; Antonutto, G.

    2005-08-01

    We suggested previously the Twin Bike System (TBS) as a possible countermeasure to prevent cardiovascular deconditioning during long term space flight. The TBS consists of two bicycles, operated by the astronauts, moving at the very same speed, but in the opposite sense, along the inner wall of a cylindrical space module, thus generating a centrifugal acceleration vector, mimicking gravity. To gain some insight on the effectiveness of the TBS we hereby propose a similar approach (the Mono Bike System, MBS) to be tested during bed rest on Earth.

  15. Geothermal resources of the western arm of the Black Rock Desert, northwestern Nevada; Part I, geology and geophysics

    USGS Publications Warehouse

    Schaefer, Donald H.; Welch, Alan H.; Mauzer, Douglas K.

    1983-01-01

    Studies of the geothermal potential of the western arm of the Black Rock Desert in northwestern Nevada included a compilation of existing geologic data on a detailed map, a temperature survey at 1-meter depth, a thermal-scanner survey, and gravity and seismic surveys to determine basin geometry. The temperature survey showed the effects of heating at shallow depths due to rising geothermal fluids near the known hot spring areas. Lower temperatures were noted in areas of probable near-surface ground-water movement. The thermal-scanner survey verified the known geothermal areas and showed relatively high-temperature areas of standing water and ground-water discharge. The upland areas of the desert were found to be distinctly warmer than the playa area, probably due to low thermal diffusivity resulting from low moisture content. The surface geophysical surveys indicated that the maximum thickness of valley-fill deposits in the desert is about 3,200 meters. Gravity data further showed that changes in the trend of the desert axis occurred near thermal areas. (USGS)

  16. San Andreas fault geometry at Desert Hot Springs, California, and its effects on earthquake hazards and groundwater

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Gandhok, G.

    2009-01-01

    The Mission Creek and Banning faults are two of the principal strands of the San Andreas fault zone in the northern Coachella Valley of southern California. Structural characteristics of the faults affect both regional earthquake hazards and local groundwater resources. We use seismic, gravity, and geological data to characterize the San Andreas fault zone in the vicinity of Desert Hot Springs. Seismic images of the upper 500 m of the Mission Creek fault at Desert Hot Springs show multiple fault strands distributed over a 500 m wide zone, with concentrated faulting within a central 200 m wide area of the fault zone. High-velocity (up to 5000 m=sec) rocks on the northeast side of the fault are juxtaposed against a low-velocity (6.0) earthquakes in the area (in 1948 and 1986) occurred at or near the depths (~10 to 12 km) of the merged (San Andreas) fault. Large-magnitude earthquakes that nucleate at or below the merged fault will likely generate strong shaking from guided waves along both fault zones and from amplified seismic waves in the low-velocity basin between the two fault zones. The Mission Creek fault zone is a groundwater barrier with the top of the water table varying by 60 m in depth and the aquifer varying by about 50 m in thickness across a 200 m wide zone of concentrated faulting.

  17. FootSpring: A Compliance Model for the ATHLETE Family of Robots

    NASA Technical Reports Server (NTRS)

    Wheeler, Dawn Deborah; Chavez-Clemente, Daniel; Sunspiral, Vytas K.

    2010-01-01

    This paper describes and evaluates one method of modeling compliance in a wheel-on-leg walking robot. This method assumes that all of the robot s compliance takes place at the ground contact points, specifically the tires and legs, and that the rest of the robot is rigid. Optimization is used to solve for the displacement of the feet and of the center of gravity. This method was tested on both robots of the ATHLETE family, which have different compliance. For both robots, the model predicts the sag of points on the robot chassis with an average error of about one percent of the height of the robot.

  18. POSITIONING DEVICE

    DOEpatents

    Wall, R.R.; Peterson, D.L.

    1959-09-15

    A positioner is described for a vertical reactor-control rod. The positioner comprises four grooved friction rotatable members that engage the control rod on all sides and shift it longitudinally. The four friction members are drivingly interconnected for conjoint rotation and comprise two pairs of coaxial members. The members of each pair are urged toward one another by hydraulic or pneumatic pressure and thus grip the control rod so as to hold it in any position or adjust it. Release of the by-draulic or pneumatic pressure permits springs between the friction members of each pair to force them apart, whereby the control rod moves quickly by gravity into the reactor.

  19. Liquid-metal dip seal with pneumatic spring

    DOEpatents

    Poindexter, Allan M.

    1977-01-01

    An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal.

  20. Frost monitoring of fruit tree with satellite data

    NASA Astrophysics Data System (ADS)

    Fan, Jinlong; Zhang, Mingwei; Cao, Guangzheng; Zhang, Xiaoyu; Liu, Chenchen; Niu, Xinzan; Xu, Wengbo

    2012-09-01

    The orchards are developing very fast in the northern China in recent years with the increasing demands on fruits in China. In most parts of the northern China, the risk of frost damage to fruit tree in early spring is potentially high under the background of global warming. The growing season comes earlier than it does in normal year due to the warm weather in earlier spring and the risk will be higher in this case. According to the reports, frost event in spring happens almost every year in Ningxia Region, China. In bad cases, late frosts in spring can be devastating all fruit. So lots of attention has been given to the study in monitoring, evaluating, preventing and mitigating frost. Two orchards in Ningxia, Taole and Jiaozishan orchards were selected as the study areas. MODIS data were used to monitor frost events in combination with minimum air temperature recorded at weather station. The paper presents the findings. The very good correlation was found between MODIS LST and minimum air temperature in Ningxia. Light, middle and severe frosts were captured in the study area by MODIS LST. The MODIS LST shows the spatial differences of temperature in the orchards. 10 frost events in April from 2000 to 2010 were captured by the satellite data. The monitoring information may be hours ahead circulated to the fruit farmers to prevent the damage and loss of fruit trees.

  1. Correlation of geothermal springs with sub-surface fault terminations revealed by high-resolution, UAV-acquired magnetic data

    USGS Publications Warehouse

    Glen, Jonathan; A.E. Egger,; C. Ippolito,; N.Athens,

    2013-01-01

    There is widespread agreement that geothermal springs in extensional geothermal systems are concentrated at fault tips and in fault interaction zones where porosity and permeability are dynamically maintained (Curewitz and Karson, 1997; Faulds et al., 2010). Making these spatial correlations typically involves geological and geophysical studies in order to map structures and their relationship to springs at the surface. Geophysical studies include gravity and magnetic surveys, which are useful for identifying buried, intra-basin structures, especially in areas where highly magnetic, dense mafic volcanic rocks are interbedded with, and faulted against less magnetic, less dense sedimentary rock. High-resolution magnetic data can also be collected from the air in order to provide continuous coverage. Unmanned aerial systems (UAS) are well-suited for conducting these surveys as they can provide uniform, low-altitude, high-resolution coverage of an area without endangering crew. In addition, they are more easily adaptable to changes in flight plans as data are collected, and improve efficiency. We have developed and tested a new system to collect magnetic data using small-platform UAS. We deployed this new system in Surprise Valley, CA, in September, 2012, on NASA's SIERRA UAS to perform a reconnaissance survey of the entire valley as well as detailed surveys in key transition zones. This survey has enabled us to trace magnetic anomalies seen in ground-based profiles along their length. Most prominent of these is an intra-basin magnetic high that we interpret as a buried, faulted mafic dike that runs a significant length of the valley. Though this feature lacks surface expression, it appears to control the location of geothermal springs. All of the major hot springs on the east side of the valley lie along the edge of the high, and more specifically, at structural transitions where the high undergoes steps, bends, or breaks. The close relationship between the springs and structure terminations revealed by this study is unprecedented. Collecting magnetic data via UAS represents a new capability in geothermal exploration of remote and dangerous areas that significantly enhances our ability to map the subsurface.

  2. The Link: Connecting Juvenile Justice and Child Welfare. Volume 7, Number 3, Spring/Summer 2009

    ERIC Educational Resources Information Center

    Williams, Meghan, Ed.

    2009-01-01

    This issue of "The Link" newsletter contains the following articles: (1) Strong Juvenile Justice and Delinquency Prevention Act (JJDPA) Now in Senate (Tim Briceland-Belts); (2) Director's Message (Janet K. Wiig); (3) Mental Health and Substance Abuse Issues in the Juvenile Justice and Delinquency Prevention Act; and (4) Registering Harm:…

  3. Skylab

    NASA Image and Video Library

    1972-08-21

    Rockford, Illinois high school student, Vincent Converse (left), and Robert Head of the Marshall Space Flight Center (MSFC), check out the equipment to be used in conducting the student’s experiment aboard the Skylab the following year. His experiment, “Zero Gravity Mass Measurement” used a simple leaf spring with the mass to be weighed attached to the end. An electronic package oscillated the spring at a specific rate and the results were recorded electronically. Converse was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC two months earlier where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  4. Vibration of a string against multiple spring-mass-damper stoppers

    NASA Astrophysics Data System (ADS)

    Shin, Ji-Hwan; Talib, Ezdiani; Kwak, Moon K.

    2018-02-01

    When a building sways due to strong wind or an earthquake, the elevator rope can undergo resonance, resulting in collision with the hoist-way wall. In this study, a hard stopper and a soft stopper comprised of a spring-mass-damper system installed along the hoist-way wall were considered to prevent the string from undergoing excessive vibrations. The collision of the string with multiple hard stoppers and multiple spring-mass-damper stoppers was investigated using an analytical method. The result revealed new formulas and computational algorithms that are suitable for simulating the vibration of the string against multiple stoppers. The numerical results show that the spring-mass-damper stopper is more effective in suppressing the vibrations of the string and reducing structural failure. The proposed algorithms were shown to be efficient to simulate the motion of the string against a vibration stopper.

  5. Fastener starter tool

    NASA Technical Reports Server (NTRS)

    Chandler, Faith T. (Inventor); Arnett, Michael C. (Inventor); Garton, Harry L. (Inventor); Valentino, William D. (Inventor)

    2003-01-01

    A fastener starter tool includes a number of spring retention fingers for retaining a small part, or combination of parts. The tool has an inner housing, which holds the spring retention fingers, a hand grip, and an outer housing configured to slide over the inner housing and the spring retention fingers toward and away from the hand grip, exposing and opening, or respectively, covering and closing, the spring retention fingers. By sliding the outer housing toward (away from) the hand grip, a part can be released from (retained by) the tool. The tool may include replaceable inserts, for retaining parts, such as screws, and configured to limit the torque applied to the part, to prevent cross threading. The inner housing has means to transfer torque from the hand grip to the insert. The tool may include replaceable bits, the inner housing having means for transferring torque to the replaceable bit.

  6. Yarn carrier with clutch

    NASA Technical Reports Server (NTRS)

    Doyne, Richard A. (Inventor); Benson, Rio H. (Inventor); El-Shiekh, Aly (Inventor)

    1994-01-01

    A yarn carrier apparatus particularly suited for use in braiding machinery or the like due to its capability of continuous yarn feeding and retraction of long lengths of yarn. The yarn carrier apparatus comprises a yarn supply spool which is rotatably mounted within the housing, a spring motor also mounted within the housing and operatively connected to the yarn supply spool through a mechanical transmission assembly which is adapted to multiply rotational movement between the first element of the gear assembly operatively connected to the spring motor and the final element of the gear assembly operatively connected to the yarn supply spool. The spring motor is adapted to tension the yarn during both feeding and retraction thereof, and it is further adapted to periodically rotatably slip within the housing and partially unwind so as to allow for continuous withdrawal of a long length of yarn without the spring motor becoming fully wound and preventing further yarn retraction.

  7. Yarn carrier apparatus for braiding machines and the like

    NASA Technical Reports Server (NTRS)

    El-Shiekh, Aly (Inventor); Li, Wei (Inventor); Hammad, Mohamed (Inventor)

    1992-01-01

    A yarn carrier apparatus particularly suited for use in braiding machinery or the like due to its capability of continuous yarn feeding and retraction of long lengths of yarn. The yarn carrier apparatus comprises a yarn supply spool which is rotatably mounted within the housing, a spring motor also mounted within the housing and operatively connected to the yarn supply spool through a mechanical transmission assembly which is adapted to multiply rotational movement between the first element of the gear assembly operatively connected to the spring motor and the final element of the gear assembly operatively connected to the yarn supply spool. The spring motor is adapted to tension the yarn during both feeding and retraction thereof, and it is further adapted to periodically rotatably slip within the housing and partially unwind so as to allow for continuous withdrawal of a long length of yarn without the spring motor becoming fully wound and preventing further yarn retraction.

  8. Feasible metabolisms in high pH springs of the Philippines

    PubMed Central

    Cardace, Dawn; Meyer-Dombard, D'Arcy R.; Woycheese, Kristin M.; Arcilla, Carlo A.

    2015-01-01

    A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization. PMID:25713561

  9. Feasible metabolisms in high pH springs of the Philippines.

    PubMed

    Cardace, Dawn; Meyer-Dombard, D'Arcy R; Woycheese, Kristin M; Arcilla, Carlo A

    2015-01-01

    A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization.

  10. Geodesic and hydrogeophysic long term observations in the Durzon karstic aquifer (Larzac, France)

    NASA Astrophysics Data System (ADS)

    Le Moigne, Nicolas; Bayer, Roger; Boudin, Frederick; Champollion, Cedric; Chery, Jean; Collard, Philippe; Daignières, Marc; Deville, Sabrina; Doerflinger, Erik; Vernant, Philippe

    2010-05-01

    Karsts are generally characterized by high heterogeneity at all scales for both the water storage properties and the mode of water transport. The Durzon karst system is located in south of France and is characterized by a unsaturated zone of 100-150 m width. The water input is exclusively rainfall and draining occurs at the Durzon perennial spring in a karstic valley. The Durzon aquifer has been monitored by our group by different geophysical methods (gravimetry, tiltmetry, more details below) for several years. The present-day stage of the project is to setup long term observations to assess hydrological properties of the karst in a small area of 500m*500m with numerous caves (up to 100 m deep and more than 2 km of development). The observations are of four major types: - Continuous high frequency and high accuracy gravimetry: Gravimetric observations can be directly linked to the variations of water masses in the unsaturated zone. The iGrav™ Superconducting Gravity Meter from GWR (San Diego, USA) will be used to record continuous gravity variations and track water mass variations at a few millimeters level. The iGrav™ is a new SG model from GWR that has been simplified for portable and field operation, but retains the stability and precision of previous SGs. With a drift rate of less than 0.5 microGal/month and a virtually constant scale factory, the iGrav™ will provide a much higher stability and precision than can be achieved with mechanical spring-type gravity meters. - Water flux measurements (atmospheric and in-situ): A flux tower provides evapo-transpiration measurements (output) allowing complete budget calculation with the help of gravity (storage variations) and rainfall (input). An original measurement corresponds to the measure of the in-situ flow inside karstic caves (stalactites and underground river). - Tiltmetry: In situ (in caves) measurements are completed by long base silica tiltmeters. Tiltmeters are sensible to water storage in fractures and provide another type of transfer observation with long term measurements recording. - Repeated hydro-geophysical methods (Resonance Magnetic Protonic, electric resistivity, seismic reflection): Repeated ground and boreholes electric resistivity measurements can be interpreted as a function of water saturation in the unsaturated zone and is perfectly complementary with Resonance Magnetic Protonic (RMP) which measures vertical profiles of water content. All the observations are used to constrained simple physical models of water transfer in the unsaturated zone of the karst. New observations as gravimetry, RMP or in-situ flow measurements are crucial to distinguish between different physical models and establish the level of heterogeneity of the water transfer. The observatory will be fully operational for the winter 2010 and welcomes collaborations. All data will be made publically available through the OREME and ORE H+ web services.

  11. [Transcatheter embolization for huge pulmonary arteriovenous fistula using metallic "spider" and spring embolus--application of hand-made metallic "spider" using partial monorail technique].

    PubMed

    Hirota, S; Sako, M; Fujita, Y; Hasegawa, Y; Sugimoto, K; Suzuki, Y; Kono, M

    1992-07-25

    We performed transcatheter embolization in two cases with huge pulmonary arteriovenous fistula (AVF) using a metallic "spider" and spring embolus. Conventional spring embolus or detachable balloon could not be used in these cases. Metallic spider was indicated for pulmonary AVF with a feeding artery diameter of more than 16 mm to prevent embolus passing through the AVF. In the first case, we used large handmade metallic spiders of 25 mm in diameter followed by embolization by numerous spring coils. At that time, a partial monorail technique was newly devised to carry the large metallic spider into the feeding artery, otherwise the spider could not pass into a 9F catheter. After embolization, symptoms and PaO2 in arterial blood improved remarkably in both cases. In the second case, a spring coil migrated into the normal pulmonary artery, but no infarction resulted. In conclusion, the metallic spider was very useful for embolization of hugee pulmonary AVF to avoid the embolus passing through and to tangle spring coils together with it. If commercially available "spiders" are too small, ones can be made easily.

  12. Development of new experimental platform 'MARS'-Multiple Artificial-gravity Research System-to elucidate the impacts of micro/partial gravity on mice.

    PubMed

    Shiba, Dai; Mizuno, Hiroyasu; Yumoto, Akane; Shimomura, Michihiko; Kobayashi, Hiroe; Morita, Hironobu; Shimbo, Miki; Hamada, Michito; Kudo, Takashi; Shinohara, Masahiro; Asahara, Hiroshi; Shirakawa, Masaki; Takahashi, Satoru

    2017-09-07

    This Japan Aerospace Exploration Agency project focused on elucidating the impacts of partial gravity (partial g) and microgravity (μg) on mice using newly developed mouse habitat cage units (HCU) that can be installed in the Centrifuge-equipped Biological Experiment Facility in the International Space Station. In the first mission, 12 C57BL/6 J male mice were housed under μg or artificial earth-gravity (1 g). Mouse activity was monitored daily via downlinked videos; μg mice floated inside the HCU, whereas artificial 1 g mice were on their feet on the floor. After 35 days of habitation, all mice were returned to the Earth and processed. Significant decreases were evident in femur bone density and the soleus/gastrocnemius muscle weights of μg mice, whereas artificial 1 g mice maintained the same bone density and muscle weight as mice in the ground control experiment, in which housing conditions in the flight experiment were replicated. These data indicate that these changes were particularly because of gravity. They also present the first evidence that the addition of gravity can prevent decreases in bone density and muscle mass, and that the new platform 'MARS' may provide novel insights on the molecular-mechanisms regulating biological processes controlled by partial g/μg.

  13. Ground Reaction Forces During Reduced Gravity Running in Parabolic Flight.

    PubMed

    Cavanagh, Peter; Rice, Andrea; Glauberman, Molly; Sudduth, Amanda; Cherones, Arien; Davis, Shane; Lewis, Michael; Hanson, Andrea; Wilt, Grier

    2017-08-01

    Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats. In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions. On average, stride length increased as gravity decreased. The first and second peaks of the GRFs decreased by 0.156 and 0.196 bodyweights, respectively, per 1/10 g change in ambient gravity. Based on comparisons with previously measured GRF during loaded treadmill running on the International Space Station, we conclude that unloaded treadmill running under lunar and Martian conditions during exploration missions is not likely to be an osteo-protective exercise.Cavanagh P, Rice A, Glauberman M, Sudduth A, Cherones A, Davis S, Lewis M, Hanson A, Wilt G. Ground reaction forces during reduced gravity running in parabolic flight. Aerosp Med Hum Perform. 2017; 88(8):730-736.

  14. Fire safety applications for spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Olson, Sandra L.

    1989-01-01

    Fire safety for spacecraft is reviewed by first describing current practices, many of which are adapted directly from aircraft. Then, current analyses and experimental knowledge in low-gravity combustion, with implications for fire safety are discussed. In orbiting spacecraft, the detection and suppression of flames are strongly affected by the large reduction in buoyant flows under low gravity. Generally, combustion intensity is reduced in low gravity. There are some notable exceptions, however, one example being the strong enhancement of flames by low-velocity ventilation flows in space. Finally, the future requirements in fire safety, particularly the needs of long-duration space stations in fire prevention, detection, extinguishment, and atmospheric control are examined. The goal of spacecraft fire-safety investigations is the establishment of trade-offs that promote maximum safety without hampering the useful human and scientific activities in space.

  15. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  16. 19th JANNAF Safety and Environmental Protection Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Cocchiaro, J. E. (Editor); Becker, D. L. (Editor)

    2002-01-01

    This volume, the first of two volumes, is a compilation of 22 unclassified/unlimited technical papers presented at the 19th Joint Army-Navy-NASA-Air Force (JANNAF) Safety & Environmental Protection Subcommittee Meeting. The meeting was held 18-21 March 2002 at the Sheraton Colorado Springs Hotel, Colorado Springs, Colorado. Topics covered include green energetic materials and life cycle pollution prevention; space launch range safety; propellant/munitions demilitarization, recycling, and reuse: and environmental and occupational health aspects of propellants and energetic materials.

  17. Six months of disuse during hibernation does not increase intracortical porosity or decrease cortical bone geometry, strength, or mineralization in black bear (Ursus americanus) femurs

    PubMed Central

    McGee-Lawrence, Meghan E.; Wojda, Samantha J.; Barlow, Lindsay N.; Drummer, Thomas D.; Bunnell, Kevin; Auger, Janene; Black, Hal L.; Donahue, Seth W.

    2009-01-01

    Disuse typically uncouples bone formation from resorption, leading to bone loss which compromises bone mechanical properties and increases the risk of bone fracture. Previous studies suggest that bears can prevent bone loss during long periods of disuse (hibernation), but small sample sizes have limited the conclusions that can be drawn regarding the effects of hibernation on bone structure and strength in bears. Here we quantified the effects of hibernation on structural, mineral, and mechanical properties of black bear (Ursus americanus) cortical bone by studying femurs from large groups of male and female bears (with wide age ranges) killed during pre-hibernation (fall) and post-hibernation (spring) periods. Bone properties that are affected by body mass (e.g. bone geometrical properties) tended to be larger in male compared to female bears. There were no differences (p > 0.226) in bone structure, mineral content, or mechanical properties between fall and spring bears. Bone geometrical properties differed by less than 5% and bone mechanical properties differed by less than 10% between fall and spring bears. Porosity (fall: 5.5 ± 2.2%, spring: 4.8 ± 1.6%) and ash fraction (fall: 0.694 ± 0.011, spring: 0.696 ± 0.010) also showed no change (p > 0.304) between seasons. Statistical power was high (>72%) for these analyses. Furthermore, bone geometrical properties and ash fraction (a measure of mineral content) increased with age and porosity decreased with age. These results support the idea that bears possess a biological mechanism to prevent disuse and age-related osteoporoses. PMID:19450804

  18. Mesosphere Dynamics with Gravity Wave Forcing. 1; Diurnal and Semi-Diurnal Tides

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We present results from a nonlinear, 3D, time dependent numerical spectral model (NSM), which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere that is dominated by wave interactions. We discuss diurnal and semi-diurnal tides ill the present paper (Part 1) and planetary waves in the companion paper (Part 2). To provide an understanding of the seasonal variations of tides, in particular with regard to gravity wave processes, numerical experiments are performed that lead to the following conclusions: 1. The large semiannual variations in tile diurnal tide (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. 2. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength. 3.Variations in eddy viscosity associated with GW interactions tend to peak in late spring and early fall and call also influence the DT. 4. The semidiurnal semidiurnal tide (SDT), and its phase in particular, is strongly influenced by the mean zonal circulation. 5. The SDT, individually, is amplified by GW's. But the DT filters out GW's such that the wave interaction effectively reduces the amplitude of the SDT, effectively producing a strong nonlinear interaction between the DT and SDT. 6.) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT.

  19. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment.

    PubMed

    Qian, Airong; Di, Shengmeng; Gao, Xiang; Zhang, Wei; Tian, Zongcheng; Li, Jingbao; Hu, Lifang; Yang, Pengfei; Yin, Dachuan; Shang, Peng

    2009-07-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteoblast gene expression profile were investigated by microarray. Genes sensitive to diamagnetic levitation environment (0 g), gravity changes, and high magnetic field changes were sorted on the basis of typical cell functions. Cytoskeleton, as an intracellular load-bearing structure, plays an important role in gravity perception. Therefore, 13 cytoskeleton-related genes were chosen according to the results of microarray analysis, and the expressions of these genes were found to be altered under HMGE by real-time PCR. Based on the PCR results, the expressions of WASF2 (WAS protein family, member 2), WIPF1 (WAS/WASL interacting protein family, member 1), paxillin, and talin 1 were further identified by western blot assay. Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels, and talin 1 and paxillin were sensitive to both magnetic field and gravity changes. Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskeleton-related genes expression. The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.

  20. Further Investigations of High Temperature Knitted Spring Tubes for Advanced Control Surface Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2006-01-01

    Knitted metallic spring tubes are the structural backbones that provide resiliency in control surface seals for use on current and future reusable space launch vehicles. Control surface seals fill the space between movable control surfaces such as body flaps, rudders and elevons, and the static body structures to which they are attached. These seals must remain in continuous contact with opposing surfaces to prevent the ingestion of damaging hot gases encountered during atmospheric re-entry. The Inconel X-750 (Special Metals Corporation) spring tube utilized in the baseline control surface seal shows significant resiliency loss when compressed at temperatures as low as 1200 F. High temperature compression testing and microstructural analysis show that creep is the dominant deformation mechanism leading to permanent set and resiliency loss in tested spring tube samples. Additional evaluation using a structured design of experiments approach shows that spring tube performance, primarily high temperature resiliency, can be enhanced through material substitution of Rene 41 (Allvac) alloy (for the baseline Inconel X-750 material) when coupled with specialized thermal processing.

  1. Seasonal spring peaks of suicide in victims with and without prior history of hospitalization for mood disorders.

    PubMed

    Postolache, Teodor T; Mortensen, Preben B; Tonelli, Leonardo H; Jiao, Xiaolong; Frangakis, Constantin; Soriano, Joseph J; Qin, Ping

    2010-02-01

    Seasonal spring peaks of suicide are highly replicated, but their origin is poorly understood. As the peak of suicide in spring could be a consequence of decompensation of mood disorders in spring, we hypothesized that prior history of mood disorders is predictively associated with suicide in spring. We analyzed the monthly rates of suicide based upon all 37,987 suicide cases in the Danish Cause of Death Registry from 1970 to 2001. History of mood disorder was obtained from the Danish Psychiatric Central Register and socioeconomical data from the Integrated Database for Labour Market Research. The monthly rate ratio of suicide relative to December was estimated using a Poisson regression. Seasonality of suicide between individuals with versus without hospitalization for mood disorders was compared using conditional logistic regression analyses with adjustment for income, marital status, place of residence, and method of suicide. A statistically significant spring peak in suicide was observed in both groups. A history of mood disorders was associated with an increased risk of suicide in spring (for males: RR=1.18, 95% CI 1.07-1.31; for females: RR=1.20, 95% CI 1.10-1.32). History of axis II disorders was not analyzed. Danish socioeconomical realities have only limited generalizability. The results support the need to further investigate if exacerbation of mood disorders in spring triggers seasonal peaks of suicide. Identifying triggers for seasonal spring peaks in suicide may lead to uncovering novel risk factors and therapeutic targets for suicide prevention. 2009 Elsevier B.V. All rights reserved.

  2. Measured flow and tracer-dye data showing the anthropogenic effects on the hydrodynamics of south Sacramento-San Joaquin Delta, California, spring 1996 and 1997

    USGS Publications Warehouse

    Oltmann, Richard N.

    1998-01-01

    Tidal flows were measured using acoustic Doppler current profilers and ultrasonic velocity meters during spring 1996 and 1997 in south Sacramento-San Joaquin Delta, California, when (1) a temporary barrier was installed at the head of Old River to prevent the entrance of migrating San Joaquin River salmon smolts, (2) the rate of water export from the south Delta was reduced for an extended period of time, and (3) a 30-day pulse flow was created on the San Joaquin River to move salmon smolts north away from the export facilities during spring 1997. Tracer-dye measurements also were made under these three conditions.

  3. The Role of Gravity on the Reproduction of Arabidopsis Plants

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.

    1985-01-01

    The presence of gravity as a necessary environmental factor for higher plants to complete their life cycle was examined. Arabidopsis thalliana (L.) Heynh. Columbia strain plants were grown continuously for three generations in a simulated micro-g environment as induced by horizontal clinostats. Growth, development and reproduction were followed. The Arabidopsis plants were selected for three generations on clinostats because: (1) a short life cycle of around 35 days; (2) the cells of third generation plants would in theory be free of gravity imprint; and (3) a third generation plant would therefore more than likely grow and respond like a plant growing in a micro-g environment. It is found that gravity is not a required environmental factor for higher plants to complete their life cycle, at least as tested by a horizontal clinostat. Clinostatting does not prevent the completion of the plant life cycle. However, clinostatting does appear to slow down the reproductive process of Arabidopsis plants. Whether higher plants can continue to reproduce for many generations in a true micro-g environment of space can only be determined by long duration experiments in space.

  4. Effect of gravity on apical dominance in Pharbitis nil.

    PubMed

    Kitazawa, Daisuke; Fujii, Nobuharu; Suge, Hiroshi; Takahashi, Hideyuki

    2003-10-01

    When the upper part of main shoot of morning glory (Pharbitis nil) is gently bent down, lateral bud on the bending region is released from apical dominance and starts to elongate. But, clinorotating the bending shoots prevents the release of the lateral bud from apical dominance. These results suggest that gravity affects apical dominance in morning glory. Here we verified the gravity-regulated apical dominance by using a weeping morning glory defective in gravitropic response due to abnormal differentiation of endodermis. That is, bending main shoot of the weeping morning glory hardly caused the lateral bud to elongate. In addition, decapitation of apical bud released the lateral bud from apical dominance, and exogenous auxin applied to the cut surface of the decapitated stem was inhibitory to the outgrowth of the lateral bud in the wild type. However, the effect of auxin was much less in the weeping morning glory. Thus, apical dominance of the weeping morning glory was weaker and less influenced by gravity than that of the wild type, which could occur due to abnormal differentiation of endodermis required for graviperception.

  5. Airborne geophysical surveys of unexplored regions of Antarctica - results of the ESA PolarGap campaign

    NASA Astrophysics Data System (ADS)

    Forsberg, R.; Olesen, A. V.; Ferraccioli, F.; Jordan, T. A.; Matsuoka, K.

    2016-12-01

    Major airborne geophysical surveys have recently mapped large unexplored regions in the interior of East Antarctica, in a Danish-UK-Norwegian cooperation. Long-range aerogeophysics data have been collected both over the Recovery Lakes region (2012/13), as well as around the Pole (2015/16). The primary purpose of these campaigns was to map gravity to fill-in data voids in global gravity field models and augment results from the European Space Agency GOCE gravity field satellite mission. Additionally magnetic, ice-penetrating radar and lidar data are used to explore and understand the subglacial topography and geological setting, providing an improved foundation for ice sheet modeling. The most recent ESA-sponsored Polar Gap project used a BAS Twin-Otter aircraft equipped with both spring gravimeter and IMU gravity sensors, magnetometers, ice penetrating radar over the essentially unmapped regions of the GOCE polar gap. Additional detailed flights over the subglacial Recovery Lakes region, followed up earlier 2013 flights over this region. The operations took place from two field camps (near Recovery Lakes and Thiel Mountains), as well as from the Amundsen-Scott South Pole station, thanks to a special arrangement with NSF. In addition to the airborne geophysics program, data with an ESA Ku-band radar were also acquired, in support of the CryoSat-2 mission, and scanning lidar collected across the polar gap, beyond the coverage of IceSat. In the talk we outline the Antarctic field operations, and show first results of the campaign, including performance of the gravity sensors, with comparison to limited existing data in the region (e.g., AGAP, IceBridge), as well as examples of lidar, magnetics and radar data. Significant new features detected from the geophysical data includes an extensive subglacial valley system between the Pole and the Filchner-Ronne ice shelf region, as well as extensive subglacial mountains, both consistent with observed ice stream patterns in the region. New data over the Recovery Lakes confirm the tectonic constraints on the lake system, and also hightlight the importantance of relatively dense flight tracks to constrain local subglacial hydrology.

  6. Stochastic estimation of human shoulder impedance with robots: an experimental design.

    PubMed

    Park, Kyungbin; Chang, Pyung Hun

    2011-01-01

    Previous studies assumed the shoulder as a hinge joint during human arm impedance measurement. This is obviously a vast simplification since the shoulder is a complex of several joints with multiple degrees of freedom. In the present work, a practical methodology for more general and realistic estimation of human shoulder impedance is proposed and validated with a spring array. It includes a gravity compensation scheme, which is developed and used for the experiments with a spatial three degrees of freedom PUMA-type robot. The experimental results were accurate and reliable, and thus it has shown a strong potential of the proposed methodology in the estimation of human shoulder impedance. © 2011 IEEE

  7. Seasonal variability of the Red Sea, from satellite gravity, radar altimetry, and in situ observations

    NASA Astrophysics Data System (ADS)

    Wahr, John; Smeed, David A.; Leuliette, Eric; Swenson, Sean

    2014-08-01

    Seasonal variations of sea surface height (SSH) and mass within the Red Sea are caused mostly by exchange of heat with the atmosphere and by flow through the strait opening into the Gulf of Aden to the south. That flow involves a net mass transfer into the Red Sea during fall and out during spring, though in summer there is an influx of cool water at intermediate depths. Thus, summer water in the south is warmer near the surface due to higher air temperatures, but cooler at intermediate depths. Summer water in the north experiences warming by air-sea exchange only. The temperature affects water density, which impacts SSH but has no effect on mass. We study this seasonal cycle by combining GRACE mass estimates, altimeter SSH measurements, and steric contributions derived from the World Ocean Atlas temperature climatology. Among our conclusions are: mass contributions are much larger than steric contributions; the mass is largest in winter, consistent with winds pushing water into the Red Sea in fall and out during spring; the steric signal is largest in summer, consistent with surface warming; and the cool, intermediate-depth water flowing into the Red Sea in spring has little impact on the steric signal, because contributions from the lowered temperature are offset by effects of decreased salinity. The results suggest that the combined use of altimeter and GRACE measurements can provide a useful alternative to in situ data for monitoring the steric signal.

  8. Flight Measurements to Determine Effect of a Spring-Loaded Tab on Longitudinal Stability of an Airplane

    NASA Technical Reports Server (NTRS)

    Hunter, Paul A.; Reeder, John P.

    1946-01-01

    In conjunction with a program of research on the general problem of stability of airplanes in the climbing condition, tests have been made of a spring-loaded tb which. is referred to as a ?springy tab,? installed on the elevator of a low-wing scout bomber. The tab was arranged to deflect upward with decrease in speed which caused an increase in the pull force required to trim at low speeds and thereby increased the stick-free static longitudinal stability of the airplane. It was found that the springy tab would increase the stick-free stability in all flight conditions, would reduce the danger of inadvertent stalling because of the definite pull force required to stall the airplane with power on, would reduce the effect of center-of-gravity position on stick-free static stability, and would have little effect on the elevator stick forces in accelerated f11ght. Another advantage of the springy tab is that it might be used to provide almost any desired variation of elevator stick force with speed by adjusting the tab hinge-moment characteristics and the variation of spring moment with tab deflection. Unlike the bungee and the bobweight, the springy tab would provide stick-free static stability without requiring a pull force to hold the stick back while taxying. A device similar to the springy tab may be used on the rudder or ailerons to eliminate undesirable trim-force variations with speed.

  9. Prevention of bone loss and muscle atrophy during manned space flight.

    PubMed

    Keller, T S; Strauss, A M; Szpalski, M

    1992-04-01

    This paper reviews the biomedical literature concerning human adaptation to nonterrestrial environments, and focuses on the definition of practical countermeasures necessary for long-term survival on the Moon, Mars and during long-term space missions and exploration. Of particular importance is the development of clinically relevant countermeasures for prevention of pathophysiological changes in the musculoskeletal and cardiopulmonary systems under these conditions. The countermeasures which are proposed are based upon a combination of biomechanical and theoretical analyses. The biomechanical analyses are based upon clinical measurements of human skeletal density changes associated with weight lifting as well as clinical studies of human strength and fitness currently being conducted using an isoinertial trunk dynamometer. The theoretical analysis stems from a mathematical model for bone loss in altered gravity environments that we have begun to develop. These analyses provide guidelines for the development of practical therapeutic treatments (exercise, artificial gravity) designed to minimize musculoskeletal deconditioning associated with less than Earth gravity environments. Our findings suggest that very intensive exercise, which impose high loads on the musculoskeletal system for brief periods, may be more efficient in preserving bone and skeletal muscle conditioning within "safe" limits for longer periods than low intensity activities such as treadmill running and bicycling. A 1/6 to 1/7-g gravitational environment is predicted to be sufficient to preserve bone strength above the fracture risk level. Basic biomedical support of manned space missions, Moon and Mars bases should include routine assessment of skeletal density, muscle strength, cardiac output and total energy expenditure. This information can be used to periodically re-evaluate exercise programs and or artificial gravity requirements for crew members.

  10. Novel Control Scheme of Power Assisted Wheelchair for Preventing Overturn (Part II)-Variable Assistance Ratio Control Based on Estimation of Center-of-Gravity Angle and Phase Plane-

    NASA Astrophysics Data System (ADS)

    Hata, Naoki; Seki, Hirokazu; Koyasu, Yuichi; Hori, Yoichi

    Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of a power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. This paper proposes a novel control method to prevent power assisted wheelchair from overturning. The man-wheelchair system can be regarded as an inverse pendulum model when the front wheels are rising. The center-of-gravity (COG) angle of the model is the most important information directly-linked to overturn. Behavior of the system can be analyzed using phase plane as shown in this paper. The COG angle cannot be directly measured using a sensor, therefore, COG observer based on its velocity is proposed. On the basis of the analysis on phase plane, a novel control method with variable assistance ratio to prevent a dangerous overturn is proposed. The effectiveness of the proposed method is verified by the practical experiments on the flat ground and uphill slope.

  11. 43 CFR 4130.3-2 - Other terms and conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., or restoration of vigor of plants, provide for the improvement of riparian areas to achieve proper... of applicable land use plans, or to prevent compaction of wet soils, such as where delay of spring...

  12. Springs as Ecosystems: Clarifying Groundwater Dependence and Wetland Status (Invited)

    NASA Astrophysics Data System (ADS)

    Stevens, L.; Springer, A. E.; Ledbetter, J. D.

    2013-12-01

    Springs ecosystems are among the most productive, biologically diverse and culturally important ecosystems on Earth. Net annual productivity of some springs exceeds 5 kg/m^2/yr. Springs support an estimated 19% of the endangered species and numerous rare taxa in the United States. Springs serve as keystone ecosystems in arid regions, and as cornerstones of indigenous cultural well-being, history, economics, and aesthetics. Despite their significance, the ecosystem ecology and stewardship of springs have received scant scientific and public attention, resulting in loss or impairment of 50-90% of the springs in many regions, both arid and temperate. Six reasons contribute to the lack of attention to springs. Springs are poorly mapped because: 1) their generally small size is less than the pixel area of most remote sensing analyses and they are overlooked; and 2) springs detection is often limited by emergence on cliff faces, beneath heavy vegetation cover, or under water. In addition, 3) high levels of ecosystem complexity at springs require multidisciplinary team approaches for inventory, assessment, and research, but collaboration between the fields of hydrogeology and ecology has been limited. 4) Protectionism by land owners and organizations that manage springs limits the availability information, preventing regional assessment of status. 5) Prior to recent efforts, the absence of a descriptive lexicon of springs types has limited discussion about variation in ecological characteristics and processes. 6) Neither regarded entirely as groundwater or as surface water, springs fall 'between jurisdictional cracks' and are not subject to clear legal and regulatory oversight. With regards to the latter point, two jurisdictional phrases have reduced scientific understanding and stewardship of springs ecosystems: 'jurisdictional wetlands' and 'groundwater-dependent ecosystems' (GDEs). Most springs have insufficient monitoring data to establish perenniality or the range of natural variation in flow, and many of the 12 springs types do not develop hydric soils or wetland vegetation. These factors and their normally small size preclude springs as jurisdictional wetlands by U.S. Environmental Protection Agency and Army Corps of Engineers criteria. Helocrenes (springfed wet meadows, cienegas, and some fens) are considered as wetlands, but the other 11 types of terrestrial springs often are not. The use of the phrase 'GDE' applies to any aquatic ecosystem supported by groundwater, and the utility of this phrase as a descriptor of springs is diluted by its application to all subterranean and surface aquatic habitats. The failure to recognize the importance of springs ecosystems has become a quiet but global crisis, in part due to inappropriate conceptual understanding and poor jurisdictional terminology. We clarify relationships between these concepts and terms to establish effective, consistent monitoring, assessment, restoration, management, and monitoring goals and protocols for improving springs stewardship.

  13. Geophysical interpretations west of and within the northwestern part of the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grauch, V.J.; Sawyer, D.A.; Fridrich, C.J.

    1997-12-31

    This report focuses on interpretation of gravity and new magnetic data west of the Nevada Test Site (NTS) and within the northwestern part of NTS. The interpretations integrate the gravity and magnetic data with other geophysical, geological, and rock property data to put constraints on tectonic and magmatic features not exposed at the surface. West of NTS, where drill hole information is absent, these geophysical data provide the best available information on the subsurface. Interpreted subsurface features include calderas, intrusions, basalt flows and volcanoes, Tertiary basins, structurally high pre-Tertiary rocks, and fault zones. New features revealed by this study includemore » (1) a north-south buried tectonic fault east of Oasis Mountain, which the authors call the Hogback fault; (2) an east striking fault or accommodation zone along the south side of Oasis Valley basin, which they call the Hot Springs fault; (3) a NNE striking structural zone coinciding with the western margins of the caldera complexes; (4) regional magnetic highs that probably represent a thick sequence of Tertiary volcanic rocks; and (5) two probable buried calderas that may be related to the tuffs of Tolicha Peak and of Sleeping Butte, respectively.« less

  14. A Hexapod Robot to Demonstrate Mesh Walking in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Foor, David C.

    2005-01-01

    The JPL Micro-Robot Explorer (MRE) Spiderbot is a robot that takes advantage of its small size to perform precision tasks suitable for space applications. The Spiderbot is a legged robot that can traverse harsh terrain otherwise inaccessible to wheeled robots. A team of Spiderbots can network and can exhibit collaborative efforts to SUCCeSSfUlly complete a set of tasks. The Spiderbot is designed and developed to demonstrate hexapods that can walk on flat surfaces, crawl on meshes, and assemble simple structures. The robot has six legs consisting of two spring-compliant joints and a gripping actuator. A hard-coded set of gaits allows the robot to move smoothly in a zero-gravity environment along the mesh. The primary objective of this project is to create a Spiderbot that traverses a flexible, deployable mesh, for use in space repair. Verification of this task will take place aboard a zero-gravity test flight. The secondary objective of this project is to adapt feedback from the joints to allow the robot to test each arm for a successful grip of the mesh. The end result of this research lends itself to a fault-tolerant robot suitable for a wide variety of space applications.

  15. Frictional families in 2D experimental disks under periodic gravitational compaction

    NASA Astrophysics Data System (ADS)

    Hubard, Aline; Shattuck, Mark; O'Hern, Corey

    2014-03-01

    We studied a bidisperse system with diameter ratio 1.2 consisting of four 1.26cm and three 1.57cm stainless steel cylinders confined between two glass plates separated 1.05 times their thickness with the cylinder axis perpendicular to gravity. The particles initially resting on a movable piston are thrown upward and allowed to come to rest. In general this frictional state is stabilized by both normal and tangential (frictional) forces. We then apply short (10ms) small amplitude bursts of 440Hz vibration, temporarily breaking tangential forces and then allow the system to re-stabilize. After N of these compaction steps the number of contacts will increase to an isostatic friction-less state and additional steps do not change the system. Many frictional states reach the same final friction-less state. We find that this evolution is determined by the projection of the gravity vector on the null space of the dynamical matrix of a normal spring network formed from the contacts of the frictional state. Thus each frictional contact network follow a one-dimensional path (or family) through phase space under gravitational compaction. PREM-DMR0934206.

  16. Geophysical prospecting for the deep geothermal structure of the Zhangzhou basin, Southeast China

    NASA Astrophysics Data System (ADS)

    Wu, Chaofeng; Liu, Shuang; Hu, Xiangyun; Wang, Guiling; Lin, Wenjing

    2017-04-01

    Zhangzhou basin located at the Southeast margins of Asian plate is one of the largest geothermal fields in Fujian province, Southeast China. High-temperature natural springs and granite rocks are widely distributed in this region and the causes of geothermal are speculated to be involved the large number of magmatic activities from Jurassic to Cretaceous periods. To investigate the deep structure of Zhangzhou basin, magnetotelluric and gravity measurements were carried out and the joint inversion of magnetotelluric and gravity data delineated the faults and the granites distributions. The inversion results also indicated the backgrounds of heat reservoirs, heat fluid paths and whole geothermal system of the Zhangzhou basin. Combining with the surface geological investigation, the geophysical inversion results revealed that the faults activities and magma intrusions are the main reasons for the formation of geothermal resources of the Zhangzhou basin. Upwelling mantle provides enormous heats to the lower crust leading to metamorphic rocks to be partially melt generating voluminous magmas. Then the magmas migration and thermal convection along the faults warm up the upper crust. So finally, the cap rocks, basements and major faults are the three favorable conditions for the formation of geothermal fields of the Zhangzhou basin.

  17. Locking mechanism for orthopedic braces

    NASA Technical Reports Server (NTRS)

    I-Lechao, J.; Epps, C. H., Jr. (Inventor)

    1976-01-01

    A locking mechanism for orthopedic braces is described which automatically prevents or permits the relative pivotable movement between a lower brace member and an upper brace member. The upper and lower brace members are provided with drilled bores within which a slidable pin is disposed, and depending upon the inclination of the brace members with respect to a vertical plane, the slidable pin will be interposed between both brace members. The secondary or auxiliary latching device includes a spring biased, manually operable lever bar arrangement which is manually unlatched and automatically latched under the influence of the spring.

  18. Electromagnetic brake/clutch device

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1994-01-01

    An electromagnetic brake/clutch device includes a drive shaft supported by at least one bearing for transmitting torque, a housing, affixed to prevent its rotation, surrounding the drive shaft, and an electromagnetically activated device within the housing to selectively prevent and allow rotation of the drive shaft. The electromagnetically activated device includes a plurality of cammed rollers to prevent counter-clockwise rotation of the drive shaft. The drive shaft includes a circumferential disk and the housing includes a reaction ring for engagement with the plurality of cammed rollers. The plurality of cammed rollers are released from engagement with the circumferential disk and the reaction ring by a plurality of tripping mechanisms within the housing. The tripping action uses the locking force to act as a release force merely by changing the boundary conditions of the roller interface angles. The tripping mechanisms include trippers for disengaging the plurality of cammed rollers and an anvil shaped portion for providing lateral movement of the trippers. The plurality of cammed rollers is preloaded to engagement with the circumferential disk and reaction ring by a spring, and is located with respect to an adjacent tripping mechanism with another spring.

  19. Gravitational haemodynamics and oedema prevention in the giraffe

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Millard, Ronald W.; Pettersson, Knut; Johansen, Kjell

    1987-01-01

    The question of how giraffes avoid pooling of blood and tissue fluid (edema) in dependent tissues of their extremities is addressed. As monitored by radiotelemetry, the blood and tissue fluid pressures that govern transcapillary exchange vary greatly with exercise. These pressures, combined with a tight skin layer, move fluid upward against gravity. The skin thus functions like a natural antigravity suit. Other mechanisms that prevent edema include precapillary vasoconstriction and low permeability of capillaries to plasma proteins.

  20. Effects of 5-Days Head-Down Bed-Rest, with and without Artificial Gravity Countermeasure, on Left Ventricular Dimensions

    NASA Astrophysics Data System (ADS)

    Caiani, E. G.; Massabuau, P.; Weinert, L.; Lairez, O.; Berry, M.; Vaida, P.; Lang, R. M.

    2013-02-01

    Our aims were: 1) to assess the effects of 5-days of strict head-down (-6 degrees) bed-rest (BR) deconditioning on left ventricular (LV) size and mass by echocardiography; 2) to test the effectiveness of artificial gravity (AG) to prevent LV changes. Methods. Twelve healthy men (mean age 33±7) were enrolled in a cross-over design: each subject repeated the BR (MEDES, Toulouse) without countermeasures (CTRL), with AG applied daily for 30’ continuously (AG1), and for 30’ intermittently (AG2). Transthoracic echocardiography (iE33, Philips) was performed before (BCD-5), at the end of BR (R+0), and 3 days after (R+2). Two-way ANOVA with repeated measures was applied. Results. Despite the smaller changes in AG1 and AG2, no differences were found between groups and interactions. Cardiac adaptation to deconditioning affected LV mass and volumes, and AG countermeasure, when applied either continuously or intermittently, was not effective in preventing their loss.

  1. Fire Safety in the Low-Gravity Spacecraft Environment

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1999-01-01

    Research in microgravity (low-gravity) combustion promises innovations and improvements in fire prevention and response for human-crew spacecraft. Findings indicate that material flammability and fire spread in microgravity are significantly affected by atmospheric flow rate, oxygen concentration, and diluent composition. This information can lead to modifications and correlations to standard material-assessment tests for prediction of fire resistance in space. Research on smoke-particle changes in microgravity promises future improvements and increased sensitivity of smoke detectors in spacecraft. Research on fire suppression by extinguishing agents and venting can yield new information on effective control of the rare, but serious fire events in spacecraft.

  2. A nonreflecting upper boundary condition for anelastic nonhydrostatic mesoscale gravity-wave models

    NASA Technical Reports Server (NTRS)

    Kim, Young-Joon; Kar, Sajal K.; Arakawa, Akio

    1993-01-01

    A sponge layer is formulated to prevent spurious reflection of vertically propagating quasi-stationary gravity waves at the upper boundary of a two-dimensional numerical anelastic nonhydrostatic model. The sponge layer includes damping of both Newtonian-cooling type and Rayleigh-friction type, whose coefficients are determined in such a way that the reflectivity of wave energy at the bottom of the layer is zero. Unlike the formulations in earlier studies, our formulation includes the effects of vertical discretization, vertical mean density variation, and nonhydrostaticity. This sponge formulation is found effective in suppressing false downward reflection of waves for various types of quasi-stationary forcing.

  3. Gravitational radiation and the ultimate speed in Rosen's bimetric theory of gravity

    NASA Technical Reports Server (NTRS)

    Caves, C. M.

    1980-01-01

    In Rosen's bimetric theory of gravity the (local) speed of gravitational radiation is determined by the combined effects of cosmological boundary values and nearby concentrations of matter. It is possible for the speed of gravitational radiation to be less than the speed of light. It is here shown that the emission of gravitational radiation prevents particles of nonzero rest mass from exceeding the speed of gravitational radiation. Observations of relativistic particles place limits on the speed of gravitational radiation and the cosmological boundary values today, and observations of synchroton radiation from compact radio sources place limits on the cosmological boundary values in the past.

  4. Time, Chance, and Reduction

    NASA Astrophysics Data System (ADS)

    Ernst, Gerhard; Hüttemann, Andreas

    2010-01-01

    List of contributors; 1. Introduction Gerhard Ernst and Andreas Hütteman; Part I. The Arrows of Time: 2. Does a low-entropy constraint prevent us from influencing the past? Mathias Frisch; 3. The part hypothesis meets gravity Craig Callender; 4. Quantum gravity and the arrow of time Claus Kiefer; Part II. Probability and Chance: 5. The natural-range conception of probability Jacob Rosenthal; 6. Probability in Boltzmannian statistical mechanics Roman Frigg; 7. Humean mechanics versus a metaphysics of powers Michael Esfeld; Part III. Reduction: 8. The crystallisation of Clausius's phenomenological thermodynamics C. Ulises Moulines; 9. Reduction and renormalization Robert W. Batterman; 10. Irreversibility in stochastic dynamics Jos Uffink; Index.

  5. Feature: Controlling Seasonal Allergies | NIH Medlineplus the Magazine

    MedlinePlus

    ... this page please turn Javascript on. Feature: Seasonal Allergies Controlling Seasonal Allergies Past Issues / Spring 2012 Table of Contents In ... to allergens, helping to prevent allergic reactions. Seasonal Allergy Research at NIH Allergen and T-Cell Reagent ...

  6. Forces on a segregating particle

    NASA Astrophysics Data System (ADS)

    Lueptow, Richard M.; Shankar, Adithya; Fry, Alexander M.; Ottino, Julio M.; Umbanhowar, Paul B.

    2017-11-01

    Size segregation in flowing granular materials is not well understood at the particle level. In this study, we perform a series of 3D Discrete Element Method (DEM) simulations to measure the segregation force on a single spherical test particle tethered to a spring in the vertical direction in a shearing bed of particles with gravity acting perpendicular to the shear. The test particle is the same size or larger than the bed particles. At equilibrium, the downward spring force and test particle weight are offset by the upward buoyancy-like force and a size ratio dependent force. We find that the buoyancy-like force depends on the bed particle density and the Voronoi volume occupied by the test particle. By changing the density of the test particle with the particle size ratio such that the buoyancy force matches the test particle weight, we show that the upward size segregation force is a quadratic function of the particle size ratio. Based on this, we report an expression for the net force on a single particle as the sum of a size ratio dependent force, a buoyancy-like force, and the weight of the particle. Supported by NSF Grant CBET-1511450 and the Procter and Gamble Company.

  7. High-potential geothermal energy resource areas of Nigeria and their geologic and geophysical assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babalola, O.O.

    1984-04-01

    The widespread occurrence of geothermal manifestations in Nigeria is significant because the wide applicability and relative ease of exploitation of geothermal energy is of vital importance to an industrializing nation like Nigeria. There are two known geothermal resource areas (KGRAs) in Nigeria: the Ikogosi Warm Springs of Ondo State and the Wikki Warm Springs of Bauchi State. These surficial effusions result from the circulation of water to great depths through faults in the basement complex rocks of the area. Within sedimentary areas, high geothermal gradient trends are identified in the Lagos subbasin, the Okitipupa ridge, the Auchi-Agbede are of themore » Benin flank/hinge line, and the Abakaliki anticlinorium. The deeper Cretaceous and Tertiary sequences of the Niger delta are geopressured geothermal horizons. In the Benue foldbelt, extending from the Abalaliki anticlinorium to the Keana anticline and the Zambuk ridge, several magmatic intrusions emplaced during the Late Cretaceous line the axis of the Benue trough. Positive Bouguer gravity anomalies also parallel this trough and are interpreted to indicate shallow mantle. Parts of this belt and the Ikom, the Jos plateau, Bauchi plateau, and the Adamawa areas, experienced Cenozoic volcanism and magmatism.« less

  8. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    USGS Publications Warehouse

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  9. Sixteen year variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric waves in airglow images at Shigaraki, Japan

    NASA Astrophysics Data System (ADS)

    Takeo, D.; Shiokawa, K.; Fujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Nakamura, T.; Yamamoto, M.

    2017-08-01

    We analyzed the horizontal phase velocity of gravity waves and medium-scale traveling ionospheric disturbances (MSTIDs) by using the three-dimensional fast Fourier transform method developed by Matsuda et al. (2014) for 557.7 nm (altitude: 90-100 km) and 630.0 nm (altitude: 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8°N, 136.1°E, dip angle: 49°) over ˜16 years from 16 March 1999 to 20 February 2015. The analysis of 557.7 nm airglow images shows clear seasonal variation of the propagation direction of gravity waves in the mesopause region. In spring, summer, fall, and winter, the peak directions are northeastward, northeastward, northwestward, and southwestward, respectively. The difference in east-west propagation direction between summer and winter is probably caused by the wind filtering effect due to the zonal mesospheric jet. Comparison with tropospheric reanalysis data shows that the difference in north-south propagation direction between summer and winter is caused by differences in the latitudinal location of wave sources due to convective activity in the troposphere relative to Shigaraki. The analysis of 630.0 nm airglow images shows that the propagation direction of MSTIDs is mainly southwestward with a minor northeastward component throughout the 16 years. A clear negative correlation is seen between the yearly power spectral density of MSTIDs and F10.7 solar flux. This negative correlation with solar activity may be explained by the linear growth rate of the Perkins instability and secondary wave generation of gravity waves in the thermosphere.

  10. Detecting Taiwan's Shanchiao Active Fault Using AMT and Gravity Methods

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; Yang, C.-H.

    2009-04-01

    Taiwan's Shanchiao normal fault runs in a northeast-southwest direction and is located on the western edge of the Taipei Basin in northern Taiwan. The overburden of the fault is late Quaternary sediment with a thickness of approximately a few tenth of a meter to several hundred meters. No detailed studies of the western side of the Shanchiao fault are available. As Taiwan is located on the Neotectonic Belt in the western Pacific, detecting active faults near the Taipei metropolitan area will provide necessary information for further disaster prevention. It is the responsibility of geologists and geophysicists in Taiwan to perform this task. Examination of the resistivity and density contrasts of subsurface layers permits a mapping of the Shanchiao fault and the deformed Tertiary strata of the Taipei Basin. The audio-frequency magnetotelluric (AMT) method and gravity method were chosen for this study. Significant resistivity and gravity anomalies were observed in the suspected fault zone. The interpretation reveals a good correlation between the features of the Shanchiao fault and resistivity and density distribution at depth. In this observation, AMT and gravity methods provides a viable means for mapping the Shanchiao fault position and studying its features associated with the subsidence of the western side of the Taipei Basin. This study indicates the AMT and gravity methods' considerable potential for accurately mapping an active fault.

  11. Normalization to specific gravity prior to analysis improves information recovery from high resolution mass spectrometry metabolomic profiles of human urine.

    PubMed

    Edmands, William M B; Ferrari, Pietro; Scalbert, Augustin

    2014-11-04

    Extraction of meaningful biological information from urinary metabolomic profiles obtained by liquid-chromatography coupled to mass spectrometry (MS) necessitates the control of unwanted sources of variability associated with large differences in urine sample concentrations. Different methods of normalization either before analysis (preacquisition normalization) through dilution of urine samples to the lowest specific gravity measured by refractometry, or after analysis (postacquisition normalization) to urine volume, specific gravity and median fold change are compared for their capacity to recover lead metabolites for a potential future use as dietary biomarkers. Twenty-four urine samples of 19 subjects from the European Prospective Investigation into Cancer and nutrition (EPIC) cohort were selected based on their high and low/nonconsumption of six polyphenol-rich foods as assessed with a 24 h dietary recall. MS features selected on the basis of minimum discriminant selection criteria were related to each dietary item by means of orthogonal partial least-squares discriminant analysis models. Normalization methods ranked in the following decreasing order when comparing the number of total discriminant MS features recovered to that obtained in the absence of normalization: preacquisition normalization to specific gravity (4.2-fold), postacquisition normalization to specific gravity (2.3-fold), postacquisition median fold change normalization (1.8-fold increase), postacquisition normalization to urinary volume (0.79-fold). A preventative preacquisition normalization based on urine specific gravity was found to be superior to all curative postacquisition normalization methods tested for discovery of MS features discriminant of dietary intake in these urinary metabolomic datasets.

  12. Latest Advancement In Airborne Relative Gravity Instrumentation.

    NASA Astrophysics Data System (ADS)

    Brady, N.

    2011-12-01

    Airborne gravity surveying has been performed with widely varying degrees of success since early experimentation with the Lacoste and Romberg dynamic meter in the 1950s. There are a number of different survey systems currently in operation including relative gravity meters and gradiometers. Airborne gravity is ideally suited to rapid, wide coverage surveying and is not significantly more expensive in more remote and inhospitable terrain which makes airborne measurements one of the few viable options available for cost effective exploration. As improved instrumentation has become available, scientific applications have also been able to take advantage for use in determining sub surface geologic structures, for example under ice sheets in Antarctica, and more recently direct measurement of the geoid to improve the vertical datum in the United States. In 2004, Lacoste and Romberg (now Micro-g Lacoste) decided to build on their success with the newly developed AirSea II dynamic meter and use that system as the basis for a dedicated airborne gravity instrument. Advances in electronics, timing and positioning technology created the opportunity to refine both the hardware and software, and to develop a truly turnkey system that would work well for users with little or no airborne gravity experience as well as those with more extensive experience. The resulting Turnkey Airborne Gravity System (TAGS) was successfully introduced in 2007 and has since been flown in applications from oil, gas and mineral exploration surveys to regional gravity mapping and geoid mapping. The system has been mounted in a variety of airborne platforms including depending on the application of interest. The development experience with the TAGS enabled Micro-g Lacoste to embark on a new project in 2010 to completely redesign the mechanical and electronic components of the system rather than continuing incremental upgrades. Building on the capabilities of the original TAGS, the objectives for the new system are: - Reduce the size of the system to approximately one third of the volume of the original TAGS and reduce the weight by one half. - Use slip ring technology to eliminate cable drag on the sensor and gimbal platform. - Use a double oven system to further isolate the gravity sensor from large external temperature variations commonly experienced in airborne survey operations. - Completely redesign both the platform control system and data acquisition and recording system to eliminate reliance on standard computer and windows software enhancing reliability and data throughput. - Increase data recording rate to 20 hertz to assist in making GPS corrections to platform levelling. - Use an advanced force feedback system to increase system resolution in turbulent conditions, eliminate dependence on the spring tension counter and the need to clamp the beam during turns. - Enable the system to be used for drape flying and remove the requirement for an operator and hence be suitable for unmanned aerial vehicle (UAV) operations. Prototype testing of the mechanical and electronic components has been ongoing through the first half of 2011. Ground testing and airborne testing began in May of 2011 and will continue through until October of 2011. This paper will present the results of the full hardware testing in different environments and confirmation of the capabilities of the system.

  13. Effects of Inactivity and Exercise on Bone.

    ERIC Educational Resources Information Center

    Smith, Everett L.; Gilligan, Catherine

    1987-01-01

    Research has shown that bone tissue responds to the forces of gravity and muscle contraction. The benefits of weight-bearing exercise in preventing or reversing bone mass loss related to osteoporosis is reviewed. The effects of weightlessness and immobilization, and the possible effects of athletic amenorrhea, on bone mineral density are…

  14. 75 FR 14163 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Prevention (CDC). Background and Brief Description During the spring 2009 H1N1 outbreak, the U.S. Department... Monitoring System to report on novel influenza A (H1N1)-related school or school district dismissals in the...

  15. Transcriptome profiling of radiata pine branches reveals new insights into reaction wood formation with implications in plant gravitropism.

    PubMed

    Li, Xinguo; Yang, Xiaohui; Wu, Harry X

    2013-11-08

    Formation of compression (CW) and opposite wood (OW) in branches and bent trunks is an adaptive feature of conifer trees in response to various displacement forces, such as gravity, wind, snow and artificial bending. Several previous studies have characterized tracheids, wood and gene transcription in artificially or naturally bent conifer trunks. These studies have provided molecular basis of reaction wood formation in response to bending forces and gravity stimulus. However, little is known about reaction wood formation and gene transcription in conifer branches under gravity stress. In this study SilviScan® technology was used to characterize tracheid and wood traits in radiate pine (Pinus radiata D. Don) branches and genes differentially transcribed in CW and OW were investigated using cDNA microarrays. CW drastically differed from OW in tracheids and wood traits with increased growth, thicker tracheid walls, larger microfibril angle (MFA), higher density and lower stiffness. However, CW and OW tracheids had similar diameters in either radial or tangential direction. Thus, gravity stress largely influenced wood growth, secondary wall deposition, cellulose microfibril orientation and wood properties, but had little impact on primary wall expansion. Microarray gene transcription revealed about 29% of the xylem transcriptomes were significantly altered in CW and OW sampled in both spring and autumn, providing molecular evidence for the drastic variation in tracheid and wood traits. Genes involved in cell division, cellulose biosynthesis, lignin deposition, and microtubules were mostly up-regulated in CW, conferring its greater growth, thicker tracheid walls, higher density, larger MFA and lower stiffness. However, genes with roles in cell expansion and primary wall formation were differentially transcribed in CW and OW, respectively, implicating their similar diameters of tracheid walls and different tracheid lengths. Interestingly, many genes related to hormone and calcium signalling as well as various environmental stresses were exclusively up-regulated in CW, providing important clues for earlier molecular signatures of reaction wood formation under gravity stimulus. The first comprehensive investigation of tracheid characteristics, wood properties and gene transcription in branches of a conifer species revealed more accurate and new insights into reaction wood formation in response to gravity stress. The identified differentially transcribed genes with diverse functions conferred or implicated drastic CW and OW variation observed in radiata pine branches. These genes are excellent candidates for further researches on the molecular mechanisms of reaction wood formation with a view to plant gravitropism.

  16. Semidiurnal Solar Tide during the Fall Transition in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Conte, J. F.; Chau, J. L.; Laskar, F.; Stober, G.; Schmidt, H.

    2017-12-01

    We present an analysis of the semidiurnal solar tide (S2) during the fall transition in the Northern Hemisphere mesosphere and lower thermosphere (MLT) region. The tidal information has been derived from wind measurements provided by meteor radars at Andenes (69°N) and Juliusruh (54°N). During the autumn, S2 is characterized by a sudden and pronounced decrease occurring around day 285, every year and at all height levels. The spring transition also shows a decrease of S2, but that progressively extends from lower to higher altitudes during an interval of 15 to 40 days whose starting date varies from one year to the next. Possible explanations for the differences observed between fall and spring time periods are investigated using Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA) simulations of zonal and meridional winds, as well as ozone concentrations. Our results indicate that both, the westward propagating wave number 2 migrating tide (SW2) and the westward propagating wave number 1 non-migrating tide (SW1) decrease significantly during the fall, which results in a pronounced decrease of S2, as seen in the observations. During the spring, SW2 also decreases while SW1 remains approximately constant or slightly increases, resulting in a not so pronounced and more extended in time decrease of S2. SW2 and ozone concentrations do not show significant differences from one year to the next. SW1 on the other hand, presents considerable variability, which suggests that its source might be connected to interaction with other waves, such as gravity and planetary waves.

  17. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system

    NASA Astrophysics Data System (ADS)

    Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing

    2017-10-01

    The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between hydrothermal activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in hydrothermal activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp < 5.8 km/s, Vs < 3.2 km/s), high Poisson's ratio (> 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type hydrothermal system models in the ETGB.

  18. Comparison of Superconducting and Spring Gravimeters at the Mizusawa VLBI Observatory of the National Astronomical Observatory of Japan

    NASA Astrophysics Data System (ADS)

    Miura, Satoshi; Ikeda, Hiroshi; Kim, Tae-Hee; Tamura, Yoshiaki

    2017-04-01

    Continuous microgravity monitoring is utilized to gain new insights into changes in the subsurface distribution of magma and/or fluid that commonly occur beneath active volcanoes. Rather new superconducting and spring gravimeters, iGrav#003 and gPhone#136 are collocated with a superconducting gravimeter, TT#70 at the Mizusawa VLBI Observatory of the National Astronomical Observatory of Japan, since the end of September, 2016 in order to evaluate those performances before field deployment planned in 2017. Calibration of iGrav#003 was carried out by collocation with an absolute gravimeter FG5 of the Earthquake Research Institute, University of Tokyo (Okubo, 2016, personal comm.) at a Fundamental Gravity Station in Sendai in July, 2016. Based on the scale factors of iGrav#003 obtained by the calibration and of gPhone#136 provided by the manufacturer (Micro-g LaCoste, Inc.), tidal analyses are performed by means of BAYTAP-G (Tamura et al., 1991, GJI). Amplitudes and phases of each major tidal constituent mutually agree well within ±4 % and ±3 degrees, respectively. The instrumental drift rate of iGrav#003 is very low, about 5 micro-Gal/month, whereas that of gPhone#136 is very high, about 500 micro-Gal/month. The high drift rate of gPhone#136, however, is well approximated by a quadratic function at present and can be removed. The detrended time series of gPhone#136 shows good agreement with iGrav#003 time series in the overall feature: gravity fluctuations with amplitudes of about a few micro-Gal and with durations of a few days, which may be due to variations in the moisture content of the topmost unsaturated sedimentary layer and the water table height. It suggests that both instruments may capture volcanic signals associated with pressure changes in magma chambers, dike intrusion/withdrawing, and so on. iGrav#003 will be installed in the Zao volcanological observatory of Tohoku University located at about 3 km from the summit crater, and gPhone#136 will be deployed in the Jododaira Astronomical Observatory located at about 0.5 km from Oana crater of Azumayama volcano in the spring of 2017. Both of the volcanoes, Zao and Azumayama show minor volcanic activity with frequent shallow earthquakes, changes in the total magnetic force, pressure changes at depth, and so on in 2014 and 2015.

  19. OUTER GALACTIC DISKS AND A QUANTITATIVE TEST OF GRAVITY AT LOW ACCELERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaritsky, Dennis; Psaltis, Dimitrios, E-mail: dzaritsky@as.arizona.ed, E-mail: psaltis@as.arizona.ed

    We use the recent measurement of the velocity dispersion of star-forming, outer-disk knots by Herbert-Fort et al. in the nearly face-on galaxy NGC 628, in combination with other data from the literature, to execute a straightforward test of gravity at low accelerations. Specifically, the rotation curve at large radius sets the degree of non-standard acceleration and then the predicted scale height of the knots at that radius provides the test of the scenario. For our demonstration, we presume that the H{alpha} knots, which are young (age < 10 Myr), are distributed like the gas from which they have recently formedmore » and find a marginal (>97% confidence) discrepancy with a modified gravity scenario given the current data. More interestingly, we demonstrate that there is no inherent limitation that prevents such a test from reaching possible discrimination at the >4{sigma} level with a reasonable investment of observational resources.« less

  20. Quantum Gravity Effects on Hawking Radiation of Schwarzschild-de Sitter Black Holes

    NASA Astrophysics Data System (ADS)

    Singh, T. Ibungochouba; Meitei, I. Ablu; Singh, K. Yugindro

    2017-08-01

    The correction of Hawking temperature of Schwarzschild-de Sitter (SdS) black hole is investigated using the generalized Klein-Gordon equation and the generalized Dirac equation by taking the quantum gravity effects into account. We derive the corrected Hawking temperatures for scalar particles and fermions crossing the event horizon. The quantum gravity effects prevent the rise of temperature in the SdS black hole. Besides correction of Hawking temperature, the Hawking radiation of SdS black hole is also investigated using massive particles tunneling method. By considering self gravitation effect of the emitted particles and the space time background to be dynamical, it is also shown that the tunneling rate is related to the change of Bekenstein-Hawking entropy and small correction term (1 + 2 β m 2). If the energy and the angular momentum are taken to be conserved, the derived emission spectrum deviates from the pure thermal spectrum. This result gives a correction to the Hawking radiation and is also in agreement with the result of Parikh and Wilczek.

  1. Deviations from a uniform period spacing of gravity modes in a massive star.

    PubMed

    Degroote, Pieter; Aerts, Conny; Baglin, Annie; Miglio, Andrea; Briquet, Maryline; Noels, Arlette; Niemczura, Ewa; Montalban, Josefina; Bloemen, Steven; Oreiro, Raquel; Vucković, Maja; Smolders, Kristof; Auvergne, Michel; Baudin, Frederic; Catala, Claude; Michel, Eric

    2010-03-11

    The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.

  2. Bus Maintenance is a Sound Investment.

    ERIC Educational Resources Information Center

    American School Board Journal, 1981

    1981-01-01

    Preventive school bus maintenance to reduce long-term costs should include daily visual inspections by drivers, frequent checks by mechanics, and comprehensive inspections every 5,000 miles. Mechanics recommend checking tail lights, batteries, brakes, lug nuts, leaf springs, tail pipes, and exhaust pipe hangers. (RW)

  3. Persistent hydrocephalus due to postural activation of a ventricular shunt anti-gravity device.

    PubMed

    Craven, Claudia L; Toma, Ahmed K; Watkins, Laurence D

    2017-03-01

    The ever present need to balance over drainage with under drainage in hydrocephalus has required innovations including adjustable valves with antigravity devices. These are activated in the vertical position to prevent siphoning. We describe a group of bedridden patients who presented with unexplained under drainage caused by activation of antigravity shunt components produced by peculiar head/body position. Retrospective single centre case series of hydrocephalus patients, treated with ventriculo-peritoneal (VP) shunt insertion between April 2014 - February 2016. These patients presented with clinical and radiological under drainage syndrome. Medical notes were reviewed for clinical picture and outcome. Radiological studies were reviewed assessing shunt placement and ventricular size. Seven patients presented with clinical and radiological under drainage syndrome. A consistent posturing of long term hyper-flexion of the neck whilst lying supine was observed. All patients had similar shunt construct (adjustable Miethke ProGAV valve and shunt assistant anti-gravity component). In each of those patients a hypothesis was formulated that neck flexion was activating the shunt assistance anti-gravity component in supine position. Five patients underwent shunt revision surgery removing the shunt assistant device from the cranium and adding an anti-gravity component to the shunt system at the chest. One had the shunt assistant completely removed and one patient was managed conservatively with mobilisation. All patients had clinical and radiological improvement. Antigravity shunt components implanted cranially in bedridden hydrocephalus patients will produce underdrainage due to head flexion induced anti-gravity device activation. In these patients, anti-gravity devices should be placed at the chest. Alternatively, special nursing attention should be paid to head-trunk angle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.

  5. A pilot study to assess if urine specific gravity and urine colour charts are useful indicators of dehydration in acute stroke patients.

    PubMed

    Rowat, Anne; Smith, Laura; Graham, Cat; Lyle, Dawn; Horsburgh, Dorothy; Dennis, Martin

    2011-09-01

    The purpose of this pilot study was to examine whether urine specific gravity and urine colour could provide an early warning of dehydration in stroke patients compared with standard blood indicators of hydration status. Dehydration after stroke has been associated with increased blood viscosity, venous thrombo-embolism and stroke mortality at 3-months. Earlier identification of dehydration might allow us to intervene to prevent significant dehydration developing or reduce its duration to improve patient outcomes. We recruited 20 stroke patients in 2007 and measured their urine specific gravity with urine test strips, a refractometer, and urine colour of specimens taken daily on 10 consecutive days and compared with the routine blood urea:creatinine ratios over the same period to look for trends and relationships over time. The agreement between the refractometer, test strips and urine colour were expressed as a percentage with 95% confidence intervals. Nine (45%) of the 20 stroke patients had clinical signs of dehydration and had a significantly higher admission median urea:creatinine ratio (P = 0·02, Mann-Whitney U-test). There were no obvious relationships between urine specific gravity and urine colour with the urea:creatinine ratio. Of the 174 urine samples collected, the refractometer agreed with 70/174 (40%) urine test strip urine specific gravity and 117/174 (67%) urine colour measurements. Our results do not support the use of the urine test strip urine specific gravity as an early indicator of dehydration. Further research is required to develop a practical tool for the early detection of dehydration in stroke patients. © 2011 Blackwell Publishing Ltd.

  6. Speeding up N-body simulations of modified gravity: chameleon screening models

    NASA Astrophysics Data System (ADS)

    Bose, Sownak; Li, Baojiu; Barreira, Alexandre; He, Jian-hua; Hellwing, Wojciech A.; Koyama, Kazuya; Llinares, Claudio; Zhao, Gong-Bo

    2017-02-01

    We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f(R) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f(R) simulations. For example, a test simulation with 5123 particles in a box of size 512 Mpc/h is now 5 times faster than before, while a Millennium-resolution simulation for f(R) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.

  7. Gravity predominates over ventilatory pattern in the prevention of ventilator-associated pneumonia.

    PubMed

    Li Bassi, Gianluigi; Marti, Joan Daniel; Saucedo, Lina; Rigol, Montserrat; Roca, Ignasi; Cabanas, Maria; Muñoz, Laura; Ranzani, Otavio Tavares; Giunta, Valeria; Luque, Nestor; Esperatti, Mariano; Gabarrus, Albert; Fernandez, Laia; Rinaudo, Mariano; Ferrer, Miguel; Ramirez, Jose; Vila, Jordi; Torres, Antoni

    2014-09-01

    In the semirecumbent position, gravity-dependent dissemination of pathogens has been implicated in the pathogenesis of ventilator-associated pneumonia. We compared the preventive effects of a ventilatory strategy, aimed at decreasing pulmonary aspiration and enhancing mucus clearance versus the Trendelenburg position. Prospective randomized animal study. Animal research facility, University of Barcelona, Spain. Twenty-four Large White-Landrace pigs. Pigs were intubated and on mechanical ventilation for 72 hours. Following surgical preparation, pigs were randomized to be positioned: 1) in semirecumbent/prone position, ventilated with a duty cycle (TITTOT) of 0.33 and without positive end-expiratory pressure (control); 2) as in the control group, positive end-expiratory pressure of 5 cm H2O and TITTOT to achieve a mean expiratory-inspiratory flow bias of 10 L/min (treatment); 3) in Trendelenburg/prone position and ventilated as in the control group (Trendelenburg). Following randomization, Pseudomonas aeruginosa was instilled into the oropharynx. Mucus clearance rate was measured through fluoroscopic tracking of tracheal markers. Microspheres were instilled into the subglottic trachea to assess pulmonary aspiration. Ventilator-associated pneumonia was confirmed by histological/microbiological studies. The mean expiratory-inspiratory flow in the treatment, control, and Trendelenburg groups were 10.7 ± 1.7, 1.8 ± 3.7 and 4.3 ± 2.8 L/min, respectively (p < 0.001). Mucus clearance rate was 11.3 ± 9.9 mm/min in the Trendelenburg group versus 0.1 ± 1.0 in the control and 0.2 ± 1.0 in the treatment groups (p = 0.002). In the control group, we recovered 1.35% ± 1.24% of the instilled microspheres per gram of tracheal secretions, whereas 0.22% ± 0.25% and 0.97% ± 1.44% were recovered in the treatment and Trendelenburg groups, respectively (p = 0.031). Ventilator-associated pneumonia developed in 66.67%, 85.71%, and 0% of the animals in the control, treatment, and Trendelenburg groups (p < 0.001). The Trendelenburg position predominates over expiratory flow bias and positive end-expiratory pressure in the prevention of gravity-dependent translocation of oropharyngeal pathogens and development of ventilator-associated pneumonia. These findings further substantiate the primary role of gravity in the pathogenesis of ventilator-associated pneumonia.

  8. Phenolic compounds of Pinus laricio needles: a bioindicator of the effects of prescribed burning in function of season.

    PubMed

    Cannac, Magali; Pasqualini, Vanina; Barboni, Toussaint; Morandini, Frederic; Ferrat, Lila

    2009-07-15

    Fire is a dominant ecological factor in Mediterranean-type ecosystems. Forest management includes many preventive tools, in particular for fire prevention, such as mechanical treatments and prescribed burning. Prescribed burning is a commonly used method for treating fuel loads, but fuel reduction targets for reducing wildfire hazards must be balanced against fuel retention targets in order to maintain habitat and other forest functions. This approach was used on Pinus nigra ssp laricio var. Corsicana, a pine endemic to Corsica of great ecological and economic importance. Many studies of plant phenolic compounds have been carried out concerning responses to various stresses. The aim of this study was to understand i) the effects of prescribed burning 1 to 16 months later and ii) the effects of the seasonality of burning, spring or fall, on the production of phenolic compounds in Pinus laricio. After prescribed burning conducted in spring, Pinus laricio increases the synthesis of total phenolic compounds for a period of 7 months. The increase is greater after spring-burning than fall-burning. With regard to simple phenols, only dihydroferulic acid responds about 1 year after both types of prescribed burning. The causes of these increases are discussed in this paper. Total phenolic compounds could be used as a bioindicator for the short-term response of Pinus laricio needles to prescribed burning. Simple phenols may be useful for revealing the medium-term effects of prescribed burning. The results of this study include recommending forest managers to use prescribed burning in the fall rather than spring to reduce fuel loads and have less impact on the trees.

  9. Local Hydrological effects in Membach, Belgium: influence on the long term gravity variation

    NASA Astrophysics Data System (ADS)

    van Camp, M.; Dassargues, A.; Vanneste, K.; Verbeeck, K.; Warnant, R.

    2003-04-01

    Absolute (AG) and superconducting (SG) gravity measurements have been performed since 1996 at the underground Membach Station (Ardenne, eastern Belgium). Two effects can be distinguished: one seasonal-like and a long-term geophysical trend. The first effect is a 5 µGal seasonal-like term due most probably and mainly to hydrological variations. To determine the thickness of the porous unconsolidated layer covering the fissured bed-rock (low-porosity argillaceous sandstone with quartzitic beds) through which the tunnel was excavated, geophysical prospecting has been undertaken above the Membach station. This shows that the thickness of the weathered zone covering the bedrock can be highly variable between zero and 10 meters (possibly due to palaeo mudflows linked to periglacial conditions in the area). This leads to highly variable (in space) saturation capacity of the subsoil above the gallery. The extensive geological researches will allow us to correct the gravity variations induced by the variable mass of water stored in the shallow partially saturated soil. This work can be essential to correct local effects that can mask regional effects such as changes in continental water storage. Local effects, indeed, could prevent the combination of satellite data (e.g. GRACE) with ground-based gravity measurements. On the other hand, studying the local seasonal variations also contributes to investigate the influence of the water storage variations in small river basins on the time dependent gravity field. The second effect is the detection of a very low geophysical trend in gravity of -0.5+/-0.1 µGal/year. The SG drift, the hydrological effects, and the origin of the low trend are discussed. In particular, we show a good correlation between the gravity measurements and the continuous GPS measurements being made since 1997 at 3 km from the station. Possible crustal deformations could be linked to active faults in the Ardenne and/or bordering the Roer Valley Graben, or perhaps linked to the Eifel plume.

  10. Materials Research of Novel Organic Piezoelectric/Ferroelectric Compounds at a H.S.I

    DTIC Science & Technology

    2015-07-06

    analysis 4. http://wavefun.com 5. MOPAC2012, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC. net ... petri dish of mineral oil (to prevent electrical arcing) ripples in the mineral oil are clearly visible when a voltage is applied to the sample. We...acid. It does not appear to be ferroelectric. However, it is piezoelectric. When placed in a petri dish of mineral oil (to prevent electrical arcing

  11. The Effects of Partial Mechanical Loading and Ibandronate on Skeletal Tissues in the Adult Rat Hindquarter Suspension Model for Microgravity

    NASA Technical Reports Server (NTRS)

    Schultheis, Lester W.

    1999-01-01

    We report initial data from a suspended rat model that quantitatively relates chronic partial weightbearing to bone loss. Chronic partial weightbearing is our simulation of the effect of limited artificial gravity aboard spacecraft or reduced planetary gravity. Preliminary analysis of bone by PQCT, histomorphometry, mechanical testing and biochemistry suggest that chronic exposure to half of Earth gravity is insufficient to prevent severe bone loss. The effect of episodic full weightbearing activity (Earth Gravity) on rats otherwise at 50% weightbearing was also explored. This has similarity to treatment by an Earth G-rated centrifuge on a spacecraft that normally maintained artificial gravity at half of Earth G. Our preliminary evidence, using the above techniques to analyze bone, indicate that 2 hours daily of full weightbearing was insufficient to prevent the bone loss observed in 50% weightbearing animals. The effectiveness of partial weightbearing and episodic full weightbearing as potential countermeasures to bone loss in spaceflight was compared with treatment by ibandronate. Ibandronate, a long-acting potent bisphosphonate proved more effective in preventing bone loss and associated functionality based upon structure than our first efforts at mechanical countermeasures. The effectiveness of ibandronate was notable by each of the testing methods we used to study bone from gross structure and strength to tissue and biochemistry. These results appear to be independent of generalized systemic stress imposed by the suspension paradigm. Preliminary evidence does not suggest that blood levels of vitamin D were affected by our countermeasures. Despite the modest theraputic benefit of mechanical countermeasures of partial weightbearing and episodic full weightbearing, we know that some appropriate mechanical signal maintains bone mass in Earth gravity. Moreover, the only mechanism that correctly assigns bone mass and strength to oppose regionally specific force applied to bone is mechanical, a process based upon bone strain. Substantial evidence indicates that the specifics of dynamic loading i.e. time-varying forces are critical. Bone strain history is a predictor of the effect that mechanical conditions have on bone structure mass and strength. Using servo-controlled force plates on suspended rats with implanted strain gauges we manipulated impact forces of ambulation in the frequency (Fourier) domain. Our results indicate that high frequency components of impact forces are particularly potent in producing bone strain independent of the magnitude of the peak force or peak energy applied to the leg. Because a servo-system responds to forces produced by the rat's own muscle activity during ambulation, the direction of ground-reaction loads act on bone through the rat's own musculature. This is in distinction to passive vibration of the floor where forces reach bone through the natural filters of soft tissue and joints. Passive vibration may also be effective, but it may or may not increase bone in the appropriate architectural pattern to oppose the forces of normal ambulatory activity. Effectiveness of high frequency mechanical stimulation in producing regional (muscle directed) bone response will be limited by 1. the sensitivity of bone to a particular range of frequencies and 2. the inertia of the muscles, limiting their response to external forces by increasing tension along insertions. We have begun mathematical modeling of normal ambulatory activity. Effectiveness of high frequency mechanical stimulation in producing regional (muscle directed) bone response will be limited by 1. the sensitivity of bone to a particular range of frequencies and 2. the inertia of the muscles, limiting their response to external forces by increasing tension along insertions. We have begun mathematical modeling of the rat forelimb as a transfer function between impact force and bone strain to predict optimal dynamic loading conditions for this system. We plan additional studies of mechanical counter-measures that incorporate improved dynamic loading, features relevant to anticipated evaluation of artificial gravity, exercise regimens and exposure to Martian gravity, The combination of mechanical countermeasures with ibandronate will also be investigated for signs of synergy.

  12. EXERCISE WITHIN LOWER BODY NEGATIVE PRESSURE AS AN ARTIFICIAL GRAVITY COUNTERMEASURE

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Lee, Stuart M. C.; Schneider, Suzanne M.; Boda, Wanda L.; Smith, Scott M.; Macias, Brandon R.; OLeary, Deborah D.; Meyer, R. Scott; Groppo, Eli R.; Cao, Peihong

    2005-01-01

    Current exercise systems for space, which attempt to maintain performance, are unable to generate cardiovascular and musculoskeletal loads similar to those on Earth [1, 2]. The purpose of our research is to evaluate the use of lower body negative pressure (LBNP) treadmill exercise to prevent deconditioning during simulated microgravity.

  13. Techniques for studying the effects of microgravity on model particle/cell systems

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.

    1988-01-01

    To study the direct effects of a low gravity environment on skeletal and cardiac muscle cells, experiments were initiated to determine whether skeletal and/or cardiac muscule cells would grow within the lumen of XM-80 hollow fibers (i.d. = 0.5 mm). Cells were prepared from skeletal or cardiac muscle tissue of 12 day embryos and were cultured for up to 7 days in the hollow fiber environment. Light microscopy revealed that cells proliferated to confluency over this period of time and fusion was apparent in the skeletal muscle cells. Once it was verified that cells would grow to confluency, additional XM-80 fibers containing cells were placed in a Clinostat in the horizontal position at 100 rpm. Fibers were stretched by a built-in spring mechanism to hold the fiber tightly at the center of rotation. Under these conditions, the gravity vector approaches zero and the cells are in an environment that simulates microgravity. Examination of skeletal muscle cells by electron microscopy revealed that myoblast fusion and myofibril accumulation were extensive. Although data obtained thus far are preliminary, they suggest that myofibril organization in chicken skeletal muscle cultures is somewhat more poorly defined in Clinostat rotated cultures than in controls that were not subjected to Clinostat conditions.

  14. What stellar orbit is needed to measure the spin of the Galactic centre black hole from astrometric data?

    NASA Astrophysics Data System (ADS)

    Waisberg, Idel; Dexter, Jason; Gillessen, Stefan; Pfuhl, Oliver; Eisenhauer, Frank; Plewa, Phillip M.; Bauböck, Michi; Jimenez-Rosales, Alejandra; Habibi, Maryam; Ott, Thomas; von Fellenberg, Sebastiano; Gao, Feng; Widmann, Felix; Genzel, Reinhard

    2018-05-01

    Astrometric and spectroscopic monitoring of individual stars orbiting the supermassive black hole in the Galactic Center offer a promising way to detect general relativistic effects. While low-order effects are expected to be detected following the periastron passage of S2 in Spring 2018, detecting higher order effects due to black hole spin will require the discovery of closer stars. In this paper, we set out to determine the requirements such a star would have to satisfy to allow the detection of black hole spin. We focus on the instrument GRAVITY, which saw first light in 2016 and which is expected to achieve astrometric accuracies 10-100 μas. For an observing campaign with duration T years, total observations Nobs, astrometric precision σx, and normalized black hole spin χ, we find that a_orb(1-e^2)^{3/4} ≲ 300 R_S √{T/4 {yr}} (N_obs/120)^{0.25} √{10 μ as/σ _x} √{χ /0.9} is needed. For χ = 0.9 and a potential observing campaign with σ _x = 10 μas, 30 observations yr-1 and duration 4-10 yr, we expect ˜0.1 star with K < 19 satisfying this constraint based on the current knowledge about the stellar population in the central 1 arcsec. We also propose a method through which GRAVITY could potentially measure radial velocities with precision ˜50 km s-1. If the astrometric precision can be maintained, adding radial velocity information increases the expected number of stars by roughly a factor of 2. While we focus on GRAVITY, the results can also be scaled to parameters relevant for future extremely large telescopes.

  15. Continuous gravimetric monitoring as an integrative tool for exploring hydrological processes in the Lomme Karst System (Belgium)

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Van Camp, M. J.; Poulain, A.; Hallet, V.; Rochez, G.; Quinif, Y.; Meus, P.; Kaufmann, O.; Francis, O.

    2016-12-01

    Karst systems are highly heterogeneous which makes their hydrology difficult to understand. Geophysical techniques offer non-invasive and integrative methods that help interpreting such systems as a whole. Among these techniques, gravimetry has been increasingly used in the last decade to characterize the hydrological behavior of complex systems, e.g. karst environments or volcanoes. We present a continuous microgravimetric monitoring of 3 years in the karstic area of Rochefort (Belgium), that shows multiple occurrences of caves and karstic features. The gravity record includes measurements of a GWR superconducting gravimeter, a Micro-g LaCoste gPhone and an absolute FG5 gravimeter. Together with meteorological measurements and a surface/in-cave hydrogeological monitoring, we were able to improve the knowledge of hydrological processes. On the one hand, the data allowed identifying seasonal groundwater content changes in the unsaturated zone of the karst area, most likely to be linked to temporary groundwater storage occurring in the most karstified layers closed to the surface. Combined with additional geological information, modelling of the gravity signal based on the vertical potential of the gravitational attraction was then particularly useful to estimate the seasonal recharge leading to the temporary subsurface groundwater storage. On the other hand, the gravity monitoring of flash floods occurring in deeper layers after intense rainfall events informed on the effective porosity gradient of the limestones. Modelling was then helpful to identify the hydrogeological role played by the cave galleries with respect to the hosting limestones during flash floods. These results are also compared with measurements of an in-cave gravimetric monitoring performed with a gPhone spring gravimeter. An Electrical Resistivity Tomography monitoring is also conducted at site and brings additional information useful to verify the interpretation made with the gravimetric monitoring.

  16. First results of geodetic deformation monitoring after commencement of CO2 injection at the Aquistore underground CO2 storage site

    NASA Astrophysics Data System (ADS)

    Craymer, M.; White, D.; Piraszewski, M.; Zhao, Y.; Henton, J.; Silliker, J.; Samsonov, S.

    2015-12-01

    Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, continuous GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS, InSAR and gravity monitoring. Five monitoring sites were installed in 2012 and another six in 2013, each including GPS and InSAR corner reflector monuments (some collocated on the same monument). The continuous GPS data from these stations have been processed on a daily basis in both baseline processing mode using the Bernese GPS Software and precise point positioning mode using CSRS-PPP. Gravity measurements at each site have also been performed in fall 2013, spring 2014 and fall 2015, and at two sites in fall 2014. InSAR measurements of deformation have been obtained for a 5 m footprint at each site as well as at the corner reflector point sources. Here we present the first results of this geodetic deformation monitoring after commencement of CO2 injection on April 14, 2015. The time series of these sites are examined, compared and analyzed with respect to monument stability, seasonal signals, longer term trends, and any changes in motion and mass since CO2 injection.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, T

    I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flankmore » of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed that the large volume cold springs associated with the Cascade Volcanoes commonly contain dissolved CO{sub 2} that originated from the volcanoes. This volcanic CO{sub 2} component is readily identified from carbon-14 measurements of the water. Carbon-14 analyses of the Fall River samples indicate that at least 27% of the dissolved inorganic carbon in the springs was derived from a volcanic CO{sub 2} source. Such a large volcanic CO{sub 2} flux requires that the groundwater supplying flow to the Fall River Springs must originate from a volcano where magma degassing is actively occurring. Given the hydrogeologic configuration of the Fall River aquifer system, it appears that the Medicine Lake Volcano is the only likely source of the volcanic CO{sub 2}. These data independently confirm the Medicine Lake highlands as a significant recharge source for the Fall River Springs. Moreover, these data indicate that groundwater recharge occurring on Medicine Lake Volcano must interact with a CO{sub 2} volatile phase derived from the geothermal system beneath the volcano. The lack of hot springs on Medicine Lake Volcano suggests that the geothermal system underlying the volcano is relatively tightly sealed. Nevertheless, it is probable that the geothermal fluid originates from precipitation falling on the volcanic edifice. This is the same water that supplies an important fraction of the Fall River Spring discharge. The source of the geothermal fluid can be evaluated using stable isotopes. The oxygen isotope signature of the geothermal fluid may have been modified by high temperature oxygen isotope exchange with the surrounding rock, but the hydrogen isotope signature should still be diagnostic of the origin of the fluid. Although the geothermal system appears to be largely decoupled from the shallow groundwater system that supplies the Fall River Springs, it is uncertain what impact the development of the geothermal system as an energy resource would have on groundwater circulation patterns on the volcano. Given the importance of the Fall River Springs as a water resource for the State of California, it would be prudent to carefully evaluate this question before proceeding with geothermal energy development on Medicine Lake Volcano.« less

  18. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood

    PubMed Central

    Bastin, Jean-François; Fayolle, Adeline; Tarelkin, Yegor; Van den Bulcke, Jan; de Haulleville, Thales; Mortier, Frederic; Beeckman, Hans; Van Acker, Joris; Serckx, Adeline; Bogaert, Jan; De Cannière, Charles

    2015-01-01

    Context Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass. Methods Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood). Results Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity variance was explained by species only (45%) followed by a redundant part between species and regeneration guilds (36%). Despite substantial variation in wood specific gravity profiles among species and regeneration guilds, we found that values from the outer wood were strongly correlated to values from the whole profile, without any significant bias. In addition, we found that wood specific gravity from the DRYAD global repository may strongly differ depending on the species (up to 40% for Dialium pachyphyllum). Main Conclusion Therefore, when estimating forest biomass in specific sites, we recommend the systematic collection of outer wood samples on dominant species. This should prevent the main errors in biomass estimations resulting from wood specific gravity and allow for the collection of new information to explore the intraspecific variation of mechanical properties of trees. PMID:26555144

  19. Wood Specific Gravity Variations and Biomass of Central African Tree Species: The Simple Choice of the Outer Wood.

    PubMed

    Bastin, Jean-François; Fayolle, Adeline; Tarelkin, Yegor; Van den Bulcke, Jan; de Haulleville, Thales; Mortier, Frederic; Beeckman, Hans; Van Acker, Joris; Serckx, Adeline; Bogaert, Jan; De Cannière, Charles

    2015-01-01

    Wood specific gravity is a key element in tropical forest ecology. It integrates many aspects of tree mechanical properties and functioning and is an important predictor of tree biomass. Wood specific gravity varies widely among and within species and also within individual trees. Notably, contrasted patterns of radial variation of wood specific gravity have been demonstrated and related to regeneration guilds (light demanding vs. shade-bearing). However, although being repeatedly invoked as a potential source of error when estimating the biomass of trees, both intraspecific and radial variations remain little studied. In this study we characterized detailed pith-to-bark wood specific gravity profiles among contrasted species prominently contributing to the biomass of the forest, i.e., the dominant species, and we quantified the consequences of such variations on the biomass. Radial profiles of wood density at 8% moisture content were compiled for 14 dominant species in the Democratic Republic of Congo, adapting a unique 3D X-ray scanning technique at very high spatial resolution on core samples. Mean wood density estimates were validated by water displacement measurements. Wood density profiles were converted to wood specific gravity and linear mixed models were used to decompose the radial variance. Potential errors in biomass estimation were assessed by comparing the biomass estimated from the wood specific gravity measured from pith-to-bark profiles, from global repositories, and from partial information (outer wood or inner wood). Wood specific gravity profiles from pith-to-bark presented positive, neutral and negative trends. Positive trends mainly characterized light-demanding species, increasing up to 1.8 g.cm-3 per meter for Piptadeniastrum africanum, and negative trends characterized shade-bearing species, decreasing up to 1 g.cm-3 per meter for Strombosia pustulata. The linear mixed model showed the greater part of wood specific gravity variance was explained by species only (45%) followed by a redundant part between species and regeneration guilds (36%). Despite substantial variation in wood specific gravity profiles among species and regeneration guilds, we found that values from the outer wood were strongly correlated to values from the whole profile, without any significant bias. In addition, we found that wood specific gravity from the DRYAD global repository may strongly differ depending on the species (up to 40% for Dialium pachyphyllum). Therefore, when estimating forest biomass in specific sites, we recommend the systematic collection of outer wood samples on dominant species. This should prevent the main errors in biomass estimations resulting from wood specific gravity and allow for the collection of new information to explore the intraspecific variation of mechanical properties of trees.

  20. Gravity-induced cellular and molecular processes in plants studied under altered gravity conditions

    NASA Astrophysics Data System (ADS)

    Vagt, Nicole; Braun, Markus

    With the ability to sense gravity plants possess a powerful tool to adapt to a great variety of environmental conditions and to respond to environmental changes in a most beneficial way. Gravity is the only constant factor that provides organisms with reliable information for their orientation since billions of years. Any deviation of the genetically determined set-point angle of the plants organs from the vector of gravity is sensed by specialized cells, the statocytes of roots and shoots in higher plants. Dense particles, so-called statoliths, sediment in the direction of gravity and activate membrane-bound gravireceptors. A physiological signalling-cascade is initiated that eventually results in the gravitropic curvature response, namely, the readjust-ment of the growth direction. Experiments under microgravity conditions have significantly contributed to our understanding of plant gravity-sensing and gravitropic reorientation. For a gravity-sensing lower plant cell type, the rhizoid of the green alga Chara, and for statocytes of higher plant roots, it was shown that the interactions between statoliths and the actomyosin system consisting of the actin cytoskeleton and motor proteins (myosins) are the basis for highly efficient gravity-sensing processes. In Chara rhizoids, the actomyosin represents a guid-ing system that directs sedimenting statoliths to a specific graviperception site. Parabolic flight experiments aboard the airbus A300 Zero-G have provided evidence that lower and higher plant cells use principally the same statolith-mediated gravireceptor-activation mechanism. Graviper-ception is not dependent on mechanical pressure mediated through the weight of the sedimented statoliths, but on direct interactions between the statoliths's surface and yet unknown gravire-ceptor molecules. In contrast to Chara rhizoids, in the gravity-sensing cells of higher plants, the actin cytoskeleton is not essentially involved in the early phases of gravity sensing. Dis-rupting the actomyosin system did not impair the sedimentation of statoliths and did not prevent the activation of gravireceptors. However, experiments in microgravity and inhibitor experiments have demonstrated that the actomyosin system optimizes the statolith-receptor interactions by keeping the sedimented statoliths in motion causing a consistent activation of different gravireceptor molecules. Thereby, a triggered gravitropic signal is created which is the basis for a highly sensitive control and readjustment mechanism. In addition, the results of recent parabolic flight studies on the effects of altered gravity conditions on the gene expres-sion pattern of Arabidopsis seedlings support these findings and provide new insight into the molecular basis of the plants response to different acceleration conditions. The work was financially supported by DLR on behalf of Bundesministerium für Wirtschaft und Technologie (50WB0815).

  1. Hop powdery mildew control through alteration of spring pruning practices

    USDA-ARS?s Scientific Manuscript database

    Since 1997, Podosphaera macularis, the causal agent of hop powdery mildew, has become a recurrent threat to hops in the Pacific Northwest because of the potential to reduce cone yield and quality. Disease management practices often involve preventative fungicide applications, but alternative approac...

  2. 75 FR 17410 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... the practical barriers that may prevent wider adoption of NIOSH recommendations and practices designed to safeguard mine workers. In the Spring of 2007, NIOSH conducted a pretest of the survey questionnaire with nine underground coal mine operators. The pretest instrument contained 81 questions...

  3. Longitudinal Examination of the Bullying-Sexual Violence Pathway across Early to Late Adolescence: Implicating Homophobic Name-Calling.

    PubMed

    Espelage, Dorothy L; Basile, Kathleen C; Leemis, Ruth W; Hipp, Tracy N; Davis, Jordan P

    2018-03-02

    The Bully-Sexual Violence Pathway theory has indicated that bullying perpetration predicts sexual violence perpetration among males and females over time in middle school, and that homophobic name-calling perpetration moderates that association among males. In this study, the Bully-Sexual Violence Pathway theory was tested across early to late adolescence. Participants included 3549 students from four Midwestern middle schools and six high schools. Surveys were administered across six time points from Spring 2008 to Spring 2013. At baseline, the sample was 32.2% White, 46.2% African American, 5.4% Hispanic, and 10.2% other. The sample was 50.2% female. The findings reveal that late middle school homophobic name-calling perpetration increased the odds of perpetrating sexual violence in high school among early middle school bullying male and female perpetrators, while homophobic name-calling victimization decreased the odds of high school sexual violence perpetration among females. The prevention of bullying and homophobic name-calling in middle school may prevent later sexual violence perpetration.

  4. Studies on the antifertility potentiality of Hibiscus rosa sinensis. Parts of medicinal value; selection of species and seasonal variations.

    PubMed

    Kholkute, S D; Mudgal, V; Udupa, K N

    1977-02-01

    The postcoital antifertility properties of benzene hot extracts of Hibiscus rosa sinensis flowers, leaves, and stembarks, collected during the winter, spring, rainy, and summer seasons, were investigated in female rats. Only extracts from the flowers of the plant were 100% effective in preventing pregnancy. Those flowers collected during the winter showed the greatest potency, followed by those collected in the spring, rainy season, and summer, in decreasing order. Benzene extracts of flowers collected from Hibiscus mutabilis, Hibiscus schizopetalus, and Malvasicus grandiflorus, plants resembling Hibiscus rosa sinensis in petaloid structure, did not markedly affect pregnancy.

  5. Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, northwest China

    NASA Astrophysics Data System (ADS)

    Wu, X.; Shen, Y.; Wang, N.; Pan, X.; Zhang, W.; He, J.; Wang, G.

    2017-12-01

    Snowmelt water is an important freshwater resource in the Altay Mountains in northwest China, and it is also crucial for local ecological system, economic and social sustainable development; however, warming climate and rapid spring snowmelt can cause floods that endanger both eco-environment and public and personal property and safety. This study simulates snowmelt in the Kayiertesi River catchment using a temperature-index model based on remote sensing coupled with high-resolution meteorological data obtained from NCEP reanalysis fields that were downscaled using Weather Research Forecasting model, then bias-corrected using a statistical downscaled model. Validation of the forcing data revealed that the high-resolution meteorological fields derived from downscaled NCEP reanalysis were reliable for driving the snowmelt model. Parameters of temperature-index model based on remote sensing were calibrated for spring 2014, and model performance was validated using MODIS snow cover and snow observations from spring 2012. The results show that the temperature-index model based on remote sensing performed well, with a simulation mean relative error of 6.7% and a Nash-Sutchliffe efficiency of 0.98 in spring 2012 in the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt runoff was calculated for spring 2012 in the basin. In the study catchment, spring snowmelt runoff accounts for 72% of spring runoff and 21% of annual runoff. Snowmelt is the main source of runoff for the catchment and should be managed and utilized effectively. The results provide a basis for snowmelt runoff predictions, so as to prevent snowmelt-induced floods, and also provide a generalizable approach that can be applied to other remote locations where high-density, long-term observational data is lacking.

  6. Do Yield and Quality of Big Bluestem and Switchgrass Feedstock Decline over Winter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jane M. F.; Gresham, Garold L.

    Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential perennial bioenergy feedstocks. Feedstock storage limitations, labor constraints for harvest, and environmental benefits provided by perennials are rationales for developing localized perennial feedstock as an alternative or in conjunction with annual feedstocks (i.e., crop residues). Little information is available on yield, mineral, and thermochemical properties of native species as related to harvest time. The study’s objectives were to compare the feedstock quantity and quality between grasses harvested in the fall or the following spring. It was hypothesized that biomass yield may decline, but translocation and/or leaching of mineralsmore » from the feedstock would improve feedstock quality. Feedstock yield did not differ by crop, harvest time, or their interactions. Both grasses averaged 6.0 Mg ha-1 (fall) and 5.4 Mg ha-1 (spring) with similar high heating value (17.7 MJ kg-1). The K/(Ca + Mg) ratio, used as a quality indicator declined to below a 0.5 threshold, but energy yield (Megajoule per kilogram) decreased 13% by delaying harvest until spring. Only once during the four study-years were conditions ideal for early spring harvest, in contrast during another spring, very muddy conditions resulted in excessive soil contamination. Early spring harvest may be hampered by late snow, lodging, and muddy conditions that may delay or prevent harvest, and result in soil contamination of the feedstock. However, reducing slagging/fouling potential and the mass of mineral nutrients removed from the field without a dramatic loss in biomass or caloric content are reasons to delay harvest until spring.« less

  7. Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Wang, Qi-Ning; Gao, Yue; Xie, Guang-Ming

    2012-10-01

    Passive dynamic walking has been developed as a possible explanation for the efficiency of the human gait. This paper presents a passive dynamic walking model with segmented feet, which makes the bipedal walking gait more close to natural human-like gait. The proposed model extends the simplest walking model with the addition of flat feet and torsional spring based compliance on ankle joints and toe joints, to achieve stable walking on a slope driven by gravity. The push-off phase includes foot rotations around the toe joint and around the toe tip, which shows a great resemblance to human normal walking. This paper investigates the effects of the segmented foot structure on bipedal walking in simulations. The model achieves satisfactory walking results on even or uneven slopes.

  8. Studies of high latitude mesospheric turbulence by radar and rocket. I - Energy deposition and wave structure

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Fritts, D. C.; Chou, H.-G.; Schmidlin, F. J.; Barcus, J. R.

    1988-01-01

    The origin of wintertime mesospheric echoes observed with the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska, was studied by probing the mesosphere with in situ rocket measurements during echo occurrences in the early spring, 1985. Within the height range 65-75 km, the structure of the large scale wave field was identified. In this region, a gravity wave with a vertical wavelength of about 2 km was found superimposed on a wave with a larger amplitude and a vertical wavelength of about 6.6 km. Because of the close correlation between the smaller amplitude wave and the modulation observed in the S/N profiles, it is concluded that the smaller wave was dominant in generating turbulence within the middle atmosphere.

  9. Extended scalar-tensor theories of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crisostomi, Marco; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-04-21

    We study new consistent scalar-tensor theories of gravity recently introduced by Langlois and Noui with potentially interesting cosmological applications. We derive the conditions for the existence of a primary constraint that prevents the propagation of an additional dangerous mode associated with higher order equations of motion. We then classify the most general, consistent scalar-tensor theories that are at most quadratic in the second derivatives of the scalar field. In addition, we investigate the possible connection between these theories and (beyond) Horndeski through conformal and disformal transformations. Finally, we point out that these theories can be associated with new operators inmore » the effective field theory of dark energy, which might open up new possibilities to test dark energy models in future surveys.« less

  10. KSC-2011-6513

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- Technicians lower NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft into place atop a United Launch Alliance Delta II rocket on Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  11. Skeleton growth under uniformly distributed force conditions: producing spherical sea urchins

    NASA Astrophysics Data System (ADS)

    Cheng, Polly; Kambli, Ankita; Stone, Johnny

    2017-10-01

    Sea urchin skeletons, or tests, comprise rigid calcareous plates, interlocked and sutured together with collagen fibres. The tests are malleable due to mutability in the collagen fibres that loosen during active feeding, yielding interplate gaps. We designed an extraterrestrial simulation experiment wherein we subjected actively growing sea urchins to one factor associated with zero-gravity environments, by growing them under conditions in which reactionary gravitational forces were balanced, and observed how their tests responded. Preventing tests from adhering to surfaces during active growth produced more-spherical bodies, realized as increased height-to-diameter ratios. Sea urchin tests constitute ideal systems for obtaining data that could be useful in extraterrestrial biology research, particularly in how skeletons grow under altered-gravity conditions.

  12. 78 FR 20110 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Project Science to Practice: Developing and Testing a Marketing Strategy for Preventing Alcohol-related... marketing strategy for The Safer Campuses and Communities intervention, a comprehensive, community-based... the spring and fall semester of the 2012-2013 academic years, and will constitute a marketing strategy...

  13. When Zealots Wage War.

    ERIC Educational Resources Information Center

    Dennis, Bruce L.

    1997-01-01

    Since Spring 1995, a Bedford, New York superintendent and her district have been virulently attacked by two parents who initially accused them of promoting Satanism, exemplified in an after-school game called Magic: The Gathering. These parents are now attacking drug prevention programs, various homework assignments, and literature selections. The…

  14. Tubing cutter for tight spaces

    NASA Technical Reports Server (NTRS)

    Girala, A. S.

    1980-01-01

    Cutter requires few short swings of handle to rotate its cutting edge full 360 around tube. It will cut tubing installed in confined space that prevents free movement of conventional cutter. Cutter is snapped onto tube and held in place by spring-loaded clamp. Screw ratchet advances cutting wheel.

  15. The role of collective self-gravity in the nonlinear evolution of viscous overstability in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2017-09-01

    Observational evidence for the presence of axisymmetric periodic micro-structure on length scales of 100m - 200m in Saturn's A and B rings was revealed by several instruments onboard the Cassini mission to Saturn. The structure was seen in radio occultations performed by the Radio Science Subsystem (RSS) (Thomson et al. (2007)) and stellar occultations carried out with the Ultraviolet Imaging Spectrograph (UVIS) (Colwell et al. (2007)), and the Visual and Infrared Mapping Spectrometer (VIMS) (Hedman et al. (2014)). Up to date, this micro-structure is best explained by the viscous overstability, which arises as a spontaneous oscillatory instability in a dense ring, if certain conditions are met, leading to the formation of axisymmetric density waves with wavelengths on the order of 100m. We investigate the influence of collective self-gravity forces on the nonlinear, large scale evolution of the viscous overstability in Saturn's rings. To this end we numerically solve the nonlinear hydrodynamic model equations for a dense ring, including radial self-gravity and employing values for the transport coefficients (such as the ring's viscosity and heat conductivity) derived by salo et al. (2001). We concentrate on ring optical depths of order unity, which are appropriate to model Saturn's dense rings. Furthermore, local N-body simulations, incorporating vertical and radial collective self-gravity forces are performed. Direct particle-particle forces are omitted, which prevents small scale gravitational instabilities (self-gravity wakes) from forming, an approximation that allows us to study long radial scales of some 10 kilometers and to compare directly the hydrodynamic model and the N-body simulations. Our hydrodynamic model results, in the limit of vanishing self-gravity, compare very well with the studies of Latter & Ogilvie (2010) and Rein & Latter (2013). In contrast, for rings with non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains tend to settle close to the frequency minimum of the nonlinear dispersion relation, i.e. the saturation wavelengths decrease with increasing surface mass density of the ring. Good agreement between hydrodynamics and N-body simulations is found for disks with strong radial self-gravity, while the largest deviations occur in the limit of weak self-gravity. The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (100m-300m) agree reasonably well with the length scale of the axisymmetric periodic micro structure in Saturn's inner A ring and the B ring, as found by Cassini.

  16. New insights into ocean tide loading corrections on tidal gravity data in Canary Islands

    NASA Astrophysics Data System (ADS)

    Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.

    2009-04-01

    The Canary Islands are an interesting area to investigate ocean tides loading effects due to the complex coastline of the islands and the varying bathymetry. We present here the quality of five recent global oceanic tidal models, GOT00.2, GOT4.7, FES2004, TPXO.7.1 and AG2006, by comparing their predicted ocean tide loading values with results from tidal gravity observations made on three islands, Lanzarote, Tenerife and El Hierro, for the four harmonic constituents O1, K1, M2 and S2. In order to improve the accuracy of the loading corrections on the gravity tide measurements, we have used the high resolution regional oceanic model CIAM2 to supplement the global models considered here. This regional model has been obtained by assimilating TOPEX/Poseidon altimetry at crossovers and along-track points and tide gauge observations into a hydrodynamic model. The model has a 5'Ã-5' resolution and covers the area between the coordinates 26°.5N to 30°.0N and 19°.0W to 12°.5W. The gravity tide observing sites have been occupied by three different LaCoste&Romberg (LCR) spring gravimeters during different periods of observation. We considered here the most recent gravity tide observations made with LCR Graviton-EG1194 in El Hierro Island, for a period of 6 months during 2008. In the case of Tenerife and Lanzarote sites we have used observation periods of 6 months and 8 years with LCR-G665 and LCR-G434 gravimeters, respectively. The last two sites have been revisited in order to improve the previous tidal analysis results. Thus, the gravity ocean tide loading corrections, based on the five global ocean tide models supplemented with the regional model CIAM2 allowed us to review the normalization factors (scale factor and phase lag) of both two gravimeters. Also, we investigated the discrepancies of the corrected gravimetric factors with the DDW elastic and inelastic non hydrostatic body tide model (Dehant et al., 1999). The lowest values are found for inelastic model in the case of M2 and O1 waves at three sites. However, the scatter between oceanic models seen at final residual vectors does not indicate clearly if tidal observations are close to elastic or inelastic body tide model. Finally, after computing misfits of gravity tide observations and ocean tide loading calculations the level of agreement between the five global oceanic models is below 0.2 Gal (1 Gal=10-8ms-2), except for the solar harmonic K1, which reaches a large value that reflects the thermal instability at three sites because the period of K1 is very close to that of S1. None of the five global models seems to give results that are clearly better than the other models.

  17. Airborne Gravity Measurements using a Helicopter with Special Emphases on Delineating Local Gravity Anomalies Mainly for Detecting Active Seismic Faults (Invited)

    NASA Astrophysics Data System (ADS)

    Segawa, J.

    2010-12-01

    The first aerial gravity measurement in Japan started in 1998 using a Japanese airborne gravimeter ‘ Segawa-TKeiki airborne gravimeter Model FGA-1’. We lay emphasis on the measurement of detailed gravity structures at the land-to-sea border areas and mountainous areas. This is the reason why we use a helicopter and make surveys at low altitude and low speed. We have so far made measurement at twelve sites and the total flight amounts to 20,000km. The accuracy of measurement is 1.5 mgal and half-wavelength resolution is 1.5 km. The Japanese type gravimeter consists of a servo-accelerometer type gravity sensor, a horizontal platform controlled by an optical fiber gyro, GPS positioning system, and a data processing system. Helicopter movement has to be precisely monitored three-dimensionally to calculate the vehicle’s acceleration noises. The necessary accuracy of positioning of the vehicle must be better than 10 cm in positioning error. Our helicopter gravity measurement has a special target in Japan to investigate active seismic faults located across land-to-sea borderlines. In Japan, it is generally thought that gravity over most of the country has already been measured by the governmental surveys, leaving the land-sea border lines and mountainous zones unsurveyed as difficult-to-access areas. In addition the use of airplane or helicopter in Japan appeared disadvantageous because of the narrowness of the Japanese Islands. Under such situations the author thought there still remained a particular as well as unique need for aerial gravity measurement in Japan, i.e. the need for detailed and seamless knowledge of gravity structures across land-to-sea border lines to elucidate complicated crustal structures of the Japanese Islands as well as distribution of active seismic faults for disaster prevention. The results of gravity measurements we have conducted so far include those of 12 sites. In the following the brief logs of our measurements are listed. 1)April 2000. Saitama-Tsukuba-Kashima-Nada. Flight Length 1,300km. Discovery of inconsistency between land and marine gravity nearby. 2)July 2000. Suruga Bay. Flight Length 1,500km. Gravity was contoured in the Suruga Bay. 3)November 2000. Enshu-Nada Sea. Flight Length 1,700km. First measurement of land-sea border line of the Tokai area. 4)October 2001. Enshu-Nada Sea. Flight Length 1,500km. Revisit to Enshu Nada sea. 5)December 2001. Kohdu-shima and Miyake Jima. Flight Length 1,800km. Measurement of gravity over the basin between Miyake and Kohdu. 6)June 2002. Enshu-Nada Sea. Flight Length 2,200km. Measurement of gravity across the Tenryu-River active fault. 7)November 2004. Iyonada and Sata Peninsula. (Commercial works). 8)March 2006. Middle Noto Peninsula. (Commercial works). 9)November 2006. Wakasa Bay. (Commercial works). 10)October 2008. North Noto Peninsula. (Commercial works). 11)November 2008. West Seto Inland Sea. (Commercial works). 12)November 2009. Shimokita Peninsula and Seto Inland Sea.

  18. The Damper Spring Unit of the Sentinel 1 Solar Array

    NASA Technical Reports Server (NTRS)

    Doejaaren, Frans; Ellenbroek, Marcel

    2012-01-01

    The Damper Spring Unit (DSU, see Figure 1) has been designed to provide the damping required to control the deployment speed of the spring driven solar array deployment in an ARA Mk3 or FRED based Solar Array in situations where the standard application of a damper at the root-hinge is not feasible. The unit consists of four major parts: a main bracket, an eddy current damper, a spring unit, an actuation pulley which is coupled via Kevlar cables to a synchro-pulley of a hinge. The damper slows down the deployment speed and prevents deployment shocks at deployment completion. The spring unit includes 4 springs which overcome the resistances of the damper and the specific DSU control cable loop. This means it can be added to any spring driven deployment system without major modifications of that system. Engineering models of the Sentinel 1 solar array wing have been built to identify the deployment behavior, and to help to determine the optimal pulley ratios of the solar array and to finalize the DSU design. During the functional tests, the behavior proved to be very sensitive for the alignment of the DSU. This was therefore monitored carefully during the qualification program, especially prior to the TV cold testing. During TV "Cold" testing the measured retarding torque exceeded the max. required value: 284 N-mm versus the required 247 N-mm. Although this requirement was not met, the torque balance analysis shows that the 284 N-mm can be accepted, because the spring unit can provide 1.5 times more torque than required. Some functional tests of the DSU have been performed without the eddy current damper attached. It provided input data for the ADAMS solar array wing model. Simulation of the Sentinel-1 deployment (including DSU) in ADAMS allowed the actual wing deployment tests to be limited in both complexity and number of tests. The DSU for the Sentinel-1 solar array was successfully qualified and the flight models are in production.

  19. Guying to prevent wind sway influences loblolly pine growth and wood properties

    Treesearch

    James D. Burton; Diana M. Smith

    1972-01-01

    Restraining young loblolly pine (Pinus taeda L.) trees from normal swaying in the wind markedly reduced radial growth in the immobilized portion of the bole and accelerated it in the upper, free-swaying portion. Guying also reduced specific gravity, number of earlywood and latewood tracheids, latewood tracheid diameter, and amount of compression wood...

  20. 49 CFR 173.24a - Additional general requirements for non-bulk packagings and packages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... design. Except as provided in § 172.312 of this subchapter: (1) Inner packaging closures. A combination... packed, secured and cushioned to prevent their breakage or leakage and to control their shifting within... Group I packaging may be used for a Packing Group II material with a specific gravity not exceeding the...

  1. 49 CFR 173.24a - Additional general requirements for non-bulk packagings and packages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... design. Except as provided in § 172.312 of this subchapter: (1) Inner packaging closures. A combination... packed, secured and cushioned to prevent their breakage or leakage and to control their shifting within... Group I packaging may be used for a Packing Group II material with a specific gravity not exceeding the...

  2. 14 CFR Appendix A to Part 43 - Major Alterations, Major Repairs, and Preventive Maintenance

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hub design. (iii) Changes in the governor or control design. (iv) Installation of a propeller governor.... (iv) Engine mounts. (v) Control system. (vi) Landing gear. (vii) Hull or floats. (viii) Elements of an... of gravity limits of the aircraft. (xii) Changes to the basic design of the fuel, oil, cooling...

  3. Predictive modeling of cholera using GRACE and TRMM satellite data

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Akanda, A. S. S.; Colwell, R. R.

    2015-12-01

    Cholera outbreaks can be classified in three forms- epidemic (sudden or seasonal outbreaks), endemic (recurrence and persistence of the disease for several consecutive years) and mixed-mode endemic (combination of certain epidemic and endemic conditions) with significant spatial and temporal heterogeneity. Endemic cholera is related to floods and droughts in regions where water and sanitation infrastructure are inadequate or insufficient. With more than a decade of terrestrial water storage (TWS) data obtained from Gravity Recovery and Climate Experiment (GRACE), understanding dynamics of river discharge is now feasible. We explored lead-lag relationships between TWS in the Ganges-Brahmaputra-Meghna (GBM) basin and endemic cholera in Bangladesh. Since bimodal seasonal peaks in cholera in Bangladesh occur during the spring and autumn season, two separate models, between TWS and disease time series (2002 to 2010) were developed. TWS, hence water availability, showed an asymmetrical, strong association with spring (τ=-0.53; p<0.001) and autumn (τ=0.45; p<0.001) cholera prevalence up to five to six months in advance. One unit (cm of water) decrease in water availability in the basin increased odds of above normal cholera by 24% [confidence interval (CI) 20-31%; p<0.05] in the spring season, while an increase in regional water by one unit, through floods, increased odds of above average cholera in the autumn by 29% [CI:22-33%; p<0.05]. Epidemic cholera is related with warm temperatures and heavy rainfall. Using TRMM data for several locations in Asia and Africa, probability of cholera increases 18% [CI:15-23%; p<0.05] after heavy precipitation resulted in a societal conditions where access to safe water and sanitation was disrupted. Results from mechanistic modeling framework using systems approach that include satellite based hydroclimatic information with tradition disease transmission models will also be presented.

  4. Design and Development of a Model to Simulate 0-G Treadmill Running Using the European Space Agency's Subject Loading System

    NASA Technical Reports Server (NTRS)

    Caldwell, E. C.; Cowley, M. S.; Scott-Pandorf, M. M.

    2010-01-01

    Develop a model that simulates a human running in 0 G using the European Space Agency s (ESA) Subject Loading System (SLS). The model provides ground reaction forces (GRF) based on speed and pull-down forces (PDF). DESIGN The theoretical basis for the Running Model was based on a simple spring-mass model. The dynamic properties of the spring-mass model express theoretical vertical GRF (GRFv) and shear GRF in the posterior-anterior direction (GRFsh) during running gait. ADAMs VIEW software was used to build the model, which has a pelvis, thigh segment, shank segment, and a spring foot (see Figure 1).the model s movement simulates the joint kinematics of a human running at Earth gravity with the aim of generating GRF data. DEVELOPMENT & VERIFICATION ESA provided parabolic flight data of subjects running while using the SLS, for further characterization of the model s GRF. Peak GRF data were fit to a linear regression line dependent on PDF and speed. Interpolation and extrapolation of the regression equation provided a theoretical data matrix, which is used to drive the model s motion equations. Verification of the model was conducted by running the model at 4 different speeds, with each speed accounting for 3 different PDF. The model s GRF data fell within a 1-standard-deviation boundary derived from the empirical ESA data. CONCLUSION The Running Model aids in conducting various simulations (potential scenarios include a fatigued runner or a powerful runner generating high loads at a fast cadence) to determine limitations for the T2 vibration isolation system (VIS) aboard the International Space Station. This model can predict how running with the ESA SLS affects the T2 VIS and may be used for other exercise analyses in the future.

  5. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportablemore » template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.« less

  6. Modeling and Crustal Structure in the Future Reservoir of Jequitaí, Brazil

    NASA Astrophysics Data System (ADS)

    Teixeira, C. D.; Von Huelsen, M. G.; Chemale, F., Jr.; Nascimento, A. V. D. S., Sr.; do Sacramento, V., Sr.; Garcia, V. B. P., Sr.

    2017-12-01

    Integrated geophysical and geological data analysis in the state of Minas Gerais, Brazil, allowed the modeling of the subsurface framework in a region where a reservoir - the Jequitaí reservoir - will be constructed. Studies of this nature during the previous stages of the construction of large hydroelectric projects are highly important, because the regional geology understanding associated with geophysical data interpretation can help to prevent damage in the physical structure of the dam, which will aid in its preservation. The use of gravity and magnetic data in a 2D crustal model provided information on a possible framework of the area and revealed features not mapped until now, which may be useful for further studies and can contribute to the understanding of this portion of the crust. The results show the presence of high gravity anomalies in the southern part of the study area, besides extensive lineaments that cross the whole area, interpreted as possible faults and dykes. Depth estimation techniques, such as Euler deconvolution and radially averaged power spectrum, allowed the identification of continuous structures up to 400 m depth, and showed differences in the basement depth in the northern and southern portions of the study area. Inversion of the gravity data along a profile crossing a gravity anomaly yielded to information about the depth, thickness and shape of a possible intrusive body. The geological-geophysical model was consistent with the interpretations based on surface geology and in the gravity and magnetic signal, because the section could be modeled respecting the geophysical data and the pre-existing structural proposals.

  7. Developmental testing resulting in a simplified liquid oxygen check valve for the Space Shuttle Main Propulsion System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S.; Barrett, Michael J.; Reith, Timothy W.

    1993-01-01

    The coil spring in a Space Shuttle liquid oxygen check valve failed due to cyclic fatigue in September, 1991. The dual-flapper, swing check valve is used to prevent reverse flow to the Space Shuttle Main Engines. Upon inspection of the failed component, the spring tangs were found to be missing and heavy wear was observed on the inner diameter of the spring coils. The fracture surfaces revealed that the metal had been steadily worn away until a simple overload caused the final fracture. A series of flow tests using water and a water/gas mixture was conducted to identify the flow phenomenon which produced the cyclic wear. A Plexiglas outlet housing was utilized to view the flapper behavior under different flow conditions and to aid in high speed photography. The tests revealed that flow instabilities induced two oscillatory flapper responses: a rocking mode and a chattering mode. Initially, attempts were made to reduce the spring-flapper oscillations. However, the final solution to the problem was a springless configuration which satisfied the valve's design requirements and eliminated the oscillations. The springless design relied on the inherent ability of the reverse flow momentum to close the flappers.

  8. Etiology of Drinking and Driving among Adolescents: Implications for Primary Prevention.

    ERIC Educational Resources Information Center

    Klepp, Knut-Inge; And Others

    1991-01-01

    A survey of 1,482 high school students in spring and fall 1986 resulted in confirmation of the Problem Behavior Theory as a predictor of drinking and driving among adolescents. Environmental, behavioral, and demographic factors account for 50 percent of the variance in drinking and driving. (SK)

  9. Prescribed burning in ponderosa pine: fuel reductions and redistributing fuels near boles to prevent injury

    USDA-ARS?s Scientific Manuscript database

    Prescribed burning can be an effective tool for thinning forests and reducing fuels to lessen wildfire risks. However, prescribed burning sometimes fails to substantially reduce fuels and sometimes damages/kills valuable, large trees. This study compared fuel reductions between fall and spring pre...

  10. Terrorism, Infrastructure Protection, and the U.S. Food and Agricultural Sector

    DTIC Science & Technology

    2001-10-01

    1999-2000. See also J. Ekboir, The Potential Impact of Foot and Mouth Disease in California: The Role and contribution of Animal Health Surveillance...and Spinelli, "An Economic Assessment of the Costs and Benefits of African Swine Fever Prevention," Animal Health Insight (Spring/Summer 1994). 9

  11. 77 FR 6518 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... deck. This proposed AD would require replacing the low-pressure oxygen hoses with non-conductive low-pressure oxygen hoses in the flight compartment. We are proposing this AD to prevent electrical current from passing through the low- pressure oxygen hose internal anti-collapse spring, which can cause the...

  12. Seasons: The National Native American AIDS Prevention Center Quarterly. 1993.

    ERIC Educational Resources Information Center

    Rush, Andrea Green, Ed.

    1993-01-01

    The three 1993 issues of "Seasons" (the Spring/Summer issues are combined) address various aspects of dealing with Acquired Immune Deficiency Syndrome (AIDS) and Human Immunodeficiency Virus (HIV) among Native Americans. The Winter issue focuses on tuberculosis (TB) and its incidence and treatment among HIV-positive individuals.…

  13. Catalyst. Volume 10, Number 3, Spring 2009

    ERIC Educational Resources Information Center

    Ryan, Barbara E., Ed.

    2009-01-01

    "Catalyst" is a publication of the U.S. Department of Education's Higher Education Center for Alcohol and Other Drug Abuse and Violence Prevention. This issue contains the following articles: (1) The National Study of Student Hazing Initial Findings; (2) The Social Norms Marketing Research Project--An Update; (3) Message From William…

  14. Curriculum Infusion as College Student Mental Health Promotion Strategy

    ERIC Educational Resources Information Center

    Mitchell, Sharon L.; Darrow, Sherri A.; Haggerty, Melinda; Neill, Thomas; Carvalho, Amana; Uschold, Carissa

    2012-01-01

    This article describes efforts to increase faculty involvement in suicide prevention and mental health promotion via curriculum infusion. The participants were faculty, staff, and 659 students enrolled in classes of a large eastern university from Fall 2007-Spring 2011. Counselors, health educators, and medical providers recruited faculty from a…

  15. Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis

    USDA-ARS?s Scientific Manuscript database

    Cereal aphid complexes are responsible for reducing wheat production worldwide; however, management against these species is rare in North America. Generalist predators may contribute to reducing cereal aphid numbers and preventing significant damage to crops. A two-year survey identifying the arth...

  16. Validation of gravity data from the geopotential field model for subsurface investigation of the Cameroon Volcanic Line (Western Africa)

    NASA Astrophysics Data System (ADS)

    Marcel, Jean; Abate Essi, Jean Marcel; Nouck, Philippe Njandjock; Sanda, Oumarou; Manguelle-Dicoum, Eliézer

    2018-03-01

    Belonging to the Cameroon Volcanic Line (CVL), the western part of Cameroon is an active volcanic zone with volcanic eruptions and deadly gas emissions. The volcanic flows generally cover areas and bury structural features like faults. Terrestrial gravity surveys can hardly cover entirely this mountainous area due to difficult accessibility. The present work aims to evaluate gravity data derived from the geopotential field model, EGM2008 to investigate the subsurface of the CVL. The methodology involves upward continuation, horizontal gradient, maxima of horizontal gradient-upward continuation combination and Euler deconvolution techniques. The lineaments map inferred from this geopotential field model confirms several known lineaments and reveals new ones covered by lava flows. The known lineaments are interpreted as faults or geological contacts such as the Foumban fault and the Pan-African Belt-Congo craton contact. The lineaments highlighted coupled with the numerous maar lakes identified in this volcanic sector attest of the vulnerability of the CVL where special attention should be given for geohazard prevention.

  17. A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones

    NASA Astrophysics Data System (ADS)

    Yin, A.; Meng, L.

    2016-12-01

    Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends on the thickness, viscosity, and dynamic yield strength of the shear zone. Our model predicts a linear increase in slip with time during the landward motion and an exponential decrease in slip magnitude during the trenchward motion.

  18. New Geologic Map and Structural Cross Sections of the Death Valley Extended Terrain (southern Sierra Nevada, California to Spring Mountains, Nevada): Toward 3D Kinematic Reconstructions

    NASA Astrophysics Data System (ADS)

    Lutz, B. M.; Axen, G. J.; Phillips, F. M.

    2017-12-01

    Tectonic reconstructions for the Death Valley extended terrain (S. Sierra Nevada to Spring Mountains) have evolved to include a growing number of offset markers for strike-slip fault systems but are mainly map view (2D) and do not incorporate a wealth of additional constraints. We present a new 1:300,000 digital geologic map and structural cross sections, which provide a geometric framework for stepwise 3D reconstructions of Late Cenozoic extension and transtension. 3D models will decipher complex relationships between strike-slip, normal, and detachment faults and their role in accommodating large magnitude extension/rigid block rotation. Fault coordination is key to understanding how extensional systems and transform margins evolve with changing boundary conditions. 3D geometric and kinematic analysis adds key strain compatibility unavailable in 2D reconstructions. The stratigraphic framework of Fridrich and Thompson (2011) is applied to rocks outside of Death Valley. Cenozoic basin deposits are grouped into 6 assemblages differentiated by age, provenance, and bounding unconformities, which reflect Pacific-North American plate boundary events. Pre-Cenozoic rocks are grouped for utility: for example, Cararra Formation equivalents are grouped because they form a Cordilleran thrust decollement zone. Offset markers are summarized in the associated tectonic map. Other constraints include fault geometries and slip rates, age, geometry and provenance of Cenozoic basins, gravity, cooling histories of footwalls, and limited seismic/well data. Cross sections were constructed parallel to net-transport directions of fault blocks. Surface fault geometries were compiled from previous mapping and projected to depth using seismic/gravity data. Cooling histories of footwalls guided geometric interpretation of uplifted detachment footwalls. Mesh surfaces will be generated from 2D section lines to create a framework for stepwise 3D reconstruction of extension and transtension in the study area. Analysis of all available data in a seamless 3D framework should force more unique solutions to outstanding kinematic problems, provide a better understanding of the Cordilleran thrust belt, and constrain the mechanisms of strain partitioning between the upper and lower crust.

  19. Involvement of membrane sterols in hypergravity-induced modifications of growth and cell wall metabolism in plant stems

    NASA Astrophysics Data System (ADS)

    Koizumi, T.; Soga, K.; Wakabayashi, K.; Suzuki, M.; Muranaka, T.; Hoson, T.

    Organisms living on land resist the gravitational force by constructing a tough body Plants have developed gravity resistance responses after having first went ashore more than 500 million years ago The mechanisms of gravity resistance responses have been studied under hypergravity conditions which are easily produced on earth by centrifugation In Arabidopsis hypocotyls hypergravity treatment greatly increased the expression level of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase HMGR which is involved in synthesis of terpenoids such as membrane sterols In the present study we examined the role of membrane sterols in gravity resistance in plants by analyzing sterol levels of stem organs grown under hypergravity conditions and by analyzing responses to hypergravity of the organs whose sterol level was modulated Hypergravity inhibited elongation growth but stimulated lateral expansion of Arabidopsis hypocotyls and azuki bean epicotyls Under hypergravity conditions sterol levels were kept high as compared with 1 g controls during incubation Lovastatin an inhibitor HMGR prevented lateral expansion as the gravity resistance response in azuki bean epicotyls Similar results were obtained in analyses with loss of function mutants of HMGR in Arabidopsis It has been shown that sterols play a role in cellulose biosynthesis probably as the primer In wild type Arabidopsis hypocotyls hypergravity increased the cellulose content but it did not influence the content in HMGR mutants These results suggest that hypergravity increases

  20. Fourier transform methods in local gravity modeling

    NASA Technical Reports Server (NTRS)

    Harrison, J. C.; Dickinson, M.

    1989-01-01

    New algorithms were derived for computing terrain corrections, all components of the attraction of the topography at the topographic surface and the gradients of these attractions. These algoriithms utilize fast Fourier transforms, but, in contrast to methods currently in use, all divergences of the integrals are removed during the analysis. Sequential methods employing a smooth intermediate reference surface were developed to avoid the very large transforms necessary when making computations at high resolution over a wide area. A new method for the numerical solution of Molodensky's problem was developed to mitigate the convergence difficulties that occur at short wavelengths with methods based on a Taylor series expansion. A trial field on a level surface is continued analytically to the topographic surface, and compared with that predicted from gravity observations. The difference is used to compute a correction to the trial field and the process iterated. Special techniques are employed to speed convergence and prevent oscillations. Three different spectral methods for fitting a point-mass set to a gravity field given on a regular grid at constant elevation are described. Two of the methods differ in the way that the spectrum of the point-mass set, which extends to infinite wave number, is matched to that of the gravity field which is band-limited. The third method is essentially a space-domain technique in which Fourier methods are used to solve a set of simultaneous equations.

  1. Protection against neurodegenerative disease on Earth and in space.

    PubMed

    Takamatsu, Yoshiki; Koike, Wakako; Takenouchi, Takato; Sugama, Shuei; Wei, Jianshe; Waragai, Masaaki; Sekiyama, Kazunari; Hashimoto, Makoto

    2016-01-01

    All living organisms have evolutionarily adapted themselves to the Earth's gravity, and failure to adapt to gravity changes may lead to pathological conditions. This perspective may also apply to abnormal aging observed in bedridden elderly patients with aging-associated diseases such as osteoporosis and sarcopenia. Given that bedridden elderly patients are partially analogous to astronauts in that both cannot experience the beneficial effects of gravity on the skeletal system and may suffer from bone loss and muscle weakness, one may wonder whether there are gravity-related mechanisms underlying diseases among the elderly. In contrast to numerous studies of the relevance of microgravity in skeletal disorders, little attention has been paid to neurodegenerative diseases. Therefore, the objective of this paper is to discuss the possible relevance of microgravity in these diseases. We particularly noted a proteomics paper showing that levels of hippocampal proteins, including β-synuclein and carboxyl-terminal ubiquitin hydrolase L1, which have been linked to familial neurodegenerative diseases, were significantly decreased in the hippocampus of mice subjected to hindlimb suspension, a model of microgravity. We suggest that microgravity-induced neurodegeneration may be further exacerbated by diabetes and other factors. On the basis of this view, prevention of neurodegenerative diseases through 'anti-diabetes' and 'hypergravity' approaches may be important as a common therapeutic approach on Earth and in space. Collectively, neurodegenerative diseases and space medicine may be linked to each other more strongly than previously thought.

  2. Feeding ecology of arctic-nesting sandpipers during spring migration through the prairie pothole region

    USGS Publications Warehouse

    Eldridge, J.L.; Krapu, G.L.; Johnson, D.H.

    2009-01-01

    We evaluated food habits of 4 species of spring-migrant calidrid sandpipers in the Prairie Pothole Region (PPR) of North Dakota. Sandpipers foraged in several wetland classes and fed primarily on aquatic dipterans, mostly larvae, and the midge family Chironomidae was the primary food eaten. Larger sandpiper species foraged in deeper water and took larger larvae than did smaller sandpipers. The diverse wetland habitats that migrant shorebirds use in the PPR suggest a landscape-level approach be applied to wetland conservation efforts. We recommend that managers use livestock grazing and other tools, where applicable, to keep shallow, freshwater wetlands from becoming choked with emergent vegetation limiting chironomid production and preventing shorebird use.

  3. Cryptocoryne beckettii complex (Araceae) introduced at a Florida spring

    USGS Publications Warehouse

    Jacono, C.C.

    2002-01-01

    A vegetative population of Cryptocoryne (Araceae), introduced at a Florida spring, appeared to represent three closely related species in the C. beckettii complex: C. beckettii Thw. ex Trimen, C. wendtii de Wit and C. undulata Wendt. Individuals of C. undulata were true to type and could be delineated at the site. Intergradation of diagnostic features was common in others, upon transplanting and flowering. While some transplants produced spathes characteristic of either C. wendtii or C. beckettii, intermediates between the two species were common. Neither C. beckettii nor C. wendtii could be delineated at the site. The seclusion of the stream and the integrity of native plant communities have likely prevented dispersal downstream.

  4. Simulation Study of a Follow-on Gravity Mission to GRACE

    NASA Technical Reports Server (NTRS)

    Loomis, Bryant D.; Nerem, R. S.; Luthcke, Scott B.

    2012-01-01

    The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth's time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by unmodeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace and Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to approximately 0.6 nm/s as compared to approx. 0.2 micro-seconds for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (approx. 480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of approx. 250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.

  5. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves.

    PubMed

    Colagrossi, Andrea; Souto-Iglesias, Antonio; Antuono, Matteo; Marrone, Salvatore

    2013-02-01

    The smoothed-particle-hydrodynamics (SPH) method has been used to study the evolution of free-surface Newtonian viscous flows specifically focusing on dissipation mechanisms in gravity waves. The numerical results have been compared with an analytical solution of the linearized Navier-Stokes equations for Reynolds numbers in the range 50-5000. We found that a correct choice of the number of neighboring particles is of fundamental importance in order to obtain convergence towards the analytical solution. This number has to increase with higher Reynolds numbers in order to prevent the onset of spurious vorticity inside the bulk of the fluid, leading to an unphysical overdamping of the wave amplitude. This generation of spurious vorticity strongly depends on the specific kernel function used in the SPH model.

  6. Risks, designs, and research for fire safety in spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Sacksteder, Kurt R.; Urban, David

    1991-01-01

    Current fire protection for spacecraft relies mainly on fire prevention through the use of nonflammable materials and strict storage controls of other materials. The Shuttle also has smoke detectors and fire extinguishers, using technology similar to aircraft practices. While experience has shown that the current fire protection is adequate, future improvements in fire safety technology to meet the challenges of long duration space missions, such as the Space Station Freedom, are essential. All spacecraft fire protection systems, however, must deal with the unusual combustion characteristics and operational problems in the low gravity environment. The features of low gravity combustion that affect spacecraft fire safety, and the issues in fire protection for Freedom that must be addressed eventually to provide effective and conservative fire protection systems are discussed.

  7. Space Pens

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Fisher's Space Pen was developed for use in gravity free environments. The cartridge, pressurized with nitrogen, seals out air preventing evaporation and oxidation of the ink. Internal pressures force ink outward toward the ball point. A thixotropic ink is used. The pen will operate from minus 50 to plus 45 degrees Fahrenheit, and will withstand atmospheric extremes. It was used both on the Apollo missions and by Soviet Cosmonauts.

  8. Comparison of Gait During Treadmill Exercise While Supine in Lower Body Negative Pressure (LBNP), Supine with Bungee Resistance and Upright in Normal Gravity

    NASA Technical Reports Server (NTRS)

    Boda, Wanda; Hargens, Alan R.; Aratow, Michael; Ballard, Richard E.; Hutchinson, Karen; Murthy, Gita; Campbell, James

    1994-01-01

    The purpose of this study is to compare footward forces, gait kinematics, and muscle activation patterns (EMG) generated during supine treadmill exercise against LBNP with the same parameters during supine bungee resistance exercise and upright treadmill exercise. We hypothesize that the three conditions will be similar. These results will help validate treadmill exercise during LBNP as a viable technique to simulate gravity during space flight. We are evaluating LBNP as a means to load the musculoskeletal and cardiovascular systems without gravity. Such loading should help prevent physiologic deconditioning during space flight. The best ground-based simulation of LBNP treadmill exercise in microgravity is supine LBNP treadmill exercise on Earth because the supine footward force vector is neither directed nor supplemented by Earth's gravity. Previous results from HR-95 ("Dynamics of footward force and leg intramuscular pressure during exercise against supine LBNP and upright standing in normal gravity") indicate that supine plantar-/dorsiflexion exercise in LBNP at 100 mm Hg produces similar ground reaction forces, musculoskeletal stress, and VO2 to those during upright exercise against Earth's gravity. However, elevations of leg volume and heart rate indicate that cardiovascular stress during 100 mm Hg LBNP exercise exceeds that during 1 g exercise. Therefore, the need arose to reduce the cardiovascular stress of LBNP, while maintaining LBNP-induced reaction forces. To this end, we determined that mild plantar-/dorsiflexion exercise during LBNP significantly improves tolerance to LBNP via musculovenous pumping and sympathoexcitation; more intense exercise such as walking and running may further improve LBNP tolerance. In addition, two methodological advances have permited us to simulate upright 1 g exercise better with supine LBNP exercise. First, a newly-designed waist seal allows decreased levels of LBNP (50-60 mm Hg) to produce a footward force equaling one body weight

  9. The Awful Truth About Zero-Gravity: Space Acceleration Measurement System; Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Earth's gravity holds the Shuttle in orbit, as it does satellites and the Moon. The apparent weightlessness experienced by astronauts and experiments on the Shuttle is a balancing act, the result of free-fall, or continuously falling around Earth. An easy way to visualize what is happening is with a thought experiment that Sir Isaac Newton did in 1686. Newton envisioned a mountain extending above Earth's atmosphere so that friction with the air would be eliminated. He imagined a cannon atop the mountain and aimed parallel to the ground. Firing the cannon propels the cannonball forward. At the same time, Earth's gravity pulls the cannonball down to the surface and eventual impact. Newton visualized using enough powder to just balance gravity so the cannonball would circle the Earth. Like the cannonball, objects orbiting Earth are in continuous free-fall, and it appears that gravity has been eliminated. Yet, that appearance is deceiving. Activities aboard the Shuttle generate a range of accelerations that have effects similar to those of gravity. The crew works and exercises. The main data relay antenna quivers 17 times per second to prevent 'stiction,' where parts stick then release with a jerk. Cooling pumps, air fans, and other systems add vibration. And traces of Earth's atmosphere, even 200 miles up, drag on the Shuttle. While imperceptible to us, these vibrations can have a profound impact on the commercial research and scientific experiments aboard the Shuttle. Measuring these forces is necessary so that researchers and scientists can see what may have affected their experiments when analyzing data. On STS-107 this service is provided by the Space Acceleration Measurement System for Free Flyers (SAMS-FF) and the Orbital Acceleration Research Experiment (OARE). Precision data from these two instruments will help scientists analyze data from their experiments and eliminate outside influences from the phenomena they are studying during the mission.

  10. Planet formation in binary systems: simulating coagulation using analytically determined collision velocities.

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman

    2017-06-01

    The existence of planets in tight binary systems presents an interesting puzzle. It is thought that cores of giant planets form via agglomeration of planetesimals in mutual collisions. However, in tight binary systems, one would naïvely expect the collision velocities between planetesimals to be so high that even 100 km bodies would be destroyed, rather than growing in mutual collisions. In these systems, planetesimals are perturbed by gravity from the companion star, and gravity and gas drag from a massive eccentric gas disk. There is a damaging secular resonance that occurs due to the combination of disk gravity and gravity from the binary companion, however the disk gravity can also create locations of low relative eccentricity between planetesimals of different sizes that would not exist if the disk gravity were ignored. Because the gas drag acts more strongly on smaller planetesimals, orbital eccentricity and apsidal angle depend on planetesimal size. Consequently, planetesimal collision velocities depend on the sizes of the collision partners. Same-size bodies collide at low velocity because their orbits are apsidally aligned. Therefore, often in a given environment some collisions will lead to planetesimal growth, and some to erosion or destruction. This variety of collisional outcomes makes it difficult to determine whether any planetesimals can grow to large sizes. We run a multi-annulus coagulation/fragmentation simulation that also includes the effect of size-dependent radial drift of planetesimals to determine the minimum size of initial planetesimal necessary for growth to large sizes in collisions. The minimum initial size of planetesimal necessary for growth depends greatly on the disk mass, eccentricity and the degree of apsidal alignment with the binary. We find that in a wide variety of situations, it is a reasonable approximation that growth occurs as long as there are no collisions capable of completely destroying a planetesimal, but erosion by moderately damaging collisions can also prevent growth from occurring.

  11. Groundwater management in Cusco region, Peru Present and future challenges

    NASA Astrophysics Data System (ADS)

    Guttman, Joseph; Berger, Diego; Pumayalli Saloma, Rene

    2013-04-01

    The agriculture in the rural areas in the Andes Mountains at Cusco region-Peru is mainly rain fed agriculture and basically concentrated to one crop season per year. This situation limits the farmer's development. In order to increase the agricultural season into the winter period (May to November) also known as the dry season, many farmers are pumping water from streams or underground water that unfortunately leads to many of them becoming dry during the winter/dry season. In addition, some of those streams are polluted by the city's wastewater and heavy metals that are released from mines which are quite abundant in the Andes Mountains. The regional government through its engineering organization "Per Plan Meriss Inka", is trying to increase the water quantity and quality to the end users (farmers in the valleys) by promoting projects that among others include capturing of springs that emerge from the high mountain ridges, diverting streams and harvesting surface reservoirs. In the Ancahuasi area (Northwest of Cusco) are many springs that emerge along several geological faults that act as a border line between the permeable layers (mostly sandstone) in the upper throw of the fault and impermeable layers in the lower throw of the fault. The discharge of the springs varies in dependence to the size of each catchment area or aquifer structure. The spring water is collected in small pools and then by gravity through open channels to the farmers in the valleys. During the past 25 years, in some places, springs have been captured by horizontal wells (gallery) that were excavated from the fault zone into the mountain a few tens of meters below the spring outlet. The gallery drains excess water from the spring storage and increases the overall discharge. The galleries are a limited solution to individual places where the geology, hydrology and the topography enable it. The farmers are using flood irrigation systems which according to World Bank documents, the overall efficiency of such irrigation systems is about 35% (most of the water recharges to the underground or is lost by evaporation). Slightly increasing the efficiency by only 10-20% together with bringing additional water would cause a dramatic change in the farmer's life and in their income. A Pre-feasibility study indicates that there are deeper subsurface groundwater systems that flow from the Andes Mountain downstream to the valleys. The deeper systems are most probably separated from the spring systems. The deeper groundwater systems are flowing from the Andes Mountains downstream via individual paths, in places where both sides of the faults contain permeable layers and through several alluvial fans. Detailed researches are planned in the next few years to identify those individual sites and to locate sites for drilling boreholes (observation and production). Today, an integrated water resources management at the local and regional level is lacking. The feasibility studies will include recommendations to the regional government on how to implement such an integrated management program together with capacity building of the institutional capability of regional governments.

  12. Use of H2Ri wicking fabric to prevent frost boils in the Dalton Highway Beaver Slide area, Alaska final report.

    DOT National Transportation Integrated Search

    2012-08-01

    Many roads in Alaska, such as the Dalton Highway, experience degradation during spring thaw due to the downslope running of shallow groundwater. The water flow : down the slope and pools up in the road embankments, where it freezes, causing frost boi...

  13. Improvement in Stability of SPring-8 Standard X-Ray Monochromators with Water-Cooled Crystals

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Shimizu, Yasuhiro; Miura, Takanori; Tanaka, Masayuki; Kishimoto, Hikaru; Matsuzaki, Yasuhisa; Shimizu, Nobtaka; Kawano, Yoshiaki; Kumasaka, Takashi; Yamamoto, Masaki; Koganezawa, Tomoyuki; Sato, Masugu; Hirosawa, Ichiro; Senba, Yasunori; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2010-06-01

    SPring-8 standard double-crystal monochromators containing water-cooled crystals were stabilized to a sufficient level to function as a part of optics components to supply stable microfocused x-ray beams, by determining causes of the instability and then removing them. The instability was caused by two factors—thermal deformation of fine stepper stages in the monochromator, which resulted in reduction in beam intensity with time, and vibrations of coolant supply units and vacuum pumps, which resulted in fluctuation in beam intensity. We remodeled the crystal holders to maintain the stage temperatures constant with water, attached x-ray and electron shields to the stages in order to prevent their warming up, introduced accumulators in the water circuits to absorb pressure pulsation, used polyurethane tubes to stabilize water flow, and placed rubber cushions un der scroll vacuum pumps. As a result, the intensity reduction rate of the beam decreased from 26% to 1% per hour and the intensity fluctuation from 13% to 1%. The monochromators were also modified to prevent radiation damage to the crystals, materials used as a water seal, and motor cables.

  14. A modified SILCS contraceptive diaphragm for long-term controlled release of the HIV microbicide dapivirine.

    PubMed

    Major, Ian; Boyd, Peter; Kilbourne-Brook, Maggie; Saxon, Gene; Cohen, Jessica; Malcolm, R Karl

    2013-07-01

    There is considerable interest in developing new multipurpose prevention technologies to address women's reproductive health needs. This study describes an innovative barrier contraceptive device--based on the SILCS diaphragm--that also provides long-term controlled release of the lead candidate anti-HIV microbicide dapivirine. Diaphragm devices comprising various dapivirine-loaded polymer spring cores overmolded with a nonmedicated silicone elastomer sheath were fabricated by injection molding processes. In vitro release testing, thermal analysis and mechanical characterization were performed on the devices. A diaphragm device containing a polyoxymethylene spring core loaded with 10% w/w dapivirine provided continuous and controlled release of dapivirine over a 6-month period, with a mean in vitro daily release rate of 174 mcg/day. The mechanical properties of the new diaphragm were closely matched to the SILCS diaphragm. The study demonstrates proof of concept for a dapivirine-releasing diaphragm with daily release quantities potentially capable of preventing HIV transmission. In discontinuous clinical use, release of dapivirine may be readily extended over 1 or more years. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Intraplate deformation on north-dipping basement structures in the Northern Gawler Craton, Australia: reactivation of original terrane boundaries or later intra-cratonic thrusts?

    NASA Astrophysics Data System (ADS)

    Baines, G.; Giles, D.; Betts, P. G.; Backé, G.

    2007-12-01

    Multiple intraplate orogenic events have deformed Neoproterozoic to Carboniferous sedimentary sequences that cover the Archean to Mesoproterozoic basement of the northern Gawler Craton, Australia. These intraplate orogenies reactivated north-dipping basement penetrating faults that are imaged on seismic reflection profiles. These north-dipping structures pre-date Neoproterozoic deposition but their relationships to significant linear magnetic and gravity anomalies that delineate unexposed Archean to Early Mesoproterozoic basement terranes are unclear. The north-dipping structures are either terrane boundaries that formed during continental amalgamation or later faults, which formed during a mid- to late-Mesoproterozoic transpressional orogeny and cross-cut the original lithological terrane boundaries. We model magnetic and gravity data to determine the 3D structure of the unexposed basement of the northern Gawler Craton. These models are constrained by drill hole and surface observations, seismic reflection profiles and petrophysical data, such that geologically reasonable models that can satisfy the data are limited. The basement structures revealed by this modelling approach constrain the origin and significance of the north-dipping structures that were active during the later intraplate Petermann, Delamerian and Alice Springs Orogenies. These results have bearing on which structures are likely to be active during present-day intraplate deformation in other areas, including, for example, current seismic activity along similar basement structures in the Adelaide "Geosyncline".

  16. Observations and modeling of the ionospheric gravity and diamagnetic current systems from CHAMP and Swarm measurements

    NASA Astrophysics Data System (ADS)

    Alken, P.

    2016-01-01

    The CHAMP and Swarm satellites, which provide high-quality magnetic field measurements in low-altitude polar orbits, are ideally suited for investigating ionospheric current systems. In this study, we focus on the F region low-latitude gravity and diamagnetic currents which are prominent in the equatorial ionization anomaly (EIA) region in the North and South Hemisphere. During its 10 year mission, CHAMP has sampled nearly the entire altitude range of the EIA, offering the opportunity to study these currents from above, inside, and below their source region. The Swarm constellation offers the unique opportunity to study near-simultaneous measurements of the current systems at different longitudinal separations. In this study, we present new observations of these current systems, investigate their seasonal and local time dependence, investigate the use of in situ electron density measurements as a proxy for the magnetic perturbations, and compute the longitudinal self correlation of these currents. We find that these currents are strongest during spring and fall, produce nighttime magnetic fields at satellite altitude of up to 5-7 nT during solar maximum, 2-3 nT during solar minimum, and are highly correlated with in situ electron density measurements. We also find these currents are self-correlated above 70% up to 15° longitude in both hemispheres during the evening.

  17. Viscoelastic tides: models for use in Celestial Mechanics

    NASA Astrophysics Data System (ADS)

    Ragazzo, C.; Ruiz, L. S.

    2017-05-01

    This paper contains equations for the motion of linear viscoelastic bodies interacting under gravity. The equations are fully three dimensional and allow for the integration of the spin, the orbit, and the deformation of each body. The goal is to present good models for the tidal forces that take into account the possibly different rheology of each body. The equations are obtained within a finite dimension Lagrangian framework with dissipation function. The main contribution is a procedure to associate to each spring-dashpot model, which defines the rheology of a body, a potential and a dissipation function for the body deformation variables. The theory is applied to the Earth (solid part plus oceans) and a comparison between model and observation of the following quantities is made: norm of the Love numbers, rate of tidal energy dissipation, Chandler period, and Earth-Moon distance increase.

  18. Full body restraint system

    NASA Technical Reports Server (NTRS)

    Ryder, Susan (Inventor)

    1990-01-01

    A body restraint system (30) allows the user's body (10) to be in the zero gravity neutral posture. The system (30) includes a waist restraint (32) in the form of a curved, padded unit (34) containing a retractable belt (36) coiled on a spring loaded capstan (38) with a buckle (40) extending from front (42) of the unit (34). A second belt (44) is fastened around the user's waist (16). A clasp (46) is configured to engage the buckle (40). The waist restraint (32) is positioned near foot restraints (52). The foot restraints (52) have foot platforms (59) with pads (60) of a suitable two part attaching material, such as the fasteners available from Minnesota Mining and Manufacturing Company under the trademark Scotchmate Duallock. A mating pad (62) of the material is provided on soles (64) of cotton net shoes (66).

  19. Magnetic Check Valve

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  20. Novel In-Shoe Exoskeleton for Offloading of Forefoot Pressure for Individuals With Diabetic Foot Pathology.

    PubMed

    Roser, Mark C; Canavan, Paul K; Najafi, Bijan; Cooper Watchman, Marcy; Vaishnav, Kairavi; Armstrong, David G

    2017-09-01

    Infected diabetic foot ulcers are the leading cause of lower limb amputation. This study evaluated the ability of in-shoe exoskeletons to redirect forces outside of body and through an exoskeleton as an effective means of offloading plantar pressure, the major contributing factor of ulceration. We compared pressure in the forefoot and hind-foot of participants (n = 5) shod with novel exoskeleton footwear. Plantar pressure readings were taken during a 6-m walk at participant's self-selected speed, and five strides were averaged. Results were taken with Achilles exotendon springs disengaged as a baseline, followed by measurements taken with the springs engaged. When springs were engaged, all participants demonstrated a decrease in forefoot pressure, averaging a 22% reduction ( P < .050). Patient feedback was universally positive, preferring the exotendon springs to be engaged and active. Offloading is standard of care for reducing harmful plantar pressure, which may lead to foot ulcers. However, current offloading modalities are limited and have issues. This proof-of-concept study proposed a novel offloading approach based on an exoskeleton solution. Results suggest that when the novel exoskeletons were deployed in footwear and exotendon springs engaged, force was successfully transferred from the lower leg through the exoskeleton-enabled shoe to ground, reducing load on the forefoot. The results need to be confirmed in a larger sample. Another study is warranted to examine the effectiveness of this offloading to prevent diabetic foot ulcer, while minimizing gait alteration in daily physical activities.

  1. Plant safety margin against frost damages has declined in Switzerland over the last four decades

    NASA Astrophysics Data System (ADS)

    Vitasse, Yann; Schneider, Léonard; Klein, Geoffrey; Rixen, Christian; Rebetez, Martine

    2017-04-01

    Winters and early springs have become warmer over the last decades which has in turn promoted earlier plant development in temperate regions. While temperatures will on average continue to increase in the coming decades due to the rise of greenhouse gases concentration in the atmosphere, there is no consensus about how the occurrence of late spring frosts will change. If the frequency and the severity of late spring frosts remain unchanged in the future or advance less than vegetation onset, vulnerable plant organs (young leaves, flowers or dehardened buds) may be more exposed to frost damage. Here we analyzed long-term series of temperature data during the period 1975-2016 at 50 locations in Switzerland. We used different thresholds of growing degree days (GDD) as a proxy for spring phenology of fruit trees based on long-term series of phenological observations. Finally, we tested whether the time lag between the date when the GDD is reached and the latest occurrence of frost has changed over the study period. Overall we found that the safety margin against potential frost damage to plants has slightly decreased during the study period, irrespective of elevation (from 203 to 2283 m). Our results suggest that the cost for preventing frost damages on fruit trees could increase in the coming decades and the introduction of new varieties of fruit trees adapted to warmer climate should be carefully considered as they generally exhibit earlier spring phenology.

  2. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration

    NASA Astrophysics Data System (ADS)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.

    2012-12-01

    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  3. Characterization of Gravity Regulated Osteoprotegerin Expression in Fish Models

    NASA Astrophysics Data System (ADS)

    Renn, J.; Nourizadeh-Lillabadi, R.; Alestrom, P.; Seibt, D.; Goerlich, R.; Schartl, M.; Winkler, C.

    Human osteoprotegerin (opg) is a secreted protein of 401 amino acids that acts as a decoy receptor for RANKL (receptor activator of NFB ligand). Opg prevents binding of RANKL to its receptor, which is present on osteoclasts and their precursors. Thereby, opg blocks the formation, differentiation and activation of osteoclasts and stimulates apoptosis of mature osteoclasts. As a consequence, opg regulates the degree of bone resorption in order to keep a constant bone mass under normal gravity conditions. Recently, clinorotation experiments using mammalian cell cultures have shown that the opg gene is down-regulated in simulated microgravity at the transcriptional level (Kanematsu et al., Bone 30, 2002). We have identified opg genes in the fish models Medaka and zebrafish to study gravity regulation of opg expression in these models at the organismal level. In Medaka embryos, opg expression starts at stages when first skeletal elements are already detectable. Putative consensus binding sites for transcription factors were identified in the promoter region of the Medaka opg gene indicating possible evolutionary conservation of gene regulatory mechanisms between fish and mammals. To analyze, whether model fish species are suitable tools to study microgravity induced changes at the molecular level in vivo, we investigated regulation of fish opg genes as a consequence of altered gravity. For this, we performed centrifugation and clinorotation experiments, subjecting fish larvae to hypergravity and simulated microgravity, and analyzed expression profiles of skeletal genes by real-time PCR. Our data represent the first experiments using whole animal model organisms to study gravity induced alteration of skeletal factors at the molecular level. Acknowledgement: This work is supported by the German Aerospace Center (DLR) (50 WB 0152) and the European Space Agency (AO-LS-99-MAP-LSS-003).

  4. Interactions between Auxin Transport and the Actin Cytoskeleton in Developmental Polarity of Fucus distichus Embryos in Response to Light and Gravity1

    PubMed Central

    Sun, Haiguo; Basu, Swati; Brady, Shari R.; Luciano, Randy L.; Muday, Gloria K.

    2004-01-01

    Land plants orient their growth relative to light and gravity through complex mechanisms that require auxin redistribution. Embryos of brown algae use similar environmental stimuli to orient their developmental polarity. These studies of the brown algae Fucus distichus examined whether auxin and auxin transport are also required during polarization in early embryos and to orient growth in already developed tissues. These embryos polarize with the gravity vector in the absence of a light cue. The auxin, indole-3-acetic acid (IAA), and auxin efflux inhibitors, such as naphthylphthalamic acid (NPA), reduced environmental polarization in response to gravity and light vectors. Young rhizoids are negatively phototropic, and NPA also inhibits rhizoid phototropism. The effect of IAA and NPA on gravity and photopolarization is maximal within 2.5 to 4.5 h after fertilization (AF). Over the first 6 h AF, auxin transport is relatively constant, suggesting that developmentally controlled sensitivity to auxin determines the narrow window during which NPA and IAA reduce environmental polarization. Actin patches were formed during the first hour AF and began to photolocalize within 3 h, coinciding with the time of NPA and IAA action. Treatment with NPA reduced the polar localization of actin patches but not patch formation. Latrunculin B prevented environmental polarization in a time frame that overlaps the formation of actin patches and IAA and NPA action. Latrunculin B also altered auxin transport. Together, these results indicate a role for auxin in the orientation of developmental polarity and suggest interactions between the actin cytoskeleton and auxin transport in F. distichus embryos. PMID:15122028

  5. Behavioral self-concept as predictor of teen drinking behaviors.

    PubMed

    Dudovitz, Rebecca N; Li, Ning; Chung, Paul J

    2013-01-01

    Adolescence is a critical developmental period for self-concept (role identity). Cross-sectional studies link self-concept's behavioral conduct domain (whether teens perceive themselves as delinquent) with adolescent substance use. If self-concept actually drives substance use, then it may be an important target for intervention. In this study, we used longitudinal data from 1 school year to examine whether behavioral self-concept predicts teen drinking behaviors or vice versa. A total of 291 students from a large, predominantly Latino public high school completed a confidential computerized survey in the fall and spring of their 9th grade year. Survey measures included the frequency of alcohol use, binge drinking and at-school alcohol use in the previous 30 days; and the Harter Self-Perception Profile for Adolescents behavioral conduct subscale. Multiple regressions were performed to test whether fall self-concept predicted the frequency and type of spring drinking behavior, and whether the frequency and type of fall drinking predicted spring self-concept. Fall behavioral self-concept predicted both the frequency and type of spring drinking. Students with low versus high fall self-concept had a predicted probability of 31% versus 20% for any drinking, 20% versus 8% for binge drinking and 14% versus 4% for at-school drinking in the spring. However, neither the frequency nor the type of fall drinking significantly predicted spring self-concept. Low behavioral self-concept may precede or perhaps even drive adolescent drinking. If these results are confirmed, then prevention efforts might be enhanced by targeting high-risk teens for interventions that help develop a healthy behavioral self-concept. Copyright © 2013 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  6. Evaluation of Shoulder-Stabilizing Braces: Can We Prevent Shoulder Labrum Injury in Collegiate Offensive Linemen?

    PubMed

    Baker, Hayden P; Tjong, Vehniah K; Dunne, Kevin F; Lindley, Tory R; Terry, Michael A

    2016-12-01

    Shoulder injuries remain one of the most common injuries among collegiate football athletes. Offensive linemen in particular are prone to posterior labral pathology. To evaluate the efficacy of shoulder bracing in collegiate offensive linemen with respect to injury prevention, severity, and lost playing time. Cohort study; Level of evidence, 3. Offensive linemen at a single collegiate institution wore bilateral shoulder-stabilizing braces for every contact practice and game beginning in the spring of 2013. Between spring of 2007 and fall of 2012, offensive linemen did not wear any shoulder braces. Player injury data were collected for all contact practices and games throughout these time periods to highlight differences with brace use. Forty-five offensive linemen (90 shoulders) participated in spring and fall college football seasons between 2007 and 2015. There were 145 complete offensive linemen seasons over the course of the study. Offensive linemen not wearing shoulder braces completed 87 seasons; offensive linemen wearing shoulder braces completed 58 seasons. Posterior labral tear injury rates were calculated for players who wore the shoulder braces (0.71 per 1000 athlete-exposures) compared with shoulders of players who did not wear the braces (1.90 per 1000 athlete-exposures). The risk ratio was 0.46 (95% CI, 0.16-1.30; P = .14). Mean time (contact practices and games) missed due to injury was significant, favoring less time missed by players who used braces (8.7 vs 36.60 contact practices and games missed due to injury; P = .0019). No significant difference in shoulder labral tears requiring surgery was found for brace use compared with no brace use. Shoulder-stabilizing braces were shown not to prevent posterior labral tears among collegiate offensive lineman, although they were associated with less time lost to injury. The results of this study have clinical significance, indicating that wearing a shoulder brace provides a protective factor for offensive linemen.

  7. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.).

    PubMed

    Draeger, Tracie; Moore, Graham

    2017-09-01

    Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D. This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis-leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.

  8. Relationship between displacement and gravity change of Uemachi faults and surrounding faults of Osaka basin, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Kusumoto, S.; Itoh, Y.; Takemura, K.

    2011-12-01

    The Osaka basin surrounded by the Rokko and Ikoma Ranges is one of the typical Quaternary sedimentary basins in Japan. The Osaka basin has been filled by the Pleistocene Osaka group and the later sediments. Several large cities and metropolitan areas, such as Osaka and Kobe are located in the Osaka basin. The basin is surrounded by E-W trending strike slip faults and N-S trending reverse faults. The N-S trending 42-km-long Uemachi faults traverse in the central part of the Osaka city. The Uemachi faults have been investigated for countermeasures against earthquake disaster. It is important to reveal the detailed fault parameters, such as length, dip and recurrence interval, so on for strong ground motion simulation and disaster prevention. For strong ground motion simulation, the fault model of the Uemachi faults consist of the two parts, the north and south parts, because of the no basement displacement in the central part of the faults. The Ministry of Education, Culture, Sports, Science and Technology started the project to survey of the Uemachi faults. The Disaster Prevention Institute of Kyoto University is carried out various surveys from 2009 to 2012 for 3 years. The result of the last year revealed the higher fault activity of the branch fault than main faults in the central part (see poster of "Subsurface Flexure of Uemachi Fault, Japan" by Kitada et al., in this meeting). Kusumoto et al. (2001) reported that surrounding faults enable to form the similar basement relief without the Uemachi faults model based on a dislocation model. We performed various parameter studies for dislocation model and gravity changes based on simplified faults model, which were designed based on the distribution of the real faults. The model was consisted 7 faults including the Uemachi faults. The dislocation and gravity change were calculated based on the Okada et al. (1985) and Okubo et al. (1993) respectively. The results show the similar basement displacement pattern to the Kusumoto et al. (2001) and no characteristic gravity change pattern. The Quantitative estimation is further problem.

  9. Artificial gravity as a countermeasure in long-duration space flight

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    2000-01-01

    Long-duration exposure to weightlessness results in bone demineralization, muscle atrophy, cardiovascular deconditioning, altered sensory-motor control, and central nervous system reorganizations. Exercise countermeasures and body loading methods so far employed have failed to prevent these changes. A human mission to Mars might last 2 or 3 years and without effective countermeasures could result in dangerous levels of bone and muscle loss. Artificial gravity generated by rotation of an entire space vehicle or of an inner chamber could be used to prevent structural changes. Some of the physical characteristics of rotating environments are outlined along with their implications for human performance. Artificial gravity is the centripetal force generated in a rotating vehicle and is proportional to the product of the square of angular velocity and the radius of rotation. Thus, for a particular g-level, there is a tradeoff between velocity of rotation and radius. Increased radius is vastly more expensive to achieve than velocity, so it is important to know the highest rotation rates to which humans can adapt. Early studies suggested that 3 rpm might be the upper limit because movement control and orientation were disrupted at higher velocities and motion sickness and chronic fatigue were persistent problems. Recent studies, however, are showing that, if the terminal velocity is achieved over a series of gradual steps and many body movements are made at each dwell velocity, then full adaptation of head, arm, and leg movements is possible. Rotation rates as high as 7.5-10 rpm are likely feasible. An important feature of the new studies is that they provide compelling evidence that equilibrium point theories of movement control are inadequate. The central principles of equilibrium point theories lead to the equifinality prediction, which is violated by movements made in rotating reference frames. Copyright 2000 Wiley-Liss, Inc.

  10. New Fluid Prevents Railway Ice

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through a licensing agreement between NASA's Ames Research Center and Midwest Industrial Supply, Inc. (MIS), two MIS products have been enhanced with NASA's anti-icing fluid technology. MIS offers the new fluid in two commercial products, the Zero Gravity(TM) Third Rail Anti-Icer/Deicer and the Ice Free Switch(R). Using NASA's fluid technology, these products form a protective-coating barrier that prevents the buildup of ice and snow. Applying the fluid to the railway components prior to ice or snowstorm works as an anti-icing fluid, remaining in place to melt precipitation as it hits the surface. It also functions as a deicing fluid. If applied to an already frozen switch or rail, it will quickly melt the ice, free the frozen parts, and then remain in place to prevent refreezing. Additional benefits include the ability to cling to vertical rail surfaces and resist the effects of rain and wind. With the Ice Free Switch, it takes only five minutes to treat the switch by spraying, brushing, or pouring on the product. Ice Free Switch requires as little as one gallon per switch whereas other deicing fluids require five to ten gallons of liquid to effectively melt ice. Zero Gravity serves the same anti-icing/deicing purposes but applies fluid to the third rail through a system that is easily installed onto mass transit cars. A tank of fluid and a dispensing system are placed underneath the train car and the fluid is applied as the train runs its route.

  11. High Prevalence, Genetic Diversity and Intracellular Growth Ability of Legionella in Hot Spring Environments

    PubMed Central

    Zhou, Haijian; Wang, Huanxin; Xu, Ying; Zhao, Mingqiang; Guan, Hong; Li, Machao; Shao, Zhujun

    2013-01-01

    Background Legionella is the causative agent of Legionnaires' disease, and hot springs are a major source of outbreaks of this disease. It is important from a public health perspective to survey hot spring environments for the presence of Legionella. Methods Prospective surveillance of the extent of Legionella pollution was conducted at three hot spring recreational areas in Beijing, China in 2011. Pulsed-field gel electrophoresis (PFGE) and sequence-based typing (SBT) were used to describe the genetic polymorphism of isolates. The intracellular growth ability of the isolates was determined by interacting with J774 cells and plating the dilutions onto BCYE agar plates. Results Overall, 51.9% of spring water samples showed Legionella-positive, and their concentrations ranged from 1 CFU/liter to 2,218 CFU/liter. The positive rates of Legionella were significantly associated with a free chlorine concentration of ≥0.2 mg/L, urea concentration of ≥0.05 mg/L, total microbial counts of ≥400 CFU/ml and total coliform of ≥3 MPN/L (p<0.01). The Legionella concentrations were significantly associated with sample temperature, pH, total microbial counts and total coliform (p<0.01). Legionella pneumophila was the most frequently isolated species (98.9%), and the isolated serogroups included serogroups 3 (25.3%), 6 (23.4%), 5 (19.2%), 1 (18.5%), 2 (10.2%), 8 (0.4%), 10 (0.8%), 9 (1.9%) and 12 (0.4%). Two hundred and twenty-eight isolates were analyzed by PFGE and 62 different patterns were obtained. Fifty-seven L. pneumophila isolates were selected for SBT analysis and divided into 35 different sequence types with 5 main clonal groups. All the 57 isolates had high intracellular growth ability. Conclusions Our results demonstrated high prevalence and genetic polymorphism of Legionella in springs in Beijing, China, and the SBT and intracellular growth assay results suggested that the Legionella isolates of hot spring environments were pathogenic. Improved control and prevention strategies are urgently needed. PMID:23527075

  12. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness.

    PubMed

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  13. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness

    NASA Astrophysics Data System (ADS)

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  14. Jet-Suspended, Calcite-Ballasted Cyanobacterial Waterwarts in a Desert Spring

    NASA Technical Reports Server (NTRS)

    Pichel-Garcia, Ferran; Wade, Bman D.; Farmer, Jack D.

    2002-01-01

    We describe a population of colonial cyanobacteria (waterwarts) that develops as the dominant primary producer in a bottom-fed, warm spring in the Cuatro Cienegas karstic region of the Mexican Chihuahuan Desert. The centimeter-sized waterwarts were suspended within a central, conically shaped, 6-m deep well by upwelling waters. Waterwarts were built by an unicellular cyanobacterium and supported a community of epiphytic filamentous cyanobacteria and diatoms but were free of heterotrophic bacteria inside. Sequence analysis of genes revealed that this cyanobacterium is only distantly related to several strains of other unicellular teria Cyanothece, Waterwarts contained orderly arrangements of mineral made up of microcrystalline low-magnesium calcite with high levels of strontium and sulfur. Waterwarts were 95.9% (v/v) glycan, 2.8% cells, and 1.3% mineral grains and had a buoyant density of 1.034 kg/L. An analysis of the hydrological properties of the spring well and the waterwarts demonstrated that both large colony size and the presence of controlled amounts of mineral ballast are required to prevent the population from being washed out of the well. The unique hydrological characteristics of the spring have likely selected for both traits. The mechanisms by which controlled nucleation of extracellular calcite is achieved remain to be explored.

  15. LABORATORY EVALUATION OF THE DEVELOPMENT OF Aedes aegypti IN TWO SEASONS: INFLUENCE OF DIFFERENT PLACES AND DIFFERENT DENSITIES

    PubMed Central

    Lopes, Tatiana Forte; Holcman, Marcia Moreira; Barbosa, Gerson Laurindo; Domingos, Maria de Fatima; Barreiros, Rosa Maria Oliveira Veiga

    2014-01-01

    Aedes aegypti is an important vector in Brazil being the main vector of the dengue-fever. This paper employs survival curves to describe the time in days from larvae to adult forms of Aedes aegypti raised, individually and collectively, and compares it during winter and spring when positioned inside and outside a laboratory. The study was conducted in São Vicente, a coastal city in Southeastern Brazil. The lowest water temperature in winter and in spring was 20 °C and the highest was 26 °C in spring. Higher and more stable temperatures were measured in the intra compared to the peri in both seasons. Consequently, larvae positioned in the intra resulted in the lowest median time to develop in the individual and collective experiment (nine and ten days, respectively). At least 25% of the larvae positioned in the intra in the individual experiment in the spring took only seven days to reach adulthood. Sex ratios and the median time development by sex did not show significant differences. These results indicate that efforts to control Aedes aegypti must be continuous and directed mainly to prevent the intra-domiciliary sites that can be infested in a week in order to reduce the human-vector contact. PMID:25229215

  16. Quantifying Parkinson's disease progression by simulating gait patterns

    NASA Astrophysics Data System (ADS)

    Cárdenas, Luisa; Martínez, Fabio; Atehortúa, Angélica; Romero, Eduardo

    2015-12-01

    Modern rehabilitation protocols of most neurodegenerative diseases, in particular the Parkinson Disease, rely on a clinical analysis of gait patterns. Currently, such analysis is highly dependent on both the examiner expertise and the type of evaluation. Development of evaluation methods with objective measures is then crucial. Physical models arise as a powerful alternative to quantify movement patterns and to emulate the progression and performance of specific treatments. This work introduces a novel quantification of the Parkinson disease progression using a physical model that accurately represents the main gait biomarker, the body Center of Gravity (CoG). The model tracks the whole gait cycle by a coupled double inverted pendulum that emulates the leg swinging for the single support phase and by a damper-spring System (SDP) that recreates both legs in contact with the ground for the double phase. The patterns generated by the proposed model are compared with actual ones learned from 24 subjects in stages 2,3, and 4. The evaluation performed demonstrates a better performance of the proposed model when compared with a baseline model(SP) composed of a coupled double pendulum and a mass-spring system. The Frechet distance measured differences between model estimations and real trajectories, showing for stages 2, 3 and 4 distances of 0.137, 0.155, 0.38 for the baseline and 0.07, 0.09, 0.29 for the proposed method.

  17. Effects of phyllotaxy on biomechanical properties of stems of Cercis occidentalis (Fabaceae).

    PubMed

    Caringella, Marissa A; Bergman, Brett A; Stanfield, Ryan C; Ewers, Madeleine M; Bobich, Edward G; Ewers, Frank W

    2014-01-01

    Phyllotaxy, the arrangement of leaves on a stem, may impact the mechanical properties of woody stems several years after the leaves have been shed. We explored mechanical properties of a plant with alternate distichous phyllotaxy, with a row of leaves produced on each side of the stem, to determine whether the nodes behave as spring-like joints. Flexural stiffness of 1 cm diameter woody stems was measured in four directions with an Instron mechanical testing system; the xylem of the stems was then cut into node (former leaf junction) and nonnode segments for measurement of xylem density. Stems had 20% greater flexural stiffness in the plane perpendicular to the original leaf placement than in the parallel plane. The xylem in the node region was more flexible, but it had significantly greater tissue density than adjacent regions, contradicting the usual correlation between wood density and stiffness. Nodes can behave as spring-like joints in woody plants. For plagiotropic shoots, distichous phyllotaxy results in stems that resist up-and-down bending more than lateral back-and-forth movement. Thus, they may more effectively absorb applied loads from fruits, animals, wind, rain, and snow and resist stresses due to gravity without cracking and breaking. Under windy conditions, nodes may improve damping by absorbing vibrational energy and thus reducing oscillation damage. The effect of plant nodes also has biomimetic design implications for architects and material engineers.

  18. A Study of Roadwheel Failures Magnitude - Nature - Causes and Testing of a Concept to Prevent Them

    DTIC Science & Technology

    1975-07-01

    at a point on the floor of the vehicle vertically below the center of gravity . Bags of lead shot were added to the crew compartment to increase the...24-inch O.D., and a 21.63-inch I.D., with a 2.88-inch flange. The meterial requirement ig for a SAE 1040 steel or equivalent. In our investigation

  19. Student Victimization in U.S. Schools: Results from the 2015 School Crime Supplement to the National Crime Victimization Survey. Stats in Brief. NCES 2018-106

    ERIC Educational Resources Information Center

    Yanez, Christina; Lessne, Deborah

    2018-01-01

    Student victimization and school violence have been an ongoing cause of national concern, resulting in a concerted effort among educators, administrators, parents, and policymakers to determine the gravity of the issue and consider approaches to crime prevention. This Statistics in Brief presents estimates of student criminal victimization at…

  20. Enclosed Cutting-And-Polishing Apparatus

    NASA Technical Reports Server (NTRS)

    Rossier, R. N.; Bicknell, B.

    1989-01-01

    Proposed apparatus cuts and polishes specimens while preventing contamination of outside environment or of subsequent specimens processed in it. Designed for use in zero gravity but also includes features useful in cutting and polishing of toxic or otherwise hazardous materials on Earth. Includes remote manipulator for handling specimens, cutting and polishing wire, inlets for gas and liquid, and outlets for waste liquid and gas. Replaceable plastic liner surrounds working space.

  1. CHILE: Outcomes of a group randomized controlled trial of an intervention to prevent obesity in preschool Hispanic and American Indian children.

    PubMed

    Davis, Sally M; Myers, Orrin B; Cruz, Theresa H; Morshed, Alexandra B; Canaca, Glenda F; Keane, Patricia C; O'Donald, Elena R

    2016-08-01

    We examined the outcomes of the Child Health Initiative for Lifelong Eating and Exercise (CHILE) study, a group randomized controlled trial to design, implement, and test the efficacy of a trans-community intervention to prevent obesity in children enrolled in Head Start centers in rural American Indian and Hispanic communities in New Mexico. CHILE was a 5-year evidence-based intervention that used a socioecological approach to improving dietary intake and increasing physical activity of 1898 children. The intervention included a classroom curriculum, teacher and food service training, family engagement, grocery store participation, and healthcare provider support. Height and weight measurements were obtained four times (fall of 2008, spring and fall of 2009, and spring of 2010), and body mass index (BMI) z-scores in the intervention and comparison groups were compared. At baseline, demographic characteristics in the comparison and intervention groups were similar, and 33% of all the children assessed were obese or overweight. At the end of the intervention, there was no significant difference between the two groups in BMI z-scores. Obesity prevention research among Hispanic and AI preschool children in rural communities is challenging and complex. Although the CHILE intervention was implemented successfully, changes in overweight and obesity may take longer than 2years to achieve. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Automatic locking orthotic knee device

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce C. (Inventor)

    1993-01-01

    An articulated tang in clevis joint for incorporation in newly manufactured conventional strap-on orthotic knee devices or for replacing such joints in conventional strap-on orthotic knee devices is discussed. The instant tang in clevis joint allows the user the freedom to extend and bend the knee normally when no load (weight) is applied to the knee and to automatically lock the knee when the user transfers weight to the knee, thus preventing a damaged knee from bending uncontrollably when weight is applied to the knee. The tang in clevis joint of the present invention includes first and second clevis plates, a tang assembly and a spacer plate secured between the clevis plates. Each clevis plate includes a bevelled serrated upper section. A bevelled shoe is secured to the tank in close proximity to the bevelled serrated upper section of the clevis plates. A coiled spring mounted within an oblong bore of the tang normally urges the shoes secured to the tang out of engagement with the serrated upper section of each clevic plate to allow rotation of the tang relative to the clevis plate. When weight is applied to the joint, the load compresses the coiled spring, the serrations on each clevis plate dig into the bevelled shoes secured to the tang to prevent relative movement between the tang and clevis plates. A shoulder is provided on the tang and the spacer plate to prevent overextension of the joint.

  3. The role of gravity in apical dominance: effects of clinostating on shoot inversion-induced ethylene production, shoot elongation and lateral bud growth

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1987-01-01

    Shoot inversion-induced release of apical dominance in Pharbitis nil is inhibited by rotating the plant at 0.42 revolutions per minute in a vertical plane perpendicular to the axis of rotation of a horizontal clinostat. Clinostating prevented lateral bud outgrowth, apparently by negating the restriction of the shoot elongation via reduction of ethylene production in the inverted shoot. Radial stem expansion was also decreased. Data from experiments with intact tissue and isolated segments indicated that shoot-inversion stimulates ethylene production by increasing the activity of 1-aminocyclopropane-1-carboxylic acid synthase. The results support the hypothesis that shoot inversion-induced release of apical dominance in Pharbitis nil is due to gravity stress and is mediated by ethylene-induced retardation of the elongation of the inverted shoot.

  4. Hazard analysis of Clostridium perfringens in the Skylab Food System

    NASA Technical Reports Server (NTRS)

    Bourland, C. T.; Huber, C. S.; Kiser, P. R.; Heidelbaugh, N. D.; Rowley, D. B.

    1974-01-01

    The Skylab Food System presented unique microbiological problems because food was warmed in null-gravity and because the heat source was limited to 69.4 C (to prevent boiling in null-gravity). For these reasons, the foods were manufactured using critical control point techniques of quality control coupled with appropriate hazard analyses. One of these hazard analyses evaluated the threat from Clostridium perfringens. Samples of food were inoculated with C. perfringens and incubated for 2 h at temperatures ranging from 25 to 55 C. Generation times were determined for the foods at various temperatures. Results of these tests were evaluated taking into consideration: food-borne disease epidemiology, the Skylab food manufacturing procedures, and the performance requirements of the Skylab Food System. Based on this hazard analysis, a limit for C. perfringens of 100/g was established for Skylab foods.

  5. KSC-2011-6502

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft will be lifted to the top of their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room in the Astrotech Space Operation's payload processing facility in Titusville, Fla. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  6. KSC-2011-6500

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft arrives at their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room in the Astrotech Space Operation's payload processing facility in Titusville, Fla. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  7. KSC-2011-6504

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft are lifted to the top of their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room in the Astrotech Space Operation's payload processing facility in Titusville, Fla. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  8. KSC-2011-6503

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft are lifted to the top of their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room in the Astrotech Space Operation's payload processing facility in Titusville, Fla. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  9. KSC-2011-6505

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- NASA's twin Gravity Recovery and Interior Laboratory (GRAIL) spacecraft are lifted to the top of their launch pad at Space Launch Complex 17B at Cape Canaveral Air Force Station in Florida. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room in the Astrotech Space Operation's payload processing facility in Titusville, Fla. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket is scheduled for Sept. 8. For more information, visit www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  10. Early Identification and Interventions for Elementary Students at Risk of Not Succeeding in School.

    ERIC Educational Resources Information Center

    Yungmann, Janet

    This project described methods of early identification and implementation of various interventions used to increase achievement of students at risk in grades three, four, and five at John D. Floyd Elementary School in Spring Hill, Florida. The 51 children who qualified for and were enrolled in the dropout prevention program had achievement scores…

  11. Planning and Conducting a Community Health Screening Fair. NCCSCE Working Paper Series, [Number 2].

    ERIC Educational Resources Information Center

    Berghaus, William C. B.; Graham, Joy

    Each spring, Lord Fairfax Community College (LFCC) organizes and coordinates an Annual Health Screening Fair, a preventive health package designed to help residents identify health-related problems and become more informed about maintaining good health. The community service goals of the fair include the provision of free or minimal-cost health…

  12. 78 FR 13301 - Notice of Request for Extension of Approval of an Information Collection; Spring Viremia of Carp...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... Restrictions on Certain Live Fish, Fertilized Eggs, and Gametes AGENCY: Animal and Plant Health Inspection... with the regulations for the importation of live fish, fertilized eggs, and gametes to prevent the... for the importation of live fish, fertilized eggs, and gametes, contact Dr. Christa Speekmann, Import...

  13. Choosing Adolescent Smokers as Friends: The Role of Parenting and Parental Smoking

    ERIC Educational Resources Information Center

    Mercken, L.; Sleddens, E. F. C.; de Vries, H.; Steglich, C. E. G.

    2013-01-01

    The present study examined whether parenting and parental smoking can prevent children from selecting smoking friends during adolescence. 254 Adolescents of one Belgian secondary school participated. Self-administered questionnaires were distributed among 2nd-4th graders (mean ages = 14.2-16.2 years) during spring 2006. Follow-up was conducted 12…

  14. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (explosive) materials in compatibility group G or H may be carried in steel portable magazines or freight... arrangements for securing the vehicle on the ship and preventing the moving of the vehicle on its springs during the sea passage. (h) Where a portable magazine or closed freight container is carried on a chassis...

  15. 49 CFR 176.168 - Transport of Class 1 (explosive) materials in vehicle spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (explosive) materials in compatibility group G or H may be carried in steel portable magazines or freight... arrangements for securing the vehicle on the ship and preventing the moving of the vehicle on its springs during the sea passage. (h) Where a portable magazine or closed freight container is carried on a chassis...

  16. SWARMing for a Solution: Integrating Service Learning and Peer Education into the Health Education Curriculum

    ERIC Educational Resources Information Center

    Butler, Karen L.; Jeter, Angela; Andrades, Rovaughna

    2002-01-01

    Johnson C. Smith University, one of the nation's oldest historically Black colleges and universities, has a peer education program known as Students with a Realistic Mission (SWARM). SWARM's primary focus is on HIV/AIDS, other sexually transmitted disease prevention, alcohol education, and other drug awareness. During the spring 2000 semester, we…

  17. Substance Abuse among Juvenile Delinquents and Gang Members. Prevention Research Update Number Six, Spring 1990.

    ERIC Educational Resources Information Center

    Pollard, John A.; Austin, Gregory A.

    There is a strong statistical correlation between delinquency activity level and the level of alcohol and other drug (AOD) use in adolescents. A strong association between drug use, drug trafficking, and youth gangs has also emerged. However, several important questions concerning the relationship of delinquency, gang membership, and AOD use…

  18. Effective theory of dark energy at redshift survey scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleyzes, Jérôme; Mancarella, Michele; Vernizzi, Filippo

    2016-02-01

    We explore the phenomenological consequences of general late-time modifications of gravity in the quasi-static approximation, in the case where cold dark matter is non-minimally coupled to the gravitational sector. Assuming spectroscopic and photometric surveys with configuration parameters similar to those of the Euclid mission, we derive constraints on our effective description from three observables: the galaxy power spectrum in redshift space, tomographic weak-lensing shear power spectrum and the correlation spectrum between the integrated Sachs-Wolfe effect and the galaxy distribution. In particular, with ΛCDM as fiducial model and a specific choice for the time dependence of our effective functions, we performmore » a Fisher matrix analysis and find that the unmarginalized 68% CL errors on the parameters describing the modifications of gravity are of order σ∼10{sup −2}–10{sup −3}. We also consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of modified gravity and reduces the above statistical errors accordingly. In all cases, we find that the parameters are highly degenerate, which prevents the inversion of the Fisher matrices. Some of these degeneracies can be broken by combining all three observational probes.« less

  19. Hot-spot tectonics of Eistla Regio, Venus: Results from Magellan images and Pioneer Venus gravity

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.; Phillips, Roger J.

    1991-01-01

    Eistla Regio (ER) is a broad, low, discontinuous topographic rise striking roughly EW at low northern latitudes of Venus. Some 2000 x 7000 km in dimensions, it is the third largest rise in planform on Venus after Aphrodite Terra and Beta Phoebe Regiones. These rises are the key physiographic elements in a hot spot model of global tectonics including transient plume behavior. Since ER is the first such rise viewed by Magellan and the latitude is very favorable for Pioneer Venus gravity studies, some of the predictions of a time dependent hot spot model are tested. Western ER is defined as the rise including Gula and Sif Mons and central ER as that including Sappho Patera. Superior conjunction prevented Magellan from returning data on eastern ER (Pavlova) during the first mapping cycle. It is concluded that the western and central portions of ER, while part of the same broad topographic rise and tectonic framework, have distinctly different surface ages and gravity signatures. The western rise, including Gula and Sif Mons, is the expression of deep seated uplift with volcanism limited to the individual large shields. The eastern portion has been widely resurfaced more recently by thermal anomalies in the mantle.

  20. Protection against neurodegenerative disease on Earth and in space

    PubMed Central

    Takamatsu, Yoshiki; Koike, Wakako; Takenouchi, Takato; Sugama, Shuei; Wei, Jianshe; Waragai, Masaaki; Sekiyama, Kazunari; Hashimoto, Makoto

    2016-01-01

    All living organisms have evolutionarily adapted themselves to the Earth’s gravity, and failure to adapt to gravity changes may lead to pathological conditions. This perspective may also apply to abnormal aging observed in bedridden elderly patients with aging-associated diseases such as osteoporosis and sarcopenia. Given that bedridden elderly patients are partially analogous to astronauts in that both cannot experience the beneficial effects of gravity on the skeletal system and may suffer from bone loss and muscle weakness, one may wonder whether there are gravity-related mechanisms underlying diseases among the elderly. In contrast to numerous studies of the relevance of microgravity in skeletal disorders, little attention has been paid to neurodegenerative diseases. Therefore, the objective of this paper is to discuss the possible relevance of microgravity in these diseases. We particularly noted a proteomics paper showing that levels of hippocampal proteins, including β-synuclein and carboxyl-terminal ubiquitin hydrolase L1, which have been linked to familial neurodegenerative diseases, were significantly decreased in the hippocampus of mice subjected to hindlimb suspension, a model of microgravity. We suggest that microgravity-induced neurodegeneration may be further exacerbated by diabetes and other factors. On the basis of this view, prevention of neurodegenerative diseases through ‘anti-diabetes’ and ‘hypergravity’ approaches may be important as a common therapeutic approach on Earth and in space. Collectively, neurodegenerative diseases and space medicine may be linked to each other more strongly than previously thought. PMID:28725728

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Sownak; Li, Baojiu; He, Jian-hua

    We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f ( R ) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergencemore » rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f ( R ) simulations. For example, a test simulation with 512{sup 3} particles in a box of size 512 Mpc/ h is now 5 times faster than before, while a Millennium-resolution simulation for f ( R ) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandvik, K.; Karal, K.

    The paper gives a general description of the Concrete Gravity Base Structure (GBS) for the Draugen platform installed by Norwegian Contractors a.s. The GBS was installed at the Haltenbank area on the Norwegian continental shelf in May 1993 for A/S Norske Shell. Further, the paper describes the following challenging aspects encountered during the design and construction: design for high frequency response to wave loading, so called ringing, discovered during construction of the GBS; impact of the ringing effect discovery on the construction schedule; design to prevent delamination of concrete structural elements; modifications to prevent damages on pipe work caused bymore » deformations of the concrete structure.« less

  3. Microbial Check Valve for Shuttle

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.; Sauer, R. L.

    1978-01-01

    The Microbial Check Valve (MCV) is a device developed for the Space Shuttle that prevents the transfer of viable microorganisms within water systems. The device is essentially a bed of resin material, impregnated with iodine, that kills microorganisms on contact. It prevents the cross-contamination of microorganisms from a nonpotable system into the potable water system when these systems are interconnected. In this regard, the function of the device is similar to that of the 'air gap' found in conventional one-gravity systems. Basic design data are presented including pressure drop, scaling factors, sizing criteria, and the results of challenging the device with suspensions of seven microorganisms including aerobes, anaerobes and spore formers.

  4. Feed-forward motor control of ultrafast, ballistic movements.

    PubMed

    Kagaya, K; Patek, S N

    2016-02-01

    To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing strikes and, if so, how this control is achieved prior to movement. We collected high-speed images of strike mechanics and electromyograms of the extensor and flexor muscles that control spring compression and latch release. During spring compression, lateral extensor and flexor units were co-activated. The strike initiated several milliseconds after the flexor units ceased, suggesting that flexor activity prevents spring release and determines the timing of strike initiation. We used linear mixed models and Akaike's information criterion to serially evaluate multiple hypotheses for control mechanisms. We found that variation in spring compression and strike angular velocity were statistically explained by spike activity of the extensor muscle. The results show that mantis shrimp can generate kinematically variable strikes and that their kinematics can be changed through adjustments to motor activity prior to the movement, thus supporting an upstream, central-nervous-system-based control of ultrafast movement. Based on these and other findings, we present a shishiodoshi model that illustrates alternative models of control in biological ballistic systems. The discovery of feed-forward control in mantis shrimp sets the stage for the assessment of targets, strategic variation in kinematics and the role of learning in ultrafast animals. © 2016. Published by The Company of Biologists Ltd.

  5. State-coupled low-temperature geothermal-resource-assessment program, Fiscal Year 1980. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Icerman, L.; Starkey, A.; Trentman, N.

    1981-08-01

    Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, andmore » Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.« less

  6. Silicon bulk micromachined, symmetric, degenerate vibratorygyroscope, accelerometer and sensor and method for using the same

    NASA Technical Reports Server (NTRS)

    Tang, Tony K. (Inventor); Kaiser, William J. (Inventor); Bartman, Randall K. (Inventor); Wilcox, Jaroslava Z. (Inventor); Gutierrez, Roman C. (Inventor); Calvet, Robert J. (Inventor)

    1999-01-01

    When embodied in a microgyroscope, the invention is comprised of a silicon, four-leaf clover structure with a post attached to the center. The whole structure is suspended by four silicon cantilevers or springs. The device is electrostatically actuated and capacitively detects Coriolis induced motions of the leaves of the leaf clover structure. In the case where the post is not symmetric with the plane of the clover leaves, the device can is usable as an accelerometer. If the post is provided in the shape of a dumb bell or an asymmetric post, the center of gravity is moved out of the plane of clover leaf structure and a hybrid device is provided. When the clover leaf structure is used without a center mass, it performs as a high Q resonator usable as a sensor of any physical phenomena which can be coupled to the resonant performance.

  7. SKYLAB (SL) PRIME CREW - BLDG 5 - JSC

    NASA Image and Video Library

    1973-03-20

    S73-20622 (March 1973) --- Scientist-astronaut Joseph P. Kerwin, science pilot of the first manned Skylab mission, demonstrates the Body Mass Measurement Experiment (M172) during Skylab training at the Johnson Space Center. Dr. Kerwin is in the work and experiments area of the crew quarters of the Skylab Orbital Workshop (OWS) trainer at JSC. The M172 experiment will demonstrate body mass measurement in a null gravity environment, validate theoretical behavior of this method, and support those medical experiments for which body mass measurements are required. The data to be collected in support of M172 are: preflight calibration of the body mass measurement device and measurements of known masses up to 100 kilograms (220 pounds) three times during each Skylab mission. The device, a spring/flexure pivot-mounted chair, will also be used for daily determination of the crewmen?s weight, which will be manually logged and voice recorded for subsequent telemetered transmission. Photo credit: NASA

  8. Running in the real world: adjusting leg stiffness for different surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Louie, M.; Farley, C. T.

    1998-01-01

    A running animal coordinates the actions of many muscles, tendons, and ligaments in its leg so that the overall leg behaves like a single mechanical spring during ground contact. Experimental observations have revealed that an animal's leg stiffness is independent of both speed and gravity level, suggesting that it is dictated by inherent musculoskeletal properties. However, if leg stiffness was invariant, the biomechanics of running (e.g. peak ground reaction force and ground contact time) would change when an animal encountered different surfaces in the natural world. We found that human runners adjust their leg stiffness to accommodate changes in surface stiffness, allowing them to maintain similar running mechanics on different surfaces. These results provide important insight into mechanics and control of animal locomotion and suggest that incorporating an adjustable leg stiffness in the design of hopping and running robots is important if they are to match the agility and speed of animals on varied terrain.

  9. Overshooting thunderheads observed from ATS and Learjet

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1974-01-01

    Overshooting tops of thunderstorms were photographed simultaneously from both ATS and a Learjet during the cloud-truth experiment over the Midwest in the Spring of 1972 and 1973. The characteristics of overshooting tops were studied in various time and space scales, revealing that the horizontal dimensions of overshooting tops vary between 1000 ft and about 10 miles. The period of overshooting turrets with horizontal dimensions of less than 1 mile is found to be comparable to the Brunt-Vaisalla frequency of gravity waves at the lowermost stratosphere. The up-and-down motion of an overshooting dome, consisting of a number of turrets, is much slower than that of individual turrets. It is assumed that the height of a dome is closely related to the intensity of the up and downdrafts beneath the dome. Emphasis is placed upon the importance of the investigation of overshooting domes toward the identification of severe storm characteristics from satellites.

  10. Fixtureless nonrigid part inspection using depth cameras

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2016-10-01

    In automobile industry, flexible thin shell parts are used to cover car body. Such parts could have a different shape in a free state than the design model due to dimensional variation, gravity loads and residual strains. Special inspection fixtures are generally indispensable for geometric inspection. Recently, some researchers have proposed fixtureless nonridged inspect methods using intrinsic geometry or virtual spring-mass system, based on some assumptions about deformation between Free State shape and nominal CAD shape. In this paper, we propose a new fixtureless method to inspect flexible parts with a depth camera, which is efficient and low computational complexity. Unlike traditional method, we gather two point cloud set of the manufactured part in two different states, and make correspondences between them and one of them to the CAD model. The manufacturing defects can be derived from the correspondences. Finite element method (FEM) disappears in our method. Experimental evaluation of the proposed method is presented.

  11. Study of the Correlation between the Performances of Lunar Vehicle Wheels Predicted by the Nepean Wheeled Vehicle Performance Model and Test Data

    NASA Technical Reports Server (NTRS)

    Wong, J. Y.; Asnani, V. M.

    2008-01-01

    This paper describes the results of a study of the correlation between the performances of wheels for lunar vehicles predicted using the Nepean wheeled vehicle performance model (NWVPM), developed under the auspices of Vehicle Systems Development Corporation, Ottawa, Canada, and the corresponding test data presented in Performance evaluation of wheels for lunar vehicles , Technical Report M-70-2, prepared for George C. Marshall Space Flight Center, National Aeronautics and Space Administration (NASA), USA, by the US Army Engineer Waterways Experiment Station (WES). The NWVPM was originally developed for design and performance evaluation of terrestrial off-road wheeled vehicles. The purpose of this study is to assess the potential of the NWVPM for evaluating wheel candidates for the new generation of extra-terrestrial vehicles. Two versions of a wire-mesh wheel and a hoop-spring wheel, which were considered as candidates for lunar roving vehicles for the NASA Apollo program in the late 1960s, together with a pneumatic wheel were examined in this study. The tractive performances of these wheels and of a 464 test vehicle with the pneumatic wheels on air-dry sand were predicted using the NWVPM and compared with the corresponding test data obtained under Earth s gravity and previously documented in the above-named report. While test data on wheel or vehicle performances obtained under Earth s gravity may not necessarily be representative of those on extra-terrestrial bodies, because of the differences in gravity and in environmental conditions, such as atmospheric pressure, it is still a valid approach to use test data obtained under Earth s gravity to evaluate the predictive capability of the NWVPM and its potential applications to predicting wheel or wheeled rover performances on extra-terrestrial bodies. Results of this study show that, using the ratio (P20/W) of the drawbar pull to normal load at 20 per cent slip as a performance indicator, there is a reasonable correlation between the predictions and experimental data. This indicates that the NWVPM has the potential as an engineering tool for evaluating wheel candidates for a future generation of extra-terrestrial vehicles, provided that appropriate input data are available.

  12. Fire Safety in Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1998-01-01

    Despite rigorous fire-safety policies and practices, fire incidents are possible during lunar and Martian missions. Fire behavior and hence preventive and responsive safety actions in the missions are strongly influenced by the low-gravity environments in flight and on the planetary surfaces. This paper reviews the understanding and key issues of fire safety in the missions, stressing flame spread, fire detection, suppression, and combustion performance of propellants produced from Martian resources.

  13. Propellant actuated nuclear reactor steam depressurization valve

    DOEpatents

    Ehrke, Alan C.; Knepp, John B.; Skoda, George I.

    1992-01-01

    A nuclear fission reactor combined with a propellant actuated depressurization and/or water injection valve is disclosed. The depressurization valve releases pressure from a water cooled, steam producing nuclear reactor when required to insure the safety of the reactor. Depressurization of the reactor pressure vessel enables gravity feeding of supplementary coolant water through the water injection valve to the reactor pressure vessel to prevent damage to the fuel core.

  14. Insights into the dynamics of Etna volcano from 20-year time span microgravity and GPS observations

    NASA Astrophysics Data System (ADS)

    Bonforte, Alessandro; Fanizza, Giovanni; Greco, Filippo; Matera, Alfredo; Sulpizio, Roberto

    2016-04-01

    A common ground deformation and microgravity array of benchmarks lies on the southern slope of Mt. Etna volcano and is routinely measured by GPS and relative gravimetry methods. The array was installed for monitoring the ground motion and underground mass changes along the southern rift of the volcano and data are usually processed and interpreted independently. The benchmarks have been installed mainly along a main road crossing the southern side of the volcano with an E-W direction and reaching 2000 m of altitude. The gravity array covers the entire path of the road, while the ground deformation one only the upper one, due to the woods at lower altitude preventing good GPS measurements. Furthermore, microgravity surveys are usually carried out more frequently with respect to the GPS ones. In this work, an integrated analysis of microgravity and ground deformation is performed over a 20-year time span (1994-2014). Gravity variations have been first corrected for the free-air effect using the GPS observed vertical deformation and the theoretical vertical gravity gradient (-308.6 μGal/m). The free-air corrected gravity changes were then reduced from the high frequency variations (noise) and the seasonal fluctuations, mainly due to water-table fluctuations. This long-term dataset constitutes a unique opportunity to examine the behavior of Etna in a period in which the volcano exhibited different styles of activity characterized by recharging phases, flank eruptions and fountaining episodes. The gravity and deformation data allow investigating the response of the volcano in a wider perspective providing insights into the definition of its dynamic behavior and posing the basis to track the unrest evolution and to forecast the style of the eruption. The joint analysis highlights common periods, in which the signals underwent contemporaneous changes occurring mainly in the central and eastern stations. On the other hand, no significant changes in the behavior of deformation and gravity signals have been observed in the westernmost stations. Specifically, we observed at least four periods characterized by different correlation between the two time series. Indeed, the integrated analysis of the spatio-temporal variations of the gravity and the ground deformation data highlights different volcanic processes controlling the dynamical behavior of Etna volcano in this sector.

  15. Modeling the effects of winter environment on dormancy release of Douglas-fir

    Treesearch

    Connie Harrington; Peter J. Gould; Brad St. Clair

    2010-01-01

    Most temperate woody plants have a winter chilling requirement to prevent budburst during midwinter periods of warm weather. The date of spring budburst is dependent on both chilling and forcing; modeling this date is an important part of predicting potential effects of global warming on trees. There is no clear evidence from the literature that the curves of chilling...

  16. Factors Associated with Illegal Drug Use in Rural Georgia.

    ERIC Educational Resources Information Center

    Napier, Ted L.; And Others

    To ascertain the incidence of drug use in a rural area and to provide insight into the covariates of illegal drug use which might be useful in developing prevention programs, data were collected in the spring of 1981 from 2,060 or 83.2% of all students grades 8 through 12 in a southern Georgia county. Data were collected during regularly scheduled…

  17. Preventing School Dropout and Ensuring Success for English Language Learners and Native American Students. CSR Connection.

    ERIC Educational Resources Information Center

    Housman, Naomi G.; Martinez, Monica R.

    This Spring 2002 issue of the occasional paper, CSR Connection, reports on information that builds the capacity of schools to raise the academic achievement of all students. The success of English language learners and Native American students in U.S. public schools has been, and continues to be, impeded by deep "disconnects" between schools and…

  18. Ball-joint grounding ring

    NASA Technical Reports Server (NTRS)

    Aperlo, P. J. A.; Buck, P. A.; Weldon, V. A.

    1981-01-01

    In ball and socket joint where electrical insulator such as polytetrafluoroethylene is used as line to minimize friction, good electrical contact across joint may be needed for lightning protection or to prevent static-charge build-up. Electrical contact is maintained by ring of spring-loaded fingers mounted in socket. It may be useful in industry for cranes, trailers, and other applications requiring ball and socket joint.

  19. The Analysis of the Resilience of Adults One Year after the 2008 Wenchuan Earthquake

    ERIC Educational Resources Information Center

    Li, Min; Xu, Jiuping; He, Yuan; Wu, Zhibin

    2012-01-01

    Resilience, the ability to spring back from adversity and successfully adapt to it, is becoming an increasingly popular focus in research on the intervention and prevention of mental breakdown. This article aims to assess the resilience of adults exposed to the 2008 Wenchuan earthquake 1 year after the occurrence of the earthquake, to explore the…

  20. Improvement in Stability of SPring-8 Standard X-Ray Monochromators with Water-Cooled Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Hiroshi; Shimizu, Nobtaka; Kumasaka, Takashi

    2010-06-23

    SPring-8 standard double-crystal monochromators containing water-cooled crystals were stabilized to a sufficient level to function as a part of optics components to supply stable microfocused x-ray beams, by determining causes of the instability and then removing them. The instability was caused by two factors--thermal deformation of fine stepper stages in the monochromator, which resulted in reduction in beam intensity with time, and vibrations of coolant supply units and vacuum pumps, which resulted in fluctuation in beam intensity. We remodeled the crystal holders to maintain the stage temperatures constant with water, attached x-ray and electron shields to the stages in ordermore » to prevent their warming up, introduced accumulators in the water circuits to absorb pressure pulsation, used polyurethane tubes to stabilize water flow, and placed rubber cushions under scroll vacuum pumps. As a result, the intensity reduction rate of the beam decreased from 26% to 1% per hour and the intensity fluctuation from 13% to 1%. The monochromators were also modified to prevent radiation damage to the crystals, materials used as a water seal, and motor cables.« less

  1. Microgravity Impact Experiments: The Prime Campaign on the NASA KC-135

    NASA Astrophysics Data System (ADS)

    Colwell, Joshua E.; Sture, Stein; Lemos, Andreas R.

    2002-11-01

    Low velocity collisions (v less than 100 m/s) occur in a number of astrophysical contexts, including planetary rings, protoplanetary disks, the Kuiper belt of comets, and in secondary cratering events on asteroids and planetary satellites. In most of these situations the surface gravity of the target is less than a few per cent of 1 g. Asteroids and planetary satellites are observed to have a regolith consisting of loose, unconsolidated material. Planetary ring particles likely are also coated with dust based on observations of dust within ring systems. The formation of planetesimals in protoplanetary disks begins with the accretion of dust particles. The response of the surface dust layer to collisions in the near absence of gravity is necessary for understanding the evolution of these systems. The Collisions Into Dust Experiment (COLLIDE) performs six impact experiments into simulated regolith in microgravity conditions on the space shuttle. The parameter space to be explored is quite large, including effects such as impactor mass and velocity, impact angle, target porosity, size distribution, and particle shape. We have developed an experiment, the Physics of Regolith Impacts in Microgravity Experiment (PRIME), that is analogous to COLLIDE that is optimized for flight on the NASA KC-135 reduced gravity aircraft. The KC-135 environment provides the advantage of more rapid turnover between experiments, allowing a broader range of parameters to be studied quickly, and more room for the experiment so that more impact experiments can be performed each flight. The acceleration environment of the KC-135 is not as stable and minimal as on the space shuttle, and this requires impact velocities to be higher than the minimum achievable with COLLIDE. The experiment consists of an evacuated PRIME Impact Chamber (PIC) with an aluminum base plate and acrylic sides and top. A target tray, launcher, and mirror mount to the base plate. The launcher may be positioned to allow for impacts at angles of 30, 45, 60, and 90 degrees with respect to the target surface. The target material is contained in a 10 cm by 10 cm by 2 cm tray with a rotating door that is opened via a mechanical feed-through on the base plate. A spring-loaded inner door provides uniform compression on the target material prior to operation of the experiment to keep the material from settling or locking up during vibrations prior to the experiment. Data is recorded with the NASA high speed video camera. Frame rates are selected according to the impact parameters. The direct camera view is orthogonal to the projectile line of motion, and the mirrors within the PIC provide a view normal to the target surface. The spring-loaded launchers allow for projectile speeds between 10 cm/s and 500 cm/s with a variety of impactor sizes and densities. On each flight 8 PICs will be used, each one with a different set of impact parameters. Additional information is included in the original extended abstract.

  2. Exercise against lower body negative pressure as a countermeasure for cardiovascular and musculoskeletal deconditioning

    NASA Astrophysics Data System (ADS)

    Murthy, G.; Watenpaugh, D. E.; Ballard, R. E.; Hargens, A. R.

    Exposure to lower body negative pressure (LBNP) with oral salt and water ingestion has been tested by astronauts as a countermeasure to prevent postflight orthostatic intolerance. Exercise is another countermeasure that astronauts commonly use during spaceflight to maintain musculoskeletal strength. We hypothesize that a novel combination of exercise and simultaneous exposure to lower body negative pressure during spaceflight will produce Earth-like musculoskeletal loads as well as cardiovascular stimuli to maintain adaptation to Earth's gravity. Results from recent studies indicate that leg exercise within a LBNP chamber against the suction force of 100 mmHg LBNP in horizontal-supine posture produces an equivalent, if not greater exercise stress compared to similar leg exercise in upright posture (without LBNP) against Earth's gravity. 12 Therefore, the concept of LBNP combined with exercise may prove to be a low cost and low mass technique to stress the cardiovascular and the musculoskeletal systems simultaneously.

  3. Electrophoresis demonstration on Apollo 16

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1972-01-01

    Free fluid electrophoresis, a process used to separate particulate species according to surface charge, size, or shape was suggested as a promising technique to utilize the near zero gravity condition of space. Fluid electrophoresis on earth is disturbed by gravity-induced thermal convection and sedimentation. An apparatus was developed to demonstrate the principle and possible problems of electrophoresis on Apollo 14 and the separation boundary between red and blue dye was photographed in space. The basic operating elements of the Apollo 14 unit were used for a second flight demonstration on Apollo 16. Polystyrene latex particles of two different sizes were used to simulate the electrophoresis of large biological particles. The particle bands in space were extremely stable compared to ground operation because convection in the fluid was negligible. Electrophoresis of the polystyrene latex particle groups according to size was accomplished although electro-osmosis in the flight apparatus prevented the clear separation of two particle bands.

  4. Passive Vibration Control of Existing Structures by Gravity-Loaded Cables

    NASA Astrophysics Data System (ADS)

    Alvis, E.; Tsang, H. H.; Hashemi, M. J.

    2017-06-01

    Structures with high concentration of mass at or close to the top such as highway bridge piers are vulnerable in earthquakes or accidents. In this paper, a simple and convenient retrofit strategy is proposed for minimizing vibrations and damages, extending service life and preventing collapse of existing structures. The proposed system comprises of tension-only cables secured to the sides of the structure through gravity anchor blocks that are free to move in vertical shafts. The system is installed in such a way that the cables do not induce unnecessary stress on the main structure when there is no lateral motion or vibration. The effectiveness of controlling global structural responses is investigated for tension-only bilinear-elastic behaviour of cables. Results of a realistic case study for a reinforced concrete bridge pier show that response reduction is remarkably well under seismic excitation.

  5. KSC-2011-6463

    NASA Image and Video Library

    2011-08-12

    CAPE CANAVERAL, Fla. -- At Astrotech Space Operation's payload processing facility in Titusville, Fla., a crane lowers a protective canister toward NASA's twin Gravity Recovery and Interior Laboratory spacecraft during preparations to transport them to the launch pad. The lunar probes are attached to a spacecraft adapter ring in their side-by-side launch configuration and wrapped in plastic to prevent contamination outside the clean room. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann

  6. Adaptation and readaptation medical concerns of a Mars trip

    NASA Technical Reports Server (NTRS)

    Johnson, Philip C.

    1986-01-01

    The ability of the human body to adapt to microgravity environments and to later readapt to a gravity environment was examined. Issues specifically relating to the effects of long duration space flight on the adaptation/readaptation process are discussed. The need for better health prediction techniques is stressed in order to be able to better anticipate crew health problems and to perform corrective actions. Several specific examples are discussed of latent diseases which could occur during a long duration space mission, even after having subjected the crew to thorough premission checkups. The need for learning how to prevent or ameliorate such problems as space adaptation syndrome, bone and muscle (and possibly tissue) atrophy, immune system atrophy, and heart arrythmias is also discussed. The implications of the age of the crew, the influence of an onboard low level gravity field, and drugs are briefly addressed as factors in the adaptation/readaptation process.

  7. Planetary-Scale Inertio Gravity Waves in the Numerical Spectral Model

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. R.; Talaat, E. R.; Porter, H. S.

    2004-01-01

    In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.

  8. Qualification of the Tropical Rainfall Measuring Mission Solar Array Deployment System

    NASA Technical Reports Server (NTRS)

    Lawrence, Jon

    1998-01-01

    The Tropical Rainfall Measuring Mission (TRMM) solar arrays are placed into orbital configuration by a complex deployment system. Its two wings each comprise twin seven square solar panels located by a twelve foot articulated boom. The four spring-driven hinge lines per wing are rate-limited by viscous dampers. The wings are stowed against the spacecraft kinematically, and released by five pyrotechnically-actuated mechanisms. Since deployment failure would be catastrophic, a total of 17 deployment tests were completed to qualify the system for the worst cast launch environment. This successful testing culminated in the flawless deployment of the solar arrays on orbit, 15 minutes after launch in November 1997. The custom gravity negation system used to perform deployment testing is modular to allow its setup in several locations, including the launch site in Japan. Both platform and height can be varied, to meet the requirements of the test configuration and the test facility. Its air pad floatation system meets tight packaging requirements, allowing installation while stowed against the spacecraft without breaking any flight interfaces, and avoiding interference during motion. This system was designed concurrently with the deployment system, to facilitate its installation, to aid in the integration of the flight system to the spacecraft, while demonstrating deployment capabilities. Critical parameters for successful testing were alignment of deployment axes and tables to gravity, alignment of table seams to minimize discontinuities, and minimizing pressure drops in the air supply system. Orbital performance was similar to that predicted by ground testing.

  9. Geothermic analysis of high temperature hydrothermal activities area in Western plateau of Sichuan province, China

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2016-12-01

    There is a high temperature hydrothermal activity area in the western plateau of Sichuan. More than 200 hot springs points have been found in the region, including 11 hot spring water temperature above local boiling point. Most of these distribute along Jinshajjiang fracture, Dege-Xiangcheng fracture, Ganzi-Litang fracture as well as Xianshuihe fracture, and form three high-temperature hydrothermal activity strips in the NW-SE direction. Using gravity, magnetic, seismic and helium isotope data, this paper analyzed the crust-mantle heat flow structure, crustal heat source distribution and water heating system. The results show that the geothermal activity mainly controlled by the "hot" crust. The ratio of crustal heat flow and surface heat flow is higher than 60%. In the high temperature hydrothermal activities area, there is lower S wave velocity zone with Vs<3.2 km/s in 15 30 km depth in middle and lower crust. Basing on the S wave velocity inversion temperature of crust-mantle, it has been found that there is a high temperature layer with 850 1000 ° in 20 40 km depth. It is the main heat source of high temperature hydrothermal activity area of western Sichuan. Our argument is that atmospheric precipitation, surface water infiltrated along the fault fracture into the crustal deep, heating by crustal hot source, and circulation to surface become high temperature hot water. Geothermal water mainly reserve in the Triassic strata of the containing water good carbonate rocks, and in the intrusive granite which is along the fault zone. The thermal energy of Surface heat thermal activities mainly comes from the high-temperature hot source which is located in the middle and lower crust. Being in the deep crustal fracture, the groundwater infiltrated to the deep crust and absorbed heat, then, quickly got back to the surface and formed high hot springs.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheat, C.G.; Mottl, M.J.

    Warm hydrothermal springs were discovered on Baby Bare, which is an isolated basement outcrop on 3.5 Ma-old crust on the eastern flank of the Juan de Fuca Ridge. The authors have sampled these spring waters from a manned submersible, along with associated sediment pore waters from 48 gravity and piston cores. Systematic variations in the chemical composition of these waters indicate that hydrothermal reactions in basement at moderate temperatures remove Na, K, Li, Rb, Mg, TCO{sub 2}, alkalinity, and phosphate from the circulating seawater and leach Ca, Sr, Si, B, and Mn from the oceanic crust; and that reactions withmore » the turbidite sediment surrounding Baby Bare remove Na, Li, Mg, Ca, Sr, and sulfate from the pore water while producing ammonium and Si and both producing and consuming phosphate, nitrate, alkalinity, Mn, and Fe. K, Rb, and B are relatively unreactive in the sediment column. The composition of altered seawater in basement at Baby Bare is similar to the inferred composition of 58 C formation water from crust nearly twice as old (5.9 Ma) on the southern flank of the Costa Rica Rift. The Baby Bare fluids also exhibit the same directions of net elemental transfer between basalt and seawater as solutions produced in laboratory experiments at a similar temperature, and complement compositional changes form seawater observed in seafloor basalts altered at cool to moderate temperatures. The common parameter among the two ridge flanks and experiments is temperature, suggesting that the residence time of seawater in the two ridge-flank sites is sufficiently long for the solutions to equilibrate with altered basalt. The authors use the Baby Bare spring water to estimate upper limits on the global fluxes of 14 elements at warm ridge-flank sites such as Baby Bare. Maximum calculated fluxes of Mg, Ca, sulfate, B, and K may equal or exceed 25% of the riverine flux, and such sites may represent the missing, high K/Rb sink required for the K budget.« less

  11. How to Restore Plant's Taxis in Microgravity

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    All plants respond to gravity, yet in micro-gravity not all plants will grow the way as they do on the Earth. Successful space experiments with plants grown from seed to seed, were performed (to the best of my knowledge) with non electrotropic plants. Such plants use phototropism instead of the gravitropism. The electrotropic plants have been successfully grown in phytotron and in a greenhouse. We used the electric field to direct their growth where we want them to grow. Normally the ground or soil is negatively charged, and plants grow upwards towards positive charges in the air or the anode (positive electrode) in plant growth chambers. In reversed field polarization with "ground positive" the lettuce grows down-wards. In horizontal electric fields it grows horizontally again towards positively charged field generating conducting plate. This is at the first glance a very surprising effect even to the physicist. But one has to remember the most important fact that the electromagnetic forces are a factor of 1038 times stronger than the gravitational force. On the Earth the gravity acts on the entire plant, but the electrical field acts only on ions which are distributed on the surface of leaves, sprouts or stem tips. The ions are directed so very much strongly (1038 times) by the electrical field, than by gravity. The electric field lines guide the concentrations of ions to follow the field lines rendering the plants electrotropic and shaping their growth pattern. There is also a clear positive dependence of the rate of plant growth on field strength and crop yield. This is why it is so important to know which plants are electrotropic not only for use in space but also in greenhouse plant cultures. It is very much cheaper to select the electrotropic plant here, and not in space experiments for best cost efficiency. Special light weight plant growth chambers have been designed and very successfully used in terrestrial experiments. We can make the plant growth chambers very much lighter for space applications. We do not need to send them assembled into space, but rather make them foldable. Then we do not strain the plant growth chambers by vibrations and about 10 times stronger accelerations than gravity during launch, besides they are also not gravitationally loaded in space. We deploy them by stretching or inflating, them and suspend them using springs to get them into the needed shape and position. Some considerations have been given to some designs of space borne plant growth chambers. We pay special attention to secure the very important advantages of light weight and low cost so vital in space applications.

  12. Water system microbial check valve development

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Greenley, D. R.; Putnam, D. F.

    1978-01-01

    Development work on a device for the Space Shuttle that will prevent the transfer of viable microorganisms within water systems is described. The device serves as a check valve in that it prevents the transfer or cross-contamination of microorganisms from a nonpotable system into a potable water system when these systems are interconnected. In this regard, the function of the device is similar to that of the air gap found in conventional one gravity systems. The device is essentially a bed of resin material impregnated with iodine. Basic design data for a variety of flow and temperature conditions are presented, together with results of challenging the beds with suspensions of seven microorganisms including aerobes, anaerobes, and spore formers.

  13. The role of disc self-gravity in circumbinary planet systems - II. Planet evolution

    NASA Astrophysics Data System (ADS)

    Mutter, Matthew M.; Pierens, Arnaud; Nelson, Richard P.

    2017-08-01

    We present the results of hydrodynamic simulations examining migration and growth of planets embedded in self-gravitating circumbinary discs. The binary star parameters are chosen to mimic those of the Kepler-16, -34 and -35 systems; the aim of this study is to examine the role of disc mass in determining the stopping locations of migrating planets at the edge of the cavity created by the central binary. Disc self-gravity can cause significant shrinkage of the cavity for disc masses in excess of 5-10 × the minimum mass solar nebula model. Planets forming early in the disc lifetime can migrate through the disc and stall at locations closer to the central star than is normally the case for lower mass discs, resulting in closer agreement between simulated and observed orbital architecture. The presence of a planet orbiting in the cavity of a massive disc can prevent the cavity size from expanding to the size of a lower mass disc. As the disc mass reduces over long time-scales, this indicates that circumbinary planet systems retain memory of their initial conditions. Our simulations produce planetary orbits in good agreement with Keper-16b without the need for self-gravity; Kepler-34 analogue systems produce wide and highly eccentric cavities, and self-gravity improves the agreement between simulations and data. Kepler-35b is more difficult to explain in detail due to its relatively low mass, which results in the simulated stopping location being at a larger radius than that observed.

  14. Bringing Gravity to Space

    NASA Technical Reports Server (NTRS)

    Norsk, P.; Shelhamer, M.

    2016-01-01

    This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.

  15. Key management practices to prevent high infestation levels of Varroa destructor in honey bee colonies at the beginning of the honey yield season.

    PubMed

    Giacobino, Agostina; Molineri, Ana; Bulacio Cagnolo, Natalia; Merke, Julieta; Orellano, Emanuel; Bertozzi, Ezequiel; Masciangelo, Germán; Pietronave, Hernán; Pacini, Adriana; Salto, Cesar; Signorini, Marcelo

    2016-09-01

    Varroa destructor is considered one of the main threats to worldwide apiculture causing a variety of physiological effects at individual and colony level. Also, Varroa mites are often associated with several honey bee viruses presence. Relatively low levels of Varroa during the spring, at the beginning of the honey yield season, can have a significant economic impact on honey production and colony health. Winter treatments against Varroa and certain management practices may delay mite population growth during following spring and summer improving colonies performance during the honey yield season. The aim of this study was to identify risk factors associated with the presence of Varroa destructor in late spring in apiaries from temperate climate. A longitudinal study was carried out in 48 apiaries, randomly selected to evaluate V. destructor infestation level throughout the year. The percentage of infestation with V. destructor was assessed four times during one year and the beekeepers answered a survey concerning all management practices applied in the colonies. We used a generalized linear mixed model to determine association between risk of achieving 2% infestation on adult bees at the beginning of the honey yield season and all potential explanatory variables. The complete dataset was scanned to identify colonies clusters with a higher probability of achieving damage thresholds throughout the year. Colonies that achieved ≥2% of infestation with V. destructor during spring were owned by less experienced beekeepers. Moreover, as Varroa populations increase exponentially during spring and summer, if the spring sampling time is later this growth remains unobserved. Monitoring and winter treatment can be critical for controlling mite population during the honey production cycle. Spatial distribution of colonies with a higher risk of achieving high Varroa levels seems to be better explained by management practices than a geographical condition. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Accidental contamination during hydrocarbon exploitation and the rapid transfer of heavy-mineral fines through an overlying highly karstified aquifer (Paradiso Spring, SE Sicily)

    NASA Astrophysics Data System (ADS)

    Ruggieri, Rosario; Forti, Paolo; Antoci, Maria Lucia; De Waele, Jo

    2017-03-01

    The area around Ragusa in Sicily is well known for the exploration of petroleum deposits hosted in Mesozoic carbonate rocks. These reservoirs are overlain by less permeable rocks, whereas the surface geology is characterized by outcrops of Oligo-Miocene carbonate units hosting important aquifers. Some of the karst springs of the area are used as drinking water supplies, and therefore these vulnerable aquifers should be monitored and protected adequately. In the early afternoon (14:00) of 27 May until the late evening (19:30) of 28 May 2011, during the construction of an exploitation borehole (Tresauro 2), more than 1000 m3 of drilling fluids were lost in an unknown karst void. Two days later, from 06:30 on 30 May, water flowing from Paradiso Spring, lying some 13.7 km SW of the borehole and 378 m lower, normally used as a domestic water supply, was so intensely coloured that it was unfit for drinking. Bulk chemical analyses carried out on the water have shown a composition that is very similar to that of the drilling fluids lost at the Tresauro borehole, confirming a hydrological connection. Estimations indicate that the first signs of the drilling fluids took about 59 h to flow from their injection point to the spring, corresponding to a mean velocity of ∼230 m/h. That Paradiso Spring is recharged by a well-developed underground drainage system is also confirmed by the marked flow rate changes measured at the spring, ranging from a base flow of around 10-15 l/s to flood peaks of 2-3 m3/s. Reflecting the source and nature of the initial contamination, the pollution lasted for just a few days, and the water returned to acceptable drinking-water standards relatively quickly. However, pollution related to heavy-mineral fines continues to be registered during flooding of the spring, when the aqueducts are normally shut down because of the high turbidity values. This pollution event offers an instructive example of how hydrocarbon exploitation in intensely karstified areas, where natural springs provide domestic water supplies, should be controlled effectively to prevent such disasters occurring. This pollution incident is also a useful example of how such "accidental" tracer tests can identify rapid karstic flowpaths over long distances.

  17. Exercise Countermeasures for Bone Loss During Space Flight: A Method for the Study of Ground Reaction Forces and Their Implications for Bone Strain

    NASA Technical Reports Server (NTRS)

    Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.

    1999-01-01

    The human zero-gravity locomotion simulator and the cadaver simulator offer a powerful combination for the study of the implications of exercise for maintaining bone quality during space flight. Such studies, when compared with controlled in-flight exercise programs, could help in the identification of a strain threshold for the prevention of bone loss during space flight.

  18. Development of Conceptual Designs for the Prevention of Ice Formation in the Proposed Maple River Aqueduct

    DTIC Science & Technology

    2014-09-18

    USA 1907 Reinforced concrete 50 × 6 × up to 350 ft various heights 35 ft 1675 2244 7 creeks and the Green River/ Hennepin Canal Solid...2 1 1 2 2e xs f U Uh L S C g g α α = + − (4) where Lxs = the distance between cross sections, g = the acceleration of gravity, α1 and α2 = the

  19. Auditory and Vestibular Issues Related to Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Danielson, Richard W.; Wood, Scott J.

    2009-01-01

    Human spaceflight provides unique opportunities to study human vestibular and auditory systems. This session will discuss 1) vestibular adaptive processes reflected by pronounced perceptual and motor coordination problems during, and after, space missions; 2) vestibular diagnostic and rehabilitative techniques (used to promote recovery after living in altered gravity environments) that may be relevant to treatment of vestibular disorders on earth; and 3) unique acoustical challenges to hearing loss prevention and crew performance during spaceflight missions.

  20. Injury Prevention and Performance Enhancement in 101st Airbourne Soldiers

    DTIC Science & Technology

    2012-02-01

    those of elite athletes, with similar performance and nutrition needs. Dietary recommendations have been developed for the optimal amount of...2005. 33(3): p. 415-23. 10. Alonso AC, Greve JM, and Camanho GL: Evaluating the center of gravity of dislocations in soccer players with and without...Pietila T, and Werner S: Risk factors for leg injuries in female soccer players : a prospective investigation during one out-door season. Knee Surg

  1. SURVIAC Bulletin: Materials Flammability in Spacecraft, Volume 25 - Issue 1

    DTIC Science & Technology

    2009-01-01

    and debris exiting the barrel of handguns is shown in the following example. Th is demonstrates the speed of the image processing algorithms to...gravity. Additionally, materials do not burn the same way. For example, when a candle burns on Earth, the hot gases from the fl ame rise, creating...cal. Th e controlling mechanisms of the combustion process change so that fi re prevention and material fl ammability considerations also change

  2. Removal of dissolved and colloidal silica

    DOEpatents

    Midkiff, William S.

    2002-01-01

    Small amorphous silica particles are used to provide a relatively large surface area upon which silica will preferentially adsorb, thereby preventing or substantially reducing scaling caused by deposition of silica on evaporative cooling tower components, especially heat exchange surfaces. The silica spheres are contacted by the cooling tower water in a sidestream reactor, then separated using gravity separation, microfiltration, vacuum filtration, or other suitable separation technology. Cooling tower modifications for implementing the invention process have been designed.

  3. Preventing Chronic Pain: A Human Systems Approach-Results From a Massive Open Online Course.

    PubMed

    Fricton, James; Anderson, Kathleen; Clavel, Alfred; Fricton, Regina; Hathaway, Kate; Kang, Wenjun; Jaeger, Bernadette; Maixner, William; Pesut, Daniel; Russell, Jon; Weisberg, Mark B; Whitebird, Robin

    2015-09-01

    Chronic pain conditions are the top reason patients seek care, the most common reason for disability and addiction, and the biggest driver of healthcare costs; their treatment costs more than cancer, heart disease, dementia, and diabetes care. The personal impact in terms of suffering, disability, depression, suicide, and other problems is incalculable. There has been much effort to prevent many medical and dental conditions, but little effort has been directed toward preventing chronic pain. To address this deficit, a massive open online course (MOOC) was developed for students and healthcare professionals. "Preventing Chronic Pain: A Human Systems Approach" was offered by the University of Minnesota through the online platform Coursera. The first offering of this free open course was in the spring of 2014 and had 23 650 participants; 53% were patients or consumers interested in pain. This article describes the course concepts in preventing chronic pain, the analytic data from course participants, and postcourse evaluation forms.

  4. Preventing Chronic Pain: A Human Systems Approach—Results From a Massive Open Online Course

    PubMed Central

    Anderson, Kathleen; Clavel, Alfred; Fricton, Regina; Hathaway, Kate; Kang, Wenjun; Jaeger, Bernadette; Maixner, William; Pesut, Daniel; Russell, Jon; Weisberg, Mark B.; Whitebird, Robin

    2015-01-01

    Chronic pain conditions are the top reason patients seek care, the most common reason for disability and addiction, and the biggest driver of healthcare costs; their treatment costs more than cancer, heart disease, dementia, and diabetes care. The personal impact in terms of suffering, disability, depression, suicide, and other problems is incalculable. There has been much effort to prevent many medical and dental conditions, but little effort has been directed toward preventing chronic pain. To address this deficit, a massive open online course (MOOC) was developed for students and healthcare professionals. “Preventing Chronic Pain: A Human Systems Approach” was offered by the University of Minnesota through the online platform Coursera. The first offering of this free open course was in the spring of 2014 and had 23 650 participants; 53% were patients or consumers interested in pain. This article describes the course concepts in preventing chronic pain, the analytic data from course participants, and postcourse evaluation forms. PMID:26421231

  5. Root cytoskeleton: its role in perception of and response to gravity

    NASA Technical Reports Server (NTRS)

    Baluska, F.; Hasenstein, K. H.

    1997-01-01

    We have critically evaluated the possible functions of the plant cytoskeleton in root gravisensing and graviresponse and discussed the evidence that microtubules (MTs) and actin microfilaments (MFs) do not control differential cell growth during bending of roots. On the other hand, MF and MT networks are envisaged to participate in gravisensing because of the mechanical properties of the cytoskeletal structures that interconnect plant cell organelles with the plasma membrane. In restrained gravisensing, forces are suggested to be transmitted to membranes because large-scale gravity-dependent repositioning of organelles is effectively prevented due to the cytoskeleton-mediated anchorage of their envelopes at the plasma membrane. From the cytoskeletal point of view, we can also envisage an unrestrained gravity sensing when cytoskeletal tethers are not strong enough to preserve the tight control over distribution of organelles and the latter, if heavy enough, are allowed to sediment towards the physical bottom of cells. This situation obviously occurs in root cap statocytes because these uniquely organized cells are depleted of prominent actin MF bundles, endoplasmic MT arrays, and ER elements in their internal cytoplasm. Nevertheless, indirect evidence clearly indicates that sedimented root cap statoliths are enmeshed within fine but dynamic MF networks and that their behaviour is obviously under, at least partial, cytoskeletal control. The actomyosin-enriched domain among and around amyloplasts is proposed to increase the perception of gravity due to the grouping effect of sedimenting statoliths. Cytoskeletal links between myosin-rich statoliths, and cell peripheries well equipped with dense cortical MTs, membrane-associated cytoskeleton, as well as with ER elements, would allow efficient restrained gravisensing only at the statocyte cell cortex. As a consequence of cytoskeletal depletion in the internal statocyte cytoplasm and bulk sedimentation of large amyloplasts, restrained gravisensing is spatially restricted to the bottom of the statocyte irrespective of whether roots are vertical or horizontal. This spatial aspect allows for efficient gravisensing via amplification of gravity-induced impacts on the cellular architecture, a phenomenon which is unique to root cap statocytes.

  6. Development of a series wrapping cam mechanism for energy transfer in wearable arm support applications.

    PubMed

    Schroeder, Jeremiah S; Perry, Joel C

    2017-07-01

    An estimated 17 million individuals suffer a stroke each year with over 5 million resulting in permanent disability. For many of these, the provision of gravity support to the impaired upper limb can provide significant and immediate improvement in arm mobility. This added mobility has the potential to improve arm function and user independence overall, but, so far, wearable arm supports have found only limited uptake by end-users. The reasons are unclear, but it is hypothesized that device uptake is strongly affected by aspects of arm support implementation such as added weight and volume and the effectiveness of the support provided. In the interest of reducing the size and visibility of wearable arm supports, cable driven actuation was investigated, and a device called the series wrapping cam was developed. This device uses two wrapping cams to stretch a spring as the user's arm elevation decreases. It optimally uses the range of motion of a custom latex spring in a compact mechanism. A one degree-of-freedom proof-of-concept prototype of the series wrapping cam was manufactured and tested. The torque supplied by the prototype correctly responds to shoulder elevation to balance the weight of the extended arm at any level of elevation. However, the support is unaffected by the degree of elbow flexion-extension. Shoulder joint torque is a function of both shoulder elevation and elbow flexion, suggesting further benefits could be achieved through a bi-articular design.

  7. Body surface detection method for photoacoustic image data using cloth-simulation technique

    NASA Astrophysics Data System (ADS)

    Sekiguchi, H.; Yoshikawa, A.; Matsumoto, Y.; Asao, Y.; Yagi, T.; Togashi, K.; Toi, M.

    2018-02-01

    Photoacoustic tomography (PAT) is a novel modality that can visualize blood vessels without contrast agents. It clearly shows blood vessels near the body surface. However, these vessels obstruct the observation of deep blood vessels. As the existence range of each vessel is determined by the distance from the body surface, they can be separated if the position of the skin is known. However, skin tissue, which does not contain hemoglobin, does not appear in PAT results, therefore, manual estimation is required. As this task is very labor-intensive, its automation is highly desirable. Therefore, we developed a method to estimate the body surface using the cloth-simulation technique, which is a commonly used method to create computer graphics (CG) animations; however, it has not yet been employed for medical image processing. In cloth simulations, the virtual cloth is represented by a two-dimensional array of mass nodes. The nodes are connected with each other by springs. Once the cloth is released from a position away from the body, each node begins to move downwards under the effect of gravity, spring, and other forces; some of the nodes hit the superficial vessels and stop. The cloth position in the stationary state represents the body surface. The body surface estimation, which required approximately 1 h with the manual method, is automated and it takes only approximately 10 s with the proposed method. The proposed method could facilitate the practical use of PAT.

  8. Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Lerch, F. J.; Marshall, J. A.; Pavlis, E. C.; Putney, B. H.; Tapley, B. D.; Eanes, R. J.; Ries, J. C.; Schutz, B. E.; Shum, C. K.

    1994-01-01

    The TOPEX/POSEIDON (T/P) prelaunch Joint Gravity Model-1 (JGM-1) and the postlaunch JGM-2 Earth gravitational models have been developed to support precision orbit determination for T/P. Each of these models is complete to degree 70 in spherical harmonics and was computed from a combination of satellite tracking data, satellite altimetry, and surface gravimetry. While improved orbit determination accuracies for T/P have driven the improvements in the models, the models are general in application and also provide an improved geoid for oceanographic computations. The postlaunch model, JGM-2, which includes T/P satellite laser ranging (SLR) and Doppler orbitography and radiopositioning integrated by satellite (DORIS) tracking data, introduces radial orbit errors for T/P that are only 2 cm RMS with the commission errors of the marine geoid for terms to degree 70 being +/- 25 cm. Errors in modeling the nonconservative forces acting on T/P increase the total radial errors to only 3-4 cm root mean square (RMS), a result much better than premission goals. While the orbit accuracy goal for T/P has been far surpassed geoid errors still prevent the absolute determination of the ocean dynamic topography for wavelengths shorter than about 2500 km. Only a dedicated gravitational field satellite mission will likely provide the necessary improvement in the geoid.

  9. Role of membrane sterols and cortical microtubules in gravity resistance in plants

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Koizumi, T.; Matsumoto, S.; Kumasaki, S.; Soga, K.; Wakabayashi, K.; Sakaki, T.

    Resistance to the gravitational force is a principal graviresponse in plants comparable to gravitropism Nevertheless only limited information has been obtained for this graviresponse We have examined mechanisms of signal perception transformation and transduction of the perceived signal and response to the transduced signal in gravity resistance using hypergravity conditions produced by centrifugation In Arabidopsis hypocotyls hypergravity treatment greatly increased the expression level of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase HMGR which catalyzes a reaction producing mevalonic acid a key precursor of terpenoids such as membrane sterols Geranyl diphosphate synthase gene was also up-regulated by hypergravity whereas the expression of other genes involved in membrane lipid metabolism was not influenced Hypergravity caused an increase in sterol content in azuki bean epicotyls but not in phospholipid glycolipid or fatty acid content Also hypergravity did not influence fatty acid composition in any lipid class Thus the effect of hypergravity on membrane lipid metabolism was specific for sterol synthesis On the other hand alpha- and beta-tubulin genes were up-regulated by hypergravity treatment in Arabidopsis hypocotyls Hypergravity also induced reorientation of cortical microtubules in azuki epicotyls the percentage of epidermal cells with transverse microtubles was decreased whereas that with longitudinal microtubules was increased Inhibitors of HMGR action and microtubule-disrupting agents completely prevented the gravity resistance

  10. Fixing extensions to general relativity in the nonlinear regime

    NASA Astrophysics Data System (ADS)

    Cayuso, Juan; Ortiz, Néstor; Lehner, Luis

    2017-10-01

    The question of what gravitational theory could supersede General Relativity has been central in theoretical physics for decades. Many disparate alternatives have been proposed motivated by cosmology, quantum gravity and phenomenological angles, and have been subjected to tests derived from cosmological, solar system and pulsar observations typically restricted to linearized regimes. Gravitational waves from compact binaries provide new opportunities to probe these theories in the strongly gravitating/highly dynamical regimes. To this end however, a reliable understanding of the dynamics in such a regime is required. Unfortunately, most of these theories fail to define well posed initial value problems, which prevents at face value from meeting such challenge. In this work, we introduce a consistent program able to remedy this situation. This program is inspired in the approach to "fixing" viscous relativistic hydrodynamics introduced by Israel and Stewart in the late 70's. We illustrate how to implement this approach to control undesirable effects of higher order derivatives in gravity theories and argue how the modified system still captures the true dynamics of the putative underlying theories in 3 +1 dimensions. We sketch the implementation of this idea in a couple of effective theories of gravity, one in the context of Noncommutative Geometry, and one in the context of Chern-Simons modified General Relativity.

  11. The principle of finiteness - a guideline for physical laws

    NASA Astrophysics Data System (ADS)

    Sternlieb, Abraham

    2013-04-01

    I propose a new principle in physics-the principle of finiteness (FP). It stems from the definition of physics as a science that deals with measurable dimensional physical quantities. Since measurement results including their errors, are always finite, FP postulates that the mathematical formulation of legitimate laws in physics should prevent exactly zero or infinite solutions. I propose finiteness as a postulate, as opposed to a statement whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories or principles. Some consequences of FP are discussed, first in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The corrected Lorentz transformations include an additional translation term depending on the minimum length epsilon. The relativistic gamma is replaced by a corrected gamma, that is finite for v=c. To comply with FP, physical laws should include the relevant extremum finite values in their mathematical formulation. An important prediction of FP is that there is a maximum attainable relativistic mass/energy which is the same for all subatomic particles, meaning that there is a maximum theoretical value for cosmic rays energy. The Generalized Uncertainty Principle required by Quantum Gravity is actually a necessary consequence of FP at Planck's scale. Therefore, FP may possibly contribute to the axiomatic foundation of Quantum Gravity.

  12. [Pulmonary atelectasis in patients with neurological or muscular disease; gravity-related lung compression by the heart and intra-abdominal organs on persistent supine position].

    PubMed

    Toyoshima, Mitsuo; Maeoka, Yukinori; Kawahara, Hitoshi; Maegaki, Yoshihiro; Ohno, Kousaku

    2006-11-01

    We report 10 cases of pulmonary atelectasis diagnosed by chest computed tomography in patients with neurological or muscular disease. Atelectasis was frequently seen in hypotonic patients who could not roll over on their own. The atelectases located mostly in the dorsal bronchopulmonary segments, adjacent to the heart or diaphragm. Atelectasis diminished in two patients after they became able to roll themselves over. Gravity-related lung compression by the heart and intra-abdominal organs on persistent supine position can cause pulmonary atelectasis in patients with neurological or muscular disease who can not roll over by their own power. To confirm that the prone position reduces compression of the lungs, chest computed tomography was performed in both the supine and the prone position in three patients. Sagittal images with three-dimensional computed tomographic reconstruction revealed significant sternad displacements of the heart and caudal displacements of the dorsal portion of the diaphragm on prone position compared with supine position. The prone position, motor exercises for rolling over, and biphasic cuirass ventilation are effective in reducing gravity-related lung compression. Some patients with intellectual disabilities were also able to cooperate in chest physiotherapy. Chest physiotherapy is useful in preventing atelectasis in patients with neurological or muscular disease.

  13. Impact of Implementation Factors on Children's Water Consumption in the Out-of-School Nutrition and Physical Activity Group-Randomized Trial

    ERIC Educational Resources Information Center

    Lee, Rebekka M.; Okechukwu, Cassandra; Emmons, Karen M.; Gortmaker, Steven L.

    2014-01-01

    National data suggest that children are not consuming enough water. Experimental evidence has linked increased water consumption to obesity prevention, and the National AfterSchool Association has named serving water as ones of its standards for healthy eating and physical activity in out-of-school time settings. From fall 2010 to spring 2011,…

  14. Comparison of Paper-and-Pencil versus Web Administration of the Youth Risk Behavior Survey (YRBS): Risk Behavior Prevalence Estimates

    ERIC Educational Resources Information Center

    Eaton, Danice K.; Brener, Nancy D.; Kann, Laura; Denniston, Maxine M.; McManus, Tim; Kyle, Tonja M.; Roberts, Alice M.; Flint, Katherine H.; Ross, James G.

    2010-01-01

    The authors examined whether paper-and-pencil and Web surveys administered in the school setting yield equivalent risk behavior prevalence estimates. Data were from a methods study conducted by the Centers for Disease Control and Prevention (CDC) in spring 2008. Intact classes of 9th- or 10th-grade students were assigned randomly to complete a…

  15. Role of African American Churches in Cancer Prevention Services

    DTIC Science & Technology

    1999-08-01

    first meeting of the Steering Committee a) Denomination selection occurred for three denominations: Seventh Day Adventist (SDA), Presbyterian, and...ksydnor@jhsph.edu Dr. DeWitt Williams Health and Temperance Director World Headquarters of Seventh - Day Adventist 12501 Old Columbia Pike Silver Spring...Fellows Program in HPM and also as a member of the Seventh - Day Adventist Church (SDA). Dr. Glassman develops consumer-oriented, tailored health messages

  16. Information Control: Preventing a Vietnamese Spring?

    DTIC Science & Technology

    2013-11-01

    challenges with labor market tensions and land management corruption continue to plague the Party and demonstrate their inability to effectively...the 1997 regulation in 2001. The 2001 regulation provided for a “partial liberalisation of the internet market ” while placing a “more stringent...Vietnam increased. This increase resulted in market competition and lower prices for internet service, broadening the availability of the internet to

  17. Promoting Energy-Balance Behaviors among Ethnically Diverse Adolescents: Overview and Baseline Findings of the Central Texas CATCH Middle School Project

    ERIC Educational Resources Information Center

    Springer, Andrew E.; Kelder, Steven H.; Byrd-Williams, Courtney E.; Pasch, Keryn E.; Ranjit, Nalini; Delk, Joanne E.; Hoelscher, Deanna M.

    2013-01-01

    The Central Texas Coordinated Approach To Child Health (CATCH) Middle School Project is a 3.5-year school-based project aimed at promoting physical activity (PA), healthy eating, and obesity prevention among public middle school students in Texas. This article describes the CATCH intervention model and presents baseline findings from spring 2009.…

  18. Mechanisms of gravitropism in single-celled systems

    NASA Astrophysics Data System (ADS)

    Greuel, Nicole; Braun, Markus; Hauslage, Jens; Wiemann, Katharina

    Physiological processes in plants are influenced by a variety of external stimuli. Gravity is the only constant factor that provides plants with reliable information for their orientation. Gravity-oriented growth responses, called gravitropism, enable plants to adapt to a diversity of habitats on Earth and to survive changing environmental conditions. For instance, the ability to respond gravitropically prevents crop, flattened by a windstorm, from decay. Even small deviations from the genetically programmed set-point angle of plant organs are recognized by specialized cells, the statocytes, in which dense particles, the statoliths, sediment in the direction of gravity and activate gravity sensors - membrane bound gravity-receptor proteins. Activation of receptor proteins creates a physiological signal that initiates a stimulus-specific signal transduction cascade causing the gravitropic response. To unravel the gravitropic signalling pathways in plant statocytes, our research focused on a unicellular model system, the rhizoid of the green alga Chara. Experiments under microgravity conditions during sounding-rocket and parabolic plane flights have shown that the actin cytoskeleton is a key element of the gravityinduced statolith-sedimentation process in characean rhizoids. Actomyosin, consisting of a dense meshwork of mainly axially oriented actin microfilaments and motor proteins (myosins), actively guides sedimenting statoliths to gravisensitive plasma membrane areas where gravireceptor molecules are exclusively located. TEXUS and MAXUS sounding rocket missions were performed to determine the threshold acceleration level (< 0.1g) required for lateral statolith displacement. parabolic flight experiments aboard the airbus A300 Zero-G have shown that sedimented but weightless statoliths are still capable of activating the membrane-bound gravireceptor in characean rhizoids. The results contradict the classical model of a mechanoreceptor that is activated by the pressure exerted by sedimented statoliths. Instead, the experiments provide evidence that graviperception depends on direct interactions between statoliths and a yet unknown gravireceptor.Graviperception in higher plant statocytes was also found to be not dependent on mechanical pressure but on direct interactions between gravireceptors and statoliths. In contrast to Chara rhizoids, however, the actin system of higher plant statocytes is not essentially required for gravity-sensing. Parabolic flight experiments and ground controls indicated that disruption of the actin cytoskeleton in root statocytes by using Latrunculin B results in an increased gravisensitivity and in a promoted gravitropic curvature rather than in an inhibition. It is speculated that the actomyosin system in statocytes has a fine-tuning function in the early phases of gravity sensing. Actin in higher plant statocytes may be required to optimize statolith-receptor interactions and to keep the sensing system highly sensitive on one hand, but on the other hand actomyosin-statolith interactions seem to avoid unfavourable responses to only transient stimuli.Investigating the unicellular characean rhizoid has greatly enhanced our understanding of gravity sensing processes in plants and there is increasing evidence that higher plants and characean rhizoids share common processes in the signalling pathway of gravity-oriented growth.

  19. Film riding seals for rotary machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidkar, Rahul Anil; Sarawate, Neelesh Nandkumar; Wolfe, Christopher Edward

    A seal assembly for a rotary machine is provided. The seal assembly includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having one or more labyrinth teeth therebetween facing the rotor. The sealing device includes a stator interface element having a groove or slot for allowing disposal of a spline seal for preventing segment leakages. The sealing device segment also includes multiple bellow springs or flexures connected to the shoe plate and to the stator interface element. Further,more » the sealing device segments include a secondary seal integrated with the stator interface element at one end and positioned about the multiple bellow springs or flexures and the shoe plate at the other end.« less

  20. Measured flow and tracer-dye data for spring 1996 and 1997 for the south Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Oltmann, Richard N.

    1999-01-01

    During the spring of years when the flow of the San Joaquin River is less than 7,000 cubic feet per second (ft3/s) a temporary rock barrier is installed by the California Department of Water Resources (DWR) at the head of Old River (HOR) in the south Sacramento-San Joaquin Delta to prevent out migrating salmon in the San Joaquin River from entering Old River and being drawn to the State and federal pumping facilities (Figure 1). The export rate of the pumping facilities also is reduced during these migration periods to minimize the draw of fish to the export facilities through the other channels connected to the San Joaquin River north of the HOR such as Turner Cut, Columbia Cut, and Middle River.

  1. Development of groundwater vulnerability zones in a data-scarce eogenetic karst area using Head-Guided Zonation and particle-tracking simulation methods.

    PubMed

    Klaas, Dua K S Y; Imteaz, Monzur Alam; Arulrajah, Arul

    2017-10-01

    Delineation of groundwater vulnerability zones based on a valid groundwater model is crucial towards an accurate design of management strategies. However, limited data often restrain the development of a robust groundwater model. This study presents a methodology to develop groundwater vulnerability zones in a data-scarce area. The Head-Guided Zonation (HGZ) method was applied on the recharge area of Oemau Spring in Rote Island, Indonesia, which is under potential risk of contamination from rapid land use changes. In this method the model domain is divided into zones of piecewise constant into which the values of subsurface properties are assigned in the parameterisation step. Using reverse particle-tracking simulation on the calibrated and validated groundwater model, the simulation results (travel time and pathline trajectory) were combined with the potential groundwater contamination risk from human activities (land use type and current practice) to develop three vulnerability zones. The corresponding preventive management strategies were proposed to protect the spring from contamination and to ensure provision of safe and good quality water from the spring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Trampoline-associated injuries are more common in children in spring.

    PubMed

    Yule, Michael S; Krishna, Sanjeev; Rahiri, Jamie-Lee; Hill, Andrew G

    2016-06-10

    Trampoline use is a popular pastime amongst children in New Zealand, and has many advantages for child development. However, recent reports claim that trampoline-associated injuries are still highly prevalent. In order to help prevent these injuries in the future, this study aims to provide more up-to-date epidemiological information in children, with emphasis on the time of year that injuries most commonly occur. A retrospective review was carried out utilising a prospective maintained trauma database. The database was searched electronically for injuries involving trampolines in children aged 0-15 years. Patient demographics and information regarding month of injury, injury type and management were extracted. There were 344 admissions to hospital for trampoline-related injuries between June 2000 and January 2015. Injuries were uncommon in winter, but rose in spring and summer. Fracture of the radius and/or ulna was the most common injury (34.0%), followed by humeral fracture (32.0%). The peak incidence of trampoline-related injuries occurred around the beginning of spring daylight savings time each year. This could therefore prove an opportune time to remind children and parents about trampoline safety at the same time as daylight savings reminders.

  3. Effects of soil freezing and drought stress on abscisic acid content of sugar maple sap and leaves.

    PubMed

    Bertrand, A; Robitaille, G; Nadeau, P; Boutin, R

    1994-04-01

    In 1991 and 1992, mature maple trees (Acer saccharum Marsh.) were freeze-stressed or drought-stressed by preventing precipitation (snow or rain) from reaching the forest floor under selected trees. Lack of snow cover caused a decrease in soil temperature to well below 0 degrees C from December to April and a lowering of the soil water content to 10%. The abscisic acid (ABA) concentration in the spring sap of deep-soil frost-stressed trees was significantly higher than in control or drought-stressed trees. The increase in ABA concentration in the xylem sap in the spring of 1991 and 1992 preceded symptoms of canopy decline and a decrease in leaf area that were observed during the summers of 1991 and 1992. These results suggest a role for ABA in root-to-shoot communication in response to environmental stress. The largest differences in ABA concentration induced by the treatments was found in sap collected at the end of sap flow. The increase in ABA concentration in spring sap at the end of the sap flow could be used as an early indicator of stress suffered by trees during the winter. Not only did the increase in ABA concentration occur before any visible symptoms of tree decline appeared, but the trees that showed the most evident decline had the highest ABA concentrations in the spring sap. Leaf ABA concentration was not a good indicator of induced stress.

  4. The Sioux Treaty of 1868. The Constitution Community: Expansion and Reform (1801-1861).

    ERIC Educational Resources Information Center

    Clark, Linda Darus

    From the 1860s through the 1870s the U.S. frontier saw many Indian wars and skirmishes. A study and report on the conditions of the Indian tribes, released in 1867, led to an act to establish an Indian Peace Commission to end the wars and prevent future Indian conflicts. In the spring of 1868 a conference was held at Fort Laramie (Wyoming) that…

  5. Special Advanced Studies for Pollution Prevention. Delivery Order 0058: The Monitor - Spring 2000

    DTIC Science & Technology

    2001-04-01

    Process complexity ➨ Strippability ➨ Maturity ➨ Process type and chemistry ➨ Licensing requirements ➨ Vendor information ➨ Niplate 700 (Surface...Courses of Action 4 Identify & Evaluate Potential Alternatives 5 Select Best Alternative & Develop Project 6 Prioritize Projects by Commodity 7 Rank...Burden CS Priority Process Specific P2 OASolution Selection Solution Planning Solution Implementation Solution Evaluation Phase 2 Phase 3 Phase 1

  6. U.S. Army Medical Department Journal, July-September 2006

    DTIC Science & Technology

    2006-09-01

    Center from Operation Enduring Freedom and Operation Iraqi Freedom. back pain, etc. Although statistics are currently and exposure to depleted uranium . By...Washington, DC. LTC Niebuhr is oil the staff of the Division of Preventive Medicine, Walter Reed Army Institute of Research, Silver Spring, Maryland...is "primarily concerned populations was found; leading Barber to interpret the with the valuable differences in people that result from findings, as

  7. Adjustable-Torque Truss-Joint Mechanism

    NASA Technical Reports Server (NTRS)

    Bush, Harold G.; Wallsom, Richard E.

    1993-01-01

    Threaded pin tightened or loosened; tedious trial-and-error procedure shortened. Mechanism joining strut and node in truss structure preloaded to desired stress to ensure tight, compressive fit preventing motion of strut during loading or vibration. Preload stress on stack of Belleville spring washers adjusted by tightening or loosening threaded Belleville-washer-alignment pin. Pin turned, by use of allen wrench, to adjust compression preload on Belleville washers and adjusts joint-operating torque.

  8. Analysis of Energy-Absorbing Foundations.

    DTIC Science & Technology

    1978-12-15

    side rails. At the top of the rebound, air brakes are automatically activated which press against the rails and stop the table, preventing a second...for the same application to automobile bumpers , was greater than that used in an alternate design in which the tube was crushed axially, so it appears...shock mounts prepared by Burns [48]. Typi- cal non-linear, elastic, load-deflection curves are given for helical springs, pneumatic cylinders, hydraulic

  9. Implementation and evaluation of the HEROES initiative: a tri-state coordinated school health program to reduce childhood obesity.

    PubMed

    King, Mindy H; Lederer, Alyssa M; Sovinski, Danielle; Knoblock, Heidi M; Meade, Rhonda K; Seo, Dong-Chul; Kim, Nayoung

    2014-05-01

    This article describes the design, implementation, and evaluative findings of the HEROES (Healthy, Energetic, Ready, Outstanding, Enthusiastic, Schools) Initiative, a school-based multilevel childhood obesity prevention intervention. Based on the Centers for Disease Control and Prevention's recommended coordinated school health approach, the HEROES Initiative works to alleviate the burden of childhood obesity in Southern Indiana, Northwestern Kentucky, and Southeastern Illinois in the United States. Process evaluation was conducted with the 17 participating schools in spring 2012 based on interviews with school personnel and observation of the school environment. Findings showed that despite some variability, schools were generally able to implement the intervention with fidelity. School-level outcome evaluation was also based on observation of the school environment, and revealed that schools had implemented a number of new practices to encourage physical activity and healthy eating. Assessment of student-level outcomes was based on professionally collected physiological measurements and self-reported behavioral data collected over an 18-month period of time, last collected in spring 2012. Findings demonstrated that the HEROES Initiative has been successful in reducing the percentage of overweight children in participating schools and healthfully modifying their dietary, physical activity, and sedentary behaviors. Strategies that have facilitated success and challenges related to the intervention are discussed.

  10. Predatory fish removal and native fish recovery in the Colorado River mainstem: What have we learned?

    USGS Publications Warehouse

    Mueller, Gordon A.

    2005-01-01

    Mechanical predator removal programs have gained popularity in the United States and have benefited the recovery of several native trout and spring fish. These successes have been limited to headwater streams and small, isolated ponds or springs. Nevertheless, these same approaches are being applied to large river systems on the belief that any degree of predator removal will somehow benefit natives. This attitude is prevalent in the Colorado River mainstem where recovery and conservation programs are struggling to reverse the decline of four endangered fish species. Predator removal and prevention are major thrusts of that work but unfortunately, after 10 years and the removal of >1.5 million predators, we have yet to see a positive response from the native fish community. This leads to the obvious question: is mechanical removal or control in large (>100 cfs base flow) western streams technically or politically feasible? If not, recovery for some mainstem fishes may not be practical in the conventional sense, but require innovative management strategies to prevent their extirpation or possible extinction. This article examines (1) what has been attempted, (2) what has worked, and (3) what has not worked in the Colorado River mainstem and provides recommendations for future efforts in this critical management area.

  11. Effect of gravity and microgravity on intracranial pressure

    PubMed Central

    Lawley, Justin S.; Petersen, Lonnie G.; Howden, Erin J.; Sarma, Satyam; Cornwell, William K.; Zhang, Rong; Whitworth, Louis A.; Williams, Michael A.

    2017-01-01

    Key Points Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure on Earth.Gravity has a profound effect on fluid distribution and pressure within the human circulation. In contrast to prevailing theory, we observed that microgravity reduces central venous and intracranial pressure.This being said, intracranial pressure is not reduced to the levels observed in the 90 deg seated upright posture on Earth. Thus, over 24 h in zero gravity, pressure in the brain is slightly above that observed on Earth, which may explain remodelling of the eye in astronauts. Abstract Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure (ICP). This syndrome is considered the most mission‐critical medical problem identified in the past decade of manned spaceflight. We recruited five men and three women who had an Ommaya reservoir inserted for the delivery of prophylactic CNS chemotherapy, but were free of their malignant disease for at least 1 year. ICP was assessed by placing a fluid‐filled 25 gauge butterfly needle into the Ommaya reservoir. Subjects were studied in the upright and supine position, during acute zero gravity (parabolic flight) and prolonged simulated microgravity (6 deg head‐down tilt bedrest). icp was lower when seated in the 90 deg upright posture compared to lying supine (seated, 4 ± 1 vs. supine, 15 ± 2 mmHg). Whilst lying in the supine posture, central venous pressure (supine, 7 ± 3 vs. microgravity, 4 ± 2 mmHg) and ICP (supine, 17 ± 2 vs. microgravity, 13 ± 2 mmHg) were reduced in acute zero gravity, although not to the levels observed in the 90 deg seated upright posture on Earth. Prolonged periods of simulated microgravity did not cause progressive elevations in ICP (supine, 15 ± 2 vs. 24 h head‐down tilt, 15 ± 4 mmHg). Complete removal of gravity does not pathologically elevate ICP but does prevent the normal lowering of ICP when upright. These findings suggest the human brain is protected by the daily circadian cycles in regional ICPs, without which pathology may occur. PMID:28092926

  12. Effect of gravity and microgravity on intracranial pressure.

    PubMed

    Lawley, Justin S; Petersen, Lonnie G; Howden, Erin J; Sarma, Satyam; Cornwell, William K; Zhang, Rong; Whitworth, Louis A; Williams, Michael A; Levine, Benjamin D

    2017-03-15

    Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure on Earth. Gravity has a profound effect on fluid distribution and pressure within the human circulation. In contrast to prevailing theory, we observed that microgravity reduces central venous and intracranial pressure. This being said, intracranial pressure is not reduced to the levels observed in the 90 deg seated upright posture on Earth. Thus, over 24 h in zero gravity, pressure in the brain is slightly above that observed on Earth, which may explain remodelling of the eye in astronauts. Astronauts have recently been discovered to have impaired vision, with a presentation that resembles syndromes of elevated intracranial pressure (ICP). This syndrome is considered the most mission-critical medical problem identified in the past decade of manned spaceflight. We recruited five men and three women who had an Ommaya reservoir inserted for the delivery of prophylactic CNS chemotherapy, but were free of their malignant disease for at least 1 year. ICP was assessed by placing a fluid-filled 25 gauge butterfly needle into the Ommaya reservoir. Subjects were studied in the upright and supine position, during acute zero gravity (parabolic flight) and prolonged simulated microgravity (6 deg head-down tilt bedrest). ICP was lower when seated in the 90 deg upright posture compared to lying supine (seated, 4 ± 1 vs. supine, 15 ± 2 mmHg). Whilst lying in the supine posture, central venous pressure (supine, 7 ± 3 vs. microgravity, 4 ± 2 mmHg) and ICP (supine, 17 ± 2 vs. microgravity, 13 ± 2 mmHg) were reduced in acute zero gravity, although not to the levels observed in the 90 deg seated upright posture on Earth. Prolonged periods of simulated microgravity did not cause progressive elevations in ICP (supine, 15 ± 2 vs. 24 h head-down tilt, 15 ± 4 mmHg). Complete removal of gravity does not pathologically elevate ICP but does prevent the normal lowering of ICP when upright. These findings suggest the human brain is protected by the daily circadian cycles in regional ICPs, without which pathology may occur. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  13. Interpreting the results of a modified gravity model: examining access to primary health care physicians in five Canadian provinces and territories.

    PubMed

    Crooks, Valorie A; Schuurman, Nadine

    2012-08-01

    Primary health care (PHC) encompasses an array of health and social services that focus on preventative, diagnostic, and basic care measures to maintain wellbeing and address illnesses. In Canada, PHC involves the provision of first-contact health care services by providers such as family physicians and general practitioners - collectively referred as PHC physicians here. Ensuring access is a key requirement of effective PHC delivery. This is because having access to PHC has been shown to positively impact a number of health outcomes. We build on recent innovations in measuring potential spatial access to PHC physicians using geographic information systems (GIS) by running and then interpreting the findings of a modified gravity model. Elsewhere we have introduced the protocol for this model. In this article we run it for five selected Canadian provinces and territories. Our objectives are to present the results of the modified gravity model in order to: (1) understand how potential spatial access to PHC physicians can be interpreted in these Canadian jurisdictions, and (2) provide guidance regarding how findings of the modified gravity model should be interpreted in other analyses. Regarding the first objective, two distinct spatial patterns emerge regarding potential spatial access to PHC physicians in the five selected Canadian provinces: (1) a clear north-south pattern, where southern areas have greater potential spatial access than northern areas; and (2) while gradients of potential spatial access exist in and around urban areas, access outside of densely-to-moderately populated areas is fairly binary. Regarding the second objective, we identify three principles that others can use to interpret the findings of the modified gravity model when used in other research contexts. Future applications of the modified gravity model are needed in order to refine the recommendations we provide on interpreting its results. It is important that studies are undertaken that can help administrators, policy-makers, researchers, and others with characterizing the state of access to PHC, including potential spatial access. We encourage further research to be done using GIS in order to offer new, spatial perspectives on issues of access to health services given the increased recognition that the place-based nature of health services can benefit from the use of the capabilities of GIS to enhance the role that visualization plays in decision-making.

  14. Interpreting the results of a modified gravity model: examining access to primary health care physicians in five Canadian provinces and territories

    PubMed Central

    2012-01-01

    Background Primary health care (PHC) encompasses an array of health and social services that focus on preventative, diagnostic, and basic care measures to maintain wellbeing and address illnesses. In Canada, PHC involves the provision of first-contact health care services by providers such as family physicians and general practitioners – collectively referred as PHC physicians here. Ensuring access is a key requirement of effective PHC delivery. This is because having access to PHC has been shown to positively impact a number of health outcomes. Methods We build on recent innovations in measuring potential spatial access to PHC physicians using geographic information systems (GIS) by running and then interpreting the findings of a modified gravity model. Elsewhere we have introduced the protocol for this model. In this article we run it for five selected Canadian provinces and territories. Our objectives are to present the results of the modified gravity model in order to: (1) understand how potential spatial access to PHC physicians can be interpreted in these Canadian jurisdictions, and (2) provide guidance regarding how findings of the modified gravity model should be interpreted in other analyses. Results Regarding the first objective, two distinct spatial patterns emerge regarding potential spatial access to PHC physicians in the five selected Canadian provinces: (1) a clear north–south pattern, where southern areas have greater potential spatial access than northern areas; and (2) while gradients of potential spatial access exist in and around urban areas, access outside of densely-to-moderately populated areas is fairly binary. Regarding the second objective, we identify three principles that others can use to interpret the findings of the modified gravity model when used in other research contexts. Conclusions Future applications of the modified gravity model are needed in order to refine the recommendations we provide on interpreting its results. It is important that studies are undertaken that can help administrators, policy-makers, researchers, and others with characterizing the state of access to PHC, including potential spatial access. We encourage further research to be done using GIS in order to offer new, spatial perspectives on issues of access to health services given the increased recognition that the place-based nature of health services can benefit from the use of the capabilities of GIS to enhance the role that visualization plays in decision-making. PMID:22852816

  15. Characteristics of mesospheric gravity waves over the southeastern Tibetan Plateau region

    NASA Astrophysics Data System (ADS)

    Li, Qinzeng; Xu, Jiyao; Liu, Xiao; Yuan, Wei; Chen, Jinsong

    2016-09-01

    The Tibetan Plateau (TP), known as "Third Pole" of the Earth, has important influences on global climates and local weather. An important objective in present study is to investigate how orographic features of the TP affect the geographical distributions of gravity wave (GW) sources. Three-year OH airglow images (November 2011 to October 2014) from Qujing (25.6°N, 103.7°E) were used to study the characteristics of GWs over the southeastern TP region. Along with the almost concurrent and collocated meteor radar wind measurements and temperature data from SABER/TIMED satellite, the propagation conditions of three types of GWs (freely propagating, ducted, or evanescent) were estimated. Most of GWs exhibited ducted or evanescent characteristics. Almost all GWs propagate southeastward in winter. The GW propagation directions in winter are significantly different from other airglow imager observations at northern middle latitudes. Wind data and convective precipitation fields from the European Centre for Medium-Range Weather Forecasts reanalysis data are used to study the sources of GWs on the edge of the TP. Using backward ray-tracing analysis, we find that most of the mesospheric freely propagating GWs are located in or near the large wind shear intensity region ( 10 km- 17 km) on the southeastern edge of the TP in spring and winter. The averaged value of momentum flux is 11.6 ± 5.2 m2/s2 in winter and 7.5 ± 3.1 m2/s2 in summer. This work will provide valuable information for the GW parameterization schemes in general circulation models in TP region.

  16. The interaction between the tropopause inversion layer and the inertial gravity wave activities revealed by radiosonde observations at a midlatitude station

    NASA Astrophysics Data System (ADS)

    Zhang, Yehui; Zhang, Shaodong; Huang, Chunming; Huang, Kaiming; Gong, Yun; Gan, Quan

    2015-08-01

    The interaction between the tropopause inversion layer (TIL) and the inertial gravity wave (IGW) activities is first presented by using a high vertical resolution radiosonde data set at a midlatitude station, Boise, Idaho (43.57°N, 116.22°W), for the period 1998-2008. The tropopause-based vertical coordinate is used for the TIL detection, and for meticulously studying the IGW variation around the TIL, the broad spectral method is used for the IGW extraction. Generally, the TIL at the midlatitude station is stronger and thicker in winter and spring, which is consistent with previous studies. Our study confirmed the intense interaction between the TIL and IGW. It is found that the TIL not only could inhibit the upward propagation of IGWs from below but also imply the possible excitation links between the TIL and IGW. The results also indicate that the enhanced wind shear layer just 1 km above the tropopause may result in instability and finally leads to the IGW breaking and intensive turbulence. Subsequently, the IGW-induced intensive turbulence leads to strong wave energy dissipation and a downward heat flux. This downward heat transportation could significantly cool the tropopause, while it has only negligible thermal effect on the atmosphere above the tropopause. Then, the IGW-induced cooling at the tropopause makes the tropopause colder and sharper and finally forms the TIL. These suggest besides previously proposed mechanisms that IGWs also contribute greatly to the formation of TIL, which is consistent with a recent related simulation study.

  17. Hydro-geophysical observations integration in numerical model: case study in Mediterranean karstic unsaturated zone (Larzac, france)

    NASA Astrophysics Data System (ADS)

    Champollion, Cédric; Fores, Benjamin; Le Moigne, Nicolas; Chéry, Jean

    2016-04-01

    Karstic hydro-systems are highly non-linear and heterogeneous but one of the main water resource in the Mediterranean area. Neither local measurements in boreholes or analysis at the spring can take into account the variability of the water storage. Since a few years, ground-based geophysical measurements (such as gravity, electrical resistivity or seismological data) allows following water storage in heterogeneous hydrosystems at an intermediate scale between boreholes and basin. Behind classical rigorous monitoring, the integration of geophysical data in hydrological numerical models in needed for both processes interpretation and quantification. Since a few years, a karstic geophysical observatory (GEK: Géodésie de l'Environnement Karstique, OSU OREME, SNO H+) has been setup in the Mediterranean area in the south of France. The observatory is surrounding more than 250m karstified dolomite, with an unsaturated zone of ~150m thickness. At the observatory water level in boreholes, evapotranspiration and rainfall are classical hydro-meteorological observations completed by continuous gravity, resistivity and seismological measurements. The main objective of the study is the modelling of the whole observation dataset by explicit unsaturated numerical model in one dimension. Hydrus software is used for the explicit modelling of the water storage and transfer and links the different observations (geophysics, water level, evapotranspiration) with the water saturation. Unknown hydrological parameters (permeability, porosity) are retrieved from stochastic inversions. The scale of investigation of the different observations are discussed thank to the modelling results. A sensibility study of the measurements against the model is done and key hydro-geological processes of the site are presented.

  18. A Preliminary Investigation of The Structure of Southern Yucca Flat, Massachusetts Mountain, and CP Basin, Nevada Test Site, Nevada, Based on Geophysical Modeling

    USGS Publications Warehouse

    Phelps, Geoffrey A.; Justet, Leigh; Moring, Barry C.; Roberts, Carter W.

    2006-01-01

    New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.

  19. First OH Airglow Observation of Mesospheric Gravity Waves Over European Russia Region

    NASA Astrophysics Data System (ADS)

    Li, Qinzeng; Yusupov, Kamil; Akchurin, Adel; Yuan, Wei; Liu, Xiao; Xu, Jiyao

    2018-03-01

    For the first time, we perform a study of mesospheric gravity waves (GWs) for four different seasons of 1 year in the latitudinal band from 45°N to 75°N using an OH all-sky airglow imager over Kazan (55.8°N, 49.2°E), Russia, during the period of August 2015 to July 2016. Our observational study fills a huge airglow imaging observation gap in Europe and Russia region. In total, 125 GW events and 28 ripple events were determined by OH airglow images in 98 clear nights. The observed GWs showed a strong preference of propagation toward northeast in all seasons, which was significantly different from airglow imager observations at other latitudes that the propagation directions were seasonal dependent. The middle atmosphere wind field is used to explain the lack of low phase speed GWs since these GWs were falling into the blocking region due to the filtering effects. Deep tropospheric convections derived from the European Centre for Medium-Range Weather Forecasts reanalysis data are determined near Caucasus Mountains region, which suggests that the convections are the dominant source of the GWs in spring, summer, and autumn seasons. This finding extends our knowledge that convection might also be an important source of GWs in the higher latitudes. In winter the generation mechanism of the GWs are considered to be jet stream systems. In addition, the occurrence frequency of ripple is much lower than other stations. This study provides some constraints on the range of GW parameters in GW parameterization in general circulation models in Europe and Russia region.

  20. Jet fuel from 18 cool-season oilseed feedstocks in a semi-arid environment

    NASA Astrophysics Data System (ADS)

    Allen, Brett; Jabro, Jay

    2017-04-01

    Renewable jet fuel feedstocks can potentially offset the demand for petroleum based transportation resources, diversify cropping systems, and provide numerous ecosystem services . However, identifying suitable feedstock supplies remains a primary constraint to adoption. A 4-yr, multi-site experiment initiated in fall 2012 investigated the yield potential of six winter- and twelve spring-types of cool-season oilseed feedstocks. Sidney, MT (250 mm annual growing season precipitation) was one of eight sites in the western USA with others in Colorado, Idaho, Iowa, Minnesota, North Dakota, Oregon, and Texas. Winter types of Camelina sativa (1), Brassica napus (4), and B. rapa (1) were planted in mid-September, while spring types of Camelina sativa (1), B. napus (4), B. rapa (1), B. juncea (2), B. carinata (2), and Sinapis alba (2) were planted in early to late April. Seeding rates varied by entry and were between 4 to 11 kg/ha. All plots were under no-till management. Plots were 3 by 9 m with each treatment (oilseed entry) replicated four times. Camelina 'Joelle' was the only fall-seeded entry that survived winters with little to no snow cover on plots and where minimum air temperature reached -32°C. Stands of 'Joelle' in the spring of all years were excellent. 'Joelle' plots were typically harvested in July, while spring types were harvested 2-6 weeks later. Severe hailstorms during the late growing seasons of 2013 and 2015 resulted in up to 95% seed loss, preventing normal seed yield harvest of spring types. The B. carinata and spring camelina were the least and most susceptible to hail damage during plant maturity, respectively. 'Joelle' winter camelina was harvested before the severe weather in both years, showing the benefit of an early maturing crop in regions prone to late season hail. Overall, camelina was the only winter type that showed potential as an oilseed feedstock due to its superior winter hardiness. For spring types, B. napus, Camelina sativa, and B. carinata showed the greatest potential. Seed yield, excluding the five winter types that succumbed every year to winter kill, ranged from about 200 to 2000 kg/ha, with B. napus hybrids (1900 kg/ha), winter and spring camelina (1700 kg/ha), and B. carinata (1300 kg/ha) showing the greatest feedstock potential. Other measurements taken, but not reported included crop phenology, canopy spectral reflectance, leaf area, leaf area index, canopy temperature, soil water use, crop biomass, yield components, seed oil%, seed fatty acid composition, and drought resistance. Overall, camelina was the only winter type in addition to spring types of B. napus, B. carinata, and camelina that showed good potential for jet fuel feedstocks in the semi-arid northern Great Plains, USA.

  1. Biodiversity of the microbial mat of the Garga hot spring.

    PubMed

    Rozanov, Alexey Sergeevich; Bryanskaya, Alla Victorovna; Ivanisenko, Timofey Vladimirovich; Malup, Tatyana Konstantinovna; Peltek, Sergey Evgenievich

    2017-12-28

    Microbial mats are a good model system for ecological and evolutionary analysis of microbial communities. There are more than 20 alkaline hot springs on the banks of the Barguzin river inflows. Water temperature reaches 75 °C and pH is usually 8.0-9.0. The formation of microbial mats is observed in all hot springs. Microbial communities of hot springs of the Baikal rift zone are poorly studied. Garga is the biggest hot spring in this area. In this study, we investigated bacterial and archaeal diversity of the Garga hot spring (Baikal rift zone, Russia) using 16S rRNA metagenomic sequencing. We studied two types of microbial communities: (i) small white biofilms on rocks in the points with the highest temperature (75 °C) and (ii) continuous thick phototrophic microbial mats observed at temperatures below 70 °C. Archaea (mainly Crenarchaeota; 19.8% of the total sequences) were detected only in the small biofilms. The high abundance of Archaea in the sample from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. In the microbial mats, primary products were formed by cyanobacteria of the genus Leptolyngbya. Heterotrophic microorganisms were mostly represented by Actinobacteria and Proteobacteria in all studied samples of the microbial mats. Planctomycetes, Chloroflexi, and Chlorobi were abundant in the middle layer of the microbial mats, while heterotrophic microorganisms represented mostly by Firmicutes (Clostridia, strict anaerobes) dominated in the bottom part. Besides prokaryotes, we detect some species of Algae with help of detection their chloroplasts 16 s rRNA. High abundance of Archaea in samples from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. Metagenomic analysis of microbial communities of the microbial mat of Garga hot spring showed that the three studied points sampled at 70 °C, 55 °C, and 45 °C had similar species composition. Cyanobacteria of the genus Leptolyngbya dominated in the upper layer of the microbial mat. Chloroflexi and Chlorobi were less abundant and were mostly observed in the middle part of the microbial mat. We detected domains of heterotrophic organisms in high abundance (Proteobacteria, Firmicutes, Verrucomicrobia, Planctomicetes, Bacteroidetes, Actinobacteria, Thermi), according to metabolic properties of known relatives, which can form complete cycles of carbon, sulphur, and nitrogen in the microbial mat. The studied microbial mats evolved in early stages of biosphere formation. They can live autonomously, providing full cycles of substances and preventing live activity products poisoning.

  2. The National Shipbuilding Research Program. Survey of Air and Water Quality Pollution Prevention and Control Technology Used in Shipyards and Similar Industries

    DTIC Science & Technology

    1998-01-09

    vehicle washing 3. TSP and citric acid for bilge cleaning 1. no capture and filtration of weld fumes 8 1. black beauty abrasives 2...treatment 1. not treated N/A 12 N/A 1. treated on-site. with gravity oil water separator, acid cracking of the emulsion layer and parallel...less energy-intensive treatment technologies such as constructed wetlands for sewage treatment and anoxic limestone drains for acid mine drainage

  3. The reduction of a ""safety catastrophic'' potential hazard: A case history

    NASA Technical Reports Server (NTRS)

    Jones, J. P.

    1971-01-01

    A worst case analysis is reported on the safety of time watch movements for triggering explosive packages on the lunar surface in an experiment to investigate physical lunar structural characteristics through induced seismic energy waves. Considered are the combined effects of low pressure, low temperature, lunar gravity, gear train error, and position. Control measures constitute a seal control cavity and design requirements to prevent overbanking in the mainspring torque curve. Thus, the potential hazard is reduced to safety negligible.

  4. Tidal Models In A New Era of Satellite Gravimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Rowlings, David D.; Edbert, G. D.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    The high precision gravity measurements to be made by recently launched (and recently approved) satellites place new demands on models of Earth, atmospheric, and oceanic tides. The latter is the most problematic. The ocean tides induce variations in the Earth's geoid by amounts that far exceed the new satellite sensitivities, and tidal models must be used to correct for this. Two methods are used here to determine the standard errors in current ocean tide models. At long wavelengths these errors exceed the sensitivity of the GRACE mission. Tidal errors will not prevent the new satellite missions from improving our knowledge of the geopotential by orders of magnitude, but the errors may well contaminate GRACE estimates of temporal variations in gravity. Solar tides are especially problematic because of their long alias periods. The satellite data may be used to improve tidal models once a sufficiently long time series is obtained. Improvements in the long-wavelength components of lunar tides are especially promising.

  5. Medical Issues for a Human Mission to Mars and Martian Surface Expeditions

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Barratt, M.; Effenhauser, R.; Cockell, C. S.; Lee, P.

    The medical issues for an exploratory class mission to Mars are myriad and challenging. They include hazards from the space environment, such as space vacuum and radiation; hazards on the planetary surface such as micrometeoroids and Martian dust, and constitutional medical hazards, like appendicitis and tooth abscess. They include hazards in the transit vehicle like foreign bodies and toxic atmospheres, and hazards in the habitat like decompression and combustion events. They also include human physiological adaptation to variable conditions of reduced gravity and prolonged isolation and confinement. The health maintenance program for a Mars mission will employ strategies of disease prevention, early detection, and contingency management, to mitigate the risks of spaceflight and exploration. Countermeasures for altered gravity conditions will allow crewmembers to maintain high levels of performance and nominal physiologic functioning. Despite all of these issues, given sufficient redundancy in on-board life support systems, there are no medical show-stoppers for the first human exploratory class missions.

  6. The Innovative Design and Prototype Verification of Wheelchair with One Degree of Freedom to Perform Lifting and Standing Functions

    NASA Astrophysics Data System (ADS)

    Hsieh, Long-Chang; Chen, Tzu-Hsia

    2017-12-01

    Traditionally, the mechanism of wheelchair with lifting and standing functions has 2 degrees of freedom, and used 2 power sources to perform these 2 motion function. The purpose of this paper is to invent new wheelchair with 1 degree of freedom to perform these 2 motion functions. Hence, we can use only 1 power source to drive the mechanism to achieve lifting and standing motion functions. The new design has the advantages of simple operation, more stability, and more safety. For traditional standing wheelchair, its’ centre of gravity moves forward when standing up and it needs 2 auxiliary wheels to prevent dumping. In this paper, by using the checklist method of Osborn, the wheelchair with 1 DOF is invented to perform lifting and standing functions. The centre of gravity of this new wheelchair after standing up still located between the front and rear wheels, no auxiliary wheels needed. Finally, the prototype is manufactured to verify the theoretical results.

  7. Influence of QBO on stratospheric Kelvin and Mixed Rossby gravity waves in high-top CMIP5 models

    NASA Astrophysics Data System (ADS)

    Indah Solihah, Karina; Lubis, Sandro W.; Setiawan, Sonni

    2018-05-01

    It is well established that quasi-biennial oscillation (QBO) has a substantial influence on Kelvin and mixed Rossby gravity (MRG) wave activity in the tropical lower stratosphere. In this study, we examined how QBO influences Kelvin and MRG wave activity in the lower stratosphere, based on nine high-top CMIP5 models. The results show that the Kelvin and MRG wave signals are stronger in the models with QBO, and relatively weaker in the models without QBO. The results are consistent with established theory, whereby upward-propagating Kelvin waves occurs more frequently during the easterly QBO phase, while upward-propagating MRG waves occurs during the westerly QBO phase. Without the QBO, the mean flow exhibits a near-zero easterly wind, which prevents the waves from propagating and penetrating into the stratosphere. Our analysis also shows that models with the QBO tend to have more robust signatures (in terms of amplitude and phase speed) of Kelvin and MRG waves.

  8. Protein synthesis in geostimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  9. Thermodynamic modeling of the no-vent fill methodology for transferring cryogens in low gravity

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1988-01-01

    The filling of tanks with cryogens in the low-gravity environment of space poses many technical challenges. Chief among these is the inability to vent only vapor from the tank as the filling proceeds. As a potential solution to this problem, the NASA Lewis Research Center is researching a technique known as No-Vent Fill. This technology potentially has broad application. The focus is the fueling of space based Orbital Transfer Vehicles. The fundamental thermodynamics of the No-Vent Fill is described. The model is then used to conduct a parametric investigation of the key parameters: initial tank wall temperature, liquid-vapor interface heat transfer rate, liquid inflow rate, and inflowing liquid temperatures. Liquid inflowing temperature and the liquid-vapor interface heat transfer rate seem to be the most significant since they influence the entire fill process. The initial tank wall temperature must be sufficiently low to prevent a rapid pressure rise during the initial liquid flashing state, but then becomes less significant.

  10. Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK

    PubMed Central

    Haigh, Ivan D.; Wadey, Matthew P.; Wahl, Thomas; Ozsoy, Ozgun; Nicholls, Robert J.; Brown, Jennifer M.; Horsburgh, Kevin; Gouldby, Ben

    2016-01-01

    In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915–2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (<4 days) typically impact different stretches of coastline. The spring/neap tidal cycle prevents successive extreme sea level events from happening within 4–8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective. PMID:27922630

  11. Tests to Determine the Adhesive Power of Passenger-Car Tires

    NASA Technical Reports Server (NTRS)

    Foerster, B.

    1956-01-01

    The concept of the adhesive power of a tire with respect to the road involves several properties which result from the purpose of the tire; namely, connecting link between vehicle and road: (1) The tire must transfer the tractive and braking forces acting in the direction of travel (tractive and braking adhesion); (2) The tire is to prevent lateral deviations of the vehicle from the desired direction of travel (track adhesion). Moreover, the rubber tire provides part of the springing of the vehicle. Above all, it has to level out the minor road irregularities; thus it smoothes, as it were, the road and simultaneously reduces the noise of driving. The springing properties of the tire affect the adhesive power. The tests described below comprise a determination of the braking and track adhesion of individual tires. The adhesion of driven wheels has not been investigated so far.

  12. American College Health Association National College Health Assessment (ACHA-NCHA) Spring 2005 Reference Group Data Report (Abridged).

    PubMed

    2006-01-01

    Assessing and understanding the health needs and capacities of college students is paramount to creating healthy campus communities. The American College Health Association-National College Health Assessment (ACHA-NCHA) is a survey instrument developed by the ACHA in 1998 to assist institutions of higher education in achieving this goal. The ACHA-NCHA contains approximately 300 questions assessing student health status and health problems, risk and protective behaviors, access to health information, impediments to academic performance, and perceived norms across a variety of content areas (eg, injury prevention; personal safety and violence; alcohol, tobacco, and other drug use; sexual health; weight, nutrition, and exercise; mental health). Twice a year, the ACHA compiles aggregate data from participating institutions in a reference group report for data comparison. Results from the Spring 2005 Reference Group (N = 54,111) are presented in this article.

  13. American College Health Association-National College Health Assessment (ACHA-NCHA) Spring 2004 Reference Group data report (abridged).

    PubMed

    2006-01-01

    Assessing and understanding the health needs and capacities of college students is paramount to creating healthy campus communities. The American College Health Association-National College Health Assessment (ACHA-NCHA) is a survey instrument developed by the ACHA in 1998 to assist institutions of higher education in achieving this goal. The ACHA-NCHA contains approximately 300 questions assessing student health status and health problems, risk and protective behaviors, access to health information, impediments to academic performance, and perceived norms across a variety of content areas, including injury prevention; personal safety and violence; alcohol, tobacco, and other drug use; sexual health; weight, nutrition, and exercise; and mental health. Twice a year, the ACHA compiles aggregate data from participating institutions in a reference group report for data comparison. Results from the Spring 2004 Reference Group (N = 47,202) are presented in this article.

  14. Robust tilt and lock mechanism for hopping actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salton, Jonathan R.; Buerger, Stephen; Dullea, Kevin J.

    A tilt and lock apparatus that includes a tilt servomechanism, a spiral torsion spring, a lock wheel, and a lock hook is described herein. The spiral torsion spring is mechanically coupled to the tilt servomechanism and the lock wheel (which includes an opening). When a shaft is positioned through the opening, rotation of the lock wheel is in unison with rotation of the shaft. An external surface of the lock wheel includes one or more grooves. The lock hook includes a head that engages and disengages the grooves. The lock wheel is stationary when the head engages one of themore » grooves and is rotatable when the head disengages the grooves. The head and the grooves are geometrically aligned when engaged to prevent creation of a force that acts to disengage the head responsive to an applied force acting on the shaft.« less

  15. Improving the quality of marine geophysical track line data: Along-track analysis

    NASA Astrophysics Data System (ADS)

    Chandler, Michael T.; Wessel, Paul

    2008-02-01

    We have examined 4918 track line geophysics cruises archived at the U.S. National Geophysical Data Center (NGDC) using comprehensive error checking methods. Each cruise was checked for observation outliers, excessive gradients, metadata consistency, and general agreement with satellite altimetry-derived gravity and predicted bathymetry grids. Thresholds for error checking were determined empirically through inspection of histograms for all geophysical values, gradients, and differences with gridded data sampled along ship tracks. Robust regression was used to detect systematic scale and offset errors found by comparing ship bathymetry and free-air anomalies to the corresponding values from global grids. We found many recurring error types in the NGDC archive, including poor navigation, inappropriately scaled or offset data, excessive gradients, and extended offsets in depth and gravity when compared to global grids. While ˜5-10% of bathymetry and free-air gravity records fail our conservative tests, residual magnetic errors may exceed twice this proportion. These errors hinder the effective use of the data and may lead to mistakes in interpretation. To enable the removal of gross errors without over-writing original cruise data, we developed an errata system that concisely reports all errors encountered in a cruise. With such errata files, scientists may share cruise corrections, thereby preventing redundant processing. We have implemented these quality control methods in the modified MGD77 supplement to the Generic Mapping Tools software suite.

  16. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  17. Real-time on-line space research laboratory environment monitoring with off-line trend and prediction analysis

    NASA Astrophysics Data System (ADS)

    Jules, Kenol; Lin, Paul P.

    2007-06-01

    With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.

  18. Alignment and assembly process for primary mirror subsystem of a spaceborne telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Chang, Sheng-Hsiung; Chang, Chen-Peng; Lin, Yu-Chuan; Chin, Chi-Chieh; Pan, Hsu-Pin; Huang, Ting-Ming

    2015-11-01

    In this study, a multispectral spaceborne Cassegrain telescope was developed. The telescope was equipped with a primary mirror with a 450-mm clear aperture composed of Zerodur and lightweighted at a ratio of approximately 50% to meet both thermal and mass requirements. Reducing the astigmatism was critical for this mirror. The astigmatism is caused by gravity effects, the bonding process, and deformation from mounting the main structure of the telescope (main plate). This article presents the primary mirror alignment, mechanical ground-supported equipment (MGSE), assembly process, and optical performance test used to assemble the primary mirror. A mechanical compensated shim is used as the interface between the bipod flexure and main plate. The shim was used to compensate for manufacturer errors found in components and differences between local coplanarity errors to prevent stress while the bipod flexure was screwed to the main plate. After primary mirror assembly, an optical performance test method called a bench test with an algorithm was used to analyze the astigmatism caused by the gravity effect and deformation from the mounting or supporter. The tolerance conditions for the primary mirror assembly require the astigmatism caused by gravity and mounting force deformation to be less than P-V 0.02 λ at 632.8 nm. The results demonstrated that the designed MGSE used in the alignment and assembly processes met the critical requirements for the primary mirror assembly of the telescope.

  19. Optimizing Online Suicide Prevention: A Search Engine-Based Tailored Approach.

    PubMed

    Arendt, Florian; Scherr, Sebastian

    2017-11-01

    Search engines are increasingly used to seek suicide-related information online, which can serve both harmful and helpful purposes. Google acknowledges this fact and presents a suicide-prevention result for particular search terms. Unfortunately, the result is only presented to a limited number of visitors. Hence, Google is missing the opportunity to provide help to vulnerable people. We propose a two-step approach to a tailored optimization: First, research will identify the risk factors. Second, search engines will reweight algorithms according to the risk factors. In this study, we show that the query share of the search term "poisoning" on Google shows substantial peaks corresponding to peaks in actual suicidal behavior. Accordingly, thresholds for showing the suicide-prevention result should be set to the lowest levels during the spring, on Sundays and Mondays, on New Year's Day, and on Saturdays following Thanksgiving. Search engines can help to save lives globally by utilizing a more tailored approach to suicide prevention.

  20. Earth observation (Australia) taken by Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Earth observation of Australia was taken by Galileo Spacecraft after completing its first Earth Gravity Assist. Color image of the Simpson Desert in Australia was obtained by Galileo at about 2:30 pm Pacific Standard Time (PST), 12-08-90, at a range of more than 35,000 miles. The color composite was made from images taken through the red, green, and violet filters. The area shown, about 280 miles wide by about 340 miles north-to-south, is southeast of Alice Springs. At lower left is Lake Eyre, a salt lake below sea level, subject to seasonal water-level fluctuations; when this image was acquired the lake was nearly dry. At lower right is the greenish Lake Blanche. Fields of linear sand dunes stretch north and east of Lake Eyre, shaped by prevailing winds from the south and showing, in different colors, the various sources and/or ages of their sands. Photo provided by Jet Propulsion Laboratory (JPL) with alternate number P-37331, 12-19-90.

Top